TPTP Problem File: ITP245^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP245^3 : TPTP v9.0.0. Released v8.1.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem VEBT_Succ 00662_042072
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0070_VEBT_Succ_00662_042072 [Des22]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.70 v8.2.0, 0.77 v8.1.0
% Syntax : Number of formulae : 11257 (5657 unt;1018 typ; 0 def)
% Number of atoms : 28123 (12010 equ; 0 cnn)
% Maximal formula atoms : 71 ( 2 avg)
% Number of connectives : 113984 (2813 ~; 527 |;1824 &;98112 @)
% ( 0 <=>;10708 =>; 0 <=; 0 <~>)
% Maximal formula depth : 39 ( 6 avg)
% Number of types : 92 ( 91 usr)
% Number of type conns : 4410 (4410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 930 ( 927 usr; 62 con; 0-8 aty)
% Number of variables : 26324 (2613 ^;22926 !; 785 ?;26324 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-18 01:06:19.378
%------------------------------------------------------------------------------
% Could-be-implicit typings (91)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
produc5542196010084753463at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
produc5491161045314408544at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
produc1193250871479095198on_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
produc8306885398267862888on_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
produc6121120109295599847at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J_J,type,
produc3368934014287244435at_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
produc4471711990508489141at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
produc7036089656553540234on_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
produc2233624965454879586on_nat: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
list_P7413028617227757229T_VEBT: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
produc3447558737645232053on_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
produc4953844613479565601on_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
produc2963631642982155120at_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc7248412053542808358at_nat: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
list_P7037539587688870467BT_nat: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
list_P4547456442757143711BT_int: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
list_P5647936690300460905T_VEBT: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__VEBT____Definitions__OVEBT_J_J,type,
list_P7524865323317820941T_VEBT: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
produc8243902056947475879T_VEBT: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc8923325533196201883nteger: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
list_P3126845725202233233VEBT_o: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
list_P7495141550334521929T_VEBT: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
list_P8526636022914148096eger_o: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
set_Pr448751882837621926eger_o: $tType ).
thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
option4927543243414619207at_nat: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
list_P3744719386663036955um_num: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
list_P1726324292696863441at_num: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
list_P6011104703257516679at_nat: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Int__Oint_J_J,type,
list_P3521021558325789923at_int: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
list_P5707943133018811711nt_int: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
produc9072475918466114483BT_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J,type,
produc8025551001238799321T_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
set_Pr8218934625190621173um_num: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
set_Pr6200539531224447659at_num: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
set_Pr1261947904930325089at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
set_Pr958786334691620121nt_int: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
list_P7333126701944960589_nat_o: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_M_Eo_J_J,type,
list_P5087981734274514673_int_o: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
list_P3795440434834930179_o_int: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
set_list_VEBT_VEBT: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
produc334124729049499915VEBT_o: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
produc6271795597528267376eger_o: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
product_prod_num_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
product_prod_nat_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
product_prod_nat_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Int__Oint_J,type,
product_prod_nat_int: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
product_prod_int_int: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
list_P4002435161011370285od_o_o: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Complex__Ocomplex_J_J,type,
set_list_complex: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
set_set_complex: $tType ).
thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
list_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
set_list_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
set_list_int: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_M_Eo_J,type,
product_prod_nat_o: $tType ).
thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
list_set_nat: $tType ).
thf(ty_n_t__List__Olist_It__Code____Numeral__Ointeger_J,type,
list_Code_integer: $tType ).
thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
set_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
set_set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
set_set_int: $tType ).
thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
set_Code_integer: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
set_Product_unit: $tType ).
thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
list_complex: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
set_list_o: $tType ).
thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
set_complex: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
filter_real: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
set_set_o: $tType ).
thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
option_num: $tType ).
thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
option_nat: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
filter_nat: $tType ).
thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
set_char: $tType ).
thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
list_real: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__List__Olist_It__Num__Onum_J,type,
list_num: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
list_int: $tType ).
thf(ty_n_t__VEBT____Definitions__OVEBT,type,
vEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
set_rat: $tType ).
thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
set_num: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Code____Numeral__Ointeger,type,
code_integer: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__List__Olist_I_Eo_J,type,
list_o: $tType ).
thf(ty_n_t__Complex__Ocomplex,type,
complex: $tType ).
thf(ty_n_t__Set__Oset_I_Eo_J,type,
set_o: $tType ).
thf(ty_n_t__String__Ochar,type,
char: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Rat__Orat,type,
rat: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (927)
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
archim7802044766580827645g_real: real > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
archim3151403230148437115or_rat: rat > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
archim6058952711729229775r_real: real > int ).
thf(sy_c_Binomial_Obinomial,type,
binomial: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
gbinomial_complex: complex > nat > complex ).
thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
gbinomial_int: int > nat > int ).
thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
gbinomial_nat: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
gbinomial_rat: rat > nat > rat ).
thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
gbinomial_real: real > nat > real ).
thf(sy_c_Bit__Operations_Oand__int__rel,type,
bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Bit__Operations_Oand__not__num,type,
bit_and_not_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Oand__not__num__rel,type,
bit_and_not_num_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Oconcat__bit,type,
bit_concat_bit: nat > int > int > int ).
thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
bit_or_not_num_neg: num > num > num ).
thf(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
bit_or3848514188828904588eg_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
bit_ri7919022796975470100ot_int: int > int ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
bit_ri631733984087533419it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
bit_se725231765392027082nd_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
bit_se727722235901077358nd_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
bit_se8568078237143864401it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
bit_se8570568707652914677it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
bit_se1345352211410354436nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
bit_se2159334234014336723it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
bit_se2161824704523386999it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
bit_se2000444600071755411sk_int: nat > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
bit_se2002935070580805687sk_nat: nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
bit_se1409905431419307370or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
bit_se1412395901928357646or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
bit_se545348938243370406it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
bit_se547839408752420682it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
bit_se2793503036327961859nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
bit_se7879613467334960850it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
bit_se7882103937844011126it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
bit_se2923211474154528505it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
bit_se2925701944663578781it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
bit_se8260200283734997820nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
bit_se4203085406695923979it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
bit_se4205575877204974255it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
bit_se6526347334894502574or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
bit_se6528837805403552850or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
bit_se1146084159140164899it_int: int > nat > $o ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
bit_se1148574629649215175it_nat: nat > nat > $o ).
thf(sy_c_Bit__Operations_Otake__bit__num,type,
bit_take_bit_num: nat > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num,type,
bit_un1837492267222099188nd_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num__rel,type,
bit_un5425074673868309765um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num,type,
bit_un6178654185764691216or_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num__rel,type,
bit_un3595099601533988841um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num,type,
bit_un7362597486090784418nd_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num__rel,type,
bit_un4731106466462545111um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num,type,
bit_un2480387367778600638or_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num__rel,type,
bit_un2901131394128224187um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Code__Numeral_Obit__cut__integer,type,
code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).
thf(sy_c_Code__Numeral_Odivmod__abs,type,
code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Code__Numeral_Odivmod__integer,type,
code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Code__Numeral_Odup,type,
code_dup: code_integer > code_integer ).
thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
code_int_of_integer: code_integer > int ).
thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
code_integer_of_int: int > code_integer ).
thf(sy_c_Code__Numeral_Ointeger__of__num,type,
code_integer_of_num: num > code_integer ).
thf(sy_c_Code__Numeral_Onat__of__integer,type,
code_nat_of_integer: code_integer > nat ).
thf(sy_c_Code__Numeral_Onegative,type,
code_negative: num > code_integer ).
thf(sy_c_Code__Numeral_Onum__of__integer,type,
code_num_of_integer: code_integer > num ).
thf(sy_c_Code__Numeral_Opositive,type,
code_positive: num > code_integer ).
thf(sy_c_Code__Numeral_Osub,type,
code_sub: num > num > code_integer ).
thf(sy_c_Code__Target__Int_Onegative,type,
code_Target_negative: num > int ).
thf(sy_c_Code__Target__Int_Opositive,type,
code_Target_positive: num > int ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Real__Oreal,type,
comple4887499456419720421f_real: set_real > real ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
comple7806235888213564991et_nat: set_set_nat > set_nat ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Int__Oint,type,
complete_Sup_Sup_int: set_int > int ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
comple1385675409528146559p_real: set_real > real ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
comple7399068483239264473et_nat: set_set_nat > set_nat ).
thf(sy_c_Complex_OArg,type,
arg: complex > real ).
thf(sy_c_Complex_Ocis,type,
cis: real > complex ).
thf(sy_c_Complex_Ocnj,type,
cnj: complex > complex ).
thf(sy_c_Complex_Ocomplex_OComplex,type,
complex2: real > real > complex ).
thf(sy_c_Complex_Ocomplex_OIm,type,
im: complex > real ).
thf(sy_c_Complex_Ocomplex_ORe,type,
re: complex > real ).
thf(sy_c_Complex_Ocsqrt,type,
csqrt: complex > complex ).
thf(sy_c_Complex_Oimaginary__unit,type,
imaginary_unit: complex ).
thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).
thf(sy_c_Divides_Oadjust__div,type,
adjust_div: product_prod_int_int > int ).
thf(sy_c_Divides_Oadjust__mod,type,
adjust_mod: int > int > int ).
thf(sy_c_Divides_Odivmod__nat,type,
divmod_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Divides_Oeucl__rel__int,type,
eucl_rel_int: int > int > product_prod_int_int > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Code____Numeral__Ointeger,type,
unique5706413561485394159nteger: produc8923325533196201883nteger > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Int__Oint,type,
unique6319869463603278526ux_int: product_prod_int_int > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Nat__Onat,type,
unique6322359934112328802ux_nat: product_prod_nat_nat > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Code____Numeral__Ointeger,type,
unique3479559517661332726nteger: num > num > produc8923325533196201883nteger ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
unique5052692396658037445od_int: num > num > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
comm_s8582702949713902594nteger: code_integer > nat > code_integer ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
comm_s2602460028002588243omplex: complex > nat > complex ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
comm_s4660882817536571857er_int: int > nat > int ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
comm_s4663373288045622133er_nat: nat > nat > nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
comm_s4028243227959126397er_rat: rat > nat > rat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
comm_s7457072308508201937r_real: real > nat > real ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Ointeger,type,
semiri3624122377584611663nteger: nat > code_integer ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
semiri5044797733671781792omplex: nat > complex ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
semiri1406184849735516958ct_int: nat > int ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
semiri1408675320244567234ct_nat: nat > nat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
semiri773545260158071498ct_rat: nat > rat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
semiri2265585572941072030t_real: nat > real ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
invers8013647133539491842omplex: complex > complex ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
inverse_inverse_rat: rat > rat ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
inverse_inverse_real: real > real ).
thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
at_bot_real: filter_real ).
thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
at_top_nat: filter_nat ).
thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
at_top_real: filter_real ).
thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
eventually_nat: ( nat > $o ) > filter_nat > $o ).
thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
eventually_real: ( real > $o ) > filter_real > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).
thf(sy_c_Finite__Set_Ocard_001_Eo,type,
finite_card_o: set_o > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
finite_card_complex: set_complex > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
finite_card_int: set_int > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
finite_card_nat: set_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
finite410649719033368117t_unit: set_Product_unit > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
finite_card_set_nat: set_set_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
finite_card_char: set_char > nat ).
thf(sy_c_Finite__Set_Ofinite_001_Eo,type,
finite_finite_o: set_o > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
finite3207457112153483333omplex: set_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
finite_finite_int: set_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_I_Eo_J,type,
finite_finite_list_o: set_list_o > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Complex__Ocomplex_J,type,
finite8712137658972009173omplex: set_list_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Int__Oint_J,type,
finite3922522038869484883st_int: set_list_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
finite8100373058378681591st_nat: set_list_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
finite3004134309566078307T_VEBT: set_list_VEBT_VEBT > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
finite_finite_nat: set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
finite_finite_num: set_num > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Rat__Orat,type,
finite_finite_rat: set_rat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
finite_finite_real: set_real > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Complex__Ocomplex_J,type,
finite6551019134538273531omplex: set_set_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Int__Oint_J,type,
finite6197958912794628473et_int: set_set_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
finite1152437895449049373et_nat: set_set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__VEBT____Definitions__OVEBT,type,
finite5795047828879050333T_VEBT: set_VEBT_VEBT > $o ).
thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).
thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
comp_C3531382070062128313er_num: ( code_integer > code_integer ) > ( num > code_integer ) > num > code_integer ).
thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).
thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
comp_nat_nat_nat: ( nat > nat ) > ( nat > nat ) > nat > nat ).
thf(sy_c_Fun_Oid_001_Eo,type,
id_o: $o > $o ).
thf(sy_c_Fun_Oid_001t__Nat__Onat,type,
id_nat: nat > nat ).
thf(sy_c_Fun_Oid_001t__Num__Onum,type,
id_num: num > num ).
thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001_062_It__Int__Oint_M_Eo_J_001_062_It__Code____Numeral__Ointeger_M_Eo_J,type,
map_fu2496120808607739376eger_o: ( code_integer > int ) > ( ( int > $o ) > code_integer > $o ) > ( int > int > $o ) > code_integer > code_integer > $o ).
thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
map_fu8272188784021352819nteger: ( code_integer > int ) > ( ( int > int ) > code_integer > code_integer ) > ( int > int > int ) > code_integer > code_integer > code_integer ).
thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001_Eo_001_Eo,type,
map_fu6957801986076833569nt_o_o: ( code_integer > int ) > ( $o > $o ) > ( int > $o ) > code_integer > $o ).
thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
map_fu2599414010547811884nteger: ( code_integer > int ) > ( int > code_integer ) > ( int > int ) > code_integer > code_integer ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
map_fu434086159418415080_int_o: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > $o ) > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > int > int > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
map_fu4960017516451851995nt_int: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > int > int > int ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
map_fu4826362097070443709at_o_o: ( int > product_prod_nat_nat ) > ( $o > $o ) > ( product_prod_nat_nat > $o ) > int > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
map_fu2345160673673942751at_nat: ( int > product_prod_nat_nat ) > ( nat > nat ) > ( product_prod_nat_nat > nat ) > int > nat ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).
thf(sy_c_Fun_Omap__fun_001t__Num__Onum_001t__Num__Onum_001_062_It__Num__Onum_Mt__Int__Oint_J_001_062_It__Num__Onum_Mt__Code____Numeral__Ointeger_J,type,
map_fu6891787308814931657nteger: ( num > num ) > ( ( num > int ) > num > code_integer ) > ( num > num > int ) > num > num > code_integer ).
thf(sy_c_Fun_Omap__fun_001t__Num__Onum_001t__Num__Onum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
map_fu8638147718074629079nteger: ( num > num ) > ( int > code_integer ) > ( num > int ) > num > code_integer ).
thf(sy_c_Fun_Ostrict__mono__on_001t__Nat__Onat_001t__Nat__Onat,type,
strict1292158309912662752at_nat: ( nat > nat ) > set_nat > $o ).
thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).
thf(sy_c_GCD_OGcd__class_OGcd_001t__Int__Oint,type,
gcd_Gcd_int: set_int > int ).
thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
gcd_Gcd_nat: set_nat > nat ).
thf(sy_c_GCD_Obezw,type,
bezw: nat > nat > product_prod_int_int ).
thf(sy_c_GCD_Obezw__rel,type,
bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
gcd_gcd_int: int > int > int ).
thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
gcd_gcd_nat: nat > nat > nat ).
thf(sy_c_GCD_Ogcd__nat__rel,type,
gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
abs_abs_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
abs_abs_complex: complex > complex ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
abs_abs_rat: rat > rat ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
abs_abs_real: real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
minus_8727706125548526216plex_o: ( complex > $o ) > ( complex > $o ) > complex > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Int__Oint_M_Eo_J,type,
minus_minus_int_o: ( int > $o ) > ( int > $o ) > int > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
minus_6910147592129066416_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > set_nat > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
minus_minus_complex: complex > complex > complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
minus_minus_rat: rat > rat > rat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
minus_811609699411566653omplex: set_complex > set_complex > set_complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
minus_minus_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
minus_minus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
minus_minus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
one_one_Code_integer: code_integer ).
thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
one_one_complex: complex ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
one_one_rat: rat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
plus_plus_complex: complex > complex > complex ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
plus_plus_rat: rat > rat > rat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
sgn_sgn_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
sgn_sgn_complex: complex > complex ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
sgn_sgn_int: int > int ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
sgn_sgn_rat: rat > rat ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
sgn_sgn_real: real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
times_3573771949741848930nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
times_times_complex: complex > complex > complex ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
times_times_rat: rat > rat > rat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
uminus1680532995456772888plex_o: ( complex > $o ) > complex > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Int__Oint_M_Eo_J,type,
uminus_uminus_int_o: ( int > $o ) > int > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Nat__Onat_M_Eo_J,type,
uminus_uminus_nat_o: ( nat > $o ) > nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
uminus_uminus_real_o: ( real > $o ) > real > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
uminus6401447641752708672_nat_o: ( set_nat > $o ) > set_nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
uminus1351360451143612070nteger: code_integer > code_integer ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
uminus1482373934393186551omplex: complex > complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
uminus_uminus_rat: rat > rat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
uminus8566677241136511917omplex: set_complex > set_complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Int__Oint_J,type,
uminus1532241313380277803et_int: set_int > set_int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
uminus5710092332889474511et_nat: set_nat > set_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
uminus612125837232591019t_real: set_real > set_real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
uminus613421341184616069et_nat: set_set_nat > set_set_nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
zero_z3403309356797280102nteger: code_integer ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
zero_zero_complex: complex ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
zero_zero_rat: rat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_Eo_001t__Nat__Onat,type,
groups8507830703676809646_o_nat: ( $o > nat ) > set_o > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Code____Numeral__Ointeger,type,
groups6621422865394947399nteger: ( complex > code_integer ) > set_complex > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Rat__Orat,type,
groups5058264527183730370ex_rat: ( complex > rat ) > set_complex > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
groups7873554091576472773nteger: ( int > code_integer ) > set_int > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
groups4538972089207619220nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
groups8778361861064173332t_real: ( int > real ) > set_int > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
groups977919841031483927at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Real__Oreal,type,
groups4567486121110086003t_real: ( product_prod_nat_nat > real ) > set_Pr1261947904930325089at_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
groups7713935264441627589nteger: ( real > code_integer ) > set_real > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
groups1932886352136224148al_int: ( real > int ) > set_real > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Rat__Orat,type,
groups1300246762558778688al_rat: ( real > rat ) > set_real > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
groups8097168146408367636l_real: ( real > real ) > set_real > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Complex__Ocomplex,type,
groups8255218700646806128omplex: ( set_nat > complex ) > set_set_nat > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
groups8294997508430121362at_nat: ( set_nat > nat ) > set_set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
groups5107569545109728110t_real: ( set_nat > real ) > set_set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
groups1705073143266064639nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Complex__Ocomplex,type,
groups6464643781859351333omplex: ( nat > complex ) > set_nat > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
groups705719431365010083at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Rat__Orat,type,
groups73079841787564623at_rat: ( nat > rat ) > set_nat > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Real__Oreal,type,
groups129246275422532515t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).
thf(sy_c_HOL_OThe_001t__Int__Oint,type,
the_int: ( int > $o ) > int ).
thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
the_real: ( real > $o ) > real ).
thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
if_Code_integer: $o > code_integer > code_integer > code_integer ).
thf(sy_c_If_001t__Complex__Ocomplex,type,
if_complex: $o > complex > complex > complex ).
thf(sy_c_If_001t__Extended____Nat__Oenat,type,
if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
if_list_int: $o > list_int > list_int > list_int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Num__Onum,type,
if_num: $o > num > num > num ).
thf(sy_c_If_001t__Option__Ooption_It__Nat__Onat_J,type,
if_option_nat: $o > option_nat > option_nat > option_nat ).
thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
if_option_num: $o > option_num > option_num > option_num ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_If_001t__Rat__Orat,type,
if_rat: $o > rat > rat > rat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
if_set_int: $o > set_int > set_int > set_int ).
thf(sy_c_If_001t__VEBT____Definitions__OVEBT,type,
if_VEBT_VEBT: $o > vEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_Int_OAbs__Integ,type,
abs_Integ: product_prod_nat_nat > int ).
thf(sy_c_Int_ORep__Integ,type,
rep_Integ: int > product_prod_nat_nat ).
thf(sy_c_Int_Oint__ge__less__than,type,
int_ge_less_than: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Oint__ge__less__than2,type,
int_ge_less_than2: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
ring_1_Ints_real: set_real ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
ring_1_of_int_rat: int > rat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Extended____Nat__Oenat,type,
sup_su3973961784419623482d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
sup_sup_nat: nat > nat > nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
sup_sup_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
sup_sup_set_set_o: set_set_o > set_set_o > set_set_o ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
sup_sup_set_set_int: set_set_int > set_set_int > set_set_int ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
sup_sup_set_set_nat: set_set_nat > set_set_nat > set_set_nat ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
lattic8263393255366662781ax_int: set_int > int ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
lattic8265883725875713057ax_nat: set_nat > nat ).
thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
bfun_nat_real: ( nat > real ) > filter_nat > $o ).
thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
at_infinity_real: filter_real ).
thf(sy_c_List_Oappend_001t__Int__Oint,type,
append_int: list_int > list_int > list_int ).
thf(sy_c_List_Oappend_001t__Nat__Onat,type,
append_nat: list_nat > list_nat > list_nat ).
thf(sy_c_List_Odistinct_001t__Int__Oint,type,
distinct_int: list_int > $o ).
thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
linord2614967742042102400et_nat: set_nat > list_nat ).
thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
cons_int: int > list_int > list_int ).
thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
cons_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
nil_int: list_int ).
thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
nil_nat: list_nat ).
thf(sy_c_List_Olist_Oset_001_Eo,type,
set_o2: list_o > set_o ).
thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
set_complex2: list_complex > set_complex ).
thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
set_int2: list_int > set_int ).
thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
set_nat2: list_nat > set_nat ).
thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
set_real2: list_real > set_real ).
thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
set_set_nat2: list_set_nat > set_set_nat ).
thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).
thf(sy_c_List_Olist__update_001_Eo,type,
list_update_o: list_o > nat > $o > list_o ).
thf(sy_c_List_Olist__update_001t__Complex__Ocomplex,type,
list_update_complex: list_complex > nat > complex > list_complex ).
thf(sy_c_List_Olist__update_001t__Int__Oint,type,
list_update_int: list_int > nat > int > list_int ).
thf(sy_c_List_Olist__update_001t__Nat__Onat,type,
list_update_nat: list_nat > nat > nat > list_nat ).
thf(sy_c_List_Olist__update_001t__Real__Oreal,type,
list_update_real: list_real > nat > real > list_real ).
thf(sy_c_List_Olist__update_001t__Set__Oset_It__Nat__Onat_J,type,
list_update_set_nat: list_set_nat > nat > set_nat > list_set_nat ).
thf(sy_c_List_Olist__update_001t__VEBT____Definitions__OVEBT,type,
list_u1324408373059187874T_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Onth_001_Eo,type,
nth_o: list_o > nat > $o ).
thf(sy_c_List_Onth_001t__Code____Numeral__Ointeger,type,
nth_Code_integer: list_Code_integer > nat > code_integer ).
thf(sy_c_List_Onth_001t__Complex__Ocomplex,type,
nth_complex: list_complex > nat > complex ).
thf(sy_c_List_Onth_001t__Int__Oint,type,
nth_int: list_int > nat > int ).
thf(sy_c_List_Onth_001t__Nat__Onat,type,
nth_nat: list_nat > nat > nat ).
thf(sy_c_List_Onth_001t__Num__Onum,type,
nth_num: list_num > nat > num ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
nth_Pr8522763379788166057eger_o: list_P8526636022914148096eger_o > nat > produc6271795597528267376eger_o ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_M_Eo_J,type,
nth_Pr112076138515278198_nat_o: list_P7333126701944960589_nat_o > nat > product_prod_nat_o ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Int__Oint_J,type,
nth_Pr3440142176431000676at_int: list_P3521021558325789923at_int > nat > product_prod_nat_int ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
nth_Pr7617993195940197384at_nat: list_P6011104703257516679at_nat > nat > product_prod_nat_nat ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
nth_Pr8326237132889035090at_num: list_P1726324292696863441at_num > nat > product_prod_nat_num ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J,type,
nth_Pr744662078594809490T_VEBT: list_P5647936690300460905T_VEBT > nat > produc8025551001238799321T_VEBT ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
nth_Pr6456567536196504476um_num: list_P3744719386663036955um_num > nat > product_prod_num_num ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
nth_Pr4606735188037164562VEBT_o: list_P3126845725202233233VEBT_o > nat > produc334124729049499915VEBT_o ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
nth_Pr1791586995822124652BT_nat: list_P7037539587688870467BT_nat > nat > produc9072475918466114483BT_nat ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
nth_Pr4953567300277697838T_VEBT: list_P7413028617227757229T_VEBT > nat > produc8243902056947475879T_VEBT ).
thf(sy_c_List_Onth_001t__Real__Oreal,type,
nth_real: list_real > nat > real ).
thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
nth_set_nat: list_set_nat > nat > set_nat ).
thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_List_Oproduct_001_Eo_001_Eo,type,
product_o_o: list_o > list_o > list_P4002435161011370285od_o_o ).
thf(sy_c_List_Oproduct_001_Eo_001t__Int__Oint,type,
product_o_int: list_o > list_int > list_P3795440434834930179_o_int ).
thf(sy_c_List_Oproduct_001_Eo_001t__VEBT____Definitions__OVEBT,type,
product_o_VEBT_VEBT: list_o > list_VEBT_VEBT > list_P7495141550334521929T_VEBT ).
thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001_Eo,type,
produc3607205314601156340eger_o: list_Code_integer > list_o > list_P8526636022914148096eger_o ).
thf(sy_c_List_Oproduct_001t__Int__Oint_001_Eo,type,
product_int_o: list_int > list_o > list_P5087981734274514673_int_o ).
thf(sy_c_List_Oproduct_001t__Int__Oint_001t__Int__Oint,type,
product_int_int: list_int > list_int > list_P5707943133018811711nt_int ).
thf(sy_c_List_Oproduct_001t__Int__Oint_001t__VEBT____Definitions__OVEBT,type,
produc662631939642741121T_VEBT: list_int > list_VEBT_VEBT > list_P7524865323317820941T_VEBT ).
thf(sy_c_List_Oproduct_001t__Nat__Onat_001_Eo,type,
product_nat_o: list_nat > list_o > list_P7333126701944960589_nat_o ).
thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Int__Oint,type,
product_nat_int: list_nat > list_int > list_P3521021558325789923at_int ).
thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Nat__Onat,type,
product_nat_nat: list_nat > list_nat > list_P6011104703257516679at_nat ).
thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Num__Onum,type,
product_nat_num: list_nat > list_num > list_P1726324292696863441at_num ).
thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
produc7156399406898700509T_VEBT: list_nat > list_VEBT_VEBT > list_P5647936690300460905T_VEBT ).
thf(sy_c_List_Oproduct_001t__Num__Onum_001t__Num__Onum,type,
product_num_num: list_num > list_num > list_P3744719386663036955um_num ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001_Eo,type,
product_VEBT_VEBT_o: list_VEBT_VEBT > list_o > list_P3126845725202233233VEBT_o ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
produc7292646706713671643BT_int: list_VEBT_VEBT > list_int > list_P4547456442757143711BT_int ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
produc7295137177222721919BT_nat: list_VEBT_VEBT > list_nat > list_P7037539587688870467BT_nat ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
produc4743750530478302277T_VEBT: list_VEBT_VEBT > list_VEBT_VEBT > list_P7413028617227757229T_VEBT ).
thf(sy_c_List_Oreplicate_001_Eo,type,
replicate_o: nat > $o > list_o ).
thf(sy_c_List_Oreplicate_001t__Complex__Ocomplex,type,
replicate_complex: nat > complex > list_complex ).
thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
replicate_int: nat > int > list_int ).
thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
replicate_nat: nat > nat > list_nat ).
thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
replicate_real: nat > real > list_real ).
thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
replicate_set_nat: nat > set_nat > list_set_nat ).
thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Oupto,type,
upto: int > int > list_int ).
thf(sy_c_List_Oupto__aux,type,
upto_aux: int > int > list_int > list_int ).
thf(sy_c_List_Oupto__rel,type,
upto_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
compow_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
case_nat_o: $o > ( nat > $o ) > nat > $o ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
case_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).
thf(sy_c_Nat_Onat_Opred,type,
pred: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
semiri4939895301339042750nteger: nat > code_integer ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
semiri8010041392384452111omplex: nat > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
semiri4216267220026989637d_enat: nat > extended_enat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
semiri681578069525770553at_rat: nat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Complex__Ocomplex,type,
semiri2816024913162550771omplex: ( complex > complex ) > nat > complex > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Rat__Orat,type,
semiri7787848453975740701ux_rat: ( rat > rat ) > nat > rat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Real__Oreal,type,
semiri7260567687927622513x_real: ( real > real ) > nat > real > real ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
size_size_list_o: list_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
size_s3445333598471063425nteger: list_Code_integer > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
size_s3451745648224563538omplex: list_complex > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
size_size_list_int: list_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
size_size_list_nat: list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Num__Onum_J,type,
size_size_list_num: list_num > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
size_s1515746228057227161od_o_o: list_P4002435161011370285od_o_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
size_s2953683556165314199_o_int: list_P3795440434834930179_o_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
size_s4313452262239582901T_VEBT: list_P7495141550334521929T_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_M_Eo_J_J,type,
size_s4246224855604898693_int_o: list_P5087981734274514673_int_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
size_s5157815400016825771nt_int: list_P5707943133018811711nt_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__VEBT____Definitions__OVEBT_J_J,type,
size_s6639371672096860321T_VEBT: list_P7524865323317820941T_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
size_s9168528473962070013VEBT_o: list_P3126845725202233233VEBT_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
size_s3661962791536183091BT_int: list_P4547456442757143711BT_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
size_s7466405169056248089T_VEBT: list_P7413028617227757229T_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
size_size_list_real: list_real > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
size_s3254054031482475050et_nat: list_set_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
size_size_num: num > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Nat__Onat_J,type,
size_size_option_nat: option_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Num__Onum_J,type,
size_size_option_num: option_num > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
size_s170228958280169651at_nat: option4927543243414619207at_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
size_size_VEBT_VEBT: vEBT_VEBT > nat ).
thf(sy_c_Nat__Bijection_Olist__encode,type,
nat_list_encode: list_nat > nat ).
thf(sy_c_Nat__Bijection_Olist__encode__rel,type,
nat_list_encode_rel: list_nat > list_nat > $o ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Nat__Bijection_Oprod__encode,type,
nat_prod_encode: product_prod_nat_nat > nat ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > set_nat ).
thf(sy_c_Nat__Bijection_Oset__encode,type,
nat_set_encode: set_nat > nat ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_NthRoot_Oroot,type,
root: nat > real > real ).
thf(sy_c_NthRoot_Osqrt,type,
sqrt: real > real ).
thf(sy_c_Num_OBitM,type,
bitM: num > num ).
thf(sy_c_Num_Oinc,type,
inc: num > num ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
neg_nu8804712462038260780nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
neg_nu7009210354673126013omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
neg_numeral_dbl_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
neg_nu7757733837767384882nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
neg_nu6511756317524482435omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
neg_nu3811975205180677377ec_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
neg_nu3179335615603231917ec_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
neg_nu6075765906172075777c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
neg_nu5831290666863070958nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
neg_nu8557863876264182079omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
neg_nu5219082963157363817nc_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
neg_numeral_sub_int: num > num > int ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).
thf(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
thf(sy_c_Num_Onum__of__nat,type,
num_of_nat: nat > num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
numera6620942414471956472nteger: num > code_integer ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
numera6690914467698888265omplex: num > complex ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
numeral_numeral_rat: num > rat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
thf(sy_c_Num_Osqr,type,
sqr: num > num ).
thf(sy_c_Option_Ooption_ONone_001t__Nat__Onat,type,
none_nat: option_nat ).
thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
none_num: option_num ).
thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
none_P5556105721700978146at_nat: option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_OSome_001t__Nat__Onat,type,
some_nat: nat > option_nat ).
thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
some_num: num > option_num ).
thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
case_option_int_num: int > ( num > int ) > option_num > int ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
case_option_num_num: num > ( num > num ) > option_num > num ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).
thf(sy_c_Option_Ooption_Omap__option_001t__Num__Onum_001t__Num__Onum,type,
map_option_num_num: ( num > num ) > option_num > option_num ).
thf(sy_c_Option_Ooption_Osize__option_001t__Nat__Onat,type,
size_option_nat: ( nat > nat ) > option_nat > nat ).
thf(sy_c_Option_Ooption_Osize__option_001t__Num__Onum,type,
size_option_num: ( num > nat ) > option_num > nat ).
thf(sy_c_Option_Ooption_Osize__option_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
size_o8335143837870341156at_nat: ( product_prod_nat_nat > nat ) > option4927543243414619207at_nat > nat ).
thf(sy_c_Option_Ooption_Othe_001t__Nat__Onat,type,
the_nat: option_nat > nat ).
thf(sy_c_Option_Ooption_Othe_001t__Num__Onum,type,
the_num: option_num > num ).
thf(sy_c_Option_Ooption_Othe_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
the_Pr8591224930841456533at_nat: option4927543243414619207at_nat > product_prod_nat_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
bot_bo4731626569425807221er_o_o: code_integer > $o > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
bot_bot_int_int_o: int > int > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
bot_bot_nat_nat_o: nat > nat > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_062_It__Num__Onum_M_Eo_J_J,type,
bot_bot_nat_num_o: nat > num > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J,type,
bot_bot_num_num_o: num > num > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
bot_bo4199563552545308370d_enat: extended_enat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
bot_bot_nat: nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Complex__Ocomplex_J,type,
bot_bot_set_complex: set_complex ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
bot_bot_set_int: set_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
bot_bot_set_nat: set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Num__Onum_J,type,
bot_bot_set_num: set_num ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
bot_bo5379713665208646970eger_o: set_Pr448751882837621926eger_o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
bot_bo1796632182523588997nt_int: set_Pr958786334691620121nt_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
bot_bo2099793752762293965at_nat: set_Pr1261947904930325089at_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
bot_bo7038385379056416535at_num: set_Pr6200539531224447659at_num ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
bot_bo9056780473022590049um_num: set_Pr8218934625190621173um_num ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Rat__Orat_J,type,
bot_bot_set_rat: set_rat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
bot_bot_set_real: set_real ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
bot_bot_set_set_int: set_set_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
bot_bot_set_set_nat: set_set_nat ).
thf(sy_c_Orderings_Oord__class_Oless_001_Eo,type,
ord_less_o: $o > $o > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
ord_le6747313008572928689nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
ord_less_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_Eo_J,type,
ord_less_set_o: set_o > set_o > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
ord_le1307284697595431911nteger: set_Code_integer > set_Code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_less_set_complex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
ord_less_set_rat: set_rat > set_rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
ord_less_set_set_int: set_set_int > set_set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
ord_le2162486998276636481er_o_o: ( code_integer > $o > $o ) > ( code_integer > $o > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Complex__Ocomplex_M_Eo_J,type,
ord_le4573692005234683329plex_o: ( complex > $o ) > ( complex > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
ord_le6741204236512500942_int_o: ( int > int > $o ) > ( int > int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_Eo_J,type,
ord_less_eq_int_o: ( int > $o ) > ( int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__List__Olist_It__Nat__Onat_J_M_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J_J,type,
ord_le6558929396352911974_nat_o: ( list_nat > list_nat > $o ) > ( list_nat > list_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
ord_le1520216061033275535_nat_o: ( list_nat > $o ) > ( list_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
ord_le2646555220125990790_nat_o: ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Num__Onum_M_Eo_J_J,type,
ord_le3404735783095501756_num_o: ( nat > num > $o ) > ( nat > num > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J,type,
ord_le6124364862034508274_num_o: ( num > num > $o ) > ( num > num > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J_J,type,
ord_le1598226405681992910_int_o: ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
ord_le8369615600986905444_int_o: ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J,type,
ord_le5604493270027003598_nat_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
ord_le704812498762024988_nat_o: ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J_J,type,
ord_le2556027599737686990_num_o: ( product_prod_num_num > product_prod_num_num > $o ) > ( product_prod_num_num > product_prod_num_num > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J,type,
ord_le2239182809043710856_num_o: ( product_prod_num_num > $o ) > ( product_prod_num_num > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
ord_le3964352015994296041_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_Eo,type,
ord_less_eq_o: $o > $o > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
ord_le3102999989581377725nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Real__Oreal_J,type,
ord_le4104064031414453916r_real: filter_real > filter_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
ord_less_eq_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
ord_less_eq_set_o: set_o > set_o > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
ord_le7084787975880047091nteger: set_Code_integer > set_Code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_le211207098394363844omplex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_eq_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
ord_le8980329558974975238eger_o: set_Pr448751882837621926eger_o > set_Pr448751882837621926eger_o > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
ord_le2843351958646193337nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
ord_le3146513528884898305at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
ord_le8085105155179020875at_num: set_Pr6200539531224447659at_num > set_Pr6200539531224447659at_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
ord_le880128212290418581um_num: set_Pr8218934625190621173um_num > set_Pr8218934625190621173um_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
ord_less_eq_set_rat: set_rat > set_rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
ord_le4403425263959731960et_int: set_set_int > set_set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
ord_max_Code_integer: code_integer > code_integer > code_integer ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
ord_max_int: int > int > int ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
ord_max_nat: nat > nat > nat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
ord_max_num: num > num > num ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
ord_max_rat: rat > rat > rat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
ord_max_real: real > real > real ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Int__Oint_J,type,
ord_max_set_int: set_int > set_int > set_int ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
order_Greatest_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oorder__class_Oantimono_001t__Nat__Onat_001t__Real__Oreal,type,
order_9091379641038594480t_real: ( nat > real ) > $o ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
top_top_set_o: set_o ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
top_top_set_int: set_int ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
top_top_set_nat: set_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
top_to1996260823553986621t_unit: set_Product_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
top_top_set_real: set_real ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
top_top_set_char: set_char ).
thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
power_8256067586552552935nteger: code_integer > nat > code_integer ).
thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
power_power_complex: complex > nat > complex ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
power_power_rat: rat > nat > rat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
produc4035269172776083154on_nat: ( nat > nat > $o ) > produc4953844613479565601on_nat > produc2233624965454879586on_nat ).
thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc3209952032786966637at_nat: ( nat > nat > nat ) > produc7248412053542808358at_nat > produc4471711990508489141at_nat ).
thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
produc8929957630744042906on_nat: ( nat > nat > nat ) > produc4953844613479565601on_nat > produc8306885398267862888on_nat ).
thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
produc851828971589881931at_num: ( nat > num > num ) > produc2963631642982155120at_num > produc3368934014287244435at_num ).
thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
produc3576312749637752826on_num: ( num > num > $o ) > produc3447558737645232053on_num > produc7036089656553540234on_num ).
thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
produc5778274026573060048on_num: ( num > num > num ) > produc3447558737645232053on_num > produc1193250871479095198on_num ).
thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
produc3994169339658061776at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > produc6121120109295599847at_nat > produc5491161045314408544at_nat ).
thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
produc2899441246263362727at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > produc6121120109295599847at_nat > produc5542196010084753463at_nat ).
thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).
thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
product_Pair_int_int: int > int > product_prod_int_int ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001_Eo,type,
product_Pair_nat_o: nat > $o > product_prod_nat_o ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Int__Oint,type,
product_Pair_nat_int: nat > int > product_prod_nat_int ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
product_Pair_nat_num: nat > num > product_prod_nat_num ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc487386426758144856at_nat: nat > product_prod_nat_nat > produc7248412053542808358at_nat ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
produc1195630363706982562at_num: nat > product_prod_nat_num > produc2963631642982155120at_num ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
produc599794634098209291T_VEBT: nat > vEBT_VEBT > produc8025551001238799321T_VEBT ).
thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
product_Pair_num_num: num > num > product_prod_num_num ).
thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Nat__Onat_J_001t__Option__Ooption_It__Nat__Onat_J,type,
produc5098337634421038937on_nat: option_nat > option_nat > produc4953844613479565601on_nat ).
thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Num__Onum_J_001t__Option__Ooption_It__Num__Onum_J,type,
produc8585076106096196333on_num: option_num > option_num > produc3447558737645232053on_num ).
thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc488173922507101015at_nat: option4927543243414619207at_nat > option4927543243414619207at_nat > produc6121120109295599847at_nat ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001_Eo,type,
produc8721562602347293563VEBT_o: vEBT_VEBT > $o > produc334124729049499915VEBT_o ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
produc537772716801021591T_VEBT: vEBT_VEBT > vEBT_VEBT > produc8243902056947475879T_VEBT ).
thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001_Eo,type,
produc7828578312038201481er_o_o: ( code_integer > $o > $o ) > produc6271795597528267376eger_o > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Complex__Ocomplex_J,type,
produc1043322548047392435omplex: ( code_integer > $o > set_complex ) > produc6271795597528267376eger_o > set_complex ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Int__Oint_J,type,
produc1253318751659547953et_int: ( code_integer > $o > set_int ) > produc6271795597528267376eger_o > set_int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Nat__Onat_J,type,
produc5431169771168744661et_nat: ( code_integer > $o > set_nat ) > produc6271795597528267376eger_o > set_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Real__Oreal_J,type,
produc242741666403216561t_real: ( code_integer > $o > set_real ) > produc6271795597528267376eger_o > set_real ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__String__Ochar,type,
produc4188289175737317920o_char: ( code_integer > $o > char ) > produc6271795597528267376eger_o > char ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Complex__Ocomplex,type,
produc1917071388513777916omplex: ( nat > nat > complex ) > product_prod_nat_nat > complex ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint,type,
produc6840382203811409530at_int: ( nat > nat > int ) > product_prod_nat_nat > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Rat__Orat,type,
produc6207742614233964070at_rat: ( nat > nat > rat ) > product_prod_nat_nat > rat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Real__Oreal,type,
produc1703576794950452218t_real: ( nat > nat > real ) > product_prod_nat_nat > real ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001_Eo,type,
produc4927758841916487424_num_o: ( nat > num > $o ) > product_prod_nat_num > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Set__Oset_It__Nat__Onat_J,type,
produc4130284055270567454et_nat: ( nat > num > set_nat ) > product_prod_nat_num > set_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Set__Oset_It__Real__Oreal_J,type,
produc1435849484188172666t_real: ( nat > num > set_real ) > product_prod_nat_num > set_real ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001_Eo,type,
produc5703948589228662326_num_o: ( num > num > $o ) > product_prod_num_num > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Complex__Ocomplex_J,type,
produc2866383454006189126omplex: ( num > num > set_complex ) > product_prod_num_num > set_complex ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Int__Oint_J,type,
produc6406642877701697732et_int: ( num > num > set_int ) > product_prod_num_num > set_int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Nat__Onat_J,type,
produc1361121860356118632et_nat: ( num > num > set_nat ) > product_prod_num_num > set_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Real__Oreal_J,type,
produc8296048397933160132t_real: ( num > num > set_real ) > product_prod_num_num > set_real ).
thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
product_fst_int_int: product_prod_int_int > int ).
thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
product_fst_nat_nat: product_prod_nat_nat > nat ).
thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
product_snd_int_int: product_prod_int_int > int ).
thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
product_snd_nat_nat: product_prod_nat_nat > nat ).
thf(sy_c_Rat_OFract,type,
fract: int > int > rat ).
thf(sy_c_Rat_OFrct,type,
frct: product_prod_int_int > rat ).
thf(sy_c_Rat_Ofield__char__0__class_ORats_001t__Real__Oreal,type,
field_5140801741446780682s_real: set_real ).
thf(sy_c_Rat_Onormalize,type,
normalize: product_prod_int_int > product_prod_int_int ).
thf(sy_c_Rat_Oof__int,type,
of_int: int > rat ).
thf(sy_c_Rat_Oquotient__of,type,
quotient_of: rat > product_prod_int_int ).
thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
real_V2521375963428798218omplex: set_complex ).
thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
real_V5970128139526366754l_real: ( real > real ) > $o ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
real_V3694042436643373181omplex: complex > complex > real ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
real_V975177566351809787t_real: real > real > real ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
real_V1022390504157884413omplex: complex > real ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
real_V7735802525324610683m_real: real > real ).
thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
real_V4546457046886955230omplex: real > complex ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
real_V2046097035970521341omplex: real > complex > complex ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
real_V1485227260804924795R_real: real > real > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
divide6298287555418463151nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
divide1717551699836669952omplex: complex > complex > complex ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
divide_divide_rat: rat > rat > rat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
dvd_dvd_Code_integer: code_integer > code_integer > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
dvd_dvd_complex: complex > complex > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
dvd_dvd_rat: rat > rat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
dvd_dvd_real: real > real > $o ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
modulo364778990260209775nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
modulo_modulo_int: int > int > int ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
modulo_modulo_nat: nat > nat > nat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
zero_n356916108424825756nteger: $o > code_integer ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
zero_n1201886186963655149omplex: $o > complex ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
zero_n2684676970156552555ol_int: $o > int ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
zero_n2687167440665602831ol_nat: $o > nat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
zero_n2052037380579107095ol_rat: $o > rat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
zero_n3304061248610475627l_real: $o > real ).
thf(sy_c_Series_Osuminf_001t__Complex__Ocomplex,type,
suminf_complex: ( nat > complex ) > complex ).
thf(sy_c_Series_Osuminf_001t__Int__Oint,type,
suminf_int: ( nat > int ) > int ).
thf(sy_c_Series_Osuminf_001t__Nat__Onat,type,
suminf_nat: ( nat > nat ) > nat ).
thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
suminf_real: ( nat > real ) > real ).
thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
summable_complex: ( nat > complex ) > $o ).
thf(sy_c_Series_Osummable_001t__Int__Oint,type,
summable_int: ( nat > int ) > $o ).
thf(sy_c_Series_Osummable_001t__Nat__Onat,type,
summable_nat: ( nat > nat ) > $o ).
thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
summable_real: ( nat > real ) > $o ).
thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
sums_complex: ( nat > complex ) > complex > $o ).
thf(sy_c_Series_Osums_001t__Int__Oint,type,
sums_int: ( nat > int ) > int > $o ).
thf(sy_c_Series_Osums_001t__Nat__Onat,type,
sums_nat: ( nat > nat ) > nat > $o ).
thf(sy_c_Series_Osums_001t__Real__Oreal,type,
sums_real: ( nat > real ) > real > $o ).
thf(sy_c_Set_OCollect_001_Eo,type,
collect_o: ( $o > $o ) > set_o ).
thf(sy_c_Set_OCollect_001t__Code____Numeral__Ointeger,type,
collect_Code_integer: ( code_integer > $o ) > set_Code_integer ).
thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
collect_complex: ( complex > $o ) > set_complex ).
thf(sy_c_Set_OCollect_001t__Int__Oint,type,
collect_int: ( int > $o ) > set_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_I_Eo_J,type,
collect_list_o: ( list_o > $o ) > set_list_o ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Complex__Ocomplex_J,type,
collect_list_complex: ( list_complex > $o ) > set_list_complex ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Int__Oint_J,type,
collect_list_int: ( list_int > $o ) > set_list_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
collect_list_nat: ( list_nat > $o ) > set_list_nat ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
collec5608196760682091941T_VEBT: ( list_VEBT_VEBT > $o ) > set_list_VEBT_VEBT ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set_OCollect_001t__Num__Onum,type,
collect_num: ( num > $o ) > set_num ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
collec3392354462482085612at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat ).
thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
collect_rat: ( rat > $o ) > set_rat ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Complex__Ocomplex_J,type,
collect_set_complex: ( set_complex > $o ) > set_set_complex ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Int__Oint_J,type,
collect_set_int: ( set_int > $o ) > set_set_int ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
collect_set_nat: ( set_nat > $o ) > set_set_nat ).
thf(sy_c_Set_OCollect_001t__VEBT____Definitions__OVEBT,type,
collect_VEBT_VEBT: ( vEBT_VEBT > $o ) > set_VEBT_VEBT ).
thf(sy_c_Set_OPow_001t__Nat__Onat,type,
pow_nat: set_nat > set_set_nat ).
thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_I_Eo_J,type,
image_o_set_o: ( $o > set_o ) > set_o > set_set_o ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
image_int_int: ( int > int ) > set_int > set_int ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
image_int_nat: ( int > nat ) > set_int > set_nat ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Set__Oset_It__Int__Oint_J,type,
image_int_set_int: ( int > set_int ) > set_int > set_set_int ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
image_nat_int: ( nat > int ) > set_nat > set_int ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
image_nat_nat: ( nat > nat ) > set_nat > set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Real__Oreal,type,
image_nat_real: ( nat > real ) > set_nat > set_real ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
image_nat_char: ( nat > char ) > set_nat > set_char ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
image_real_real: ( real > real ) > set_real > set_real ).
thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
image_char_nat: ( char > nat ) > set_char > set_nat ).
thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
insert_int: int > set_int > set_int ).
thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
insert_nat: nat > set_nat > set_nat ).
thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
insert_real: real > set_real > set_real ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Complex__Ocomplex,type,
set_fo1517530859248394432omplex: ( nat > complex > complex ) > nat > nat > complex > complex ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Int__Oint,type,
set_fo2581907887559384638at_int: ( nat > int > int ) > nat > nat > int > int ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Num__Onum,type,
set_fo8365102181078989356at_num: ( nat > num > num ) > nat > nat > num > num ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Rat__Orat,type,
set_fo1949268297981939178at_rat: ( nat > rat > rat ) > nat > nat > rat > rat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Real__Oreal,type,
set_fo3111899725591712190t_real: ( nat > real > real ) > nat > nat > real > real ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel_001t__Nat__Onat,type,
set_fo3699595496184130361el_nat: produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel_001t__Num__Onum,type,
set_fo256927282339908995el_num: produc3368934014287244435at_num > produc3368934014287244435at_num > $o ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
set_or1266510415728281911st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
set_or1269000886237332187st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
set_or7049704709247886629st_num: num > num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Rat__Orat,type,
set_or633870826150836451st_rat: rat > rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
set_or1222579329274155063t_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Int__Oint_J,type,
set_or370866239135849197et_int: set_int > set_int > set_set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Nat__Onat_J,type,
set_or4548717258645045905et_nat: set_nat > set_nat > set_set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
set_or4662586982721622107an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
set_or4665077453230672383an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
set_ord_atLeast_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
set_ord_atLeast_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001_Eo,type,
set_ord_atMost_o: $o > set_o ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
set_ord_atMost_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
set_ord_atMost_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Num__Onum,type,
set_ord_atMost_num: num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Rat__Orat,type,
set_ord_atMost_rat: rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
set_ord_atMost_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Int__Oint_J,type,
set_or58775011639299419et_int: set_int > set_set_int ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
set_or4236626031148496127et_nat: set_nat > set_set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
set_or6656581121297822940st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
set_or6659071591806873216st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
set_or5832277885323065728an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
set_or5834768355832116004an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
set_or1633881224788618240n_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001_Eo,type,
set_or6416164934427428222Than_o: $o > set_o ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Int__Oint,type,
set_or1207661135979820486an_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
set_or1210151606488870762an_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
set_or5849166863359141190n_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001_Eo,type,
set_ord_lessThan_o: $o > set_o ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
set_ord_lessThan_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
set_ord_lessThan_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Num__Onum,type,
set_ord_lessThan_num: num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Rat__Orat,type,
set_ord_lessThan_rat: rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
set_or5984915006950818249n_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Set__Oset_It__Nat__Onat_J,type,
set_or890127255671739683et_nat: set_nat > set_set_nat ).
thf(sy_c_String_Oascii__of,type,
ascii_of: char > char ).
thf(sy_c_String_Ochar_OChar,type,
char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).
thf(sy_c_String_Ochar__of__integer,type,
char_of_integer: code_integer > char ).
thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
comm_s629917340098488124ar_nat: char > nat ).
thf(sy_c_String_Ointeger__of__char,type,
integer_of_char: char > code_integer ).
thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
unique3096191561947761185of_nat: nat > char ).
thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Ogenerate__topology_001_Eo,type,
topolo4667128019001906403logy_o: set_set_o > set_o > $o ).
thf(sy_c_Topological__Spaces_Ogenerate__topology_001t__Int__Oint,type,
topolo1611008123915946401gy_int: set_set_int > set_int > $o ).
thf(sy_c_Topological__Spaces_Ogenerate__topology_001t__Nat__Onat,type,
topolo1613498594424996677gy_nat: set_set_nat > set_nat > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Code____Numeral__Ointeger,type,
topolo2919662092509805066nteger: ( nat > code_integer ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Int__Oint,type,
topolo4899668324122417113eq_int: ( nat > int ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Nat__Onat,type,
topolo4902158794631467389eq_nat: ( nat > nat ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Num__Onum,type,
topolo1459490580787246023eq_num: ( nat > num ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Rat__Orat,type,
topolo4267028734544971653eq_rat: ( nat > rat ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
topolo6980174941875973593q_real: ( nat > real ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Set__Oset_It__Int__Oint_J,type,
topolo3100542954746470799et_int: ( nat > set_int ) > $o ).
thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001_Eo,type,
topolo9180104560040979295open_o: set_o > $o ).
thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Int__Oint,type,
topolo4325760605701065253en_int: set_int > $o ).
thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Nat__Onat,type,
topolo4328251076210115529en_nat: set_nat > $o ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
topolo2177554685111907308n_real: real > set_real > filter_real ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
topolo2815343760600316023s_real: real > filter_real ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Complex__Ocomplex,type,
topolo6517432010174082258omplex: ( nat > complex ) > $o ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
topolo4055970368930404560y_real: ( nat > real ) > $o ).
thf(sy_c_Transcendental_Oarccos,type,
arccos: real > real ).
thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
arcosh_real: real > real ).
thf(sy_c_Transcendental_Oarcsin,type,
arcsin: real > real ).
thf(sy_c_Transcendental_Oarctan,type,
arctan: real > real ).
thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
arsinh_real: real > real ).
thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
artanh_real: real > real ).
thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
cos_complex: complex > complex ).
thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
cos_real: real > real ).
thf(sy_c_Transcendental_Ocos__coeff,type,
cos_coeff: nat > real ).
thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
cosh_real: real > real ).
thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
cot_real: real > real ).
thf(sy_c_Transcendental_Odiffs_001t__Code____Numeral__Ointeger,type,
diffs_Code_integer: ( nat > code_integer ) > nat > code_integer ).
thf(sy_c_Transcendental_Odiffs_001t__Complex__Ocomplex,type,
diffs_complex: ( nat > complex ) > nat > complex ).
thf(sy_c_Transcendental_Odiffs_001t__Int__Oint,type,
diffs_int: ( nat > int ) > nat > int ).
thf(sy_c_Transcendental_Odiffs_001t__Rat__Orat,type,
diffs_rat: ( nat > rat ) > nat > rat ).
thf(sy_c_Transcendental_Odiffs_001t__Real__Oreal,type,
diffs_real: ( nat > real ) > nat > real ).
thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
exp_complex: complex > complex ).
thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
exp_real: real > real ).
thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
ln_ln_real: real > real ).
thf(sy_c_Transcendental_Olog,type,
log: real > real > real ).
thf(sy_c_Transcendental_Opi,type,
pi: real ).
thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
powr_real: real > real > real ).
thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
sin_complex: complex > complex ).
thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
sin_real: real > real ).
thf(sy_c_Transcendental_Osin__coeff,type,
sin_coeff: nat > real ).
thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
sinh_real: real > real ).
thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
tan_complex: complex > complex ).
thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
tan_real: real > real ).
thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
tanh_complex: complex > complex ).
thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
tanh_real: real > real ).
thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
vEBT_Leaf: $o > $o > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
vEBT_size_VEBT: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
vEBT_VEBT_high: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
vEBT_VEBT_low: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
vEBT_invar_vebt: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_Oset__vebt,type,
vEBT_set_vebt: vEBT_VEBT > set_nat ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
vEBT_vebt_buildup: nat > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
vEBT_v4011308405150292612up_rel: nat > nat > $o ).
thf(sy_c_VEBT__Insert_Ovebt__insert,type,
vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
vEBT_vebt_insert_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
vEBT_VEBT_bit_concat: nat > nat > nat > nat ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
vEBT_VEBT_minNull: vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull__rel,type,
vEBT_V6963167321098673237ll_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
vEBT_VEBT_set_vebt: vEBT_VEBT > set_nat ).
thf(sy_c_VEBT__Member_Ovebt__member,type,
vEBT_vebt_member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
vEBT_vebt_member_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
vEBT_VEBT_add: option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
vEBT_VEBT_greater: option_nat > option_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
vEBT_VEBT_less: option_nat > option_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
vEBT_VEBT_lesseq: option_nat > option_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
vEBT_VEBT_max_in_set: set_nat > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
vEBT_VEBT_min_in_set: set_nat > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
vEBT_VEBT_mul: option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Nat__Onat,type,
vEBT_V4262088993061758097ft_nat: ( nat > nat > nat ) > option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Num__Onum,type,
vEBT_V819420779217536731ft_num: ( num > num > num ) > option_num > option_num > option_num ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
vEBT_V1502963449132264192at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > option4927543243414619207at_nat > option4927543243414619207at_nat > option4927543243414619207at_nat ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Nat__Onat,type,
vEBT_V3895251965096974666el_nat: produc8306885398267862888on_nat > produc8306885398267862888on_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Num__Onum,type,
vEBT_V452583751252753300el_num: produc1193250871479095198on_num > produc1193250871479095198on_num > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
vEBT_V7235779383477046023at_nat: produc5542196010084753463at_nat > produc5542196010084753463at_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
vEBT_VEBT_power: option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
vEBT_vebt_maxt: vEBT_VEBT > option_nat ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
vEBT_vebt_mint: vEBT_VEBT > option_nat ).
thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
vEBT_is_succ_in_set: set_nat > nat > nat > $o ).
thf(sy_c_VEBT__Succ_Ovebt__succ,type,
vEBT_vebt_succ: vEBT_VEBT > nat > option_nat ).
thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
vEBT_vebt_succ_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__Nat__Onat_J,type,
accp_list_nat: ( list_nat > list_nat > $o ) > list_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
accp_nat: ( nat > nat > $o ) > nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
accp_P6019419558468335806at_nat: ( produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ) > produc4471711990508489141at_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
accp_P5496254298877145759on_nat: ( produc8306885398267862888on_nat > produc8306885398267862888on_nat > $o ) > produc8306885398267862888on_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J_J,type,
accp_P4916641582247091100at_num: ( produc3368934014287244435at_num > produc3368934014287244435at_num > $o ) > produc3368934014287244435at_num > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
accp_P7605991808943153877on_num: ( produc1193250871479095198on_num > produc1193250871479095198on_num > $o ) > produc1193250871479095198on_num > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
accp_P3267385326087170368at_nat: ( produc5542196010084753463at_nat > produc5542196010084753463at_nat > $o ) > produc5542196010084753463at_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
accp_P3113834385874906142um_num: ( product_prod_num_num > product_prod_num_num > $o ) > product_prod_num_num > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__VEBT____Definitions__OVEBT,type,
accp_VEBT_VEBT: ( vEBT_VEBT > vEBT_VEBT > $o ) > vEBT_VEBT > $o ).
thf(sy_c_Wellfounded_Omeasure_001t__Int__Oint,type,
measure_int: ( int > nat ) > set_Pr958786334691620121nt_int ).
thf(sy_c_Wellfounded_Omeasure_001t__Nat__Onat,type,
measure_nat: ( nat > nat ) > set_Pr1261947904930325089at_nat ).
thf(sy_c_Wellfounded_Omeasure_001t__Num__Onum,type,
measure_num: ( num > nat ) > set_Pr8218934625190621173um_num ).
thf(sy_c_Wellfounded_Opred__nat,type,
pred_nat: set_Pr1261947904930325089at_nat ).
thf(sy_c_fChoice_001t__Real__Oreal,type,
fChoice_real: ( real > $o ) > real ).
thf(sy_c_member_001_Eo,type,
member_o: $o > set_o > $o ).
thf(sy_c_member_001t__Complex__Ocomplex,type,
member_complex: complex > set_complex > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__List__Olist_I_Eo_J,type,
member_list_o: list_o > set_list_o > $o ).
thf(sy_c_member_001t__List__Olist_It__Int__Oint_J,type,
member_list_int: list_int > set_list_int > $o ).
thf(sy_c_member_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
member2936631157270082147T_VEBT: list_VEBT_VEBT > set_list_VEBT_VEBT > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Num__Onum,type,
member_num: num > set_num > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
member1379723562493234055eger_o: produc6271795597528267376eger_o > set_Pr448751882837621926eger_o > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
member5262025264175285858nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
member9148766508732265716at_num: product_prod_nat_num > set_Pr6200539531224447659at_num > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
member7279096912039735102um_num: product_prod_num_num > set_Pr8218934625190621173um_num > $o ).
thf(sy_c_member_001t__Rat__Orat,type,
member_rat: rat > set_rat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_c_member_001t__Set__Oset_It__Int__Oint_J,type,
member_set_int: set_int > set_set_int > $o ).
thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
member_set_nat: set_nat > set_set_nat > $o ).
thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_v_deg____,type,
deg: nat ).
thf(sy_v_ia____,type,
ia: nat ).
thf(sy_v_m____,type,
m: nat ).
thf(sy_v_ma____,type,
ma: nat ).
thf(sy_v_mi____,type,
mi: nat ).
thf(sy_v_na____,type,
na: nat ).
thf(sy_v_summary____,type,
summary: vEBT_VEBT ).
thf(sy_v_treeList____,type,
treeList: list_VEBT_VEBT ).
thf(sy_v_xa____,type,
xa: nat ).
% Relevant facts (10202)
thf(fact_0_bit__split__inv,axiom,
! [X: nat,D: nat] :
( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X @ D ) @ ( vEBT_VEBT_low @ X @ D ) @ D )
= X ) ).
% bit_split_inv
thf(fact_1__C5_Ohyps_C_I9_J,axiom,
ord_less_eq_nat @ mi @ ma ).
% "5.hyps"(9)
thf(fact_2__092_060open_062x_A_060_Ai_A_092_060and_062_Avebt__member_A_INode_A_ISome_A_Imi_M_Ama_J_J_Adeg_AtreeList_Asummary_J_Ai_092_060close_062,axiom,
( ( ord_less_nat @ xa @ ia )
& ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ ia ) ) ).
% \<open>x < i \<and> vebt_member (Node (Some (mi, ma)) deg treeList summary) i\<close>
thf(fact_3__C33_C,axiom,
~ ? [U: nat] :
( ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U )
& ( ord_less_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ U ) ) ).
% "33"
thf(fact_4__C5_Ohyps_C_I10_J,axiom,
ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).
% "5.hyps"(10)
thf(fact_5__092_060open_062_092_060not_062_A_I_092_060exists_062i_062high_Ax_A_Ideg_Adiv_A2_J_O_Avebt__member_Asummary_Ai_J_092_060close_062,axiom,
~ ? [I: nat] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ I )
& ( vEBT_vebt_member @ summary @ I ) ) ).
% \<open>\<not> (\<exists>i>high x (deg div 2). vebt_member summary i)\<close>
thf(fact_6__092_060open_062deg_Adiv_A2_A_061_An_092_060close_062,axiom,
( ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= na ) ).
% \<open>deg div 2 = n\<close>
thf(fact_7_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_8_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_9_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_10_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_11_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_12_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_13__092_060open_0622_A_092_060le_062_Adeg_092_060close_062,axiom,
ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ).
% \<open>2 \<le> deg\<close>
thf(fact_14_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_15_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_16_high__def,axiom,
( vEBT_VEBT_high
= ( ^ [X2: nat,N2: nat] : ( divide_divide_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% high_def
thf(fact_17_min__Null__member,axiom,
! [T: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_minNull @ T )
=> ~ ( vEBT_vebt_member @ T @ X ) ) ).
% min_Null_member
thf(fact_18_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_19_nth__equalityI,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs ) )
=> ( ( nth_nat @ Xs @ I2 )
= ( nth_nat @ Ys @ I2 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_20_nth__equalityI,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs )
= ( size_s6755466524823107622T_VEBT @ Ys ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( nth_VEBT_VEBT @ Xs @ I2 )
= ( nth_VEBT_VEBT @ Ys @ I2 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_21_nth__equalityI,axiom,
! [Xs: list_o,Ys: list_o] :
( ( ( size_size_list_o @ Xs )
= ( size_size_list_o @ Ys ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_o @ Xs ) )
=> ( ( nth_o @ Xs @ I2 )
= ( nth_o @ Ys @ I2 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_22_nth__equalityI,axiom,
! [Xs: list_int,Ys: list_int] :
( ( ( size_size_list_int @ Xs )
= ( size_size_list_int @ Ys ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_int @ Xs ) )
=> ( ( nth_int @ Xs @ I2 )
= ( nth_int @ Ys @ I2 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_23_Skolem__list__nth,axiom,
! [K: nat,P: nat > nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ? [X3: nat] : ( P @ I3 @ X3 ) ) )
= ( ? [Xs2: list_nat] :
( ( ( size_size_list_nat @ Xs2 )
= K )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ( P @ I3 @ ( nth_nat @ Xs2 @ I3 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_24_Skolem__list__nth,axiom,
! [K: nat,P: nat > vEBT_VEBT > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ? [X3: vEBT_VEBT] : ( P @ I3 @ X3 ) ) )
= ( ? [Xs2: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
= K )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ( P @ I3 @ ( nth_VEBT_VEBT @ Xs2 @ I3 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_25_Skolem__list__nth,axiom,
! [K: nat,P: nat > $o > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ? [X3: $o] : ( P @ I3 @ X3 ) ) )
= ( ? [Xs2: list_o] :
( ( ( size_size_list_o @ Xs2 )
= K )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ( P @ I3 @ ( nth_o @ Xs2 @ I3 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_26_Skolem__list__nth,axiom,
! [K: nat,P: nat > int > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ? [X3: int] : ( P @ I3 @ X3 ) ) )
= ( ? [Xs2: list_int] :
( ( ( size_size_list_int @ Xs2 )
= K )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K )
=> ( P @ I3 @ ( nth_int @ Xs2 @ I3 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_27_list__eq__iff__nth__eq,axiom,
( ( ^ [Y: list_nat,Z: list_nat] : ( Y = Z ) )
= ( ^ [Xs2: list_nat,Ys2: list_nat] :
( ( ( size_size_list_nat @ Xs2 )
= ( size_size_list_nat @ Ys2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
=> ( ( nth_nat @ Xs2 @ I3 )
= ( nth_nat @ Ys2 @ I3 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_28_list__eq__iff__nth__eq,axiom,
( ( ^ [Y: list_VEBT_VEBT,Z: list_VEBT_VEBT] : ( Y = Z ) )
= ( ^ [Xs2: list_VEBT_VEBT,Ys2: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
= ( size_s6755466524823107622T_VEBT @ Ys2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
=> ( ( nth_VEBT_VEBT @ Xs2 @ I3 )
= ( nth_VEBT_VEBT @ Ys2 @ I3 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_29_list__eq__iff__nth__eq,axiom,
( ( ^ [Y: list_o,Z: list_o] : ( Y = Z ) )
= ( ^ [Xs2: list_o,Ys2: list_o] :
( ( ( size_size_list_o @ Xs2 )
= ( size_size_list_o @ Ys2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
=> ( ( nth_o @ Xs2 @ I3 )
= ( nth_o @ Ys2 @ I3 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_30_list__eq__iff__nth__eq,axiom,
( ( ^ [Y: list_int,Z: list_int] : ( Y = Z ) )
= ( ^ [Xs2: list_int,Ys2: list_int] :
( ( ( size_size_list_int @ Xs2 )
= ( size_size_list_int @ Ys2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
=> ( ( nth_int @ Xs2 @ I3 )
= ( nth_int @ Ys2 @ I3 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_31_min__in__set__def,axiom,
( vEBT_VEBT_min_in_set
= ( ^ [Xs2: set_nat,X2: nat] :
( ( member_nat @ X2 @ Xs2 )
& ! [Y2: nat] :
( ( member_nat @ Y2 @ Xs2 )
=> ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ).
% min_in_set_def
thf(fact_32_max__in__set__def,axiom,
( vEBT_VEBT_max_in_set
= ( ^ [Xs2: set_nat,X2: nat] :
( ( member_nat @ X2 @ Xs2 )
& ! [Y2: nat] :
( ( member_nat @ Y2 @ Xs2 )
=> ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ) ).
% max_in_set_def
thf(fact_33_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera6690914467698888265omplex @ M )
= ( numera6690914467698888265omplex @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_34_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_35_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_rat @ M )
= ( numeral_numeral_rat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_36_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_37_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_38_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_39__092_060open_062mi_A_092_060le_062_Ax_092_060close_062,axiom,
ord_less_eq_nat @ mi @ xa ).
% \<open>mi \<le> x\<close>
thf(fact_40__C5_Ohyps_C_I5_J,axiom,
( m
= ( suc @ na ) ) ).
% "5.hyps"(5)
thf(fact_41_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_42_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_43_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_44_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_45_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_46_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_47_power__minus__is__div,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ A @ B ) )
= ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% power_minus_is_div
thf(fact_48__C5_Ohyps_C_I4_J,axiom,
( ( size_s6755466524823107622T_VEBT @ treeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).
% "5.hyps"(4)
thf(fact_49_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_50_member__inv,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
& ( ( X = Mi )
| ( X = Ma )
| ( ( ord_less_nat @ X @ Ma )
& ( ord_less_nat @ Mi @ X )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
& ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% member_inv
thf(fact_51_Suc__div__le__mono,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).
% Suc_div_le_mono
thf(fact_52_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_53_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_54_neq__if__length__neq,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs )
!= ( size_s6755466524823107622T_VEBT @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_55_neq__if__length__neq,axiom,
! [Xs: list_o,Ys: list_o] :
( ( ( size_size_list_o @ Xs )
!= ( size_size_list_o @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_56_neq__if__length__neq,axiom,
! [Xs: list_int,Ys: list_int] :
( ( ( size_size_list_int @ Xs )
!= ( size_size_list_int @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_57_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_VEBT_VEBT] :
( ( size_s6755466524823107622T_VEBT @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_58_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_o] :
( ( size_size_list_o @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_59_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_int] :
( ( size_size_list_int @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_60_length__induct,axiom,
! [P: list_VEBT_VEBT > $o,Xs: list_VEBT_VEBT] :
( ! [Xs3: list_VEBT_VEBT] :
( ! [Ys3: list_VEBT_VEBT] :
( ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ Ys3 ) @ ( size_s6755466524823107622T_VEBT @ Xs3 ) )
=> ( P @ Ys3 ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_61_length__induct,axiom,
! [P: list_o > $o,Xs: list_o] :
( ! [Xs3: list_o] :
( ! [Ys3: list_o] :
( ( ord_less_nat @ ( size_size_list_o @ Ys3 ) @ ( size_size_list_o @ Xs3 ) )
=> ( P @ Ys3 ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_62_length__induct,axiom,
! [P: list_int > $o,Xs: list_int] :
( ! [Xs3: list_int] :
( ! [Ys3: list_int] :
( ( ord_less_nat @ ( size_size_list_int @ Ys3 ) @ ( size_size_list_int @ Xs3 ) )
=> ( P @ Ys3 ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_63_divide__numeral__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_64_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_65_divide__numeral__1,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_66__092_060open_062high_Ax_An_A_060_A2_A_094_Am_A_092_060and_062_Alow_Ax_An_A_060_A2_A_094_An_092_060close_062,axiom,
( ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
& ( ord_less_nat @ ( vEBT_VEBT_low @ xa @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) ) ).
% \<open>high x n < 2 ^ m \<and> low x n < 2 ^ n\<close>
thf(fact_67_insert__simp__mima,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X = Mi )
| ( X = Ma ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).
% insert_simp_mima
thf(fact_68__092_060open_062vebt__member_A_INode_A_ISome_A_Imi_M_Ama_J_J_A_ISuc_A_ISuc_A_Ideg_A_N_A2_J_J_J_AtreeList_Asummary_J_Ai_A_061_A_Iif_Ai_A_061_Ami_Athen_ATrue_Aelse_Aif_Ai_A_061_Ama_Athen_ATrue_Aelse_Aif_Ai_A_060_Ami_Athen_AFalse_Aelse_Aif_Ama_A_060_Ai_Athen_AFalse_Aelse_Alet_Ah_A_061_Ahigh_Ai_A_ISuc_A_ISuc_A_Ideg_A_N_A2_J_J_Adiv_A2_J_059_Al_A_061_Alow_Ai_A_ISuc_A_ISuc_A_Ideg_A_N_A2_J_J_Adiv_A2_J_Ain_Aif_Ah_A_060_Alength_AtreeList_Athen_Avebt__member_A_ItreeList_A_B_Ah_J_Al_Aelse_AFalse_J_092_060close_062,axiom,
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ ( suc @ ( suc @ ( minus_minus_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ treeList @ summary ) @ ia )
= ( ( ia != mi )
=> ( ( ia != ma )
=> ( ~ ( ord_less_nat @ ia @ mi )
& ( ~ ( ord_less_nat @ ia @ mi )
=> ( ~ ( ord_less_nat @ ma @ ia )
& ( ~ ( ord_less_nat @ ma @ ia )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ ia @ ( divide_divide_nat @ ( suc @ ( suc @ ( minus_minus_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ia @ ( divide_divide_nat @ ( suc @ ( suc @ ( minus_minus_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ia @ ( divide_divide_nat @ ( suc @ ( suc @ ( minus_minus_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ ia @ ( divide_divide_nat @ ( suc @ ( suc @ ( minus_minus_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) ) ) ) ) ) ) ) ) ) ).
% \<open>vebt_member (Node (Some (mi, ma)) (Suc (Suc (deg - 2))) treeList summary) i = (if i = mi then True else if i = ma then True else if i < mi then False else if ma < i then False else let h = high i (Suc (Suc (deg - 2)) div 2); l = low i (Suc (Suc (deg - 2)) div 2) in if h < length treeList then vebt_member (treeList ! h) l else False)\<close>
thf(fact_69__092_060open_062invar__vebt_A_ItreeList_A_B_Ahigh_Ax_A_Ideg_Adiv_A2_J_J_An_092_060close_062,axiom,
vEBT_invar_vebt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ na ).
% \<open>invar_vebt (treeList ! high x (deg div 2)) n\<close>
thf(fact_70__C5_Ohyps_C_I11_J,axiom,
( ( mi != ma )
=> ! [I: nat] :
( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
=> ( ( ( ( vEBT_VEBT_high @ ma @ na )
= I )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ na )
= I )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ ( vEBT_VEBT_low @ X4 @ na ) ) )
=> ( ( ord_less_nat @ mi @ X4 )
& ( ord_less_eq_nat @ X4 @ ma ) ) ) ) ) ) ).
% "5.hyps"(11)
thf(fact_71_mem__Collect__eq,axiom,
! [A: complex,P: complex > $o] :
( ( member_complex @ A @ ( collect_complex @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_72_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_73_mem__Collect__eq,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_74_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_75_mem__Collect__eq,axiom,
! [A: int,P: int > $o] :
( ( member_int @ A @ ( collect_int @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_76_Collect__mem__eq,axiom,
! [A2: set_complex] :
( ( collect_complex
@ ^ [X2: complex] : ( member_complex @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_77_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_78_Collect__mem__eq,axiom,
! [A2: set_set_nat] :
( ( collect_set_nat
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_79_Collect__mem__eq,axiom,
! [A2: set_nat] :
( ( collect_nat
@ ^ [X2: nat] : ( member_nat @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_80_Collect__mem__eq,axiom,
! [A2: set_int] :
( ( collect_int
@ ^ [X2: int] : ( member_int @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_81_Collect__cong,axiom,
! [P: complex > $o,Q: complex > $o] :
( ! [X5: complex] :
( ( P @ X5 )
= ( Q @ X5 ) )
=> ( ( collect_complex @ P )
= ( collect_complex @ Q ) ) ) ).
% Collect_cong
thf(fact_82_Collect__cong,axiom,
! [P: real > $o,Q: real > $o] :
( ! [X5: real] :
( ( P @ X5 )
= ( Q @ X5 ) )
=> ( ( collect_real @ P )
= ( collect_real @ Q ) ) ) ).
% Collect_cong
thf(fact_83_Collect__cong,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X5: set_nat] :
( ( P @ X5 )
= ( Q @ X5 ) )
=> ( ( collect_set_nat @ P )
= ( collect_set_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_84_Collect__cong,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X5: nat] :
( ( P @ X5 )
= ( Q @ X5 ) )
=> ( ( collect_nat @ P )
= ( collect_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_85_Collect__cong,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X5: int] :
( ( P @ X5 )
= ( Q @ X5 ) )
=> ( ( collect_int @ P )
= ( collect_int @ Q ) ) ) ).
% Collect_cong
thf(fact_86_mi__ma__2__deg,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
& ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).
% mi_ma_2_deg
thf(fact_87__092_060open_062_092_060nexists_062i_O_Ais__succ__in__set_A_Iset__vebt_H_Asummary_J_A_Ihigh_Ax_A_Ideg_Adiv_A2_J_J_Ai_092_060close_062,axiom,
~ ? [X_1: nat] : ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ summary ) @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ X_1 ) ).
% \<open>\<nexists>i. is_succ_in_set (set_vebt' summary) (high x (deg div 2)) i\<close>
thf(fact_88_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_89_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_90_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_91_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_92_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_93_deg__deg__n,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
=> ( Deg = N ) ) ).
% deg_deg_n
thf(fact_94_not__min__Null__member,axiom,
! [T: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ T )
=> ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_12 ) ) ).
% not_min_Null_member
thf(fact_95__C5_Ohyps_C_I2_J,axiom,
vEBT_invar_vebt @ summary @ m ).
% "5.hyps"(2)
thf(fact_96_set__vebt_H__def,axiom,
( vEBT_VEBT_set_vebt
= ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_vebt_member @ T2 ) ) ) ) ).
% set_vebt'_def
thf(fact_97_deg__SUcn__Node,axiom,
! [Tree: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N ) ) )
=> ? [Info2: option4927543243414619207at_nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
( Tree
= ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N ) ) @ TreeList2 @ S ) ) ) ).
% deg_SUcn_Node
thf(fact_98_both__member__options__equiv__member,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( vEBT_V8194947554948674370ptions @ T @ X )
= ( vEBT_vebt_member @ T @ X ) ) ) ).
% both_member_options_equiv_member
thf(fact_99_valid__member__both__member__options,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( vEBT_V8194947554948674370ptions @ T @ X )
=> ( vEBT_vebt_member @ T @ X ) ) ) ).
% valid_member_both_member_options
thf(fact_100_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_101_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_102_member__correct,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( vEBT_vebt_member @ T @ X )
= ( member_nat @ X @ ( vEBT_set_vebt @ T ) ) ) ) ).
% member_correct
thf(fact_103_set__vebt__set__vebt_H__valid,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( vEBT_set_vebt @ T )
= ( vEBT_VEBT_set_vebt @ T ) ) ) ).
% set_vebt_set_vebt'_valid
thf(fact_104_succ__member,axiom,
! [T: vEBT_VEBT,X: nat,Y3: nat] :
( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X @ Y3 )
= ( ( vEBT_vebt_member @ T @ Y3 )
& ( ord_less_nat @ X @ Y3 )
& ! [Z2: nat] :
( ( ( vEBT_vebt_member @ T @ Z2 )
& ( ord_less_nat @ X @ Z2 ) )
=> ( ord_less_eq_nat @ Y3 @ Z2 ) ) ) ) ).
% succ_member
thf(fact_105_member__bound,axiom,
! [Tree: vEBT_VEBT,X: nat,N: nat] :
( ( vEBT_vebt_member @ Tree @ X )
=> ( ( vEBT_invar_vebt @ Tree @ N )
=> ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% member_bound
thf(fact_106_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_107_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_108_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_109_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_110_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_111_valid__insert__both__member__options__add,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ X ) @ X ) ) ) ).
% valid_insert_both_member_options_add
thf(fact_112_valid__insert__both__member__options__pres,axiom,
! [T: vEBT_VEBT,N: nat,X: nat,Y3: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_V8194947554948674370ptions @ T @ X )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ Y3 ) @ X ) ) ) ) ) ).
% valid_insert_both_member_options_pres
thf(fact_113_diff__diff__cancel,axiom,
! [I4: nat,N: nat] :
( ( ord_less_eq_nat @ I4 @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I4 ) )
= I4 ) ) ).
% diff_diff_cancel
thf(fact_114_post__member__pre__member,axiom,
! [T: vEBT_VEBT,N: nat,X: nat,Y3: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T @ X ) @ Y3 )
=> ( ( vEBT_vebt_member @ T @ Y3 )
| ( X = Y3 ) ) ) ) ) ) ).
% post_member_pre_member
thf(fact_115_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_116_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_117__092_060open_062length_AtreeList_A_061_A2_A_094_Am_A_092_060and_062_Ainvar__vebt_Asummary_Am_092_060close_062,axiom,
( ( ( size_s6755466524823107622T_VEBT @ treeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
& ( vEBT_invar_vebt @ summary @ m ) ) ).
% \<open>length treeList = 2 ^ m \<and> invar_vebt summary m\<close>
thf(fact_118_both__member__options__ding,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).
% both_member_options_ding
thf(fact_119_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_120__C5_Ohyps_C_I6_J,axiom,
( deg
= ( plus_plus_nat @ na @ m ) ) ).
% "5.hyps"(6)
thf(fact_121__C5_Ohyps_C_I7_J,axiom,
! [I: nat] :
( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ summary @ I ) ) ) ).
% "5.hyps"(7)
thf(fact_122_diff__commute,axiom,
! [I4: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I4 @ K ) @ J ) ) ).
% diff_commute
thf(fact_123_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq_num @ X @ one )
= ( X = one ) ) ).
% le_num_One_iff
thf(fact_124_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I4: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ ( minus_minus_nat @ K @ I4 ) ) ) ) ).
% zero_induct_lemma
thf(fact_125_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_126_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_127_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_128_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_129_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_130_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_131_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_132_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_133_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_134_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_135_Suc__inject,axiom,
! [X: nat,Y3: nat] :
( ( ( suc @ X )
= ( suc @ Y3 ) )
=> ( X = Y3 ) ) ).
% Suc_inject
thf(fact_136_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_137_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_138_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_139_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less_nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_140_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_141_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_142_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_143_linorder__neqE__nat,axiom,
! [X: nat,Y3: nat] :
( ( X != Y3 )
=> ( ~ ( ord_less_nat @ X @ Y3 )
=> ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_144_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ B ) )
=> ? [X5: nat] :
( ( P @ X5 )
& ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq_nat @ Y5 @ X5 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_145_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_146_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_147_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_148_le__trans,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I4 @ K ) ) ) ).
% le_trans
thf(fact_149_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_150_size__neq__size__imp__neq,axiom,
! [X: list_VEBT_VEBT,Y3: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ X )
!= ( size_s6755466524823107622T_VEBT @ Y3 ) )
=> ( X != Y3 ) ) ).
% size_neq_size_imp_neq
thf(fact_151_size__neq__size__imp__neq,axiom,
! [X: num,Y3: num] :
( ( ( size_size_num @ X )
!= ( size_size_num @ Y3 ) )
=> ( X != Y3 ) ) ).
% size_neq_size_imp_neq
thf(fact_152_size__neq__size__imp__neq,axiom,
! [X: vEBT_VEBT,Y3: vEBT_VEBT] :
( ( ( size_size_VEBT_VEBT @ X )
!= ( size_size_VEBT_VEBT @ Y3 ) )
=> ( X != Y3 ) ) ).
% size_neq_size_imp_neq
thf(fact_153_size__neq__size__imp__neq,axiom,
! [X: list_o,Y3: list_o] :
( ( ( size_size_list_o @ X )
!= ( size_size_list_o @ Y3 ) )
=> ( X != Y3 ) ) ).
% size_neq_size_imp_neq
thf(fact_154_size__neq__size__imp__neq,axiom,
! [X: list_int,Y3: list_int] :
( ( ( size_size_list_int @ X )
!= ( size_size_list_int @ Y3 ) )
=> ( X != Y3 ) ) ).
% size_neq_size_imp_neq
thf(fact_155_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_156_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_157_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_158_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_159_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_160_is__succ__in__set__def,axiom,
( vEBT_is_succ_in_set
= ( ^ [Xs2: set_nat,X2: nat,Y2: nat] :
( ( member_nat @ Y2 @ Xs2 )
& ( ord_less_nat @ X2 @ Y2 )
& ! [Z2: nat] :
( ( member_nat @ Z2 @ Xs2 )
=> ( ( ord_less_nat @ X2 @ Z2 )
=> ( ord_less_eq_nat @ Y2 @ Z2 ) ) ) ) ) ) ).
% is_succ_in_set_def
thf(fact_161_power__divide,axiom,
! [A: complex,B: complex,N: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).
% power_divide
thf(fact_162_power__divide,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
= ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_divide
thf(fact_163_power__divide,axiom,
! [A: rat,B: rat,N: nat] :
( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N )
= ( divide_divide_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).
% power_divide
thf(fact_164_Nat_OlessE,axiom,
! [I4: nat,K: nat] :
( ( ord_less_nat @ I4 @ K )
=> ( ( K
!= ( suc @ I4 ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I4 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_165_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_166_Suc__lessE,axiom,
! [I4: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I4 ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I4 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_167_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_168_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_169_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_170_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ N )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N )
& ( P @ I3 ) ) ) ) ).
% Ex_less_Suc
thf(fact_171_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_172_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_173_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( P @ I3 ) ) ) ) ).
% All_less_Suc
thf(fact_174_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M3: nat] :
( ( M
= ( suc @ M3 ) )
& ( ord_less_nat @ N @ M3 ) ) ) ) ).
% Suc_less_eq2
thf(fact_175_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_176_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_177_less__trans__Suc,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I4 ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_178_less__Suc__induct,axiom,
! [I4: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I4 @ J )
=> ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
=> ( ! [I2: nat,J2: nat,K2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ K2 )
=> ( ( P @ I2 @ J2 )
=> ( ( P @ J2 @ K2 )
=> ( P @ I2 @ K2 ) ) ) ) )
=> ( P @ I4 @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_179_strict__inc__induct,axiom,
! [I4: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I4 @ J )
=> ( ! [I2: nat] :
( ( J
= ( suc @ I2 ) )
=> ( P @ I2 ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ J )
=> ( ( P @ ( suc @ I2 ) )
=> ( P @ I2 ) ) )
=> ( P @ I4 ) ) ) ) ).
% strict_inc_induct
thf(fact_180_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_181_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X5: nat] : ( R @ X5 @ X5 )
=> ( ! [X5: nat,Y4: nat,Z3: nat] :
( ( R @ X5 @ Y4 )
=> ( ( R @ Y4 @ Z3 )
=> ( R @ X5 @ Z3 ) ) )
=> ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_182_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_183_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M2: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_184_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_185_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_186_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_187_Suc__le__D,axiom,
! [N: nat,M4: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
=> ? [M5: nat] :
( M4
= ( suc @ M5 ) ) ) ).
% Suc_le_D
thf(fact_188_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_189_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_190_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_191_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
& ( M6 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_192_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_193_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N2: nat] :
( ( ord_less_nat @ M6 @ N2 )
| ( M6 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_194_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_195_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_196_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I4: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_nat @ ( F @ I4 ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_197_power2__commute,axiom,
! [X: complex,Y3: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ ( minus_minus_complex @ Y3 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_198_power2__commute,axiom,
! [X: real,Y3: real] :
( ( power_power_real @ ( minus_minus_real @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ ( minus_minus_real @ Y3 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_199_power2__commute,axiom,
! [X: rat,Y3: rat] :
( ( power_power_rat @ ( minus_minus_rat @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ ( minus_minus_rat @ Y3 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_200_power2__commute,axiom,
! [X: int,Y3: int] :
( ( power_power_int @ ( minus_minus_int @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ ( minus_minus_int @ Y3 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_201_diff__le__diff__pow,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) ) ) ) ).
% diff_le_diff_pow
thf(fact_202_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_203_lift__Suc__mono__less,axiom,
! [F: nat > rat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_rat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_204_lift__Suc__mono__less,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_205_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_206_lift__Suc__mono__less,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_207_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_208_lift__Suc__mono__less__iff,axiom,
! [F: nat > rat,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_rat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_209_lift__Suc__mono__less__iff,axiom,
! [F: nat > num,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_210_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_211_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_212_lift__Suc__antimono__le,axiom,
! [F: nat > set_int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_int @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_213_lift__Suc__antimono__le,axiom,
! [F: nat > rat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_rat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_214_lift__Suc__antimono__le,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_num @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_215_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_216_lift__Suc__antimono__le,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_217_lift__Suc__mono__le,axiom,
! [F: nat > set_int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_218_lift__Suc__mono__le,axiom,
! [F: nat > rat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_rat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_219_lift__Suc__mono__le,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_220_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_221_lift__Suc__mono__le,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_222_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_223_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_224_dec__induct,axiom,
! [I4: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( P @ I4 )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I4 @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_225_inc__induct,axiom,
! [I4: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( P @ J )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I4 @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) ) ) )
=> ( P @ I4 ) ) ) ) ).
% inc_induct
thf(fact_226_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_227_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_228_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_229_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_230_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_231_in__children__def,axiom,
( vEBT_V5917875025757280293ildren
= ( ^ [N2: nat,TreeList3: list_VEBT_VEBT,X2: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ X2 @ N2 ) ) @ ( vEBT_VEBT_low @ X2 @ N2 ) ) ) ) ).
% in_children_def
thf(fact_232_vebt__member_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
= ( ( X != Mi )
=> ( ( X != Ma )
=> ( ~ ( ord_less_nat @ X @ Mi )
& ( ~ ( ord_less_nat @ X @ Mi )
=> ( ~ ( ord_less_nat @ Ma @ X )
& ( ~ ( ord_less_nat @ Ma @ X )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.simps(5)
thf(fact_233_both__member__options__from__chilf__to__complete__tree,axiom,
! [X: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).
% both_member_options_from_chilf_to_complete_tree
thf(fact_234_both__member__options__from__complete__tree__to__child,axiom,
! [Deg: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
| ( X = Mi )
| ( X = Ma ) ) ) ) ).
% both_member_options_from_complete_tree_to_child
thf(fact_235_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_236_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_237_high__bound__aux,axiom,
! [Ma: nat,N: nat,M: nat] :
( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% high_bound_aux
thf(fact_238_True,axiom,
( ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat ) ).
% True
thf(fact_239_pow__sum,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).
% pow_sum
thf(fact_240_mi__eq__ma__no__ch,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
=> ( ( Mi = Ma )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
& ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 ) ) ) ) ).
% mi_eq_ma_no_ch
thf(fact_241_low__def,axiom,
( vEBT_VEBT_low
= ( ^ [X2: nat,N2: nat] : ( modulo_modulo_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% low_def
thf(fact_242_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
! [Mi: nat,Ma: nat,V: nat,TreeList: list_VEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList @ Vc ) @ X )
= ( ( X = Mi )
| ( X = Ma )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ).
% VEBT_internal.membermima.simps(4)
thf(fact_243_even__odd__cases,axiom,
! [X: nat] :
( ! [N3: nat] :
( X
!= ( plus_plus_nat @ N3 @ N3 ) )
=> ~ ! [N3: nat] :
( X
!= ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) ) ) ).
% even_odd_cases
thf(fact_244_inthall,axiom,
! [Xs: list_nat,P: nat > $o,N: nat] :
( ! [X5: nat] :
( ( member_nat @ X5 @ ( set_nat2 @ Xs ) )
=> ( P @ X5 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
=> ( P @ ( nth_nat @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_245_inthall,axiom,
! [Xs: list_real,P: real > $o,N: nat] :
( ! [X5: real] :
( ( member_real @ X5 @ ( set_real2 @ Xs ) )
=> ( P @ X5 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs ) )
=> ( P @ ( nth_real @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_246_inthall,axiom,
! [Xs: list_complex,P: complex > $o,N: nat] :
( ! [X5: complex] :
( ( member_complex @ X5 @ ( set_complex2 @ Xs ) )
=> ( P @ X5 ) )
=> ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs ) )
=> ( P @ ( nth_complex @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_247_inthall,axiom,
! [Xs: list_set_nat,P: set_nat > $o,N: nat] :
( ! [X5: set_nat] :
( ( member_set_nat @ X5 @ ( set_set_nat2 @ Xs ) )
=> ( P @ X5 ) )
=> ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( P @ ( nth_set_nat @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_248_inthall,axiom,
! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o,N: nat] :
( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X5 ) )
=> ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_249_inthall,axiom,
! [Xs: list_o,P: $o > $o,N: nat] :
( ! [X5: $o] :
( ( member_o @ X5 @ ( set_o2 @ Xs ) )
=> ( P @ X5 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
=> ( P @ ( nth_o @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_250_inthall,axiom,
! [Xs: list_int,P: int > $o,N: nat] :
( ! [X5: int] :
( ( member_int @ X5 @ ( set_int2 @ Xs ) )
=> ( P @ X5 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
=> ( P @ ( nth_int @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_251__092_060open_0621_A_092_060le_062_An_092_060close_062,axiom,
ord_less_eq_nat @ one_one_nat @ na ).
% \<open>1 \<le> n\<close>
thf(fact_252__C5_Ohyps_C_I8_J,axiom,
( ( mi = ma )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ treeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) ) ).
% "5.hyps"(8)
thf(fact_253_mod__mod__trivial,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_254_mod__mod__trivial,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_255_mod__mod__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_256_VEBT_Oinject_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,Y11: option4927543243414619207at_nat,Y12: nat,Y13: list_VEBT_VEBT,Y14: vEBT_VEBT] :
( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
= ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
= ( ( X11 = Y11 )
& ( X12 = Y12 )
& ( X13 = Y13 )
& ( X14 = Y14 ) ) ) ).
% VEBT.inject(1)
thf(fact_257_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_258_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_259_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_260_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_261_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_262_add__numeral__left,axiom,
! [V: num,W: num,Z4: complex] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z4 ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z4 ) ) ).
% add_numeral_left
thf(fact_263_add__numeral__left,axiom,
! [V: num,W: num,Z4: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z4 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z4 ) ) ).
% add_numeral_left
thf(fact_264_add__numeral__left,axiom,
! [V: num,W: num,Z4: rat] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z4 ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z4 ) ) ).
% add_numeral_left
thf(fact_265_add__numeral__left,axiom,
! [V: num,W: num,Z4: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z4 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z4 ) ) ).
% add_numeral_left
thf(fact_266_add__numeral__left,axiom,
! [V: num,W: num,Z4: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z4 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z4 ) ) ).
% add_numeral_left
thf(fact_267_power__one,axiom,
! [N: nat] :
( ( power_power_rat @ one_one_rat @ N )
= one_one_rat ) ).
% power_one
thf(fact_268_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_269_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_270_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_271_power__one,axiom,
! [N: nat] :
( ( power_power_complex @ one_one_complex @ N )
= one_one_complex ) ).
% power_one
thf(fact_272_mod__add__self2,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self2
thf(fact_273_mod__add__self2,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self2
thf(fact_274_mod__add__self2,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_add_self2
thf(fact_275_mod__add__self1,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self1
thf(fact_276_mod__add__self1,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self1
thf(fact_277_mod__add__self1,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_add_self1
thf(fact_278_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_279_minus__mod__self2,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_mod_self2
thf(fact_280_minus__mod__self2,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_mod_self2
thf(fact_281_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_282_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_283_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_284_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_285_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_286_power__one__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_287_diff__diff__left,axiom,
! [I4: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J ) @ K )
= ( minus_minus_nat @ I4 @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_288_mod__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= M ) ) ).
% mod_less
thf(fact_289_set__n__deg__not__0,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,M: nat] :
( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ord_less_eq_nat @ one_one_nat @ N ) ) ) ).
% set_n_deg_not_0
thf(fact_290_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_complex
= ( numera6690914467698888265omplex @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_291_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_292_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_rat
= ( numeral_numeral_rat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_293_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_294_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_295_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera6690914467698888265omplex @ N )
= one_one_complex )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_296_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_297_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_rat @ N )
= one_one_rat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_298_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_299_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_300_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_301_power__inject__exp,axiom,
! [A: rat,M: nat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ( power_power_rat @ A @ M )
= ( power_power_rat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_302_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_303_power__inject__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_304_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I4 @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I4 @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_305_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I4 )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I4 ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_306_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I4 @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I4 @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_307_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_308_succ__list__to__short,axiom,
! [Deg: nat,Mi: nat,X: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ Mi @ X )
=> ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList ) @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= none_nat ) ) ) ) ).
% succ_list_to_short
thf(fact_309_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_310_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_311_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_312_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_313_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_314_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_315_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_316_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
= ( numeral_numeral_rat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_317_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_318_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_319_power__strict__increasing__iff,axiom,
! [B: real,X: nat,Y3: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y3 ) )
= ( ord_less_nat @ X @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_320_power__strict__increasing__iff,axiom,
! [B: rat,X: nat,Y3: nat] :
( ( ord_less_rat @ one_one_rat @ B )
=> ( ( ord_less_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y3 ) )
= ( ord_less_nat @ X @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_321_power__strict__increasing__iff,axiom,
! [B: nat,X: nat,Y3: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y3 ) )
= ( ord_less_nat @ X @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_322_power__strict__increasing__iff,axiom,
! [B: int,X: nat,Y3: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y3 ) )
= ( ord_less_nat @ X @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_323_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I4 @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I4 @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_324_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I4 )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I4 ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_325__092_060open_062vebt__succ_A_INode_A_ISome_A_Imi_M_Ama_J_J_Adeg_AtreeList_Asummary_J_Ax_A_061_ANone_092_060close_062,axiom,
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
= none_nat ) ).
% \<open>vebt_succ (Node (Some (mi, ma)) deg treeList summary) x = None\<close>
thf(fact_326_one__add__one,axiom,
( ( plus_plus_complex @ one_one_complex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_327_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_328_one__add__one,axiom,
( ( plus_plus_rat @ one_one_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_329_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_330_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_331_power__increasing__iff,axiom,
! [B: real,X: nat,Y3: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_332_power__increasing__iff,axiom,
! [B: rat,X: nat,Y3: nat] :
( ( ord_less_rat @ one_one_rat @ B )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_333_power__increasing__iff,axiom,
! [B: nat,X: nat,Y3: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_334_power__increasing__iff,axiom,
! [B: int,X: nat,Y3: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_335_one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_mod_two_eq_one
thf(fact_336_one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_mod_two_eq_one
thf(fact_337_one__mod__two__eq__one,axiom,
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% one_mod_two_eq_one
thf(fact_338_add__2__eq__Suc_H,axiom,
! [N: nat] :
( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc'
thf(fact_339_add__2__eq__Suc,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc
thf(fact_340_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_341_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_342_mod2__Suc__Suc,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% mod2_Suc_Suc
thf(fact_343_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_344_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_345_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_346_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_347_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_348_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_349_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_350_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_351__C5_Ohyps_C_I1_J,axiom,
! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ treeList ) )
=> ( ( vEBT_invar_vebt @ X4 @ na )
& ! [Xa: nat,Xb: nat] :
( ( ( vEBT_vebt_succ @ X4 @ Xa )
= ( some_nat @ Xb ) )
= ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ X4 ) @ Xa @ Xb ) ) ) ) ).
% "5.hyps"(1)
thf(fact_352_subset__code_I1_J,axiom,
! [Xs: list_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ B2 )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ Xs ) )
=> ( member_nat @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_353_subset__code_I1_J,axiom,
! [Xs: list_real,B2: set_real] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ B2 )
= ( ! [X2: real] :
( ( member_real @ X2 @ ( set_real2 @ Xs ) )
=> ( member_real @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_354_subset__code_I1_J,axiom,
! [Xs: list_complex,B2: set_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ B2 )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ ( set_complex2 @ Xs ) )
=> ( member_complex @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_355_subset__code_I1_J,axiom,
! [Xs: list_set_nat,B2: set_set_nat] :
( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ B2 )
= ( ! [X2: set_nat] :
( ( member_set_nat @ X2 @ ( set_set_nat2 @ Xs ) )
=> ( member_set_nat @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_356_subset__code_I1_J,axiom,
! [Xs: list_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ B2 )
= ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( member_VEBT_VEBT @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_357_subset__code_I1_J,axiom,
! [Xs: list_int,B2: set_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ B2 )
= ( ! [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ Xs ) )
=> ( member_int @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_358_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N3: extended_enat] :
( ! [M2: extended_enat] :
( ( ord_le72135733267957522d_enat @ M2 @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_359_mod__add__right__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_360_mod__add__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_361_mod__add__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_362_mod__add__left__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_363_mod__add__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_364_mod__add__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_365_mod__add__cong,axiom,
! [A: nat,C: nat,A3: nat,B: nat,B3: nat] :
( ( ( modulo_modulo_nat @ A @ C )
= ( modulo_modulo_nat @ A3 @ C ) )
=> ( ( ( modulo_modulo_nat @ B @ C )
= ( modulo_modulo_nat @ B3 @ C ) )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_366_mod__add__cong,axiom,
! [A: int,C: int,A3: int,B: int,B3: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A3 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B3 @ C ) )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_367_mod__add__cong,axiom,
! [A: code_integer,C: code_integer,A3: code_integer,B: code_integer,B3: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A3 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B3 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_368_mod__add__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_369_mod__add__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_370_mod__add__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_371_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_372_is__num__normalize_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_373_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_374_div__add1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_375_div__add1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_376_div__add1__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_377_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).
% one_plus_numeral_commute
thf(fact_378_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_379_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).
% one_plus_numeral_commute
thf(fact_380_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_381_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_382_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_383_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_384_Suc__eq__plus1,axiom,
( suc
= ( ^ [N2: nat] : ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_385_mod__diff__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_right_eq
thf(fact_386_mod__diff__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_right_eq
thf(fact_387_mod__diff__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_left_eq
thf(fact_388_mod__diff__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_left_eq
thf(fact_389_mod__diff__cong,axiom,
! [A: int,C: int,A3: int,B: int,B3: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A3 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B3 @ C ) )
=> ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_diff_cong
thf(fact_390_mod__diff__cong,axiom,
! [A: code_integer,C: code_integer,A3: code_integer,B: code_integer,B3: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A3 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B3 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_diff_cong
thf(fact_391_mod__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_eq
thf(fact_392_mod__diff__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_eq
thf(fact_393_power__mod,axiom,
! [A: nat,B: nat,N: nat] :
( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N ) @ B )
= ( modulo_modulo_nat @ ( power_power_nat @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_394_power__mod,axiom,
! [A: int,B: int,N: nat] :
( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N ) @ B )
= ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_395_power__mod,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N ) @ B )
= ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_396_mod__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% mod_Suc_eq
thf(fact_397_mod__Suc__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).
% mod_Suc_Suc_eq
thf(fact_398_mod__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).
% mod_less_eq_dividend
thf(fact_399_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_400_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_401_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_402_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_403_trans__less__add2,axiom,
! [I4: nat,J: nat,M: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ord_less_nat @ I4 @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_404_trans__less__add1,axiom,
! [I4: nat,J: nat,M: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ord_less_nat @ I4 @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_405_add__less__mono1,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_406_not__add__less2,axiom,
! [J: nat,I4: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I4 ) @ I4 ) ).
% not_add_less2
thf(fact_407_not__add__less1,axiom,
! [I4: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I4 @ J ) @ I4 ) ).
% not_add_less1
thf(fact_408_add__less__mono,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_409_add__lessD1,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I4 @ J ) @ K )
=> ( ord_less_nat @ I4 @ K ) ) ).
% add_lessD1
thf(fact_410_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_411_le__numeral__extra_I4_J,axiom,
ord_less_eq_rat @ one_one_rat @ one_one_rat ).
% le_numeral_extra(4)
thf(fact_412_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_413_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_414_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_415_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_416_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_417_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_418_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_419_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_420_add__le__mono,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_421_add__le__mono1,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_422_trans__le__add1,axiom,
! [I4: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_nat @ I4 @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_423_trans__le__add2,axiom,
! [I4: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_nat @ I4 @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_424_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N2: nat] :
? [K3: nat] :
( N2
= ( plus_plus_nat @ M6 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_425_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_426_less__numeral__extra_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).
% less_numeral_extra(4)
thf(fact_427_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_428_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_429_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_430_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_431_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_432_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_433_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_434_set__conv__nth,axiom,
( set_complex2
= ( ^ [Xs2: list_complex] :
( collect_complex
@ ^ [Uu: complex] :
? [I3: nat] :
( ( Uu
= ( nth_complex @ Xs2 @ I3 ) )
& ( ord_less_nat @ I3 @ ( size_s3451745648224563538omplex @ Xs2 ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_435_set__conv__nth,axiom,
( set_real2
= ( ^ [Xs2: list_real] :
( collect_real
@ ^ [Uu: real] :
? [I3: nat] :
( ( Uu
= ( nth_real @ Xs2 @ I3 ) )
& ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs2 ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_436_set__conv__nth,axiom,
( set_set_nat2
= ( ^ [Xs2: list_set_nat] :
( collect_set_nat
@ ^ [Uu: set_nat] :
? [I3: nat] :
( ( Uu
= ( nth_set_nat @ Xs2 @ I3 ) )
& ( ord_less_nat @ I3 @ ( size_s3254054031482475050et_nat @ Xs2 ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_437_set__conv__nth,axiom,
( set_nat2
= ( ^ [Xs2: list_nat] :
( collect_nat
@ ^ [Uu: nat] :
? [I3: nat] :
( ( Uu
= ( nth_nat @ Xs2 @ I3 ) )
& ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_438_set__conv__nth,axiom,
( set_VEBT_VEBT2
= ( ^ [Xs2: list_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ^ [Uu: vEBT_VEBT] :
? [I3: nat] :
( ( Uu
= ( nth_VEBT_VEBT @ Xs2 @ I3 ) )
& ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_439_set__conv__nth,axiom,
( set_o2
= ( ^ [Xs2: list_o] :
( collect_o
@ ^ [Uu: $o] :
? [I3: nat] :
( ( Uu
= ( nth_o @ Xs2 @ I3 ) )
& ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_440_set__conv__nth,axiom,
( set_int2
= ( ^ [Xs2: list_int] :
( collect_int
@ ^ [Uu: int] :
? [I3: nat] :
( ( Uu
= ( nth_int @ Xs2 @ I3 ) )
& ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_441_mod__induct,axiom,
! [P: nat > $o,N: nat,P2: nat,M: nat] :
( ( P @ N )
=> ( ( ord_less_nat @ N @ P2 )
=> ( ( ord_less_nat @ M @ P2 )
=> ( ! [N3: nat] :
( ( ord_less_nat @ N3 @ P2 )
=> ( ( P @ N3 )
=> ( P @ ( modulo_modulo_nat @ ( suc @ N3 ) @ P2 ) ) ) )
=> ( P @ M ) ) ) ) ) ).
% mod_induct
thf(fact_442_mod__Suc__le__divisor,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).
% mod_Suc_le_divisor
thf(fact_443_mod__if,axiom,
( modulo_modulo_nat
= ( ^ [M6: nat,N2: nat] : ( if_nat @ ( ord_less_nat @ M6 @ N2 ) @ M6 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M6 @ N2 ) @ N2 ) ) ) ) ).
% mod_if
thf(fact_444_numeral__Bit0,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_Bit0
thf(fact_445_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_446_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit0 @ N ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_Bit0
thf(fact_447_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_448_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_Bit0
thf(fact_449_le__mod__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( modulo_modulo_nat @ M @ N )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).
% le_mod_geq
thf(fact_450_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K2: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_451_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M6: nat,N2: nat] :
? [K3: nat] :
( N2
= ( suc @ ( plus_plus_nat @ M6 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_452_less__add__Suc2,axiom,
! [I4: nat,M: nat] : ( ord_less_nat @ I4 @ ( suc @ ( plus_plus_nat @ M @ I4 ) ) ) ).
% less_add_Suc2
thf(fact_453_less__add__Suc1,axiom,
! [I4: nat,M: nat] : ( ord_less_nat @ I4 @ ( suc @ ( plus_plus_nat @ I4 @ M ) ) ) ).
% less_add_Suc1
thf(fact_454_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q2: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q2 ) ) ) ) ).
% less_natE
thf(fact_455_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_456_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) ) ).
% one_le_numeral
thf(fact_457_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_458_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).
% one_le_numeral
thf(fact_459_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_nat @ M5 @ N3 )
=> ( ord_less_nat @ ( F @ M5 ) @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_460_set__vebt__def,axiom,
( vEBT_set_vebt
= ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).
% set_vebt_def
thf(fact_461_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_462_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat ) ).
% not_numeral_less_one
thf(fact_463_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_464_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_465_numeral__One,axiom,
( ( numera6690914467698888265omplex @ one )
= one_one_complex ) ).
% numeral_One
thf(fact_466_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_467_numeral__One,axiom,
( ( numeral_numeral_rat @ one )
= one_one_rat ) ).
% numeral_One
thf(fact_468_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_469_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_470_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_471_less__diff__conv,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_nat @ I4 @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_472_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_473_one__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).
% one_le_power
thf(fact_474_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_475_one__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).
% one_le_power
thf(fact_476_le__diff__conv,axiom,
! [J: nat,K: nat,I4: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I4 )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I4 @ K ) ) ) ).
% le_diff_conv
thf(fact_477_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I4 @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_478_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I4 @ J ) @ K )
= ( plus_plus_nat @ I4 @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_479_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I4 ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I4 ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_480_Nat_Ole__imp__diff__is__add,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( ( minus_minus_nat @ J @ I4 )
= K )
= ( J
= ( plus_plus_nat @ K @ I4 ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_481_power__one__over,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N )
= ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N ) ) ) ).
% power_one_over
thf(fact_482_power__one__over,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% power_one_over
thf(fact_483_power__one__over,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N )
= ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).
% power_one_over
thf(fact_484_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_485_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_486_numeral__code_I2_J,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_code(2)
thf(fact_487_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_code(2)
thf(fact_488_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit0 @ N ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_code(2)
thf(fact_489_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_code(2)
thf(fact_490_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_code(2)
thf(fact_491_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_492_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_493_all__set__conv__all__nth,axiom,
! [Xs: list_nat,P: nat > $o] :
( ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
=> ( P @ ( nth_nat @ Xs @ I3 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_494_all__set__conv__all__nth,axiom,
! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ I3 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_495_all__set__conv__all__nth,axiom,
! [Xs: list_o,P: $o > $o] :
( ( ! [X2: $o] :
( ( member_o @ X2 @ ( set_o2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs ) )
=> ( P @ ( nth_o @ Xs @ I3 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_496_all__set__conv__all__nth,axiom,
! [Xs: list_int,P: int > $o] :
( ( ! [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs ) )
=> ( P @ ( nth_int @ Xs @ I3 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_497_all__nth__imp__all__set,axiom,
! [Xs: list_nat,P: nat > $o,X: nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs ) )
=> ( P @ ( nth_nat @ Xs @ I2 ) ) )
=> ( ( member_nat @ X @ ( set_nat2 @ Xs ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_498_all__nth__imp__all__set,axiom,
! [Xs: list_real,P: real > $o,X: real] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_real @ Xs ) )
=> ( P @ ( nth_real @ Xs @ I2 ) ) )
=> ( ( member_real @ X @ ( set_real2 @ Xs ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_499_all__nth__imp__all__set,axiom,
! [Xs: list_complex,P: complex > $o,X: complex] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_s3451745648224563538omplex @ Xs ) )
=> ( P @ ( nth_complex @ Xs @ I2 ) ) )
=> ( ( member_complex @ X @ ( set_complex2 @ Xs ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_500_all__nth__imp__all__set,axiom,
! [Xs: list_set_nat,P: set_nat > $o,X: set_nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( P @ ( nth_set_nat @ Xs @ I2 ) ) )
=> ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_501_all__nth__imp__all__set,axiom,
! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o,X: vEBT_VEBT] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ I2 ) ) )
=> ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_502_all__nth__imp__all__set,axiom,
! [Xs: list_o,P: $o > $o,X: $o] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_o @ Xs ) )
=> ( P @ ( nth_o @ Xs @ I2 ) ) )
=> ( ( member_o @ X @ ( set_o2 @ Xs ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_503_all__nth__imp__all__set,axiom,
! [Xs: list_int,P: int > $o,X: int] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_int @ Xs ) )
=> ( P @ ( nth_int @ Xs @ I2 ) ) )
=> ( ( member_int @ X @ ( set_int2 @ Xs ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_504_in__set__conv__nth,axiom,
! [X: nat,Xs: list_nat] :
( ( member_nat @ X @ ( set_nat2 @ Xs ) )
= ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
& ( ( nth_nat @ Xs @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_505_in__set__conv__nth,axiom,
! [X: real,Xs: list_real] :
( ( member_real @ X @ ( set_real2 @ Xs ) )
= ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs ) )
& ( ( nth_real @ Xs @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_506_in__set__conv__nth,axiom,
! [X: complex,Xs: list_complex] :
( ( member_complex @ X @ ( set_complex2 @ Xs ) )
= ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s3451745648224563538omplex @ Xs ) )
& ( ( nth_complex @ Xs @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_507_in__set__conv__nth,axiom,
! [X: set_nat,Xs: list_set_nat] :
( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
= ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s3254054031482475050et_nat @ Xs ) )
& ( ( nth_set_nat @ Xs @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_508_in__set__conv__nth,axiom,
! [X: vEBT_VEBT,Xs: list_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
= ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
& ( ( nth_VEBT_VEBT @ Xs @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_509_in__set__conv__nth,axiom,
! [X: $o,Xs: list_o] :
( ( member_o @ X @ ( set_o2 @ Xs ) )
= ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs ) )
& ( ( nth_o @ Xs @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_510_in__set__conv__nth,axiom,
! [X: int,Xs: list_int] :
( ( member_int @ X @ ( set_int2 @ Xs ) )
= ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs ) )
& ( ( nth_int @ Xs @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_511_list__ball__nth,axiom,
! [N: nat,Xs: list_nat,P: nat > $o] :
( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( set_nat2 @ Xs ) )
=> ( P @ X5 ) )
=> ( P @ ( nth_nat @ Xs @ N ) ) ) ) ).
% list_ball_nth
thf(fact_512_list__ball__nth,axiom,
! [N: nat,Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X5 ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).
% list_ball_nth
thf(fact_513_list__ball__nth,axiom,
! [N: nat,Xs: list_o,P: $o > $o] :
( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
=> ( ! [X5: $o] :
( ( member_o @ X5 @ ( set_o2 @ Xs ) )
=> ( P @ X5 ) )
=> ( P @ ( nth_o @ Xs @ N ) ) ) ) ).
% list_ball_nth
thf(fact_514_list__ball__nth,axiom,
! [N: nat,Xs: list_int,P: int > $o] :
( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
=> ( ! [X5: int] :
( ( member_int @ X5 @ ( set_int2 @ Xs ) )
=> ( P @ X5 ) )
=> ( P @ ( nth_int @ Xs @ N ) ) ) ) ).
% list_ball_nth
thf(fact_515_nth__mem,axiom,
! [N: nat,Xs: list_nat] :
( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
=> ( member_nat @ ( nth_nat @ Xs @ N ) @ ( set_nat2 @ Xs ) ) ) ).
% nth_mem
thf(fact_516_nth__mem,axiom,
! [N: nat,Xs: list_real] :
( ( ord_less_nat @ N @ ( size_size_list_real @ Xs ) )
=> ( member_real @ ( nth_real @ Xs @ N ) @ ( set_real2 @ Xs ) ) ) ).
% nth_mem
thf(fact_517_nth__mem,axiom,
! [N: nat,Xs: list_complex] :
( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs ) )
=> ( member_complex @ ( nth_complex @ Xs @ N ) @ ( set_complex2 @ Xs ) ) ) ).
% nth_mem
thf(fact_518_nth__mem,axiom,
! [N: nat,Xs: list_set_nat] :
( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( member_set_nat @ ( nth_set_nat @ Xs @ N ) @ ( set_set_nat2 @ Xs ) ) ) ).
% nth_mem
thf(fact_519_nth__mem,axiom,
! [N: nat,Xs: list_VEBT_VEBT] :
( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ Xs @ N ) @ ( set_VEBT_VEBT2 @ Xs ) ) ) ).
% nth_mem
thf(fact_520_nth__mem,axiom,
! [N: nat,Xs: list_o] :
( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
=> ( member_o @ ( nth_o @ Xs @ N ) @ ( set_o2 @ Xs ) ) ) ).
% nth_mem
thf(fact_521_nth__mem,axiom,
! [N: nat,Xs: list_int] :
( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
=> ( member_int @ ( nth_int @ Xs @ N ) @ ( set_int2 @ Xs ) ) ) ).
% nth_mem
thf(fact_522_less__diff__conv2,axiom,
! [K: nat,J: nat,I4: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I4 )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I4 @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_523_power__gt1,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_524_power__gt1,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_525_power__gt1,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_526_power__gt1,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_527_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_528_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_529_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_530_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_531_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_532_power__less__imp__less__exp,axiom,
! [A: rat,M: nat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_533_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_534_power__less__imp__less__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_535_power__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_536_power__increasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_537_power__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_538_power__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_539_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_540_power__le__imp__le__exp,axiom,
! [A: rat,M: nat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_541_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_542_power__le__imp__le__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_543_one__power2,axiom,
( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat ) ).
% one_power2
thf(fact_544_one__power2,axiom,
( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_power2
thf(fact_545_one__power2,axiom,
( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real ) ).
% one_power2
thf(fact_546_one__power2,axiom,
( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_power2
thf(fact_547_one__power2,axiom,
( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex ) ).
% one_power2
thf(fact_548_invar__vebt_Ointros_I4_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X5: nat] :
( ( ( ( vEBT_VEBT_high @ X5 @ N )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ X5 @ N ) ) )
=> ( ( ord_less_nat @ Mi @ X5 )
& ( ord_less_eq_nat @ X5 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(4)
thf(fact_549_invar__vebt_Ointros_I5_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X5: nat] :
( ( ( ( vEBT_VEBT_high @ X5 @ N )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ X5 @ N ) ) )
=> ( ( ord_less_nat @ Mi @ X5 )
& ( ord_less_eq_nat @ X5 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(5)
thf(fact_550_VEBT__internal_OminNull_Osimps_I5_J,axiom,
! [Uz: product_prod_nat_nat,Va: nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz ) @ Va @ Vb @ Vc ) ) ).
% VEBT_internal.minNull.simps(5)
thf(fact_551_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% bits_one_mod_two_eq_one
thf(fact_552_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_one_mod_two_eq_one
thf(fact_553_bits__one__mod__two__eq__one,axiom,
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% bits_one_mod_two_eq_one
thf(fact_554_member__valid__both__member__options,axiom,
! [Tree: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ Tree @ N )
=> ( ( vEBT_vebt_member @ Tree @ X )
=> ( ( vEBT_V5719532721284313246member @ Tree @ X )
| ( vEBT_VEBT_membermima @ Tree @ X ) ) ) ) ).
% member_valid_both_member_options
thf(fact_555_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_556_le__add__diff__inverse,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_557_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_558_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_559_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_560_le__add__diff__inverse2,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_561_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_562_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_563_div__exp__mod__exp__eq,axiom,
! [A: nat,N: nat,M: nat] :
( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_564_div__exp__mod__exp__eq,axiom,
! [A: int,N: nat,M: nat] :
( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_565_div__exp__mod__exp__eq,axiom,
! [A: code_integer,N: nat,M: nat] :
( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_566_both__member__options__def,axiom,
( vEBT_V8194947554948674370ptions
= ( ^ [T2: vEBT_VEBT,X2: nat] :
( ( vEBT_V5719532721284313246member @ T2 @ X2 )
| ( vEBT_VEBT_membermima @ T2 @ X2 ) ) ) ) ).
% both_member_options_def
thf(fact_567_succ__min,axiom,
! [Deg: nat,X: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( some_nat @ Mi ) ) ) ) ).
% succ_min
thf(fact_568_div__exp__eq,axiom,
! [A: nat,M: nat,N: nat] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_569_div__exp__eq,axiom,
! [A: int,M: nat,N: nat] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_570_field__less__half__sum,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ X @ ( divide_divide_real @ ( plus_plus_real @ X @ Y3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_571_field__less__half__sum,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( ord_less_rat @ X @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y3 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_572_bit__concat__def,axiom,
( vEBT_VEBT_bit_concat
= ( ^ [H: nat,L2: nat,D2: nat] : ( plus_plus_nat @ ( times_times_nat @ H @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ D2 ) ) @ L2 ) ) ) ).
% bit_concat_def
thf(fact_573_low__inv,axiom,
! [X: nat,N: nat,Y3: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X ) @ N )
= X ) ) ).
% low_inv
thf(fact_574_power__shift,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ( power_power_nat @ X @ Y3 )
= Z4 )
= ( ( vEBT_VEBT_power @ ( some_nat @ X ) @ ( some_nat @ Y3 ) )
= ( some_nat @ Z4 ) ) ) ).
% power_shift
thf(fact_575__C5_Ohyps_C_I3_J,axiom,
! [X: nat,Sx: nat] :
( ( ( vEBT_vebt_succ @ summary @ X )
= ( some_nat @ Sx ) )
= ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ summary ) @ X @ Sx ) ) ).
% "5.hyps"(3)
thf(fact_576_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z4: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z4 ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z4 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_577_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z4: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z4 ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z4 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_578_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z4: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z4 ) )
= ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z4 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_579_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z4: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z4 ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z4 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_580_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z4: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z4 ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z4 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_581_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_582_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_583_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_584_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_585_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_586_high__inv,axiom,
! [X: nat,N: nat,Y3: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X ) @ N )
= Y3 ) ) ).
% high_inv
thf(fact_587_div__by__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ one_one_complex )
= A ) ).
% div_by_1
thf(fact_588_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_589_div__by__1,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ one_one_rat )
= A ) ).
% div_by_1
thf(fact_590_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_591_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_592_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_593_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_594_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_595_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_596_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_597_distrib__right__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_598_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_599_distrib__right__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_600_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_601_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_602_distrib__left__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_603_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_604_distrib__left__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_605_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_606_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_607_left__diff__distrib__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_608_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_609_left__diff__distrib__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_610_left__diff__distrib__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_611_right__diff__distrib__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_612_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_613_right__diff__distrib__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_614_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_615_mod__mult__self1,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self1
thf(fact_616_mod__mult__self1,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self1
thf(fact_617_mod__mult__self1,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self1
thf(fact_618_mod__mult__self2,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self2
thf(fact_619_mod__mult__self2,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self2
thf(fact_620_mod__mult__self2,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self2
thf(fact_621_mod__mult__self3,axiom,
! [C: nat,B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self3
thf(fact_622_mod__mult__self3,axiom,
! [C: int,B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self3
thf(fact_623_mod__mult__self3,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self3
thf(fact_624_mod__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self4
thf(fact_625_mod__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self4
thf(fact_626_mod__mult__self4,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self4
thf(fact_627_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ M @ ( suc @ N ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_628_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_629_divide__le__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_630_divide__le__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_631_le__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_632_le__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_633_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_634_divide__less__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_635_less__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_636_less__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_637_power__add__numeral2,axiom,
! [A: complex,M: num,N: num,B: complex] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_638_power__add__numeral2,axiom,
! [A: real,M: num,N: num,B: real] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_639_power__add__numeral2,axiom,
! [A: rat,M: num,N: num,B: rat] :
( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_640_power__add__numeral2,axiom,
! [A: nat,M: num,N: num,B: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_641_power__add__numeral2,axiom,
! [A: int,M: num,N: num,B: int] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_642_power__add__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_643_power__add__numeral,axiom,
! [A: real,M: num,N: num] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_644_power__add__numeral,axiom,
! [A: rat,M: num,N: num] :
( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_645_power__add__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_646_power__add__numeral,axiom,
! [A: int,M: num,N: num] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_647_Suc__numeral,axiom,
! [N: num] :
( ( suc @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% Suc_numeral
thf(fact_648_Suc__mod__mult__self1,axiom,
! [M: nat,K: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self1
thf(fact_649_Suc__mod__mult__self2,axiom,
! [M: nat,N: nat,K: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ K ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self2
thf(fact_650_Suc__mod__mult__self3,axiom,
! [K: nat,N: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self3
thf(fact_651_Suc__mod__mult__self4,axiom,
! [N: nat,K: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N @ K ) @ M ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self4
thf(fact_652_greater__shift,axiom,
( ord_less_nat
= ( ^ [Y2: nat,X2: nat] : ( vEBT_VEBT_greater @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) ) ) ) ).
% greater_shift
thf(fact_653_lesseq__shift,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y2: nat] : ( vEBT_VEBT_lesseq @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) ) ) ) ).
% lesseq_shift
thf(fact_654_Suc__times__numeral__mod__eq,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral_nat @ K )
!= one_one_nat )
=> ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N ) ) @ ( numeral_numeral_nat @ K ) )
= one_one_nat ) ) ).
% Suc_times_numeral_mod_eq
thf(fact_655_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_656_combine__common__factor,axiom,
! [A: rat,E: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_657_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_658_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_659_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_660_distrib__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% distrib_right
thf(fact_661_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_662_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_663_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_664_distrib__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% distrib_left
thf(fact_665_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_666_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_667_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_668_comm__semiring__class_Odistrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_669_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_670_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_671_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_672_ring__class_Oring__distribs_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_673_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_674_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_675_ring__class_Oring__distribs_I2_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_676_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_677_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_678_right__diff__distrib_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_679_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_680_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_681_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_682_left__diff__distrib_H,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
= ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_683_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_684_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_685_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_686_right__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_687_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_688_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_689_left__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_690_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_691_lambda__one,axiom,
( ( ^ [X2: complex] : X2 )
= ( times_times_complex @ one_one_complex ) ) ).
% lambda_one
thf(fact_692_lambda__one,axiom,
( ( ^ [X2: real] : X2 )
= ( times_times_real @ one_one_real ) ) ).
% lambda_one
thf(fact_693_lambda__one,axiom,
( ( ^ [X2: rat] : X2 )
= ( times_times_rat @ one_one_rat ) ) ).
% lambda_one
thf(fact_694_lambda__one,axiom,
( ( ^ [X2: nat] : X2 )
= ( times_times_nat @ one_one_nat ) ) ).
% lambda_one
thf(fact_695_lambda__one,axiom,
( ( ^ [X2: int] : X2 )
= ( times_times_int @ one_one_int ) ) ).
% lambda_one
thf(fact_696_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_697_power__commuting__commutes,axiom,
! [X: complex,Y3: complex,N: nat] :
( ( ( times_times_complex @ X @ Y3 )
= ( times_times_complex @ Y3 @ X ) )
=> ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ Y3 )
= ( times_times_complex @ Y3 @ ( power_power_complex @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_698_power__commuting__commutes,axiom,
! [X: real,Y3: real,N: nat] :
( ( ( times_times_real @ X @ Y3 )
= ( times_times_real @ Y3 @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y3 )
= ( times_times_real @ Y3 @ ( power_power_real @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_699_power__commuting__commutes,axiom,
! [X: rat,Y3: rat,N: nat] :
( ( ( times_times_rat @ X @ Y3 )
= ( times_times_rat @ Y3 @ X ) )
=> ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ Y3 )
= ( times_times_rat @ Y3 @ ( power_power_rat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_700_power__commuting__commutes,axiom,
! [X: nat,Y3: nat,N: nat] :
( ( ( times_times_nat @ X @ Y3 )
= ( times_times_nat @ Y3 @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y3 )
= ( times_times_nat @ Y3 @ ( power_power_nat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_701_power__commuting__commutes,axiom,
! [X: int,Y3: int,N: nat] :
( ( ( times_times_int @ X @ Y3 )
= ( times_times_int @ Y3 @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y3 )
= ( times_times_int @ Y3 @ ( power_power_int @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_702_power__mult__distrib,axiom,
! [A: complex,B: complex,N: nat] :
( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N )
= ( times_times_complex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_703_power__mult__distrib,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_704_power__mult__distrib,axiom,
! [A: rat,B: rat,N: nat] :
( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N )
= ( times_times_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_705_power__mult__distrib,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_706_power__mult__distrib,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
= ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_707_power__commutes,axiom,
! [A: complex,N: nat] :
( ( times_times_complex @ ( power_power_complex @ A @ N ) @ A )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).
% power_commutes
thf(fact_708_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_709_power__commutes,axiom,
! [A: rat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ A @ N ) @ A )
= ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).
% power_commutes
thf(fact_710_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_711_power__commutes,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_commutes
thf(fact_712_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_713_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_714_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_715_power__mult,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_716_power__mult,axiom,
! [A: complex,M: nat,N: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_complex @ ( power_power_complex @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_717_mult__le__mono2,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I4 ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_718_mult__le__mono1,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I4 @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_719_mult__le__mono,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I4 @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_720_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_721_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_722_mod__mult__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_723_mod__mult__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_724_mod__mult__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_725_mod__mult__cong,axiom,
! [A: nat,C: nat,A3: nat,B: nat,B3: nat] :
( ( ( modulo_modulo_nat @ A @ C )
= ( modulo_modulo_nat @ A3 @ C ) )
=> ( ( ( modulo_modulo_nat @ B @ C )
= ( modulo_modulo_nat @ B3 @ C ) )
=> ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_726_mod__mult__cong,axiom,
! [A: int,C: int,A3: int,B: int,B3: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A3 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B3 @ C ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_727_mod__mult__cong,axiom,
! [A: code_integer,C: code_integer,A3: code_integer,B: code_integer,B3: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A3 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B3 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A3 @ B3 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_728_mod__mult__mult2,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_729_mod__mult__mult2,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_730_mod__mult__mult2,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
= ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_731_mult__mod__right,axiom,
! [C: nat,A: nat,B: nat] :
( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
= ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_732_mult__mod__right,axiom,
! [C: int,A: int,B: int] :
( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
= ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_733_mult__mod__right,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_734_mod__mult__left__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_735_mod__mult__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_736_mod__mult__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_737_mod__mult__right__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_738_mod__mult__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_739_mod__mult__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_740_left__add__mult__distrib,axiom,
! [I4: nat,U2: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I4 @ J ) @ U2 ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_741_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_742_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_743_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_744_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_745_div__mult2__eq,axiom,
! [M: nat,N: nat,Q3: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q3 ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q3 ) ) ).
% div_mult2_eq
thf(fact_746_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_747_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_748_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_749_less__1__mult,axiom,
! [M: rat,N: rat] :
( ( ord_less_rat @ one_one_rat @ M )
=> ( ( ord_less_rat @ one_one_rat @ N )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_750_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_751_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_752_eq__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_753_eq__add__iff1,axiom,
! [A: rat,E: rat,C: rat,B: rat,D: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
= ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_754_eq__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_755_eq__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( C
= ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_756_eq__add__iff2,axiom,
! [A: rat,E: rat,C: rat,B: rat,D: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
= ( C
= ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_757_eq__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( C
= ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_758_square__diff__square__factored,axiom,
! [X: real,Y3: real] :
( ( minus_minus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y3 @ Y3 ) )
= ( times_times_real @ ( plus_plus_real @ X @ Y3 ) @ ( minus_minus_real @ X @ Y3 ) ) ) ).
% square_diff_square_factored
thf(fact_759_square__diff__square__factored,axiom,
! [X: rat,Y3: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y3 @ Y3 ) )
= ( times_times_rat @ ( plus_plus_rat @ X @ Y3 ) @ ( minus_minus_rat @ X @ Y3 ) ) ) ).
% square_diff_square_factored
thf(fact_760_square__diff__square__factored,axiom,
! [X: int,Y3: int] :
( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y3 @ Y3 ) )
= ( times_times_int @ ( plus_plus_int @ X @ Y3 ) @ ( minus_minus_int @ X @ Y3 ) ) ) ).
% square_diff_square_factored
thf(fact_761_mult__diff__mult,axiom,
! [X: real,Y3: real,A: real,B: real] :
( ( minus_minus_real @ ( times_times_real @ X @ Y3 ) @ ( times_times_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ X @ ( minus_minus_real @ Y3 @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_762_mult__diff__mult,axiom,
! [X: rat,Y3: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X @ Y3 ) @ ( times_times_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ X @ ( minus_minus_rat @ Y3 @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_763_mult__diff__mult,axiom,
! [X: int,Y3: int,A: int,B: int] :
( ( minus_minus_int @ ( times_times_int @ X @ Y3 ) @ ( times_times_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ X @ ( minus_minus_int @ Y3 @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_764_two__realpow__ge__one,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% two_realpow_ge_one
thf(fact_765_add__diff__assoc__enat,axiom,
! [Z4: extended_enat,Y3: extended_enat,X: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Z4 @ Y3 )
=> ( ( plus_p3455044024723400733d_enat @ X @ ( minus_3235023915231533773d_enat @ Y3 @ Z4 ) )
= ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y3 ) @ Z4 ) ) ) ).
% add_diff_assoc_enat
thf(fact_766_ordered__ring__class_Ole__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_767_ordered__ring__class_Ole__add__iff1,axiom,
! [A: rat,E: rat,C: rat,B: rat,D: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_768_ordered__ring__class_Ole__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_769_ordered__ring__class_Ole__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_770_ordered__ring__class_Ole__add__iff2,axiom,
! [A: rat,E: rat,C: rat,B: rat,D: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
= ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_771_ordered__ring__class_Ole__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_772_less__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_773_less__add__iff1,axiom,
! [A: rat,E: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
= ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_774_less__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_775_less__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).
% less_add_iff2
thf(fact_776_less__add__iff2,axiom,
! [A: rat,E: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
= ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).
% less_add_iff2
thf(fact_777_less__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% less_add_iff2
thf(fact_778_square__diff__one__factored,axiom,
! [X: complex] :
( ( minus_minus_complex @ ( times_times_complex @ X @ X ) @ one_one_complex )
= ( times_times_complex @ ( plus_plus_complex @ X @ one_one_complex ) @ ( minus_minus_complex @ X @ one_one_complex ) ) ) ).
% square_diff_one_factored
thf(fact_779_square__diff__one__factored,axiom,
! [X: real] :
( ( minus_minus_real @ ( times_times_real @ X @ X ) @ one_one_real )
= ( times_times_real @ ( plus_plus_real @ X @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).
% square_diff_one_factored
thf(fact_780_square__diff__one__factored,axiom,
! [X: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ one_one_rat )
= ( times_times_rat @ ( plus_plus_rat @ X @ one_one_rat ) @ ( minus_minus_rat @ X @ one_one_rat ) ) ) ).
% square_diff_one_factored
thf(fact_781_square__diff__one__factored,axiom,
! [X: int] :
( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
= ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).
% square_diff_one_factored
thf(fact_782_cancel__div__mod__rules_I2_J,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_783_cancel__div__mod__rules_I2_J,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_784_cancel__div__mod__rules_I2_J,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
= ( plus_p5714425477246183910nteger @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_785_cancel__div__mod__rules_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_786_cancel__div__mod__rules_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_787_cancel__div__mod__rules_I1_J,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
= ( plus_p5714425477246183910nteger @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_788_mod__div__decomp,axiom,
! [A: nat,B: nat] :
( A
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_789_mod__div__decomp,axiom,
! [A: int,B: int] :
( A
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_790_mod__div__decomp,axiom,
! [A: code_integer,B: code_integer] :
( A
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_791_div__mult__mod__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_792_div__mult__mod__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_793_div__mult__mod__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_794_mod__div__mult__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_795_mod__div__mult__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_796_mod__div__mult__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_797_mod__mult__div__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_798_mod__mult__div__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_799_mod__mult__div__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_800_mult__div__mod__eq,axiom,
! [B: nat,A: nat] :
( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_801_mult__div__mod__eq,axiom,
! [B: int,A: int] :
( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_802_mult__div__mod__eq,axiom,
! [B: code_integer,A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_803_mult__numeral__1,axiom,
! [A: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_804_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_805_mult__numeral__1,axiom,
! [A: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_806_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_807_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_808_mult__numeral__1__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_809_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_810_mult__numeral__1__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_811_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_812_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_813_minus__div__mult__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_814_minus__div__mult__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_815_minus__div__mult__eq__mod,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_816_minus__mod__eq__div__mult,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_817_minus__mod__eq__div__mult,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_818_minus__mod__eq__div__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_819_minus__mod__eq__mult__div,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_820_minus__mod__eq__mult__div,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_821_minus__mod__eq__mult__div,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_822_minus__mult__div__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_823_minus__mult__div__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_824_minus__mult__div__eq__mod,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_825_left__right__inverse__power,axiom,
! [X: complex,Y3: complex,N: nat] :
( ( ( times_times_complex @ X @ Y3 )
= one_one_complex )
=> ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y3 @ N ) )
= one_one_complex ) ) ).
% left_right_inverse_power
thf(fact_826_left__right__inverse__power,axiom,
! [X: real,Y3: real,N: nat] :
( ( ( times_times_real @ X @ Y3 )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y3 @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_827_left__right__inverse__power,axiom,
! [X: rat,Y3: rat,N: nat] :
( ( ( times_times_rat @ X @ Y3 )
= one_one_rat )
=> ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ Y3 @ N ) )
= one_one_rat ) ) ).
% left_right_inverse_power
thf(fact_828_left__right__inverse__power,axiom,
! [X: nat,Y3: nat,N: nat] :
( ( ( times_times_nat @ X @ Y3 )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y3 @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_829_left__right__inverse__power,axiom,
! [X: int,Y3: int,N: nat] :
( ( ( times_times_int @ X @ Y3 )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y3 @ N ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_830_power__Suc2,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ N ) )
= ( times_times_complex @ ( power_power_complex @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_831_power__Suc2,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_832_power__Suc2,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ ( power_power_rat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_833_power__Suc2,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_834_power__Suc2,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_835_power__Suc,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ N ) )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).
% power_Suc
thf(fact_836_power__Suc,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_Suc
thf(fact_837_power__Suc,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).
% power_Suc
thf(fact_838_power__Suc,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_Suc
thf(fact_839_power__Suc,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_Suc
thf(fact_840_mod__eqE,axiom,
! [A: int,C: int,B: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ B @ C ) )
=> ~ ! [D3: int] :
( B
!= ( plus_plus_int @ A @ ( times_times_int @ C @ D3 ) ) ) ) ).
% mod_eqE
thf(fact_841_mod__eqE,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ B @ C ) )
=> ~ ! [D3: code_integer] :
( B
!= ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D3 ) ) ) ) ).
% mod_eqE
thf(fact_842_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_843_power__add,axiom,
! [A: complex,M: nat,N: nat] :
( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).
% power_add
thf(fact_844_power__add,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% power_add
thf(fact_845_power__add,axiom,
! [A: rat,M: nat,N: nat] :
( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ).
% power_add
thf(fact_846_power__add,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% power_add
thf(fact_847_power__add,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% power_add
thf(fact_848_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_849_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_850_less__mult__imp__div__less,axiom,
! [M: nat,I4: nat,N: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I4 @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I4 ) ) ).
% less_mult_imp_div_less
thf(fact_851_times__div__less__eq__dividend,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_852_div__times__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).
% div_times_less_eq_dividend
thf(fact_853_power__odd__eq,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_854_power__odd__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_855_power__odd__eq,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_856_power__odd__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_857_power__odd__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_858_power__less__power__Suc,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_859_power__less__power__Suc,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_860_power__less__power__Suc,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_861_power__less__power__Suc,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_862_power__gt1__lemma,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_863_power__gt1__lemma,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_864_power__gt1__lemma,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_865_power__gt1__lemma,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_866_div__mult1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_867_div__mult1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_868_div__mult1__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_869_linorder__neqE__linordered__idom,axiom,
! [X: real,Y3: real] :
( ( X != Y3 )
=> ( ~ ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_870_linorder__neqE__linordered__idom,axiom,
! [X: rat,Y3: rat] :
( ( X != Y3 )
=> ( ~ ( ord_less_rat @ X @ Y3 )
=> ( ord_less_rat @ Y3 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_871_linorder__neqE__linordered__idom,axiom,
! [X: int,Y3: int] :
( ( X != Y3 )
=> ( ~ ( ord_less_int @ X @ Y3 )
=> ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_872_nat__diff__add__eq2,axiom,
! [I4: nat,J: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I4 ) @ U2 ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_873_nat__diff__add__eq1,axiom,
! [J: nat,I4: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I4 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I4 @ J ) @ U2 ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_874_nat__le__add__iff2,axiom,
! [I4: nat,J: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I4 ) @ U2 ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_875_nat__le__add__iff1,axiom,
! [J: nat,I4: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I4 )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I4 @ J ) @ U2 ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_876_nat__eq__add__iff2,axiom,
! [I4: nat,J: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I4 ) @ U2 ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_877_nat__eq__add__iff1,axiom,
! [J: nat,I4: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I4 )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I4 @ J ) @ U2 ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_878_mod__mult2__eq,axiom,
! [M: nat,N: nat,Q3: nat] :
( ( modulo_modulo_nat @ M @ ( times_times_nat @ N @ Q3 ) )
= ( plus_plus_nat @ ( times_times_nat @ N @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N ) @ Q3 ) ) @ ( modulo_modulo_nat @ M @ N ) ) ) ).
% mod_mult2_eq
thf(fact_879_modulo__nat__def,axiom,
( modulo_modulo_nat
= ( ^ [M6: nat,N2: nat] : ( minus_minus_nat @ M6 @ ( times_times_nat @ ( divide_divide_nat @ M6 @ N2 ) @ N2 ) ) ) ) ).
% modulo_nat_def
thf(fact_880_power__numeral__even,axiom,
! [Z4: complex,W: num] :
( ( power_power_complex @ Z4 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_complex @ ( power_power_complex @ Z4 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_881_power__numeral__even,axiom,
! [Z4: real,W: num] :
( ( power_power_real @ Z4 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_real @ ( power_power_real @ Z4 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_882_power__numeral__even,axiom,
! [Z4: rat,W: num] :
( ( power_power_rat @ Z4 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_rat @ ( power_power_rat @ Z4 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_rat @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_883_power__numeral__even,axiom,
! [Z4: nat,W: num] :
( ( power_power_nat @ Z4 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_nat @ ( power_power_nat @ Z4 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_884_power__numeral__even,axiom,
! [Z4: int,W: num] :
( ( power_power_int @ Z4 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_int @ ( power_power_int @ Z4 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_885_mult__2,axiom,
! [Z4: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z4 )
= ( plus_plus_complex @ Z4 @ Z4 ) ) ).
% mult_2
thf(fact_886_mult__2,axiom,
! [Z4: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z4 )
= ( plus_plus_real @ Z4 @ Z4 ) ) ).
% mult_2
thf(fact_887_mult__2,axiom,
! [Z4: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z4 )
= ( plus_plus_rat @ Z4 @ Z4 ) ) ).
% mult_2
thf(fact_888_mult__2,axiom,
! [Z4: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z4 )
= ( plus_plus_nat @ Z4 @ Z4 ) ) ).
% mult_2
thf(fact_889_mult__2,axiom,
! [Z4: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z4 )
= ( plus_plus_int @ Z4 @ Z4 ) ) ).
% mult_2
thf(fact_890_mult__2__right,axiom,
! [Z4: complex] :
( ( times_times_complex @ Z4 @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ Z4 @ Z4 ) ) ).
% mult_2_right
thf(fact_891_mult__2__right,axiom,
! [Z4: real] :
( ( times_times_real @ Z4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z4 @ Z4 ) ) ).
% mult_2_right
thf(fact_892_mult__2__right,axiom,
! [Z4: rat] :
( ( times_times_rat @ Z4 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ Z4 @ Z4 ) ) ).
% mult_2_right
thf(fact_893_mult__2__right,axiom,
! [Z4: nat] :
( ( times_times_nat @ Z4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z4 @ Z4 ) ) ).
% mult_2_right
thf(fact_894_mult__2__right,axiom,
! [Z4: int] :
( ( times_times_int @ Z4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z4 @ Z4 ) ) ).
% mult_2_right
thf(fact_895_left__add__twice,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_896_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_897_left__add__twice,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_898_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_899_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_900_power4__eq__xxxx,axiom,
! [X: complex] :
( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_901_power4__eq__xxxx,axiom,
! [X: real] :
( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_902_power4__eq__xxxx,axiom,
! [X: rat] :
( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_903_power4__eq__xxxx,axiom,
! [X: nat] :
( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_904_power4__eq__xxxx,axiom,
! [X: int] :
( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_905_power2__eq__square,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_complex @ A @ A ) ) ).
% power2_eq_square
thf(fact_906_power2__eq__square,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ A @ A ) ) ).
% power2_eq_square
thf(fact_907_power2__eq__square,axiom,
! [A: rat] :
( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_rat @ A @ A ) ) ).
% power2_eq_square
thf(fact_908_power2__eq__square,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ A @ A ) ) ).
% power2_eq_square
thf(fact_909_power2__eq__square,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_int @ A @ A ) ) ).
% power2_eq_square
thf(fact_910_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).
% Suc_nat_number_of_add
thf(fact_911_power__even__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_912_power__even__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_913_power__even__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_914_power__even__eq,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_915_div__nat__eqI,axiom,
! [N: nat,Q3: nat,M: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q3 ) @ M )
=> ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q3 ) ) )
=> ( ( divide_divide_nat @ M @ N )
= Q3 ) ) ) ).
% div_nat_eqI
thf(fact_916_nat__less__add__iff2,axiom,
! [I4: nat,J: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I4 ) @ U2 ) @ N ) ) ) ) ).
% nat_less_add_iff2
thf(fact_917_nat__less__add__iff1,axiom,
! [J: nat,I4: nat,U2: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I4 )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I4 @ U2 ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U2 ) @ N ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I4 @ J ) @ U2 ) @ M ) @ N ) ) ) ).
% nat_less_add_iff1
thf(fact_918_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_919_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_920_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_921_power2__sum,axiom,
! [X: complex,Y3: complex] :
( ( power_power_complex @ ( plus_plus_complex @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_922_power2__sum,axiom,
! [X: real,Y3: real] :
( ( power_power_real @ ( plus_plus_real @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_923_power2__sum,axiom,
! [X: rat,Y3: rat] :
( ( power_power_rat @ ( plus_plus_rat @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_924_power2__sum,axiom,
! [X: nat,Y3: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_925_power2__sum,axiom,
! [X: int,Y3: int] :
( ( power_power_int @ ( plus_plus_int @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_926_add__diff__add,axiom,
! [A: real,C: real,B: real,D: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
= ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).
% add_diff_add
thf(fact_927_add__diff__add,axiom,
! [A: rat,C: rat,B: rat,D: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) )
= ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D ) ) ) ).
% add_diff_add
thf(fact_928_add__diff__add,axiom,
! [A: int,C: int,B: int,D: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
= ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).
% add_diff_add
thf(fact_929_power2__diff,axiom,
! [X: complex,Y3: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_diff
thf(fact_930_power2__diff,axiom,
! [X: real,Y3: real] :
( ( power_power_real @ ( minus_minus_real @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_diff
thf(fact_931_power2__diff,axiom,
! [X: rat,Y3: rat] :
( ( power_power_rat @ ( minus_minus_rat @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_diff
thf(fact_932_power2__diff,axiom,
! [X: int,Y3: int] :
( ( power_power_int @ ( minus_minus_int @ X @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y3 ) ) ) ).
% power2_diff
thf(fact_933_add__le__add__imp__diff__le,axiom,
! [I4: real,K: real,N: real,J: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I4 @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I4 @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_934_add__le__add__imp__diff__le,axiom,
! [I4: rat,K: rat,N: rat,J: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I4 @ K ) @ N )
=> ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
=> ( ( ord_less_eq_rat @ ( plus_plus_rat @ I4 @ K ) @ N )
=> ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_935_add__le__add__imp__diff__le,axiom,
! [I4: nat,K: nat,N: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_936_add__le__add__imp__diff__le,axiom,
! [I4: int,K: int,N: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I4 @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I4 @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_937_add__le__imp__le__diff,axiom,
! [I4: real,K: real,N: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I4 @ K ) @ N )
=> ( ord_less_eq_real @ I4 @ ( minus_minus_real @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_938_add__le__imp__le__diff,axiom,
! [I4: rat,K: rat,N: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I4 @ K ) @ N )
=> ( ord_less_eq_rat @ I4 @ ( minus_minus_rat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_939_add__le__imp__le__diff,axiom,
! [I4: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ N )
=> ( ord_less_eq_nat @ I4 @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_940_add__le__imp__le__diff,axiom,
! [I4: int,K: int,N: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I4 @ K ) @ N )
=> ( ord_less_eq_int @ I4 @ ( minus_minus_int @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_941_less__add__one,axiom,
! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).
% less_add_one
thf(fact_942_less__add__one,axiom,
! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).
% less_add_one
thf(fact_943_less__add__one,axiom,
! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).
% less_add_one
thf(fact_944_less__add__one,axiom,
! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).
% less_add_one
thf(fact_945_add__mono1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).
% add_mono1
thf(fact_946_add__mono1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).
% add_mono1
thf(fact_947_add__mono1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).
% add_mono1
thf(fact_948_add__mono1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).
% add_mono1
thf(fact_949_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: real,B: real] :
( ~ ( ord_less_real @ A @ B )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_950_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: rat,B: rat] :
( ~ ( ord_less_rat @ A @ B )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_951_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ~ ( ord_less_nat @ A @ B )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_952_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: int,B: int] :
( ~ ( ord_less_int @ A @ B )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_953_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
! [Uy: option4927543243414619207at_nat,V: nat,TreeList: list_VEBT_VEBT,S2: vEBT_VEBT,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList @ S2 ) @ X )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).
% VEBT_internal.naive_member.simps(3)
thf(fact_954_field__sum__of__halves,axiom,
! [X: real] :
( ( plus_plus_real @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= X ) ).
% field_sum_of_halves
thf(fact_955_field__sum__of__halves,axiom,
! [X: rat] :
( ( plus_plus_rat @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= X ) ).
% field_sum_of_halves
thf(fact_956_mintlistlength,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( Mi != Ma )
=> ( ( ord_less_nat @ Mi @ Ma )
& ? [M5: nat] :
( ( ( some_nat @ M5 )
= ( vEBT_vebt_mint @ Summary ) )
& ( ord_less_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% mintlistlength
thf(fact_957_False,axiom,
~ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% False
thf(fact_958_misiz,axiom,
! [T: vEBT_VEBT,N: nat,M: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( some_nat @ M )
= ( vEBT_vebt_mint @ T ) )
=> ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% misiz
thf(fact_959_mul__shift,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ( times_times_nat @ X @ Y3 )
= Z4 )
= ( ( vEBT_VEBT_mul @ ( some_nat @ X ) @ ( some_nat @ Y3 ) )
= ( some_nat @ Z4 ) ) ) ).
% mul_shift
thf(fact_960_add__shift,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ( plus_plus_nat @ X @ Y3 )
= Z4 )
= ( ( vEBT_VEBT_add @ ( some_nat @ X ) @ ( some_nat @ Y3 ) )
= ( some_nat @ Z4 ) ) ) ).
% add_shift
thf(fact_961_mint__corr,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_mint @ T )
= ( some_nat @ X ) )
=> ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X ) ) ) ).
% mint_corr
thf(fact_962_mint__sound,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X )
=> ( ( vEBT_vebt_mint @ T )
= ( some_nat @ X ) ) ) ) ).
% mint_sound
thf(fact_963_maxt__corr,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_maxt @ T )
= ( some_nat @ X ) )
=> ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X ) ) ) ).
% maxt_corr
thf(fact_964_maxt__sound,axiom,
! [T: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X )
=> ( ( vEBT_vebt_maxt @ T )
= ( some_nat @ X ) ) ) ) ).
% maxt_sound
thf(fact_965_mint__corr__help,axiom,
! [T: vEBT_VEBT,N: nat,Mini: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_mint @ T )
= ( some_nat @ Mini ) )
=> ( ( vEBT_vebt_member @ T @ X )
=> ( ord_less_eq_nat @ Mini @ X ) ) ) ) ).
% mint_corr_help
thf(fact_966_sum__squares__bound,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y3 ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_967_sum__squares__bound,axiom,
! [X: rat,Y3: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y3 ) @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_968_less__shift,axiom,
( ord_less_nat
= ( ^ [X2: nat,Y2: nat] : ( vEBT_VEBT_less @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) ) ) ) ).
% less_shift
thf(fact_969_maxbmo,axiom,
! [T: vEBT_VEBT,X: nat] :
( ( ( vEBT_vebt_maxt @ T )
= ( some_nat @ X ) )
=> ( vEBT_V8194947554948674370ptions @ T @ X ) ) ).
% maxbmo
thf(fact_970_minNullmin,axiom,
! [T: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ T )
=> ( ( vEBT_vebt_mint @ T )
= none_nat ) ) ).
% minNullmin
thf(fact_971_minminNull,axiom,
! [T: vEBT_VEBT] :
( ( ( vEBT_vebt_mint @ T )
= none_nat )
=> ( vEBT_VEBT_minNull @ T ) ) ).
% minminNull
thf(fact_972_maxt__member,axiom,
! [T: vEBT_VEBT,N: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_maxt @ T )
= ( some_nat @ Maxi ) )
=> ( vEBT_vebt_member @ T @ Maxi ) ) ) ).
% maxt_member
thf(fact_973_mint__member,axiom,
! [T: vEBT_VEBT,N: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_mint @ T )
= ( some_nat @ Maxi ) )
=> ( vEBT_vebt_member @ T @ Maxi ) ) ) ).
% mint_member
thf(fact_974_maxt__corr__help,axiom,
! [T: vEBT_VEBT,N: nat,Maxi: nat,X: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_maxt @ T )
= ( some_nat @ Maxi ) )
=> ( ( vEBT_vebt_member @ T @ X )
=> ( ord_less_eq_nat @ X @ Maxi ) ) ) ) ).
% maxt_corr_help
thf(fact_975_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_976_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_977_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_978_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_979_power__mult__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_980_power__mult__numeral,axiom,
! [A: real,M: num,N: num] :
( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_981_power__mult__numeral,axiom,
! [A: int,M: num,N: num] :
( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_982_power__mult__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_983_i1,axiom,
( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
| ~ ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% i1
thf(fact_984_add__def,axiom,
( vEBT_VEBT_add
= ( vEBT_V4262088993061758097ft_nat @ plus_plus_nat ) ) ).
% add_def
thf(fact_985_mul__def,axiom,
( vEBT_VEBT_mul
= ( vEBT_V4262088993061758097ft_nat @ times_times_nat ) ) ).
% mul_def
thf(fact_986_local_Opower__def,axiom,
( vEBT_VEBT_power
= ( vEBT_V4262088993061758097ft_nat @ power_power_nat ) ) ).
% local.power_def
thf(fact_987_complete__real,axiom,
! [S3: set_real] :
( ? [X4: real] : ( member_real @ X4 @ S3 )
=> ( ? [Z5: real] :
! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ord_less_eq_real @ X5 @ Z5 ) )
=> ? [Y4: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S3 )
=> ( ord_less_eq_real @ X4 @ Y4 ) )
& ! [Z5: real] :
( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ord_less_eq_real @ X5 @ Z5 ) )
=> ( ord_less_eq_real @ Y4 @ Z5 ) ) ) ) ) ).
% complete_real
thf(fact_988_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y2: real] :
( ( ord_less_real @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% less_eq_real_def
thf(fact_989_real__arch__pow,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N3: nat] : ( ord_less_real @ Y3 @ ( power_power_real @ X @ N3 ) ) ) ).
% real_arch_pow
thf(fact_990_four__x__squared,axiom,
! [X: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_991_L2__set__mult__ineq__lemma,axiom,
! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% L2_set_mult_ineq_lemma
thf(fact_992_div__mult2__numeral__eq,axiom,
! [A: nat,K: num,L: num] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_993_div__mult2__numeral__eq,axiom,
! [A: int,K: num,L: num] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_994__C1_C,axiom,
( ( ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
= ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
& ( ~ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
=> ( ( ( ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
= none_nat ) )
& ( ( ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
!= none_nat )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
= ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ treeList @ ( the_nat @ ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% "1"
thf(fact_995__C2_C,axiom,
( ( ( ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
= none_nat ) )
& ( ( ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
!= none_nat )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
= ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ treeList @ ( the_nat @ ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% "2"
thf(fact_996_succ__less__length__list,axiom,
! [Deg: nat,Mi: nat,X: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ Mi @ X )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% succ_less_length_list
thf(fact_997_succ__greatereq__min,axiom,
! [Deg: nat,Mi: nat,X: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ Mi @ X )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ).
% succ_greatereq_min
thf(fact_998_nested__mint,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,Va: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( N
= ( suc @ ( suc @ Va ) ) )
=> ( ~ ( ord_less_nat @ Ma @ Mi )
=> ( ( Ma != Mi )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ).
% nested_mint
thf(fact_999_summaxma,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
=> ( ( Mi != Ma )
=> ( ( the_nat @ ( vEBT_vebt_maxt @ Summary ) )
= ( vEBT_VEBT_high @ Ma @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% summaxma
thf(fact_1000_real__average__minus__first,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_first
thf(fact_1001_real__average__minus__second,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_second
thf(fact_1002_vebt__succ_Osimps_I6_J,axiom,
! [X: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
= ( some_nat @ Mi ) ) )
& ( ~ ( ord_less_nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ).
% vebt_succ.simps(6)
thf(fact_1003_vebt__mint_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_vebt_mint @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= ( some_nat @ Mi ) ) ).
% vebt_mint.simps(3)
thf(fact_1004_real__divide__square__eq,axiom,
! [R2: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ R2 ) )
= ( divide_divide_real @ A @ R2 ) ) ).
% real_divide_square_eq
thf(fact_1005_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A: product_prod_nat_nat,B: product_prod_nat_nat] :
( ( vEBT_V1502963449132264192at_nat @ F @ ( some_P7363390416028606310at_nat @ A ) @ ( some_P7363390416028606310at_nat @ B ) )
= ( some_P7363390416028606310at_nat @ ( F @ A @ B ) ) ) ).
% VEBT_internal.option_shift.simps(3)
thf(fact_1006_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
! [F: num > num > num,A: num,B: num] :
( ( vEBT_V819420779217536731ft_num @ F @ ( some_num @ A ) @ ( some_num @ B ) )
= ( some_num @ ( F @ A @ B ) ) ) ).
% VEBT_internal.option_shift.simps(3)
thf(fact_1007_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
! [F: nat > nat > nat,A: nat,B: nat] :
( ( vEBT_V4262088993061758097ft_nat @ F @ ( some_nat @ A ) @ ( some_nat @ B ) )
= ( some_nat @ ( F @ A @ B ) ) ) ).
% VEBT_internal.option_shift.simps(3)
thf(fact_1008_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
! [Uu2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv: option4927543243414619207at_nat] :
( ( vEBT_V1502963449132264192at_nat @ Uu2 @ none_P5556105721700978146at_nat @ Uv )
= none_P5556105721700978146at_nat ) ).
% VEBT_internal.option_shift.simps(1)
thf(fact_1009_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
! [Uu2: num > num > num,Uv: option_num] :
( ( vEBT_V819420779217536731ft_num @ Uu2 @ none_num @ Uv )
= none_num ) ).
% VEBT_internal.option_shift.simps(1)
thf(fact_1010_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
! [Uu2: nat > nat > nat,Uv: option_nat] :
( ( vEBT_V4262088993061758097ft_nat @ Uu2 @ none_nat @ Uv )
= none_nat ) ).
% VEBT_internal.option_shift.simps(1)
thf(fact_1011_VEBT__internal_Ooption__shift_Oelims,axiom,
! [X: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa2: option4927543243414619207at_nat,Xb2: option4927543243414619207at_nat,Y3: option4927543243414619207at_nat] :
( ( ( vEBT_V1502963449132264192at_nat @ X @ Xa2 @ Xb2 )
= Y3 )
=> ( ( ( Xa2 = none_P5556105721700978146at_nat )
=> ( Y3 != none_P5556105721700978146at_nat ) )
=> ( ( ? [V2: product_prod_nat_nat] :
( Xa2
= ( some_P7363390416028606310at_nat @ V2 ) )
=> ( ( Xb2 = none_P5556105721700978146at_nat )
=> ( Y3 != none_P5556105721700978146at_nat ) ) )
=> ~ ! [A4: product_prod_nat_nat] :
( ( Xa2
= ( some_P7363390416028606310at_nat @ A4 ) )
=> ! [B4: product_prod_nat_nat] :
( ( Xb2
= ( some_P7363390416028606310at_nat @ B4 ) )
=> ( Y3
!= ( some_P7363390416028606310at_nat @ ( X @ A4 @ B4 ) ) ) ) ) ) ) ) ).
% VEBT_internal.option_shift.elims
thf(fact_1012_VEBT__internal_Ooption__shift_Oelims,axiom,
! [X: num > num > num,Xa2: option_num,Xb2: option_num,Y3: option_num] :
( ( ( vEBT_V819420779217536731ft_num @ X @ Xa2 @ Xb2 )
= Y3 )
=> ( ( ( Xa2 = none_num )
=> ( Y3 != none_num ) )
=> ( ( ? [V2: num] :
( Xa2
= ( some_num @ V2 ) )
=> ( ( Xb2 = none_num )
=> ( Y3 != none_num ) ) )
=> ~ ! [A4: num] :
( ( Xa2
= ( some_num @ A4 ) )
=> ! [B4: num] :
( ( Xb2
= ( some_num @ B4 ) )
=> ( Y3
!= ( some_num @ ( X @ A4 @ B4 ) ) ) ) ) ) ) ) ).
% VEBT_internal.option_shift.elims
thf(fact_1013_VEBT__internal_Ooption__shift_Oelims,axiom,
! [X: nat > nat > nat,Xa2: option_nat,Xb2: option_nat,Y3: option_nat] :
( ( ( vEBT_V4262088993061758097ft_nat @ X @ Xa2 @ Xb2 )
= Y3 )
=> ( ( ( Xa2 = none_nat )
=> ( Y3 != none_nat ) )
=> ( ( ? [V2: nat] :
( Xa2
= ( some_nat @ V2 ) )
=> ( ( Xb2 = none_nat )
=> ( Y3 != none_nat ) ) )
=> ~ ! [A4: nat] :
( ( Xa2
= ( some_nat @ A4 ) )
=> ! [B4: nat] :
( ( Xb2
= ( some_nat @ B4 ) )
=> ( Y3
!= ( some_nat @ ( X @ A4 @ B4 ) ) ) ) ) ) ) ) ).
% VEBT_internal.option_shift.elims
thf(fact_1014_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
! [Uw: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V: product_prod_nat_nat] :
( ( vEBT_V1502963449132264192at_nat @ Uw @ ( some_P7363390416028606310at_nat @ V ) @ none_P5556105721700978146at_nat )
= none_P5556105721700978146at_nat ) ).
% VEBT_internal.option_shift.simps(2)
thf(fact_1015_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
! [Uw: num > num > num,V: num] :
( ( vEBT_V819420779217536731ft_num @ Uw @ ( some_num @ V ) @ none_num )
= none_num ) ).
% VEBT_internal.option_shift.simps(2)
thf(fact_1016_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
! [Uw: nat > nat > nat,V: nat] :
( ( vEBT_V4262088993061758097ft_nat @ Uw @ ( some_nat @ V ) @ none_nat )
= none_nat ) ).
% VEBT_internal.option_shift.simps(2)
thf(fact_1017_mult__commute__abs,axiom,
! [C: real] :
( ( ^ [X2: real] : ( times_times_real @ X2 @ C ) )
= ( times_times_real @ C ) ) ).
% mult_commute_abs
thf(fact_1018_mult__commute__abs,axiom,
! [C: rat] :
( ( ^ [X2: rat] : ( times_times_rat @ X2 @ C ) )
= ( times_times_rat @ C ) ) ).
% mult_commute_abs
thf(fact_1019_mult__commute__abs,axiom,
! [C: nat] :
( ( ^ [X2: nat] : ( times_times_nat @ X2 @ C ) )
= ( times_times_nat @ C ) ) ).
% mult_commute_abs
thf(fact_1020_mult__commute__abs,axiom,
! [C: int] :
( ( ^ [X2: int] : ( times_times_int @ X2 @ C ) )
= ( times_times_int @ C ) ) ).
% mult_commute_abs
thf(fact_1021_vebt__maxt_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= ( some_nat @ Ma ) ) ).
% vebt_maxt.simps(3)
thf(fact_1022_option_Ocollapse,axiom,
! [Option: option4927543243414619207at_nat] :
( ( Option != none_P5556105721700978146at_nat )
=> ( ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) )
= Option ) ) ).
% option.collapse
thf(fact_1023_option_Ocollapse,axiom,
! [Option: option_nat] :
( ( Option != none_nat )
=> ( ( some_nat @ ( the_nat @ Option ) )
= Option ) ) ).
% option.collapse
thf(fact_1024_option_Ocollapse,axiom,
! [Option: option_num] :
( ( Option != none_num )
=> ( ( some_num @ ( the_num @ Option ) )
= Option ) ) ).
% option.collapse
thf(fact_1025_not__Some__eq,axiom,
! [X: option4927543243414619207at_nat] :
( ( ! [Y2: product_prod_nat_nat] :
( X
!= ( some_P7363390416028606310at_nat @ Y2 ) ) )
= ( X = none_P5556105721700978146at_nat ) ) ).
% not_Some_eq
thf(fact_1026_not__Some__eq,axiom,
! [X: option_nat] :
( ( ! [Y2: nat] :
( X
!= ( some_nat @ Y2 ) ) )
= ( X = none_nat ) ) ).
% not_Some_eq
thf(fact_1027_not__Some__eq,axiom,
! [X: option_num] :
( ( ! [Y2: num] :
( X
!= ( some_num @ Y2 ) ) )
= ( X = none_num ) ) ).
% not_Some_eq
thf(fact_1028_not__None__eq,axiom,
! [X: option4927543243414619207at_nat] :
( ( X != none_P5556105721700978146at_nat )
= ( ? [Y2: product_prod_nat_nat] :
( X
= ( some_P7363390416028606310at_nat @ Y2 ) ) ) ) ).
% not_None_eq
thf(fact_1029_not__None__eq,axiom,
! [X: option_nat] :
( ( X != none_nat )
= ( ? [Y2: nat] :
( X
= ( some_nat @ Y2 ) ) ) ) ).
% not_None_eq
thf(fact_1030_not__None__eq,axiom,
! [X: option_num] :
( ( X != none_num )
= ( ? [Y2: num] :
( X
= ( some_num @ Y2 ) ) ) ) ).
% not_None_eq
thf(fact_1031_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] :
( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_double_not_eq_double
thf(fact_1032_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% double_not_eq_Suc_double
thf(fact_1033_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1034_add__diff__cancel__right_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1035_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1036_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1037_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1038_add__diff__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1039_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1040_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1041_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1042_add__diff__cancel__left_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1043_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1044_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1045_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1046_add__diff__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1047_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1048_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1049_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1050_diff__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1051_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1052_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_1053_add__left__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_1054_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_1055_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_1056_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_1057_add__right__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_1058_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_1059_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_1060_option_Oinject,axiom,
! [X22: product_prod_nat_nat,Y22: product_prod_nat_nat] :
( ( ( some_P7363390416028606310at_nat @ X22 )
= ( some_P7363390416028606310at_nat @ Y22 ) )
= ( X22 = Y22 ) ) ).
% option.inject
thf(fact_1061_option_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( some_nat @ X22 )
= ( some_nat @ Y22 ) )
= ( X22 = Y22 ) ) ).
% option.inject
thf(fact_1062_option_Oinject,axiom,
! [X22: num,Y22: num] :
( ( ( some_num @ X22 )
= ( some_num @ Y22 ) )
= ( X22 = Y22 ) ) ).
% option.inject
thf(fact_1063_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_1064_add__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_1065_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_1066_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_1067_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_1068_add__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_1069_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_1070_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_1071_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1072_add__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1073_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1074_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1075_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1076_add__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1077_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1078_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1079_mult_Oright__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.right_neutral
thf(fact_1080_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_1081_mult_Oright__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.right_neutral
thf(fact_1082_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_1083_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_1084_mult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% mult_1
thf(fact_1085_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_1086_mult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% mult_1
thf(fact_1087_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_1088_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_1089_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1090_add__diff__cancel,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1091_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1092_vebt__member_Osimps_I2_J,axiom,
! [Uu2: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv @ Uw ) @ X ) ).
% vebt_member.simps(2)
thf(fact_1093_VEBT__internal_OminNull_Osimps_I4_J,axiom,
! [Uw: nat,Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw @ Ux @ Uy ) ) ).
% VEBT_internal.minNull.simps(4)
thf(fact_1094_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1095_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1096_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1097_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1098_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1099_mult_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1100_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1101_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1102_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A5: real,B5: real] : ( times_times_real @ B5 @ A5 ) ) ) ).
% mult.commute
thf(fact_1103_mult_Ocommute,axiom,
( times_times_rat
= ( ^ [A5: rat,B5: rat] : ( times_times_rat @ B5 @ A5 ) ) ) ).
% mult.commute
thf(fact_1104_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A5: nat,B5: nat] : ( times_times_nat @ B5 @ A5 ) ) ) ).
% mult.commute
thf(fact_1105_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A5: int,B5: int] : ( times_times_int @ B5 @ A5 ) ) ) ).
% mult.commute
thf(fact_1106_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1107_mult_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1108_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1109_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1110_one__reorient,axiom,
! [X: complex] :
( ( one_one_complex = X )
= ( X = one_one_complex ) ) ).
% one_reorient
thf(fact_1111_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_1112_one__reorient,axiom,
! [X: rat] :
( ( one_one_rat = X )
= ( X = one_one_rat ) ) ).
% one_reorient
thf(fact_1113_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_1114_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_1115_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_1116_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_1117_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_1118_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_1119_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( I4 = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I4 @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_1120_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( I4 = J )
& ( K = L ) )
=> ( ( plus_plus_rat @ I4 @ K )
= ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_1121_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( I4 = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I4 @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_1122_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( I4 = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I4 @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_1123_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_1124_group__cancel_Oadd1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( plus_plus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_1125_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_1126_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_1127_group__cancel_Oadd2,axiom,
! [B2: real,K: real,B: real,A: real] :
( ( B2
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B2 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_1128_group__cancel_Oadd2,axiom,
! [B2: rat,K: rat,B: rat,A: rat] :
( ( B2
= ( plus_plus_rat @ K @ B ) )
=> ( ( plus_plus_rat @ A @ B2 )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_1129_group__cancel_Oadd2,axiom,
! [B2: nat,K: nat,B: nat,A: nat] :
( ( B2
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B2 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_1130_group__cancel_Oadd2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B2 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_1131_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_1132_add_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% add.assoc
thf(fact_1133_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_1134_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_1135_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_1136_add_Oleft__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_1137_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_1138_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_1139_add_Oright__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_1140_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_1141_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A5: real,B5: real] : ( plus_plus_real @ B5 @ A5 ) ) ) ).
% add.commute
thf(fact_1142_add_Ocommute,axiom,
( plus_plus_rat
= ( ^ [A5: rat,B5: rat] : ( plus_plus_rat @ B5 @ A5 ) ) ) ).
% add.commute
thf(fact_1143_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A5: nat,B5: nat] : ( plus_plus_nat @ B5 @ A5 ) ) ) ).
% add.commute
thf(fact_1144_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A5: int,B5: int] : ( plus_plus_int @ B5 @ A5 ) ) ) ).
% add.commute
thf(fact_1145_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_1146_add_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_1147_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_1148_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_1149_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_1150_add__left__imp__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_1151_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_1152_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_1153_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_1154_add__right__imp__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_1155_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_1156_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_1157_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_1158_diff__eq__diff__eq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_1159_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_1160_diff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_1161_diff__right__commute,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_1162_diff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_1163_diff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_1164_vebt__succ_Osimps_I3_J,axiom,
! [Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,Va: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux @ Uy @ Uz ) @ Va )
= none_nat ) ).
% vebt_succ.simps(3)
thf(fact_1165_vebt__maxt_Osimps_I2_J,axiom,
! [Uu2: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_vebt_maxt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv @ Uw ) )
= none_nat ) ).
% vebt_maxt.simps(2)
thf(fact_1166_vebt__mint_Osimps_I2_J,axiom,
! [Uu2: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_vebt_mint @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv @ Uw ) )
= none_nat ) ).
% vebt_mint.simps(2)
thf(fact_1167_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I4 @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_1168_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I4 @ J )
& ( K = L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_1169_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I4 @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_1170_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I4 @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_1171_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( I4 = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_1172_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( I4 = J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_1173_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( I4 = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_1174_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( I4 = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_1175_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I4 @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_1176_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I4 @ J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_1177_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I4 @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_1178_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I4 @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_1179_add__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_mono
thf(fact_1180_add__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_1181_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_1182_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_1183_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_1184_add__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_1185_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_1186_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_1187_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C2: nat] :
( B
!= ( plus_plus_nat @ A @ C2 ) ) ) ).
% less_eqE
thf(fact_1188_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_1189_add__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_1190_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_1191_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_1192_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A5: nat,B5: nat] :
? [C3: nat] :
( B5
= ( plus_plus_nat @ A5 @ C3 ) ) ) ) ).
% le_iff_add
thf(fact_1193_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_1194_add__le__imp__le__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_1195_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_1196_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_1197_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_1198_add__le__imp__le__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_1199_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_1200_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_1201_diff__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_1202_diff__mono,axiom,
! [A: rat,B: rat,D: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ D @ C )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_1203_diff__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_1204_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_1205_diff__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_1206_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_1207_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_1208_diff__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_1209_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_1210_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_1211_diff__eq__diff__less__eq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( ord_less_eq_rat @ A @ B )
= ( ord_less_eq_rat @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_1212_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_1213_add__less__imp__less__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_1214_add__less__imp__less__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_1215_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_1216_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_1217_add__less__imp__less__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_1218_add__less__imp__less__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_1219_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_1220_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_1221_add__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_1222_add__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_1223_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_1224_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_1225_add__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_1226_add__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_1227_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_1228_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_1229_add__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_1230_add__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_1231_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_1232_add__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_1233_add__mono__thms__linordered__field_I1_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I4 @ J )
& ( K = L ) )
=> ( ord_less_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_1234_add__mono__thms__linordered__field_I1_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I4 @ J )
& ( K = L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_1235_add__mono__thms__linordered__field_I1_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I4 @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_1236_add__mono__thms__linordered__field_I1_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I4 @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_1237_add__mono__thms__linordered__field_I2_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( I4 = J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_1238_add__mono__thms__linordered__field_I2_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( I4 = J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_1239_add__mono__thms__linordered__field_I2_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( I4 = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_1240_add__mono__thms__linordered__field_I2_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( I4 = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_1241_add__mono__thms__linordered__field_I5_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I4 @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_1242_add__mono__thms__linordered__field_I5_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I4 @ J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_1243_add__mono__thms__linordered__field_I5_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I4 @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_1244_add__mono__thms__linordered__field_I5_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I4 @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_1245_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_1246_diff__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_1247_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_1248_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_1249_diff__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_1250_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_1251_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_1252_diff__eq__diff__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( ord_less_rat @ A @ B )
= ( ord_less_rat @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_1253_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_1254_diff__strict__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_1255_diff__strict__mono,axiom,
! [A: rat,B: rat,D: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ D @ C )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_1256_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_1257_comm__monoid__mult__class_Omult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1258_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1259_comm__monoid__mult__class_Omult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1260_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1261_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1262_mult_Ocomm__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.comm_neutral
thf(fact_1263_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_1264_mult_Ocomm__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.comm_neutral
thf(fact_1265_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_1266_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_1267_group__cancel_Osub1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( minus_minus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_1268_group__cancel_Osub1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( minus_minus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_1269_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_1270_diff__eq__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( minus_minus_real @ A @ B )
= C )
= ( A
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_1271_diff__eq__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( minus_minus_rat @ A @ B )
= C )
= ( A
= ( plus_plus_rat @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_1272_diff__eq__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( minus_minus_int @ A @ B )
= C )
= ( A
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_1273_eq__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( A
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_1274_eq__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( A
= ( minus_minus_rat @ C @ B ) )
= ( ( plus_plus_rat @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_1275_eq__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( A
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_1276_add__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_1277_add__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_1278_add__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_1279_diff__diff__eq2,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_1280_diff__diff__eq2,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_1281_diff__diff__eq2,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_1282_diff__add__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_1283_diff__add__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_1284_diff__add__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_1285_diff__add__eq__diff__diff__swap,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_1286_diff__add__eq__diff__diff__swap,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_1287_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_1288_add__implies__diff,axiom,
! [C: real,B: real,A: real] :
( ( ( plus_plus_real @ C @ B )
= A )
=> ( C
= ( minus_minus_real @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_1289_add__implies__diff,axiom,
! [C: rat,B: rat,A: rat] :
( ( ( plus_plus_rat @ C @ B )
= A )
=> ( C
= ( minus_minus_rat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_1290_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_1291_add__implies__diff,axiom,
! [C: int,B: int,A: int] :
( ( ( plus_plus_int @ C @ B )
= A )
=> ( C
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_1292_diff__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_1293_diff__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_1294_diff__diff__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_1295_diff__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_1296_option_Odistinct_I1_J,axiom,
! [X22: product_prod_nat_nat] :
( none_P5556105721700978146at_nat
!= ( some_P7363390416028606310at_nat @ X22 ) ) ).
% option.distinct(1)
thf(fact_1297_option_Odistinct_I1_J,axiom,
! [X22: nat] :
( none_nat
!= ( some_nat @ X22 ) ) ).
% option.distinct(1)
thf(fact_1298_option_Odistinct_I1_J,axiom,
! [X22: num] :
( none_num
!= ( some_num @ X22 ) ) ).
% option.distinct(1)
thf(fact_1299_option_OdiscI,axiom,
! [Option: option4927543243414619207at_nat,X22: product_prod_nat_nat] :
( ( Option
= ( some_P7363390416028606310at_nat @ X22 ) )
=> ( Option != none_P5556105721700978146at_nat ) ) ).
% option.discI
thf(fact_1300_option_OdiscI,axiom,
! [Option: option_nat,X22: nat] :
( ( Option
= ( some_nat @ X22 ) )
=> ( Option != none_nat ) ) ).
% option.discI
thf(fact_1301_option_OdiscI,axiom,
! [Option: option_num,X22: num] :
( ( Option
= ( some_num @ X22 ) )
=> ( Option != none_num ) ) ).
% option.discI
thf(fact_1302_option_Oexhaust,axiom,
! [Y3: option4927543243414619207at_nat] :
( ( Y3 != none_P5556105721700978146at_nat )
=> ~ ! [X23: product_prod_nat_nat] :
( Y3
!= ( some_P7363390416028606310at_nat @ X23 ) ) ) ).
% option.exhaust
thf(fact_1303_option_Oexhaust,axiom,
! [Y3: option_nat] :
( ( Y3 != none_nat )
=> ~ ! [X23: nat] :
( Y3
!= ( some_nat @ X23 ) ) ) ).
% option.exhaust
thf(fact_1304_option_Oexhaust,axiom,
! [Y3: option_num] :
( ( Y3 != none_num )
=> ~ ! [X23: num] :
( Y3
!= ( some_num @ X23 ) ) ) ).
% option.exhaust
thf(fact_1305_split__option__ex,axiom,
( ( ^ [P3: option4927543243414619207at_nat > $o] :
? [X6: option4927543243414619207at_nat] : ( P3 @ X6 ) )
= ( ^ [P4: option4927543243414619207at_nat > $o] :
( ( P4 @ none_P5556105721700978146at_nat )
| ? [X2: product_prod_nat_nat] : ( P4 @ ( some_P7363390416028606310at_nat @ X2 ) ) ) ) ) ).
% split_option_ex
thf(fact_1306_split__option__ex,axiom,
( ( ^ [P3: option_nat > $o] :
? [X6: option_nat] : ( P3 @ X6 ) )
= ( ^ [P4: option_nat > $o] :
( ( P4 @ none_nat )
| ? [X2: nat] : ( P4 @ ( some_nat @ X2 ) ) ) ) ) ).
% split_option_ex
thf(fact_1307_split__option__ex,axiom,
( ( ^ [P3: option_num > $o] :
? [X6: option_num] : ( P3 @ X6 ) )
= ( ^ [P4: option_num > $o] :
( ( P4 @ none_num )
| ? [X2: num] : ( P4 @ ( some_num @ X2 ) ) ) ) ) ).
% split_option_ex
thf(fact_1308_split__option__all,axiom,
( ( ^ [P3: option4927543243414619207at_nat > $o] :
! [X6: option4927543243414619207at_nat] : ( P3 @ X6 ) )
= ( ^ [P4: option4927543243414619207at_nat > $o] :
( ( P4 @ none_P5556105721700978146at_nat )
& ! [X2: product_prod_nat_nat] : ( P4 @ ( some_P7363390416028606310at_nat @ X2 ) ) ) ) ) ).
% split_option_all
thf(fact_1309_split__option__all,axiom,
( ( ^ [P3: option_nat > $o] :
! [X6: option_nat] : ( P3 @ X6 ) )
= ( ^ [P4: option_nat > $o] :
( ( P4 @ none_nat )
& ! [X2: nat] : ( P4 @ ( some_nat @ X2 ) ) ) ) ) ).
% split_option_all
thf(fact_1310_split__option__all,axiom,
( ( ^ [P3: option_num > $o] :
! [X6: option_num] : ( P3 @ X6 ) )
= ( ^ [P4: option_num > $o] :
( ( P4 @ none_num )
& ! [X2: num] : ( P4 @ ( some_num @ X2 ) ) ) ) ) ).
% split_option_all
thf(fact_1311_combine__options__cases,axiom,
! [X: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option4927543243414619207at_nat > $o,Y3: option4927543243414619207at_nat] :
( ( ( X = none_P5556105721700978146at_nat )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_P5556105721700978146at_nat )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: product_prod_nat_nat,B4: product_prod_nat_nat] :
( ( X
= ( some_P7363390416028606310at_nat @ A4 ) )
=> ( ( Y3
= ( some_P7363390416028606310at_nat @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1312_combine__options__cases,axiom,
! [X: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_nat > $o,Y3: option_nat] :
( ( ( X = none_P5556105721700978146at_nat )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_nat )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: product_prod_nat_nat,B4: nat] :
( ( X
= ( some_P7363390416028606310at_nat @ A4 ) )
=> ( ( Y3
= ( some_nat @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1313_combine__options__cases,axiom,
! [X: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_num > $o,Y3: option_num] :
( ( ( X = none_P5556105721700978146at_nat )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_num )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: product_prod_nat_nat,B4: num] :
( ( X
= ( some_P7363390416028606310at_nat @ A4 ) )
=> ( ( Y3
= ( some_num @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1314_combine__options__cases,axiom,
! [X: option_nat,P: option_nat > option4927543243414619207at_nat > $o,Y3: option4927543243414619207at_nat] :
( ( ( X = none_nat )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_P5556105721700978146at_nat )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: nat,B4: product_prod_nat_nat] :
( ( X
= ( some_nat @ A4 ) )
=> ( ( Y3
= ( some_P7363390416028606310at_nat @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1315_combine__options__cases,axiom,
! [X: option_nat,P: option_nat > option_nat > $o,Y3: option_nat] :
( ( ( X = none_nat )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_nat )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: nat,B4: nat] :
( ( X
= ( some_nat @ A4 ) )
=> ( ( Y3
= ( some_nat @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1316_combine__options__cases,axiom,
! [X: option_nat,P: option_nat > option_num > $o,Y3: option_num] :
( ( ( X = none_nat )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_num )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: nat,B4: num] :
( ( X
= ( some_nat @ A4 ) )
=> ( ( Y3
= ( some_num @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1317_combine__options__cases,axiom,
! [X: option_num,P: option_num > option4927543243414619207at_nat > $o,Y3: option4927543243414619207at_nat] :
( ( ( X = none_num )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_P5556105721700978146at_nat )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: num,B4: product_prod_nat_nat] :
( ( X
= ( some_num @ A4 ) )
=> ( ( Y3
= ( some_P7363390416028606310at_nat @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1318_combine__options__cases,axiom,
! [X: option_num,P: option_num > option_nat > $o,Y3: option_nat] :
( ( ( X = none_num )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_nat )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: num,B4: nat] :
( ( X
= ( some_num @ A4 ) )
=> ( ( Y3
= ( some_nat @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1319_combine__options__cases,axiom,
! [X: option_num,P: option_num > option_num > $o,Y3: option_num] :
( ( ( X = none_num )
=> ( P @ X @ Y3 ) )
=> ( ( ( Y3 = none_num )
=> ( P @ X @ Y3 ) )
=> ( ! [A4: num,B4: num] :
( ( X
= ( some_num @ A4 ) )
=> ( ( Y3
= ( some_num @ B4 ) )
=> ( P @ X @ Y3 ) ) )
=> ( P @ X @ Y3 ) ) ) ) ).
% combine_options_cases
thf(fact_1320_option_Osel,axiom,
! [X22: product_prod_nat_nat] :
( ( the_Pr8591224930841456533at_nat @ ( some_P7363390416028606310at_nat @ X22 ) )
= X22 ) ).
% option.sel
thf(fact_1321_option_Osel,axiom,
! [X22: nat] :
( ( the_nat @ ( some_nat @ X22 ) )
= X22 ) ).
% option.sel
thf(fact_1322_option_Osel,axiom,
! [X22: num] :
( ( the_num @ ( some_num @ X22 ) )
= X22 ) ).
% option.sel
thf(fact_1323_option_Oexpand,axiom,
! [Option: option_nat,Option2: option_nat] :
( ( ( Option = none_nat )
= ( Option2 = none_nat ) )
=> ( ( ( Option != none_nat )
=> ( ( Option2 != none_nat )
=> ( ( the_nat @ Option )
= ( the_nat @ Option2 ) ) ) )
=> ( Option = Option2 ) ) ) ).
% option.expand
thf(fact_1324_option_Oexpand,axiom,
! [Option: option4927543243414619207at_nat,Option2: option4927543243414619207at_nat] :
( ( ( Option = none_P5556105721700978146at_nat )
= ( Option2 = none_P5556105721700978146at_nat ) )
=> ( ( ( Option != none_P5556105721700978146at_nat )
=> ( ( Option2 != none_P5556105721700978146at_nat )
=> ( ( the_Pr8591224930841456533at_nat @ Option )
= ( the_Pr8591224930841456533at_nat @ Option2 ) ) ) )
=> ( Option = Option2 ) ) ) ).
% option.expand
thf(fact_1325_option_Oexpand,axiom,
! [Option: option_num,Option2: option_num] :
( ( ( Option = none_num )
= ( Option2 = none_num ) )
=> ( ( ( Option != none_num )
=> ( ( Option2 != none_num )
=> ( ( the_num @ Option )
= ( the_num @ Option2 ) ) ) )
=> ( Option = Option2 ) ) ) ).
% option.expand
thf(fact_1326_add__mono__thms__linordered__field_I4_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I4 @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_1327_add__mono__thms__linordered__field_I4_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I4 @ J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_1328_add__mono__thms__linordered__field_I4_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I4 @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_1329_add__mono__thms__linordered__field_I4_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I4 @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_1330_add__mono__thms__linordered__field_I3_J,axiom,
! [I4: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I4 @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I4 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_1331_add__mono__thms__linordered__field_I3_J,axiom,
! [I4: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I4 @ J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I4 @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_1332_add__mono__thms__linordered__field_I3_J,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I4 @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I4 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_1333_add__mono__thms__linordered__field_I3_J,axiom,
! [I4: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I4 @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I4 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_1334_add__le__less__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_1335_add__le__less__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_1336_add__le__less__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_1337_add__le__less__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_1338_add__less__le__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_1339_add__less__le__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_1340_add__less__le__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_1341_add__less__le__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_1342_diff__le__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_1343_diff__le__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_1344_diff__le__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_1345_le__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_1346_le__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_1347_le__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_1348_diff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% diff_add
thf(fact_1349_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_1350_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_1351_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_1352_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_1353_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_1354_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_1355_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_1356_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_1357_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_1358_less__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_1359_less__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_1360_less__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_1361_diff__less__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_1362_diff__less__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_1363_diff__less__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_1364_invar__vebt_Ointros_I2_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
=> ( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(2)
thf(fact_1365_option_Oexhaust__sel,axiom,
! [Option: option4927543243414619207at_nat] :
( ( Option != none_P5556105721700978146at_nat )
=> ( Option
= ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) ) ) ) ).
% option.exhaust_sel
thf(fact_1366_option_Oexhaust__sel,axiom,
! [Option: option_nat] :
( ( Option != none_nat )
=> ( Option
= ( some_nat @ ( the_nat @ Option ) ) ) ) ).
% option.exhaust_sel
thf(fact_1367_option_Oexhaust__sel,axiom,
! [Option: option_num] :
( ( Option != none_num )
=> ( Option
= ( some_num @ ( the_num @ Option ) ) ) ) ).
% option.exhaust_sel
thf(fact_1368_invar__vebt_Ointros_I3_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
=> ( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(3)
thf(fact_1369_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
! [V: nat,TreeList: list_VEBT_VEBT,Vd: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList @ Vd ) @ X )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).
% VEBT_internal.membermima.simps(5)
thf(fact_1370_vebt__insert_Osimps_I4_J,axiom,
! [V: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X @ X ) ) @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) ) ).
% vebt_insert.simps(4)
thf(fact_1371_times__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_1372_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_1373_times__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_1374_divide__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_1375_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_1376_divide__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_1377_divide__divide__eq__left,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_1378_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_1379_divide__divide__eq__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_1380_times__divide__eq__left,axiom,
! [B: complex,C: complex,A: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
= ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_1381_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_1382_times__divide__eq__left,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_1383_zmod__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).
% zmod_numeral_Bit0
thf(fact_1384_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(2)
thf(fact_1385_divmod__step__eq,axiom,
! [L: num,R2: nat,Q3: nat] :
( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
=> ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q3 @ R2 ) )
= ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q3 ) @ one_one_nat ) @ ( minus_minus_nat @ R2 @ ( numeral_numeral_nat @ L ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
=> ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q3 @ R2 ) )
= ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q3 ) @ R2 ) ) ) ) ).
% divmod_step_eq
thf(fact_1386_divmod__step__eq,axiom,
! [L: num,R2: int,Q3: int] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
=> ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q3 @ R2 ) )
= ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q3 ) @ one_one_int ) @ ( minus_minus_int @ R2 @ ( numeral_numeral_int @ L ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
=> ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q3 @ R2 ) )
= ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q3 ) @ R2 ) ) ) ) ).
% divmod_step_eq
thf(fact_1387_divmod__step__eq,axiom,
! [L: num,R2: code_integer,Q3: code_integer] :
( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
=> ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q3 @ R2 ) )
= ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q3 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R2 @ ( numera6620942414471956472nteger @ L ) ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
=> ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q3 @ R2 ) )
= ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q3 ) @ R2 ) ) ) ) ).
% divmod_step_eq
thf(fact_1388_mint__corr__help__empty,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_mint @ T )
= none_nat )
=> ( ( vEBT_VEBT_set_vebt @ T )
= bot_bot_set_nat ) ) ) ).
% mint_corr_help_empty
thf(fact_1389_maxt__corr__help__empty,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( ( vEBT_vebt_maxt @ T )
= none_nat )
=> ( ( vEBT_VEBT_set_vebt @ T )
= bot_bot_set_nat ) ) ) ).
% maxt_corr_help_empty
thf(fact_1390_valid__tree__deg__neq__0,axiom,
! [T: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).
% valid_tree_deg_neq_0
thf(fact_1391_valid__0__not,axiom,
! [T: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).
% valid_0_not
thf(fact_1392_deg__not__0,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% deg_not_0
thf(fact_1393_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_1394_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_1395_mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1396_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1397_mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1398_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1399_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1400_mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1401_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1402_mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1403_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1404_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1405_mult__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% mult_eq_0_iff
thf(fact_1406_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_1407_mult__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% mult_eq_0_iff
thf(fact_1408_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_1409_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_1410_mult__zero__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% mult_zero_right
thf(fact_1411_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_1412_mult__zero__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% mult_zero_right
thf(fact_1413_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_1414_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_1415_mult__zero__left,axiom,
! [A: complex] :
( ( times_times_complex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% mult_zero_left
thf(fact_1416_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_1417_mult__zero__left,axiom,
! [A: rat] :
( ( times_times_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% mult_zero_left
thf(fact_1418_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_1419_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_1420_add__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add_0
thf(fact_1421_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_1422_add__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add_0
thf(fact_1423_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_1424_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_1425_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y3: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y3 ) )
= ( ( X = zero_zero_nat )
& ( Y3 = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_1426_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y3: nat] :
( ( ( plus_plus_nat @ X @ Y3 )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y3 = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_1427_add__cancel__right__right,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ A @ B ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_right
thf(fact_1428_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_1429_add__cancel__right__right,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ A @ B ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_right
thf(fact_1430_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_1431_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_1432_add__cancel__right__left,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ B @ A ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_left
thf(fact_1433_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_1434_add__cancel__right__left,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ B @ A ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_left
thf(fact_1435_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_1436_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_1437_add__cancel__left__right,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_right
thf(fact_1438_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_1439_add__cancel__left__right,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_right
thf(fact_1440_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_1441_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_1442_add__cancel__left__left,axiom,
! [B: complex,A: complex] :
( ( ( plus_plus_complex @ B @ A )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_left
thf(fact_1443_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_1444_add__cancel__left__left,axiom,
! [B: rat,A: rat] :
( ( ( plus_plus_rat @ B @ A )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_left
thf(fact_1445_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_1446_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_1447_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_1448_double__zero__sym,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( plus_plus_rat @ A @ A ) )
= ( A = zero_zero_rat ) ) ).
% double_zero_sym
thf(fact_1449_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_1450_add_Oright__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.right_neutral
thf(fact_1451_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_1452_add_Oright__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.right_neutral
thf(fact_1453_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_1454_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_1455_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1456_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1457_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1458_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1459_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1460_diff__zero,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_zero
thf(fact_1461_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_1462_diff__zero,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_zero
thf(fact_1463_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_1464_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_1465_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_1466_diff__0__right,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_0_right
thf(fact_1467_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_1468_diff__0__right,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_0_right
thf(fact_1469_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_1470_diff__self,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% diff_self
thf(fact_1471_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_1472_diff__self,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% diff_self
thf(fact_1473_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_1474_divide__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divide_eq_0_iff
thf(fact_1475_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_1476_divide__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_eq_0_iff
thf(fact_1477_divide__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ C @ A )
= ( divide1717551699836669952omplex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_1478_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_1479_divide__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( divide_divide_rat @ C @ A )
= ( divide_divide_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_1480_divide__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_1481_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_1482_divide__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_1483_division__ring__divide__zero,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% division_ring_divide_zero
thf(fact_1484_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_1485_division__ring__divide__zero,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% division_ring_divide_zero
thf(fact_1486_div__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% div_0
thf(fact_1487_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_1488_div__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% div_0
thf(fact_1489_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_1490_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_1491_div__by__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% div_by_0
thf(fact_1492_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_1493_div__by__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% div_by_0
thf(fact_1494_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_1495_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_1496_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_1497_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_1498_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_1499_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_1500_bits__mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_mod_0
thf(fact_1501_bits__mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_mod_0
thf(fact_1502_bits__mod__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
= zero_z3403309356797280102nteger ) ).
% bits_mod_0
thf(fact_1503_mod__self,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ A )
= zero_zero_nat ) ).
% mod_self
thf(fact_1504_mod__self,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ A )
= zero_zero_int ) ).
% mod_self
thf(fact_1505_mod__self,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ A )
= zero_z3403309356797280102nteger ) ).
% mod_self
thf(fact_1506_mod__by__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ zero_zero_nat )
= A ) ).
% mod_by_0
thf(fact_1507_mod__by__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ zero_zero_int )
= A ) ).
% mod_by_0
thf(fact_1508_mod__by__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
= A ) ).
% mod_by_0
thf(fact_1509_mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mod_0
thf(fact_1510_mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mod_0
thf(fact_1511_mod__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
= zero_z3403309356797280102nteger ) ).
% mod_0
thf(fact_1512_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_1513_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_1514_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_1515_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_1516_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_1517_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_1518_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1519_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1520_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_1521_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_1522_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_1523_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_1524_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_1525_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_1526_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_1527_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_1528_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_1529_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_1530_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_1531_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_1532_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_1533_le__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel2
thf(fact_1534_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_1535_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_1536_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_1537_le__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel1
thf(fact_1538_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_1539_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_1540_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_1541_add__le__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel2
thf(fact_1542_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_1543_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_1544_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_1545_add__le__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel1
thf(fact_1546_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_1547_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_1548_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1549_diff__ge__0__iff__ge,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1550_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1551_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_1552_add__less__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel1
thf(fact_1553_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_1554_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_1555_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_1556_add__less__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel2
thf(fact_1557_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_1558_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_1559_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_1560_less__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel1
thf(fact_1561_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_1562_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_1563_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_1564_less__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel2
thf(fact_1565_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_1566_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_1567_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1568_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1569_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1570_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1571_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1572_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1573_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1574_diff__gt__0__iff__gt,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_rat @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1575_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1576_mult__cancel__left1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_left1
thf(fact_1577_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_1578_mult__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_left1
thf(fact_1579_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_1580_mult__cancel__left2,axiom,
! [C: complex,A: complex] :
( ( ( times_times_complex @ C @ A )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_left2
thf(fact_1581_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_1582_mult__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ( times_times_rat @ C @ A )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_left2
thf(fact_1583_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_1584_mult__cancel__right1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_right1
thf(fact_1585_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_1586_mult__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_right1
thf(fact_1587_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_1588_mult__cancel__right2,axiom,
! [A: complex,C: complex] :
( ( ( times_times_complex @ A @ C )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_right2
thf(fact_1589_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_1590_mult__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ( times_times_rat @ A @ C )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_right2
thf(fact_1591_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_1592_sum__squares__eq__zero__iff,axiom,
! [X: real,Y3: real] :
( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y3 @ Y3 ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1593_sum__squares__eq__zero__iff,axiom,
! [X: rat,Y3: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y3 @ Y3 ) )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y3 = zero_zero_rat ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1594_sum__squares__eq__zero__iff,axiom,
! [X: int,Y3: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y3 @ Y3 ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1595_mult__divide__mult__cancel__left__if,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( C = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= zero_zero_complex ) )
& ( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1596_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1597_mult__divide__mult__cancel__left__if,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( C = zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= zero_zero_rat ) )
& ( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1598_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1599_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1600_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1601_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1602_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1603_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1604_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1605_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1606_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1607_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1608_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1609_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1610_nonzero__mult__div__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1611_nonzero__mult__div__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1612_nonzero__mult__div__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1613_nonzero__mult__div__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1614_nonzero__mult__div__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1615_nonzero__mult__div__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1616_nonzero__mult__div__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1617_nonzero__mult__div__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1618_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1619_nonzero__mult__div__cancel__right,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1620_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_1621_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_1622_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_1623_div__mult__mult2,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_1624_div__mult__mult1,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_1625_div__mult__mult1,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_1626_diff__numeral__special_I9_J,axiom,
( ( minus_minus_complex @ one_one_complex @ one_one_complex )
= zero_zero_complex ) ).
% diff_numeral_special(9)
thf(fact_1627_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_1628_diff__numeral__special_I9_J,axiom,
( ( minus_minus_rat @ one_one_rat @ one_one_rat )
= zero_zero_rat ) ).
% diff_numeral_special(9)
thf(fact_1629_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_1630_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_1631_divide__eq__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_1632_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_1633_divide__eq__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_1634_one__eq__divide__iff,axiom,
! [A: complex,B: complex] :
( ( one_one_complex
= ( divide1717551699836669952omplex @ A @ B ) )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_1635_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_1636_one__eq__divide__iff,axiom,
! [A: rat,B: rat] :
( ( one_one_rat
= ( divide_divide_rat @ A @ B ) )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_1637_divide__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% divide_self
thf(fact_1638_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_1639_divide__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% divide_self
thf(fact_1640_divide__self__if,axiom,
! [A: complex] :
( ( ( A = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= zero_zero_complex ) )
& ( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ) ).
% divide_self_if
thf(fact_1641_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_1642_divide__self__if,axiom,
! [A: rat] :
( ( ( A = zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= zero_zero_rat ) )
& ( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ) ).
% divide_self_if
thf(fact_1643_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_1644_divide__eq__eq__1,axiom,
! [B: rat,A: rat] :
( ( ( divide_divide_rat @ B @ A )
= one_one_rat )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_1645_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_1646_eq__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( one_one_rat
= ( divide_divide_rat @ B @ A ) )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_1647_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_1648_one__divide__eq__0__iff,axiom,
! [A: rat] :
( ( ( divide_divide_rat @ one_one_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% one_divide_eq_0_iff
thf(fact_1649_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_1650_zero__eq__1__divide__iff,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( divide_divide_rat @ one_one_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% zero_eq_1_divide_iff
thf(fact_1651_div__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% div_self
thf(fact_1652_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_1653_div__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% div_self
thf(fact_1654_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_1655_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_1656_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_rat @ zero_zero_rat @ ( suc @ N ) )
= zero_zero_rat ) ).
% power_0_Suc
thf(fact_1657_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_1658_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_1659_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_1660_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_complex @ zero_zero_complex @ ( suc @ N ) )
= zero_zero_complex ) ).
% power_0_Suc
thf(fact_1661_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
= zero_zero_rat ) ).
% power_zero_numeral
thf(fact_1662_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_1663_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_1664_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_1665_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
= zero_zero_complex ) ).
% power_zero_numeral
thf(fact_1666_mod__mult__self1__is__0,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
= zero_zero_nat ) ).
% mod_mult_self1_is_0
thf(fact_1667_mod__mult__self1__is__0,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
= zero_zero_int ) ).
% mod_mult_self1_is_0
thf(fact_1668_mod__mult__self1__is__0,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_mult_self1_is_0
thf(fact_1669_mod__mult__self2__is__0,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_mult_self2_is_0
thf(fact_1670_mod__mult__self2__is__0,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_mult_self2_is_0
thf(fact_1671_mod__mult__self2__is__0,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_mult_self2_is_0
thf(fact_1672_bits__mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% bits_mod_by_1
thf(fact_1673_bits__mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% bits_mod_by_1
thf(fact_1674_bits__mod__by__1,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% bits_mod_by_1
thf(fact_1675_mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% mod_by_1
thf(fact_1676_mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% mod_by_1
thf(fact_1677_mod__by__1,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% mod_by_1
thf(fact_1678_bits__mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% bits_mod_div_trivial
thf(fact_1679_bits__mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% bits_mod_div_trivial
thf(fact_1680_bits__mod__div__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% bits_mod_div_trivial
thf(fact_1681_mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_div_trivial
thf(fact_1682_mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_div_trivial
thf(fact_1683_mod__div__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_div_trivial
thf(fact_1684_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1685_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1686_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1687_power__Suc0__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1688_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_1689_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_1690_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1691_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_1692_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_1693_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_1694_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
= M ) ).
% div_by_Suc_0
thf(fact_1695_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_1696_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_1697_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_1698_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_1699_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_1700_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_1701_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_1702_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power_nat @ X @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_1703_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_1704_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1705_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_1706_mod__by__Suc__0,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% mod_by_Suc_0
thf(fact_1707_zero__le__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_1708_zero__le__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_1709_divide__le__0__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% divide_le_0_1_iff
thf(fact_1710_divide__le__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% divide_le_0_1_iff
thf(fact_1711_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_1712_divide__less__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% divide_less_0_1_iff
thf(fact_1713_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_1714_divide__less__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_1715_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_1716_divide__less__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_1717_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_1718_less__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_1719_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_1720_less__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_1721_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_1722_zero__less__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_1723_divide__eq__eq__numeral1_I1_J,axiom,
! [B: complex,W: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
= A )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_1724_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_1725_divide__eq__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
= A )
= ( ( ( ( numeral_numeral_rat @ W )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
& ( ( ( numeral_numeral_rat @ W )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_1726_eq__divide__eq__numeral1_I1_J,axiom,
! [A: complex,B: complex,W: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
= B ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_1727_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_1728_eq__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( A
= ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ( numeral_numeral_rat @ W )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
= B ) )
& ( ( ( numeral_numeral_rat @ W )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_1729_nonzero__divide__mult__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1730_nonzero__divide__mult__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1731_nonzero__divide__mult__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1732_nonzero__divide__mult__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1733_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1734_nonzero__divide__mult__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1735_div__mult__self1,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_1736_div__mult__self1,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_1737_div__mult__self2,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_1738_div__mult__self2,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_1739_div__mult__self3,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_1740_div__mult__self3,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_1741_div__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_1742_div__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_1743_power__eq__0__iff,axiom,
! [A: rat,N: nat] :
( ( ( power_power_rat @ A @ N )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1744_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1745_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1746_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1747_power__eq__0__iff,axiom,
! [A: complex,N: nat] :
( ( ( power_power_complex @ A @ N )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1748_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_1749_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_1750_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_1751_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_1752_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_1753_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_1754_divide__le__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_1755_divide__le__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_1756_divide__le__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_1757_divide__le__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_1758_le__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_1759_le__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_1760_le__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_1761_le__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_1762_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_1763_power__strict__decreasing__iff,axiom,
! [B: rat,M: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_1764_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_1765_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_1766_zero__eq__power2,axiom,
! [A: rat] :
( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% zero_eq_power2
thf(fact_1767_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_1768_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_1769_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_1770_zero__eq__power2,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% zero_eq_power2
thf(fact_1771_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1772_power__mono__iff,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1773_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1774_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1775_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_1776_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_1777_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_1778_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_1779_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_1780_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_1781_power__decreasing__iff,axiom,
! [B: rat,M: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_1782_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_1783_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_1784_power2__less__eq__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% power2_less_eq_zero_iff
thf(fact_1785_power2__less__eq__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% power2_less_eq_zero_iff
thf(fact_1786_power2__less__eq__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% power2_less_eq_zero_iff
thf(fact_1787_power2__eq__iff__nonneg,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y3 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1788_power2__eq__iff__nonneg,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y3 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1789_power2__eq__iff__nonneg,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
=> ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y3 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1790_power2__eq__iff__nonneg,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y3 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1791_zero__less__power2,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_real ) ) ).
% zero_less_power2
thf(fact_1792_zero__less__power2,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_power2
thf(fact_1793_zero__less__power2,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_int ) ) ).
% zero_less_power2
thf(fact_1794_sum__power2__eq__zero__iff,axiom,
! [X: rat,Y3: rat] :
( ( ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y3 = zero_zero_rat ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1795_sum__power2__eq__zero__iff,axiom,
! [X: real,Y3: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1796_sum__power2__eq__zero__iff,axiom,
! [X: int,Y3: int] :
( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1797_not__mod__2__eq__0__eq__1,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_1798_not__mod__2__eq__0__eq__1,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_1799_not__mod__2__eq__0__eq__1,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_1800_not__mod__2__eq__1__eq__0,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_1801_not__mod__2__eq__1__eq__0,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_1802_not__mod__2__eq__1__eq__0,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_1803_not__mod2__eq__Suc__0__eq__0,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= ( suc @ zero_zero_nat ) )
= ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod2_eq_Suc_0_eq_0
thf(fact_1804_add__self__mod__2,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% add_self_mod_2
thf(fact_1805_mod2__gr__0,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% mod2_gr_0
thf(fact_1806_VEBT__internal_Ooption__shift_Ocases,axiom,
! [X: produc5542196010084753463at_nat] :
( ! [Uu3: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv2: option4927543243414619207at_nat] :
( X
!= ( produc2899441246263362727at_nat @ Uu3 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
=> ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V2: product_prod_nat_nat] :
( X
!= ( produc2899441246263362727at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
=> ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A4: product_prod_nat_nat,B4: product_prod_nat_nat] :
( X
!= ( produc2899441246263362727at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A4 ) @ ( some_P7363390416028606310at_nat @ B4 ) ) ) ) ) ) ).
% VEBT_internal.option_shift.cases
thf(fact_1807_VEBT__internal_Ooption__shift_Ocases,axiom,
! [X: produc8306885398267862888on_nat] :
( ! [Uu3: nat > nat > nat,Uv2: option_nat] :
( X
!= ( produc8929957630744042906on_nat @ Uu3 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
=> ( ! [Uw2: nat > nat > nat,V2: nat] :
( X
!= ( produc8929957630744042906on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
=> ~ ! [F2: nat > nat > nat,A4: nat,B4: nat] :
( X
!= ( produc8929957630744042906on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ A4 ) @ ( some_nat @ B4 ) ) ) ) ) ) ).
% VEBT_internal.option_shift.cases
thf(fact_1808_VEBT__internal_Ooption__shift_Ocases,axiom,
! [X: produc1193250871479095198on_num] :
( ! [Uu3: num > num > num,Uv2: option_num] :
( X
!= ( produc5778274026573060048on_num @ Uu3 @ ( produc8585076106096196333on_num @ none_num @ Uv2 ) ) )
=> ( ! [Uw2: num > num > num,V2: num] :
( X
!= ( produc5778274026573060048on_num @ Uw2 @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) )
=> ~ ! [F2: num > num > num,A4: num,B4: num] :
( X
!= ( produc5778274026573060048on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ A4 ) @ ( some_num @ B4 ) ) ) ) ) ) ).
% VEBT_internal.option_shift.cases
thf(fact_1809_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
! [X: produc5491161045314408544at_nat] :
( ! [Uu3: product_prod_nat_nat > product_prod_nat_nat > $o,Uv2: option4927543243414619207at_nat] :
( X
!= ( produc3994169339658061776at_nat @ Uu3 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
=> ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > $o,V2: product_prod_nat_nat] :
( X
!= ( produc3994169339658061776at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
=> ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > $o,X5: product_prod_nat_nat,Y4: product_prod_nat_nat] :
( X
!= ( produc3994169339658061776at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ X5 ) @ ( some_P7363390416028606310at_nat @ Y4 ) ) ) ) ) ) ).
% VEBT_internal.option_comp_shift.cases
thf(fact_1810_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
! [X: produc2233624965454879586on_nat] :
( ! [Uu3: nat > nat > $o,Uv2: option_nat] :
( X
!= ( produc4035269172776083154on_nat @ Uu3 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
=> ( ! [Uw2: nat > nat > $o,V2: nat] :
( X
!= ( produc4035269172776083154on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
=> ~ ! [F2: nat > nat > $o,X5: nat,Y4: nat] :
( X
!= ( produc4035269172776083154on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ X5 ) @ ( some_nat @ Y4 ) ) ) ) ) ) ).
% VEBT_internal.option_comp_shift.cases
thf(fact_1811_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
! [X: produc7036089656553540234on_num] :
( ! [Uu3: num > num > $o,Uv2: option_num] :
( X
!= ( produc3576312749637752826on_num @ Uu3 @ ( produc8585076106096196333on_num @ none_num @ Uv2 ) ) )
=> ( ! [Uw2: num > num > $o,V2: num] :
( X
!= ( produc3576312749637752826on_num @ Uw2 @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) )
=> ~ ! [F2: num > num > $o,X5: num,Y4: num] :
( X
!= ( produc3576312749637752826on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ X5 ) @ ( some_num @ Y4 ) ) ) ) ) ) ).
% VEBT_internal.option_comp_shift.cases
thf(fact_1812_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= one_one_rat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ) ).
% power_0_left
thf(fact_1813_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_1814_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_1815_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_1816_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= one_one_complex ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ) ).
% power_0_left
thf(fact_1817_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ).
% zero_power
thf(fact_1818_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_1819_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_1820_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_1821_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ).
% zero_power
thf(fact_1822_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_1823_le__numeral__extra_I3_J,axiom,
ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).
% le_numeral_extra(3)
thf(fact_1824_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_1825_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_1826_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_1827_field__lbound__gt__zero,axiom,
! [D1: real,D22: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D22 )
=> ? [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
& ( ord_less_real @ E2 @ D1 )
& ( ord_less_real @ E2 @ D22 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_1828_field__lbound__gt__zero,axiom,
! [D1: rat,D22: rat] :
( ( ord_less_rat @ zero_zero_rat @ D1 )
=> ( ( ord_less_rat @ zero_zero_rat @ D22 )
=> ? [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
& ( ord_less_rat @ E2 @ D1 )
& ( ord_less_rat @ E2 @ D22 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_1829_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_1830_less__numeral__extra_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).
% less_numeral_extra(3)
thf(fact_1831_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_1832_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_1833_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_1834_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_1835_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_1836_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_1837_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_complex
!= ( numera6690914467698888265omplex @ N ) ) ).
% zero_neq_numeral
thf(fact_1838_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_1839_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_rat
!= ( numeral_numeral_rat @ N ) ) ).
% zero_neq_numeral
thf(fact_1840_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_1841_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_1842_mult__right__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1843_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1844_mult__right__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1845_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1846_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1847_mult__left__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1848_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1849_mult__left__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1850_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1851_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1852_no__zero__divisors,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( times_times_complex @ A @ B )
!= zero_zero_complex ) ) ) ).
% no_zero_divisors
thf(fact_1853_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_1854_no__zero__divisors,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( times_times_rat @ A @ B )
!= zero_zero_rat ) ) ) ).
% no_zero_divisors
thf(fact_1855_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_1856_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_1857_divisors__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
=> ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divisors_zero
thf(fact_1858_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_1859_divisors__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
=> ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divisors_zero
thf(fact_1860_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_1861_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_1862_mult__not__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
!= zero_zero_complex )
=> ( ( A != zero_zero_complex )
& ( B != zero_zero_complex ) ) ) ).
% mult_not_zero
thf(fact_1863_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_1864_mult__not__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
!= zero_zero_rat )
=> ( ( A != zero_zero_rat )
& ( B != zero_zero_rat ) ) ) ).
% mult_not_zero
thf(fact_1865_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_1866_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_1867_zero__neq__one,axiom,
zero_zero_complex != one_one_complex ).
% zero_neq_one
thf(fact_1868_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_1869_zero__neq__one,axiom,
zero_zero_rat != one_one_rat ).
% zero_neq_one
thf(fact_1870_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_1871_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_1872_add_Ogroup__left__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1873_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1874_add_Ogroup__left__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1875_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1876_add_Ocomm__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.comm_neutral
thf(fact_1877_add_Ocomm__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.comm_neutral
thf(fact_1878_add_Ocomm__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.comm_neutral
thf(fact_1879_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_1880_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_1881_comm__monoid__add__class_Oadd__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1882_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1883_comm__monoid__add__class_Oadd__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1884_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1885_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1886_eq__iff__diff__eq__0,axiom,
( ( ^ [Y: complex,Z: complex] : ( Y = Z ) )
= ( ^ [A5: complex,B5: complex] :
( ( minus_minus_complex @ A5 @ B5 )
= zero_zero_complex ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_1887_eq__iff__diff__eq__0,axiom,
( ( ^ [Y: real,Z: real] : ( Y = Z ) )
= ( ^ [A5: real,B5: real] :
( ( minus_minus_real @ A5 @ B5 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_1888_eq__iff__diff__eq__0,axiom,
( ( ^ [Y: rat,Z: rat] : ( Y = Z ) )
= ( ^ [A5: rat,B5: rat] :
( ( minus_minus_rat @ A5 @ B5 )
= zero_zero_rat ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_1889_eq__iff__diff__eq__0,axiom,
( ( ^ [Y: int,Z: int] : ( Y = Z ) )
= ( ^ [A5: int,B5: int] :
( ( minus_minus_int @ A5 @ B5 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_1890_power__not__zero,axiom,
! [A: rat,N: nat] :
( ( A != zero_zero_rat )
=> ( ( power_power_rat @ A @ N )
!= zero_zero_rat ) ) ).
% power_not_zero
thf(fact_1891_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_1892_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_1893_power__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_1894_power__not__zero,axiom,
! [A: complex,N: nat] :
( ( A != zero_zero_complex )
=> ( ( power_power_complex @ A @ N )
!= zero_zero_complex ) ) ).
% power_not_zero
thf(fact_1895_num_Osize_I4_J,axiom,
( ( size_size_num @ one )
= zero_zero_nat ) ).
% num.size(4)
thf(fact_1896_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M5: nat] :
( N
= ( suc @ M5 ) ) ) ).
% not0_implies_Suc
thf(fact_1897_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_1898_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_1899_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_1900_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_1901_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X5: nat] : ( P @ X5 @ zero_zero_nat )
=> ( ! [Y4: nat] : ( P @ zero_zero_nat @ ( suc @ Y4 ) )
=> ( ! [X5: nat,Y4: nat] :
( ( P @ X5 @ Y4 )
=> ( P @ ( suc @ X5 ) @ ( suc @ Y4 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_1902_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_1903_old_Onat_Oexhaust,axiom,
! [Y3: nat] :
( ( Y3 != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y3
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_1904_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_1905_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_1906_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_1907_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_1908_vebt__buildup_Ocases,axiom,
! [X: nat] :
( ( X != zero_zero_nat )
=> ( ( X
!= ( suc @ zero_zero_nat ) )
=> ~ ! [Va3: nat] :
( X
!= ( suc @ ( suc @ Va3 ) ) ) ) ) ).
% vebt_buildup.cases
thf(fact_1909_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_1910_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_1911_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_1912_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_1913_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_1914_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_1915_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_1916_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_1917_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_1918_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_1919_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_1920_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1921_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1922_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_1923_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_1924_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_1925_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_1926_divide__right__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1927_divide__right__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1928_divide__nonpos__nonpos,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1929_divide__nonpos__nonpos,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y3 @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1930_divide__nonpos__nonneg,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y3 ) @ zero_zero_real ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1931_divide__nonpos__nonneg,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y3 ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1932_divide__nonneg__nonpos,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y3 ) @ zero_zero_real ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1933_divide__nonneg__nonpos,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ Y3 @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y3 ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1934_divide__nonneg__nonneg,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1935_divide__nonneg__nonneg,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1936_zero__le__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1937_zero__le__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1938_divide__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_1939_divide__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_1940_divide__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_1941_divide__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_1942_divide__neg__neg,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y3 @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% divide_neg_neg
thf(fact_1943_divide__neg__neg,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ Y3 @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% divide_neg_neg
thf(fact_1944_divide__neg__pos,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y3 ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_1945_divide__neg__pos,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Y3 ) @ zero_zero_rat ) ) ) ).
% divide_neg_pos
thf(fact_1946_divide__pos__neg,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y3 @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y3 ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_1947_divide__pos__neg,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ Y3 @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Y3 ) @ zero_zero_rat ) ) ) ).
% divide_pos_neg
thf(fact_1948_divide__pos__pos,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% divide_pos_pos
thf(fact_1949_divide__pos__pos,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% divide_pos_pos
thf(fact_1950_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_1951_divide__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_1952_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_1953_divide__less__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) )
& ( C != zero_zero_rat ) ) ) ).
% divide_less_cancel
thf(fact_1954_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_1955_zero__less__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_divide_iff
thf(fact_1956_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_1957_divide__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_1958_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_1959_divide__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_1960_frac__eq__eq,axiom,
! [Y3: complex,Z4: complex,X: complex,W: complex] :
( ( Y3 != zero_zero_complex )
=> ( ( Z4 != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ X @ Y3 )
= ( divide1717551699836669952omplex @ W @ Z4 ) )
= ( ( times_times_complex @ X @ Z4 )
= ( times_times_complex @ W @ Y3 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_1961_frac__eq__eq,axiom,
! [Y3: real,Z4: real,X: real,W: real] :
( ( Y3 != zero_zero_real )
=> ( ( Z4 != zero_zero_real )
=> ( ( ( divide_divide_real @ X @ Y3 )
= ( divide_divide_real @ W @ Z4 ) )
= ( ( times_times_real @ X @ Z4 )
= ( times_times_real @ W @ Y3 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_1962_frac__eq__eq,axiom,
! [Y3: rat,Z4: rat,X: rat,W: rat] :
( ( Y3 != zero_zero_rat )
=> ( ( Z4 != zero_zero_rat )
=> ( ( ( divide_divide_rat @ X @ Y3 )
= ( divide_divide_rat @ W @ Z4 ) )
= ( ( times_times_rat @ X @ Z4 )
= ( times_times_rat @ W @ Y3 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_1963_divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq
thf(fact_1964_divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( divide_divide_real @ B @ C )
= A )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_1965_divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( divide_divide_rat @ B @ C )
= A )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq
thf(fact_1966_eq__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq
thf(fact_1967_eq__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_1968_eq__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq
thf(fact_1969_divide__eq__imp,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( B
= ( times_times_complex @ A @ C ) )
=> ( ( divide1717551699836669952omplex @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_1970_divide__eq__imp,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_1971_divide__eq__imp,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( B
= ( times_times_rat @ A @ C ) )
=> ( ( divide_divide_rat @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_1972_eq__divide__imp,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= B )
=> ( A
= ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_1973_eq__divide__imp,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= B )
=> ( A
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_1974_eq__divide__imp,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= B )
=> ( A
= ( divide_divide_rat @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_1975_nonzero__divide__eq__eq,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( B
= ( times_times_complex @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_1976_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A )
= ( B
= ( times_times_real @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_1977_nonzero__divide__eq__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( ( divide_divide_rat @ B @ C )
= A )
= ( B
= ( times_times_rat @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_1978_nonzero__eq__divide__eq,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( times_times_complex @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_1979_nonzero__eq__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_1980_nonzero__eq__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( times_times_rat @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_1981_right__inverse__eq,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_1982_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_1983_right__inverse__eq,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_1984_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_1985_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_1986_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_1987_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_1988_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_1989_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_1990_mod__eq__0D,axiom,
! [M: nat,D: nat] :
( ( ( modulo_modulo_nat @ M @ D )
= zero_zero_nat )
=> ? [Q2: nat] :
( M
= ( times_times_nat @ D @ Q2 ) ) ) ).
% mod_eq_0D
thf(fact_1991_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1992_power__eq__imp__eq__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ( power_power_rat @ A @ N )
= ( power_power_rat @ B @ N ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1993_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1994_power__eq__imp__eq__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1995_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1996_power__eq__iff__eq__base,axiom,
! [N: nat,A: rat,B: rat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ( power_power_rat @ A @ N )
= ( power_power_rat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1997_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1998_power__eq__iff__eq__base,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1999_lambda__zero,axiom,
( ( ^ [H: complex] : zero_zero_complex )
= ( times_times_complex @ zero_zero_complex ) ) ).
% lambda_zero
thf(fact_2000_lambda__zero,axiom,
( ( ^ [H: real] : zero_zero_real )
= ( times_times_real @ zero_zero_real ) ) ).
% lambda_zero
thf(fact_2001_lambda__zero,axiom,
( ( ^ [H: rat] : zero_zero_rat )
= ( times_times_rat @ zero_zero_rat ) ) ).
% lambda_zero
thf(fact_2002_lambda__zero,axiom,
( ( ^ [H: nat] : zero_zero_nat )
= ( times_times_nat @ zero_zero_nat ) ) ).
% lambda_zero
thf(fact_2003_lambda__zero,axiom,
( ( ^ [H: int] : zero_zero_int )
= ( times_times_int @ zero_zero_int ) ) ).
% lambda_zero
thf(fact_2004_vebt__insert_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S2 ) @ X )
= ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S2 ) ) ).
% vebt_insert.simps(2)
thf(fact_2005_power__strict__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2006_power__strict__mono,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2007_power__strict__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2008_power__strict__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2009_field__le__epsilon,axiom,
! [X: real,Y3: real] :
( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ( ord_less_eq_real @ X @ ( plus_plus_real @ Y3 @ E2 ) ) )
=> ( ord_less_eq_real @ X @ Y3 ) ) ).
% field_le_epsilon
thf(fact_2010_field__le__epsilon,axiom,
! [X: rat,Y3: rat] :
( ! [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
=> ( ord_less_eq_rat @ X @ ( plus_plus_rat @ Y3 @ E2 ) ) )
=> ( ord_less_eq_rat @ X @ Y3 ) ) ).
% field_le_epsilon
thf(fact_2011_frac__le,axiom,
! [Y3: real,X: real,W: real,Z4: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z4 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Z4 ) @ ( divide_divide_real @ Y3 @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_2012_frac__le,axiom,
! [Y3: rat,X: rat,W: rat,Z4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_eq_rat @ W @ Z4 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Z4 ) @ ( divide_divide_rat @ Y3 @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_2013_frac__less,axiom,
! [X: real,Y3: real,W: real,Z4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z4 )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z4 ) @ ( divide_divide_real @ Y3 @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_2014_frac__less,axiom,
! [X: rat,Y3: rat,W: rat,Z4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ X @ Y3 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_eq_rat @ W @ Z4 )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Z4 ) @ ( divide_divide_rat @ Y3 @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_2015_frac__less2,axiom,
! [X: real,Y3: real,W: real,Z4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_real @ W @ Z4 )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z4 ) @ ( divide_divide_real @ Y3 @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_2016_frac__less2,axiom,
! [X: rat,Y3: rat,W: rat,Z4: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_rat @ W @ Z4 )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Z4 ) @ ( divide_divide_rat @ Y3 @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_2017_divide__le__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_2018_divide__le__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_2019_divide__nonneg__neg,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y3 @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y3 ) @ zero_zero_real ) ) ) ).
% divide_nonneg_neg
thf(fact_2020_divide__nonneg__neg,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ Y3 @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y3 ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_neg
thf(fact_2021_divide__nonneg__pos,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% divide_nonneg_pos
thf(fact_2022_divide__nonneg__pos,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% divide_nonneg_pos
thf(fact_2023_divide__nonpos__neg,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y3 @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% divide_nonpos_neg
thf(fact_2024_divide__nonpos__neg,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ Y3 @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% divide_nonpos_neg
thf(fact_2025_divide__nonpos__pos,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y3 ) @ zero_zero_real ) ) ) ).
% divide_nonpos_pos
thf(fact_2026_divide__nonpos__pos,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y3 ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_pos
thf(fact_2027_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2028_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2029_div__positive,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_positive
thf(fact_2030_div__positive,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_positive
thf(fact_2031_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_2032_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_2033_divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2034_divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2035_less__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2036_less__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2037_neg__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2038_neg__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2039_neg__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2040_neg__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2041_pos__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2042_pos__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2043_pos__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2044_pos__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2045_mult__imp__div__pos__less,axiom,
! [Y3: real,X: real,Z4: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ X @ ( times_times_real @ Z4 @ Y3 ) )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y3 ) @ Z4 ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2046_mult__imp__div__pos__less,axiom,
! [Y3: rat,X: rat,Z4: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_rat @ X @ ( times_times_rat @ Z4 @ Y3 ) )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Y3 ) @ Z4 ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2047_mult__imp__less__div__pos,axiom,
! [Y3: real,Z4: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ ( times_times_real @ Z4 @ Y3 ) @ X )
=> ( ord_less_real @ Z4 @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2048_mult__imp__less__div__pos,axiom,
! [Y3: rat,Z4: rat,X: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_rat @ ( times_times_rat @ Z4 @ Y3 ) @ X )
=> ( ord_less_rat @ Z4 @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2049_divide__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2050_divide__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2051_divide__strict__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2052_divide__strict__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2053_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_2054_divide__less__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_less_eq_1
thf(fact_2055_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_2056_less__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_2057_add__divide__eq__if__simps_I2_J,axiom,
! [Z4: complex,A: complex,B: complex] :
( ( ( Z4 = zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z4 ) @ B )
= B ) )
& ( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z4 ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_2058_add__divide__eq__if__simps_I2_J,axiom,
! [Z4: real,A: real,B: real] :
( ( ( Z4 = zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z4 ) @ B )
= B ) )
& ( ( Z4 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z4 ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_2059_add__divide__eq__if__simps_I2_J,axiom,
! [Z4: rat,A: rat,B: rat] :
( ( ( Z4 = zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z4 ) @ B )
= B ) )
& ( ( Z4 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z4 ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_2060_add__divide__eq__if__simps_I1_J,axiom,
! [Z4: complex,A: complex,B: complex] :
( ( ( Z4 = zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z4 ) )
= A ) )
& ( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z4 ) @ B ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_2061_add__divide__eq__if__simps_I1_J,axiom,
! [Z4: real,A: real,B: real] :
( ( ( Z4 = zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z4 ) )
= A ) )
& ( ( Z4 != zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z4 ) @ B ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_2062_add__divide__eq__if__simps_I1_J,axiom,
! [Z4: rat,A: rat,B: rat] :
( ( ( Z4 = zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z4 ) )
= A ) )
& ( ( Z4 != zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z4 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z4 ) @ B ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_2063_add__frac__eq,axiom,
! [Y3: complex,Z4: complex,X: complex,W: complex] :
( ( Y3 != zero_zero_complex )
=> ( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y3 ) @ ( divide1717551699836669952omplex @ W @ Z4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z4 ) @ ( times_times_complex @ W @ Y3 ) ) @ ( times_times_complex @ Y3 @ Z4 ) ) ) ) ) ).
% add_frac_eq
thf(fact_2064_add__frac__eq,axiom,
! [Y3: real,Z4: real,X: real,W: real] :
( ( Y3 != zero_zero_real )
=> ( ( Z4 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y3 ) @ ( divide_divide_real @ W @ Z4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z4 ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z4 ) ) ) ) ) ).
% add_frac_eq
thf(fact_2065_add__frac__eq,axiom,
! [Y3: rat,Z4: rat,X: rat,W: rat] :
( ( Y3 != zero_zero_rat )
=> ( ( Z4 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y3 ) @ ( divide_divide_rat @ W @ Z4 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z4 ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z4 ) ) ) ) ) ).
% add_frac_eq
thf(fact_2066_add__frac__num,axiom,
! [Y3: complex,X: complex,Z4: complex] :
( ( Y3 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y3 ) @ Z4 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z4 @ Y3 ) ) @ Y3 ) ) ) ).
% add_frac_num
thf(fact_2067_add__frac__num,axiom,
! [Y3: real,X: real,Z4: real] :
( ( Y3 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y3 ) @ Z4 )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z4 @ Y3 ) ) @ Y3 ) ) ) ).
% add_frac_num
thf(fact_2068_add__frac__num,axiom,
! [Y3: rat,X: rat,Z4: rat] :
( ( Y3 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y3 ) @ Z4 )
= ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z4 @ Y3 ) ) @ Y3 ) ) ) ).
% add_frac_num
thf(fact_2069_add__num__frac,axiom,
! [Y3: complex,Z4: complex,X: complex] :
( ( Y3 != zero_zero_complex )
=> ( ( plus_plus_complex @ Z4 @ ( divide1717551699836669952omplex @ X @ Y3 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z4 @ Y3 ) ) @ Y3 ) ) ) ).
% add_num_frac
thf(fact_2070_add__num__frac,axiom,
! [Y3: real,Z4: real,X: real] :
( ( Y3 != zero_zero_real )
=> ( ( plus_plus_real @ Z4 @ ( divide_divide_real @ X @ Y3 ) )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z4 @ Y3 ) ) @ Y3 ) ) ) ).
% add_num_frac
thf(fact_2071_add__num__frac,axiom,
! [Y3: rat,Z4: rat,X: rat] :
( ( Y3 != zero_zero_rat )
=> ( ( plus_plus_rat @ Z4 @ ( divide_divide_rat @ X @ Y3 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z4 @ Y3 ) ) @ Y3 ) ) ) ).
% add_num_frac
thf(fact_2072_add__divide__eq__iff,axiom,
! [Z4: complex,X: complex,Y3: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ Y3 @ Z4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z4 ) @ Y3 ) @ Z4 ) ) ) ).
% add_divide_eq_iff
thf(fact_2073_add__divide__eq__iff,axiom,
! [Z4: real,X: real,Y3: real] :
( ( Z4 != zero_zero_real )
=> ( ( plus_plus_real @ X @ ( divide_divide_real @ Y3 @ Z4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z4 ) @ Y3 ) @ Z4 ) ) ) ).
% add_divide_eq_iff
thf(fact_2074_add__divide__eq__iff,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( Z4 != zero_zero_rat )
=> ( ( plus_plus_rat @ X @ ( divide_divide_rat @ Y3 @ Z4 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z4 ) @ Y3 ) @ Z4 ) ) ) ).
% add_divide_eq_iff
thf(fact_2075_divide__add__eq__iff,axiom,
! [Z4: complex,X: complex,Y3: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Z4 ) @ Y3 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% divide_add_eq_iff
thf(fact_2076_divide__add__eq__iff,axiom,
! [Z4: real,X: real,Y3: real] :
( ( Z4 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Z4 ) @ Y3 )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% divide_add_eq_iff
thf(fact_2077_divide__add__eq__iff,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( Z4 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Z4 ) @ Y3 )
= ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% divide_add_eq_iff
thf(fact_2078_add__divide__eq__if__simps_I4_J,axiom,
! [Z4: complex,A: complex,B: complex] :
( ( ( Z4 = zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z4 ) )
= A ) )
& ( ( Z4 != zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z4 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z4 ) @ B ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_2079_add__divide__eq__if__simps_I4_J,axiom,
! [Z4: real,A: real,B: real] :
( ( ( Z4 = zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z4 ) )
= A ) )
& ( ( Z4 != zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z4 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z4 ) @ B ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_2080_add__divide__eq__if__simps_I4_J,axiom,
! [Z4: rat,A: rat,B: rat] :
( ( ( Z4 = zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z4 ) )
= A ) )
& ( ( Z4 != zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z4 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z4 ) @ B ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_2081_diff__frac__eq,axiom,
! [Y3: complex,Z4: complex,X: complex,W: complex] :
( ( Y3 != zero_zero_complex )
=> ( ( Z4 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Y3 ) @ ( divide1717551699836669952omplex @ W @ Z4 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z4 ) @ ( times_times_complex @ W @ Y3 ) ) @ ( times_times_complex @ Y3 @ Z4 ) ) ) ) ) ).
% diff_frac_eq
thf(fact_2082_diff__frac__eq,axiom,
! [Y3: real,Z4: real,X: real,W: real] :
( ( Y3 != zero_zero_real )
=> ( ( Z4 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Y3 ) @ ( divide_divide_real @ W @ Z4 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z4 ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z4 ) ) ) ) ) ).
% diff_frac_eq
thf(fact_2083_diff__frac__eq,axiom,
! [Y3: rat,Z4: rat,X: rat,W: rat] :
( ( Y3 != zero_zero_rat )
=> ( ( Z4 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Y3 ) @ ( divide_divide_rat @ W @ Z4 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z4 ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z4 ) ) ) ) ) ).
% diff_frac_eq
thf(fact_2084_diff__divide__eq__iff,axiom,
! [Z4: complex,X: complex,Y3: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( minus_minus_complex @ X @ ( divide1717551699836669952omplex @ Y3 @ Z4 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z4 ) @ Y3 ) @ Z4 ) ) ) ).
% diff_divide_eq_iff
thf(fact_2085_diff__divide__eq__iff,axiom,
! [Z4: real,X: real,Y3: real] :
( ( Z4 != zero_zero_real )
=> ( ( minus_minus_real @ X @ ( divide_divide_real @ Y3 @ Z4 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z4 ) @ Y3 ) @ Z4 ) ) ) ).
% diff_divide_eq_iff
thf(fact_2086_diff__divide__eq__iff,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( Z4 != zero_zero_rat )
=> ( ( minus_minus_rat @ X @ ( divide_divide_rat @ Y3 @ Z4 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z4 ) @ Y3 ) @ Z4 ) ) ) ).
% diff_divide_eq_iff
thf(fact_2087_divide__diff__eq__iff,axiom,
! [Z4: complex,X: complex,Y3: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Z4 ) @ Y3 )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ X @ ( times_times_complex @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% divide_diff_eq_iff
thf(fact_2088_divide__diff__eq__iff,axiom,
! [Z4: real,X: real,Y3: real] :
( ( Z4 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Z4 ) @ Y3 )
= ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% divide_diff_eq_iff
thf(fact_2089_divide__diff__eq__iff,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( Z4 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Z4 ) @ Y3 )
= ( divide_divide_rat @ ( minus_minus_rat @ X @ ( times_times_rat @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% divide_diff_eq_iff
thf(fact_2090_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2091_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2092_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2093_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ A @ B )
=> ( ( modulo364778990260209775nteger @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2094_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( modulo_modulo_nat @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2095_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( modulo_modulo_int @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2096_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q3: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
= zero_zero_nat )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(2)
thf(fact_2097_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q3: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
= zero_zero_int )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(2)
thf(fact_2098_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q3: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(2)
thf(fact_2099_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
= zero_zero_nat ) ).
% cong_exp_iff_simps(1)
thf(fact_2100_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
= zero_zero_int ) ).
% cong_exp_iff_simps(1)
thf(fact_2101_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) )
= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(1)
thf(fact_2102_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_le_zero
thf(fact_2103_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).
% not_numeral_le_zero
thf(fact_2104_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_le_zero
thf(fact_2105_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_le_zero
thf(fact_2106_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_le_numeral
thf(fact_2107_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).
% zero_le_numeral
thf(fact_2108_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_le_numeral
thf(fact_2109_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_le_numeral
thf(fact_2110_mult__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2111_mult__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2112_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2113_mult__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2114_mult__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2115_mult__mono_H,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2116_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2117_mult__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2118_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_2119_zero__le__square,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).
% zero_le_square
thf(fact_2120_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_2121_split__mult__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_2122_split__mult__pos__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_2123_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_2124_mult__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_2125_mult__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_2126_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_2127_mult__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_2128_mult__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_2129_mult__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_2130_mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2131_mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2132_mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2133_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2134_mult__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_2135_mult__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_2136_mult__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_2137_mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2138_mult__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2139_mult__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2140_mult__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2141_mult__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_2142_mult__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_2143_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_2144_split__mult__neg__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).
% split_mult_neg_le
thf(fact_2145_split__mult__neg__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).
% split_mult_neg_le
thf(fact_2146_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_2147_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_2148_mult__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2149_mult__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2150_mult__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2151_mult__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2152_mult__nonneg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2153_mult__nonneg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2154_mult__nonneg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2155_mult__nonneg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2156_mult__nonpos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2157_mult__nonpos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2158_mult__nonpos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2159_mult__nonpos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2160_mult__nonneg__nonpos2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2161_mult__nonneg__nonpos2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2162_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2163_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2164_zero__le__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_mult_iff
thf(fact_2165_zero__le__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_mult_iff
thf(fact_2166_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_2167_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2168_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2169_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2170_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2171_zero__less__numeral,axiom,
! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_less_numeral
thf(fact_2172_zero__less__numeral,axiom,
! [N: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).
% zero_less_numeral
thf(fact_2173_zero__less__numeral,axiom,
! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_less_numeral
thf(fact_2174_zero__less__numeral,axiom,
! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_less_numeral
thf(fact_2175_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_2176_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).
% not_numeral_less_zero
thf(fact_2177_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_2178_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_2179_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_2180_not__one__le__zero,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_le_zero
thf(fact_2181_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_2182_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_2183_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2184_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2185_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2186_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2187_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_2188_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one_class.zero_le_one
thf(fact_2189_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_2190_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_2191_add__nonpos__eq__0__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
=> ( ( ( plus_plus_real @ X @ Y3 )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_2192_add__nonpos__eq__0__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y3 @ zero_zero_rat )
=> ( ( ( plus_plus_rat @ X @ Y3 )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y3 = zero_zero_rat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_2193_add__nonpos__eq__0__iff,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y3 @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X @ Y3 )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y3 = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_2194_add__nonpos__eq__0__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y3 @ zero_zero_int )
=> ( ( ( plus_plus_int @ X @ Y3 )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_2195_add__nonneg__eq__0__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ( plus_plus_real @ X @ Y3 )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_2196_add__nonneg__eq__0__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ( ( plus_plus_rat @ X @ Y3 )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y3 = zero_zero_rat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_2197_add__nonneg__eq__0__iff,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
=> ( ( ( plus_plus_nat @ X @ Y3 )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y3 = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_2198_add__nonneg__eq__0__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ( plus_plus_int @ X @ Y3 )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_2199_add__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_nonpos
thf(fact_2200_add__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_nonpos
thf(fact_2201_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_2202_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_2203_add__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_2204_add__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_2205_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_2206_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_2207_add__increasing2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_2208_add__increasing2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_2209_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_2210_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_2211_add__decreasing2,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_2212_add__decreasing2,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_2213_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_2214_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_2215_add__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_2216_add__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_2217_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_2218_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_2219_add__decreasing,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_2220_add__decreasing,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_2221_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_2222_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_2223_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2224_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2225_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2226_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2227_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2228_mult__less__cancel__right__disj,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2229_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2230_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2231_mult__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2232_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2233_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2234_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2235_mult__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2236_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2237_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2238_mult__less__cancel__left__disj,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2239_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2240_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2241_mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2242_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2243_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2244_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2245_mult__strict__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2246_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2247_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2248_mult__less__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2249_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2250_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2251_mult__less__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2252_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2253_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2254_zero__less__mult__pos2,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2255_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2256_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2257_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2258_zero__less__mult__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2259_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2260_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2261_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2262_zero__less__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2263_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2264_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_2265_mult__pos__neg2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg2
thf(fact_2266_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_2267_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_2268_mult__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2269_mult__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2270_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2271_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2272_mult__pos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_2273_mult__pos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg
thf(fact_2274_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_2275_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_2276_mult__neg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_2277_mult__neg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_neg_pos
thf(fact_2278_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_2279_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_2280_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2281_mult__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2282_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2283_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_2284_not__square__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).
% not_square_less_zero
thf(fact_2285_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_2286_mult__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2287_mult__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2288_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2289_le__iff__diff__le__0,axiom,
( ord_less_eq_real
= ( ^ [A5: real,B5: real] : ( ord_less_eq_real @ ( minus_minus_real @ A5 @ B5 ) @ zero_zero_real ) ) ) ).
% le_iff_diff_le_0
thf(fact_2290_le__iff__diff__le__0,axiom,
( ord_less_eq_rat
= ( ^ [A5: rat,B5: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A5 @ B5 ) @ zero_zero_rat ) ) ) ).
% le_iff_diff_le_0
thf(fact_2291_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A5: int,B5: int] : ( ord_less_eq_int @ ( minus_minus_int @ A5 @ B5 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_2292_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_2293_zero__less__one,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one
thf(fact_2294_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_2295_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_2296_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_2297_not__one__less__zero,axiom,
~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_less_zero
thf(fact_2298_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_2299_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_2300_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_2301_less__numeral__extra_I1_J,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% less_numeral_extra(1)
thf(fact_2302_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_2303_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_2304_add__less__zeroD,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y3 ) @ zero_zero_real )
=> ( ( ord_less_real @ X @ zero_zero_real )
| ( ord_less_real @ Y3 @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_2305_add__less__zeroD,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ X @ Y3 ) @ zero_zero_rat )
=> ( ( ord_less_rat @ X @ zero_zero_rat )
| ( ord_less_rat @ Y3 @ zero_zero_rat ) ) ) ).
% add_less_zeroD
thf(fact_2306_add__less__zeroD,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ ( plus_plus_int @ X @ Y3 ) @ zero_zero_int )
=> ( ( ord_less_int @ X @ zero_zero_int )
| ( ord_less_int @ Y3 @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_2307_add__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_neg
thf(fact_2308_add__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_neg
thf(fact_2309_add__neg__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_2310_add__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_2311_add__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2312_add__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2313_add__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2314_add__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2315_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C2: nat] :
( ( B
= ( plus_plus_nat @ A @ C2 ) )
=> ( C2 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_2316_pos__add__strict,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2317_pos__add__strict,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2318_pos__add__strict,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2319_pos__add__strict,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2320_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A5: real,B5: real] : ( ord_less_real @ ( minus_minus_real @ A5 @ B5 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_2321_less__iff__diff__less__0,axiom,
( ord_less_rat
= ( ^ [A5: rat,B5: rat] : ( ord_less_rat @ ( minus_minus_rat @ A5 @ B5 ) @ zero_zero_rat ) ) ) ).
% less_iff_diff_less_0
thf(fact_2322_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A5: int,B5: int] : ( ord_less_int @ ( minus_minus_int @ A5 @ B5 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_2323_zero__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2324_zero__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2325_zero__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2326_zero__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2327_power__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2328_power__mono,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2329_power__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2330_power__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2331_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2332_zero__less__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2333_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2334_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2335_power__0,axiom,
! [A: rat] :
( ( power_power_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% power_0
thf(fact_2336_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_2337_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_2338_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_2339_power__0,axiom,
! [A: complex] :
( ( power_power_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% power_0
thf(fact_2340_mod__eq__self__iff__div__eq__0,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= A )
= ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_2341_mod__eq__self__iff__div__eq__0,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= A )
= ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_2342_mod__eq__self__iff__div__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= A )
= ( ( divide6298287555418463151nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_2343_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N )
& ( P @ ( suc @ I3 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_2344_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M6: nat] :
( N
= ( suc @ M6 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_2345_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_2346_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M5: nat] :
( N
= ( suc @ M5 ) ) ) ).
% gr0_implies_Suc
thf(fact_2347_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_2348_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_2349_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_2350_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I: nat] :
( ( ord_less_nat @ I @ K2 )
=> ~ ( P @ I ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_2351_option_Osize_I4_J,axiom,
! [X22: product_prod_nat_nat] :
( ( size_s170228958280169651at_nat @ ( some_P7363390416028606310at_nat @ X22 ) )
= ( suc @ zero_zero_nat ) ) ).
% option.size(4)
thf(fact_2352_option_Osize_I4_J,axiom,
! [X22: nat] :
( ( size_size_option_nat @ ( some_nat @ X22 ) )
= ( suc @ zero_zero_nat ) ) ).
% option.size(4)
thf(fact_2353_option_Osize_I4_J,axiom,
! [X22: num] :
( ( size_size_option_num @ ( some_num @ X22 ) )
= ( suc @ zero_zero_nat ) ) ).
% option.size(4)
thf(fact_2354_less__imp__add__positive,axiom,
! [I4: nat,J: nat] :
( ( ord_less_nat @ I4 @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I4 @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_2355_option_Osize_I3_J,axiom,
( ( size_size_option_nat @ none_nat )
= ( suc @ zero_zero_nat ) ) ).
% option.size(3)
thf(fact_2356_option_Osize_I3_J,axiom,
( ( size_s170228958280169651at_nat @ none_P5556105721700978146at_nat )
= ( suc @ zero_zero_nat ) ) ).
% option.size(3)
thf(fact_2357_option_Osize_I3_J,axiom,
( ( size_size_option_num @ none_num )
= ( suc @ zero_zero_nat ) ) ).
% option.size(3)
thf(fact_2358_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_2359_mult__less__mono1,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I4 @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_2360_mult__less__mono2,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I4 ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_2361_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_2362_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_2363_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_2364_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide_nat @ M @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_2365_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_2366_nat__power__less__imp__less,axiom,
! [I4: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I4 )
=> ( ( ord_less_nat @ ( power_power_nat @ I4 @ M ) @ ( power_power_nat @ I4 @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_2367_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_2368_mod__Suc,axiom,
! [M: nat,N: nat] :
( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
= N )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
= zero_zero_nat ) )
& ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
!= N )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
= ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).
% mod_Suc
thf(fact_2369_mod__less__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_less_divisor
thf(fact_2370_vebt__insert_Osimps_I3_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) @ X )
= ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) ) ).
% vebt_insert.simps(3)
thf(fact_2371_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).
% VEBT_internal.membermima.simps(2)
thf(fact_2372_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
! [Uu2: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv @ Uw ) @ Ux ) ).
% VEBT_internal.naive_member.simps(2)
thf(fact_2373_field__le__mult__one__interval,axiom,
! [X: real,Y3: real] :
( ! [Z3: real] :
( ( ord_less_real @ zero_zero_real @ Z3 )
=> ( ( ord_less_real @ Z3 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Z3 @ X ) @ Y3 ) ) )
=> ( ord_less_eq_real @ X @ Y3 ) ) ).
% field_le_mult_one_interval
thf(fact_2374_field__le__mult__one__interval,axiom,
! [X: rat,Y3: rat] :
( ! [Z3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z3 )
=> ( ( ord_less_rat @ Z3 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Z3 @ X ) @ Y3 ) ) )
=> ( ord_less_eq_rat @ X @ Y3 ) ) ).
% field_le_mult_one_interval
thf(fact_2375_divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2376_divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2377_le__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2378_le__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2379_divide__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2380_divide__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2381_neg__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2382_neg__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2383_neg__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2384_neg__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2385_pos__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2386_pos__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2387_pos__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2388_pos__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2389_mult__imp__div__pos__le,axiom,
! [Y3: real,X: real,Z4: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ X @ ( times_times_real @ Z4 @ Y3 ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y3 ) @ Z4 ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2390_mult__imp__div__pos__le,axiom,
! [Y3: rat,X: rat,Z4: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_eq_rat @ X @ ( times_times_rat @ Z4 @ Y3 ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y3 ) @ Z4 ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2391_mult__imp__le__div__pos,axiom,
! [Y3: real,Z4: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z4 @ Y3 ) @ X )
=> ( ord_less_eq_real @ Z4 @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2392_mult__imp__le__div__pos,axiom,
! [Y3: rat,Z4: rat,X: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z4 @ Y3 ) @ X )
=> ( ord_less_eq_rat @ Z4 @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2393_divide__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2394_divide__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2395_divide__le__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_le_eq_1
thf(fact_2396_divide__le__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_le_eq_1
thf(fact_2397_le__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_2398_le__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_2399_frac__le__eq,axiom,
! [Y3: real,Z4: real,X: real,W: real] :
( ( Y3 != zero_zero_real )
=> ( ( Z4 != zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ X @ Y3 ) @ ( divide_divide_real @ W @ Z4 ) )
= ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z4 ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z4 ) ) @ zero_zero_real ) ) ) ) ).
% frac_le_eq
thf(fact_2400_frac__le__eq,axiom,
! [Y3: rat,Z4: rat,X: rat,W: rat] :
( ( Y3 != zero_zero_rat )
=> ( ( Z4 != zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y3 ) @ ( divide_divide_rat @ W @ Z4 ) )
= ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z4 ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z4 ) ) @ zero_zero_rat ) ) ) ) ).
% frac_le_eq
thf(fact_2401_frac__less__eq,axiom,
! [Y3: real,Z4: real,X: real,W: real] :
( ( Y3 != zero_zero_real )
=> ( ( Z4 != zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ X @ Y3 ) @ ( divide_divide_real @ W @ Z4 ) )
= ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z4 ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z4 ) ) @ zero_zero_real ) ) ) ) ).
% frac_less_eq
thf(fact_2402_frac__less__eq,axiom,
! [Y3: rat,Z4: rat,X: rat,W: rat] :
( ( Y3 != zero_zero_rat )
=> ( ( Z4 != zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ X @ Y3 ) @ ( divide_divide_rat @ W @ Z4 ) )
= ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z4 ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z4 ) ) @ zero_zero_rat ) ) ) ) ).
% frac_less_eq
thf(fact_2403_div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).
% div_geq
thf(fact_2404_linordered__field__no__lb,axiom,
! [X4: real] :
? [Y4: real] : ( ord_less_real @ Y4 @ X4 ) ).
% linordered_field_no_lb
thf(fact_2405_linordered__field__no__lb,axiom,
! [X4: rat] :
? [Y4: rat] : ( ord_less_rat @ Y4 @ X4 ) ).
% linordered_field_no_lb
thf(fact_2406_linordered__field__no__ub,axiom,
! [X4: real] :
? [X_12: real] : ( ord_less_real @ X4 @ X_12 ) ).
% linordered_field_no_ub
thf(fact_2407_linordered__field__no__ub,axiom,
! [X4: rat] :
? [X_12: rat] : ( ord_less_rat @ X4 @ X_12 ) ).
% linordered_field_no_ub
thf(fact_2408_mult__less__le__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2409_mult__less__le__imp__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2410_mult__less__le__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2411_mult__less__le__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2412_mult__le__less__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2413_mult__le__less__imp__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2414_mult__le__less__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2415_mult__le__less__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2416_mult__right__le__imp__le,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2417_mult__right__le__imp__le,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2418_mult__right__le__imp__le,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2419_mult__right__le__imp__le,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2420_mult__left__le__imp__le,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2421_mult__left__le__imp__le,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2422_mult__left__le__imp__le,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2423_mult__left__le__imp__le,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2424_mult__le__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2425_mult__le__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2426_mult__le__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2427_mult__le__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2428_mult__le__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2429_mult__le__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2430_mult__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2431_mult__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2432_mult__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2433_mult__strict__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2434_mult__strict__mono_H,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2435_mult__strict__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2436_mult__strict__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2437_mult__right__less__imp__less,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2438_mult__right__less__imp__less,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2439_mult__right__less__imp__less,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2440_mult__right__less__imp__less,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2441_mult__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2442_mult__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2443_mult__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2444_mult__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2445_mult__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2446_mult__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2447_mult__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2448_mult__left__less__imp__less,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2449_mult__left__less__imp__less,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2450_mult__left__less__imp__less,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2451_mult__left__less__imp__less,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2452_mult__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2453_mult__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2454_mult__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2455_mult__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2456_mult__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2457_mult__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2458_add__strict__increasing2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2459_add__strict__increasing2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2460_add__strict__increasing2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2461_add__strict__increasing2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2462_add__strict__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2463_add__strict__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2464_add__strict__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2465_add__strict__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2466_add__pos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2467_add__pos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2468_add__pos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2469_add__pos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2470_add__nonpos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_neg
thf(fact_2471_add__nonpos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_neg
thf(fact_2472_add__nonpos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_2473_add__nonpos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_neg
thf(fact_2474_add__nonneg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2475_add__nonneg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2476_add__nonneg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2477_add__nonneg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2478_add__neg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_nonpos
thf(fact_2479_add__neg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_nonpos
thf(fact_2480_add__neg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_2481_add__neg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_nonpos
thf(fact_2482_mult__left__le,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ C @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2483_mult__left__le,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ C @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2484_mult__left__le,axiom,
! [C: nat,A: nat] :
( ( ord_less_eq_nat @ C @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2485_mult__left__le,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ C @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2486_mult__le__one,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).
% mult_le_one
thf(fact_2487_mult__le__one,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ B @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).
% mult_le_one
thf(fact_2488_mult__le__one,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).
% mult_le_one
thf(fact_2489_mult__le__one,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).
% mult_le_one
thf(fact_2490_mult__right__le__one__le,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ X @ Y3 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2491_mult__right__le__one__le,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_eq_rat @ Y3 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ X @ Y3 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2492_mult__right__le__one__le,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ X @ Y3 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2493_mult__left__le__one__le,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Y3 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2494_mult__left__le__one__le,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_eq_rat @ Y3 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Y3 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2495_mult__left__le__one__le,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ Y3 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2496_sum__squares__ge__zero,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y3 @ Y3 ) ) ) ).
% sum_squares_ge_zero
thf(fact_2497_sum__squares__ge__zero,axiom,
! [X: rat,Y3: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y3 @ Y3 ) ) ) ).
% sum_squares_ge_zero
thf(fact_2498_sum__squares__ge__zero,axiom,
! [X: int,Y3: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y3 @ Y3 ) ) ) ).
% sum_squares_ge_zero
thf(fact_2499_sum__squares__le__zero__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y3 @ Y3 ) ) @ zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_2500_sum__squares__le__zero__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y3 @ Y3 ) ) @ zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y3 = zero_zero_rat ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_2501_sum__squares__le__zero__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y3 @ Y3 ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_2502_power__less__imp__less__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2503_power__less__imp__less__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2504_power__less__imp__less__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2505_power__less__imp__less__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2506_not__sum__squares__lt__zero,axiom,
! [X: real,Y3: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y3 @ Y3 ) ) @ zero_zero_real ) ).
% not_sum_squares_lt_zero
thf(fact_2507_not__sum__squares__lt__zero,axiom,
! [X: rat,Y3: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y3 @ Y3 ) ) @ zero_zero_rat ) ).
% not_sum_squares_lt_zero
thf(fact_2508_not__sum__squares__lt__zero,axiom,
! [X: int,Y3: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y3 @ Y3 ) ) @ zero_zero_int ) ).
% not_sum_squares_lt_zero
thf(fact_2509_sum__squares__gt__zero__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y3 @ Y3 ) ) )
= ( ( X != zero_zero_real )
| ( Y3 != zero_zero_real ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2510_sum__squares__gt__zero__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y3 @ Y3 ) ) )
= ( ( X != zero_zero_rat )
| ( Y3 != zero_zero_rat ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2511_sum__squares__gt__zero__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y3 @ Y3 ) ) )
= ( ( X != zero_zero_int )
| ( Y3 != zero_zero_int ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2512_zero__less__two,axiom,
ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).
% zero_less_two
thf(fact_2513_zero__less__two,axiom,
ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).
% zero_less_two
thf(fact_2514_zero__less__two,axiom,
ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).
% zero_less_two
thf(fact_2515_zero__less__two,axiom,
ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).
% zero_less_two
thf(fact_2516_power__le__one,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_2517_power__le__one,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ one_one_rat ) ) ) ).
% power_le_one
thf(fact_2518_power__le__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_2519_power__le__one,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_2520_divide__eq__eq__numeral_I1_J,axiom,
! [B: complex,C: complex,W: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( numera6690914467698888265omplex @ W ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_2521_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_2522_divide__eq__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ( divide_divide_rat @ B @ C )
= ( numeral_numeral_rat @ W ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_2523_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: complex,C: complex] :
( ( ( numera6690914467698888265omplex @ W )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_2524_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_2525_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ( numeral_numeral_rat @ W )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_2526_power__le__imp__le__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2527_power__le__imp__le__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ ( power_power_rat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2528_power__le__imp__le__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2529_power__le__imp__le__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2530_power__inject__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ ( suc @ N ) )
= ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2531_power__inject__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ( power_power_rat @ A @ ( suc @ N ) )
= ( power_power_rat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2532_power__inject__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N ) )
= ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2533_power__inject__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N ) )
= ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2534_div__add__self1,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self1
thf(fact_2535_div__add__self1,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self1
thf(fact_2536_div__add__self2,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self2
thf(fact_2537_div__add__self2,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self2
thf(fact_2538_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_2539_num_Osize_I5_J,axiom,
! [X22: num] :
( ( size_size_num @ ( bit0 @ X22 ) )
= ( plus_plus_nat @ ( size_size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(5)
thf(fact_2540_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ! [I: nat] :
( ( ord_less_eq_nat @ I @ K2 )
=> ~ ( P @ I ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_2541_diff__Suc__less,axiom,
! [N: nat,I4: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_2542_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_2543_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_2544_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_2545_length__pos__if__in__set,axiom,
! [X: nat,Xs: list_nat] :
( ( member_nat @ X @ ( set_nat2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_2546_length__pos__if__in__set,axiom,
! [X: real,Xs: list_real] :
( ( member_real @ X @ ( set_real2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_2547_length__pos__if__in__set,axiom,
! [X: complex,Xs: list_complex] :
( ( member_complex @ X @ ( set_complex2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_2548_length__pos__if__in__set,axiom,
! [X: set_nat,Xs: list_set_nat] :
( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_2549_length__pos__if__in__set,axiom,
! [X: vEBT_VEBT,Xs: list_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_2550_length__pos__if__in__set,axiom,
! [X: $o,Xs: list_o] :
( ( member_o @ X @ ( set_o2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_2551_length__pos__if__in__set,axiom,
! [X: int,Xs: list_int] :
( ( member_int @ X @ ( set_int2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_2552_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_2553_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_2554_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D2: nat] :
( ( A
= ( plus_plus_nat @ B @ D2 ) )
=> ( P @ D2 ) ) ) ) ).
% nat_diff_split
thf(fact_2555_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D2: nat] :
( ( A
= ( plus_plus_nat @ B @ D2 ) )
& ~ ( P @ D2 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_2556_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_2557_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_2558_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ N @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_2559_nat__one__le__power,axiom,
! [I4: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I4 )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I4 @ N ) ) ) ).
% nat_one_le_power
thf(fact_2560_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_2561_div__less__iff__less__mult,axiom,
! [Q3: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q3 )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q3 ) @ N )
= ( ord_less_nat @ M @ ( times_times_nat @ N @ Q3 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_2562_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_2563_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_2564_mod__le__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_le_divisor
thf(fact_2565_scaling__mono,axiom,
! [U2: real,V: real,R2: real,S2: real] :
( ( ord_less_eq_real @ U2 @ V )
=> ( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ( ord_less_eq_real @ R2 @ S2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ U2 @ ( divide_divide_real @ ( times_times_real @ R2 @ ( minus_minus_real @ V @ U2 ) ) @ S2 ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_2566_scaling__mono,axiom,
! [U2: rat,V: rat,R2: rat,S2: rat] :
( ( ord_less_eq_rat @ U2 @ V )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
=> ( ( ord_less_eq_rat @ R2 @ S2 )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ U2 @ ( divide_divide_rat @ ( times_times_rat @ R2 @ ( minus_minus_rat @ V @ U2 ) ) @ S2 ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_2567_vebt__member_Osimps_I3_J,axiom,
! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X ) ).
% vebt_member.simps(3)
thf(fact_2568_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
=> ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_2569_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_2570_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_2571_mult__less__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2572_mult__less__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2573_mult__less__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2574_mult__less__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2575_mult__less__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2576_mult__less__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2577_mult__less__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2578_mult__less__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2579_mult__less__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2580_mult__less__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2581_mult__less__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2582_mult__less__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2583_mult__le__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2584_mult__le__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2585_mult__le__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2586_mult__le__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2587_mult__le__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2588_mult__le__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2589_mult__le__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2590_mult__le__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2591_mult__le__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2592_mult__le__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2593_mult__le__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2594_mult__le__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2595_convex__bound__le,axiom,
! [X: real,A: real,Y3: real,U2: real,V: real] :
( ( ord_less_eq_real @ X @ A )
=> ( ( ord_less_eq_real @ Y3 @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U2 @ V )
= one_one_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U2 @ X ) @ ( times_times_real @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_2596_convex__bound__le,axiom,
! [X: rat,A: rat,Y3: rat,U2: rat,V: rat] :
( ( ord_less_eq_rat @ X @ A )
=> ( ( ord_less_eq_rat @ Y3 @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U2 @ V )
= one_one_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U2 @ X ) @ ( times_times_rat @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_2597_convex__bound__le,axiom,
! [X: int,A: int,Y3: int,U2: int,V: int] :
( ( ord_less_eq_int @ X @ A )
=> ( ( ord_less_eq_int @ Y3 @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U2 @ V )
= one_one_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U2 @ X ) @ ( times_times_int @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_2598_divide__less__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2599_divide__less__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2600_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2601_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2602_power__Suc__less,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2603_power__Suc__less,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2604_power__Suc__less,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2605_power__Suc__less,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2606_power__Suc__le__self,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2607_power__Suc__le__self,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2608_power__Suc__le__self,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2609_power__Suc__le__self,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2610_power__Suc__less__one,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_2611_power__Suc__less__one,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ one_one_rat ) ) ) ).
% power_Suc_less_one
thf(fact_2612_power__Suc__less__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_2613_power__Suc__less__one,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_2614_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2615_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2616_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2617_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2618_power__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2619_power__decreasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2620_power__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2621_power__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2622_zero__power2,axiom,
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat ) ).
% zero_power2
thf(fact_2623_zero__power2,axiom,
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% zero_power2
thf(fact_2624_zero__power2,axiom,
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real ) ).
% zero_power2
thf(fact_2625_zero__power2,axiom,
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% zero_power2
thf(fact_2626_zero__power2,axiom,
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex ) ).
% zero_power2
thf(fact_2627_self__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2628_self__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2629_self__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2630_self__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2631_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2632_one__less__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2633_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2634_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2635_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_2636_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_2637_power__diff,axiom,
! [A: complex,N: nat,M: nat] :
( ( A != zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2638_power__diff,axiom,
! [A: real,N: nat,M: nat] :
( ( A != zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2639_power__diff,axiom,
! [A: rat,N: nat,M: nat] :
( ( A != zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2640_power__diff,axiom,
! [A: nat,N: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2641_power__diff,axiom,
! [A: int,N: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2642_div__if,axiom,
( divide_divide_nat
= ( ^ [M6: nat,N2: nat] :
( if_nat
@ ( ( ord_less_nat @ M6 @ N2 )
| ( N2 = zero_zero_nat ) )
@ zero_zero_nat
@ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M6 @ N2 ) @ N2 ) ) ) ) ) ).
% div_if
thf(fact_2643_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_2644_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_2645_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M6: nat,N2: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ N2 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) @ N2 ) ) ) ) ) ).
% add_eq_if
thf(fact_2646_less__eq__div__iff__mult__less__eq,axiom,
! [Q3: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q3 )
=> ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q3 ) )
= ( ord_less_eq_nat @ ( times_times_nat @ M @ Q3 ) @ N ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_2647_divmod__digit__0_I2_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_2648_divmod__digit__0_I2_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_2649_divmod__digit__0_I2_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_2650_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I3: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I3 ) @ J3 ) )
=> ( P @ I3 ) ) ) ) ) ) ).
% split_div
thf(fact_2651_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_2652_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_2653_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M6: nat,N2: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) @ N2 ) ) ) ) ) ).
% mult_eq_if
thf(fact_2654_split__mod,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( modulo_modulo_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ M ) )
& ( ( N != zero_zero_nat )
=> ! [I3: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I3 ) @ J3 ) )
=> ( P @ J3 ) ) ) ) ) ) ).
% split_mod
thf(fact_2655_vebt__member_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc ) @ X ) ).
% vebt_member.simps(4)
thf(fact_2656_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Va: list_VEBT_VEBT,Vb: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va @ Vb ) @ X )
= ( ( X = Mi )
| ( X = Ma ) ) ) ).
% VEBT_internal.membermima.simps(3)
thf(fact_2657_vebt__succ_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc @ Vd ) @ Ve )
= none_nat ) ).
% vebt_succ.simps(4)
thf(fact_2658_convex__bound__lt,axiom,
! [X: real,A: real,Y3: real,U2: real,V: real] :
( ( ord_less_real @ X @ A )
=> ( ( ord_less_real @ Y3 @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U2 @ V )
= one_one_real )
=> ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U2 @ X ) @ ( times_times_real @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_2659_convex__bound__lt,axiom,
! [X: rat,A: rat,Y3: rat,U2: rat,V: rat] :
( ( ord_less_rat @ X @ A )
=> ( ( ord_less_rat @ Y3 @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U2 @ V )
= one_one_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U2 @ X ) @ ( times_times_rat @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_2660_convex__bound__lt,axiom,
! [X: int,A: int,Y3: int,U2: int,V: int] :
( ( ord_less_int @ X @ A )
=> ( ( ord_less_int @ Y3 @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U2 @ V )
= one_one_int )
=> ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U2 @ X ) @ ( times_times_int @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_2661_divide__le__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_2662_divide__le__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_2663_le__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_2664_le__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_2665_half__gt__zero,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_2666_half__gt__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_2667_half__gt__zero__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% half_gt_zero_iff
thf(fact_2668_half__gt__zero__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% half_gt_zero_iff
thf(fact_2669_zero__le__power2,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_2670_zero__le__power2,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_2671_zero__le__power2,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_2672_power2__eq__imp__eq,axiom,
! [X: real,Y3: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( X = Y3 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2673_power2__eq__imp__eq,axiom,
! [X: rat,Y3: rat] :
( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( X = Y3 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2674_power2__eq__imp__eq,axiom,
! [X: nat,Y3: nat] :
( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
=> ( X = Y3 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2675_power2__eq__imp__eq,axiom,
! [X: int,Y3: int] :
( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( X = Y3 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2676_power2__le__imp__le,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ X @ Y3 ) ) ) ).
% power2_le_imp_le
thf(fact_2677_power2__le__imp__le,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_eq_rat @ X @ Y3 ) ) ) ).
% power2_le_imp_le
thf(fact_2678_power2__le__imp__le,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
=> ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power2_le_imp_le
thf(fact_2679_power2__le__imp__le,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ord_less_eq_int @ X @ Y3 ) ) ) ).
% power2_le_imp_le
thf(fact_2680_divmod__digit__0_I1_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_2681_divmod__digit__0_I1_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_2682_divmod__digit__0_I1_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_2683_power2__less__0,axiom,
! [A: real] :
~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).
% power2_less_0
thf(fact_2684_power2__less__0,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).
% power2_less_0
thf(fact_2685_power2__less__0,axiom,
! [A: int] :
~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).
% power2_less_0
thf(fact_2686_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_left
thf(fact_2687_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_left
thf(fact_2688_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_right
thf(fact_2689_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_right
thf(fact_2690_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N: nat,M: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
!= zero_zero_nat ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_2691_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N: nat,M: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
!= zero_zero_int ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_2692_power__diff__power__eq,axiom,
! [A: nat,N: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
= ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
= ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_2693_power__diff__power__eq,axiom,
! [A: int,N: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
= ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
= ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_2694_less__2__cases,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_2695_less__2__cases__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_2696_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_2697_power__eq__if,axiom,
( power_power_complex
= ( ^ [P5: complex,M6: nat] : ( if_complex @ ( M6 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P5 @ ( power_power_complex @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2698_power__eq__if,axiom,
( power_power_real
= ( ^ [P5: real,M6: nat] : ( if_real @ ( M6 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P5 @ ( power_power_real @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2699_power__eq__if,axiom,
( power_power_rat
= ( ^ [P5: rat,M6: nat] : ( if_rat @ ( M6 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P5 @ ( power_power_rat @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2700_power__eq__if,axiom,
( power_power_nat
= ( ^ [P5: nat,M6: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P5 @ ( power_power_nat @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2701_power__eq__if,axiom,
( power_power_int
= ( ^ [P5: int,M6: nat] : ( if_int @ ( M6 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P5 @ ( power_power_int @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2702_power__minus__mult,axiom,
! [N: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_complex @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2703_power__minus__mult,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_real @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2704_power__minus__mult,axiom,
! [N: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_rat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2705_power__minus__mult,axiom,
! [N: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2706_power__minus__mult,axiom,
! [N: nat,A: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_int @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2707_le__div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ M @ N )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).
% le_div_geq
thf(fact_2708_split__div_H,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
& ( P @ zero_zero_nat ) )
| ? [Q4: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q4 ) @ M )
& ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q4 ) ) )
& ( P @ Q4 ) ) ) ) ).
% split_div'
thf(fact_2709_Suc__times__mod__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
= one_one_nat ) ) ).
% Suc_times_mod_eq
thf(fact_2710_vebt__succ_Osimps_I5_J,axiom,
! [V: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi )
= none_nat ) ).
% vebt_succ.simps(5)
thf(fact_2711_mod__double__modulus,axiom,
! [M: code_integer,X: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
=> ( ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( modulo364778990260209775nteger @ X @ M ) )
| ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_2712_mod__double__modulus,axiom,
! [M: nat,X: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_nat @ X @ M ) )
| ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_nat @ ( modulo_modulo_nat @ X @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_2713_mod__double__modulus,axiom,
! [M: int,X: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_int @ X @ M ) )
| ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_int @ ( modulo_modulo_int @ X @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_2714_divmod__digit__1_I2_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_2715_divmod__digit__1_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_2716_divmod__digit__1_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_2717_power2__less__imp__less,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_real @ X @ Y3 ) ) ) ).
% power2_less_imp_less
thf(fact_2718_power2__less__imp__less,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_rat @ X @ Y3 ) ) ) ).
% power2_less_imp_less
thf(fact_2719_power2__less__imp__less,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
=> ( ord_less_nat @ X @ Y3 ) ) ) ).
% power2_less_imp_less
thf(fact_2720_power2__less__imp__less,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ord_less_int @ X @ Y3 ) ) ) ).
% power2_less_imp_less
thf(fact_2721_sum__power2__ge__zero,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_2722_sum__power2__ge__zero,axiom,
! [X: rat,Y3: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_2723_sum__power2__ge__zero,axiom,
! [X: int,Y3: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_2724_sum__power2__le__zero__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_2725_sum__power2__le__zero__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y3 = zero_zero_rat ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_2726_sum__power2__le__zero__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_2727_not__sum__power2__lt__zero,axiom,
! [X: real,Y3: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).
% not_sum_power2_lt_zero
thf(fact_2728_not__sum__power2__lt__zero,axiom,
! [X: rat,Y3: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).
% not_sum_power2_lt_zero
thf(fact_2729_not__sum__power2__lt__zero,axiom,
! [X: int,Y3: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).
% not_sum_power2_lt_zero
thf(fact_2730_sum__power2__gt__zero__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_real )
| ( Y3 != zero_zero_real ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_2731_sum__power2__gt__zero__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_rat )
| ( Y3 != zero_zero_rat ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_2732_sum__power2__gt__zero__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_int )
| ( Y3 != zero_zero_int ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_2733_bits__stable__imp__add__self,axiom,
! [A: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_nat ) ) ).
% bits_stable_imp_add_self
thf(fact_2734_bits__stable__imp__add__self,axiom,
! [A: int] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= zero_zero_int ) ) ).
% bits_stable_imp_add_self
thf(fact_2735_bits__stable__imp__add__self,axiom,
! [A: code_integer] :
( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= zero_z3403309356797280102nteger ) ) ).
% bits_stable_imp_add_self
thf(fact_2736_zero__le__even__power_H,axiom,
! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_2737_zero__le__even__power_H,axiom,
! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_2738_zero__le__even__power_H,axiom,
! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_2739_nat__bit__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_bit_induct
thf(fact_2740_div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_2741_Suc__n__div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_2742_times__divide__times__eq,axiom,
! [X: complex,Y3: complex,Z4: complex,W: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ X @ Y3 ) @ ( divide1717551699836669952omplex @ Z4 @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X @ Z4 ) @ ( times_times_complex @ Y3 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_2743_times__divide__times__eq,axiom,
! [X: real,Y3: real,Z4: real,W: real] :
( ( times_times_real @ ( divide_divide_real @ X @ Y3 ) @ ( divide_divide_real @ Z4 @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ Z4 ) @ ( times_times_real @ Y3 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_2744_times__divide__times__eq,axiom,
! [X: rat,Y3: rat,Z4: rat,W: rat] :
( ( times_times_rat @ ( divide_divide_rat @ X @ Y3 ) @ ( divide_divide_rat @ Z4 @ W ) )
= ( divide_divide_rat @ ( times_times_rat @ X @ Z4 ) @ ( times_times_rat @ Y3 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_2745_divide__divide__times__eq,axiom,
! [X: complex,Y3: complex,Z4: complex,W: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X @ Y3 ) @ ( divide1717551699836669952omplex @ Z4 @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X @ W ) @ ( times_times_complex @ Y3 @ Z4 ) ) ) ).
% divide_divide_times_eq
thf(fact_2746_divide__divide__times__eq,axiom,
! [X: real,Y3: real,Z4: real,W: real] :
( ( divide_divide_real @ ( divide_divide_real @ X @ Y3 ) @ ( divide_divide_real @ Z4 @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y3 @ Z4 ) ) ) ).
% divide_divide_times_eq
thf(fact_2747_divide__divide__times__eq,axiom,
! [X: rat,Y3: rat,Z4: rat,W: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ X @ Y3 ) @ ( divide_divide_rat @ Z4 @ W ) )
= ( divide_divide_rat @ ( times_times_rat @ X @ W ) @ ( times_times_rat @ Y3 @ Z4 ) ) ) ).
% divide_divide_times_eq
thf(fact_2748_divide__divide__eq__left_H,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_2749_divide__divide__eq__left_H,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_2750_divide__divide__eq__left_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_2751_add__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_2752_add__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_2753_add__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_2754_diff__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
= ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_2755_diff__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_2756_diff__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_2757_odd__0__le__power__imp__0__le,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_2758_odd__0__le__power__imp__0__le,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_2759_odd__0__le__power__imp__0__le,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_2760_odd__power__less__zero,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).
% odd_power_less_zero
thf(fact_2761_odd__power__less__zero,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_rat ) ) ).
% odd_power_less_zero
thf(fact_2762_odd__power__less__zero,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).
% odd_power_less_zero
thf(fact_2763_divmod__digit__1_I1_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_2764_divmod__digit__1_I1_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
= ( divide_divide_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_2765_divmod__digit__1_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
= ( divide_divide_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_2766_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
! [X: nat,N: nat,M: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ X @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(1)
thf(fact_2767_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
! [X: nat,N: nat,M: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_low @ X @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(2)
thf(fact_2768_arith__geo__mean,axiom,
! [U2: real,X: real,Y3: real] :
( ( ( power_power_real @ U2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ X @ Y3 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ U2 @ ( divide_divide_real @ ( plus_plus_real @ X @ Y3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_2769_arith__geo__mean,axiom,
! [U2: rat,X: rat,Y3: rat] :
( ( ( power_power_rat @ U2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_rat @ X @ Y3 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ord_less_eq_rat @ U2 @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y3 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_2770_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q3: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q3 ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_2771_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q3: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q3 ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_2772_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q3: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q3 ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_2773_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_2774_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_2775_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_2776_mod__geq,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).
% mod_geq
thf(fact_2777_nat__mod__eq__iff,axiom,
! [X: nat,N: nat,Y3: nat] :
( ( ( modulo_modulo_nat @ X @ N )
= ( modulo_modulo_nat @ Y3 @ N ) )
= ( ? [Q1: nat,Q22: nat] :
( ( plus_plus_nat @ X @ ( times_times_nat @ N @ Q1 ) )
= ( plus_plus_nat @ Y3 @ ( times_times_nat @ N @ Q22 ) ) ) ) ) ).
% nat_mod_eq_iff
thf(fact_2778_discrete,axiom,
( ord_less_nat
= ( ^ [A5: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A5 @ one_one_nat ) ) ) ) ).
% discrete
thf(fact_2779_discrete,axiom,
( ord_less_int
= ( ^ [A5: int] : ( ord_less_eq_int @ ( plus_plus_int @ A5 @ one_one_int ) ) ) ) ).
% discrete
thf(fact_2780_gt__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).
% gt_half_sum
thf(fact_2781_gt__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).
% gt_half_sum
thf(fact_2782_less__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).
% less_half_sum
thf(fact_2783_less__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).
% less_half_sum
thf(fact_2784_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q3: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_2785_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q3: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_2786_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q3: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_2787_cong__exp__iff__simps_I6_J,axiom,
! [Q3: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_2788_cong__exp__iff__simps_I6_J,axiom,
! [Q3: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_2789_cong__exp__iff__simps_I6_J,axiom,
! [Q3: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_2790_nat__mod__eq__lemma,axiom,
! [X: nat,N: nat,Y3: nat] :
( ( ( modulo_modulo_nat @ X @ N )
= ( modulo_modulo_nat @ Y3 @ N ) )
=> ( ( ord_less_eq_nat @ Y3 @ X )
=> ? [Q2: nat] :
( X
= ( plus_plus_nat @ Y3 @ ( times_times_nat @ N @ Q2 ) ) ) ) ) ).
% nat_mod_eq_lemma
thf(fact_2791_mod__eq__nat2E,axiom,
! [M: nat,Q3: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q3 )
= ( modulo_modulo_nat @ N @ Q3 ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ~ ! [S: nat] :
( N
!= ( plus_plus_nat @ M @ ( times_times_nat @ Q3 @ S ) ) ) ) ) ).
% mod_eq_nat2E
thf(fact_2792_mod__eq__nat1E,axiom,
! [M: nat,Q3: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q3 )
= ( modulo_modulo_nat @ N @ Q3 ) )
=> ( ( ord_less_eq_nat @ N @ M )
=> ~ ! [S: nat] :
( M
!= ( plus_plus_nat @ N @ ( times_times_nat @ Q3 @ S ) ) ) ) ) ).
% mod_eq_nat1E
thf(fact_2793_vebt__succ_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: option_nat] :
( ( ( vEBT_vebt_succ @ X @ Xa2 )
= Y3 )
=> ( ! [Uu3: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ B4 ) )
=> ( ( Xa2 = zero_zero_nat )
=> ~ ( ( B4
=> ( Y3
= ( some_nat @ one_one_nat ) ) )
& ( ~ B4
=> ( Y3 = none_nat ) ) ) ) )
=> ( ( ? [Uv2: $o,Uw2: $o] :
( X
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ( ? [N3: nat] :
( Xa2
= ( suc @ N3 ) )
=> ( Y3 != none_nat ) ) )
=> ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y3 != none_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
=> ( Y3 != none_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( Y3 != none_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( ( ord_less_nat @ Xa2 @ Mi2 )
=> ( Y3
= ( some_nat @ Mi2 ) ) )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( Y3
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.elims
thf(fact_2794_buildup__gives__valid,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N ) @ N ) ) ).
% buildup_gives_valid
thf(fact_2795_verit__le__mono__div,axiom,
! [A2: nat,B2: nat,N: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat
@ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N )
@ ( if_nat
@ ( ( modulo_modulo_nat @ B2 @ N )
= zero_zero_nat )
@ one_one_nat
@ zero_zero_nat ) )
@ ( divide_divide_nat @ B2 @ N ) ) ) ) ).
% verit_le_mono_div
thf(fact_2796_inrange,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ord_less_eq_set_nat @ ( vEBT_VEBT_set_vebt @ T ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% inrange
thf(fact_2797_buildup__gives__empty,axiom,
! [N: nat] :
( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N ) )
= bot_bot_set_nat ) ).
% buildup_gives_empty
thf(fact_2798_set__bit__0,axiom,
! [A: int] :
( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_2799_set__bit__0,axiom,
! [A: nat] :
( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_2800_invar__vebt_Ocases,axiom,
! [A1: vEBT_VEBT,A22: nat] :
( ( vEBT_invar_vebt @ A1 @ A22 )
=> ( ( ? [A4: $o,B4: $o] :
( A1
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( A22
!= ( suc @ zero_zero_nat ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( M5 = N3 )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M5 ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_1 )
=> ~ ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( M5
= ( suc @ N3 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M5 ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_1 )
=> ~ ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( M5 = N3 )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M5 ) )
=> ( ! [I: nat] :
( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I: nat] :
( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
= I )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N3 )
= I )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ X4 @ N3 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( M5
= ( suc @ N3 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M5 ) )
=> ( ! [I: nat] :
( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I: nat] :
( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
= I )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N3 )
= I )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ X4 @ N3 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.cases
thf(fact_2801_invar__vebt_Osimps,axiom,
( vEBT_invar_vebt
= ( ^ [A12: vEBT_VEBT,A23: nat] :
( ( ? [A5: $o,B5: $o] :
( A12
= ( vEBT_Leaf @ A5 @ B5 ) )
& ( A23
= ( suc @ zero_zero_nat ) ) )
| ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList3 @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X2 @ N2 ) )
& ( vEBT_invar_vebt @ Summary3 @ N2 )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
& ( A23
= ( plus_plus_nat @ N2 @ N2 ) )
& ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
| ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList3 @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X2 @ N2 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N2 ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
& ( A23
= ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) )
& ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
| ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X2 @ N2 ) )
& ( vEBT_invar_vebt @ Summary3 @ N2 )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
& ( A23
= ( plus_plus_nat @ N2 @ N2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N2 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma3 @ N2 ) ) )
& ! [X2: nat] :
( ( ( ( vEBT_VEBT_high @ X2 @ N2 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X2 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) )
| ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X2 @ N2 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N2 ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
& ( A23
= ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N2 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma3 @ N2 ) ) )
& ! [X2: nat] :
( ( ( ( vEBT_VEBT_high @ X2 @ N2 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X2 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.simps
thf(fact_2802_buildup__nothing__in__min__max,axiom,
! [N: nat,X: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N ) @ X ) ).
% buildup_nothing_in_min_max
thf(fact_2803_buildup__nothing__in__leaf,axiom,
! [N: nat,X: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X ) ).
% buildup_nothing_in_leaf
thf(fact_2804_Leaf__0__not,axiom,
! [A: $o,B: $o] :
~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat ) ).
% Leaf_0_not
thf(fact_2805_deg1Leaf,axiom,
! [T: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T @ one_one_nat )
= ( ? [A5: $o,B5: $o] :
( T
= ( vEBT_Leaf @ A5 @ B5 ) ) ) ) ).
% deg1Leaf
thf(fact_2806_deg__1__Leaf,axiom,
! [T: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T @ one_one_nat )
=> ? [A4: $o,B4: $o] :
( T
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ).
% deg_1_Leaf
thf(fact_2807_deg__1__Leafy,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( N = one_one_nat )
=> ? [A4: $o,B4: $o] :
( T
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ).
% deg_1_Leafy
thf(fact_2808_verit__eq__simplify_I8_J,axiom,
! [X22: num,Y22: num] :
( ( ( bit0 @ X22 )
= ( bit0 @ Y22 ) )
= ( X22 = Y22 ) ) ).
% verit_eq_simplify(8)
thf(fact_2809_VEBT_Oinject_I2_J,axiom,
! [X21: $o,X222: $o,Y21: $o,Y222: $o] :
( ( ( vEBT_Leaf @ X21 @ X222 )
= ( vEBT_Leaf @ Y21 @ Y222 ) )
= ( ( X21 = Y21 )
& ( X222 = Y222 ) ) ) ).
% VEBT.inject(2)
thf(fact_2810_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_2811_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_2812_mod__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_2813_mod__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_2814_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_2815_idiff__0,axiom,
! [N: extended_enat] :
( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
= zero_z5237406670263579293d_enat ) ).
% idiff_0
thf(fact_2816_idiff__0__right,axiom,
! [N: extended_enat] :
( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
= N ) ).
% idiff_0_right
thf(fact_2817_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
= ( X = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_2818_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_2819_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_2820_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_2821_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_2822_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_2823_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_2824_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I4: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I4 @ K ) )
= ( ord_less_eq_int @ K @ I4 ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_2825_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_2826_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_2827_div__positive__int,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ L @ K )
=> ( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) ) ) ) ).
% div_positive_int
thf(fact_2828_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
= ( ( K = zero_zero_int )
| ( L = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_2829_zdiv__mono2__neg,axiom,
! [A: int,B3: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B3 )
=> ( ( ord_less_eq_int @ B3 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B3 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_2830_zdiv__mono1__neg,axiom,
! [A: int,A3: int,B: int] :
( ( ord_less_eq_int @ A @ A3 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A3 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_2831_zdiv__eq__0__iff,axiom,
! [I4: int,K: int] :
( ( ( divide_divide_int @ I4 @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I4 )
& ( ord_less_int @ I4 @ K ) )
| ( ( ord_less_eq_int @ I4 @ zero_zero_int )
& ( ord_less_int @ K @ I4 ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_2832_div__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).
% div_pos_geq
thf(fact_2833_zdiv__mono2,axiom,
! [A: int,B3: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B3 )
=> ( ( ord_less_eq_int @ B3 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B3 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_2834_zdiv__mono1,axiom,
! [A: int,A3: int,B: int] :
( ( ord_less_eq_int @ A @ A3 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A3 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_2835_vebt__buildup_Osimps_I1_J,axiom,
( ( vEBT_vebt_buildup @ zero_zero_nat )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(1)
thf(fact_2836_verit__le__mono__div__int,axiom,
! [A2: int,B2: int,N: int] :
( ( ord_less_int @ A2 @ B2 )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int
@ ( plus_plus_int @ ( divide_divide_int @ A2 @ N )
@ ( if_int
@ ( ( modulo_modulo_int @ B2 @ N )
= zero_zero_int )
@ one_one_int
@ zero_zero_int ) )
@ ( divide_divide_int @ B2 @ N ) ) ) ) ).
% verit_le_mono_div_int
thf(fact_2837_VEBT_Osize_I4_J,axiom,
! [X21: $o,X222: $o] :
( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size(4)
thf(fact_2838_vebt__buildup_Osimps_I2_J,axiom,
( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(2)
thf(fact_2839_VEBT_Odistinct_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,X21: $o,X222: $o] :
( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
!= ( vEBT_Leaf @ X21 @ X222 ) ) ).
% VEBT.distinct(1)
thf(fact_2840_VEBT_Oexhaust,axiom,
! [Y3: vEBT_VEBT] :
( ! [X112: option4927543243414619207at_nat,X122: nat,X132: list_VEBT_VEBT,X142: vEBT_VEBT] :
( Y3
!= ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
=> ~ ! [X212: $o,X223: $o] :
( Y3
!= ( vEBT_Leaf @ X212 @ X223 ) ) ) ).
% VEBT.exhaust
thf(fact_2841_VEBT__internal_Ovalid_H_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [Uu3: $o,Uv2: $o,D3: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ Uv2 ) @ D3 ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,Deg3: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Deg3 ) ) ) ).
% VEBT_internal.valid'.cases
thf(fact_2842_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
! [Uu2: $o,Uv: $o,Uw: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu2 @ Uv ) @ Uw ) ).
% VEBT_internal.membermima.simps(1)
thf(fact_2843_VEBT__internal_OminNull_Osimps_I3_J,axiom,
! [Uu2: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ Uu2 @ $true ) ) ).
% VEBT_internal.minNull.simps(3)
thf(fact_2844_VEBT__internal_OminNull_Osimps_I2_J,axiom,
! [Uv: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ $true @ Uv ) ) ).
% VEBT_internal.minNull.simps(2)
thf(fact_2845_VEBT__internal_OminNull_Osimps_I1_J,axiom,
vEBT_VEBT_minNull @ ( vEBT_Leaf @ $false @ $false ) ).
% VEBT_internal.minNull.simps(1)
thf(fact_2846_split__zdiv,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( divide_divide_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ zero_zero_int ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I3: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I3: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 ) ) ) ) ) ).
% split_zdiv
thf(fact_2847_q__pos__lemma,axiom,
! [B3: int,Q5: int,R3: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B3 @ Q5 ) @ R3 ) )
=> ( ( ord_less_int @ R3 @ B3 )
=> ( ( ord_less_int @ zero_zero_int @ B3 )
=> ( ord_less_eq_int @ zero_zero_int @ Q5 ) ) ) ) ).
% q_pos_lemma
thf(fact_2848_int__div__neg__eq,axiom,
! [A: int,B: int,Q3: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( divide_divide_int @ A @ B )
= Q3 ) ) ) ) ).
% int_div_neg_eq
thf(fact_2849_int__div__pos__eq,axiom,
! [A: int,B: int,Q3: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( divide_divide_int @ A @ B )
= Q3 ) ) ) ) ).
% int_div_pos_eq
thf(fact_2850_zdiv__mono2__lemma,axiom,
! [B: int,Q3: int,R2: int,B3: int,Q5: int,R3: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B3 @ Q5 ) @ R3 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B3 @ Q5 ) @ R3 ) )
=> ( ( ord_less_int @ R3 @ B3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ zero_zero_int @ B3 )
=> ( ( ord_less_eq_int @ B3 @ B )
=> ( ord_less_eq_int @ Q3 @ Q5 ) ) ) ) ) ) ) ).
% zdiv_mono2_lemma
thf(fact_2851_zdiv__mono2__neg__lemma,axiom,
! [B: int,Q3: int,R2: int,B3: int,Q5: int,R3: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B3 @ Q5 ) @ R3 ) )
=> ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B3 @ Q5 ) @ R3 ) @ zero_zero_int )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ R3 )
=> ( ( ord_less_int @ zero_zero_int @ B3 )
=> ( ( ord_less_eq_int @ B3 @ B )
=> ( ord_less_eq_int @ Q5 @ Q3 ) ) ) ) ) ) ) ).
% zdiv_mono2_neg_lemma
thf(fact_2852_unique__quotient__lemma,axiom,
! [B: int,Q5: int,R3: int,Q3: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R3 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R3 )
=> ( ( ord_less_int @ R3 @ B )
=> ( ( ord_less_int @ R2 @ B )
=> ( ord_less_eq_int @ Q5 @ Q3 ) ) ) ) ) ).
% unique_quotient_lemma
thf(fact_2853_unique__quotient__lemma__neg,axiom,
! [B: int,Q5: int,R3: int,Q3: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R3 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( ord_less_int @ B @ R3 )
=> ( ord_less_eq_int @ Q3 @ Q5 ) ) ) ) ) ).
% unique_quotient_lemma_neg
thf(fact_2854_zdiv__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% zdiv_zmult2_eq
thf(fact_2855_mod__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ L @ K )
=> ( ( modulo_modulo_int @ K @ L )
= ( modulo_modulo_int @ ( minus_minus_int @ K @ L ) @ L ) ) ) ) ).
% mod_pos_geq
thf(fact_2856_neg__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
& ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% neg_mod_conj
thf(fact_2857_pos__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
& ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).
% pos_mod_conj
thf(fact_2858_zmod__trivial__iff,axiom,
! [I4: int,K: int] :
( ( ( modulo_modulo_int @ I4 @ K )
= I4 )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I4 )
& ( ord_less_int @ I4 @ K ) )
| ( ( ord_less_eq_int @ I4 @ zero_zero_int )
& ( ord_less_int @ K @ I4 ) ) ) ) ).
% zmod_trivial_iff
thf(fact_2859_neg__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L ) @ zero_zero_int ) ) ).
% neg_mod_sign
thf(fact_2860_Euclidean__Division_Opos__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_2861_mod__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
= ( plus_plus_int @ K @ L ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_2862_neg__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_int @ L @ ( modulo_modulo_int @ K @ L ) ) ) ).
% neg_mod_bound
thf(fact_2863_Euclidean__Division_Opos__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_int @ ( modulo_modulo_int @ K @ L ) @ L ) ) ).
% Euclidean_Division.pos_mod_bound
thf(fact_2864_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).
% zmod_le_nonneg_dividend
thf(fact_2865_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_2866_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_2867_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
& ( N = zero_z5237406670263579293d_enat ) ) ) ).
% iadd_is_0
thf(fact_2868_i0__lb,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).
% i0_lb
thf(fact_2869_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% ile0_eq
thf(fact_2870_ex__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M6: nat] :
( ( ord_less_eq_nat @ M6 @ N )
& ( P @ M6 ) ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
& ( P @ X2 ) ) ) ) ).
% ex_nat_less
thf(fact_2871_all__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M6: nat] :
( ( ord_less_eq_nat @ M6 @ N )
=> ( P @ M6 ) ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
=> ( P @ X2 ) ) ) ) ).
% all_nat_less
thf(fact_2872_split__zmod,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( modulo_modulo_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ N ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I3: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ J3 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I3: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ J3 ) ) ) ) ) ).
% split_zmod
thf(fact_2873_int__mod__neg__eq,axiom,
! [A: int,B: int,Q3: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_neg_eq
thf(fact_2874_int__mod__pos__eq,axiom,
! [A: int,B: int,Q3: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_pos_eq
thf(fact_2875_split__neg__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
= ( ! [I3: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 @ J3 ) ) ) ) ) ).
% split_neg_lemma
thf(fact_2876_split__pos__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
= ( ! [I3: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 @ J3 ) ) ) ) ) ).
% split_pos_lemma
thf(fact_2877_zmod__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% zmod_zmult2_eq
thf(fact_2878_zmod__eq__0D,axiom,
! [M: int,D: int] :
( ( ( modulo_modulo_int @ M @ D )
= zero_zero_int )
=> ? [Q2: int] :
( M
= ( times_times_int @ D @ Q2 ) ) ) ).
% zmod_eq_0D
thf(fact_2879_zmod__eq__0__iff,axiom,
! [M: int,D: int] :
( ( ( modulo_modulo_int @ M @ D )
= zero_zero_int )
= ( ? [Q4: int] :
( M
= ( times_times_int @ D @ Q4 ) ) ) ) ).
% zmod_eq_0_iff
thf(fact_2880_VEBT__internal_Onaive__member_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [A4: $o,B4: $o,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ X5 ) )
=> ( ! [Uu3: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu3 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ X5 ) ) ) ) ).
% VEBT_internal.naive_member.cases
thf(fact_2881_invar__vebt_Ointros_I1_J,axiom,
! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).
% invar_vebt.intros(1)
thf(fact_2882_vebt__member_Osimps_I1_J,axiom,
! [A: $o,B: $o,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Leaf @ A @ B ) @ X )
= ( ( ( X = zero_zero_nat )
=> A )
& ( ( X != zero_zero_nat )
=> ( ( ( X = one_one_nat )
=> B )
& ( X = one_one_nat ) ) ) ) ) ).
% vebt_member.simps(1)
thf(fact_2883_VEBT__internal_OminNull_Ocases,axiom,
! [X: vEBT_VEBT] :
( ( X
!= ( vEBT_Leaf @ $false @ $false ) )
=> ( ! [Uv2: $o] :
( X
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu3: $o] :
( X
!= ( vEBT_Leaf @ Uu3 @ $true ) )
=> ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ).
% VEBT_internal.minNull.cases
thf(fact_2884_vebt__insert_Osimps_I1_J,axiom,
! [X: nat,A: $o,B: $o] :
( ( ( X = zero_zero_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X )
= ( vEBT_Leaf @ $true @ B ) ) )
& ( ( X != zero_zero_nat )
=> ( ( ( X = one_one_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X )
= ( vEBT_Leaf @ A @ $true ) ) )
& ( ( X != one_one_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X )
= ( vEBT_Leaf @ A @ B ) ) ) ) ) ) ).
% vebt_insert.simps(1)
thf(fact_2885_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
! [A: $o,B: $o,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X )
= ( ( ( X = zero_zero_nat )
=> A )
& ( ( X != zero_zero_nat )
=> ( ( ( X = one_one_nat )
=> B )
& ( X = one_one_nat ) ) ) ) ) ).
% VEBT_internal.naive_member.simps(1)
thf(fact_2886_verit__comp__simplify1_I2_J,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_2887_verit__comp__simplify1_I2_J,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_2888_verit__comp__simplify1_I2_J,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_2889_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_2890_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_2891_verit__la__disequality,axiom,
! [A: rat,B: rat] :
( ( A = B )
| ~ ( ord_less_eq_rat @ A @ B )
| ~ ( ord_less_eq_rat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_2892_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_2893_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_2894_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_2895_vebt__succ_Osimps_I2_J,axiom,
! [Uv: $o,Uw: $o,N: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N ) )
= none_nat ) ).
% vebt_succ.simps(2)
thf(fact_2896_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_2897_verit__comp__simplify1_I1_J,axiom,
! [A: rat] :
~ ( ord_less_rat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_2898_verit__comp__simplify1_I1_J,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_2899_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_2900_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_2901_VEBT__internal_OminNull_Oelims_I3_J,axiom,
! [X: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X )
=> ( ! [Uv2: $o] :
( X
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu3: $o] :
( X
!= ( vEBT_Leaf @ Uu3 @ $true ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ).
% VEBT_internal.minNull.elims(3)
thf(fact_2902_VEBT__internal_OminNull_Oelims_I2_J,axiom,
! [X: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X )
=> ( ( X
!= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).
% VEBT_internal.minNull.elims(2)
thf(fact_2903_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).
% not_exp_less_eq_0_int
thf(fact_2904_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R4: real] :
( ( ord_less_real @ zero_zero_real @ R4 )
& ( ( power_power_real @ R4 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_2905_real__arch__pow__inv,axiom,
! [Y3: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X @ N3 ) @ Y3 ) ) ) ).
% real_arch_pow_inv
thf(fact_2906_vebt__mint_Ocases,axiom,
! [X: vEBT_VEBT] :
( ! [A4: $o,B4: $o] :
( X
!= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ! [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ).
% vebt_mint.cases
thf(fact_2907_VEBT__internal_OminNull_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Y3: $o] :
( ( ( vEBT_VEBT_minNull @ X )
= Y3 )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ Y3 )
=> ( ( ? [Uv2: $o] :
( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> Y3 )
=> ( ( ? [Uu3: $o] :
( X
= ( vEBT_Leaf @ Uu3 @ $true ) )
=> Y3 )
=> ( ( ? [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ Y3 )
=> ~ ( ? [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
=> Y3 ) ) ) ) ) ) ).
% VEBT_internal.minNull.elims(1)
thf(fact_2908_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
= ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_2909_pos__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% pos_zdiv_mult_2
thf(fact_2910_neg__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).
% neg_zdiv_mult_2
thf(fact_2911_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R4: real] :
( ( ord_less_real @ zero_zero_real @ R4 )
& ( ( power_power_real @ R4 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_2912_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X5: real] :
( ( ord_less_real @ zero_zero_real @ X5 )
& ( ( power_power_real @ X5 @ N )
= A )
& ! [Y5: real] :
( ( ( ord_less_real @ zero_zero_real @ Y5 )
& ( ( power_power_real @ Y5 @ N )
= A ) )
=> ( Y5 = X5 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_2913_vebt__succ_Osimps_I1_J,axiom,
! [B: $o,Uu2: $o] :
( ( B
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu2 @ B ) @ zero_zero_nat )
= ( some_nat @ one_one_nat ) ) )
& ( ~ B
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu2 @ B ) @ zero_zero_nat )
= none_nat ) ) ) ).
% vebt_succ.simps(1)
thf(fact_2914_vebt__maxt_Osimps_I1_J,axiom,
! [B: $o,A: $o] :
( ( B
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ one_one_nat ) ) )
& ( ~ B
=> ( ( A
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
= none_nat ) ) ) ) ) ).
% vebt_maxt.simps(1)
thf(fact_2915_vebt__mint_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( A
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A
=> ( ( B
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ one_one_nat ) ) )
& ( ~ B
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
= none_nat ) ) ) ) ) ).
% vebt_mint.simps(1)
thf(fact_2916_pos__zmod__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).
% pos_zmod_mult_2
thf(fact_2917_neg__zmod__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).
% neg_zmod_mult_2
thf(fact_2918_vebt__member_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [A4: $o,B4: $o,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ X5 ) )
=> ( ! [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) @ X5 ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ X5 ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ X5 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ).
% vebt_member.cases
thf(fact_2919_VEBT__internal_Omembermima_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [Uu3: $o,Uv2: $o,Uw2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ Uv2 ) @ Uw2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ X5 ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ X5 ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ X5 ) ) ) ) ) ) ).
% VEBT_internal.membermima.cases
thf(fact_2920_vebt__succ_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [Uu3: $o,B4: $o] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ B4 ) @ zero_zero_nat ) )
=> ( ! [Uv2: $o,Uw2: $o,N3: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N3 ) ) )
=> ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,Va2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Va2 ) )
=> ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT,Ve2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Ve2 ) )
=> ( ! [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Vi2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ) ).
% vebt_succ.cases
thf(fact_2921_vebt__insert_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [A4: $o,B4: $o,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ X5 ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S ) @ X5 ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) @ X5 ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ X5 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ).
% vebt_insert.cases
thf(fact_2922_verit__comp__simplify1_I3_J,axiom,
! [B3: real,A3: real] :
( ( ~ ( ord_less_eq_real @ B3 @ A3 ) )
= ( ord_less_real @ A3 @ B3 ) ) ).
% verit_comp_simplify1(3)
thf(fact_2923_verit__comp__simplify1_I3_J,axiom,
! [B3: rat,A3: rat] :
( ( ~ ( ord_less_eq_rat @ B3 @ A3 ) )
= ( ord_less_rat @ A3 @ B3 ) ) ).
% verit_comp_simplify1(3)
thf(fact_2924_verit__comp__simplify1_I3_J,axiom,
! [B3: num,A3: num] :
( ( ~ ( ord_less_eq_num @ B3 @ A3 ) )
= ( ord_less_num @ A3 @ B3 ) ) ).
% verit_comp_simplify1(3)
thf(fact_2925_verit__comp__simplify1_I3_J,axiom,
! [B3: nat,A3: nat] :
( ( ~ ( ord_less_eq_nat @ B3 @ A3 ) )
= ( ord_less_nat @ A3 @ B3 ) ) ).
% verit_comp_simplify1(3)
thf(fact_2926_verit__comp__simplify1_I3_J,axiom,
! [B3: int,A3: int] :
( ( ~ ( ord_less_eq_int @ B3 @ A3 ) )
= ( ord_less_int @ A3 @ B3 ) ) ).
% verit_comp_simplify1(3)
thf(fact_2927_verit__sum__simplify,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% verit_sum_simplify
thf(fact_2928_verit__sum__simplify,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% verit_sum_simplify
thf(fact_2929_verit__sum__simplify,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% verit_sum_simplify
thf(fact_2930_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_2931_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_2932_verit__eq__simplify_I10_J,axiom,
! [X22: num] :
( one
!= ( bit0 @ X22 ) ) ).
% verit_eq_simplify(10)
thf(fact_2933_div__mod__decomp__int,axiom,
! [A2: int,N: int] :
( A2
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N ) @ N ) @ ( modulo_modulo_int @ A2 @ N ) ) ) ).
% div_mod_decomp_int
thf(fact_2934_vebt__maxt_Oelims,axiom,
! [X: vEBT_VEBT,Y3: option_nat] :
( ( ( vEBT_vebt_maxt @ X )
= Y3 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( B4
=> ( Y3
= ( some_nat @ one_one_nat ) ) )
& ( ~ B4
=> ( ( A4
=> ( Y3
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y3 = none_nat ) ) ) ) ) )
=> ( ( ? [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ( Y3 != none_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat] :
( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y3
!= ( some_nat @ Ma2 ) ) ) ) ) ) ).
% vebt_maxt.elims
thf(fact_2935_vebt__mint_Oelims,axiom,
! [X: vEBT_VEBT,Y3: option_nat] :
( ( ( vEBT_vebt_mint @ X )
= Y3 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( A4
=> ( Y3
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( ( B4
=> ( Y3
= ( some_nat @ one_one_nat ) ) )
& ( ~ B4
=> ( Y3 = none_nat ) ) ) ) ) )
=> ( ( ? [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ( Y3 != none_nat ) )
=> ~ ! [Mi2: nat] :
( ? [Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y3
!= ( some_nat @ Mi2 ) ) ) ) ) ) ).
% vebt_mint.elims
thf(fact_2936_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
= Y3 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( Y3
= ( ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) ) )
=> ( ( ? [Uu3: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uu3 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> Y3 )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [S: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
=> ( Y3
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(1)
thf(fact_2937_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [S: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(2)
thf(fact_2938_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ( ! [Uu3: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ Uu3 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [S: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(3)
thf(fact_2939_div__less__mono,axiom,
! [A2: nat,B2: nat,N: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( modulo_modulo_nat @ A2 @ N )
= zero_zero_nat )
=> ( ( ( modulo_modulo_nat @ B2 @ N )
= zero_zero_nat )
=> ( ord_less_nat @ ( divide_divide_nat @ A2 @ N ) @ ( divide_divide_nat @ B2 @ N ) ) ) ) ) ) ).
% div_less_mono
thf(fact_2940_set__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se2793503036327961859nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_2941_set__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se7879613467334960850it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_2942_set__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se7882103937844011126it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_2943_div__mod__decomp,axiom,
! [A2: nat,N: nat] :
( A2
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N ) @ N ) @ ( modulo_modulo_nat @ A2 @ N ) ) ) ).
% div_mod_decomp
thf(fact_2944_vebt__member_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(2)
thf(fact_2945_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
= Y3 )
=> ( ( ? [Uu3: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> Y3 )
=> ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> Y3 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
=> ( Y3
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
=> ( Y3
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( Y3
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(1)
thf(fact_2946_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ! [Uu3: $o,Uv2: $o] :
( X
!= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(3)
thf(fact_2947_vebt__member_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_vebt_member @ X @ Xa2 )
= Y3 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( Y3
= ( ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) ) )
=> ( ( ? [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> Y3 )
=> ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> Y3 )
=> ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> Y3 )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y3
= ( ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(1)
thf(fact_2948_vebt__member_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ( ! [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(3)
thf(fact_2949_atLeastatMost__empty,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( set_or633870826150836451st_rat @ A @ B )
= bot_bot_set_rat ) ) ).
% atLeastatMost_empty
thf(fact_2950_atLeastatMost__empty,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ( set_or7049704709247886629st_num @ A @ B )
= bot_bot_set_num ) ) ).
% atLeastatMost_empty
thf(fact_2951_atLeastatMost__empty,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( set_or1269000886237332187st_nat @ A @ B )
= bot_bot_set_nat ) ) ).
% atLeastatMost_empty
thf(fact_2952_atLeastatMost__empty,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ( set_or1266510415728281911st_int @ A @ B )
= bot_bot_set_int ) ) ).
% atLeastatMost_empty
thf(fact_2953_atLeastatMost__empty,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ( set_or1222579329274155063t_real @ A @ B )
= bot_bot_set_real ) ) ).
% atLeastatMost_empty
thf(fact_2954_atLeastatMost__subset__iff,axiom,
! [A: set_int,B: set_int,C: set_int,D: set_int] :
( ( ord_le4403425263959731960et_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
= ( ~ ( ord_less_eq_set_int @ A @ B )
| ( ( ord_less_eq_set_int @ C @ A )
& ( ord_less_eq_set_int @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_2955_atLeastatMost__subset__iff,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
= ( ~ ( ord_less_eq_rat @ A @ B )
| ( ( ord_less_eq_rat @ C @ A )
& ( ord_less_eq_rat @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_2956_atLeastatMost__subset__iff,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_2957_atLeastatMost__subset__iff,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_2958_atLeastatMost__subset__iff,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_2959_atLeastatMost__subset__iff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_2960_atLeastatMost__empty__iff2,axiom,
! [A: set_int,B: set_int] :
( ( bot_bot_set_set_int
= ( set_or370866239135849197et_int @ A @ B ) )
= ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_2961_atLeastatMost__empty__iff2,axiom,
! [A: rat,B: rat] :
( ( bot_bot_set_rat
= ( set_or633870826150836451st_rat @ A @ B ) )
= ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_2962_atLeastatMost__empty__iff2,axiom,
! [A: num,B: num] :
( ( bot_bot_set_num
= ( set_or7049704709247886629st_num @ A @ B ) )
= ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_2963_atLeastatMost__empty__iff2,axiom,
! [A: nat,B: nat] :
( ( bot_bot_set_nat
= ( set_or1269000886237332187st_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_2964_atLeastatMost__empty__iff2,axiom,
! [A: int,B: int] :
( ( bot_bot_set_int
= ( set_or1266510415728281911st_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_2965_atLeastatMost__empty__iff2,axiom,
! [A: real,B: real] :
( ( bot_bot_set_real
= ( set_or1222579329274155063t_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_2966_atLeastatMost__empty__iff,axiom,
! [A: set_int,B: set_int] :
( ( ( set_or370866239135849197et_int @ A @ B )
= bot_bot_set_set_int )
= ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_2967_atLeastatMost__empty__iff,axiom,
! [A: rat,B: rat] :
( ( ( set_or633870826150836451st_rat @ A @ B )
= bot_bot_set_rat )
= ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_2968_atLeastatMost__empty__iff,axiom,
! [A: num,B: num] :
( ( ( set_or7049704709247886629st_num @ A @ B )
= bot_bot_set_num )
= ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_2969_atLeastatMost__empty__iff,axiom,
! [A: nat,B: nat] :
( ( ( set_or1269000886237332187st_nat @ A @ B )
= bot_bot_set_nat )
= ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_2970_atLeastatMost__empty__iff,axiom,
! [A: int,B: int] :
( ( ( set_or1266510415728281911st_int @ A @ B )
= bot_bot_set_int )
= ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_2971_atLeastatMost__empty__iff,axiom,
! [A: real,B: real] :
( ( ( set_or1222579329274155063t_real @ A @ B )
= bot_bot_set_real )
= ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_2972_vebt__succ_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: option_nat] :
( ( ( vEBT_vebt_succ @ X @ Xa2 )
= Y3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [Uu3: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ B4 ) )
=> ( ( Xa2 = zero_zero_nat )
=> ( ( ( B4
=> ( Y3
= ( some_nat @ one_one_nat ) ) )
& ( ~ B4
=> ( Y3 = none_nat ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ B4 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [Uv2: $o,Uw2: $o] :
( ( X
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ! [N3: nat] :
( ( Xa2
= ( suc @ N3 ) )
=> ( ( Y3 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N3 ) ) ) ) ) )
=> ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y3 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
=> ( ( Y3 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Xa2 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( ( Y3 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( ( ( ord_less_nat @ Xa2 @ Mi2 )
=> ( Y3
= ( some_nat @ Mi2 ) ) )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( Y3
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.pelims
thf(fact_2973_Icc__eq__Icc,axiom,
! [L: set_int,H2: set_int,L3: set_int,H3: set_int] :
( ( ( set_or370866239135849197et_int @ L @ H2 )
= ( set_or370866239135849197et_int @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_set_int @ L @ H2 )
& ~ ( ord_less_eq_set_int @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_2974_Icc__eq__Icc,axiom,
! [L: rat,H2: rat,L3: rat,H3: rat] :
( ( ( set_or633870826150836451st_rat @ L @ H2 )
= ( set_or633870826150836451st_rat @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_rat @ L @ H2 )
& ~ ( ord_less_eq_rat @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_2975_Icc__eq__Icc,axiom,
! [L: num,H2: num,L3: num,H3: num] :
( ( ( set_or7049704709247886629st_num @ L @ H2 )
= ( set_or7049704709247886629st_num @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_num @ L @ H2 )
& ~ ( ord_less_eq_num @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_2976_Icc__eq__Icc,axiom,
! [L: nat,H2: nat,L3: nat,H3: nat] :
( ( ( set_or1269000886237332187st_nat @ L @ H2 )
= ( set_or1269000886237332187st_nat @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_nat @ L @ H2 )
& ~ ( ord_less_eq_nat @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_2977_Icc__eq__Icc,axiom,
! [L: int,H2: int,L3: int,H3: int] :
( ( ( set_or1266510415728281911st_int @ L @ H2 )
= ( set_or1266510415728281911st_int @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_int @ L @ H2 )
& ~ ( ord_less_eq_int @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_2978_Icc__eq__Icc,axiom,
! [L: real,H2: real,L3: real,H3: real] :
( ( ( set_or1222579329274155063t_real @ L @ H2 )
= ( set_or1222579329274155063t_real @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_real @ L @ H2 )
& ~ ( ord_less_eq_real @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_2979_atLeastAtMost__iff,axiom,
! [I4: set_nat,L: set_nat,U2: set_nat] :
( ( member_set_nat @ I4 @ ( set_or4548717258645045905et_nat @ L @ U2 ) )
= ( ( ord_less_eq_set_nat @ L @ I4 )
& ( ord_less_eq_set_nat @ I4 @ U2 ) ) ) ).
% atLeastAtMost_iff
thf(fact_2980_atLeastAtMost__iff,axiom,
! [I4: set_int,L: set_int,U2: set_int] :
( ( member_set_int @ I4 @ ( set_or370866239135849197et_int @ L @ U2 ) )
= ( ( ord_less_eq_set_int @ L @ I4 )
& ( ord_less_eq_set_int @ I4 @ U2 ) ) ) ).
% atLeastAtMost_iff
thf(fact_2981_atLeastAtMost__iff,axiom,
! [I4: rat,L: rat,U2: rat] :
( ( member_rat @ I4 @ ( set_or633870826150836451st_rat @ L @ U2 ) )
= ( ( ord_less_eq_rat @ L @ I4 )
& ( ord_less_eq_rat @ I4 @ U2 ) ) ) ).
% atLeastAtMost_iff
thf(fact_2982_atLeastAtMost__iff,axiom,
! [I4: num,L: num,U2: num] :
( ( member_num @ I4 @ ( set_or7049704709247886629st_num @ L @ U2 ) )
= ( ( ord_less_eq_num @ L @ I4 )
& ( ord_less_eq_num @ I4 @ U2 ) ) ) ).
% atLeastAtMost_iff
thf(fact_2983_atLeastAtMost__iff,axiom,
! [I4: nat,L: nat,U2: nat] :
( ( member_nat @ I4 @ ( set_or1269000886237332187st_nat @ L @ U2 ) )
= ( ( ord_less_eq_nat @ L @ I4 )
& ( ord_less_eq_nat @ I4 @ U2 ) ) ) ).
% atLeastAtMost_iff
thf(fact_2984_atLeastAtMost__iff,axiom,
! [I4: int,L: int,U2: int] :
( ( member_int @ I4 @ ( set_or1266510415728281911st_int @ L @ U2 ) )
= ( ( ord_less_eq_int @ L @ I4 )
& ( ord_less_eq_int @ I4 @ U2 ) ) ) ).
% atLeastAtMost_iff
thf(fact_2985_atLeastAtMost__iff,axiom,
! [I4: real,L: real,U2: real] :
( ( member_real @ I4 @ ( set_or1222579329274155063t_real @ L @ U2 ) )
= ( ( ord_less_eq_real @ L @ I4 )
& ( ord_less_eq_real @ I4 @ U2 ) ) ) ).
% atLeastAtMost_iff
thf(fact_2986_Diff__eq__empty__iff,axiom,
! [A2: set_real,B2: set_real] :
( ( ( minus_minus_set_real @ A2 @ B2 )
= bot_bot_set_real )
= ( ord_less_eq_set_real @ A2 @ B2 ) ) ).
% Diff_eq_empty_iff
thf(fact_2987_Diff__eq__empty__iff,axiom,
! [A2: set_nat,B2: set_nat] :
( ( ( minus_minus_set_nat @ A2 @ B2 )
= bot_bot_set_nat )
= ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).
% Diff_eq_empty_iff
thf(fact_2988_Diff__eq__empty__iff,axiom,
! [A2: set_int,B2: set_int] :
( ( ( minus_minus_set_int @ A2 @ B2 )
= bot_bot_set_int )
= ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% Diff_eq_empty_iff
thf(fact_2989_empty__subsetI,axiom,
! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).
% empty_subsetI
thf(fact_2990_empty__subsetI,axiom,
! [A2: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A2 ) ).
% empty_subsetI
thf(fact_2991_empty__subsetI,axiom,
! [A2: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A2 ) ).
% empty_subsetI
thf(fact_2992_subsetI,axiom,
! [A2: set_nat,B2: set_nat] :
( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( member_nat @ X5 @ B2 ) )
=> ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).
% subsetI
thf(fact_2993_subsetI,axiom,
! [A2: set_real,B2: set_real] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( member_real @ X5 @ B2 ) )
=> ( ord_less_eq_set_real @ A2 @ B2 ) ) ).
% subsetI
thf(fact_2994_subsetI,axiom,
! [A2: set_complex,B2: set_complex] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( member_complex @ X5 @ B2 ) )
=> ( ord_le211207098394363844omplex @ A2 @ B2 ) ) ).
% subsetI
thf(fact_2995_subsetI,axiom,
! [A2: set_set_nat,B2: set_set_nat] :
( ! [X5: set_nat] :
( ( member_set_nat @ X5 @ A2 )
=> ( member_set_nat @ X5 @ B2 ) )
=> ( ord_le6893508408891458716et_nat @ A2 @ B2 ) ) ).
% subsetI
thf(fact_2996_subsetI,axiom,
! [A2: set_int,B2: set_int] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( member_int @ X5 @ B2 ) )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% subsetI
thf(fact_2997_psubsetI,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( A2 != B2 )
=> ( ord_less_set_int @ A2 @ B2 ) ) ) ).
% psubsetI
thf(fact_2998_subset__antisym,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ).
% subset_antisym
thf(fact_2999_Diff__idemp,axiom,
! [A2: set_nat,B2: set_nat] :
( ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ B2 )
= ( minus_minus_set_nat @ A2 @ B2 ) ) ).
% Diff_idemp
thf(fact_3000_Diff__iff,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
= ( ( member_real @ C @ A2 )
& ~ ( member_real @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_3001_Diff__iff,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( ( member_int @ C @ A2 )
& ~ ( member_int @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_3002_Diff__iff,axiom,
! [C: complex,A2: set_complex,B2: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( ( member_complex @ C @ A2 )
& ~ ( member_complex @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_3003_Diff__iff,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
= ( ( member_set_nat @ C @ A2 )
& ~ ( member_set_nat @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_3004_Diff__iff,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( ( member_nat @ C @ A2 )
& ~ ( member_nat @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_3005_DiffI,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ A2 )
=> ( ~ ( member_real @ C @ B2 )
=> ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_3006_DiffI,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ A2 )
=> ( ~ ( member_int @ C @ B2 )
=> ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_3007_DiffI,axiom,
! [C: complex,A2: set_complex,B2: set_complex] :
( ( member_complex @ C @ A2 )
=> ( ~ ( member_complex @ C @ B2 )
=> ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_3008_DiffI,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ A2 )
=> ( ~ ( member_set_nat @ C @ B2 )
=> ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_3009_DiffI,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ A2 )
=> ( ~ ( member_nat @ C @ B2 )
=> ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_3010_subset__empty,axiom,
! [A2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
= ( A2 = bot_bot_set_nat ) ) ).
% subset_empty
thf(fact_3011_subset__empty,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ bot_bot_set_real )
= ( A2 = bot_bot_set_real ) ) ).
% subset_empty
thf(fact_3012_subset__empty,axiom,
! [A2: set_int] :
( ( ord_less_eq_set_int @ A2 @ bot_bot_set_int )
= ( A2 = bot_bot_set_int ) ) ).
% subset_empty
thf(fact_3013_Diff__cancel,axiom,
! [A2: set_int] :
( ( minus_minus_set_int @ A2 @ A2 )
= bot_bot_set_int ) ).
% Diff_cancel
thf(fact_3014_Diff__cancel,axiom,
! [A2: set_real] :
( ( minus_minus_set_real @ A2 @ A2 )
= bot_bot_set_real ) ).
% Diff_cancel
thf(fact_3015_Diff__cancel,axiom,
! [A2: set_nat] :
( ( minus_minus_set_nat @ A2 @ A2 )
= bot_bot_set_nat ) ).
% Diff_cancel
thf(fact_3016_empty__Diff,axiom,
! [A2: set_int] :
( ( minus_minus_set_int @ bot_bot_set_int @ A2 )
= bot_bot_set_int ) ).
% empty_Diff
thf(fact_3017_empty__Diff,axiom,
! [A2: set_real] :
( ( minus_minus_set_real @ bot_bot_set_real @ A2 )
= bot_bot_set_real ) ).
% empty_Diff
thf(fact_3018_empty__Diff,axiom,
! [A2: set_nat] :
( ( minus_minus_set_nat @ bot_bot_set_nat @ A2 )
= bot_bot_set_nat ) ).
% empty_Diff
thf(fact_3019_Diff__empty,axiom,
! [A2: set_int] :
( ( minus_minus_set_int @ A2 @ bot_bot_set_int )
= A2 ) ).
% Diff_empty
thf(fact_3020_Diff__empty,axiom,
! [A2: set_real] :
( ( minus_minus_set_real @ A2 @ bot_bot_set_real )
= A2 ) ).
% Diff_empty
thf(fact_3021_Diff__empty,axiom,
! [A2: set_nat] :
( ( minus_minus_set_nat @ A2 @ bot_bot_set_nat )
= A2 ) ).
% Diff_empty
thf(fact_3022_set__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% set_bit_nonnegative_int_iff
thf(fact_3023_set__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% set_bit_negative_int_iff
thf(fact_3024_zero__one__enat__neq_I1_J,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_one_enat_neq(1)
thf(fact_3025_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( times_7803423173614009249d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
| ( N = zero_z5237406670263579293d_enat ) ) ) ).
% imult_is_0
thf(fact_3026_set__bit__greater__eq,axiom,
! [K: int,N: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N @ K ) ) ).
% set_bit_greater_eq
thf(fact_3027_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_3028_psubset__imp__ex__mem,axiom,
! [A2: set_real,B2: set_real] :
( ( ord_less_set_real @ A2 @ B2 )
=> ? [B4: real] : ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_3029_psubset__imp__ex__mem,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ? [B4: int] : ( member_int @ B4 @ ( minus_minus_set_int @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_3030_psubset__imp__ex__mem,axiom,
! [A2: set_complex,B2: set_complex] :
( ( ord_less_set_complex @ A2 @ B2 )
=> ? [B4: complex] : ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_3031_psubset__imp__ex__mem,axiom,
! [A2: set_set_nat,B2: set_set_nat] :
( ( ord_less_set_set_nat @ A2 @ B2 )
=> ? [B4: set_nat] : ( member_set_nat @ B4 @ ( minus_2163939370556025621et_nat @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_3032_psubset__imp__ex__mem,axiom,
! [A2: set_nat,B2: set_nat] :
( ( ord_less_set_nat @ A2 @ B2 )
=> ? [B4: nat] : ( member_nat @ B4 @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_3033_minus__set__def,axiom,
( minus_811609699411566653omplex
= ( ^ [A6: set_complex,B6: set_complex] :
( collect_complex
@ ( minus_8727706125548526216plex_o
@ ^ [X2: complex] : ( member_complex @ X2 @ A6 )
@ ^ [X2: complex] : ( member_complex @ X2 @ B6 ) ) ) ) ) ).
% minus_set_def
thf(fact_3034_minus__set__def,axiom,
( minus_minus_set_real
= ( ^ [A6: set_real,B6: set_real] :
( collect_real
@ ( minus_minus_real_o
@ ^ [X2: real] : ( member_real @ X2 @ A6 )
@ ^ [X2: real] : ( member_real @ X2 @ B6 ) ) ) ) ) ).
% minus_set_def
thf(fact_3035_minus__set__def,axiom,
( minus_2163939370556025621et_nat
= ( ^ [A6: set_set_nat,B6: set_set_nat] :
( collect_set_nat
@ ( minus_6910147592129066416_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A6 )
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ B6 ) ) ) ) ) ).
% minus_set_def
thf(fact_3036_minus__set__def,axiom,
( minus_minus_set_int
= ( ^ [A6: set_int,B6: set_int] :
( collect_int
@ ( minus_minus_int_o
@ ^ [X2: int] : ( member_int @ X2 @ A6 )
@ ^ [X2: int] : ( member_int @ X2 @ B6 ) ) ) ) ) ).
% minus_set_def
thf(fact_3037_minus__set__def,axiom,
( minus_minus_set_nat
= ( ^ [A6: set_nat,B6: set_nat] :
( collect_nat
@ ( minus_minus_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ A6 )
@ ^ [X2: nat] : ( member_nat @ X2 @ B6 ) ) ) ) ) ).
% minus_set_def
thf(fact_3038_set__diff__eq,axiom,
( minus_811609699411566653omplex
= ( ^ [A6: set_complex,B6: set_complex] :
( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A6 )
& ~ ( member_complex @ X2 @ B6 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3039_set__diff__eq,axiom,
( minus_minus_set_real
= ( ^ [A6: set_real,B6: set_real] :
( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A6 )
& ~ ( member_real @ X2 @ B6 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3040_set__diff__eq,axiom,
( minus_2163939370556025621et_nat
= ( ^ [A6: set_set_nat,B6: set_set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] :
( ( member_set_nat @ X2 @ A6 )
& ~ ( member_set_nat @ X2 @ B6 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3041_set__diff__eq,axiom,
( minus_minus_set_int
= ( ^ [A6: set_int,B6: set_int] :
( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A6 )
& ~ ( member_int @ X2 @ B6 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3042_set__diff__eq,axiom,
( minus_minus_set_nat
= ( ^ [A6: set_nat,B6: set_nat] :
( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A6 )
& ~ ( member_nat @ X2 @ B6 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3043_DiffD2,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
=> ~ ( member_real @ C @ B2 ) ) ).
% DiffD2
thf(fact_3044_DiffD2,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
=> ~ ( member_int @ C @ B2 ) ) ).
% DiffD2
thf(fact_3045_DiffD2,axiom,
! [C: complex,A2: set_complex,B2: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
=> ~ ( member_complex @ C @ B2 ) ) ).
% DiffD2
thf(fact_3046_DiffD2,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
=> ~ ( member_set_nat @ C @ B2 ) ) ).
% DiffD2
thf(fact_3047_DiffD2,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
=> ~ ( member_nat @ C @ B2 ) ) ).
% DiffD2
thf(fact_3048_DiffD1,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
=> ( member_real @ C @ A2 ) ) ).
% DiffD1
thf(fact_3049_DiffD1,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
=> ( member_int @ C @ A2 ) ) ).
% DiffD1
thf(fact_3050_DiffD1,axiom,
! [C: complex,A2: set_complex,B2: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
=> ( member_complex @ C @ A2 ) ) ).
% DiffD1
thf(fact_3051_DiffD1,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
=> ( member_set_nat @ C @ A2 ) ) ).
% DiffD1
thf(fact_3052_DiffD1,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
=> ( member_nat @ C @ A2 ) ) ).
% DiffD1
thf(fact_3053_DiffE,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
=> ~ ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B2 ) ) ) ).
% DiffE
thf(fact_3054_DiffE,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
=> ~ ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B2 ) ) ) ).
% DiffE
thf(fact_3055_DiffE,axiom,
! [C: complex,A2: set_complex,B2: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
=> ~ ( ( member_complex @ C @ A2 )
=> ( member_complex @ C @ B2 ) ) ) ).
% DiffE
thf(fact_3056_DiffE,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
=> ~ ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B2 ) ) ) ).
% DiffE
thf(fact_3057_DiffE,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
=> ~ ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B2 ) ) ) ).
% DiffE
thf(fact_3058_in__mono,axiom,
! [A2: set_nat,B2: set_nat,X: nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( member_nat @ X @ A2 )
=> ( member_nat @ X @ B2 ) ) ) ).
% in_mono
thf(fact_3059_in__mono,axiom,
! [A2: set_real,B2: set_real,X: real] :
( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ X @ A2 )
=> ( member_real @ X @ B2 ) ) ) ).
% in_mono
thf(fact_3060_in__mono,axiom,
! [A2: set_complex,B2: set_complex,X: complex] :
( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ X @ A2 )
=> ( member_complex @ X @ B2 ) ) ) ).
% in_mono
thf(fact_3061_in__mono,axiom,
! [A2: set_set_nat,B2: set_set_nat,X: set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ B2 )
=> ( ( member_set_nat @ X @ A2 )
=> ( member_set_nat @ X @ B2 ) ) ) ).
% in_mono
thf(fact_3062_in__mono,axiom,
! [A2: set_int,B2: set_int,X: int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( member_int @ X @ A2 )
=> ( member_int @ X @ B2 ) ) ) ).
% in_mono
thf(fact_3063_subsetD,axiom,
! [A2: set_nat,B2: set_nat,C: nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B2 ) ) ) ).
% subsetD
thf(fact_3064_subsetD,axiom,
! [A2: set_real,B2: set_real,C: real] :
( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B2 ) ) ) ).
% subsetD
thf(fact_3065_subsetD,axiom,
! [A2: set_complex,B2: set_complex,C: complex] :
( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ C @ A2 )
=> ( member_complex @ C @ B2 ) ) ) ).
% subsetD
thf(fact_3066_subsetD,axiom,
! [A2: set_set_nat,B2: set_set_nat,C: set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ B2 )
=> ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B2 ) ) ) ).
% subsetD
thf(fact_3067_subsetD,axiom,
! [A2: set_int,B2: set_int,C: int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B2 ) ) ) ).
% subsetD
thf(fact_3068_psubsetE,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ~ ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ord_less_eq_set_int @ B2 @ A2 ) ) ) ).
% psubsetE
thf(fact_3069_Diff__mono,axiom,
! [A2: set_nat,C4: set_nat,D4: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ C4 )
=> ( ( ord_less_eq_set_nat @ D4 @ B2 )
=> ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ ( minus_minus_set_nat @ C4 @ D4 ) ) ) ) ).
% Diff_mono
thf(fact_3070_Diff__mono,axiom,
! [A2: set_int,C4: set_int,D4: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ C4 )
=> ( ( ord_less_eq_set_int @ D4 @ B2 )
=> ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B2 ) @ ( minus_minus_set_int @ C4 @ D4 ) ) ) ) ).
% Diff_mono
thf(fact_3071_equalityE,axiom,
! [A2: set_int,B2: set_int] :
( ( A2 = B2 )
=> ~ ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ~ ( ord_less_eq_set_int @ B2 @ A2 ) ) ) ).
% equalityE
thf(fact_3072_subset__eq,axiom,
( ord_less_eq_set_nat
= ( ^ [A6: set_nat,B6: set_nat] :
! [X2: nat] :
( ( member_nat @ X2 @ A6 )
=> ( member_nat @ X2 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_3073_subset__eq,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B6: set_real] :
! [X2: real] :
( ( member_real @ X2 @ A6 )
=> ( member_real @ X2 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_3074_subset__eq,axiom,
( ord_le211207098394363844omplex
= ( ^ [A6: set_complex,B6: set_complex] :
! [X2: complex] :
( ( member_complex @ X2 @ A6 )
=> ( member_complex @ X2 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_3075_subset__eq,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A6: set_set_nat,B6: set_set_nat] :
! [X2: set_nat] :
( ( member_set_nat @ X2 @ A6 )
=> ( member_set_nat @ X2 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_3076_subset__eq,axiom,
( ord_less_eq_set_int
= ( ^ [A6: set_int,B6: set_int] :
! [X2: int] :
( ( member_int @ X2 @ A6 )
=> ( member_int @ X2 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_3077_equalityD1,axiom,
! [A2: set_int,B2: set_int] :
( ( A2 = B2 )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% equalityD1
thf(fact_3078_equalityD2,axiom,
! [A2: set_int,B2: set_int] :
( ( A2 = B2 )
=> ( ord_less_eq_set_int @ B2 @ A2 ) ) ).
% equalityD2
thf(fact_3079_psubset__eq,axiom,
( ord_less_set_int
= ( ^ [A6: set_int,B6: set_int] :
( ( ord_less_eq_set_int @ A6 @ B6 )
& ( A6 != B6 ) ) ) ) ).
% psubset_eq
thf(fact_3080_subset__iff,axiom,
( ord_less_eq_set_nat
= ( ^ [A6: set_nat,B6: set_nat] :
! [T2: nat] :
( ( member_nat @ T2 @ A6 )
=> ( member_nat @ T2 @ B6 ) ) ) ) ).
% subset_iff
thf(fact_3081_subset__iff,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B6: set_real] :
! [T2: real] :
( ( member_real @ T2 @ A6 )
=> ( member_real @ T2 @ B6 ) ) ) ) ).
% subset_iff
thf(fact_3082_subset__iff,axiom,
( ord_le211207098394363844omplex
= ( ^ [A6: set_complex,B6: set_complex] :
! [T2: complex] :
( ( member_complex @ T2 @ A6 )
=> ( member_complex @ T2 @ B6 ) ) ) ) ).
% subset_iff
thf(fact_3083_subset__iff,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A6: set_set_nat,B6: set_set_nat] :
! [T2: set_nat] :
( ( member_set_nat @ T2 @ A6 )
=> ( member_set_nat @ T2 @ B6 ) ) ) ) ).
% subset_iff
thf(fact_3084_subset__iff,axiom,
( ord_less_eq_set_int
= ( ^ [A6: set_int,B6: set_int] :
! [T2: int] :
( ( member_int @ T2 @ A6 )
=> ( member_int @ T2 @ B6 ) ) ) ) ).
% subset_iff
thf(fact_3085_Diff__subset,axiom,
! [A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ A2 ) ).
% Diff_subset
thf(fact_3086_Diff__subset,axiom,
! [A2: set_int,B2: set_int] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B2 ) @ A2 ) ).
% Diff_subset
thf(fact_3087_double__diff,axiom,
! [A2: set_nat,B2: set_nat,C4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( ord_less_eq_set_nat @ B2 @ C4 )
=> ( ( minus_minus_set_nat @ B2 @ ( minus_minus_set_nat @ C4 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_3088_double__diff,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ C4 )
=> ( ( minus_minus_set_int @ B2 @ ( minus_minus_set_int @ C4 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_3089_subset__refl,axiom,
! [A2: set_int] : ( ord_less_eq_set_int @ A2 @ A2 ) ).
% subset_refl
thf(fact_3090_Collect__mono,axiom,
! [P: complex > $o,Q: complex > $o] :
( ! [X5: complex] :
( ( P @ X5 )
=> ( Q @ X5 ) )
=> ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) ) ) ).
% Collect_mono
thf(fact_3091_Collect__mono,axiom,
! [P: real > $o,Q: real > $o] :
( ! [X5: real] :
( ( P @ X5 )
=> ( Q @ X5 ) )
=> ( ord_less_eq_set_real @ ( collect_real @ P ) @ ( collect_real @ Q ) ) ) ).
% Collect_mono
thf(fact_3092_Collect__mono,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X5: set_nat] :
( ( P @ X5 )
=> ( Q @ X5 ) )
=> ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_3093_Collect__mono,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X5: nat] :
( ( P @ X5 )
=> ( Q @ X5 ) )
=> ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_3094_Collect__mono,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X5: int] :
( ( P @ X5 )
=> ( Q @ X5 ) )
=> ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) ) ) ).
% Collect_mono
thf(fact_3095_subset__trans,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ C4 )
=> ( ord_less_eq_set_int @ A2 @ C4 ) ) ) ).
% subset_trans
thf(fact_3096_set__eq__subset,axiom,
( ( ^ [Y: set_int,Z: set_int] : ( Y = Z ) )
= ( ^ [A6: set_int,B6: set_int] :
( ( ord_less_eq_set_int @ A6 @ B6 )
& ( ord_less_eq_set_int @ B6 @ A6 ) ) ) ) ).
% set_eq_subset
thf(fact_3097_Collect__mono__iff,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) )
= ( ! [X2: complex] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_3098_Collect__mono__iff,axiom,
! [P: real > $o,Q: real > $o] :
( ( ord_less_eq_set_real @ ( collect_real @ P ) @ ( collect_real @ Q ) )
= ( ! [X2: real] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_3099_Collect__mono__iff,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) )
= ( ! [X2: set_nat] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_3100_Collect__mono__iff,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
= ( ! [X2: nat] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_3101_Collect__mono__iff,axiom,
! [P: int > $o,Q: int > $o] :
( ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) )
= ( ! [X2: int] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_3102_psubset__imp__subset,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% psubset_imp_subset
thf(fact_3103_psubset__subset__trans,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ C4 )
=> ( ord_less_set_int @ A2 @ C4 ) ) ) ).
% psubset_subset_trans
thf(fact_3104_subset__not__subset__eq,axiom,
( ord_less_set_int
= ( ^ [A6: set_int,B6: set_int] :
( ( ord_less_eq_set_int @ A6 @ B6 )
& ~ ( ord_less_eq_set_int @ B6 @ A6 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_3105_subset__psubset__trans,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_set_int @ B2 @ C4 )
=> ( ord_less_set_int @ A2 @ C4 ) ) ) ).
% subset_psubset_trans
thf(fact_3106_subset__iff__psubset__eq,axiom,
( ord_less_eq_set_int
= ( ^ [A6: set_int,B6: set_int] :
( ( ord_less_set_int @ A6 @ B6 )
| ( A6 = B6 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_3107_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M7: nat] :
( ( P @ X )
=> ( ! [X5: nat] :
( ( P @ X5 )
=> ( ord_less_eq_nat @ X5 @ M7 ) )
=> ~ ! [M5: nat] :
( ( P @ M5 )
=> ~ ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M5 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_3108_fold__atLeastAtMost__nat_Ocases,axiom,
! [X: produc3368934014287244435at_num] :
~ ! [F2: nat > num > num,A4: nat,B4: nat,Acc: num] :
( X
!= ( produc851828971589881931at_num @ F2 @ ( produc1195630363706982562at_num @ A4 @ ( product_Pair_nat_num @ B4 @ Acc ) ) ) ) ).
% fold_atLeastAtMost_nat.cases
thf(fact_3109_fold__atLeastAtMost__nat_Ocases,axiom,
! [X: produc4471711990508489141at_nat] :
~ ! [F2: nat > nat > nat,A4: nat,B4: nat,Acc: nat] :
( X
!= ( produc3209952032786966637at_nat @ F2 @ ( produc487386426758144856at_nat @ A4 @ ( product_Pair_nat_nat @ B4 @ Acc ) ) ) ) ).
% fold_atLeastAtMost_nat.cases
thf(fact_3110_empty__def,axiom,
( bot_bot_set_complex
= ( collect_complex
@ ^ [X2: complex] : $false ) ) ).
% empty_def
thf(fact_3111_empty__def,axiom,
( bot_bot_set_set_nat
= ( collect_set_nat
@ ^ [X2: set_nat] : $false ) ) ).
% empty_def
thf(fact_3112_empty__def,axiom,
( bot_bot_set_nat
= ( collect_nat
@ ^ [X2: nat] : $false ) ) ).
% empty_def
thf(fact_3113_empty__def,axiom,
( bot_bot_set_int
= ( collect_int
@ ^ [X2: int] : $false ) ) ).
% empty_def
thf(fact_3114_empty__def,axiom,
( bot_bot_set_real
= ( collect_real
@ ^ [X2: real] : $false ) ) ).
% empty_def
thf(fact_3115_Collect__subset,axiom,
! [A2: set_complex,P: complex > $o] :
( ord_le211207098394363844omplex
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3116_Collect__subset,axiom,
! [A2: set_real,P: real > $o] :
( ord_less_eq_set_real
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3117_Collect__subset,axiom,
! [A2: set_set_nat,P: set_nat > $o] :
( ord_le6893508408891458716et_nat
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( member_set_nat @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3118_Collect__subset,axiom,
! [A2: set_nat,P: nat > $o] :
( ord_less_eq_set_nat
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3119_Collect__subset,axiom,
! [A2: set_int,P: int > $o] :
( ord_less_eq_set_int
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3120_less__eq__set__def,axiom,
( ord_less_eq_set_nat
= ( ^ [A6: set_nat,B6: set_nat] :
( ord_less_eq_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ A6 )
@ ^ [X2: nat] : ( member_nat @ X2 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_3121_less__eq__set__def,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B6: set_real] :
( ord_less_eq_real_o
@ ^ [X2: real] : ( member_real @ X2 @ A6 )
@ ^ [X2: real] : ( member_real @ X2 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_3122_less__eq__set__def,axiom,
( ord_le211207098394363844omplex
= ( ^ [A6: set_complex,B6: set_complex] :
( ord_le4573692005234683329plex_o
@ ^ [X2: complex] : ( member_complex @ X2 @ A6 )
@ ^ [X2: complex] : ( member_complex @ X2 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_3123_less__eq__set__def,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A6: set_set_nat,B6: set_set_nat] :
( ord_le3964352015994296041_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A6 )
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_3124_less__eq__set__def,axiom,
( ord_less_eq_set_int
= ( ^ [A6: set_int,B6: set_int] :
( ord_less_eq_int_o
@ ^ [X2: int] : ( member_int @ X2 @ A6 )
@ ^ [X2: int] : ( member_int @ X2 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_3125_atLeastatMost__psubset__iff,axiom,
! [A: set_int,B: set_int,C: set_int,D: set_int] :
( ( ord_less_set_set_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
= ( ( ~ ( ord_less_eq_set_int @ A @ B )
| ( ( ord_less_eq_set_int @ C @ A )
& ( ord_less_eq_set_int @ B @ D )
& ( ( ord_less_set_int @ C @ A )
| ( ord_less_set_int @ B @ D ) ) ) )
& ( ord_less_eq_set_int @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3126_atLeastatMost__psubset__iff,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
= ( ( ~ ( ord_less_eq_rat @ A @ B )
| ( ( ord_less_eq_rat @ C @ A )
& ( ord_less_eq_rat @ B @ D )
& ( ( ord_less_rat @ C @ A )
| ( ord_less_rat @ B @ D ) ) ) )
& ( ord_less_eq_rat @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3127_atLeastatMost__psubset__iff,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
= ( ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D )
& ( ( ord_less_num @ C @ A )
| ( ord_less_num @ B @ D ) ) ) )
& ( ord_less_eq_num @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3128_atLeastatMost__psubset__iff,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
= ( ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D )
& ( ( ord_less_nat @ C @ A )
| ( ord_less_nat @ B @ D ) ) ) )
& ( ord_less_eq_nat @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3129_atLeastatMost__psubset__iff,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
= ( ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D )
& ( ( ord_less_int @ C @ A )
| ( ord_less_int @ B @ D ) ) ) )
& ( ord_less_eq_int @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3130_atLeastatMost__psubset__iff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
= ( ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D )
& ( ( ord_less_real @ C @ A )
| ( ord_less_real @ B @ D ) ) ) )
& ( ord_less_eq_real @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3131_zle__diff1__eq,axiom,
! [W: int,Z4: int] :
( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z4 @ one_one_int ) )
= ( ord_less_int @ W @ Z4 ) ) ).
% zle_diff1_eq
thf(fact_3132_zle__add1__eq__le,axiom,
! [W: int,Z4: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z4 @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z4 ) ) ).
% zle_add1_eq_le
thf(fact_3133_vebt__member_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ( ! [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(3)
thf(fact_3134_vebt__member_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_vebt_member @ X @ Xa2 )
= Y3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( Y3
= ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) ) ) )
=> ( ! [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ( ~ Y3
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ~ Y3
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> ( ~ Y3
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y3
= ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(1)
thf(fact_3135_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ( ! [Uu3: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu3 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu3 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ Xa2 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(3)
thf(fact_3136_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ Xa2 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(2)
thf(fact_3137_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
= Y3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( Y3
= ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) ) ) )
=> ( ! [Uu3: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu3 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ( ~ Y3
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu3 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
=> ( ( Y3
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ Xa2 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(1)
thf(fact_3138_vebt__member_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(2)
thf(fact_3139_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_3140_double__eq__0__iff,axiom,
! [A: rat] :
( ( ( plus_plus_rat @ A @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% double_eq_0_iff
thf(fact_3141_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_3142_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_3143_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_3144_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_3145_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_3146_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_3147_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_3148_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_3149_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_3150_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_3151_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_3152_zmult__zless__mono2,axiom,
! [I4: int,J: int,K: int] :
( ( ord_less_int @ I4 @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I4 ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_3153_odd__nonzero,axiom,
! [Z4: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z4 ) @ Z4 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_3154_int__ge__induct,axiom,
! [K: int,I4: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I4 )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I4 ) ) ) ) ).
% int_ge_induct
thf(fact_3155_zless__add1__eq,axiom,
! [W: int,Z4: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z4 @ one_one_int ) )
= ( ( ord_less_int @ W @ Z4 )
| ( W = Z4 ) ) ) ).
% zless_add1_eq
thf(fact_3156_int__gr__induct,axiom,
! [K: int,I4: int,P: int > $o] :
( ( ord_less_int @ K @ I4 )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I4 ) ) ) ) ).
% int_gr_induct
thf(fact_3157_int__le__induct,axiom,
! [I4: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I4 @ K )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I4 ) ) ) ) ).
% int_le_induct
thf(fact_3158_int__less__induct,axiom,
! [I4: int,K: int,P: int > $o] :
( ( ord_less_int @ I4 @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I4 ) ) ) ) ).
% int_less_induct
thf(fact_3159_int__one__le__iff__zero__less,axiom,
! [Z4: int] :
( ( ord_less_eq_int @ one_one_int @ Z4 )
= ( ord_less_int @ zero_zero_int @ Z4 ) ) ).
% int_one_le_iff_zero_less
thf(fact_3160_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_3161_odd__less__0__iff,axiom,
! [Z4: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z4 ) @ Z4 ) @ zero_zero_int )
= ( ord_less_int @ Z4 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_3162_zless__imp__add1__zle,axiom,
! [W: int,Z4: int] :
( ( ord_less_int @ W @ Z4 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z4 ) ) ).
% zless_imp_add1_zle
thf(fact_3163_add1__zle__eq,axiom,
! [W: int,Z4: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z4 )
= ( ord_less_int @ W @ Z4 ) ) ).
% add1_zle_eq
thf(fact_3164_int__induct,axiom,
! [P: int > $o,K: int,I4: int] :
( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I4 ) ) ) ) ).
% int_induct
thf(fact_3165_le__imp__0__less,axiom,
! [Z4: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z4 ) ) ) ).
% le_imp_0_less
thf(fact_3166_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
= Y3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [Uu3: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( ~ Y3
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ Uv2 ) @ Xa2 ) ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ~ Y3
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
=> ( ( Y3
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
=> ( ( Y3
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( Y3
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(1)
thf(fact_3167_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [Uu3: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ Uv2 ) @ Xa2 ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa2 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(3)
thf(fact_3168_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa2 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(2)
thf(fact_3169_cpmi,axiom,
! [D4: int,P: int > $o,P6: int > $o,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X5
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( minus_minus_int @ X5 @ D4 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( P6 @ X5 )
= ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ( ( ? [X3: int] : ( P @ X3 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ( P6 @ X2 ) )
| ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ? [Y2: int] :
( ( member_int @ Y2 @ B2 )
& ( P @ ( plus_plus_int @ Y2 @ X2 ) ) ) ) ) ) ) ) ) ) ).
% cpmi
thf(fact_3170_cppi,axiom,
! [D4: int,P: int > $o,P6: int > $o,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ D4 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( P6 @ X5 )
= ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ( ( ? [X3: int] : ( P @ X3 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ( P6 @ X2 ) )
| ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ? [Y2: int] :
( ( member_int @ Y2 @ A2 )
& ( P @ ( minus_minus_int @ Y2 @ X2 ) ) ) ) ) ) ) ) ) ) ).
% cppi
thf(fact_3171_aset_I8_J,axiom,
! [D4: int,A2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ T @ X4 )
=> ( ord_less_eq_int @ T @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ).
% aset(8)
thf(fact_3172_aset_I6_J,axiom,
! [D4: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ X4 @ T )
=> ( ord_less_eq_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).
% aset(6)
thf(fact_3173_minf_I7_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ~ ( ord_less_real @ T @ X4 ) ) ).
% minf(7)
thf(fact_3174_minf_I7_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ~ ( ord_less_rat @ T @ X4 ) ) ).
% minf(7)
thf(fact_3175_minf_I7_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ~ ( ord_less_num @ T @ X4 ) ) ).
% minf(7)
thf(fact_3176_minf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ~ ( ord_less_nat @ T @ X4 ) ) ).
% minf(7)
thf(fact_3177_minf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ~ ( ord_less_int @ T @ X4 ) ) ).
% minf(7)
thf(fact_3178_minf_I5_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( ord_less_real @ X4 @ T ) ) ).
% minf(5)
thf(fact_3179_minf_I5_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( ord_less_rat @ X4 @ T ) ) ).
% minf(5)
thf(fact_3180_minf_I5_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ( ord_less_num @ X4 @ T ) ) ).
% minf(5)
thf(fact_3181_minf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( ord_less_nat @ X4 @ T ) ) ).
% minf(5)
thf(fact_3182_minf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ord_less_int @ X4 @ T ) ) ).
% minf(5)
thf(fact_3183_minf_I4_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(4)
thf(fact_3184_minf_I4_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(4)
thf(fact_3185_minf_I4_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(4)
thf(fact_3186_minf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(4)
thf(fact_3187_minf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(4)
thf(fact_3188_minf_I3_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(3)
thf(fact_3189_minf_I3_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(3)
thf(fact_3190_minf_I3_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(3)
thf(fact_3191_minf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(3)
thf(fact_3192_minf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( X4 != T ) ) ).
% minf(3)
thf(fact_3193_minf_I2_J,axiom,
! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(2)
thf(fact_3194_minf_I2_J,axiom,
! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(2)
thf(fact_3195_minf_I2_J,axiom,
! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(2)
thf(fact_3196_minf_I2_J,axiom,
! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(2)
thf(fact_3197_minf_I2_J,axiom,
! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(2)
thf(fact_3198_minf_I1_J,axiom,
! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(1)
thf(fact_3199_minf_I1_J,axiom,
! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(1)
thf(fact_3200_minf_I1_J,axiom,
! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(1)
thf(fact_3201_minf_I1_J,axiom,
! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(1)
thf(fact_3202_minf_I1_J,axiom,
! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% minf(1)
thf(fact_3203_pinf_I7_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( ord_less_real @ T @ X4 ) ) ).
% pinf(7)
thf(fact_3204_pinf_I7_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( ord_less_rat @ T @ X4 ) ) ).
% pinf(7)
thf(fact_3205_pinf_I7_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ( ord_less_num @ T @ X4 ) ) ).
% pinf(7)
thf(fact_3206_pinf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( ord_less_nat @ T @ X4 ) ) ).
% pinf(7)
thf(fact_3207_pinf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ord_less_int @ T @ X4 ) ) ).
% pinf(7)
thf(fact_3208_pinf_I5_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ~ ( ord_less_real @ X4 @ T ) ) ).
% pinf(5)
thf(fact_3209_pinf_I5_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ~ ( ord_less_rat @ X4 @ T ) ) ).
% pinf(5)
thf(fact_3210_pinf_I5_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ~ ( ord_less_num @ X4 @ T ) ) ).
% pinf(5)
thf(fact_3211_pinf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ~ ( ord_less_nat @ X4 @ T ) ) ).
% pinf(5)
thf(fact_3212_pinf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ~ ( ord_less_int @ X4 @ T ) ) ).
% pinf(5)
thf(fact_3213_pinf_I4_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(4)
thf(fact_3214_pinf_I4_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(4)
thf(fact_3215_pinf_I4_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(4)
thf(fact_3216_pinf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(4)
thf(fact_3217_pinf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(4)
thf(fact_3218_pinf_I3_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(3)
thf(fact_3219_pinf_I3_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(3)
thf(fact_3220_pinf_I3_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(3)
thf(fact_3221_pinf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(3)
thf(fact_3222_pinf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( X4 != T ) ) ).
% pinf(3)
thf(fact_3223_pinf_I2_J,axiom,
! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_3224_pinf_I2_J,axiom,
! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_3225_pinf_I2_J,axiom,
! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_3226_pinf_I2_J,axiom,
! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_3227_pinf_I2_J,axiom,
! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P6 @ X4 )
| ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_3228_pinf_I1_J,axiom,
! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: real] :
! [X5: real] :
( ( ord_less_real @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_3229_pinf_I1_J,axiom,
! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_3230_pinf_I1_J,axiom,
! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: num] :
! [X5: num] :
( ( ord_less_num @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_3231_pinf_I1_J,axiom,
! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_3232_pinf_I1_J,axiom,
! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P6 @ X4 )
& ( Q6 @ X4 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_3233_minf_I8_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ~ ( ord_less_eq_real @ T @ X4 ) ) ).
% minf(8)
thf(fact_3234_minf_I8_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ~ ( ord_less_eq_rat @ T @ X4 ) ) ).
% minf(8)
thf(fact_3235_minf_I8_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ~ ( ord_less_eq_num @ T @ X4 ) ) ).
% minf(8)
thf(fact_3236_minf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ~ ( ord_less_eq_nat @ T @ X4 ) ) ).
% minf(8)
thf(fact_3237_minf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ~ ( ord_less_eq_int @ T @ X4 ) ) ).
% minf(8)
thf(fact_3238_minf_I6_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( ord_less_eq_real @ X4 @ T ) ) ).
% minf(6)
thf(fact_3239_minf_I6_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( ord_less_eq_rat @ X4 @ T ) ) ).
% minf(6)
thf(fact_3240_minf_I6_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z3 )
=> ( ord_less_eq_num @ X4 @ T ) ) ).
% minf(6)
thf(fact_3241_minf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( ord_less_eq_nat @ X4 @ T ) ) ).
% minf(6)
thf(fact_3242_minf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ord_less_eq_int @ X4 @ T ) ) ).
% minf(6)
thf(fact_3243_pinf_I8_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( ord_less_eq_real @ T @ X4 ) ) ).
% pinf(8)
thf(fact_3244_pinf_I8_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( ord_less_eq_rat @ T @ X4 ) ) ).
% pinf(8)
thf(fact_3245_pinf_I8_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ( ord_less_eq_num @ T @ X4 ) ) ).
% pinf(8)
thf(fact_3246_pinf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( ord_less_eq_nat @ T @ X4 ) ) ).
% pinf(8)
thf(fact_3247_pinf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ord_less_eq_int @ T @ X4 ) ) ).
% pinf(8)
thf(fact_3248_pinf_I6_J,axiom,
! [T: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ~ ( ord_less_eq_real @ X4 @ T ) ) ).
% pinf(6)
thf(fact_3249_pinf_I6_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ~ ( ord_less_eq_rat @ X4 @ T ) ) ).
% pinf(6)
thf(fact_3250_pinf_I6_J,axiom,
! [T: num] :
? [Z3: num] :
! [X4: num] :
( ( ord_less_num @ Z3 @ X4 )
=> ~ ( ord_less_eq_num @ X4 @ T ) ) ).
% pinf(6)
thf(fact_3251_pinf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ~ ( ord_less_eq_nat @ X4 @ T ) ) ).
% pinf(6)
thf(fact_3252_pinf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ~ ( ord_less_eq_int @ X4 @ T ) ) ).
% pinf(6)
thf(fact_3253_inf__period_I1_J,axiom,
! [P: real > $o,D4: real,Q: real > $o] :
( ! [X5: real,K2: real] :
( ( P @ X5 )
= ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D4 ) ) ) )
=> ( ! [X5: real,K2: real] :
( ( Q @ X5 )
= ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D4 ) ) ) )
=> ! [X4: real,K4: real] :
( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) )
& ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_3254_inf__period_I1_J,axiom,
! [P: rat > $o,D4: rat,Q: rat > $o] :
( ! [X5: rat,K2: rat] :
( ( P @ X5 )
= ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D4 ) ) ) )
=> ( ! [X5: rat,K2: rat] :
( ( Q @ X5 )
= ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D4 ) ) ) )
=> ! [X4: rat,K4: rat] :
( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) )
& ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_3255_inf__period_I1_J,axiom,
! [P: int > $o,D4: int,Q: int > $o] :
( ! [X5: int,K2: int] :
( ( P @ X5 )
= ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( Q @ X5 )
= ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ! [X4: int,K4: int] :
( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) )
& ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_3256_inf__period_I2_J,axiom,
! [P: real > $o,D4: real,Q: real > $o] :
( ! [X5: real,K2: real] :
( ( P @ X5 )
= ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D4 ) ) ) )
=> ( ! [X5: real,K2: real] :
( ( Q @ X5 )
= ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D4 ) ) ) )
=> ! [X4: real,K4: real] :
( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) )
| ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_3257_inf__period_I2_J,axiom,
! [P: rat > $o,D4: rat,Q: rat > $o] :
( ! [X5: rat,K2: rat] :
( ( P @ X5 )
= ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D4 ) ) ) )
=> ( ! [X5: rat,K2: rat] :
( ( Q @ X5 )
= ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D4 ) ) ) )
=> ! [X4: rat,K4: rat] :
( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) )
| ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_3258_inf__period_I2_J,axiom,
! [P: int > $o,D4: int,Q: int > $o] :
( ! [X5: int,K2: int] :
( ( P @ X5 )
= ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( Q @ X5 )
= ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ! [X4: int,K4: int] :
( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) )
| ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_3259_imp__le__cong,axiom,
! [X: int,X7: int,P: $o,P6: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> ( P = P6 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> P6 ) ) ) ) ).
% imp_le_cong
thf(fact_3260_conj__le__cong,axiom,
! [X: int,X7: int,P: $o,P6: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> ( P = P6 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X7 )
& P6 ) ) ) ) ).
% conj_le_cong
thf(fact_3261_bset_I1_J,axiom,
! [D4: int,B2: set_int,P: int > $o,Q: int > $o] :
( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X5
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( minus_minus_int @ X5 @ D4 ) ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X5
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X5 )
=> ( Q @ ( minus_minus_int @ X5 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
=> ( ( P @ ( minus_minus_int @ X4 @ D4 ) )
& ( Q @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% bset(1)
thf(fact_3262_bset_I2_J,axiom,
! [D4: int,B2: set_int,P: int > $o,Q: int > $o] :
( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X5
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( minus_minus_int @ X5 @ D4 ) ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X5
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X5 )
=> ( Q @ ( minus_minus_int @ X5 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
=> ( ( P @ ( minus_minus_int @ X4 @ D4 ) )
| ( Q @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% bset(2)
thf(fact_3263_aset_I1_J,axiom,
! [D4: int,A2: set_int,P: int > $o,Q: int > $o] :
( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ D4 ) ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X5 )
=> ( Q @ ( plus_plus_int @ X5 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
=> ( ( P @ ( plus_plus_int @ X4 @ D4 ) )
& ( Q @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% aset(1)
thf(fact_3264_aset_I2_J,axiom,
! [D4: int,A2: set_int,P: int > $o,Q: int > $o] :
( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ D4 ) ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X5 )
=> ( Q @ ( plus_plus_int @ X5 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
=> ( ( P @ ( plus_plus_int @ X4 @ D4 ) )
| ( Q @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% aset(2)
thf(fact_3265_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int,K2: int] :
( ( P1 @ X5 )
= ( P1 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P1 @ X5 ) ) )
=> ( ? [X_1: int] : ( P1 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% minusinfinity
thf(fact_3266_plusinfinity,axiom,
! [D: int,P6: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int,K2: int] :
( ( P6 @ X5 )
= ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less_int @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [X_1: int] : ( P6 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% plusinfinity
thf(fact_3267_incr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_3268_decr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( minus_minus_int @ X5 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_3269_periodic__finite__ex,axiom,
! [D: int,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int,K2: int] :
( ( P @ X5 )
= ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ( ? [X3: int] : ( P @ X3 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
& ( P @ X2 ) ) ) ) ) ) ).
% periodic_finite_ex
thf(fact_3270_bset_I3_J,axiom,
! [D4: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( X4 = T )
=> ( ( minus_minus_int @ X4 @ D4 )
= T ) ) ) ) ) ).
% bset(3)
thf(fact_3271_bset_I4_J,axiom,
! [D4: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T @ B2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( X4 != T )
=> ( ( minus_minus_int @ X4 @ D4 )
!= T ) ) ) ) ) ).
% bset(4)
thf(fact_3272_bset_I5_J,axiom,
! [D4: int,B2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ X4 @ T )
=> ( ord_less_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ).
% bset(5)
thf(fact_3273_bset_I7_J,axiom,
! [D4: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T @ B2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ T @ X4 )
=> ( ord_less_int @ T @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ).
% bset(7)
thf(fact_3274_aset_I3_J,axiom,
! [D4: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( X4 = T )
=> ( ( plus_plus_int @ X4 @ D4 )
= T ) ) ) ) ) ).
% aset(3)
thf(fact_3275_aset_I4_J,axiom,
! [D4: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T @ A2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( X4 != T )
=> ( ( plus_plus_int @ X4 @ D4 )
!= T ) ) ) ) ) ).
% aset(4)
thf(fact_3276_aset_I5_J,axiom,
! [D4: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T @ A2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ X4 @ T )
=> ( ord_less_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).
% aset(5)
thf(fact_3277_aset_I7_J,axiom,
! [D4: int,A2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ T @ X4 )
=> ( ord_less_int @ T @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ).
% aset(7)
thf(fact_3278_bset_I6_J,axiom,
! [D4: int,B2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ X4 @ T )
=> ( ord_less_eq_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ).
% bset(6)
thf(fact_3279_bset_I8_J,axiom,
! [D4: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B2 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ T @ X4 )
=> ( ord_less_eq_int @ T @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ).
% bset(8)
thf(fact_3280_unset__bit__0,axiom,
! [A: int] :
( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_3281_unset__bit__0,axiom,
! [A: nat] :
( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_3282_flip__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se1345352211410354436nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_3283_flip__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se2159334234014336723it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_3284_flip__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se2161824704523386999it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_3285_unset__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se8260200283734997820nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_3286_unset__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se4203085406695923979it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_3287_unset__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se4205575877204974255it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_3288_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A4: real,B4: real,C2: real] :
( ( P @ A4 @ B4 )
=> ( ( P @ B4 @ C2 )
=> ( ( ord_less_eq_real @ A4 @ B4 )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( P @ A4 @ C2 ) ) ) ) )
=> ( ! [X5: real] :
( ( ord_less_eq_real @ A @ X5 )
=> ( ( ord_less_eq_real @ X5 @ B )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [A4: real,B4: real] :
( ( ( ord_less_eq_real @ A4 @ X5 )
& ( ord_less_eq_real @ X5 @ B4 )
& ( ord_less_real @ ( minus_minus_real @ B4 @ A4 ) @ D5 ) )
=> ( P @ A4 @ B4 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_3289_mult__le__cancel__iff2,axiom,
! [Z4: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ Z4 )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z4 @ X ) @ ( times_times_real @ Z4 @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3290_mult__le__cancel__iff2,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z4 )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z4 @ X ) @ ( times_times_rat @ Z4 @ Y3 ) )
= ( ord_less_eq_rat @ X @ Y3 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3291_mult__le__cancel__iff2,axiom,
! [Z4: int,X: int,Y3: int] :
( ( ord_less_int @ zero_zero_int @ Z4 )
=> ( ( ord_less_eq_int @ ( times_times_int @ Z4 @ X ) @ ( times_times_int @ Z4 @ Y3 ) )
= ( ord_less_eq_int @ X @ Y3 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3292_mult__le__cancel__iff1,axiom,
! [Z4: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ Z4 )
=> ( ( ord_less_eq_real @ ( times_times_real @ X @ Z4 ) @ ( times_times_real @ Y3 @ Z4 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3293_mult__le__cancel__iff1,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z4 )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ X @ Z4 ) @ ( times_times_rat @ Y3 @ Z4 ) )
= ( ord_less_eq_rat @ X @ Y3 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3294_mult__le__cancel__iff1,axiom,
! [Z4: int,X: int,Y3: int] :
( ( ord_less_int @ zero_zero_int @ Z4 )
=> ( ( ord_less_eq_int @ ( times_times_int @ X @ Z4 ) @ ( times_times_int @ Y3 @ Z4 ) )
= ( ord_less_eq_int @ X @ Y3 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3295_unset__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% unset_bit_nonnegative_int_iff
thf(fact_3296_flip__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% flip_bit_nonnegative_int_iff
thf(fact_3297_unset__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% unset_bit_negative_int_iff
thf(fact_3298_flip__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% flip_bit_negative_int_iff
thf(fact_3299_unset__bit__less__eq,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ K ) ).
% unset_bit_less_eq
thf(fact_3300_mult__less__iff1,axiom,
! [Z4: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ Z4 )
=> ( ( ord_less_real @ ( times_times_real @ X @ Z4 ) @ ( times_times_real @ Y3 @ Z4 ) )
= ( ord_less_real @ X @ Y3 ) ) ) ).
% mult_less_iff1
thf(fact_3301_mult__less__iff1,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z4 )
=> ( ( ord_less_rat @ ( times_times_rat @ X @ Z4 ) @ ( times_times_rat @ Y3 @ Z4 ) )
= ( ord_less_rat @ X @ Y3 ) ) ) ).
% mult_less_iff1
thf(fact_3302_mult__less__iff1,axiom,
! [Z4: int,X: int,Y3: int] :
( ( ord_less_int @ zero_zero_int @ Z4 )
=> ( ( ord_less_int @ ( times_times_int @ X @ Z4 ) @ ( times_times_int @ Y3 @ Z4 ) )
= ( ord_less_int @ X @ Y3 ) ) ) ).
% mult_less_iff1
thf(fact_3303_divides__aux__eq,axiom,
! [Q3: nat,R2: nat] :
( ( unique6322359934112328802ux_nat @ ( product_Pair_nat_nat @ Q3 @ R2 ) )
= ( R2 = zero_zero_nat ) ) ).
% divides_aux_eq
thf(fact_3304_divides__aux__eq,axiom,
! [Q3: int,R2: int] :
( ( unique6319869463603278526ux_int @ ( product_Pair_int_int @ Q3 @ R2 ) )
= ( R2 = zero_zero_int ) ) ).
% divides_aux_eq
thf(fact_3305_product__nth,axiom,
! [N: nat,Xs: list_num,Ys: list_num] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_num @ Xs ) @ ( size_size_list_num @ Ys ) ) )
=> ( ( nth_Pr6456567536196504476um_num @ ( product_num_num @ Xs @ Ys ) @ N )
= ( product_Pair_num_num @ ( nth_num @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3306_product__nth,axiom,
! [N: nat,Xs: list_nat,Ys: list_num] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_num @ Ys ) ) )
=> ( ( nth_Pr8326237132889035090at_num @ ( product_nat_num @ Xs @ Ys ) @ N )
= ( product_Pair_nat_num @ ( nth_nat @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3307_product__nth,axiom,
! [N: nat,Xs: list_nat,Ys: list_nat] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_nat @ Ys ) ) )
=> ( ( nth_Pr7617993195940197384at_nat @ ( product_nat_nat @ Xs @ Ys ) @ N )
= ( product_Pair_nat_nat @ ( nth_nat @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3308_product__nth,axiom,
! [N: nat,Xs: list_nat,Ys: list_VEBT_VEBT] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
=> ( ( nth_Pr744662078594809490T_VEBT @ ( produc7156399406898700509T_VEBT @ Xs @ Ys ) @ N )
= ( produc599794634098209291T_VEBT @ ( nth_nat @ Xs @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3309_product__nth,axiom,
! [N: nat,Xs: list_nat,Ys: list_o] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_o @ Ys ) ) )
=> ( ( nth_Pr112076138515278198_nat_o @ ( product_nat_o @ Xs @ Ys ) @ N )
= ( product_Pair_nat_o @ ( nth_nat @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3310_product__nth,axiom,
! [N: nat,Xs: list_Code_integer,Ys: list_o] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs ) @ ( size_size_list_o @ Ys ) ) )
=> ( ( nth_Pr8522763379788166057eger_o @ ( produc3607205314601156340eger_o @ Xs @ Ys ) @ N )
= ( produc6677183202524767010eger_o @ ( nth_Code_integer @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3311_product__nth,axiom,
! [N: nat,Xs: list_nat,Ys: list_int] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_int @ Ys ) ) )
=> ( ( nth_Pr3440142176431000676at_int @ ( product_nat_int @ Xs @ Ys ) @ N )
= ( product_Pair_nat_int @ ( nth_nat @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3312_product__nth,axiom,
! [N: nat,Xs: list_VEBT_VEBT,Ys: list_nat] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_nat @ Ys ) ) )
=> ( ( nth_Pr1791586995822124652BT_nat @ ( produc7295137177222721919BT_nat @ Xs @ Ys ) @ N )
= ( produc738532404422230701BT_nat @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3313_product__nth,axiom,
! [N: nat,Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
=> ( ( nth_Pr4953567300277697838T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs @ Ys ) @ N )
= ( produc537772716801021591T_VEBT @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3314_product__nth,axiom,
! [N: nat,Xs: list_VEBT_VEBT,Ys: list_o] :
( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_o @ Ys ) ) )
=> ( ( nth_Pr4606735188037164562VEBT_o @ ( product_VEBT_VEBT_o @ Xs @ Ys ) @ N )
= ( produc8721562602347293563VEBT_o @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3315_neg__eucl__rel__int__mult__2,axiom,
! [B: int,A: int,Q3: int,R2: int] :
( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q3 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q3 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) @ one_one_int ) ) ) ) ) ).
% neg_eucl_rel_int_mult_2
thf(fact_3316_obtain__set__succ,axiom,
! [X: nat,Z4: nat,A2: set_nat,B2: set_nat] :
( ( ord_less_nat @ X @ Z4 )
=> ( ( vEBT_VEBT_max_in_set @ A2 @ Z4 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( A2 = B2 )
=> ? [X_12: nat] : ( vEBT_is_succ_in_set @ A2 @ X @ X_12 ) ) ) ) ) ).
% obtain_set_succ
thf(fact_3317_set__vebt__finite,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( finite_finite_nat @ ( vEBT_VEBT_set_vebt @ T ) ) ) ).
% set_vebt_finite
thf(fact_3318_succ__none__empty,axiom,
! [Xs: set_nat,A: nat] :
( ~ ? [X_12: nat] : ( vEBT_is_succ_in_set @ Xs @ A @ X_12 )
=> ( ( finite_finite_nat @ Xs )
=> ~ ? [X4: nat] :
( ( member_nat @ X4 @ Xs )
& ( ord_less_nat @ A @ X4 ) ) ) ) ).
% succ_none_empty
thf(fact_3319_old_Oprod_Oinject,axiom,
! [A: code_integer,B: $o,A3: code_integer,B3: $o] :
( ( ( produc6677183202524767010eger_o @ A @ B )
= ( produc6677183202524767010eger_o @ A3 @ B3 ) )
= ( ( A = A3 )
& ( B = B3 ) ) ) ).
% old.prod.inject
thf(fact_3320_old_Oprod_Oinject,axiom,
! [A: num,B: num,A3: num,B3: num] :
( ( ( product_Pair_num_num @ A @ B )
= ( product_Pair_num_num @ A3 @ B3 ) )
= ( ( A = A3 )
& ( B = B3 ) ) ) ).
% old.prod.inject
thf(fact_3321_old_Oprod_Oinject,axiom,
! [A: nat,B: num,A3: nat,B3: num] :
( ( ( product_Pair_nat_num @ A @ B )
= ( product_Pair_nat_num @ A3 @ B3 ) )
= ( ( A = A3 )
& ( B = B3 ) ) ) ).
% old.prod.inject
thf(fact_3322_old_Oprod_Oinject,axiom,
! [A: nat,B: nat,A3: nat,B3: nat] :
( ( ( product_Pair_nat_nat @ A @ B )
= ( product_Pair_nat_nat @ A3 @ B3 ) )
= ( ( A = A3 )
& ( B = B3 ) ) ) ).
% old.prod.inject
thf(fact_3323_old_Oprod_Oinject,axiom,
! [A: int,B: int,A3: int,B3: int] :
( ( ( product_Pair_int_int @ A @ B )
= ( product_Pair_int_int @ A3 @ B3 ) )
= ( ( A = A3 )
& ( B = B3 ) ) ) ).
% old.prod.inject
thf(fact_3324_prod_Oinject,axiom,
! [X1: code_integer,X22: $o,Y1: code_integer,Y22: $o] :
( ( ( produc6677183202524767010eger_o @ X1 @ X22 )
= ( produc6677183202524767010eger_o @ Y1 @ Y22 ) )
= ( ( X1 = Y1 )
& ( X22 = Y22 ) ) ) ).
% prod.inject
thf(fact_3325_prod_Oinject,axiom,
! [X1: num,X22: num,Y1: num,Y22: num] :
( ( ( product_Pair_num_num @ X1 @ X22 )
= ( product_Pair_num_num @ Y1 @ Y22 ) )
= ( ( X1 = Y1 )
& ( X22 = Y22 ) ) ) ).
% prod.inject
thf(fact_3326_prod_Oinject,axiom,
! [X1: nat,X22: num,Y1: nat,Y22: num] :
( ( ( product_Pair_nat_num @ X1 @ X22 )
= ( product_Pair_nat_num @ Y1 @ Y22 ) )
= ( ( X1 = Y1 )
& ( X22 = Y22 ) ) ) ).
% prod.inject
thf(fact_3327_prod_Oinject,axiom,
! [X1: nat,X22: nat,Y1: nat,Y22: nat] :
( ( ( product_Pair_nat_nat @ X1 @ X22 )
= ( product_Pair_nat_nat @ Y1 @ Y22 ) )
= ( ( X1 = Y1 )
& ( X22 = Y22 ) ) ) ).
% prod.inject
thf(fact_3328_prod_Oinject,axiom,
! [X1: int,X22: int,Y1: int,Y22: int] :
( ( ( product_Pair_int_int @ X1 @ X22 )
= ( product_Pair_int_int @ Y1 @ Y22 ) )
= ( ( X1 = Y1 )
& ( X22 = Y22 ) ) ) ).
% prod.inject
thf(fact_3329_List_Ofinite__set,axiom,
! [Xs: list_VEBT_VEBT] : ( finite5795047828879050333T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) ) ).
% List.finite_set
thf(fact_3330_List_Ofinite__set,axiom,
! [Xs: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs ) ) ).
% List.finite_set
thf(fact_3331_List_Ofinite__set,axiom,
! [Xs: list_int] : ( finite_finite_int @ ( set_int2 @ Xs ) ) ).
% List.finite_set
thf(fact_3332_List_Ofinite__set,axiom,
! [Xs: list_complex] : ( finite3207457112153483333omplex @ ( set_complex2 @ Xs ) ) ).
% List.finite_set
thf(fact_3333_infinite__Icc__iff,axiom,
! [A: rat,B: rat] :
( ( ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) )
= ( ord_less_rat @ A @ B ) ) ).
% infinite_Icc_iff
thf(fact_3334_infinite__Icc__iff,axiom,
! [A: real,B: real] :
( ( ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) )
= ( ord_less_real @ A @ B ) ) ).
% infinite_Icc_iff
thf(fact_3335_length__product,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( size_s7466405169056248089T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs @ Ys ) )
= ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).
% length_product
thf(fact_3336_length__product,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_o] :
( ( size_s9168528473962070013VEBT_o @ ( product_VEBT_VEBT_o @ Xs @ Ys ) )
= ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).
% length_product
thf(fact_3337_length__product,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_int] :
( ( size_s3661962791536183091BT_int @ ( produc7292646706713671643BT_int @ Xs @ Ys ) )
= ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_int @ Ys ) ) ) ).
% length_product
thf(fact_3338_length__product,axiom,
! [Xs: list_o,Ys: list_VEBT_VEBT] :
( ( size_s4313452262239582901T_VEBT @ ( product_o_VEBT_VEBT @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).
% length_product
thf(fact_3339_length__product,axiom,
! [Xs: list_o,Ys: list_o] :
( ( size_s1515746228057227161od_o_o @ ( product_o_o @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).
% length_product
thf(fact_3340_length__product,axiom,
! [Xs: list_o,Ys: list_int] :
( ( size_s2953683556165314199_o_int @ ( product_o_int @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_int @ Ys ) ) ) ).
% length_product
thf(fact_3341_length__product,axiom,
! [Xs: list_int,Ys: list_VEBT_VEBT] :
( ( size_s6639371672096860321T_VEBT @ ( produc662631939642741121T_VEBT @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_int @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).
% length_product
thf(fact_3342_length__product,axiom,
! [Xs: list_int,Ys: list_o] :
( ( size_s4246224855604898693_int_o @ ( product_int_o @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_int @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).
% length_product
thf(fact_3343_length__product,axiom,
! [Xs: list_int,Ys: list_int] :
( ( size_s5157815400016825771nt_int @ ( product_int_int @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_int @ Xs ) @ ( size_size_list_int @ Ys ) ) ) ).
% length_product
thf(fact_3344_finite__nat__set__iff__bounded,axiom,
( finite_finite_nat
= ( ^ [N6: set_nat] :
? [M6: nat] :
! [X2: nat] :
( ( member_nat @ X2 @ N6 )
=> ( ord_less_nat @ X2 @ M6 ) ) ) ) ).
% finite_nat_set_iff_bounded
thf(fact_3345_bounded__nat__set__is__finite,axiom,
! [N5: set_nat,N: nat] :
( ! [X5: nat] :
( ( member_nat @ X5 @ N5 )
=> ( ord_less_nat @ X5 @ N ) )
=> ( finite_finite_nat @ N5 ) ) ).
% bounded_nat_set_is_finite
thf(fact_3346_finite__nat__set__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [N6: set_nat] :
? [M6: nat] :
! [X2: nat] :
( ( member_nat @ X2 @ N6 )
=> ( ord_less_eq_nat @ X2 @ M6 ) ) ) ) ).
% finite_nat_set_iff_bounded_le
thf(fact_3347_finite__list,axiom,
! [A2: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ? [Xs3: list_VEBT_VEBT] :
( ( set_VEBT_VEBT2 @ Xs3 )
= A2 ) ) ).
% finite_list
thf(fact_3348_finite__list,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ? [Xs3: list_nat] :
( ( set_nat2 @ Xs3 )
= A2 ) ) ).
% finite_list
thf(fact_3349_finite__list,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ? [Xs3: list_int] :
( ( set_int2 @ Xs3 )
= A2 ) ) ).
% finite_list
thf(fact_3350_finite__list,axiom,
! [A2: set_complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ? [Xs3: list_complex] :
( ( set_complex2 @ Xs3 )
= A2 ) ) ).
% finite_list
thf(fact_3351_finite__M__bounded__by__nat,axiom,
! [P: nat > $o,I4: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( P @ K3 )
& ( ord_less_nat @ K3 @ I4 ) ) ) ) ).
% finite_M_bounded_by_nat
thf(fact_3352_finite__less__ub,axiom,
! [F: nat > nat,U2: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ N3 @ ( F @ N3 ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ U2 ) ) ) ) ).
% finite_less_ub
thf(fact_3353_finite__lists__length__eq,axiom,
! [A2: set_nat,N: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [Xs2: list_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ A2 )
& ( ( size_size_list_nat @ Xs2 )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3354_finite__lists__length__eq,axiom,
! [A2: set_complex,N: nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite8712137658972009173omplex
@ ( collect_list_complex
@ ^ [Xs2: list_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ A2 )
& ( ( size_s3451745648224563538omplex @ Xs2 )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3355_finite__lists__length__eq,axiom,
! [A2: set_VEBT_VEBT,N: nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( finite3004134309566078307T_VEBT
@ ( collec5608196760682091941T_VEBT
@ ^ [Xs2: list_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ A2 )
& ( ( size_s6755466524823107622T_VEBT @ Xs2 )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3356_finite__lists__length__eq,axiom,
! [A2: set_o,N: nat] :
( ( finite_finite_o @ A2 )
=> ( finite_finite_list_o
@ ( collect_list_o
@ ^ [Xs2: list_o] :
( ( ord_less_eq_set_o @ ( set_o2 @ Xs2 ) @ A2 )
& ( ( size_size_list_o @ Xs2 )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3357_finite__lists__length__eq,axiom,
! [A2: set_int,N: nat] :
( ( finite_finite_int @ A2 )
=> ( finite3922522038869484883st_int
@ ( collect_list_int
@ ^ [Xs2: list_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ A2 )
& ( ( size_size_list_int @ Xs2 )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3358_infinite__Icc,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) ) ).
% infinite_Icc
thf(fact_3359_infinite__Icc,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).
% infinite_Icc
thf(fact_3360_finite__lists__length__le,axiom,
! [A2: set_nat,N: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [Xs2: list_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_nat @ Xs2 ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3361_finite__lists__length__le,axiom,
! [A2: set_complex,N: nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite8712137658972009173omplex
@ ( collect_list_complex
@ ^ [Xs2: list_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ A2 )
& ( ord_less_eq_nat @ ( size_s3451745648224563538omplex @ Xs2 ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3362_finite__lists__length__le,axiom,
! [A2: set_VEBT_VEBT,N: nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( finite3004134309566078307T_VEBT
@ ( collec5608196760682091941T_VEBT
@ ^ [Xs2: list_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ A2 )
& ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3363_finite__lists__length__le,axiom,
! [A2: set_o,N: nat] :
( ( finite_finite_o @ A2 )
=> ( finite_finite_list_o
@ ( collect_list_o
@ ^ [Xs2: list_o] :
( ( ord_less_eq_set_o @ ( set_o2 @ Xs2 ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_o @ Xs2 ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3364_finite__lists__length__le,axiom,
! [A2: set_int,N: nat] :
( ( finite_finite_int @ A2 )
=> ( finite3922522038869484883st_int
@ ( collect_list_int
@ ^ [Xs2: list_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_int @ Xs2 ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3365_eucl__rel__int__dividesI,axiom,
! [L: int,K: int,Q3: int] :
( ( L != zero_zero_int )
=> ( ( K
= ( times_times_int @ Q3 @ L ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q3 @ zero_zero_int ) ) ) ) ).
% eucl_rel_int_dividesI
thf(fact_3366_Pair__inject,axiom,
! [A: code_integer,B: $o,A3: code_integer,B3: $o] :
( ( ( produc6677183202524767010eger_o @ A @ B )
= ( produc6677183202524767010eger_o @ A3 @ B3 ) )
=> ~ ( ( A = A3 )
=> ( B = ~ B3 ) ) ) ).
% Pair_inject
thf(fact_3367_Pair__inject,axiom,
! [A: num,B: num,A3: num,B3: num] :
( ( ( product_Pair_num_num @ A @ B )
= ( product_Pair_num_num @ A3 @ B3 ) )
=> ~ ( ( A = A3 )
=> ( B != B3 ) ) ) ).
% Pair_inject
thf(fact_3368_Pair__inject,axiom,
! [A: nat,B: num,A3: nat,B3: num] :
( ( ( product_Pair_nat_num @ A @ B )
= ( product_Pair_nat_num @ A3 @ B3 ) )
=> ~ ( ( A = A3 )
=> ( B != B3 ) ) ) ).
% Pair_inject
thf(fact_3369_Pair__inject,axiom,
! [A: nat,B: nat,A3: nat,B3: nat] :
( ( ( product_Pair_nat_nat @ A @ B )
= ( product_Pair_nat_nat @ A3 @ B3 ) )
=> ~ ( ( A = A3 )
=> ( B != B3 ) ) ) ).
% Pair_inject
thf(fact_3370_Pair__inject,axiom,
! [A: int,B: int,A3: int,B3: int] :
( ( ( product_Pair_int_int @ A @ B )
= ( product_Pair_int_int @ A3 @ B3 ) )
=> ~ ( ( A = A3 )
=> ( B != B3 ) ) ) ).
% Pair_inject
thf(fact_3371_prod__cases,axiom,
! [P: produc6271795597528267376eger_o > $o,P2: produc6271795597528267376eger_o] :
( ! [A4: code_integer,B4: $o] : ( P @ ( produc6677183202524767010eger_o @ A4 @ B4 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_3372_prod__cases,axiom,
! [P: product_prod_num_num > $o,P2: product_prod_num_num] :
( ! [A4: num,B4: num] : ( P @ ( product_Pair_num_num @ A4 @ B4 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_3373_prod__cases,axiom,
! [P: product_prod_nat_num > $o,P2: product_prod_nat_num] :
( ! [A4: nat,B4: num] : ( P @ ( product_Pair_nat_num @ A4 @ B4 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_3374_prod__cases,axiom,
! [P: product_prod_nat_nat > $o,P2: product_prod_nat_nat] :
( ! [A4: nat,B4: nat] : ( P @ ( product_Pair_nat_nat @ A4 @ B4 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_3375_prod__cases,axiom,
! [P: product_prod_int_int > $o,P2: product_prod_int_int] :
( ! [A4: int,B4: int] : ( P @ ( product_Pair_int_int @ A4 @ B4 ) )
=> ( P @ P2 ) ) ).
% prod_cases
thf(fact_3376_surj__pair,axiom,
! [P2: produc6271795597528267376eger_o] :
? [X5: code_integer,Y4: $o] :
( P2
= ( produc6677183202524767010eger_o @ X5 @ Y4 ) ) ).
% surj_pair
thf(fact_3377_surj__pair,axiom,
! [P2: product_prod_num_num] :
? [X5: num,Y4: num] :
( P2
= ( product_Pair_num_num @ X5 @ Y4 ) ) ).
% surj_pair
thf(fact_3378_surj__pair,axiom,
! [P2: product_prod_nat_num] :
? [X5: nat,Y4: num] :
( P2
= ( product_Pair_nat_num @ X5 @ Y4 ) ) ).
% surj_pair
thf(fact_3379_surj__pair,axiom,
! [P2: product_prod_nat_nat] :
? [X5: nat,Y4: nat] :
( P2
= ( product_Pair_nat_nat @ X5 @ Y4 ) ) ).
% surj_pair
thf(fact_3380_surj__pair,axiom,
! [P2: product_prod_int_int] :
? [X5: int,Y4: int] :
( P2
= ( product_Pair_int_int @ X5 @ Y4 ) ) ).
% surj_pair
thf(fact_3381_old_Oprod_Oexhaust,axiom,
! [Y3: produc6271795597528267376eger_o] :
~ ! [A4: code_integer,B4: $o] :
( Y3
!= ( produc6677183202524767010eger_o @ A4 @ B4 ) ) ).
% old.prod.exhaust
thf(fact_3382_old_Oprod_Oexhaust,axiom,
! [Y3: product_prod_num_num] :
~ ! [A4: num,B4: num] :
( Y3
!= ( product_Pair_num_num @ A4 @ B4 ) ) ).
% old.prod.exhaust
thf(fact_3383_old_Oprod_Oexhaust,axiom,
! [Y3: product_prod_nat_num] :
~ ! [A4: nat,B4: num] :
( Y3
!= ( product_Pair_nat_num @ A4 @ B4 ) ) ).
% old.prod.exhaust
thf(fact_3384_old_Oprod_Oexhaust,axiom,
! [Y3: product_prod_nat_nat] :
~ ! [A4: nat,B4: nat] :
( Y3
!= ( product_Pair_nat_nat @ A4 @ B4 ) ) ).
% old.prod.exhaust
thf(fact_3385_old_Oprod_Oexhaust,axiom,
! [Y3: product_prod_int_int] :
~ ! [A4: int,B4: int] :
( Y3
!= ( product_Pair_int_int @ A4 @ B4 ) ) ).
% old.prod.exhaust
thf(fact_3386_subset__eq__atLeast0__atMost__finite,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_atMost_finite
thf(fact_3387_eucl__rel__int__iff,axiom,
! [K: int,L: int,Q3: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q3 @ R2 ) )
= ( ( K
= ( plus_plus_int @ ( times_times_int @ L @ Q3 ) @ R2 ) )
& ( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
& ( ord_less_int @ R2 @ L ) ) )
& ( ~ ( ord_less_int @ zero_zero_int @ L )
=> ( ( ( ord_less_int @ L @ zero_zero_int )
=> ( ( ord_less_int @ L @ R2 )
& ( ord_less_eq_int @ R2 @ zero_zero_int ) ) )
& ( ~ ( ord_less_int @ L @ zero_zero_int )
=> ( Q3 = zero_zero_int ) ) ) ) ) ) ).
% eucl_rel_int_iff
thf(fact_3388_pos__eucl__rel__int__mult__2,axiom,
! [B: int,A: int,Q3: int,R2: int] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q3 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q3 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) ) ) ) ) ) ).
% pos_eucl_rel_int_mult_2
thf(fact_3389_finite__Collect__le__nat,axiom,
! [K: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [N2: nat] : ( ord_less_eq_nat @ N2 @ K ) ) ) ).
% finite_Collect_le_nat
thf(fact_3390_finite__Collect__less__nat,axiom,
! [K: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [N2: nat] : ( ord_less_nat @ N2 @ K ) ) ) ).
% finite_Collect_less_nat
thf(fact_3391_finite__Collect__subsets,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [B6: set_nat] : ( ord_less_eq_set_nat @ B6 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_3392_finite__Collect__subsets,axiom,
! [A2: set_complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite6551019134538273531omplex
@ ( collect_set_complex
@ ^ [B6: set_complex] : ( ord_le211207098394363844omplex @ B6 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_3393_finite__Collect__subsets,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ( finite6197958912794628473et_int
@ ( collect_set_int
@ ^ [B6: set_int] : ( ord_less_eq_set_int @ B6 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_3394_finite__Collect__bounded__ex,axiom,
! [P: real > $o,Q: real > real > $o] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
? [Y2: real] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: real] :
( ( P @ Y2 )
=> ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3395_finite__Collect__bounded__ex,axiom,
! [P: real > $o,Q: nat > real > $o] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] :
? [Y2: real] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: real] :
( ( P @ Y2 )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3396_finite__Collect__bounded__ex,axiom,
! [P: real > $o,Q: int > real > $o] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] :
? [Y2: real] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: real] :
( ( P @ Y2 )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3397_finite__Collect__bounded__ex,axiom,
! [P: real > $o,Q: complex > real > $o] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
? [Y2: real] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: real] :
( ( P @ Y2 )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3398_finite__Collect__bounded__ex,axiom,
! [P: nat > $o,Q: real > nat > $o] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
? [Y2: nat] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3399_finite__Collect__bounded__ex,axiom,
! [P: nat > $o,Q: nat > nat > $o] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] :
? [Y2: nat] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3400_finite__Collect__bounded__ex,axiom,
! [P: nat > $o,Q: int > nat > $o] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] :
? [Y2: nat] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3401_finite__Collect__bounded__ex,axiom,
! [P: nat > $o,Q: complex > nat > $o] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
? [Y2: nat] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3402_finite__Collect__bounded__ex,axiom,
! [P: int > $o,Q: real > int > $o] :
( ( finite_finite_int @ ( collect_int @ P ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
? [Y2: int] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: int] :
( ( P @ Y2 )
=> ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3403_finite__Collect__bounded__ex,axiom,
! [P: int > $o,Q: nat > int > $o] :
( ( finite_finite_int @ ( collect_int @ P ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] :
? [Y2: int] :
( ( P @ Y2 )
& ( Q @ X2 @ Y2 ) ) ) )
= ( ! [Y2: int] :
( ( P @ Y2 )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] : ( Q @ X2 @ Y2 ) ) ) ) ) ) ) ).
% finite_Collect_bounded_ex
thf(fact_3404_finite__roots__unity,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Z2: real] :
( ( power_power_real @ Z2 @ N )
= one_one_real ) ) ) ) ).
% finite_roots_unity
thf(fact_3405_finite__roots__unity,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= one_one_complex ) ) ) ) ).
% finite_roots_unity
thf(fact_3406_finite__Diff2,axiom,
! [B2: set_int,A2: set_int] :
( ( finite_finite_int @ B2 )
=> ( ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( finite_finite_int @ A2 ) ) ) ).
% finite_Diff2
thf(fact_3407_finite__Diff2,axiom,
! [B2: set_complex,A2: set_complex] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( finite3207457112153483333omplex @ A2 ) ) ) ).
% finite_Diff2
thf(fact_3408_finite__Diff2,axiom,
! [B2: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B2 )
=> ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( finite_finite_nat @ A2 ) ) ) ).
% finite_Diff2
thf(fact_3409_finite__Diff,axiom,
! [A2: set_int,B2: set_int] :
( ( finite_finite_int @ A2 )
=> ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ).
% finite_Diff
thf(fact_3410_finite__Diff,axiom,
! [A2: set_complex,B2: set_complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) ) ).
% finite_Diff
thf(fact_3411_finite__Diff,axiom,
! [A2: set_nat,B2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).
% finite_Diff
thf(fact_3412_finite__Collect__conjI,axiom,
! [P: real > $o,Q: real > $o] :
( ( ( finite_finite_real @ ( collect_real @ P ) )
| ( finite_finite_real @ ( collect_real @ Q ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3413_finite__Collect__conjI,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
| ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3414_finite__Collect__conjI,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( ( finite_finite_nat @ ( collect_nat @ P ) )
| ( finite_finite_nat @ ( collect_nat @ Q ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3415_finite__Collect__conjI,axiom,
! [P: int > $o,Q: int > $o] :
( ( ( finite_finite_int @ ( collect_int @ P ) )
| ( finite_finite_int @ ( collect_int @ Q ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3416_finite__Collect__conjI,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
| ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3417_finite__Collect__disjI,axiom,
! [P: real > $o,Q: real > $o] :
( ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite_finite_real @ ( collect_real @ P ) )
& ( finite_finite_real @ ( collect_real @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3418_finite__Collect__disjI,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
& ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3419_finite__Collect__disjI,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite_finite_nat @ ( collect_nat @ P ) )
& ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3420_finite__Collect__disjI,axiom,
! [P: int > $o,Q: int > $o] :
( ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite_finite_int @ ( collect_int @ P ) )
& ( finite_finite_int @ ( collect_int @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3421_finite__Collect__disjI,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
& ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3422_finite__interval__int1,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_eq_int @ A @ I3 )
& ( ord_less_eq_int @ I3 @ B ) ) ) ) ).
% finite_interval_int1
thf(fact_3423_finite__interval__int4,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_int @ A @ I3 )
& ( ord_less_int @ I3 @ B ) ) ) ) ).
% finite_interval_int4
thf(fact_3424_finite__interval__int3,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_int @ A @ I3 )
& ( ord_less_eq_int @ I3 @ B ) ) ) ) ).
% finite_interval_int3
thf(fact_3425_finite__interval__int2,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_eq_int @ A @ I3 )
& ( ord_less_int @ I3 @ B ) ) ) ) ).
% finite_interval_int2
thf(fact_3426_finite__maxlen,axiom,
! [M7: set_list_VEBT_VEBT] :
( ( finite3004134309566078307T_VEBT @ M7 )
=> ? [N3: nat] :
! [X4: list_VEBT_VEBT] :
( ( member2936631157270082147T_VEBT @ X4 @ M7 )
=> ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ X4 ) @ N3 ) ) ) ).
% finite_maxlen
thf(fact_3427_finite__maxlen,axiom,
! [M7: set_list_o] :
( ( finite_finite_list_o @ M7 )
=> ? [N3: nat] :
! [X4: list_o] :
( ( member_list_o @ X4 @ M7 )
=> ( ord_less_nat @ ( size_size_list_o @ X4 ) @ N3 ) ) ) ).
% finite_maxlen
thf(fact_3428_finite__maxlen,axiom,
! [M7: set_list_int] :
( ( finite3922522038869484883st_int @ M7 )
=> ? [N3: nat] :
! [X4: list_int] :
( ( member_list_int @ X4 @ M7 )
=> ( ord_less_nat @ ( size_size_list_int @ X4 ) @ N3 ) ) ) ).
% finite_maxlen
thf(fact_3429_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B2: set_nat,R: real > nat > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: nat] :
( ( member_nat @ X5 @ B2 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A5: real] :
( ( member_real @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3430_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B2: set_int,R: real > int > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: int] :
( ( member_int @ X5 @ B2 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A5: real] :
( ( member_real @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3431_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B2: set_complex,R: real > complex > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: complex] :
( ( member_complex @ X5 @ B2 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A5: real] :
( ( member_real @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3432_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B2: set_nat,R: nat > nat > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: nat] :
( ( member_nat @ X5 @ B2 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A5: nat] :
( ( member_nat @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3433_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B2: set_int,R: nat > int > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: int] :
( ( member_int @ X5 @ B2 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A5: nat] :
( ( member_nat @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3434_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B2: set_complex,R: nat > complex > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: complex] :
( ( member_complex @ X5 @ B2 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A5: nat] :
( ( member_nat @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3435_pigeonhole__infinite__rel,axiom,
! [A2: set_int,B2: set_nat,R: int > nat > $o] :
( ~ ( finite_finite_int @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: nat] :
( ( member_nat @ X5 @ B2 )
& ~ ( finite_finite_int
@ ( collect_int
@ ^ [A5: int] :
( ( member_int @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3436_pigeonhole__infinite__rel,axiom,
! [A2: set_int,B2: set_int,R: int > int > $o] :
( ~ ( finite_finite_int @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: int] :
( ( member_int @ X5 @ B2 )
& ~ ( finite_finite_int
@ ( collect_int
@ ^ [A5: int] :
( ( member_int @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3437_pigeonhole__infinite__rel,axiom,
! [A2: set_int,B2: set_complex,R: int > complex > $o] :
( ~ ( finite_finite_int @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: complex] :
( ( member_complex @ X5 @ B2 )
& ~ ( finite_finite_int
@ ( collect_int
@ ^ [A5: int] :
( ( member_int @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3438_pigeonhole__infinite__rel,axiom,
! [A2: set_complex,B2: set_nat,R: complex > nat > $o] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X5 @ Xa ) ) )
=> ? [X5: nat] :
( ( member_nat @ X5 @ B2 )
& ~ ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [A5: complex] :
( ( member_complex @ A5 @ A2 )
& ( R @ A5 @ X5 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3439_not__finite__existsD,axiom,
! [P: real > $o] :
( ~ ( finite_finite_real @ ( collect_real @ P ) )
=> ? [X_12: real] : ( P @ X_12 ) ) ).
% not_finite_existsD
thf(fact_3440_not__finite__existsD,axiom,
! [P: set_nat > $o] :
( ~ ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
=> ? [X_12: set_nat] : ( P @ X_12 ) ) ).
% not_finite_existsD
thf(fact_3441_not__finite__existsD,axiom,
! [P: nat > $o] :
( ~ ( finite_finite_nat @ ( collect_nat @ P ) )
=> ? [X_12: nat] : ( P @ X_12 ) ) ).
% not_finite_existsD
thf(fact_3442_not__finite__existsD,axiom,
! [P: int > $o] :
( ~ ( finite_finite_int @ ( collect_int @ P ) )
=> ? [X_12: int] : ( P @ X_12 ) ) ).
% not_finite_existsD
thf(fact_3443_not__finite__existsD,axiom,
! [P: complex > $o] :
( ~ ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
=> ? [X_12: complex] : ( P @ X_12 ) ) ).
% not_finite_existsD
thf(fact_3444_finite__has__minimal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X5: real] :
( ( member_real @ X5 @ A2 )
& ( ord_less_eq_real @ X5 @ A )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_3445_finite__has__minimal2,axiom,
! [A2: set_set_nat,A: set_nat] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ( member_set_nat @ A @ A2 )
=> ? [X5: set_nat] :
( ( member_set_nat @ X5 @ A2 )
& ( ord_less_eq_set_nat @ X5 @ A )
& ! [Xa: set_nat] :
( ( member_set_nat @ Xa @ A2 )
=> ( ( ord_less_eq_set_nat @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_3446_finite__has__minimal2,axiom,
! [A2: set_set_int,A: set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( member_set_int @ A @ A2 )
=> ? [X5: set_int] :
( ( member_set_int @ X5 @ A2 )
& ( ord_less_eq_set_int @ X5 @ A )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_3447_finite__has__minimal2,axiom,
! [A2: set_rat,A: rat] :
( ( finite_finite_rat @ A2 )
=> ( ( member_rat @ A @ A2 )
=> ? [X5: rat] :
( ( member_rat @ X5 @ A2 )
& ( ord_less_eq_rat @ X5 @ A )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_3448_finite__has__minimal2,axiom,
! [A2: set_num,A: num] :
( ( finite_finite_num @ A2 )
=> ( ( member_num @ A @ A2 )
=> ? [X5: num] :
( ( member_num @ X5 @ A2 )
& ( ord_less_eq_num @ X5 @ A )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_3449_finite__has__minimal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X5: nat] :
( ( member_nat @ X5 @ A2 )
& ( ord_less_eq_nat @ X5 @ A )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_3450_finite__has__minimal2,axiom,
! [A2: set_int,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ? [X5: int] :
( ( member_int @ X5 @ A2 )
& ( ord_less_eq_int @ X5 @ A )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_3451_finite__has__maximal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X5: real] :
( ( member_real @ X5 @ A2 )
& ( ord_less_eq_real @ A @ X5 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_3452_finite__has__maximal2,axiom,
! [A2: set_set_nat,A: set_nat] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ( member_set_nat @ A @ A2 )
=> ? [X5: set_nat] :
( ( member_set_nat @ X5 @ A2 )
& ( ord_less_eq_set_nat @ A @ X5 )
& ! [Xa: set_nat] :
( ( member_set_nat @ Xa @ A2 )
=> ( ( ord_less_eq_set_nat @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_3453_finite__has__maximal2,axiom,
! [A2: set_set_int,A: set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( member_set_int @ A @ A2 )
=> ? [X5: set_int] :
( ( member_set_int @ X5 @ A2 )
& ( ord_less_eq_set_int @ A @ X5 )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_3454_finite__has__maximal2,axiom,
! [A2: set_rat,A: rat] :
( ( finite_finite_rat @ A2 )
=> ( ( member_rat @ A @ A2 )
=> ? [X5: rat] :
( ( member_rat @ X5 @ A2 )
& ( ord_less_eq_rat @ A @ X5 )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_3455_finite__has__maximal2,axiom,
! [A2: set_num,A: num] :
( ( finite_finite_num @ A2 )
=> ( ( member_num @ A @ A2 )
=> ? [X5: num] :
( ( member_num @ X5 @ A2 )
& ( ord_less_eq_num @ A @ X5 )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_3456_finite__has__maximal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X5: nat] :
( ( member_nat @ X5 @ A2 )
& ( ord_less_eq_nat @ A @ X5 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_3457_finite__has__maximal2,axiom,
! [A2: set_int,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ? [X5: int] :
( ( member_int @ X5 @ A2 )
& ( ord_less_eq_int @ A @ X5 )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_3458_finite__subset,axiom,
! [A2: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( finite_finite_nat @ B2 )
=> ( finite_finite_nat @ A2 ) ) ) ).
% finite_subset
thf(fact_3459_finite__subset,axiom,
! [A2: set_complex,B2: set_complex] :
( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( finite3207457112153483333omplex @ A2 ) ) ) ).
% finite_subset
thf(fact_3460_finite__subset,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( finite_finite_int @ B2 )
=> ( finite_finite_int @ A2 ) ) ) ).
% finite_subset
thf(fact_3461_infinite__super,axiom,
! [S3: set_nat,T3: set_nat] :
( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ~ ( finite_finite_nat @ S3 )
=> ~ ( finite_finite_nat @ T3 ) ) ) ).
% infinite_super
thf(fact_3462_infinite__super,axiom,
! [S3: set_complex,T3: set_complex] :
( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ~ ( finite3207457112153483333omplex @ S3 )
=> ~ ( finite3207457112153483333omplex @ T3 ) ) ) ).
% infinite_super
thf(fact_3463_infinite__super,axiom,
! [S3: set_int,T3: set_int] :
( ( ord_less_eq_set_int @ S3 @ T3 )
=> ( ~ ( finite_finite_int @ S3 )
=> ~ ( finite_finite_int @ T3 ) ) ) ).
% infinite_super
thf(fact_3464_rev__finite__subset,axiom,
! [B2: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( finite_finite_nat @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_3465_rev__finite__subset,axiom,
! [B2: set_complex,A2: set_complex] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( finite3207457112153483333omplex @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_3466_rev__finite__subset,axiom,
! [B2: set_int,A2: set_int] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( finite_finite_int @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_3467_Diff__infinite__finite,axiom,
! [T3: set_int,S3: set_int] :
( ( finite_finite_int @ T3 )
=> ( ~ ( finite_finite_int @ S3 )
=> ~ ( finite_finite_int @ ( minus_minus_set_int @ S3 @ T3 ) ) ) ) ).
% Diff_infinite_finite
thf(fact_3468_Diff__infinite__finite,axiom,
! [T3: set_complex,S3: set_complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ~ ( finite3207457112153483333omplex @ S3 )
=> ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ S3 @ T3 ) ) ) ) ).
% Diff_infinite_finite
thf(fact_3469_Diff__infinite__finite,axiom,
! [T3: set_nat,S3: set_nat] :
( ( finite_finite_nat @ T3 )
=> ( ~ ( finite_finite_nat @ S3 )
=> ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S3 @ T3 ) ) ) ) ).
% Diff_infinite_finite
thf(fact_3470_finite__image__set2,axiom,
! [P: real > $o,Q: real > $o,F: real > real > real] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_real @ ( collect_real @ Q ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Uu: real] :
? [X2: real,Y2: real] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3471_finite__image__set2,axiom,
! [P: real > $o,Q: real > $o,F: real > real > nat] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_real @ ( collect_real @ Q ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [Uu: nat] :
? [X2: real,Y2: real] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3472_finite__image__set2,axiom,
! [P: real > $o,Q: real > $o,F: real > real > int] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_real @ ( collect_real @ Q ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [Uu: int] :
? [X2: real,Y2: real] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3473_finite__image__set2,axiom,
! [P: real > $o,Q: real > $o,F: real > real > complex] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_real @ ( collect_real @ Q ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Uu: complex] :
? [X2: real,Y2: real] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3474_finite__image__set2,axiom,
! [P: real > $o,Q: nat > $o,F: real > nat > real] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_nat @ ( collect_nat @ Q ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Uu: real] :
? [X2: real,Y2: nat] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3475_finite__image__set2,axiom,
! [P: real > $o,Q: nat > $o,F: real > nat > nat] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_nat @ ( collect_nat @ Q ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [Uu: nat] :
? [X2: real,Y2: nat] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3476_finite__image__set2,axiom,
! [P: real > $o,Q: nat > $o,F: real > nat > int] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_nat @ ( collect_nat @ Q ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [Uu: int] :
? [X2: real,Y2: nat] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3477_finite__image__set2,axiom,
! [P: real > $o,Q: nat > $o,F: real > nat > complex] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_nat @ ( collect_nat @ Q ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Uu: complex] :
? [X2: real,Y2: nat] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3478_finite__image__set2,axiom,
! [P: real > $o,Q: int > $o,F: real > int > real] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_int @ ( collect_int @ Q ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Uu: real] :
? [X2: real,Y2: int] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3479_finite__image__set2,axiom,
! [P: real > $o,Q: int > $o,F: real > int > nat] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( ( finite_finite_int @ ( collect_int @ Q ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [Uu: nat] :
? [X2: real,Y2: int] :
( ( Uu
= ( F @ X2 @ Y2 ) )
& ( P @ X2 )
& ( Q @ Y2 ) ) ) ) ) ) ).
% finite_image_set2
thf(fact_3480_finite__image__set,axiom,
! [P: real > $o,F: real > real] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Uu: real] :
? [X2: real] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3481_finite__image__set,axiom,
! [P: real > $o,F: real > nat] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [Uu: nat] :
? [X2: real] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3482_finite__image__set,axiom,
! [P: real > $o,F: real > int] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [Uu: int] :
? [X2: real] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3483_finite__image__set,axiom,
! [P: real > $o,F: real > complex] :
( ( finite_finite_real @ ( collect_real @ P ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Uu: complex] :
? [X2: real] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3484_finite__image__set,axiom,
! [P: nat > $o,F: nat > real] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Uu: real] :
? [X2: nat] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3485_finite__image__set,axiom,
! [P: nat > $o,F: nat > nat] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [Uu: nat] :
? [X2: nat] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3486_finite__image__set,axiom,
! [P: nat > $o,F: nat > int] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [Uu: int] :
? [X2: nat] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3487_finite__image__set,axiom,
! [P: nat > $o,F: nat > complex] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Uu: complex] :
? [X2: nat] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3488_finite__image__set,axiom,
! [P: int > $o,F: int > real] :
( ( finite_finite_int @ ( collect_int @ P ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Uu: real] :
? [X2: int] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3489_finite__image__set,axiom,
! [P: int > $o,F: int > nat] :
( ( finite_finite_int @ ( collect_int @ P ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [Uu: nat] :
? [X2: int] :
( ( Uu
= ( F @ X2 ) )
& ( P @ X2 ) ) ) ) ) ).
% finite_image_set
thf(fact_3490_finite__has__minimal,axiom,
! [A2: set_real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ? [X5: real] :
( ( member_real @ X5 @ A2 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_3491_finite__has__minimal,axiom,
! [A2: set_set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( A2 != bot_bot_set_set_int )
=> ? [X5: set_int] :
( ( member_set_int @ X5 @ A2 )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_3492_finite__has__minimal,axiom,
! [A2: set_rat] :
( ( finite_finite_rat @ A2 )
=> ( ( A2 != bot_bot_set_rat )
=> ? [X5: rat] :
( ( member_rat @ X5 @ A2 )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_3493_finite__has__minimal,axiom,
! [A2: set_num] :
( ( finite_finite_num @ A2 )
=> ( ( A2 != bot_bot_set_num )
=> ? [X5: num] :
( ( member_num @ X5 @ A2 )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_3494_finite__has__minimal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X5: nat] :
( ( member_nat @ X5 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_3495_finite__has__minimal,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ? [X5: int] :
( ( member_int @ X5 @ A2 )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_3496_finite__has__maximal,axiom,
! [A2: set_real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ? [X5: real] :
( ( member_real @ X5 @ A2 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_3497_finite__has__maximal,axiom,
! [A2: set_set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( A2 != bot_bot_set_set_int )
=> ? [X5: set_int] :
( ( member_set_int @ X5 @ A2 )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_3498_finite__has__maximal,axiom,
! [A2: set_rat] :
( ( finite_finite_rat @ A2 )
=> ( ( A2 != bot_bot_set_rat )
=> ? [X5: rat] :
( ( member_rat @ X5 @ A2 )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_3499_finite__has__maximal,axiom,
! [A2: set_num] :
( ( finite_finite_num @ A2 )
=> ( ( A2 != bot_bot_set_num )
=> ? [X5: num] :
( ( member_num @ X5 @ A2 )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_3500_finite__has__maximal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X5: nat] :
( ( member_nat @ X5 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_3501_finite__has__maximal,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ? [X5: int] :
( ( member_int @ X5 @ A2 )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_3502_arcosh__1,axiom,
( ( arcosh_real @ one_one_real )
= zero_zero_real ) ).
% arcosh_1
thf(fact_3503_finite__nth__roots,axiom,
! [N: nat,C: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= C ) ) ) ) ).
% finite_nth_roots
thf(fact_3504_prod_Ofinite__Collect__op,axiom,
! [I5: set_real,X: real > complex,Y3: real > complex] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( times_times_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3505_prod_Ofinite__Collect__op,axiom,
! [I5: set_nat,X: nat > complex,Y3: nat > complex] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( times_times_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3506_prod_Ofinite__Collect__op,axiom,
! [I5: set_int,X: int > complex,Y3: int > complex] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( times_times_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3507_prod_Ofinite__Collect__op,axiom,
! [I5: set_complex,X: complex > complex,Y3: complex > complex] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( times_times_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3508_prod_Ofinite__Collect__op,axiom,
! [I5: set_real,X: real > real,Y3: real > real] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_real ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( times_times_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3509_prod_Ofinite__Collect__op,axiom,
! [I5: set_nat,X: nat > real,Y3: nat > real] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_real ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( times_times_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3510_prod_Ofinite__Collect__op,axiom,
! [I5: set_int,X: int > real,Y3: int > real] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_real ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( times_times_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3511_prod_Ofinite__Collect__op,axiom,
! [I5: set_complex,X: complex > real,Y3: complex > real] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_real ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( times_times_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3512_prod_Ofinite__Collect__op,axiom,
! [I5: set_real,X: real > rat,Y3: real > rat] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_rat ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_rat ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( times_times_rat @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_rat ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3513_prod_Ofinite__Collect__op,axiom,
! [I5: set_nat,X: nat > rat,Y3: nat > rat] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X @ I3 )
!= one_one_rat ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= one_one_rat ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( times_times_rat @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= one_one_rat ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_3514_sum_Ofinite__Collect__op,axiom,
! [I5: set_real,X: real > complex,Y3: real > complex] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3515_sum_Ofinite__Collect__op,axiom,
! [I5: set_nat,X: nat > complex,Y3: nat > complex] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3516_sum_Ofinite__Collect__op,axiom,
! [I5: set_int,X: int > complex,Y3: int > complex] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3517_sum_Ofinite__Collect__op,axiom,
! [I5: set_complex,X: complex > complex,Y3: complex > complex] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3518_sum_Ofinite__Collect__op,axiom,
! [I5: set_real,X: real > real,Y3: real > real] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( plus_plus_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3519_sum_Ofinite__Collect__op,axiom,
! [I5: set_nat,X: nat > real,Y3: nat > real] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( plus_plus_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3520_sum_Ofinite__Collect__op,axiom,
! [I5: set_int,X: int > real,Y3: int > real] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( plus_plus_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3521_sum_Ofinite__Collect__op,axiom,
! [I5: set_complex,X: complex > real,Y3: complex > real] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( plus_plus_real @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3522_sum_Ofinite__Collect__op,axiom,
! [I5: set_real,X: real > rat,Y3: real > rat] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_rat ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_rat ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( plus_plus_rat @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_rat ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3523_sum_Ofinite__Collect__op,axiom,
! [I5: set_nat,X: nat > rat,Y3: nat > rat] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X @ I3 )
!= zero_zero_rat ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y3 @ I3 )
!= zero_zero_rat ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( plus_plus_rat @ ( X @ I3 ) @ ( Y3 @ I3 ) )
!= zero_zero_rat ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_3524_insert__simp__norm,axiom,
! [X: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ord_less_nat @ Mi @ X )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( X != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( ord_max_nat @ X @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_norm
thf(fact_3525_list__update__overwrite,axiom,
! [Xs: list_VEBT_VEBT,I4: nat,X: vEBT_VEBT,Y3: vEBT_VEBT] :
( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) @ I4 @ Y3 )
= ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ Y3 ) ) ).
% list_update_overwrite
thf(fact_3526_max_Oabsorb1,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_ma741700101516333627d_enat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_3527_max_Oabsorb1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_max_rat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_3528_max_Oabsorb1,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_max_num @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_3529_max_Oabsorb1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_max_nat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_3530_max_Oabsorb1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_max_int @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_3531_max_Oabsorb2,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_ma741700101516333627d_enat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_3532_max_Oabsorb2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_max_rat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_3533_max_Oabsorb2,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_max_num @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_3534_max_Oabsorb2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_max_nat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_3535_max_Oabsorb2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_max_int @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_3536_max_Obounded__iff,axiom,
! [B: extended_enat,C: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
= ( ( ord_le2932123472753598470d_enat @ B @ A )
& ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_3537_max_Obounded__iff,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
= ( ( ord_less_eq_rat @ B @ A )
& ( ord_less_eq_rat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_3538_max_Obounded__iff,axiom,
! [B: num,C: num,A: num] :
( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
= ( ( ord_less_eq_num @ B @ A )
& ( ord_less_eq_num @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_3539_max_Obounded__iff,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
= ( ( ord_less_eq_nat @ B @ A )
& ( ord_less_eq_nat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_3540_max_Obounded__iff,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_eq_int @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_3541_max__less__iff__conj,axiom,
! [X: extended_enat,Y3: extended_enat,Z4: extended_enat] :
( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ X @ Y3 ) @ Z4 )
= ( ( ord_le72135733267957522d_enat @ X @ Z4 )
& ( ord_le72135733267957522d_enat @ Y3 @ Z4 ) ) ) ).
% max_less_iff_conj
thf(fact_3542_max__less__iff__conj,axiom,
! [X: real,Y3: real,Z4: real] :
( ( ord_less_real @ ( ord_max_real @ X @ Y3 ) @ Z4 )
= ( ( ord_less_real @ X @ Z4 )
& ( ord_less_real @ Y3 @ Z4 ) ) ) ).
% max_less_iff_conj
thf(fact_3543_max__less__iff__conj,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( ord_less_rat @ ( ord_max_rat @ X @ Y3 ) @ Z4 )
= ( ( ord_less_rat @ X @ Z4 )
& ( ord_less_rat @ Y3 @ Z4 ) ) ) ).
% max_less_iff_conj
thf(fact_3544_max__less__iff__conj,axiom,
! [X: num,Y3: num,Z4: num] :
( ( ord_less_num @ ( ord_max_num @ X @ Y3 ) @ Z4 )
= ( ( ord_less_num @ X @ Z4 )
& ( ord_less_num @ Y3 @ Z4 ) ) ) ).
% max_less_iff_conj
thf(fact_3545_max__less__iff__conj,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ord_less_nat @ ( ord_max_nat @ X @ Y3 ) @ Z4 )
= ( ( ord_less_nat @ X @ Z4 )
& ( ord_less_nat @ Y3 @ Z4 ) ) ) ).
% max_less_iff_conj
thf(fact_3546_max__less__iff__conj,axiom,
! [X: int,Y3: int,Z4: int] :
( ( ord_less_int @ ( ord_max_int @ X @ Y3 ) @ Z4 )
= ( ( ord_less_int @ X @ Z4 )
& ( ord_less_int @ Y3 @ Z4 ) ) ) ).
% max_less_iff_conj
thf(fact_3547_max_Oabsorb4,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_ma741700101516333627d_enat @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_3548_max_Oabsorb4,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_max_real @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_3549_max_Oabsorb4,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_max_rat @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_3550_max_Oabsorb4,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_max_num @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_3551_max_Oabsorb4,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_max_nat @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_3552_max_Oabsorb4,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_max_int @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_3553_max_Oabsorb3,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le72135733267957522d_enat @ B @ A )
=> ( ( ord_ma741700101516333627d_enat @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_3554_max_Oabsorb3,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_max_real @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_3555_max_Oabsorb3,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_max_rat @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_3556_max_Oabsorb3,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_max_num @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_3557_max_Oabsorb3,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_max_nat @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_3558_max_Oabsorb3,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_max_int @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_3559_length__list__update,axiom,
! [Xs: list_VEBT_VEBT,I4: nat,X: vEBT_VEBT] :
( ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) )
= ( size_s6755466524823107622T_VEBT @ Xs ) ) ).
% length_list_update
thf(fact_3560_length__list__update,axiom,
! [Xs: list_o,I4: nat,X: $o] :
( ( size_size_list_o @ ( list_update_o @ Xs @ I4 @ X ) )
= ( size_size_list_o @ Xs ) ) ).
% length_list_update
thf(fact_3561_length__list__update,axiom,
! [Xs: list_int,I4: nat,X: int] :
( ( size_size_list_int @ ( list_update_int @ Xs @ I4 @ X ) )
= ( size_size_list_int @ Xs ) ) ).
% length_list_update
thf(fact_3562_max__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( suc @ ( ord_max_nat @ M @ N ) ) ) ).
% max_Suc_Suc
thf(fact_3563_max__nat_Oeq__neutr__iff,axiom,
! [A: nat,B: nat] :
( ( ( ord_max_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.eq_neutr_iff
thf(fact_3564_max__nat_Oleft__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ zero_zero_nat @ A )
= A ) ).
% max_nat.left_neutral
thf(fact_3565_max__nat_Oneutr__eq__iff,axiom,
! [A: nat,B: nat] :
( ( zero_zero_nat
= ( ord_max_nat @ A @ B ) )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.neutr_eq_iff
thf(fact_3566_max__nat_Oright__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ A @ zero_zero_nat )
= A ) ).
% max_nat.right_neutral
thf(fact_3567_max__0L,axiom,
! [N: nat] :
( ( ord_max_nat @ zero_zero_nat @ N )
= N ) ).
% max_0L
thf(fact_3568_max__0R,axiom,
! [N: nat] :
( ( ord_max_nat @ N @ zero_zero_nat )
= N ) ).
% max_0R
thf(fact_3569_list__update__id,axiom,
! [Xs: list_nat,I4: nat] :
( ( list_update_nat @ Xs @ I4 @ ( nth_nat @ Xs @ I4 ) )
= Xs ) ).
% list_update_id
thf(fact_3570_list__update__id,axiom,
! [Xs: list_int,I4: nat] :
( ( list_update_int @ Xs @ I4 @ ( nth_int @ Xs @ I4 ) )
= Xs ) ).
% list_update_id
thf(fact_3571_list__update__id,axiom,
! [Xs: list_VEBT_VEBT,I4: nat] :
( ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ ( nth_VEBT_VEBT @ Xs @ I4 ) )
= Xs ) ).
% list_update_id
thf(fact_3572_nth__list__update__neq,axiom,
! [I4: nat,J: nat,Xs: list_nat,X: nat] :
( ( I4 != J )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I4 @ X ) @ J )
= ( nth_nat @ Xs @ J ) ) ) ).
% nth_list_update_neq
thf(fact_3573_nth__list__update__neq,axiom,
! [I4: nat,J: nat,Xs: list_int,X: int] :
( ( I4 != J )
=> ( ( nth_int @ ( list_update_int @ Xs @ I4 @ X ) @ J )
= ( nth_int @ Xs @ J ) ) ) ).
% nth_list_update_neq
thf(fact_3574_nth__list__update__neq,axiom,
! [I4: nat,J: nat,Xs: list_VEBT_VEBT,X: vEBT_VEBT] :
( ( I4 != J )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) @ J )
= ( nth_VEBT_VEBT @ Xs @ J ) ) ) ).
% nth_list_update_neq
thf(fact_3575_max__number__of_I1_J,axiom,
! [U2: num,V: num] :
( ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U2 ) @ ( numera1916890842035813515d_enat @ V ) )
=> ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U2 ) @ ( numera1916890842035813515d_enat @ V ) )
= ( numera1916890842035813515d_enat @ V ) ) )
& ( ~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U2 ) @ ( numera1916890842035813515d_enat @ V ) )
=> ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U2 ) @ ( numera1916890842035813515d_enat @ V ) )
= ( numera1916890842035813515d_enat @ U2 ) ) ) ) ).
% max_number_of(1)
thf(fact_3576_max__number__of_I1_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U2 ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U2 ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ V ) ) )
& ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U2 ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U2 ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ U2 ) ) ) ) ).
% max_number_of(1)
thf(fact_3577_max__number__of_I1_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U2 ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U2 ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ V ) ) )
& ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U2 ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U2 ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ U2 ) ) ) ) ).
% max_number_of(1)
thf(fact_3578_max__number__of_I1_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U2 ) @ ( numeral_numeral_nat @ V ) )
=> ( ( ord_max_nat @ ( numeral_numeral_nat @ U2 ) @ ( numeral_numeral_nat @ V ) )
= ( numeral_numeral_nat @ V ) ) )
& ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U2 ) @ ( numeral_numeral_nat @ V ) )
=> ( ( ord_max_nat @ ( numeral_numeral_nat @ U2 ) @ ( numeral_numeral_nat @ V ) )
= ( numeral_numeral_nat @ U2 ) ) ) ) ).
% max_number_of(1)
thf(fact_3579_max__number__of_I1_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U2 ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U2 ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ V ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U2 ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U2 ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ U2 ) ) ) ) ).
% max_number_of(1)
thf(fact_3580_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ X ) )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(3)
thf(fact_3581_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X ) )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(3)
thf(fact_3582_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X ) )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(3)
thf(fact_3583_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X ) )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(3)
thf(fact_3584_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X ) )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(3)
thf(fact_3585_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X ) @ zero_z5237406670263579293d_enat )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(4)
thf(fact_3586_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_real @ ( numeral_numeral_real @ X ) @ zero_zero_real )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(4)
thf(fact_3587_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ zero_zero_rat )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(4)
thf(fact_3588_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ zero_zero_nat )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(4)
thf(fact_3589_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_int @ ( numeral_numeral_int @ X ) @ zero_zero_int )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(4)
thf(fact_3590_max__0__1_I2_J,axiom,
( ( ord_max_real @ one_one_real @ zero_zero_real )
= one_one_real ) ).
% max_0_1(2)
thf(fact_3591_max__0__1_I2_J,axiom,
( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
= one_one_rat ) ).
% max_0_1(2)
thf(fact_3592_max__0__1_I2_J,axiom,
( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
= one_one_nat ) ).
% max_0_1(2)
thf(fact_3593_max__0__1_I2_J,axiom,
( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat )
= one_on7984719198319812577d_enat ) ).
% max_0_1(2)
thf(fact_3594_max__0__1_I2_J,axiom,
( ( ord_max_int @ one_one_int @ zero_zero_int )
= one_one_int ) ).
% max_0_1(2)
thf(fact_3595_max__0__1_I1_J,axiom,
( ( ord_max_real @ zero_zero_real @ one_one_real )
= one_one_real ) ).
% max_0_1(1)
thf(fact_3596_max__0__1_I1_J,axiom,
( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
= one_one_rat ) ).
% max_0_1(1)
thf(fact_3597_max__0__1_I1_J,axiom,
( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
= one_one_nat ) ).
% max_0_1(1)
thf(fact_3598_max__0__1_I1_J,axiom,
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat )
= one_on7984719198319812577d_enat ) ).
% max_0_1(1)
thf(fact_3599_max__0__1_I1_J,axiom,
( ( ord_max_int @ zero_zero_int @ one_one_int )
= one_one_int ) ).
% max_0_1(1)
thf(fact_3600_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(5)
thf(fact_3601_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(5)
thf(fact_3602_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(5)
thf(fact_3603_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(5)
thf(fact_3604_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(5)
thf(fact_3605_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(6)
thf(fact_3606_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_real @ ( numeral_numeral_real @ X ) @ one_one_real )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(6)
thf(fact_3607_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(6)
thf(fact_3608_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(6)
thf(fact_3609_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_int @ ( numeral_numeral_int @ X ) @ one_one_int )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(6)
thf(fact_3610_list__update__beyond,axiom,
! [Xs: list_VEBT_VEBT,I4: nat,X: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ I4 )
=> ( ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X )
= Xs ) ) ).
% list_update_beyond
thf(fact_3611_list__update__beyond,axiom,
! [Xs: list_o,I4: nat,X: $o] :
( ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ I4 )
=> ( ( list_update_o @ Xs @ I4 @ X )
= Xs ) ) ).
% list_update_beyond
thf(fact_3612_list__update__beyond,axiom,
! [Xs: list_int,I4: nat,X: int] :
( ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ I4 )
=> ( ( list_update_int @ Xs @ I4 @ X )
= Xs ) ) ).
% list_update_beyond
thf(fact_3613_nth__list__update__eq,axiom,
! [I4: nat,Xs: list_nat,X: nat] :
( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I4 @ X ) @ I4 )
= X ) ) ).
% nth_list_update_eq
thf(fact_3614_nth__list__update__eq,axiom,
! [I4: nat,Xs: list_VEBT_VEBT,X: vEBT_VEBT] :
( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) @ I4 )
= X ) ) ).
% nth_list_update_eq
thf(fact_3615_nth__list__update__eq,axiom,
! [I4: nat,Xs: list_o,X: $o] :
( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) )
=> ( ( nth_o @ ( list_update_o @ Xs @ I4 @ X ) @ I4 )
= X ) ) ).
% nth_list_update_eq
thf(fact_3616_nth__list__update__eq,axiom,
! [I4: nat,Xs: list_int,X: int] :
( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) )
=> ( ( nth_int @ ( list_update_int @ Xs @ I4 @ X ) @ I4 )
= X ) ) ).
% nth_list_update_eq
thf(fact_3617_insert__simp__excp,axiom,
! [Mi: nat,Deg: nat,TreeList: list_VEBT_VEBT,X: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ord_less_nat @ X @ Mi )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( X != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X @ ( ord_max_nat @ Mi @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_excp
thf(fact_3618_set__swap,axiom,
! [I4: nat,Xs: list_nat,J: nat] :
( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs ) )
=> ( ( set_nat2 @ ( list_update_nat @ ( list_update_nat @ Xs @ I4 @ ( nth_nat @ Xs @ J ) ) @ J @ ( nth_nat @ Xs @ I4 ) ) )
= ( set_nat2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_3619_set__swap,axiom,
! [I4: nat,Xs: list_VEBT_VEBT,J: nat] :
( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ ( nth_VEBT_VEBT @ Xs @ J ) ) @ J @ ( nth_VEBT_VEBT @ Xs @ I4 ) ) )
= ( set_VEBT_VEBT2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_3620_set__swap,axiom,
! [I4: nat,Xs: list_o,J: nat] :
( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_size_list_o @ Xs ) )
=> ( ( set_o2 @ ( list_update_o @ ( list_update_o @ Xs @ I4 @ ( nth_o @ Xs @ J ) ) @ J @ ( nth_o @ Xs @ I4 ) ) )
= ( set_o2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_3621_set__swap,axiom,
! [I4: nat,Xs: list_int,J: nat] :
( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_size_list_int @ Xs ) )
=> ( ( set_int2 @ ( list_update_int @ ( list_update_int @ Xs @ I4 @ ( nth_int @ Xs @ J ) ) @ J @ ( nth_int @ Xs @ I4 ) ) )
= ( set_int2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_3622_list__update__swap,axiom,
! [I4: nat,I6: nat,Xs: list_VEBT_VEBT,X: vEBT_VEBT,X7: vEBT_VEBT] :
( ( I4 != I6 )
=> ( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) @ I6 @ X7 )
= ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I6 @ X7 ) @ I4 @ X ) ) ) ).
% list_update_swap
thf(fact_3623_max_OcoboundedI2,axiom,
! [C: extended_enat,B: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ C @ B )
=> ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3624_max_OcoboundedI2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3625_max_OcoboundedI2,axiom,
! [C: num,B: num,A: num] :
( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3626_max_OcoboundedI2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3627_max_OcoboundedI2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3628_max_OcoboundedI1,axiom,
! [C: extended_enat,A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ C @ A )
=> ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3629_max_OcoboundedI1,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ C @ A )
=> ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3630_max_OcoboundedI1,axiom,
! [C: num,A: num,B: num] :
( ( ord_less_eq_num @ C @ A )
=> ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3631_max_OcoboundedI1,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3632_max_OcoboundedI1,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ A )
=> ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3633_max_Oabsorb__iff2,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [A5: extended_enat,B5: extended_enat] :
( ( ord_ma741700101516333627d_enat @ A5 @ B5 )
= B5 ) ) ) ).
% max.absorb_iff2
thf(fact_3634_max_Oabsorb__iff2,axiom,
( ord_less_eq_rat
= ( ^ [A5: rat,B5: rat] :
( ( ord_max_rat @ A5 @ B5 )
= B5 ) ) ) ).
% max.absorb_iff2
thf(fact_3635_max_Oabsorb__iff2,axiom,
( ord_less_eq_num
= ( ^ [A5: num,B5: num] :
( ( ord_max_num @ A5 @ B5 )
= B5 ) ) ) ).
% max.absorb_iff2
thf(fact_3636_max_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [A5: nat,B5: nat] :
( ( ord_max_nat @ A5 @ B5 )
= B5 ) ) ) ).
% max.absorb_iff2
thf(fact_3637_max_Oabsorb__iff2,axiom,
( ord_less_eq_int
= ( ^ [A5: int,B5: int] :
( ( ord_max_int @ A5 @ B5 )
= B5 ) ) ) ).
% max.absorb_iff2
thf(fact_3638_max_Oabsorb__iff1,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [B5: extended_enat,A5: extended_enat] :
( ( ord_ma741700101516333627d_enat @ A5 @ B5 )
= A5 ) ) ) ).
% max.absorb_iff1
thf(fact_3639_max_Oabsorb__iff1,axiom,
( ord_less_eq_rat
= ( ^ [B5: rat,A5: rat] :
( ( ord_max_rat @ A5 @ B5 )
= A5 ) ) ) ).
% max.absorb_iff1
thf(fact_3640_max_Oabsorb__iff1,axiom,
( ord_less_eq_num
= ( ^ [B5: num,A5: num] :
( ( ord_max_num @ A5 @ B5 )
= A5 ) ) ) ).
% max.absorb_iff1
thf(fact_3641_max_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [B5: nat,A5: nat] :
( ( ord_max_nat @ A5 @ B5 )
= A5 ) ) ) ).
% max.absorb_iff1
thf(fact_3642_max_Oabsorb__iff1,axiom,
( ord_less_eq_int
= ( ^ [B5: int,A5: int] :
( ( ord_max_int @ A5 @ B5 )
= A5 ) ) ) ).
% max.absorb_iff1
thf(fact_3643_le__max__iff__disj,axiom,
! [Z4: extended_enat,X: extended_enat,Y3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Z4 @ ( ord_ma741700101516333627d_enat @ X @ Y3 ) )
= ( ( ord_le2932123472753598470d_enat @ Z4 @ X )
| ( ord_le2932123472753598470d_enat @ Z4 @ Y3 ) ) ) ).
% le_max_iff_disj
thf(fact_3644_le__max__iff__disj,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( ord_less_eq_rat @ Z4 @ ( ord_max_rat @ X @ Y3 ) )
= ( ( ord_less_eq_rat @ Z4 @ X )
| ( ord_less_eq_rat @ Z4 @ Y3 ) ) ) ).
% le_max_iff_disj
thf(fact_3645_le__max__iff__disj,axiom,
! [Z4: num,X: num,Y3: num] :
( ( ord_less_eq_num @ Z4 @ ( ord_max_num @ X @ Y3 ) )
= ( ( ord_less_eq_num @ Z4 @ X )
| ( ord_less_eq_num @ Z4 @ Y3 ) ) ) ).
% le_max_iff_disj
thf(fact_3646_le__max__iff__disj,axiom,
! [Z4: nat,X: nat,Y3: nat] :
( ( ord_less_eq_nat @ Z4 @ ( ord_max_nat @ X @ Y3 ) )
= ( ( ord_less_eq_nat @ Z4 @ X )
| ( ord_less_eq_nat @ Z4 @ Y3 ) ) ) ).
% le_max_iff_disj
thf(fact_3647_le__max__iff__disj,axiom,
! [Z4: int,X: int,Y3: int] :
( ( ord_less_eq_int @ Z4 @ ( ord_max_int @ X @ Y3 ) )
= ( ( ord_less_eq_int @ Z4 @ X )
| ( ord_less_eq_int @ Z4 @ Y3 ) ) ) ).
% le_max_iff_disj
thf(fact_3648_max_Ocobounded2,axiom,
! [B: extended_enat,A: extended_enat] : ( ord_le2932123472753598470d_enat @ B @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).
% max.cobounded2
thf(fact_3649_max_Ocobounded2,axiom,
! [B: rat,A: rat] : ( ord_less_eq_rat @ B @ ( ord_max_rat @ A @ B ) ) ).
% max.cobounded2
thf(fact_3650_max_Ocobounded2,axiom,
! [B: num,A: num] : ( ord_less_eq_num @ B @ ( ord_max_num @ A @ B ) ) ).
% max.cobounded2
thf(fact_3651_max_Ocobounded2,axiom,
! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( ord_max_nat @ A @ B ) ) ).
% max.cobounded2
thf(fact_3652_max_Ocobounded2,axiom,
! [B: int,A: int] : ( ord_less_eq_int @ B @ ( ord_max_int @ A @ B ) ) ).
% max.cobounded2
thf(fact_3653_max_Ocobounded1,axiom,
! [A: extended_enat,B: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).
% max.cobounded1
thf(fact_3654_max_Ocobounded1,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ A @ ( ord_max_rat @ A @ B ) ) ).
% max.cobounded1
thf(fact_3655_max_Ocobounded1,axiom,
! [A: num,B: num] : ( ord_less_eq_num @ A @ ( ord_max_num @ A @ B ) ) ).
% max.cobounded1
thf(fact_3656_max_Ocobounded1,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( ord_max_nat @ A @ B ) ) ).
% max.cobounded1
thf(fact_3657_max_Ocobounded1,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ A @ ( ord_max_int @ A @ B ) ) ).
% max.cobounded1
thf(fact_3658_max_Oorder__iff,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [B5: extended_enat,A5: extended_enat] :
( A5
= ( ord_ma741700101516333627d_enat @ A5 @ B5 ) ) ) ) ).
% max.order_iff
thf(fact_3659_max_Oorder__iff,axiom,
( ord_less_eq_rat
= ( ^ [B5: rat,A5: rat] :
( A5
= ( ord_max_rat @ A5 @ B5 ) ) ) ) ).
% max.order_iff
thf(fact_3660_max_Oorder__iff,axiom,
( ord_less_eq_num
= ( ^ [B5: num,A5: num] :
( A5
= ( ord_max_num @ A5 @ B5 ) ) ) ) ).
% max.order_iff
thf(fact_3661_max_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [B5: nat,A5: nat] :
( A5
= ( ord_max_nat @ A5 @ B5 ) ) ) ) ).
% max.order_iff
thf(fact_3662_max_Oorder__iff,axiom,
( ord_less_eq_int
= ( ^ [B5: int,A5: int] :
( A5
= ( ord_max_int @ A5 @ B5 ) ) ) ) ).
% max.order_iff
thf(fact_3663_max_OboundedI,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_le2932123472753598470d_enat @ C @ A )
=> ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3664_max_OboundedI,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ A )
=> ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3665_max_OboundedI,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ A )
=> ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3666_max_OboundedI,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3667_max_OboundedI,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ A )
=> ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3668_max_OboundedE,axiom,
! [B: extended_enat,C: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
=> ~ ( ( ord_le2932123472753598470d_enat @ B @ A )
=> ~ ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3669_max_OboundedE,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_rat @ B @ A )
=> ~ ( ord_less_eq_rat @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3670_max_OboundedE,axiom,
! [B: num,C: num,A: num] :
( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_num @ B @ A )
=> ~ ( ord_less_eq_num @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3671_max_OboundedE,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_nat @ B @ A )
=> ~ ( ord_less_eq_nat @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3672_max_OboundedE,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_int @ B @ A )
=> ~ ( ord_less_eq_int @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3673_max_OorderI,axiom,
! [A: extended_enat,B: extended_enat] :
( ( A
= ( ord_ma741700101516333627d_enat @ A @ B ) )
=> ( ord_le2932123472753598470d_enat @ B @ A ) ) ).
% max.orderI
thf(fact_3674_max_OorderI,axiom,
! [A: rat,B: rat] :
( ( A
= ( ord_max_rat @ A @ B ) )
=> ( ord_less_eq_rat @ B @ A ) ) ).
% max.orderI
thf(fact_3675_max_OorderI,axiom,
! [A: num,B: num] :
( ( A
= ( ord_max_num @ A @ B ) )
=> ( ord_less_eq_num @ B @ A ) ) ).
% max.orderI
thf(fact_3676_max_OorderI,axiom,
! [A: nat,B: nat] :
( ( A
= ( ord_max_nat @ A @ B ) )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% max.orderI
thf(fact_3677_max_OorderI,axiom,
! [A: int,B: int] :
( ( A
= ( ord_max_int @ A @ B ) )
=> ( ord_less_eq_int @ B @ A ) ) ).
% max.orderI
thf(fact_3678_max_OorderE,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( A
= ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).
% max.orderE
thf(fact_3679_max_OorderE,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( A
= ( ord_max_rat @ A @ B ) ) ) ).
% max.orderE
thf(fact_3680_max_OorderE,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( A
= ( ord_max_num @ A @ B ) ) ) ).
% max.orderE
thf(fact_3681_max_OorderE,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( A
= ( ord_max_nat @ A @ B ) ) ) ).
% max.orderE
thf(fact_3682_max_OorderE,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( A
= ( ord_max_int @ A @ B ) ) ) ).
% max.orderE
thf(fact_3683_max_Omono,axiom,
! [C: extended_enat,A: extended_enat,D: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ C @ A )
=> ( ( ord_le2932123472753598470d_enat @ D @ B )
=> ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ C @ D ) @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3684_max_Omono,axiom,
! [C: rat,A: rat,D: rat,B: rat] :
( ( ord_less_eq_rat @ C @ A )
=> ( ( ord_less_eq_rat @ D @ B )
=> ( ord_less_eq_rat @ ( ord_max_rat @ C @ D ) @ ( ord_max_rat @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3685_max_Omono,axiom,
! [C: num,A: num,D: num,B: num] :
( ( ord_less_eq_num @ C @ A )
=> ( ( ord_less_eq_num @ D @ B )
=> ( ord_less_eq_num @ ( ord_max_num @ C @ D ) @ ( ord_max_num @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3686_max_Omono,axiom,
! [C: nat,A: nat,D: nat,B: nat] :
( ( ord_less_eq_nat @ C @ A )
=> ( ( ord_less_eq_nat @ D @ B )
=> ( ord_less_eq_nat @ ( ord_max_nat @ C @ D ) @ ( ord_max_nat @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3687_max_Omono,axiom,
! [C: int,A: int,D: int,B: int] :
( ( ord_less_eq_int @ C @ A )
=> ( ( ord_less_eq_int @ D @ B )
=> ( ord_less_eq_int @ ( ord_max_int @ C @ D ) @ ( ord_max_int @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3688_max_Ostrict__coboundedI2,axiom,
! [C: extended_enat,B: extended_enat,A: extended_enat] :
( ( ord_le72135733267957522d_enat @ C @ B )
=> ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3689_max_Ostrict__coboundedI2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3690_max_Ostrict__coboundedI2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3691_max_Ostrict__coboundedI2,axiom,
! [C: num,B: num,A: num] :
( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3692_max_Ostrict__coboundedI2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3693_max_Ostrict__coboundedI2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3694_max_Ostrict__coboundedI1,axiom,
! [C: extended_enat,A: extended_enat,B: extended_enat] :
( ( ord_le72135733267957522d_enat @ C @ A )
=> ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3695_max_Ostrict__coboundedI1,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ A )
=> ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3696_max_Ostrict__coboundedI1,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ A )
=> ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3697_max_Ostrict__coboundedI1,axiom,
! [C: num,A: num,B: num] :
( ( ord_less_num @ C @ A )
=> ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3698_max_Ostrict__coboundedI1,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ C @ A )
=> ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3699_max_Ostrict__coboundedI1,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ A )
=> ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3700_max_Ostrict__order__iff,axiom,
( ord_le72135733267957522d_enat
= ( ^ [B5: extended_enat,A5: extended_enat] :
( ( A5
= ( ord_ma741700101516333627d_enat @ A5 @ B5 ) )
& ( A5 != B5 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3701_max_Ostrict__order__iff,axiom,
( ord_less_real
= ( ^ [B5: real,A5: real] :
( ( A5
= ( ord_max_real @ A5 @ B5 ) )
& ( A5 != B5 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3702_max_Ostrict__order__iff,axiom,
( ord_less_rat
= ( ^ [B5: rat,A5: rat] :
( ( A5
= ( ord_max_rat @ A5 @ B5 ) )
& ( A5 != B5 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3703_max_Ostrict__order__iff,axiom,
( ord_less_num
= ( ^ [B5: num,A5: num] :
( ( A5
= ( ord_max_num @ A5 @ B5 ) )
& ( A5 != B5 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3704_max_Ostrict__order__iff,axiom,
( ord_less_nat
= ( ^ [B5: nat,A5: nat] :
( ( A5
= ( ord_max_nat @ A5 @ B5 ) )
& ( A5 != B5 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3705_max_Ostrict__order__iff,axiom,
( ord_less_int
= ( ^ [B5: int,A5: int] :
( ( A5
= ( ord_max_int @ A5 @ B5 ) )
& ( A5 != B5 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3706_max_Ostrict__boundedE,axiom,
! [B: extended_enat,C: extended_enat,A: extended_enat] :
( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
=> ~ ( ( ord_le72135733267957522d_enat @ B @ A )
=> ~ ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3707_max_Ostrict__boundedE,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( ord_max_real @ B @ C ) @ A )
=> ~ ( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3708_max_Ostrict__boundedE,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( ord_max_rat @ B @ C ) @ A )
=> ~ ( ( ord_less_rat @ B @ A )
=> ~ ( ord_less_rat @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3709_max_Ostrict__boundedE,axiom,
! [B: num,C: num,A: num] :
( ( ord_less_num @ ( ord_max_num @ B @ C ) @ A )
=> ~ ( ( ord_less_num @ B @ A )
=> ~ ( ord_less_num @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3710_max_Ostrict__boundedE,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_nat @ ( ord_max_nat @ B @ C ) @ A )
=> ~ ( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3711_max_Ostrict__boundedE,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_int @ ( ord_max_int @ B @ C ) @ A )
=> ~ ( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3712_less__max__iff__disj,axiom,
! [Z4: extended_enat,X: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ ( ord_ma741700101516333627d_enat @ X @ Y3 ) )
= ( ( ord_le72135733267957522d_enat @ Z4 @ X )
| ( ord_le72135733267957522d_enat @ Z4 @ Y3 ) ) ) ).
% less_max_iff_disj
thf(fact_3713_less__max__iff__disj,axiom,
! [Z4: real,X: real,Y3: real] :
( ( ord_less_real @ Z4 @ ( ord_max_real @ X @ Y3 ) )
= ( ( ord_less_real @ Z4 @ X )
| ( ord_less_real @ Z4 @ Y3 ) ) ) ).
% less_max_iff_disj
thf(fact_3714_less__max__iff__disj,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( ord_less_rat @ Z4 @ ( ord_max_rat @ X @ Y3 ) )
= ( ( ord_less_rat @ Z4 @ X )
| ( ord_less_rat @ Z4 @ Y3 ) ) ) ).
% less_max_iff_disj
thf(fact_3715_less__max__iff__disj,axiom,
! [Z4: num,X: num,Y3: num] :
( ( ord_less_num @ Z4 @ ( ord_max_num @ X @ Y3 ) )
= ( ( ord_less_num @ Z4 @ X )
| ( ord_less_num @ Z4 @ Y3 ) ) ) ).
% less_max_iff_disj
thf(fact_3716_less__max__iff__disj,axiom,
! [Z4: nat,X: nat,Y3: nat] :
( ( ord_less_nat @ Z4 @ ( ord_max_nat @ X @ Y3 ) )
= ( ( ord_less_nat @ Z4 @ X )
| ( ord_less_nat @ Z4 @ Y3 ) ) ) ).
% less_max_iff_disj
thf(fact_3717_less__max__iff__disj,axiom,
! [Z4: int,X: int,Y3: int] :
( ( ord_less_int @ Z4 @ ( ord_max_int @ X @ Y3 ) )
= ( ( ord_less_int @ Z4 @ X )
| ( ord_less_int @ Z4 @ Y3 ) ) ) ).
% less_max_iff_disj
thf(fact_3718_max__add__distrib__right,axiom,
! [X: real,Y3: real,Z4: real] :
( ( plus_plus_real @ X @ ( ord_max_real @ Y3 @ Z4 ) )
= ( ord_max_real @ ( plus_plus_real @ X @ Y3 ) @ ( plus_plus_real @ X @ Z4 ) ) ) ).
% max_add_distrib_right
thf(fact_3719_max__add__distrib__right,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( plus_plus_rat @ X @ ( ord_max_rat @ Y3 @ Z4 ) )
= ( ord_max_rat @ ( plus_plus_rat @ X @ Y3 ) @ ( plus_plus_rat @ X @ Z4 ) ) ) ).
% max_add_distrib_right
thf(fact_3720_max__add__distrib__right,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( plus_plus_nat @ X @ ( ord_max_nat @ Y3 @ Z4 ) )
= ( ord_max_nat @ ( plus_plus_nat @ X @ Y3 ) @ ( plus_plus_nat @ X @ Z4 ) ) ) ).
% max_add_distrib_right
thf(fact_3721_max__add__distrib__right,axiom,
! [X: int,Y3: int,Z4: int] :
( ( plus_plus_int @ X @ ( ord_max_int @ Y3 @ Z4 ) )
= ( ord_max_int @ ( plus_plus_int @ X @ Y3 ) @ ( plus_plus_int @ X @ Z4 ) ) ) ).
% max_add_distrib_right
thf(fact_3722_max__add__distrib__left,axiom,
! [X: real,Y3: real,Z4: real] :
( ( plus_plus_real @ ( ord_max_real @ X @ Y3 ) @ Z4 )
= ( ord_max_real @ ( plus_plus_real @ X @ Z4 ) @ ( plus_plus_real @ Y3 @ Z4 ) ) ) ).
% max_add_distrib_left
thf(fact_3723_max__add__distrib__left,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( plus_plus_rat @ ( ord_max_rat @ X @ Y3 ) @ Z4 )
= ( ord_max_rat @ ( plus_plus_rat @ X @ Z4 ) @ ( plus_plus_rat @ Y3 @ Z4 ) ) ) ).
% max_add_distrib_left
thf(fact_3724_max__add__distrib__left,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( plus_plus_nat @ ( ord_max_nat @ X @ Y3 ) @ Z4 )
= ( ord_max_nat @ ( plus_plus_nat @ X @ Z4 ) @ ( plus_plus_nat @ Y3 @ Z4 ) ) ) ).
% max_add_distrib_left
thf(fact_3725_max__add__distrib__left,axiom,
! [X: int,Y3: int,Z4: int] :
( ( plus_plus_int @ ( ord_max_int @ X @ Y3 ) @ Z4 )
= ( ord_max_int @ ( plus_plus_int @ X @ Z4 ) @ ( plus_plus_int @ Y3 @ Z4 ) ) ) ).
% max_add_distrib_left
thf(fact_3726_max__diff__distrib__left,axiom,
! [X: real,Y3: real,Z4: real] :
( ( minus_minus_real @ ( ord_max_real @ X @ Y3 ) @ Z4 )
= ( ord_max_real @ ( minus_minus_real @ X @ Z4 ) @ ( minus_minus_real @ Y3 @ Z4 ) ) ) ).
% max_diff_distrib_left
thf(fact_3727_max__diff__distrib__left,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( minus_minus_rat @ ( ord_max_rat @ X @ Y3 ) @ Z4 )
= ( ord_max_rat @ ( minus_minus_rat @ X @ Z4 ) @ ( minus_minus_rat @ Y3 @ Z4 ) ) ) ).
% max_diff_distrib_left
thf(fact_3728_max__diff__distrib__left,axiom,
! [X: int,Y3: int,Z4: int] :
( ( minus_minus_int @ ( ord_max_int @ X @ Y3 ) @ Z4 )
= ( ord_max_int @ ( minus_minus_int @ X @ Z4 ) @ ( minus_minus_int @ Y3 @ Z4 ) ) ) ).
% max_diff_distrib_left
thf(fact_3729_nat__add__max__left,axiom,
! [M: nat,N: nat,Q3: nat] :
( ( plus_plus_nat @ ( ord_max_nat @ M @ N ) @ Q3 )
= ( ord_max_nat @ ( plus_plus_nat @ M @ Q3 ) @ ( plus_plus_nat @ N @ Q3 ) ) ) ).
% nat_add_max_left
thf(fact_3730_nat__add__max__right,axiom,
! [M: nat,N: nat,Q3: nat] :
( ( plus_plus_nat @ M @ ( ord_max_nat @ N @ Q3 ) )
= ( ord_max_nat @ ( plus_plus_nat @ M @ N ) @ ( plus_plus_nat @ M @ Q3 ) ) ) ).
% nat_add_max_right
thf(fact_3731_nat__mult__max__left,axiom,
! [M: nat,N: nat,Q3: nat] :
( ( times_times_nat @ ( ord_max_nat @ M @ N ) @ Q3 )
= ( ord_max_nat @ ( times_times_nat @ M @ Q3 ) @ ( times_times_nat @ N @ Q3 ) ) ) ).
% nat_mult_max_left
thf(fact_3732_nat__mult__max__right,axiom,
! [M: nat,N: nat,Q3: nat] :
( ( times_times_nat @ M @ ( ord_max_nat @ N @ Q3 ) )
= ( ord_max_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q3 ) ) ) ).
% nat_mult_max_right
thf(fact_3733_max__def__raw,axiom,
( ord_ma741700101516333627d_enat
= ( ^ [A5: extended_enat,B5: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def_raw
thf(fact_3734_max__def__raw,axiom,
( ord_max_set_int
= ( ^ [A5: set_int,B5: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def_raw
thf(fact_3735_max__def__raw,axiom,
( ord_max_rat
= ( ^ [A5: rat,B5: rat] : ( if_rat @ ( ord_less_eq_rat @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def_raw
thf(fact_3736_max__def__raw,axiom,
( ord_max_num
= ( ^ [A5: num,B5: num] : ( if_num @ ( ord_less_eq_num @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def_raw
thf(fact_3737_max__def__raw,axiom,
( ord_max_nat
= ( ^ [A5: nat,B5: nat] : ( if_nat @ ( ord_less_eq_nat @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def_raw
thf(fact_3738_max__def__raw,axiom,
( ord_max_int
= ( ^ [A5: int,B5: int] : ( if_int @ ( ord_less_eq_int @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def_raw
thf(fact_3739_nat__minus__add__max,axiom,
! [N: nat,M: nat] :
( ( plus_plus_nat @ ( minus_minus_nat @ N @ M ) @ M )
= ( ord_max_nat @ N @ M ) ) ).
% nat_minus_add_max
thf(fact_3740_set__update__subsetI,axiom,
! [Xs: list_nat,A2: set_nat,X: nat,I4: nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
=> ( ( member_nat @ X @ A2 )
=> ( ord_less_eq_set_nat @ ( set_nat2 @ ( list_update_nat @ Xs @ I4 @ X ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_3741_set__update__subsetI,axiom,
! [Xs: list_real,A2: set_real,X: real,I4: nat] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ A2 )
=> ( ( member_real @ X @ A2 )
=> ( ord_less_eq_set_real @ ( set_real2 @ ( list_update_real @ Xs @ I4 @ X ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_3742_set__update__subsetI,axiom,
! [Xs: list_complex,A2: set_complex,X: complex,I4: nat] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
=> ( ( member_complex @ X @ A2 )
=> ( ord_le211207098394363844omplex @ ( set_complex2 @ ( list_update_complex @ Xs @ I4 @ X ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_3743_set__update__subsetI,axiom,
! [Xs: list_set_nat,A2: set_set_nat,X: set_nat,I4: nat] :
( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ A2 )
=> ( ( member_set_nat @ X @ A2 )
=> ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ ( list_update_set_nat @ Xs @ I4 @ X ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_3744_set__update__subsetI,axiom,
! [Xs: list_VEBT_VEBT,A2: set_VEBT_VEBT,X: vEBT_VEBT,I4: nat] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
=> ( ( member_VEBT_VEBT @ X @ A2 )
=> ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_3745_set__update__subsetI,axiom,
! [Xs: list_int,A2: set_int,X: int,I4: nat] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
=> ( ( member_int @ X @ A2 )
=> ( ord_less_eq_set_int @ ( set_int2 @ ( list_update_int @ Xs @ I4 @ X ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_3746_set__update__memI,axiom,
! [N: nat,Xs: list_nat,X: nat] :
( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
=> ( member_nat @ X @ ( set_nat2 @ ( list_update_nat @ Xs @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_3747_set__update__memI,axiom,
! [N: nat,Xs: list_real,X: real] :
( ( ord_less_nat @ N @ ( size_size_list_real @ Xs ) )
=> ( member_real @ X @ ( set_real2 @ ( list_update_real @ Xs @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_3748_set__update__memI,axiom,
! [N: nat,Xs: list_complex,X: complex] :
( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs ) )
=> ( member_complex @ X @ ( set_complex2 @ ( list_update_complex @ Xs @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_3749_set__update__memI,axiom,
! [N: nat,Xs: list_set_nat,X: set_nat] :
( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( member_set_nat @ X @ ( set_set_nat2 @ ( list_update_set_nat @ Xs @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_3750_set__update__memI,axiom,
! [N: nat,Xs: list_VEBT_VEBT,X: vEBT_VEBT] :
( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_3751_set__update__memI,axiom,
! [N: nat,Xs: list_o,X: $o] :
( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
=> ( member_o @ X @ ( set_o2 @ ( list_update_o @ Xs @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_3752_set__update__memI,axiom,
! [N: nat,Xs: list_int,X: int] :
( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
=> ( member_int @ X @ ( set_int2 @ ( list_update_int @ Xs @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_3753_nth__list__update,axiom,
! [I4: nat,Xs: list_nat,J: nat,X: nat] :
( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
=> ( ( ( I4 = J )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I4 @ X ) @ J )
= X ) )
& ( ( I4 != J )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I4 @ X ) @ J )
= ( nth_nat @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_3754_nth__list__update,axiom,
! [I4: nat,Xs: list_VEBT_VEBT,J: nat,X: vEBT_VEBT] :
( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( ( I4 = J )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) @ J )
= X ) )
& ( ( I4 != J )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X ) @ J )
= ( nth_VEBT_VEBT @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_3755_nth__list__update,axiom,
! [I4: nat,Xs: list_o,X: $o,J: nat] :
( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) )
=> ( ( nth_o @ ( list_update_o @ Xs @ I4 @ X ) @ J )
= ( ( ( I4 = J )
=> X )
& ( ( I4 != J )
=> ( nth_o @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_3756_nth__list__update,axiom,
! [I4: nat,Xs: list_int,J: nat,X: int] :
( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) )
=> ( ( ( I4 = J )
=> ( ( nth_int @ ( list_update_int @ Xs @ I4 @ X ) @ J )
= X ) )
& ( ( I4 != J )
=> ( ( nth_int @ ( list_update_int @ Xs @ I4 @ X ) @ J )
= ( nth_int @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_3757_list__update__same__conv,axiom,
! [I4: nat,Xs: list_nat,X: nat] :
( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
=> ( ( ( list_update_nat @ Xs @ I4 @ X )
= Xs )
= ( ( nth_nat @ Xs @ I4 )
= X ) ) ) ).
% list_update_same_conv
thf(fact_3758_list__update__same__conv,axiom,
! [I4: nat,Xs: list_VEBT_VEBT,X: vEBT_VEBT] :
( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( ( list_u1324408373059187874T_VEBT @ Xs @ I4 @ X )
= Xs )
= ( ( nth_VEBT_VEBT @ Xs @ I4 )
= X ) ) ) ).
% list_update_same_conv
thf(fact_3759_list__update__same__conv,axiom,
! [I4: nat,Xs: list_o,X: $o] :
( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) )
=> ( ( ( list_update_o @ Xs @ I4 @ X )
= Xs )
= ( ( nth_o @ Xs @ I4 )
= X ) ) ) ).
% list_update_same_conv
thf(fact_3760_list__update__same__conv,axiom,
! [I4: nat,Xs: list_int,X: int] :
( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) )
=> ( ( ( list_update_int @ Xs @ I4 @ X )
= Xs )
= ( ( nth_int @ Xs @ I4 )
= X ) ) ) ).
% list_update_same_conv
thf(fact_3761_vebt__insert_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
& ~ ( ( X = Mi )
| ( X = Ma ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ X @ Mi ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ Ma ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) ) ).
% vebt_insert.simps(5)
thf(fact_3762_vebt__insert_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X @ Xa2 )
= Y3 )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> ( Y3
= ( vEBT_Leaf @ $true @ B4 ) ) )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> ( Y3
= ( vEBT_Leaf @ A4 @ $true ) ) )
& ( ( Xa2 != one_one_nat )
=> ( Y3
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S ) )
=> ( Y3
!= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) )
=> ( Y3
!= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y3
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y3
!= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va3 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ) ) ).
% vebt_insert.elims
thf(fact_3763_vebt__insert_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X @ Xa2 )
= Y3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( ( Xa2 = zero_zero_nat )
=> ( Y3
= ( vEBT_Leaf @ $true @ B4 ) ) )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> ( Y3
= ( vEBT_Leaf @ A4 @ $true ) ) )
& ( ( Xa2 != one_one_nat )
=> ( Y3
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S ) )
=> ( ( Y3
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S ) @ Xa2 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) )
=> ( ( Y3
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) @ Xa2 ) ) ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y3
= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va3 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_insert.pelims
thf(fact_3764_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [M5: nat] : ( P @ M5 @ zero_zero_nat )
=> ( ! [M5: nat,N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 @ ( modulo_modulo_nat @ M5 @ N3 ) )
=> ( P @ M5 @ N3 ) ) )
=> ( P @ M @ N ) ) ) ).
% gcd_nat_induct
thf(fact_3765_concat__bit__Suc,axiom,
! [N: nat,K: int,L: int] :
( ( bit_concat_bit @ ( suc @ N ) @ K @ L )
= ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L ) ) ) ) ).
% concat_bit_Suc
thf(fact_3766_dbl__simps_I3_J,axiom,
( ( neg_nu7009210354673126013omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3767_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3768_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3769_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3770_even__succ__mod__exp,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_3771_even__succ__mod__exp,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_3772_even__succ__mod__exp,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_3773_order__refl,axiom,
! [X: set_int] : ( ord_less_eq_set_int @ X @ X ) ).
% order_refl
thf(fact_3774_order__refl,axiom,
! [X: rat] : ( ord_less_eq_rat @ X @ X ) ).
% order_refl
thf(fact_3775_order__refl,axiom,
! [X: num] : ( ord_less_eq_num @ X @ X ) ).
% order_refl
thf(fact_3776_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_3777_order__refl,axiom,
! [X: int] : ( ord_less_eq_int @ X @ X ) ).
% order_refl
thf(fact_3778_dual__order_Orefl,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).
% dual_order.refl
thf(fact_3779_dual__order_Orefl,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% dual_order.refl
thf(fact_3780_dual__order_Orefl,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% dual_order.refl
thf(fact_3781_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_3782_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_3783_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_3784_max__enat__simps_I2_J,axiom,
! [Q3: extended_enat] :
( ( ord_ma741700101516333627d_enat @ Q3 @ zero_z5237406670263579293d_enat )
= Q3 ) ).
% max_enat_simps(2)
thf(fact_3785_max__enat__simps_I3_J,axiom,
! [Q3: extended_enat] :
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q3 )
= Q3 ) ).
% max_enat_simps(3)
thf(fact_3786_dvd__0__left__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
= ( A = zero_z3403309356797280102nteger ) ) ).
% dvd_0_left_iff
thf(fact_3787_dvd__0__left__iff,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
= ( A = zero_zero_complex ) ) ).
% dvd_0_left_iff
thf(fact_3788_dvd__0__left__iff,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
= ( A = zero_zero_real ) ) ).
% dvd_0_left_iff
thf(fact_3789_dvd__0__left__iff,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
= ( A = zero_zero_rat ) ) ).
% dvd_0_left_iff
thf(fact_3790_dvd__0__left__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% dvd_0_left_iff
thf(fact_3791_dvd__0__left__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
= ( A = zero_zero_int ) ) ).
% dvd_0_left_iff
thf(fact_3792_dvd__0__right,axiom,
! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ zero_z3403309356797280102nteger ) ).
% dvd_0_right
thf(fact_3793_dvd__0__right,axiom,
! [A: complex] : ( dvd_dvd_complex @ A @ zero_zero_complex ) ).
% dvd_0_right
thf(fact_3794_dvd__0__right,axiom,
! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).
% dvd_0_right
thf(fact_3795_dvd__0__right,axiom,
! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).
% dvd_0_right
thf(fact_3796_dvd__0__right,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% dvd_0_right
thf(fact_3797_dvd__0__right,axiom,
! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).
% dvd_0_right
thf(fact_3798_dvd__add__triv__left__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3799_dvd__add__triv__left__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3800_dvd__add__triv__left__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3801_dvd__add__triv__left__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3802_dvd__add__triv__left__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3803_dvd__add__triv__right__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ A ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3804_dvd__add__triv__right__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3805_dvd__add__triv__right__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3806_dvd__add__triv__right__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3807_dvd__add__triv__right__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3808_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( M
= ( suc @ zero_zero_nat ) ) ) ).
% dvd_1_iff_1
thf(fact_3809_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).
% dvd_1_left
thf(fact_3810_div__dvd__div,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ A @ C )
=> ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ B @ A ) @ ( divide6298287555418463151nteger @ C @ A ) )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_3811_div__dvd__div,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_3812_div__dvd__div,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_3813_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_3814_concat__bit__0,axiom,
! [K: int,L: int] :
( ( bit_concat_bit @ zero_zero_nat @ K @ L )
= L ) ).
% concat_bit_0
thf(fact_3815_dbl__simps_I2_J,axiom,
( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% dbl_simps(2)
thf(fact_3816_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_3817_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% dbl_simps(2)
thf(fact_3818_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_3819_dvd__mult__cancel__left,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
= ( ( C = zero_z3403309356797280102nteger )
| ( dvd_dvd_Code_integer @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3820_dvd__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3821_dvd__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3822_dvd__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3823_dvd__mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3824_dvd__mult__cancel__right,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
= ( ( C = zero_z3403309356797280102nteger )
| ( dvd_dvd_Code_integer @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3825_dvd__mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3826_dvd__mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3827_dvd__mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3828_dvd__mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3829_dvd__times__left__cancel__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_3830_dvd__times__left__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_3831_dvd__times__left__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_3832_dvd__times__right__cancel__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_3833_dvd__times__right__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_3834_dvd__times__right__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_3835_unit__prod,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).
% unit_prod
thf(fact_3836_unit__prod,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_prod
thf(fact_3837_unit__prod,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_prod
thf(fact_3838_dvd__add__times__triv__right__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ ( times_3573771949741848930nteger @ C @ A ) ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3839_dvd__add__times__triv__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3840_dvd__add__times__triv__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3841_dvd__add__times__triv__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3842_dvd__add__times__triv__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3843_dvd__add__times__triv__left__iff,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ A ) @ B ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3844_dvd__add__times__triv__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3845_dvd__add__times__triv__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3846_dvd__add__times__triv__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3847_dvd__add__times__triv__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3848_dvd__mult__div__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_3849_dvd__mult__div__cancel,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_3850_dvd__mult__div__cancel,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_3851_dvd__div__mult__self,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_3852_dvd__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_3853_dvd__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_3854_unit__div__1__div__1,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_3855_unit__div__1__div__1,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_3856_unit__div__1__div__1,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_3857_unit__div__1__unit,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) @ one_one_Code_integer ) ) ).
% unit_div_1_unit
thf(fact_3858_unit__div__1__unit,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).
% unit_div_1_unit
thf(fact_3859_unit__div__1__unit,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).
% unit_div_1_unit
thf(fact_3860_unit__div,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).
% unit_div
thf(fact_3861_unit__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_div
thf(fact_3862_unit__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_div
thf(fact_3863_div__add,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3864_div__add,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3865_div__add,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3866_div__diff,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
= ( minus_8373710615458151222nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_3867_div__diff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_3868_dvd__imp__mod__0,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( modulo_modulo_nat @ B @ A )
= zero_zero_nat ) ) ).
% dvd_imp_mod_0
thf(fact_3869_dvd__imp__mod__0,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( modulo_modulo_int @ B @ A )
= zero_zero_int ) ) ).
% dvd_imp_mod_0
thf(fact_3870_dvd__imp__mod__0,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( modulo364778990260209775nteger @ B @ A )
= zero_z3403309356797280102nteger ) ) ).
% dvd_imp_mod_0
thf(fact_3871_concat__bit__nonnegative__iff,axiom,
! [N: nat,K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N @ K @ L ) )
= ( ord_less_eq_int @ zero_zero_int @ L ) ) ).
% concat_bit_nonnegative_iff
thf(fact_3872_concat__bit__negative__iff,axiom,
! [N: nat,K: int,L: int] :
( ( ord_less_int @ ( bit_concat_bit @ N @ K @ L ) @ zero_zero_int )
= ( ord_less_int @ L @ zero_zero_int ) ) ).
% concat_bit_negative_iff
thf(fact_3873_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
= ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3874_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3875_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
= ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3876_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3877_unit__div__mult__self,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_3878_unit__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_3879_unit__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_3880_unit__mult__div__div,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
= ( divide6298287555418463151nteger @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_3881_unit__mult__div__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
= ( divide_divide_nat @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_3882_unit__mult__div__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_3883_even__Suc__Suc__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_Suc_Suc_iff
thf(fact_3884_even__Suc,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% even_Suc
thf(fact_3885_pow__divides__pow__iff,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_3886_pow__divides__pow__iff,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_3887_even__mult__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_3888_even__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_3889_even__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_3890_even__add,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3891_even__add,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3892_even__add,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3893_odd__add,axiom,
! [A: code_integer,B: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3894_odd__add,axiom,
! [A: nat,B: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3895_odd__add,axiom,
! [A: int,B: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3896_even__mod__2__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_3897_even__mod__2__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_3898_even__mod__2__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_3899_even__Suc__div__two,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_Suc_div_two
thf(fact_3900_odd__Suc__div__two,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% odd_Suc_div_two
thf(fact_3901_zero__le__power__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_3902_zero__le__power__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_3903_zero__le__power__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_3904_power__less__zero__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_3905_power__less__zero__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_3906_power__less__zero__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_3907_power__less__zero__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq
thf(fact_3908_power__less__zero__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq
thf(fact_3909_power__less__zero__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq
thf(fact_3910_even__plus__one__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3911_even__plus__one__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3912_even__plus__one__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3913_even__diff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).
% even_diff
thf(fact_3914_even__diff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).
% even_diff
thf(fact_3915_odd__Suc__minus__one,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% odd_Suc_minus_one
thf(fact_3916_even__diff__nat,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% even_diff_nat
thf(fact_3917_zero__less__power__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_3918_zero__less__power__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_3919_zero__less__power__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_3920_even__succ__div__two,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3921_even__succ__div__two,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3922_even__succ__div__two,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3923_odd__succ__div__two,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).
% odd_succ_div_two
thf(fact_3924_odd__succ__div__two,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).
% odd_succ_div_two
thf(fact_3925_odd__succ__div__two,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% odd_succ_div_two
thf(fact_3926_even__succ__div__2,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3927_even__succ__div__2,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3928_even__succ__div__2,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3929_even__power,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_3930_even__power,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_3931_even__power,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_3932_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_3933_odd__two__times__div__two__succ,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3934_odd__two__times__div__two__succ,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3935_odd__two__times__div__two__succ,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3936_power__le__zero__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_3937_power__le__zero__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_3938_power__le__zero__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_3939_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_3940_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_3941_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_3942_even__succ__div__exp,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3943_even__succ__div__exp,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3944_even__succ__div__exp,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3945_dvd__productE,axiom,
! [P2: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ P2 @ ( times_times_nat @ A @ B ) )
=> ~ ! [X5: nat,Y4: nat] :
( ( P2
= ( times_times_nat @ X5 @ Y4 ) )
=> ( ( dvd_dvd_nat @ X5 @ A )
=> ~ ( dvd_dvd_nat @ Y4 @ B ) ) ) ) ).
% dvd_productE
thf(fact_3946_dvd__productE,axiom,
! [P2: int,A: int,B: int] :
( ( dvd_dvd_int @ P2 @ ( times_times_int @ A @ B ) )
=> ~ ! [X5: int,Y4: int] :
( ( P2
= ( times_times_int @ X5 @ Y4 ) )
=> ( ( dvd_dvd_int @ X5 @ A )
=> ~ ( dvd_dvd_int @ Y4 @ B ) ) ) ) ).
% dvd_productE
thf(fact_3947_division__decomp,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
=> ? [B7: nat,C5: nat] :
( ( A
= ( times_times_nat @ B7 @ C5 ) )
& ( dvd_dvd_nat @ B7 @ B )
& ( dvd_dvd_nat @ C5 @ C ) ) ) ).
% division_decomp
thf(fact_3948_division__decomp,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
=> ? [B7: int,C5: int] :
( ( A
= ( times_times_int @ B7 @ C5 ) )
& ( dvd_dvd_int @ B7 @ B )
& ( dvd_dvd_int @ C5 @ C ) ) ) ).
% division_decomp
thf(fact_3949_dvd__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_trans
thf(fact_3950_dvd__trans,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ C )
=> ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_trans
thf(fact_3951_dvd__trans,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ B @ C )
=> ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_trans
thf(fact_3952_dvd__refl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% dvd_refl
thf(fact_3953_dvd__refl,axiom,
! [A: int] : ( dvd_dvd_int @ A @ A ) ).
% dvd_refl
thf(fact_3954_dvd__refl,axiom,
! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ A ) ).
% dvd_refl
thf(fact_3955_dvd__0__left,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
=> ( A = zero_z3403309356797280102nteger ) ) ).
% dvd_0_left
thf(fact_3956_dvd__0__left,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
=> ( A = zero_zero_complex ) ) ).
% dvd_0_left
thf(fact_3957_dvd__0__left,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
=> ( A = zero_zero_real ) ) ).
% dvd_0_left
thf(fact_3958_dvd__0__left,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
=> ( A = zero_zero_rat ) ) ).
% dvd_0_left
thf(fact_3959_dvd__0__left,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% dvd_0_left
thf(fact_3960_dvd__0__left,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
=> ( A = zero_zero_int ) ) ).
% dvd_0_left
thf(fact_3961_dvdE,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ~ ! [K2: code_integer] :
( A
!= ( times_3573771949741848930nteger @ B @ K2 ) ) ) ).
% dvdE
thf(fact_3962_dvdE,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ~ ! [K2: real] :
( A
!= ( times_times_real @ B @ K2 ) ) ) ).
% dvdE
thf(fact_3963_dvdE,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ~ ! [K2: rat] :
( A
!= ( times_times_rat @ B @ K2 ) ) ) ).
% dvdE
thf(fact_3964_dvdE,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ~ ! [K2: nat] :
( A
!= ( times_times_nat @ B @ K2 ) ) ) ).
% dvdE
thf(fact_3965_dvdE,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ~ ! [K2: int] :
( A
!= ( times_times_int @ B @ K2 ) ) ) ).
% dvdE
thf(fact_3966_dvdI,axiom,
! [A: code_integer,B: code_integer,K: code_integer] :
( ( A
= ( times_3573771949741848930nteger @ B @ K ) )
=> ( dvd_dvd_Code_integer @ B @ A ) ) ).
% dvdI
thf(fact_3967_dvdI,axiom,
! [A: real,B: real,K: real] :
( ( A
= ( times_times_real @ B @ K ) )
=> ( dvd_dvd_real @ B @ A ) ) ).
% dvdI
thf(fact_3968_dvdI,axiom,
! [A: rat,B: rat,K: rat] :
( ( A
= ( times_times_rat @ B @ K ) )
=> ( dvd_dvd_rat @ B @ A ) ) ).
% dvdI
thf(fact_3969_dvdI,axiom,
! [A: nat,B: nat,K: nat] :
( ( A
= ( times_times_nat @ B @ K ) )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% dvdI
thf(fact_3970_dvdI,axiom,
! [A: int,B: int,K: int] :
( ( A
= ( times_times_int @ B @ K ) )
=> ( dvd_dvd_int @ B @ A ) ) ).
% dvdI
thf(fact_3971_dvd__def,axiom,
( dvd_dvd_Code_integer
= ( ^ [B5: code_integer,A5: code_integer] :
? [K3: code_integer] :
( A5
= ( times_3573771949741848930nteger @ B5 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_3972_dvd__def,axiom,
( dvd_dvd_real
= ( ^ [B5: real,A5: real] :
? [K3: real] :
( A5
= ( times_times_real @ B5 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_3973_dvd__def,axiom,
( dvd_dvd_rat
= ( ^ [B5: rat,A5: rat] :
? [K3: rat] :
( A5
= ( times_times_rat @ B5 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_3974_dvd__def,axiom,
( dvd_dvd_nat
= ( ^ [B5: nat,A5: nat] :
? [K3: nat] :
( A5
= ( times_times_nat @ B5 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_3975_dvd__def,axiom,
( dvd_dvd_int
= ( ^ [B5: int,A5: int] :
? [K3: int] :
( A5
= ( times_times_int @ B5 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_3976_dvd__mult,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ C )
=> ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3977_dvd__mult,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3978_dvd__mult,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3979_dvd__mult,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3980_dvd__mult,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3981_dvd__mult2,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3982_dvd__mult2,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3983_dvd__mult2,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3984_dvd__mult2,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3985_dvd__mult2,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3986_dvd__mult__left,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
=> ( dvd_dvd_Code_integer @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3987_dvd__mult__left,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3988_dvd__mult__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3989_dvd__mult__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3990_dvd__mult__left,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3991_dvd__triv__left,axiom,
! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3992_dvd__triv__left,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3993_dvd__triv__left,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3994_dvd__triv__left,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3995_dvd__triv__left,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3996_mult__dvd__mono,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ C @ D )
=> ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_3997_mult__dvd__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ C @ D )
=> ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_3998_mult__dvd__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ C @ D )
=> ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_3999_mult__dvd__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_4000_mult__dvd__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_4001_dvd__mult__right,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
=> ( dvd_dvd_Code_integer @ B @ C ) ) ).
% dvd_mult_right
thf(fact_4002_dvd__mult__right,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ B @ C ) ) ).
% dvd_mult_right
thf(fact_4003_dvd__mult__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_4004_dvd__mult__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_4005_dvd__mult__right,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ B @ C ) ) ).
% dvd_mult_right
thf(fact_4006_dvd__triv__right,axiom,
! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ A ) ) ).
% dvd_triv_right
thf(fact_4007_dvd__triv__right,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).
% dvd_triv_right
thf(fact_4008_dvd__triv__right,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_4009_dvd__triv__right,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_4010_dvd__triv__right,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).
% dvd_triv_right
thf(fact_4011_one__dvd,axiom,
! [A: code_integer] : ( dvd_dvd_Code_integer @ one_one_Code_integer @ A ) ).
% one_dvd
thf(fact_4012_one__dvd,axiom,
! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).
% one_dvd
thf(fact_4013_one__dvd,axiom,
! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).
% one_dvd
thf(fact_4014_one__dvd,axiom,
! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).
% one_dvd
thf(fact_4015_one__dvd,axiom,
! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).
% one_dvd
thf(fact_4016_one__dvd,axiom,
! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).
% one_dvd
thf(fact_4017_unit__imp__dvd,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_4018_unit__imp__dvd,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_4019_unit__imp__dvd,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_4020_dvd__unit__imp__unit,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ A @ one_one_Code_integer ) ) ) ).
% dvd_unit_imp_unit
thf(fact_4021_dvd__unit__imp__unit,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).
% dvd_unit_imp_unit
thf(fact_4022_dvd__unit__imp__unit,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ A @ one_one_int ) ) ) ).
% dvd_unit_imp_unit
thf(fact_4023_dvd__add,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ A @ C )
=> ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_4024_dvd__add,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_4025_dvd__add,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_4026_dvd__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_4027_dvd__add,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_4028_dvd__add__left__iff,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ C )
=> ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_4029_dvd__add__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_4030_dvd__add__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_4031_dvd__add__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_4032_dvd__add__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_4033_dvd__add__right__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_4034_dvd__add__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_4035_dvd__add__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_4036_dvd__add__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_4037_dvd__add__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_4038_dvd__diff__commute,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ C @ B ) )
= ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ B @ C ) ) ) ).
% dvd_diff_commute
thf(fact_4039_dvd__diff__commute,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
= ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).
% dvd_diff_commute
thf(fact_4040_dvd__diff,axiom,
! [X: code_integer,Y3: code_integer,Z4: code_integer] :
( ( dvd_dvd_Code_integer @ X @ Y3 )
=> ( ( dvd_dvd_Code_integer @ X @ Z4 )
=> ( dvd_dvd_Code_integer @ X @ ( minus_8373710615458151222nteger @ Y3 @ Z4 ) ) ) ) ).
% dvd_diff
thf(fact_4041_dvd__diff,axiom,
! [X: real,Y3: real,Z4: real] :
( ( dvd_dvd_real @ X @ Y3 )
=> ( ( dvd_dvd_real @ X @ Z4 )
=> ( dvd_dvd_real @ X @ ( minus_minus_real @ Y3 @ Z4 ) ) ) ) ).
% dvd_diff
thf(fact_4042_dvd__diff,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( dvd_dvd_rat @ X @ Y3 )
=> ( ( dvd_dvd_rat @ X @ Z4 )
=> ( dvd_dvd_rat @ X @ ( minus_minus_rat @ Y3 @ Z4 ) ) ) ) ).
% dvd_diff
thf(fact_4043_dvd__diff,axiom,
! [X: int,Y3: int,Z4: int] :
( ( dvd_dvd_int @ X @ Y3 )
=> ( ( dvd_dvd_int @ X @ Z4 )
=> ( dvd_dvd_int @ X @ ( minus_minus_int @ Y3 @ Z4 ) ) ) ) ).
% dvd_diff
thf(fact_4044_div__div__div__same,axiom,
! [D: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ D @ B )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ D ) @ ( divide6298287555418463151nteger @ B @ D ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_4045_div__div__div__same,axiom,
! [D: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ D @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_4046_div__div__div__same,axiom,
! [D: int,B: int,A: int] :
( ( dvd_dvd_int @ D @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_4047_dvd__div__eq__cancel,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( divide6298287555418463151nteger @ A @ C )
= ( divide6298287555418463151nteger @ B @ C ) )
=> ( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_4048_dvd__div__eq__cancel,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
=> ( ( dvd_dvd_complex @ C @ A )
=> ( ( dvd_dvd_complex @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_4049_dvd__div__eq__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
=> ( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_4050_dvd__div__eq__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
=> ( ( dvd_dvd_rat @ C @ A )
=> ( ( dvd_dvd_rat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_4051_dvd__div__eq__cancel,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
=> ( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_4052_dvd__div__eq__cancel,axiom,
! [A: int,C: int,B: int] :
( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
=> ( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_4053_dvd__div__eq__iff,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( ( divide6298287555418463151nteger @ A @ C )
= ( divide6298287555418463151nteger @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_4054_dvd__div__eq__iff,axiom,
! [C: complex,A: complex,B: complex] :
( ( dvd_dvd_complex @ C @ A )
=> ( ( dvd_dvd_complex @ C @ B )
=> ( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_4055_dvd__div__eq__iff,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_4056_dvd__div__eq__iff,axiom,
! [C: rat,A: rat,B: rat] :
( ( dvd_dvd_rat @ C @ A )
=> ( ( dvd_dvd_rat @ C @ B )
=> ( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_4057_dvd__div__eq__iff,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_4058_dvd__div__eq__iff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_4059_dvd__power__same,axiom,
! [X: code_integer,Y3: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ X @ Y3 )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y3 @ N ) ) ) ).
% dvd_power_same
thf(fact_4060_dvd__power__same,axiom,
! [X: nat,Y3: nat,N: nat] :
( ( dvd_dvd_nat @ X @ Y3 )
=> ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y3 @ N ) ) ) ).
% dvd_power_same
thf(fact_4061_dvd__power__same,axiom,
! [X: real,Y3: real,N: nat] :
( ( dvd_dvd_real @ X @ Y3 )
=> ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y3 @ N ) ) ) ).
% dvd_power_same
thf(fact_4062_dvd__power__same,axiom,
! [X: int,Y3: int,N: nat] :
( ( dvd_dvd_int @ X @ Y3 )
=> ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y3 @ N ) ) ) ).
% dvd_power_same
thf(fact_4063_dvd__power__same,axiom,
! [X: complex,Y3: complex,N: nat] :
( ( dvd_dvd_complex @ X @ Y3 )
=> ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y3 @ N ) ) ) ).
% dvd_power_same
thf(fact_4064_mod__mod__cancel,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4065_mod__mod__cancel,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
= ( modulo_modulo_int @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4066_mod__mod__cancel,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4067_dvd__mod,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( modulo_modulo_nat @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4068_dvd__mod,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ K @ M )
=> ( ( dvd_dvd_int @ K @ N )
=> ( dvd_dvd_int @ K @ ( modulo_modulo_int @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4069_dvd__mod,axiom,
! [K: code_integer,M: code_integer,N: code_integer] :
( ( dvd_dvd_Code_integer @ K @ M )
=> ( ( dvd_dvd_Code_integer @ K @ N )
=> ( dvd_dvd_Code_integer @ K @ ( modulo364778990260209775nteger @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4070_dvd__mod__iff,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
= ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4071_dvd__mod__iff,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
= ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4072_dvd__mod__iff,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4073_dvd__mod__imp__dvd,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4074_dvd__mod__imp__dvd,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
=> ( ( dvd_dvd_int @ C @ B )
=> ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4075_dvd__mod__imp__dvd,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( dvd_dvd_Code_integer @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4076_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% dvd_diff_nat
thf(fact_4077_zdvd__zdiffD,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ K @ ( minus_minus_int @ M @ N ) )
=> ( ( dvd_dvd_int @ K @ N )
=> ( dvd_dvd_int @ K @ M ) ) ) ).
% zdvd_zdiffD
thf(fact_4078_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ M @ N )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_4079_bezout__lemma__nat,axiom,
! [D: nat,A: nat,B: nat,X: nat,Y3: nat] :
( ( dvd_dvd_nat @ D @ A )
=> ( ( dvd_dvd_nat @ D @ B )
=> ( ( ( ( times_times_nat @ A @ X )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D ) )
| ( ( times_times_nat @ B @ X )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D ) ) )
=> ? [X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D @ A )
& ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
& ( ( ( times_times_nat @ A @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y4 ) @ D ) )
| ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_4080_bezout__add__nat,axiom,
! [A: nat,B: nat] :
? [D3: nat,X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( ( times_times_nat @ A @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D3 ) )
| ( ( times_times_nat @ B @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D3 ) ) ) ) ).
% bezout_add_nat
thf(fact_4081_bezout1__nat,axiom,
! [A: nat,B: nat] :
? [D3: nat,X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X5 ) @ ( times_times_nat @ B @ Y4 ) )
= D3 )
| ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A @ Y4 ) )
= D3 ) ) ) ).
% bezout1_nat
thf(fact_4082_subset__divisors__dvd,axiom,
! [A: complex,B: complex] :
( ( ord_le211207098394363844omplex
@ ( collect_complex
@ ^ [C3: complex] : ( dvd_dvd_complex @ C3 @ A ) )
@ ( collect_complex
@ ^ [C3: complex] : ( dvd_dvd_complex @ C3 @ B ) ) )
= ( dvd_dvd_complex @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_4083_subset__divisors__dvd,axiom,
! [A: real,B: real] :
( ( ord_less_eq_set_real
@ ( collect_real
@ ^ [C3: real] : ( dvd_dvd_real @ C3 @ A ) )
@ ( collect_real
@ ^ [C3: real] : ( dvd_dvd_real @ C3 @ B ) ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_4084_subset__divisors__dvd,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_set_nat
@ ( collect_nat
@ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ A ) )
@ ( collect_nat
@ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ B ) ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_4085_subset__divisors__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le7084787975880047091nteger
@ ( collect_Code_integer
@ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ A ) )
@ ( collect_Code_integer
@ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ B ) ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_4086_subset__divisors__dvd,axiom,
! [A: int,B: int] :
( ( ord_less_eq_set_int
@ ( collect_int
@ ^ [C3: int] : ( dvd_dvd_int @ C3 @ A ) )
@ ( collect_int
@ ^ [C3: int] : ( dvd_dvd_int @ C3 @ B ) ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_4087_concat__bit__assoc,axiom,
! [N: nat,K: int,M: nat,L: int,R2: int] :
( ( bit_concat_bit @ N @ K @ ( bit_concat_bit @ M @ L @ R2 ) )
= ( bit_concat_bit @ ( plus_plus_nat @ M @ N ) @ ( bit_concat_bit @ N @ K @ L ) @ R2 ) ) ).
% concat_bit_assoc
thf(fact_4088_strict__subset__divisors__dvd,axiom,
! [A: complex,B: complex] :
( ( ord_less_set_complex
@ ( collect_complex
@ ^ [C3: complex] : ( dvd_dvd_complex @ C3 @ A ) )
@ ( collect_complex
@ ^ [C3: complex] : ( dvd_dvd_complex @ C3 @ B ) ) )
= ( ( dvd_dvd_complex @ A @ B )
& ~ ( dvd_dvd_complex @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_4089_strict__subset__divisors__dvd,axiom,
! [A: real,B: real] :
( ( ord_less_set_real
@ ( collect_real
@ ^ [C3: real] : ( dvd_dvd_real @ C3 @ A ) )
@ ( collect_real
@ ^ [C3: real] : ( dvd_dvd_real @ C3 @ B ) ) )
= ( ( dvd_dvd_real @ A @ B )
& ~ ( dvd_dvd_real @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_4090_strict__subset__divisors__dvd,axiom,
! [A: nat,B: nat] :
( ( ord_less_set_nat
@ ( collect_nat
@ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ A ) )
@ ( collect_nat
@ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ B ) ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_4091_strict__subset__divisors__dvd,axiom,
! [A: int,B: int] :
( ( ord_less_set_int
@ ( collect_int
@ ^ [C3: int] : ( dvd_dvd_int @ C3 @ A ) )
@ ( collect_int
@ ^ [C3: int] : ( dvd_dvd_int @ C3 @ B ) ) )
= ( ( dvd_dvd_int @ A @ B )
& ~ ( dvd_dvd_int @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_4092_strict__subset__divisors__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le1307284697595431911nteger
@ ( collect_Code_integer
@ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ A ) )
@ ( collect_Code_integer
@ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ B ) ) )
= ( ( dvd_dvd_Code_integer @ A @ B )
& ~ ( dvd_dvd_Code_integer @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_4093_finite__divisors__int,axiom,
! [I4: int] :
( ( I4 != zero_zero_int )
=> ( finite_finite_int
@ ( collect_int
@ ^ [D2: int] : ( dvd_dvd_int @ D2 @ I4 ) ) ) ) ).
% finite_divisors_int
thf(fact_4094_not__is__unit__0,axiom,
~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).
% not_is_unit_0
thf(fact_4095_not__is__unit__0,axiom,
~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).
% not_is_unit_0
thf(fact_4096_not__is__unit__0,axiom,
~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).
% not_is_unit_0
thf(fact_4097_pinf_I9_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z3: code_integer] :
! [X4: code_integer] :
( ( ord_le6747313008572928689nteger @ Z3 @ X4 )
=> ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) )
= ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_4098_pinf_I9_J,axiom,
! [D: real,S2: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_4099_pinf_I9_J,axiom,
! [D: rat,S2: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_4100_pinf_I9_J,axiom,
! [D: nat,S2: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) )
= ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_4101_pinf_I9_J,axiom,
! [D: int,S2: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_4102_pinf_I10_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z3: code_integer] :
! [X4: code_integer] :
( ( ord_le6747313008572928689nteger @ Z3 @ X4 )
=> ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_4103_pinf_I10_J,axiom,
! [D: real,S2: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ Z3 @ X4 )
=> ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_4104_pinf_I10_J,axiom,
! [D: rat,S2: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z3 @ X4 )
=> ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_4105_pinf_I10_J,axiom,
! [D: nat,S2: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z3 @ X4 )
=> ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_4106_pinf_I10_J,axiom,
! [D: int,S2: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_4107_minf_I9_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z3: code_integer] :
! [X4: code_integer] :
( ( ord_le6747313008572928689nteger @ X4 @ Z3 )
=> ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) )
= ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_4108_minf_I9_J,axiom,
! [D: real,S2: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_4109_minf_I9_J,axiom,
! [D: rat,S2: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_4110_minf_I9_J,axiom,
! [D: nat,S2: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) )
= ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_4111_minf_I9_J,axiom,
! [D: int,S2: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_4112_minf_I10_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z3: code_integer] :
! [X4: code_integer] :
( ( ord_le6747313008572928689nteger @ X4 @ Z3 )
=> ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_4113_minf_I10_J,axiom,
! [D: real,S2: real] :
? [Z3: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z3 )
=> ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_4114_minf_I10_J,axiom,
! [D: rat,S2: rat] :
? [Z3: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z3 )
=> ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_4115_minf_I10_J,axiom,
! [D: nat,S2: nat] :
? [Z3: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z3 )
=> ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_4116_minf_I10_J,axiom,
! [D: int,S2: int] :
? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_4117_dvd__div__eq__0__iff,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( ( divide6298287555418463151nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_4118_dvd__div__eq__0__iff,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_4119_dvd__div__eq__0__iff,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( A = zero_zero_real ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_4120_dvd__div__eq__0__iff,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_4121_dvd__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_4122_dvd__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_4123_unit__mult__right__cancel,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( ( times_3573771949741848930nteger @ B @ A )
= ( times_3573771949741848930nteger @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_4124_unit__mult__right__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ B @ A )
= ( times_times_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_4125_unit__mult__right__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ B @ A )
= ( times_times_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_4126_unit__mult__left__cancel,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( ( times_3573771949741848930nteger @ A @ B )
= ( times_3573771949741848930nteger @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_4127_unit__mult__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ A @ B )
= ( times_times_nat @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_4128_unit__mult__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ A @ B )
= ( times_times_int @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_4129_mult__unit__dvd__iff_H,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_4130_mult__unit__dvd__iff_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_4131_mult__unit__dvd__iff_H,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_4132_dvd__mult__unit__iff_H,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_4133_dvd__mult__unit__iff_H,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_4134_dvd__mult__unit__iff_H,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_4135_mult__unit__dvd__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_4136_mult__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_4137_mult__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_4138_dvd__mult__unit__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_4139_dvd__mult__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_4140_dvd__mult__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_4141_is__unit__mult__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer )
= ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
& ( dvd_dvd_Code_integer @ B @ one_one_Code_integer ) ) ) ).
% is_unit_mult_iff
thf(fact_4142_is__unit__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
& ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).
% is_unit_mult_iff
thf(fact_4143_is__unit__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
& ( dvd_dvd_int @ B @ one_one_int ) ) ) ).
% is_unit_mult_iff
thf(fact_4144_div__mult__div__if__dvd,axiom,
! [B: code_integer,A: code_integer,D: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( dvd_dvd_Code_integer @ D @ C )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ ( divide6298287555418463151nteger @ C @ D ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_4145_div__mult__div__if__dvd,axiom,
! [B: nat,A: nat,D: nat,C: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ D @ C )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_4146_div__mult__div__if__dvd,axiom,
! [B: int,A: int,D: int,C: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ D @ C )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_4147_dvd__mult__imp__div,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B )
=> ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_4148_dvd__mult__imp__div,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
=> ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_4149_dvd__mult__imp__div,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
=> ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_4150_dvd__div__mult2__eq,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ C ) @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_4151_dvd__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_4152_dvd__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_4153_div__div__eq__right,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_4154_div__div__eq__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_4155_div__div__eq__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_4156_div__mult__swap,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_4157_div__mult__swap,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_4158_div__mult__swap,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_4159_dvd__div__mult,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ C ) @ A )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_4160_dvd__div__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
= ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_4161_dvd__div__mult,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
= ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_4162_dvd__div__unit__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ C @ B ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_4163_dvd__div__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_4164_dvd__div__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_4165_div__unit__dvd__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_4166_div__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_4167_div__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_4168_unit__div__cancel,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ B @ A )
= ( divide6298287555418463151nteger @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_4169_unit__div__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_4170_unit__div__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_4171_div__plus__div__distrib__dvd__left,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_4172_div__plus__div__distrib__dvd__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_4173_div__plus__div__distrib__dvd__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_4174_div__plus__div__distrib__dvd__right,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_4175_div__plus__div__distrib__dvd__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_4176_div__plus__div__distrib__dvd__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_4177_div__power,axiom,
! [B: code_integer,A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N )
= ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% div_power
thf(fact_4178_div__power,axiom,
! [B: nat,A: nat,N: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
= ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% div_power
thf(fact_4179_div__power,axiom,
! [B: int,A: int,N: nat] :
( ( dvd_dvd_int @ B @ A )
=> ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
= ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% div_power
thf(fact_4180_mod__eq__0__iff__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
= ( dvd_dvd_nat @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4181_mod__eq__0__iff__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
= ( dvd_dvd_int @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4182_mod__eq__0__iff__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( dvd_dvd_Code_integer @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4183_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_nat
= ( ^ [A5: nat,B5: nat] :
( ( modulo_modulo_nat @ B5 @ A5 )
= zero_zero_nat ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4184_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_int
= ( ^ [A5: int,B5: int] :
( ( modulo_modulo_int @ B5 @ A5 )
= zero_zero_int ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4185_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_Code_integer
= ( ^ [A5: code_integer,B5: code_integer] :
( ( modulo364778990260209775nteger @ B5 @ A5 )
= zero_z3403309356797280102nteger ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4186_mod__0__imp__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4187_mod__0__imp__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4188_mod__0__imp__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger )
=> ( dvd_dvd_Code_integer @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4189_dvd__power__le,axiom,
! [X: code_integer,Y3: code_integer,N: nat,M: nat] :
( ( dvd_dvd_Code_integer @ X @ Y3 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y3 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_4190_dvd__power__le,axiom,
! [X: nat,Y3: nat,N: nat,M: nat] :
( ( dvd_dvd_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y3 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_4191_dvd__power__le,axiom,
! [X: real,Y3: real,N: nat,M: nat] :
( ( dvd_dvd_real @ X @ Y3 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y3 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_4192_dvd__power__le,axiom,
! [X: int,Y3: int,N: nat,M: nat] :
( ( dvd_dvd_int @ X @ Y3 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y3 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_4193_dvd__power__le,axiom,
! [X: complex,Y3: complex,N: nat,M: nat] :
( ( dvd_dvd_complex @ X @ Y3 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y3 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_4194_power__le__dvd,axiom,
! [A: code_integer,N: nat,B: code_integer,M: nat] :
( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_4195_power__le__dvd,axiom,
! [A: nat,N: nat,B: nat,M: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_4196_power__le__dvd,axiom,
! [A: real,N: nat,B: real,M: nat] :
( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_4197_power__le__dvd,axiom,
! [A: int,N: nat,B: int,M: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_4198_power__le__dvd,axiom,
! [A: complex,N: nat,B: complex,M: nat] :
( ( dvd_dvd_complex @ ( power_power_complex @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_4199_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_4200_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_4201_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_4202_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_4203_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_4204_mod__eq__dvd__iff,axiom,
! [A: int,C: int,B: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ B @ C ) )
= ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).
% mod_eq_dvd_iff
thf(fact_4205_mod__eq__dvd__iff,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% mod_eq_dvd_iff
thf(fact_4206_dvd__minus__mod,axiom,
! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4207_dvd__minus__mod,axiom,
! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4208_dvd__minus__mod,axiom,
! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4209_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_4210_bezout__add__strong__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [D3: nat,X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( times_times_nat @ A @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D3 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_4211_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
= ( ( ord_less_nat @ N @ M )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_minus_self
thf(fact_4212_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( dvd_dvd_int @ M @ N )
=> ( ( dvd_dvd_int @ N @ M )
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_4213_dvd__diffD,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ M ) ) ) ) ).
% dvd_diffD
thf(fact_4214_dvd__diffD1,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ M )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ N ) ) ) ) ).
% dvd_diffD1
thf(fact_4215_less__eq__dvd__minus,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( dvd_dvd_nat @ M @ N )
= ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_4216_zdvd__mult__cancel,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
=> ( ( K != zero_zero_int )
=> ( dvd_dvd_int @ M @ N ) ) ) ).
% zdvd_mult_cancel
thf(fact_4217_zdvd__mono,axiom,
! [K: int,M: int,T: int] :
( ( K != zero_zero_int )
=> ( ( dvd_dvd_int @ M @ T )
= ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).
% zdvd_mono
thf(fact_4218_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X2: real] : ( plus_plus_real @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_4219_dbl__def,axiom,
( neg_numeral_dbl_rat
= ( ^ [X2: rat] : ( plus_plus_rat @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_4220_dbl__def,axiom,
( neg_numeral_dbl_int
= ( ^ [X2: int] : ( plus_plus_int @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_4221_zdvd__reduce,axiom,
! [K: int,N: int,M: int] :
( ( dvd_dvd_int @ K @ ( plus_plus_int @ N @ ( times_times_int @ K @ M ) ) )
= ( dvd_dvd_int @ K @ N ) ) ).
% zdvd_reduce
thf(fact_4222_zdvd__period,axiom,
! [A: int,D: int,X: int,T: int,C: int] :
( ( dvd_dvd_int @ A @ D )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X @ T ) )
= ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).
% zdvd_period
thf(fact_4223_finite__divisors__nat,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ M ) ) ) ) ).
% finite_divisors_nat
thf(fact_4224_div2__even__ext__nat,axiom,
! [X: nat,Y3: nat] :
( ( ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y3 ) )
=> ( X = Y3 ) ) ) ).
% div2_even_ext_nat
thf(fact_4225_unit__dvdE,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ~ ( ( A != zero_z3403309356797280102nteger )
=> ! [C2: code_integer] :
( B
!= ( times_3573771949741848930nteger @ A @ C2 ) ) ) ) ).
% unit_dvdE
thf(fact_4226_unit__dvdE,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [C2: nat] :
( B
!= ( times_times_nat @ A @ C2 ) ) ) ) ).
% unit_dvdE
thf(fact_4227_unit__dvdE,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [C2: int] :
( B
!= ( times_times_int @ A @ C2 ) ) ) ) ).
% unit_dvdE
thf(fact_4228_unity__coeff__ex,axiom,
! [P: code_integer > $o,L: code_integer] :
( ( ? [X2: code_integer] : ( P @ ( times_3573771949741848930nteger @ L @ X2 ) ) )
= ( ? [X2: code_integer] :
( ( dvd_dvd_Code_integer @ L @ ( plus_p5714425477246183910nteger @ X2 @ zero_z3403309356797280102nteger ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_4229_unity__coeff__ex,axiom,
! [P: complex > $o,L: complex] :
( ( ? [X2: complex] : ( P @ ( times_times_complex @ L @ X2 ) ) )
= ( ? [X2: complex] :
( ( dvd_dvd_complex @ L @ ( plus_plus_complex @ X2 @ zero_zero_complex ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_4230_unity__coeff__ex,axiom,
! [P: real > $o,L: real] :
( ( ? [X2: real] : ( P @ ( times_times_real @ L @ X2 ) ) )
= ( ? [X2: real] :
( ( dvd_dvd_real @ L @ ( plus_plus_real @ X2 @ zero_zero_real ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_4231_unity__coeff__ex,axiom,
! [P: rat > $o,L: rat] :
( ( ? [X2: rat] : ( P @ ( times_times_rat @ L @ X2 ) ) )
= ( ? [X2: rat] :
( ( dvd_dvd_rat @ L @ ( plus_plus_rat @ X2 @ zero_zero_rat ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_4232_unity__coeff__ex,axiom,
! [P: nat > $o,L: nat] :
( ( ? [X2: nat] : ( P @ ( times_times_nat @ L @ X2 ) ) )
= ( ? [X2: nat] :
( ( dvd_dvd_nat @ L @ ( plus_plus_nat @ X2 @ zero_zero_nat ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_4233_unity__coeff__ex,axiom,
! [P: int > $o,L: int] :
( ( ? [X2: int] : ( P @ ( times_times_int @ L @ X2 ) ) )
= ( ? [X2: int] :
( ( dvd_dvd_int @ L @ ( plus_plus_int @ X2 @ zero_zero_int ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_4234_dvd__div__div__eq__mult,axiom,
! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( C != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ C @ D )
=> ( ( ( divide6298287555418463151nteger @ B @ A )
= ( divide6298287555418463151nteger @ D @ C ) )
= ( ( times_3573771949741848930nteger @ B @ C )
= ( times_3573771949741848930nteger @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_4235_dvd__div__div__eq__mult,axiom,
! [A: nat,C: nat,B: nat,D: nat] :
( ( A != zero_zero_nat )
=> ( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ D @ C ) )
= ( ( times_times_nat @ B @ C )
= ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_4236_dvd__div__div__eq__mult,axiom,
! [A: int,C: int,B: int,D: int] :
( ( A != zero_zero_int )
=> ( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ D @ C ) )
= ( ( times_times_int @ B @ C )
= ( times_times_int @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_4237_dvd__div__iff__mult,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( C != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_4238_dvd__div__iff__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_4239_dvd__div__iff__mult,axiom,
! [C: int,B: int,A: int] :
( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
= ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_4240_div__dvd__iff__mult,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( B != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_4241_div__dvd__iff__mult,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_4242_div__dvd__iff__mult,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_4243_dvd__div__eq__mult,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( ( divide6298287555418463151nteger @ B @ A )
= C )
= ( B
= ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_4244_dvd__div__eq__mult,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( ( divide_divide_nat @ B @ A )
= C )
= ( B
= ( times_times_nat @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_4245_dvd__div__eq__mult,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( ( divide_divide_int @ B @ A )
= C )
= ( B
= ( times_times_int @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_4246_unit__div__eq__0__iff,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ) ).
% unit_div_eq_0_iff
thf(fact_4247_unit__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% unit_div_eq_0_iff
thf(fact_4248_unit__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% unit_div_eq_0_iff
thf(fact_4249_even__numeral,axiom,
! [N: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_4250_even__numeral,axiom,
! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_4251_even__numeral,axiom,
! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_4252_inf__period_I3_J,axiom,
! [D: code_integer,D4: code_integer,T: code_integer] :
( ( dvd_dvd_Code_integer @ D @ D4 )
=> ! [X4: code_integer,K4: code_integer] :
( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ T ) )
= ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X4 @ ( times_3573771949741848930nteger @ K4 @ D4 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_4253_inf__period_I3_J,axiom,
! [D: real,D4: real,T: real] :
( ( dvd_dvd_real @ D @ D4 )
=> ! [X4: real,K4: real] :
( ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ T ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_4254_inf__period_I3_J,axiom,
! [D: rat,D4: rat,T: rat] :
( ( dvd_dvd_rat @ D @ D4 )
=> ! [X4: rat,K4: rat] :
( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ T ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_4255_inf__period_I3_J,axiom,
! [D: int,D4: int,T: int] :
( ( dvd_dvd_int @ D @ D4 )
=> ! [X4: int,K4: int] :
( ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ T ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_4256_inf__period_I4_J,axiom,
! [D: code_integer,D4: code_integer,T: code_integer] :
( ( dvd_dvd_Code_integer @ D @ D4 )
=> ! [X4: code_integer,K4: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X4 @ T ) ) )
= ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X4 @ ( times_3573771949741848930nteger @ K4 @ D4 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_4257_inf__period_I4_J,axiom,
! [D: real,D4: real,T: real] :
( ( dvd_dvd_real @ D @ D4 )
=> ! [X4: real,K4: real] :
( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X4 @ T ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_4258_inf__period_I4_J,axiom,
! [D: rat,D4: rat,T: rat] :
( ( dvd_dvd_rat @ D @ D4 )
=> ! [X4: rat,K4: rat] :
( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X4 @ T ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_4259_inf__period_I4_J,axiom,
! [D: int,D4: int,T: int] :
( ( dvd_dvd_int @ D @ D4 )
=> ! [X4: int,K4: int] :
( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ T ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_4260_is__unit__div__mult2__eq,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_4261_is__unit__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_4262_is__unit__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_4263_unit__div__mult__swap,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_4264_unit__div__mult__swap,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_4265_unit__div__mult__swap,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_4266_unit__div__commute,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_4267_unit__div__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_4268_unit__div__commute,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_4269_div__mult__unit2,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_4270_div__mult__unit2,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_4271_div__mult__unit2,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_4272_unit__eq__div2,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( A
= ( divide6298287555418463151nteger @ C @ B ) )
= ( ( times_3573771949741848930nteger @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_4273_unit__eq__div2,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( A
= ( divide_divide_nat @ C @ B ) )
= ( ( times_times_nat @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_4274_unit__eq__div2,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( A
= ( divide_divide_int @ C @ B ) )
= ( ( times_times_int @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_4275_unit__eq__div1,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ A @ B )
= C )
= ( A
= ( times_3573771949741848930nteger @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_4276_unit__eq__div1,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= C )
= ( A
= ( times_times_nat @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_4277_unit__eq__div1,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= C )
= ( A
= ( times_times_int @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_4278_unit__imp__mod__eq__0,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat ) ) ).
% unit_imp_mod_eq_0
thf(fact_4279_unit__imp__mod__eq__0,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( modulo_modulo_int @ A @ B )
= zero_zero_int ) ) ).
% unit_imp_mod_eq_0
thf(fact_4280_unit__imp__mod__eq__0,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% unit_imp_mod_eq_0
thf(fact_4281_is__unit__power__iff,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer )
= ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_4282_is__unit__power__iff,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_4283_is__unit__power__iff,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_4284_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ) ).
% dvd_imp_le
thf(fact_4285_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_4286_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_4287_zdvd__imp__le,axiom,
! [Z4: int,N: int] :
( ( dvd_dvd_int @ Z4 @ N )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ Z4 @ N ) ) ) ).
% zdvd_imp_le
thf(fact_4288_nle__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_eq_rat @ A @ B ) )
= ( ( ord_less_eq_rat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_4289_nle__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_eq_num @ A @ B ) )
= ( ( ord_less_eq_num @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_4290_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_4291_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_4292_le__cases3,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( ( ord_less_eq_rat @ X @ Y3 )
=> ~ ( ord_less_eq_rat @ Y3 @ Z4 ) )
=> ( ( ( ord_less_eq_rat @ Y3 @ X )
=> ~ ( ord_less_eq_rat @ X @ Z4 ) )
=> ( ( ( ord_less_eq_rat @ X @ Z4 )
=> ~ ( ord_less_eq_rat @ Z4 @ Y3 ) )
=> ( ( ( ord_less_eq_rat @ Z4 @ Y3 )
=> ~ ( ord_less_eq_rat @ Y3 @ X ) )
=> ( ( ( ord_less_eq_rat @ Y3 @ Z4 )
=> ~ ( ord_less_eq_rat @ Z4 @ X ) )
=> ~ ( ( ord_less_eq_rat @ Z4 @ X )
=> ~ ( ord_less_eq_rat @ X @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_4293_le__cases3,axiom,
! [X: num,Y3: num,Z4: num] :
( ( ( ord_less_eq_num @ X @ Y3 )
=> ~ ( ord_less_eq_num @ Y3 @ Z4 ) )
=> ( ( ( ord_less_eq_num @ Y3 @ X )
=> ~ ( ord_less_eq_num @ X @ Z4 ) )
=> ( ( ( ord_less_eq_num @ X @ Z4 )
=> ~ ( ord_less_eq_num @ Z4 @ Y3 ) )
=> ( ( ( ord_less_eq_num @ Z4 @ Y3 )
=> ~ ( ord_less_eq_num @ Y3 @ X ) )
=> ( ( ( ord_less_eq_num @ Y3 @ Z4 )
=> ~ ( ord_less_eq_num @ Z4 @ X ) )
=> ~ ( ( ord_less_eq_num @ Z4 @ X )
=> ~ ( ord_less_eq_num @ X @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_4294_le__cases3,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ( ord_less_eq_nat @ X @ Y3 )
=> ~ ( ord_less_eq_nat @ Y3 @ Z4 ) )
=> ( ( ( ord_less_eq_nat @ Y3 @ X )
=> ~ ( ord_less_eq_nat @ X @ Z4 ) )
=> ( ( ( ord_less_eq_nat @ X @ Z4 )
=> ~ ( ord_less_eq_nat @ Z4 @ Y3 ) )
=> ( ( ( ord_less_eq_nat @ Z4 @ Y3 )
=> ~ ( ord_less_eq_nat @ Y3 @ X ) )
=> ( ( ( ord_less_eq_nat @ Y3 @ Z4 )
=> ~ ( ord_less_eq_nat @ Z4 @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z4 @ X )
=> ~ ( ord_less_eq_nat @ X @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_4295_le__cases3,axiom,
! [X: int,Y3: int,Z4: int] :
( ( ( ord_less_eq_int @ X @ Y3 )
=> ~ ( ord_less_eq_int @ Y3 @ Z4 ) )
=> ( ( ( ord_less_eq_int @ Y3 @ X )
=> ~ ( ord_less_eq_int @ X @ Z4 ) )
=> ( ( ( ord_less_eq_int @ X @ Z4 )
=> ~ ( ord_less_eq_int @ Z4 @ Y3 ) )
=> ( ( ( ord_less_eq_int @ Z4 @ Y3 )
=> ~ ( ord_less_eq_int @ Y3 @ X ) )
=> ( ( ( ord_less_eq_int @ Y3 @ Z4 )
=> ~ ( ord_less_eq_int @ Z4 @ X ) )
=> ~ ( ( ord_less_eq_int @ Z4 @ X )
=> ~ ( ord_less_eq_int @ X @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_4296_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y: set_int,Z: set_int] : ( Y = Z ) )
= ( ^ [X2: set_int,Y2: set_int] :
( ( ord_less_eq_set_int @ X2 @ Y2 )
& ( ord_less_eq_set_int @ Y2 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_4297_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y: rat,Z: rat] : ( Y = Z ) )
= ( ^ [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ Y2 )
& ( ord_less_eq_rat @ Y2 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_4298_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y: num,Z: num] : ( Y = Z ) )
= ( ^ [X2: num,Y2: num] :
( ( ord_less_eq_num @ X2 @ Y2 )
& ( ord_less_eq_num @ Y2 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_4299_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ X2 @ Y2 )
& ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_4300_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y: int,Z: int] : ( Y = Z ) )
= ( ^ [X2: int,Y2: int] :
( ( ord_less_eq_int @ X2 @ Y2 )
& ( ord_less_eq_int @ Y2 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_4301_ord__eq__le__trans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( A = B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_4302_ord__eq__le__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( A = B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_4303_ord__eq__le__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_4304_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_4305_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_4306_ord__le__eq__trans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_4307_ord__le__eq__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_4308_ord__le__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_4309_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_4310_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_4311_order__antisym,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_less_eq_set_int @ X @ Y3 )
=> ( ( ord_less_eq_set_int @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_4312_order__antisym,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ord_less_eq_rat @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_4313_order__antisym,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_num @ X @ Y3 )
=> ( ( ord_less_eq_num @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_4314_order__antisym,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_4315_order__antisym,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_4316_order_Otrans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% order.trans
thf(fact_4317_order_Otrans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% order.trans
thf(fact_4318_order_Otrans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% order.trans
thf(fact_4319_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_4320_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_4321_order__trans,axiom,
! [X: set_int,Y3: set_int,Z4: set_int] :
( ( ord_less_eq_set_int @ X @ Y3 )
=> ( ( ord_less_eq_set_int @ Y3 @ Z4 )
=> ( ord_less_eq_set_int @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_4322_order__trans,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ord_less_eq_rat @ Y3 @ Z4 )
=> ( ord_less_eq_rat @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_4323_order__trans,axiom,
! [X: num,Y3: num,Z4: num] :
( ( ord_less_eq_num @ X @ Y3 )
=> ( ( ord_less_eq_num @ Y3 @ Z4 )
=> ( ord_less_eq_num @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_4324_order__trans,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ Z4 )
=> ( ord_less_eq_nat @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_4325_order__trans,axiom,
! [X: int,Y3: int,Z4: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ Z4 )
=> ( ord_less_eq_int @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_4326_linorder__wlog,axiom,
! [P: rat > rat > $o,A: rat,B: rat] :
( ! [A4: rat,B4: rat] :
( ( ord_less_eq_rat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: rat,B4: rat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_4327_linorder__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A4: num,B4: num] :
( ( ord_less_eq_num @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: num,B4: num] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_4328_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: nat,B4: nat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_4329_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B4: int] :
( ( ord_less_eq_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: int,B4: int] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_4330_dual__order_Oeq__iff,axiom,
( ( ^ [Y: set_int,Z: set_int] : ( Y = Z ) )
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ B5 @ A5 )
& ( ord_less_eq_set_int @ A5 @ B5 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_4331_dual__order_Oeq__iff,axiom,
( ( ^ [Y: rat,Z: rat] : ( Y = Z ) )
= ( ^ [A5: rat,B5: rat] :
( ( ord_less_eq_rat @ B5 @ A5 )
& ( ord_less_eq_rat @ A5 @ B5 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_4332_dual__order_Oeq__iff,axiom,
( ( ^ [Y: num,Z: num] : ( Y = Z ) )
= ( ^ [A5: num,B5: num] :
( ( ord_less_eq_num @ B5 @ A5 )
& ( ord_less_eq_num @ A5 @ B5 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_4333_dual__order_Oeq__iff,axiom,
( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
= ( ^ [A5: nat,B5: nat] :
( ( ord_less_eq_nat @ B5 @ A5 )
& ( ord_less_eq_nat @ A5 @ B5 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_4334_dual__order_Oeq__iff,axiom,
( ( ^ [Y: int,Z: int] : ( Y = Z ) )
= ( ^ [A5: int,B5: int] :
( ( ord_less_eq_int @ B5 @ A5 )
& ( ord_less_eq_int @ A5 @ B5 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_4335_dual__order_Oantisym,axiom,
! [B: set_int,A: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_4336_dual__order_Oantisym,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_4337_dual__order_Oantisym,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_4338_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_4339_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_4340_dual__order_Otrans,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ C @ B )
=> ( ord_less_eq_set_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_4341_dual__order_Otrans,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_4342_dual__order_Otrans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_4343_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_4344_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_4345_antisym,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_4346_antisym,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_4347_antisym,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_4348_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_4349_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_4350_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y: set_int,Z: set_int] : ( Y = Z ) )
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_4351_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y: rat,Z: rat] : ( Y = Z ) )
= ( ^ [A5: rat,B5: rat] :
( ( ord_less_eq_rat @ A5 @ B5 )
& ( ord_less_eq_rat @ B5 @ A5 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_4352_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y: num,Z: num] : ( Y = Z ) )
= ( ^ [A5: num,B5: num] :
( ( ord_less_eq_num @ A5 @ B5 )
& ( ord_less_eq_num @ B5 @ A5 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_4353_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
= ( ^ [A5: nat,B5: nat] :
( ( ord_less_eq_nat @ A5 @ B5 )
& ( ord_less_eq_nat @ B5 @ A5 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_4354_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y: int,Z: int] : ( Y = Z ) )
= ( ^ [A5: int,B5: int] :
( ( ord_less_eq_int @ A5 @ B5 )
& ( ord_less_eq_int @ B5 @ A5 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_4355_order__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4356_order__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4357_order__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4358_order__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_eq_int @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4359_order__subst1,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4360_order__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4361_order__subst1,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4362_order__subst1,axiom,
! [A: num,F: int > num,B: int,C: int] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_eq_int @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4363_order__subst1,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4364_order__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_4365_order__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4366_order__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4367_order__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4368_order__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4369_order__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4370_order__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4371_order__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4372_order__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4373_order__subst2,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4374_order__subst2,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_4375_order__eq__refl,axiom,
! [X: set_int,Y3: set_int] :
( ( X = Y3 )
=> ( ord_less_eq_set_int @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_4376_order__eq__refl,axiom,
! [X: rat,Y3: rat] :
( ( X = Y3 )
=> ( ord_less_eq_rat @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_4377_order__eq__refl,axiom,
! [X: num,Y3: num] :
( ( X = Y3 )
=> ( ord_less_eq_num @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_4378_order__eq__refl,axiom,
! [X: nat,Y3: nat] :
( ( X = Y3 )
=> ( ord_less_eq_nat @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_4379_order__eq__refl,axiom,
! [X: int,Y3: int] :
( ( X = Y3 )
=> ( ord_less_eq_int @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_4380_linorder__linear,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
| ( ord_less_eq_rat @ Y3 @ X ) ) ).
% linorder_linear
thf(fact_4381_linorder__linear,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_num @ X @ Y3 )
| ( ord_less_eq_num @ Y3 @ X ) ) ).
% linorder_linear
thf(fact_4382_linorder__linear,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
| ( ord_less_eq_nat @ Y3 @ X ) ) ).
% linorder_linear
thf(fact_4383_linorder__linear,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
| ( ord_less_eq_int @ Y3 @ X ) ) ).
% linorder_linear
thf(fact_4384_ord__eq__le__subst,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4385_ord__eq__le__subst,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4386_ord__eq__le__subst,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4387_ord__eq__le__subst,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4388_ord__eq__le__subst,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4389_ord__eq__le__subst,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4390_ord__eq__le__subst,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4391_ord__eq__le__subst,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4392_ord__eq__le__subst,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4393_ord__eq__le__subst,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_4394_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4395_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4396_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4397_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4398_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4399_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4400_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4401_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4402_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4403_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_eq_nat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_4404_linorder__le__cases,axiom,
! [X: rat,Y3: rat] :
( ~ ( ord_less_eq_rat @ X @ Y3 )
=> ( ord_less_eq_rat @ Y3 @ X ) ) ).
% linorder_le_cases
thf(fact_4405_linorder__le__cases,axiom,
! [X: num,Y3: num] :
( ~ ( ord_less_eq_num @ X @ Y3 )
=> ( ord_less_eq_num @ Y3 @ X ) ) ).
% linorder_le_cases
thf(fact_4406_linorder__le__cases,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_eq_nat @ X @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X ) ) ).
% linorder_le_cases
thf(fact_4407_linorder__le__cases,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_eq_int @ X @ Y3 )
=> ( ord_less_eq_int @ Y3 @ X ) ) ).
% linorder_le_cases
thf(fact_4408_order__antisym__conv,axiom,
! [Y3: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y3 @ X )
=> ( ( ord_less_eq_set_int @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_4409_order__antisym__conv,axiom,
! [Y3: rat,X: rat] :
( ( ord_less_eq_rat @ Y3 @ X )
=> ( ( ord_less_eq_rat @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_4410_order__antisym__conv,axiom,
! [Y3: num,X: num] :
( ( ord_less_eq_num @ Y3 @ X )
=> ( ( ord_less_eq_num @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_4411_order__antisym__conv,axiom,
! [Y3: nat,X: nat] :
( ( ord_less_eq_nat @ Y3 @ X )
=> ( ( ord_less_eq_nat @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_4412_order__antisym__conv,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ Y3 @ X )
=> ( ( ord_less_eq_int @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_4413_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
= ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% mod_greater_zero_iff_not_dvd
thf(fact_4414_order__less__imp__not__less,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ~ ( ord_less_real @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_4415_order__less__imp__not__less,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ~ ( ord_less_rat @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_4416_order__less__imp__not__less,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
=> ~ ( ord_less_num @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_4417_order__less__imp__not__less,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ~ ( ord_less_nat @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_4418_order__less__imp__not__less,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ~ ( ord_less_int @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_4419_order__less__imp__not__eq2,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_4420_order__less__imp__not__eq2,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_4421_order__less__imp__not__eq2,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_4422_order__less__imp__not__eq2,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_4423_order__less__imp__not__eq2,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_4424_order__less__imp__not__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_4425_order__less__imp__not__eq,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_4426_order__less__imp__not__eq,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_4427_order__less__imp__not__eq,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_4428_order__less__imp__not__eq,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_4429_linorder__less__linear,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_real @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_4430_linorder__less__linear,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_rat @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_4431_linorder__less__linear,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_num @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_4432_linorder__less__linear,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_nat @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_4433_linorder__less__linear,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_int @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_4434_order__less__imp__triv,axiom,
! [X: real,Y3: real,P: $o] :
( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_real @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_4435_order__less__imp__triv,axiom,
! [X: rat,Y3: rat,P: $o] :
( ( ord_less_rat @ X @ Y3 )
=> ( ( ord_less_rat @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_4436_order__less__imp__triv,axiom,
! [X: num,Y3: num,P: $o] :
( ( ord_less_num @ X @ Y3 )
=> ( ( ord_less_num @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_4437_order__less__imp__triv,axiom,
! [X: nat,Y3: nat,P: $o] :
( ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_nat @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_4438_order__less__imp__triv,axiom,
! [X: int,Y3: int,P: $o] :
( ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_int @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_4439_order__less__not__sym,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ~ ( ord_less_real @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_4440_order__less__not__sym,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ~ ( ord_less_rat @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_4441_order__less__not__sym,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
=> ~ ( ord_less_num @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_4442_order__less__not__sym,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ~ ( ord_less_nat @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_4443_order__less__not__sym,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ~ ( ord_less_int @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_4444_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4445_order__less__subst2,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4446_order__less__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4447_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4448_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4449_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4450_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4451_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4452_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4453_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_4454_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4455_order__less__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4456_order__less__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_num @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4457_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_nat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4458_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_int @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4459_order__less__subst1,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4460_order__less__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4461_order__less__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_num @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4462_order__less__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_nat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4463_order__less__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_int @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_4464_order__less__irrefl,axiom,
! [X: real] :
~ ( ord_less_real @ X @ X ) ).
% order_less_irrefl
thf(fact_4465_order__less__irrefl,axiom,
! [X: rat] :
~ ( ord_less_rat @ X @ X ) ).
% order_less_irrefl
thf(fact_4466_order__less__irrefl,axiom,
! [X: num] :
~ ( ord_less_num @ X @ X ) ).
% order_less_irrefl
thf(fact_4467_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_4468_order__less__irrefl,axiom,
! [X: int] :
~ ( ord_less_int @ X @ X ) ).
% order_less_irrefl
thf(fact_4469_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4470_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4471_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4472_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4473_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4474_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4475_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4476_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4477_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4478_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_4479_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4480_ord__eq__less__subst,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4481_ord__eq__less__subst,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4482_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4483_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4484_ord__eq__less__subst,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4485_ord__eq__less__subst,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4486_ord__eq__less__subst,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4487_ord__eq__less__subst,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4488_ord__eq__less__subst,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_4489_order__less__trans,axiom,
! [X: real,Y3: real,Z4: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_real @ Y3 @ Z4 )
=> ( ord_less_real @ X @ Z4 ) ) ) ).
% order_less_trans
thf(fact_4490_order__less__trans,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( ( ord_less_rat @ Y3 @ Z4 )
=> ( ord_less_rat @ X @ Z4 ) ) ) ).
% order_less_trans
thf(fact_4491_order__less__trans,axiom,
! [X: num,Y3: num,Z4: num] :
( ( ord_less_num @ X @ Y3 )
=> ( ( ord_less_num @ Y3 @ Z4 )
=> ( ord_less_num @ X @ Z4 ) ) ) ).
% order_less_trans
thf(fact_4492_order__less__trans,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_nat @ Y3 @ Z4 )
=> ( ord_less_nat @ X @ Z4 ) ) ) ).
% order_less_trans
thf(fact_4493_order__less__trans,axiom,
! [X: int,Y3: int,Z4: int] :
( ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_int @ Y3 @ Z4 )
=> ( ord_less_int @ X @ Z4 ) ) ) ).
% order_less_trans
thf(fact_4494_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_4495_order__less__asym_H,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( ord_less_rat @ B @ A ) ) ).
% order_less_asym'
thf(fact_4496_order__less__asym_H,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order_less_asym'
thf(fact_4497_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_4498_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_4499_linorder__neq__iff,axiom,
! [X: real,Y3: real] :
( ( X != Y3 )
= ( ( ord_less_real @ X @ Y3 )
| ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_4500_linorder__neq__iff,axiom,
! [X: rat,Y3: rat] :
( ( X != Y3 )
= ( ( ord_less_rat @ X @ Y3 )
| ( ord_less_rat @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_4501_linorder__neq__iff,axiom,
! [X: num,Y3: num] :
( ( X != Y3 )
= ( ( ord_less_num @ X @ Y3 )
| ( ord_less_num @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_4502_linorder__neq__iff,axiom,
! [X: nat,Y3: nat] :
( ( X != Y3 )
= ( ( ord_less_nat @ X @ Y3 )
| ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_4503_linorder__neq__iff,axiom,
! [X: int,Y3: int] :
( ( X != Y3 )
= ( ( ord_less_int @ X @ Y3 )
| ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_4504_order__less__asym,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ~ ( ord_less_real @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_4505_order__less__asym,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ~ ( ord_less_rat @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_4506_order__less__asym,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
=> ~ ( ord_less_num @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_4507_order__less__asym,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ~ ( ord_less_nat @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_4508_order__less__asym,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ~ ( ord_less_int @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_4509_linorder__neqE,axiom,
! [X: real,Y3: real] :
( ( X != Y3 )
=> ( ~ ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_4510_linorder__neqE,axiom,
! [X: rat,Y3: rat] :
( ( X != Y3 )
=> ( ~ ( ord_less_rat @ X @ Y3 )
=> ( ord_less_rat @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_4511_linorder__neqE,axiom,
! [X: num,Y3: num] :
( ( X != Y3 )
=> ( ~ ( ord_less_num @ X @ Y3 )
=> ( ord_less_num @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_4512_linorder__neqE,axiom,
! [X: nat,Y3: nat] :
( ( X != Y3 )
=> ( ~ ( ord_less_nat @ X @ Y3 )
=> ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_4513_linorder__neqE,axiom,
! [X: int,Y3: int] :
( ( X != Y3 )
=> ( ~ ( ord_less_int @ X @ Y3 )
=> ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_4514_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_4515_dual__order_Ostrict__implies__not__eq,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_4516_dual__order_Ostrict__implies__not__eq,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_4517_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_4518_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_4519_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_4520_order_Ostrict__implies__not__eq,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_4521_order_Ostrict__implies__not__eq,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_4522_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_4523_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_4524_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_4525_dual__order_Ostrict__trans,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_4526_dual__order_Ostrict__trans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_4527_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_4528_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_4529_not__less__iff__gr__or__eq,axiom,
! [X: real,Y3: real] :
( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( ( ord_less_real @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_4530_not__less__iff__gr__or__eq,axiom,
! [X: rat,Y3: rat] :
( ( ~ ( ord_less_rat @ X @ Y3 ) )
= ( ( ord_less_rat @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_4531_not__less__iff__gr__or__eq,axiom,
! [X: num,Y3: num] :
( ( ~ ( ord_less_num @ X @ Y3 ) )
= ( ( ord_less_num @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_4532_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y3: nat] :
( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( ( ord_less_nat @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_4533_not__less__iff__gr__or__eq,axiom,
! [X: int,Y3: int] :
( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( ( ord_less_int @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_4534_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_4535_order_Ostrict__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_4536_order_Ostrict__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_4537_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_4538_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_4539_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B4: real] :
( ( ord_less_real @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: real] : ( P @ A4 @ A4 )
=> ( ! [A4: real,B4: real] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_4540_linorder__less__wlog,axiom,
! [P: rat > rat > $o,A: rat,B: rat] :
( ! [A4: rat,B4: rat] :
( ( ord_less_rat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: rat] : ( P @ A4 @ A4 )
=> ( ! [A4: rat,B4: rat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_4541_linorder__less__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A4: num,B4: num] :
( ( ord_less_num @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: num] : ( P @ A4 @ A4 )
=> ( ! [A4: num,B4: num] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_4542_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( ord_less_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ A4 )
=> ( ! [A4: nat,B4: nat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_4543_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B4: int] :
( ( ord_less_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: int] : ( P @ A4 @ A4 )
=> ( ! [A4: int,B4: int] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_4544_exists__least__iff,axiom,
( ( ^ [P3: nat > $o] :
? [X6: nat] : ( P3 @ X6 ) )
= ( ^ [P4: nat > $o] :
? [N2: nat] :
( ( P4 @ N2 )
& ! [M6: nat] :
( ( ord_less_nat @ M6 @ N2 )
=> ~ ( P4 @ M6 ) ) ) ) ) ).
% exists_least_iff
thf(fact_4545_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_4546_dual__order_Oirrefl,axiom,
! [A: rat] :
~ ( ord_less_rat @ A @ A ) ).
% dual_order.irrefl
thf(fact_4547_dual__order_Oirrefl,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% dual_order.irrefl
thf(fact_4548_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_4549_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_4550_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_4551_dual__order_Oasym,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ~ ( ord_less_rat @ A @ B ) ) ).
% dual_order.asym
thf(fact_4552_dual__order_Oasym,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ~ ( ord_less_num @ A @ B ) ) ).
% dual_order.asym
thf(fact_4553_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_4554_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_4555_linorder__cases,axiom,
! [X: real,Y3: real] :
( ~ ( ord_less_real @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_4556_linorder__cases,axiom,
! [X: rat,Y3: rat] :
( ~ ( ord_less_rat @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_rat @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_4557_linorder__cases,axiom,
! [X: num,Y3: num] :
( ~ ( ord_less_num @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_num @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_4558_linorder__cases,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_nat @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_4559_linorder__cases,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_int @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_4560_antisym__conv3,axiom,
! [Y3: real,X: real] :
( ~ ( ord_less_real @ Y3 @ X )
=> ( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_4561_antisym__conv3,axiom,
! [Y3: rat,X: rat] :
( ~ ( ord_less_rat @ Y3 @ X )
=> ( ( ~ ( ord_less_rat @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_4562_antisym__conv3,axiom,
! [Y3: num,X: num] :
( ~ ( ord_less_num @ Y3 @ X )
=> ( ( ~ ( ord_less_num @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_4563_antisym__conv3,axiom,
! [Y3: nat,X: nat] :
( ~ ( ord_less_nat @ Y3 @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_4564_antisym__conv3,axiom,
! [Y3: int,X: int] :
( ~ ( ord_less_int @ Y3 @ X )
=> ( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_4565_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X5: nat] :
( ! [Y5: nat] :
( ( ord_less_nat @ Y5 @ X5 )
=> ( P @ Y5 ) )
=> ( P @ X5 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_4566_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_4567_ord__less__eq__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( B = C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_4568_ord__less__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_4569_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_4570_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_4571_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_4572_ord__eq__less__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( A = B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_4573_ord__eq__less__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_4574_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_4575_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_4576_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_4577_order_Oasym,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( ord_less_rat @ B @ A ) ) ).
% order.asym
thf(fact_4578_order_Oasym,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order.asym
thf(fact_4579_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_4580_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_4581_less__imp__neq,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_4582_less__imp__neq,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_4583_less__imp__neq,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_4584_less__imp__neq,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_4585_less__imp__neq,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_4586_dense,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ? [Z3: real] :
( ( ord_less_real @ X @ Z3 )
& ( ord_less_real @ Z3 @ Y3 ) ) ) ).
% dense
thf(fact_4587_dense,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ? [Z3: rat] :
( ( ord_less_rat @ X @ Z3 )
& ( ord_less_rat @ Z3 @ Y3 ) ) ) ).
% dense
thf(fact_4588_gt__ex,axiom,
! [X: real] :
? [X_12: real] : ( ord_less_real @ X @ X_12 ) ).
% gt_ex
thf(fact_4589_gt__ex,axiom,
! [X: rat] :
? [X_12: rat] : ( ord_less_rat @ X @ X_12 ) ).
% gt_ex
thf(fact_4590_gt__ex,axiom,
! [X: nat] :
? [X_12: nat] : ( ord_less_nat @ X @ X_12 ) ).
% gt_ex
thf(fact_4591_gt__ex,axiom,
! [X: int] :
? [X_12: int] : ( ord_less_int @ X @ X_12 ) ).
% gt_ex
thf(fact_4592_lt__ex,axiom,
! [X: real] :
? [Y4: real] : ( ord_less_real @ Y4 @ X ) ).
% lt_ex
thf(fact_4593_lt__ex,axiom,
! [X: rat] :
? [Y4: rat] : ( ord_less_rat @ Y4 @ X ) ).
% lt_ex
thf(fact_4594_lt__ex,axiom,
! [X: int] :
? [Y4: int] : ( ord_less_int @ Y4 @ X ) ).
% lt_ex
thf(fact_4595_mod__eq__dvd__iff__nat,axiom,
! [N: nat,M: nat,Q3: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( ( modulo_modulo_nat @ M @ Q3 )
= ( modulo_modulo_nat @ N @ Q3 ) )
= ( dvd_dvd_nat @ Q3 @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% mod_eq_dvd_iff_nat
thf(fact_4596_prod__decode__aux_Ocases,axiom,
! [X: product_prod_nat_nat] :
~ ! [K2: nat,M5: nat] :
( X
!= ( product_Pair_nat_nat @ K2 @ M5 ) ) ).
% prod_decode_aux.cases
thf(fact_4597_even__zero,axiom,
dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).
% even_zero
thf(fact_4598_even__zero,axiom,
dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).
% even_zero
thf(fact_4599_even__zero,axiom,
dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).
% even_zero
thf(fact_4600_is__unit__div__mult__cancel__right,axiom,
! [A: code_integer,B: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
= ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_4601_is__unit__div__mult__cancel__right,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_4602_is__unit__div__mult__cancel__right,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_4603_is__unit__div__mult__cancel__left,axiom,
! [A: code_integer,B: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
= ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_4604_is__unit__div__mult__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_4605_is__unit__div__mult__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_4606_is__unitE,axiom,
! [A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ~ ( ( A != zero_z3403309356797280102nteger )
=> ! [B4: code_integer] :
( ( B4 != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B4 @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
= B4 )
=> ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B4 )
= A )
=> ( ( ( times_3573771949741848930nteger @ A @ B4 )
= one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ C @ A )
!= ( times_3573771949741848930nteger @ C @ B4 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_4607_is__unitE,axiom,
! [A: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [B4: nat] :
( ( B4 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B4 @ one_one_nat )
=> ( ( ( divide_divide_nat @ one_one_nat @ A )
= B4 )
=> ( ( ( divide_divide_nat @ one_one_nat @ B4 )
= A )
=> ( ( ( times_times_nat @ A @ B4 )
= one_one_nat )
=> ( ( divide_divide_nat @ C @ A )
!= ( times_times_nat @ C @ B4 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_4608_is__unitE,axiom,
! [A: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [B4: int] :
( ( B4 != zero_zero_int )
=> ( ( dvd_dvd_int @ B4 @ one_one_int )
=> ( ( ( divide_divide_int @ one_one_int @ A )
= B4 )
=> ( ( ( divide_divide_int @ one_one_int @ B4 )
= A )
=> ( ( ( times_times_int @ A @ B4 )
= one_one_int )
=> ( ( divide_divide_int @ C @ A )
!= ( times_times_int @ C @ B4 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_4609_evenE,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: code_integer] :
( A
!= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) ) ) ).
% evenE
thf(fact_4610_evenE,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: nat] :
( A
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) ) ) ).
% evenE
thf(fact_4611_evenE,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: int] :
( A
!= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) ) ) ).
% evenE
thf(fact_4612_odd__one,axiom,
~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).
% odd_one
thf(fact_4613_odd__one,axiom,
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).
% odd_one
thf(fact_4614_odd__one,axiom,
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).
% odd_one
thf(fact_4615_odd__even__add,axiom,
! [A: code_integer,B: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_4616_odd__even__add,axiom,
! [A: nat,B: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_4617_odd__even__add,axiom,
! [A: int,B: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_4618_bit__eq__rec,axiom,
( ( ^ [Y: code_integer,Z: code_integer] : ( Y = Z ) )
= ( ^ [A5: code_integer,B5: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A5 )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B5 ) )
& ( ( divide6298287555418463151nteger @ A5 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ B5 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_4619_bit__eq__rec,axiom,
( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
= ( ^ [A5: nat,B5: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A5 )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B5 ) )
& ( ( divide_divide_nat @ A5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ B5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_4620_bit__eq__rec,axiom,
( ( ^ [Y: int,Z: int] : ( Y = Z ) )
= ( ^ [A5: int,B5: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A5 )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B5 ) )
& ( ( divide_divide_int @ A5 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ B5 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_4621_dvd__power__iff,axiom,
! [X: code_integer,M: nat,N: nat] :
( ( X != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ M ) @ ( power_8256067586552552935nteger @ X @ N ) )
= ( ( dvd_dvd_Code_integer @ X @ one_one_Code_integer )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_4622_dvd__power__iff,axiom,
! [X: nat,M: nat,N: nat] :
( ( X != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ X @ M ) @ ( power_power_nat @ X @ N ) )
= ( ( dvd_dvd_nat @ X @ one_one_nat )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_4623_dvd__power__iff,axiom,
! [X: int,M: nat,N: nat] :
( ( X != zero_zero_int )
=> ( ( dvd_dvd_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ N ) )
= ( ( dvd_dvd_int @ X @ one_one_int )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_4624_dvd__power,axiom,
! [N: nat,X: code_integer] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_Code_integer ) )
=> ( dvd_dvd_Code_integer @ X @ ( power_8256067586552552935nteger @ X @ N ) ) ) ).
% dvd_power
thf(fact_4625_dvd__power,axiom,
! [N: nat,X: rat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_rat ) )
=> ( dvd_dvd_rat @ X @ ( power_power_rat @ X @ N ) ) ) ).
% dvd_power
thf(fact_4626_dvd__power,axiom,
! [N: nat,X: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_nat ) )
=> ( dvd_dvd_nat @ X @ ( power_power_nat @ X @ N ) ) ) ).
% dvd_power
thf(fact_4627_dvd__power,axiom,
! [N: nat,X: real] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_real ) )
=> ( dvd_dvd_real @ X @ ( power_power_real @ X @ N ) ) ) ).
% dvd_power
thf(fact_4628_dvd__power,axiom,
! [N: nat,X: int] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_int ) )
=> ( dvd_dvd_int @ X @ ( power_power_int @ X @ N ) ) ) ).
% dvd_power
thf(fact_4629_dvd__power,axiom,
! [N: nat,X: complex] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_complex ) )
=> ( dvd_dvd_complex @ X @ ( power_power_complex @ X @ N ) ) ) ).
% dvd_power
thf(fact_4630_even__even__mod__4__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).
% even_even_mod_4_iff
thf(fact_4631_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_4632_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_4633_dvd__minus__add,axiom,
! [Q3: nat,N: nat,R2: nat,M: nat] :
( ( ord_less_eq_nat @ Q3 @ N )
=> ( ( ord_less_eq_nat @ Q3 @ ( times_times_nat @ R2 @ M ) )
=> ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ Q3 ) )
= ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N @ ( minus_minus_nat @ ( times_times_nat @ R2 @ M ) @ Q3 ) ) ) ) ) ) ).
% dvd_minus_add
thf(fact_4634_power__dvd__imp__le,axiom,
! [I4: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ I4 @ M ) @ ( power_power_nat @ I4 @ N ) )
=> ( ( ord_less_nat @ one_one_nat @ I4 )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_dvd_imp_le
thf(fact_4635_mod__nat__eqI,axiom,
! [R2: nat,N: nat,M: nat] :
( ( ord_less_nat @ R2 @ N )
=> ( ( ord_less_eq_nat @ R2 @ M )
=> ( ( dvd_dvd_nat @ N @ ( minus_minus_nat @ M @ R2 ) )
=> ( ( modulo_modulo_nat @ M @ N )
= R2 ) ) ) ) ).
% mod_nat_eqI
thf(fact_4636_mod__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) )
= ( ( dvd_dvd_int @ L @ K )
| ( ( L = zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ K ) )
| ( ord_less_int @ zero_zero_int @ L ) ) ) ).
% mod_int_pos_iff
thf(fact_4637_aset_I10_J,axiom,
! [D: int,D4: int,A2: set_int,T: int] :
( ( dvd_dvd_int @ D @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ T ) )
=> ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).
% aset(10)
thf(fact_4638_aset_I9_J,axiom,
! [D: int,D4: int,A2: set_int,T: int] :
( ( dvd_dvd_int @ D @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ T ) )
=> ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).
% aset(9)
thf(fact_4639_bset_I10_J,axiom,
! [D: int,D4: int,B2: set_int,T: int] :
( ( dvd_dvd_int @ D @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ T ) )
=> ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).
% bset(10)
thf(fact_4640_bset_I9_J,axiom,
! [D: int,D4: int,B2: set_int,T: int] :
( ( dvd_dvd_int @ D @ D4 )
=> ! [X4: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb3: int] :
( ( member_int @ Xb3 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ T ) )
=> ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).
% bset(9)
thf(fact_4641_even__two__times__div__two,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_4642_even__two__times__div__two,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_4643_even__two__times__div__two,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_4644_even__iff__mod__2__eq__zero,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4645_even__iff__mod__2__eq__zero,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4646_even__iff__mod__2__eq__zero,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4647_odd__iff__mod__2__eq__one,axiom,
! [A: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4648_odd__iff__mod__2__eq__one,axiom,
! [A: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4649_odd__iff__mod__2__eq__one,axiom,
! [A: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4650_power__mono__odd,axiom,
! [N: nat,A: real,B: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_4651_power__mono__odd,axiom,
! [N: nat,A: rat,B: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_4652_power__mono__odd,axiom,
! [N: nat,A: int,B: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_4653_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_4654_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% dvd_power_iff_le
thf(fact_4655_even__unset__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_4656_even__unset__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_4657_even__unset__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_4658_even__set__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_4659_even__set__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_4660_even__set__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_4661_even__flip__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_4662_even__flip__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_4663_even__flip__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_4664_even__diff__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_diff_iff
thf(fact_4665_oddE,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: code_integer] :
( A
!= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) @ one_one_Code_integer ) ) ) ).
% oddE
thf(fact_4666_oddE,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: nat] :
( A
!= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) @ one_one_nat ) ) ) ).
% oddE
thf(fact_4667_oddE,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: int] :
( A
!= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) @ one_one_int ) ) ) ).
% oddE
thf(fact_4668_parity__cases,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat ) )
=> ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat ) ) ) ).
% parity_cases
thf(fact_4669_parity__cases,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int ) )
=> ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int ) ) ) ).
% parity_cases
thf(fact_4670_parity__cases,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger ) )
=> ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer ) ) ) ).
% parity_cases
thf(fact_4671_mod2__eq__if,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ) ).
% mod2_eq_if
thf(fact_4672_mod2__eq__if,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ) ).
% mod2_eq_if
thf(fact_4673_mod2__eq__if,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) )
& ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ) ).
% mod2_eq_if
thf(fact_4674_zero__le__even__power,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_4675_zero__le__even__power,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_4676_zero__le__even__power,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_4677_zero__le__odd__power,axiom,
! [N: nat,A: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).
% zero_le_odd_power
thf(fact_4678_zero__le__odd__power,axiom,
! [N: nat,A: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).
% zero_le_odd_power
thf(fact_4679_zero__le__odd__power,axiom,
! [N: nat,A: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% zero_le_odd_power
thf(fact_4680_zero__le__power__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_4681_zero__le__power__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_4682_zero__le__power__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_4683_order__le__imp__less__or__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_real @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_4684_order__le__imp__less__or__eq,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_less_eq_set_int @ X @ Y3 )
=> ( ( ord_less_set_int @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_4685_order__le__imp__less__or__eq,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ord_less_rat @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_4686_order__le__imp__less__or__eq,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_num @ X @ Y3 )
=> ( ( ord_less_num @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_4687_order__le__imp__less__or__eq,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_nat @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_4688_order__le__imp__less__or__eq,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_int @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_4689_linorder__le__less__linear,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
| ( ord_less_real @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_4690_linorder__le__less__linear,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
| ( ord_less_rat @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_4691_linorder__le__less__linear,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_num @ X @ Y3 )
| ( ord_less_num @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_4692_linorder__le__less__linear,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
| ( ord_less_nat @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_4693_linorder__le__less__linear,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
| ( ord_less_int @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_4694_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4695_order__less__le__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4696_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_num @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4697_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_nat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4698_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_int @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4699_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4700_order__less__le__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4701_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_num @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4702_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_nat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4703_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > rat,C: rat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_int @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_4704_order__less__le__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4705_order__less__le__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4706_order__less__le__subst1,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4707_order__less__le__subst1,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4708_order__less__le__subst1,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4709_order__less__le__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4710_order__less__le__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4711_order__less__le__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4712_order__less__le__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4713_order__less__le__subst1,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_4714_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4715_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4716_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4717_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4718_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_eq_rat @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4719_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4720_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4721_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4722_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4723_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_eq_num @ X5 @ Y4 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_4724_order__le__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4725_order__le__less__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4726_order__le__less__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_num @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4727_order__le__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_nat @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4728_order__le__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_int @ X5 @ Y4 )
=> ( ord_less_real @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4729_order__le__less__subst1,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X5: real,Y4: real] :
( ( ord_less_real @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4730_order__le__less__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X5: rat,Y4: rat] :
( ( ord_less_rat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4731_order__le__less__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X5: num,Y4: num] :
( ( ord_less_num @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4732_order__le__less__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X5: nat,Y4: nat] :
( ( ord_less_nat @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4733_order__le__less__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X5: int,Y4: int] :
( ( ord_less_int @ X5 @ Y4 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y4 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_4734_order__less__le__trans,axiom,
! [X: real,Y3: real,Z4: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ Z4 )
=> ( ord_less_real @ X @ Z4 ) ) ) ).
% order_less_le_trans
thf(fact_4735_order__less__le__trans,axiom,
! [X: set_int,Y3: set_int,Z4: set_int] :
( ( ord_less_set_int @ X @ Y3 )
=> ( ( ord_less_eq_set_int @ Y3 @ Z4 )
=> ( ord_less_set_int @ X @ Z4 ) ) ) ).
% order_less_le_trans
thf(fact_4736_order__less__le__trans,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( ( ord_less_eq_rat @ Y3 @ Z4 )
=> ( ord_less_rat @ X @ Z4 ) ) ) ).
% order_less_le_trans
thf(fact_4737_order__less__le__trans,axiom,
! [X: num,Y3: num,Z4: num] :
( ( ord_less_num @ X @ Y3 )
=> ( ( ord_less_eq_num @ Y3 @ Z4 )
=> ( ord_less_num @ X @ Z4 ) ) ) ).
% order_less_le_trans
thf(fact_4738_order__less__le__trans,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ Z4 )
=> ( ord_less_nat @ X @ Z4 ) ) ) ).
% order_less_le_trans
thf(fact_4739_order__less__le__trans,axiom,
! [X: int,Y3: int,Z4: int] :
( ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ Z4 )
=> ( ord_less_int @ X @ Z4 ) ) ) ).
% order_less_le_trans
thf(fact_4740_order__le__less__trans,axiom,
! [X: real,Y3: real,Z4: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_real @ Y3 @ Z4 )
=> ( ord_less_real @ X @ Z4 ) ) ) ).
% order_le_less_trans
thf(fact_4741_order__le__less__trans,axiom,
! [X: set_int,Y3: set_int,Z4: set_int] :
( ( ord_less_eq_set_int @ X @ Y3 )
=> ( ( ord_less_set_int @ Y3 @ Z4 )
=> ( ord_less_set_int @ X @ Z4 ) ) ) ).
% order_le_less_trans
thf(fact_4742_order__le__less__trans,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ord_less_rat @ Y3 @ Z4 )
=> ( ord_less_rat @ X @ Z4 ) ) ) ).
% order_le_less_trans
thf(fact_4743_order__le__less__trans,axiom,
! [X: num,Y3: num,Z4: num] :
( ( ord_less_eq_num @ X @ Y3 )
=> ( ( ord_less_num @ Y3 @ Z4 )
=> ( ord_less_num @ X @ Z4 ) ) ) ).
% order_le_less_trans
thf(fact_4744_order__le__less__trans,axiom,
! [X: nat,Y3: nat,Z4: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_nat @ Y3 @ Z4 )
=> ( ord_less_nat @ X @ Z4 ) ) ) ).
% order_le_less_trans
thf(fact_4745_order__le__less__trans,axiom,
! [X: int,Y3: int,Z4: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_int @ Y3 @ Z4 )
=> ( ord_less_int @ X @ Z4 ) ) ) ).
% order_le_less_trans
thf(fact_4746_order__neq__le__trans,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_4747_order__neq__le__trans,axiom,
! [A: set_int,B: set_int] :
( ( A != B )
=> ( ( ord_less_eq_set_int @ A @ B )
=> ( ord_less_set_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_4748_order__neq__le__trans,axiom,
! [A: rat,B: rat] :
( ( A != B )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_4749_order__neq__le__trans,axiom,
! [A: num,B: num] :
( ( A != B )
=> ( ( ord_less_eq_num @ A @ B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_4750_order__neq__le__trans,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_4751_order__neq__le__trans,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_4752_order__le__neq__trans,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_4753_order__le__neq__trans,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_set_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_4754_order__le__neq__trans,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( A != B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_4755_order__le__neq__trans,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( A != B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_4756_order__le__neq__trans,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_4757_order__le__neq__trans,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_4758_order__less__imp__le,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ord_less_eq_real @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_4759_order__less__imp__le,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_less_set_int @ X @ Y3 )
=> ( ord_less_eq_set_int @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_4760_order__less__imp__le,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( ord_less_eq_rat @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_4761_order__less__imp__le,axiom,
! [X: num,Y3: num] :
( ( ord_less_num @ X @ Y3 )
=> ( ord_less_eq_num @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_4762_order__less__imp__le,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( ord_less_eq_nat @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_4763_order__less__imp__le,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( ord_less_eq_int @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_4764_linorder__not__less,axiom,
! [X: real,Y3: real] :
( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( ord_less_eq_real @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_4765_linorder__not__less,axiom,
! [X: rat,Y3: rat] :
( ( ~ ( ord_less_rat @ X @ Y3 ) )
= ( ord_less_eq_rat @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_4766_linorder__not__less,axiom,
! [X: num,Y3: num] :
( ( ~ ( ord_less_num @ X @ Y3 ) )
= ( ord_less_eq_num @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_4767_linorder__not__less,axiom,
! [X: nat,Y3: nat] :
( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( ord_less_eq_nat @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_4768_linorder__not__less,axiom,
! [X: int,Y3: int] :
( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( ord_less_eq_int @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_4769_linorder__not__le,axiom,
! [X: real,Y3: real] :
( ( ~ ( ord_less_eq_real @ X @ Y3 ) )
= ( ord_less_real @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_4770_linorder__not__le,axiom,
! [X: rat,Y3: rat] :
( ( ~ ( ord_less_eq_rat @ X @ Y3 ) )
= ( ord_less_rat @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_4771_linorder__not__le,axiom,
! [X: num,Y3: num] :
( ( ~ ( ord_less_eq_num @ X @ Y3 ) )
= ( ord_less_num @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_4772_linorder__not__le,axiom,
! [X: nat,Y3: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y3 ) )
= ( ord_less_nat @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_4773_linorder__not__le,axiom,
! [X: int,Y3: int] :
( ( ~ ( ord_less_eq_int @ X @ Y3 ) )
= ( ord_less_int @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_4774_order__less__le,axiom,
( ord_less_real
= ( ^ [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_4775_order__less__le,axiom,
( ord_less_set_int
= ( ^ [X2: set_int,Y2: set_int] :
( ( ord_less_eq_set_int @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_4776_order__less__le,axiom,
( ord_less_rat
= ( ^ [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_4777_order__less__le,axiom,
( ord_less_num
= ( ^ [X2: num,Y2: num] :
( ( ord_less_eq_num @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_4778_order__less__le,axiom,
( ord_less_nat
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_4779_order__less__le,axiom,
( ord_less_int
= ( ^ [X2: int,Y2: int] :
( ( ord_less_eq_int @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_4780_order__le__less,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y2: real] :
( ( ord_less_real @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_4781_order__le__less,axiom,
( ord_less_eq_set_int
= ( ^ [X2: set_int,Y2: set_int] :
( ( ord_less_set_int @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_4782_order__le__less,axiom,
( ord_less_eq_rat
= ( ^ [X2: rat,Y2: rat] :
( ( ord_less_rat @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_4783_order__le__less,axiom,
( ord_less_eq_num
= ( ^ [X2: num,Y2: num] :
( ( ord_less_num @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_4784_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_nat @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_4785_order__le__less,axiom,
( ord_less_eq_int
= ( ^ [X2: int,Y2: int] :
( ( ord_less_int @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_4786_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_4787_dual__order_Ostrict__implies__order,axiom,
! [B: set_int,A: set_int] :
( ( ord_less_set_int @ B @ A )
=> ( ord_less_eq_set_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_4788_dual__order_Ostrict__implies__order,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_4789_dual__order_Ostrict__implies__order,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ord_less_eq_num @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_4790_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_4791_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_4792_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_4793_order_Ostrict__implies__order,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_set_int @ A @ B )
=> ( ord_less_eq_set_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_4794_order_Ostrict__implies__order,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_4795_order_Ostrict__implies__order,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( ord_less_eq_num @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_4796_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_4797_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_4798_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B5: real,A5: real] :
( ( ord_less_eq_real @ B5 @ A5 )
& ~ ( ord_less_eq_real @ A5 @ B5 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_4799_dual__order_Ostrict__iff__not,axiom,
( ord_less_set_int
= ( ^ [B5: set_int,A5: set_int] :
( ( ord_less_eq_set_int @ B5 @ A5 )
& ~ ( ord_less_eq_set_int @ A5 @ B5 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_4800_dual__order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [B5: rat,A5: rat] :
( ( ord_less_eq_rat @ B5 @ A5 )
& ~ ( ord_less_eq_rat @ A5 @ B5 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_4801_dual__order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [B5: num,A5: num] :
( ( ord_less_eq_num @ B5 @ A5 )
& ~ ( ord_less_eq_num @ A5 @ B5 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_4802_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B5: nat,A5: nat] :
( ( ord_less_eq_nat @ B5 @ A5 )
& ~ ( ord_less_eq_nat @ A5 @ B5 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_4803_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B5: int,A5: int] :
( ( ord_less_eq_int @ B5 @ A5 )
& ~ ( ord_less_eq_int @ A5 @ B5 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_4804_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_4805_dual__order_Ostrict__trans2,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ C @ B )
=> ( ord_less_set_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_4806_dual__order_Ostrict__trans2,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_4807_dual__order_Ostrict__trans2,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_4808_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_4809_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_4810_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_4811_dual__order_Ostrict__trans1,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_set_int @ C @ B )
=> ( ord_less_set_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_4812_dual__order_Ostrict__trans1,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_4813_dual__order_Ostrict__trans1,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_4814_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_4815_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_4816_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B5: real,A5: real] :
( ( ord_less_eq_real @ B5 @ A5 )
& ( A5 != B5 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_4817_dual__order_Ostrict__iff__order,axiom,
( ord_less_set_int
= ( ^ [B5: set_int,A5: set_int] :
( ( ord_less_eq_set_int @ B5 @ A5 )
& ( A5 != B5 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_4818_dual__order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [B5: rat,A5: rat] :
( ( ord_less_eq_rat @ B5 @ A5 )
& ( A5 != B5 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_4819_dual__order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [B5: num,A5: num] :
( ( ord_less_eq_num @ B5 @ A5 )
& ( A5 != B5 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_4820_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B5: nat,A5: nat] :
( ( ord_less_eq_nat @ B5 @ A5 )
& ( A5 != B5 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_4821_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B5: int,A5: int] :
( ( ord_less_eq_int @ B5 @ A5 )
& ( A5 != B5 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_4822_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B5: real,A5: real] :
( ( ord_less_real @ B5 @ A5 )
| ( A5 = B5 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_4823_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_set_int
= ( ^ [B5: set_int,A5: set_int] :
( ( ord_less_set_int @ B5 @ A5 )
| ( A5 = B5 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_4824_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [B5: rat,A5: rat] :
( ( ord_less_rat @ B5 @ A5 )
| ( A5 = B5 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_4825_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [B5: num,A5: num] :
( ( ord_less_num @ B5 @ A5 )
| ( A5 = B5 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_4826_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B5: nat,A5: nat] :
( ( ord_less_nat @ B5 @ A5 )
| ( A5 = B5 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_4827_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B5: int,A5: int] :
( ( ord_less_int @ B5 @ A5 )
| ( A5 = B5 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_4828_dense__le__bounded,axiom,
! [X: real,Y3: real,Z4: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ! [W2: real] :
( ( ord_less_real @ X @ W2 )
=> ( ( ord_less_real @ W2 @ Y3 )
=> ( ord_less_eq_real @ W2 @ Z4 ) ) )
=> ( ord_less_eq_real @ Y3 @ Z4 ) ) ) ).
% dense_le_bounded
thf(fact_4829_dense__le__bounded,axiom,
! [X: rat,Y3: rat,Z4: rat] :
( ( ord_less_rat @ X @ Y3 )
=> ( ! [W2: rat] :
( ( ord_less_rat @ X @ W2 )
=> ( ( ord_less_rat @ W2 @ Y3 )
=> ( ord_less_eq_rat @ W2 @ Z4 ) ) )
=> ( ord_less_eq_rat @ Y3 @ Z4 ) ) ) ).
% dense_le_bounded
thf(fact_4830_dense__ge__bounded,axiom,
! [Z4: real,X: real,Y3: real] :
( ( ord_less_real @ Z4 @ X )
=> ( ! [W2: real] :
( ( ord_less_real @ Z4 @ W2 )
=> ( ( ord_less_real @ W2 @ X )
=> ( ord_less_eq_real @ Y3 @ W2 ) ) )
=> ( ord_less_eq_real @ Y3 @ Z4 ) ) ) ).
% dense_ge_bounded
thf(fact_4831_dense__ge__bounded,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( ord_less_rat @ Z4 @ X )
=> ( ! [W2: rat] :
( ( ord_less_rat @ Z4 @ W2 )
=> ( ( ord_less_rat @ W2 @ X )
=> ( ord_less_eq_rat @ Y3 @ W2 ) ) )
=> ( ord_less_eq_rat @ Y3 @ Z4 ) ) ) ).
% dense_ge_bounded
thf(fact_4832_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A5: real,B5: real] :
( ( ord_less_eq_real @ A5 @ B5 )
& ~ ( ord_less_eq_real @ B5 @ A5 ) ) ) ) ).
% order.strict_iff_not
thf(fact_4833_order_Ostrict__iff__not,axiom,
( ord_less_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ~ ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).
% order.strict_iff_not
thf(fact_4834_order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [A5: rat,B5: rat] :
( ( ord_less_eq_rat @ A5 @ B5 )
& ~ ( ord_less_eq_rat @ B5 @ A5 ) ) ) ) ).
% order.strict_iff_not
thf(fact_4835_order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [A5: num,B5: num] :
( ( ord_less_eq_num @ A5 @ B5 )
& ~ ( ord_less_eq_num @ B5 @ A5 ) ) ) ) ).
% order.strict_iff_not
thf(fact_4836_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A5: nat,B5: nat] :
( ( ord_less_eq_nat @ A5 @ B5 )
& ~ ( ord_less_eq_nat @ B5 @ A5 ) ) ) ) ).
% order.strict_iff_not
thf(fact_4837_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A5: int,B5: int] :
( ( ord_less_eq_int @ A5 @ B5 )
& ~ ( ord_less_eq_int @ B5 @ A5 ) ) ) ) ).
% order.strict_iff_not
thf(fact_4838_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_4839_order_Ostrict__trans2,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_set_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_4840_order_Ostrict__trans2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_4841_order_Ostrict__trans2,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_4842_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_4843_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_4844_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_4845_order_Ostrict__trans1,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_set_int @ B @ C )
=> ( ord_less_set_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_4846_order_Ostrict__trans1,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_4847_order_Ostrict__trans1,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_4848_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_4849_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_4850_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A5: real,B5: real] :
( ( ord_less_eq_real @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% order.strict_iff_order
thf(fact_4851_order_Ostrict__iff__order,axiom,
( ord_less_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% order.strict_iff_order
thf(fact_4852_order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [A5: rat,B5: rat] :
( ( ord_less_eq_rat @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% order.strict_iff_order
thf(fact_4853_order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [A5: num,B5: num] :
( ( ord_less_eq_num @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% order.strict_iff_order
thf(fact_4854_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A5: nat,B5: nat] :
( ( ord_less_eq_nat @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% order.strict_iff_order
thf(fact_4855_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A5: int,B5: int] :
( ( ord_less_eq_int @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% order.strict_iff_order
thf(fact_4856_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A5: real,B5: real] :
( ( ord_less_real @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% order.order_iff_strict
thf(fact_4857_order_Oorder__iff__strict,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_set_int @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% order.order_iff_strict
thf(fact_4858_order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [A5: rat,B5: rat] :
( ( ord_less_rat @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% order.order_iff_strict
thf(fact_4859_order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [A5: num,B5: num] :
( ( ord_less_num @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% order.order_iff_strict
thf(fact_4860_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A5: nat,B5: nat] :
( ( ord_less_nat @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% order.order_iff_strict
thf(fact_4861_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A5: int,B5: int] :
( ( ord_less_int @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% order.order_iff_strict
thf(fact_4862_not__le__imp__less,axiom,
! [Y3: real,X: real] :
( ~ ( ord_less_eq_real @ Y3 @ X )
=> ( ord_less_real @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_4863_not__le__imp__less,axiom,
! [Y3: rat,X: rat] :
( ~ ( ord_less_eq_rat @ Y3 @ X )
=> ( ord_less_rat @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_4864_not__le__imp__less,axiom,
! [Y3: num,X: num] :
( ~ ( ord_less_eq_num @ Y3 @ X )
=> ( ord_less_num @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_4865_not__le__imp__less,axiom,
! [Y3: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y3 @ X )
=> ( ord_less_nat @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_4866_not__le__imp__less,axiom,
! [Y3: int,X: int] :
( ~ ( ord_less_eq_int @ Y3 @ X )
=> ( ord_less_int @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_4867_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ Y2 )
& ~ ( ord_less_eq_real @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_4868_less__le__not__le,axiom,
( ord_less_set_int
= ( ^ [X2: set_int,Y2: set_int] :
( ( ord_less_eq_set_int @ X2 @ Y2 )
& ~ ( ord_less_eq_set_int @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_4869_less__le__not__le,axiom,
( ord_less_rat
= ( ^ [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ Y2 )
& ~ ( ord_less_eq_rat @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_4870_less__le__not__le,axiom,
( ord_less_num
= ( ^ [X2: num,Y2: num] :
( ( ord_less_eq_num @ X2 @ Y2 )
& ~ ( ord_less_eq_num @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_4871_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ X2 @ Y2 )
& ~ ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_4872_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X2: int,Y2: int] :
( ( ord_less_eq_int @ X2 @ Y2 )
& ~ ( ord_less_eq_int @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_4873_dense__le,axiom,
! [Y3: real,Z4: real] :
( ! [X5: real] :
( ( ord_less_real @ X5 @ Y3 )
=> ( ord_less_eq_real @ X5 @ Z4 ) )
=> ( ord_less_eq_real @ Y3 @ Z4 ) ) ).
% dense_le
thf(fact_4874_dense__le,axiom,
! [Y3: rat,Z4: rat] :
( ! [X5: rat] :
( ( ord_less_rat @ X5 @ Y3 )
=> ( ord_less_eq_rat @ X5 @ Z4 ) )
=> ( ord_less_eq_rat @ Y3 @ Z4 ) ) ).
% dense_le
thf(fact_4875_dense__ge,axiom,
! [Z4: real,Y3: real] :
( ! [X5: real] :
( ( ord_less_real @ Z4 @ X5 )
=> ( ord_less_eq_real @ Y3 @ X5 ) )
=> ( ord_less_eq_real @ Y3 @ Z4 ) ) ).
% dense_ge
thf(fact_4876_dense__ge,axiom,
! [Z4: rat,Y3: rat] :
( ! [X5: rat] :
( ( ord_less_rat @ Z4 @ X5 )
=> ( ord_less_eq_rat @ Y3 @ X5 ) )
=> ( ord_less_eq_rat @ Y3 @ Z4 ) ) ).
% dense_ge
thf(fact_4877_antisym__conv2,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_4878_antisym__conv2,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_less_eq_set_int @ X @ Y3 )
=> ( ( ~ ( ord_less_set_int @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_4879_antisym__conv2,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ~ ( ord_less_rat @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_4880_antisym__conv2,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_num @ X @ Y3 )
=> ( ( ~ ( ord_less_num @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_4881_antisym__conv2,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_4882_antisym__conv2,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_4883_antisym__conv1,axiom,
! [X: real,Y3: real] :
( ~ ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_4884_antisym__conv1,axiom,
! [X: set_int,Y3: set_int] :
( ~ ( ord_less_set_int @ X @ Y3 )
=> ( ( ord_less_eq_set_int @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_4885_antisym__conv1,axiom,
! [X: rat,Y3: rat] :
( ~ ( ord_less_rat @ X @ Y3 )
=> ( ( ord_less_eq_rat @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_4886_antisym__conv1,axiom,
! [X: num,Y3: num] :
( ~ ( ord_less_num @ X @ Y3 )
=> ( ( ord_less_eq_num @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_4887_antisym__conv1,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_4888_antisym__conv1,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_4889_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_4890_nless__le,axiom,
! [A: set_int,B: set_int] :
( ( ~ ( ord_less_set_int @ A @ B ) )
= ( ~ ( ord_less_eq_set_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_4891_nless__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_rat @ A @ B ) )
= ( ~ ( ord_less_eq_rat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_4892_nless__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_num @ A @ B ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_4893_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_4894_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_4895_leI,axiom,
! [X: real,Y3: real] :
( ~ ( ord_less_real @ X @ Y3 )
=> ( ord_less_eq_real @ Y3 @ X ) ) ).
% leI
thf(fact_4896_leI,axiom,
! [X: rat,Y3: rat] :
( ~ ( ord_less_rat @ X @ Y3 )
=> ( ord_less_eq_rat @ Y3 @ X ) ) ).
% leI
thf(fact_4897_leI,axiom,
! [X: num,Y3: num] :
( ~ ( ord_less_num @ X @ Y3 )
=> ( ord_less_eq_num @ Y3 @ X ) ) ).
% leI
thf(fact_4898_leI,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_nat @ X @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X ) ) ).
% leI
thf(fact_4899_leI,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_int @ X @ Y3 )
=> ( ord_less_eq_int @ Y3 @ X ) ) ).
% leI
thf(fact_4900_leD,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ Y3 @ X )
=> ~ ( ord_less_real @ X @ Y3 ) ) ).
% leD
thf(fact_4901_leD,axiom,
! [Y3: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y3 @ X )
=> ~ ( ord_less_set_int @ X @ Y3 ) ) ).
% leD
thf(fact_4902_leD,axiom,
! [Y3: rat,X: rat] :
( ( ord_less_eq_rat @ Y3 @ X )
=> ~ ( ord_less_rat @ X @ Y3 ) ) ).
% leD
thf(fact_4903_leD,axiom,
! [Y3: num,X: num] :
( ( ord_less_eq_num @ Y3 @ X )
=> ~ ( ord_less_num @ X @ Y3 ) ) ).
% leD
thf(fact_4904_leD,axiom,
! [Y3: nat,X: nat] :
( ( ord_less_eq_nat @ Y3 @ X )
=> ~ ( ord_less_nat @ X @ Y3 ) ) ).
% leD
thf(fact_4905_leD,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ Y3 @ X )
=> ~ ( ord_less_int @ X @ Y3 ) ) ).
% leD
thf(fact_4906_bot_Oextremum,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).
% bot.extremum
thf(fact_4907_bot_Oextremum,axiom,
! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ bot_bo4199563552545308370d_enat @ A ) ).
% bot.extremum
thf(fact_4908_bot_Oextremum,axiom,
! [A: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A ) ).
% bot.extremum
thf(fact_4909_bot_Oextremum,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A ) ).
% bot.extremum
thf(fact_4910_bot_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).
% bot.extremum
thf(fact_4911_bot_Oextremum__unique,axiom,
! [A: set_nat] :
( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
= ( A = bot_bot_set_nat ) ) ).
% bot.extremum_unique
thf(fact_4912_bot_Oextremum__unique,axiom,
! [A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ bot_bo4199563552545308370d_enat )
= ( A = bot_bo4199563552545308370d_enat ) ) ).
% bot.extremum_unique
thf(fact_4913_bot_Oextremum__unique,axiom,
! [A: set_real] :
( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
= ( A = bot_bot_set_real ) ) ).
% bot.extremum_unique
thf(fact_4914_bot_Oextremum__unique,axiom,
! [A: set_int] :
( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
= ( A = bot_bot_set_int ) ) ).
% bot.extremum_unique
thf(fact_4915_bot_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ bot_bot_nat )
= ( A = bot_bot_nat ) ) ).
% bot.extremum_unique
thf(fact_4916_bot_Oextremum__uniqueI,axiom,
! [A: set_nat] :
( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
=> ( A = bot_bot_set_nat ) ) ).
% bot.extremum_uniqueI
thf(fact_4917_bot_Oextremum__uniqueI,axiom,
! [A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ bot_bo4199563552545308370d_enat )
=> ( A = bot_bo4199563552545308370d_enat ) ) ).
% bot.extremum_uniqueI
thf(fact_4918_bot_Oextremum__uniqueI,axiom,
! [A: set_real] :
( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
=> ( A = bot_bot_set_real ) ) ).
% bot.extremum_uniqueI
thf(fact_4919_bot_Oextremum__uniqueI,axiom,
! [A: set_int] :
( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
=> ( A = bot_bot_set_int ) ) ).
% bot.extremum_uniqueI
thf(fact_4920_bot_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ bot_bot_nat )
=> ( A = bot_bot_nat ) ) ).
% bot.extremum_uniqueI
thf(fact_4921_bot_Onot__eq__extremum,axiom,
! [A: set_nat] :
( ( A != bot_bot_set_nat )
= ( ord_less_set_nat @ bot_bot_set_nat @ A ) ) ).
% bot.not_eq_extremum
thf(fact_4922_bot_Onot__eq__extremum,axiom,
! [A: extended_enat] :
( ( A != bot_bo4199563552545308370d_enat )
= ( ord_le72135733267957522d_enat @ bot_bo4199563552545308370d_enat @ A ) ) ).
% bot.not_eq_extremum
thf(fact_4923_bot_Onot__eq__extremum,axiom,
! [A: set_int] :
( ( A != bot_bot_set_int )
= ( ord_less_set_int @ bot_bot_set_int @ A ) ) ).
% bot.not_eq_extremum
thf(fact_4924_bot_Onot__eq__extremum,axiom,
! [A: set_real] :
( ( A != bot_bot_set_real )
= ( ord_less_set_real @ bot_bot_set_real @ A ) ) ).
% bot.not_eq_extremum
thf(fact_4925_bot_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != bot_bot_nat )
= ( ord_less_nat @ bot_bot_nat @ A ) ) ).
% bot.not_eq_extremum
thf(fact_4926_bot_Oextremum__strict,axiom,
! [A: set_nat] :
~ ( ord_less_set_nat @ A @ bot_bot_set_nat ) ).
% bot.extremum_strict
thf(fact_4927_bot_Oextremum__strict,axiom,
! [A: extended_enat] :
~ ( ord_le72135733267957522d_enat @ A @ bot_bo4199563552545308370d_enat ) ).
% bot.extremum_strict
thf(fact_4928_bot_Oextremum__strict,axiom,
! [A: set_int] :
~ ( ord_less_set_int @ A @ bot_bot_set_int ) ).
% bot.extremum_strict
thf(fact_4929_bot_Oextremum__strict,axiom,
! [A: set_real] :
~ ( ord_less_set_real @ A @ bot_bot_set_real ) ).
% bot.extremum_strict
thf(fact_4930_bot_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ bot_bot_nat ) ).
% bot.extremum_strict
thf(fact_4931_list__decode_Ocases,axiom,
! [X: nat] :
( ( X != zero_zero_nat )
=> ~ ! [N3: nat] :
( X
!= ( suc @ N3 ) ) ) ).
% list_decode.cases
thf(fact_4932_zero__less__power__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_4933_zero__less__power__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_4934_zero__less__power__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_4935_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
= ( P @ B4 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
=> ( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
=> ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_4936_max__def,axiom,
( ord_ma741700101516333627d_enat
= ( ^ [A5: extended_enat,B5: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def
thf(fact_4937_max__def,axiom,
( ord_max_set_int
= ( ^ [A5: set_int,B5: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def
thf(fact_4938_max__def,axiom,
( ord_max_rat
= ( ^ [A5: rat,B5: rat] : ( if_rat @ ( ord_less_eq_rat @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def
thf(fact_4939_max__def,axiom,
( ord_max_num
= ( ^ [A5: num,B5: num] : ( if_num @ ( ord_less_eq_num @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def
thf(fact_4940_max__def,axiom,
( ord_max_nat
= ( ^ [A5: nat,B5: nat] : ( if_nat @ ( ord_less_eq_nat @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def
thf(fact_4941_max__def,axiom,
( ord_max_int
= ( ^ [A5: int,B5: int] : ( if_int @ ( ord_less_eq_int @ A5 @ B5 ) @ B5 @ A5 ) ) ) ).
% max_def
thf(fact_4942_max__absorb1,axiom,
! [Y3: extended_enat,X: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Y3 @ X )
=> ( ( ord_ma741700101516333627d_enat @ X @ Y3 )
= X ) ) ).
% max_absorb1
thf(fact_4943_max__absorb1,axiom,
! [Y3: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y3 @ X )
=> ( ( ord_max_set_int @ X @ Y3 )
= X ) ) ).
% max_absorb1
thf(fact_4944_max__absorb1,axiom,
! [Y3: rat,X: rat] :
( ( ord_less_eq_rat @ Y3 @ X )
=> ( ( ord_max_rat @ X @ Y3 )
= X ) ) ).
% max_absorb1
thf(fact_4945_max__absorb1,axiom,
! [Y3: num,X: num] :
( ( ord_less_eq_num @ Y3 @ X )
=> ( ( ord_max_num @ X @ Y3 )
= X ) ) ).
% max_absorb1
thf(fact_4946_max__absorb1,axiom,
! [Y3: nat,X: nat] :
( ( ord_less_eq_nat @ Y3 @ X )
=> ( ( ord_max_nat @ X @ Y3 )
= X ) ) ).
% max_absorb1
thf(fact_4947_max__absorb1,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ Y3 @ X )
=> ( ( ord_max_int @ X @ Y3 )
= X ) ) ).
% max_absorb1
thf(fact_4948_max__absorb2,axiom,
! [X: extended_enat,Y3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y3 )
=> ( ( ord_ma741700101516333627d_enat @ X @ Y3 )
= Y3 ) ) ).
% max_absorb2
thf(fact_4949_max__absorb2,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_less_eq_set_int @ X @ Y3 )
=> ( ( ord_max_set_int @ X @ Y3 )
= Y3 ) ) ).
% max_absorb2
thf(fact_4950_max__absorb2,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ X @ Y3 )
=> ( ( ord_max_rat @ X @ Y3 )
= Y3 ) ) ).
% max_absorb2
thf(fact_4951_max__absorb2,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_num @ X @ Y3 )
=> ( ( ord_max_num @ X @ Y3 )
= Y3 ) ) ).
% max_absorb2
thf(fact_4952_max__absorb2,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_max_nat @ X @ Y3 )
= Y3 ) ) ).
% max_absorb2
thf(fact_4953_max__absorb2,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_max_int @ X @ Y3 )
= Y3 ) ) ).
% max_absorb2
thf(fact_4954_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_4955_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_4956_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_4957_power__le__zero__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_4958_power__le__zero__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_4959_power__le__zero__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_4960_even__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suc @ zero_zero_nat ) )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_mod_4_div_2
thf(fact_4961_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
= zero_z3403309356797280102nteger )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_4962_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= zero_zero_nat )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_4963_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
= zero_zero_int )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_4964_even__mult__exp__div__exp__iff,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
= zero_z3403309356797280102nteger )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_4965_even__mult__exp__div__exp__iff,axiom,
! [A: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= zero_zero_nat )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_4966_even__mult__exp__div__exp__iff,axiom,
! [A: int,M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
= zero_zero_int )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_4967_ex__min__if__finite,axiom,
! [S3: set_real] :
( ( finite_finite_real @ S3 )
=> ( ( S3 != bot_bot_set_real )
=> ? [X5: real] :
( ( member_real @ X5 @ S3 )
& ~ ? [Xa: real] :
( ( member_real @ Xa @ S3 )
& ( ord_less_real @ Xa @ X5 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_4968_ex__min__if__finite,axiom,
! [S3: set_rat] :
( ( finite_finite_rat @ S3 )
=> ( ( S3 != bot_bot_set_rat )
=> ? [X5: rat] :
( ( member_rat @ X5 @ S3 )
& ~ ? [Xa: rat] :
( ( member_rat @ Xa @ S3 )
& ( ord_less_rat @ Xa @ X5 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_4969_ex__min__if__finite,axiom,
! [S3: set_num] :
( ( finite_finite_num @ S3 )
=> ( ( S3 != bot_bot_set_num )
=> ? [X5: num] :
( ( member_num @ X5 @ S3 )
& ~ ? [Xa: num] :
( ( member_num @ Xa @ S3 )
& ( ord_less_num @ Xa @ X5 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_4970_ex__min__if__finite,axiom,
! [S3: set_nat] :
( ( finite_finite_nat @ S3 )
=> ( ( S3 != bot_bot_set_nat )
=> ? [X5: nat] :
( ( member_nat @ X5 @ S3 )
& ~ ? [Xa: nat] :
( ( member_nat @ Xa @ S3 )
& ( ord_less_nat @ Xa @ X5 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_4971_ex__min__if__finite,axiom,
! [S3: set_int] :
( ( finite_finite_int @ S3 )
=> ( ( S3 != bot_bot_set_int )
=> ? [X5: int] :
( ( member_int @ X5 @ S3 )
& ~ ? [Xa: int] :
( ( member_int @ Xa @ S3 )
& ( ord_less_int @ Xa @ X5 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_4972_infinite__growing,axiom,
! [X8: set_real] :
( ( X8 != bot_bot_set_real )
=> ( ! [X5: real] :
( ( member_real @ X5 @ X8 )
=> ? [Xa: real] :
( ( member_real @ Xa @ X8 )
& ( ord_less_real @ X5 @ Xa ) ) )
=> ~ ( finite_finite_real @ X8 ) ) ) ).
% infinite_growing
thf(fact_4973_infinite__growing,axiom,
! [X8: set_rat] :
( ( X8 != bot_bot_set_rat )
=> ( ! [X5: rat] :
( ( member_rat @ X5 @ X8 )
=> ? [Xa: rat] :
( ( member_rat @ Xa @ X8 )
& ( ord_less_rat @ X5 @ Xa ) ) )
=> ~ ( finite_finite_rat @ X8 ) ) ) ).
% infinite_growing
thf(fact_4974_infinite__growing,axiom,
! [X8: set_num] :
( ( X8 != bot_bot_set_num )
=> ( ! [X5: num] :
( ( member_num @ X5 @ X8 )
=> ? [Xa: num] :
( ( member_num @ Xa @ X8 )
& ( ord_less_num @ X5 @ Xa ) ) )
=> ~ ( finite_finite_num @ X8 ) ) ) ).
% infinite_growing
thf(fact_4975_infinite__growing,axiom,
! [X8: set_nat] :
( ( X8 != bot_bot_set_nat )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ X8 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ X8 )
& ( ord_less_nat @ X5 @ Xa ) ) )
=> ~ ( finite_finite_nat @ X8 ) ) ) ).
% infinite_growing
thf(fact_4976_infinite__growing,axiom,
! [X8: set_int] :
( ( X8 != bot_bot_set_int )
=> ( ! [X5: int] :
( ( member_int @ X5 @ X8 )
=> ? [Xa: int] :
( ( member_int @ Xa @ X8 )
& ( ord_less_int @ X5 @ Xa ) ) )
=> ~ ( finite_finite_int @ X8 ) ) ) ).
% infinite_growing
thf(fact_4977_triangle__def,axiom,
( nat_triangle
= ( ^ [N2: nat] : ( divide_divide_nat @ ( times_times_nat @ N2 @ ( suc @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% triangle_def
thf(fact_4978_vebt__buildup_Oelims,axiom,
! [X: nat,Y3: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y3 )
=> ( ( ( X = zero_zero_nat )
=> ( Y3
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( Y3
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Va3: nat] :
( ( X
= ( suc @ ( suc @ Va3 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
=> ( Y3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
=> ( Y3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.elims
thf(fact_4979_option_Osize__gen_I2_J,axiom,
! [X: product_prod_nat_nat > nat,X22: product_prod_nat_nat] :
( ( size_o8335143837870341156at_nat @ X @ ( some_P7363390416028606310at_nat @ X22 ) )
= ( plus_plus_nat @ ( X @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% option.size_gen(2)
thf(fact_4980_option_Osize__gen_I2_J,axiom,
! [X: nat > nat,X22: nat] :
( ( size_option_nat @ X @ ( some_nat @ X22 ) )
= ( plus_plus_nat @ ( X @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% option.size_gen(2)
thf(fact_4981_option_Osize__gen_I2_J,axiom,
! [X: num > nat,X22: num] :
( ( size_option_num @ X @ ( some_num @ X22 ) )
= ( plus_plus_nat @ ( X @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% option.size_gen(2)
thf(fact_4982_flip__bit__0,axiom,
! [A: code_integer] :
( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
= ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4983_flip__bit__0,axiom,
! [A: int] :
( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
= ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4984_flip__bit__0,axiom,
! [A: nat] :
( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
= ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4985_signed__take__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_ri6519982836138164636nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_4986_signed__take__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_4987_set__decode__Suc,axiom,
! [N: nat,X: nat] :
( ( member_nat @ ( suc @ N ) @ ( nat_set_decode @ X ) )
= ( member_nat @ N @ ( nat_set_decode @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% set_decode_Suc
thf(fact_4988_diff__shunt__var,axiom,
! [X: set_real,Y3: set_real] :
( ( ( minus_minus_set_real @ X @ Y3 )
= bot_bot_set_real )
= ( ord_less_eq_set_real @ X @ Y3 ) ) ).
% diff_shunt_var
thf(fact_4989_diff__shunt__var,axiom,
! [X: set_nat,Y3: set_nat] :
( ( ( minus_minus_set_nat @ X @ Y3 )
= bot_bot_set_nat )
= ( ord_less_eq_set_nat @ X @ Y3 ) ) ).
% diff_shunt_var
thf(fact_4990_diff__shunt__var,axiom,
! [X: set_int,Y3: set_int] :
( ( ( minus_minus_set_int @ X @ Y3 )
= bot_bot_set_int )
= ( ord_less_eq_set_int @ X @ Y3 ) ) ).
% diff_shunt_var
thf(fact_4991_add__scale__eq__noteq,axiom,
! [R2: complex,A: complex,B: complex,C: complex,D: complex] :
( ( R2 != zero_zero_complex )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_complex @ A @ ( times_times_complex @ R2 @ C ) )
!= ( plus_plus_complex @ B @ ( times_times_complex @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4992_add__scale__eq__noteq,axiom,
! [R2: real,A: real,B: real,C: real,D: real] :
( ( R2 != zero_zero_real )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_real @ A @ ( times_times_real @ R2 @ C ) )
!= ( plus_plus_real @ B @ ( times_times_real @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4993_add__scale__eq__noteq,axiom,
! [R2: rat,A: rat,B: rat,C: rat,D: rat] :
( ( R2 != zero_zero_rat )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_rat @ A @ ( times_times_rat @ R2 @ C ) )
!= ( plus_plus_rat @ B @ ( times_times_rat @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4994_add__scale__eq__noteq,axiom,
! [R2: nat,A: nat,B: nat,C: nat,D: nat] :
( ( R2 != zero_zero_nat )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_nat @ A @ ( times_times_nat @ R2 @ C ) )
!= ( plus_plus_nat @ B @ ( times_times_nat @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4995_add__scale__eq__noteq,axiom,
! [R2: int,A: int,B: int,C: int,D: int] :
( ( R2 != zero_zero_int )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_int @ A @ ( times_times_int @ R2 @ C ) )
!= ( plus_plus_int @ B @ ( times_times_int @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4996_intind,axiom,
! [I4: nat,N: nat,P: nat > $o,X: nat] :
( ( ord_less_nat @ I4 @ N )
=> ( ( P @ X )
=> ( P @ ( nth_nat @ ( replicate_nat @ N @ X ) @ I4 ) ) ) ) ).
% intind
thf(fact_4997_intind,axiom,
! [I4: nat,N: nat,P: int > $o,X: int] :
( ( ord_less_nat @ I4 @ N )
=> ( ( P @ X )
=> ( P @ ( nth_int @ ( replicate_int @ N @ X ) @ I4 ) ) ) ) ).
% intind
thf(fact_4998_intind,axiom,
! [I4: nat,N: nat,P: vEBT_VEBT > $o,X: vEBT_VEBT] :
( ( ord_less_nat @ I4 @ N )
=> ( ( P @ X )
=> ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X ) @ I4 ) ) ) ) ).
% intind
thf(fact_4999_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_5000_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_5001_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_5002_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_5003_of__bool__eq_I1_J,axiom,
( ( zero_n1201886186963655149omplex @ $false )
= zero_zero_complex ) ).
% of_bool_eq(1)
thf(fact_5004_of__bool__eq_I1_J,axiom,
( ( zero_n3304061248610475627l_real @ $false )
= zero_zero_real ) ).
% of_bool_eq(1)
thf(fact_5005_of__bool__eq_I1_J,axiom,
( ( zero_n2052037380579107095ol_rat @ $false )
= zero_zero_rat ) ).
% of_bool_eq(1)
thf(fact_5006_of__bool__eq_I1_J,axiom,
( ( zero_n2687167440665602831ol_nat @ $false )
= zero_zero_nat ) ).
% of_bool_eq(1)
thf(fact_5007_of__bool__eq_I1_J,axiom,
( ( zero_n2684676970156552555ol_int @ $false )
= zero_zero_int ) ).
% of_bool_eq(1)
thf(fact_5008_of__bool__eq_I1_J,axiom,
( ( zero_n356916108424825756nteger @ $false )
= zero_z3403309356797280102nteger ) ).
% of_bool_eq(1)
thf(fact_5009_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n1201886186963655149omplex @ P )
= zero_zero_complex )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_5010_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n3304061248610475627l_real @ P )
= zero_zero_real )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_5011_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2052037380579107095ol_rat @ P )
= zero_zero_rat )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_5012_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P )
= zero_zero_nat )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_5013_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2684676970156552555ol_int @ P )
= zero_zero_int )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_5014_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n356916108424825756nteger @ P )
= zero_z3403309356797280102nteger )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_5015_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_5016_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_5017_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_5018_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_5019_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_5020_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n1201886186963655149omplex @ P )
= one_one_complex )
= P ) ).
% of_bool_eq_1_iff
thf(fact_5021_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n3304061248610475627l_real @ P )
= one_one_real )
= P ) ).
% of_bool_eq_1_iff
thf(fact_5022_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2052037380579107095ol_rat @ P )
= one_one_rat )
= P ) ).
% of_bool_eq_1_iff
thf(fact_5023_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P )
= one_one_nat )
= P ) ).
% of_bool_eq_1_iff
thf(fact_5024_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2684676970156552555ol_int @ P )
= one_one_int )
= P ) ).
% of_bool_eq_1_iff
thf(fact_5025_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n356916108424825756nteger @ P )
= one_one_Code_integer )
= P ) ).
% of_bool_eq_1_iff
thf(fact_5026_of__bool__eq_I2_J,axiom,
( ( zero_n1201886186963655149omplex @ $true )
= one_one_complex ) ).
% of_bool_eq(2)
thf(fact_5027_of__bool__eq_I2_J,axiom,
( ( zero_n3304061248610475627l_real @ $true )
= one_one_real ) ).
% of_bool_eq(2)
thf(fact_5028_of__bool__eq_I2_J,axiom,
( ( zero_n2052037380579107095ol_rat @ $true )
= one_one_rat ) ).
% of_bool_eq(2)
thf(fact_5029_of__bool__eq_I2_J,axiom,
( ( zero_n2687167440665602831ol_nat @ $true )
= one_one_nat ) ).
% of_bool_eq(2)
thf(fact_5030_of__bool__eq_I2_J,axiom,
( ( zero_n2684676970156552555ol_int @ $true )
= one_one_int ) ).
% of_bool_eq(2)
thf(fact_5031_of__bool__eq_I2_J,axiom,
( ( zero_n356916108424825756nteger @ $true )
= one_one_Code_integer ) ).
% of_bool_eq(2)
thf(fact_5032_signed__take__bit__of__0,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% signed_take_bit_of_0
thf(fact_5033_replicate__eq__replicate,axiom,
! [M: nat,X: vEBT_VEBT,N: nat,Y3: vEBT_VEBT] :
( ( ( replicate_VEBT_VEBT @ M @ X )
= ( replicate_VEBT_VEBT @ N @ Y3 ) )
= ( ( M = N )
& ( ( M != zero_zero_nat )
=> ( X = Y3 ) ) ) ) ).
% replicate_eq_replicate
thf(fact_5034_length__replicate,axiom,
! [N: nat,X: vEBT_VEBT] :
( ( size_s6755466524823107622T_VEBT @ ( replicate_VEBT_VEBT @ N @ X ) )
= N ) ).
% length_replicate
thf(fact_5035_length__replicate,axiom,
! [N: nat,X: $o] :
( ( size_size_list_o @ ( replicate_o @ N @ X ) )
= N ) ).
% length_replicate
thf(fact_5036_length__replicate,axiom,
! [N: nat,X: int] :
( ( size_size_list_int @ ( replicate_int @ N @ X ) )
= N ) ).
% length_replicate
thf(fact_5037_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n2687167440665602831ol_nat
@ ( P
| Q ) )
= ( ord_max_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_5038_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n2684676970156552555ol_int
@ ( P
| Q ) )
= ( ord_max_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_5039_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n356916108424825756nteger
@ ( P
| Q ) )
= ( ord_max_Code_integer @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_5040_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_5041_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_5042_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_5043_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_5044_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_5045_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_5046_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_5047_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_5048_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_5049_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_5050_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n1201886186963655149omplex @ ~ P )
= ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P ) ) ) ).
% of_bool_not_iff
thf(fact_5051_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n3304061248610475627l_real @ ~ P )
= ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P ) ) ) ).
% of_bool_not_iff
thf(fact_5052_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n2052037380579107095ol_rat @ ~ P )
= ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ) ).
% of_bool_not_iff
thf(fact_5053_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n2684676970156552555ol_int @ ~ P )
= ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P ) ) ) ).
% of_bool_not_iff
thf(fact_5054_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n356916108424825756nteger @ ~ P )
= ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( zero_n356916108424825756nteger @ P ) ) ) ).
% of_bool_not_iff
thf(fact_5055_Suc__0__mod__eq,axiom,
! [N: nat] :
( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N )
= ( zero_n2687167440665602831ol_nat
@ ( N
!= ( suc @ zero_zero_nat ) ) ) ) ).
% Suc_0_mod_eq
thf(fact_5056_signed__take__bit__Suc__1,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
= one_one_int ) ).
% signed_take_bit_Suc_1
thf(fact_5057_signed__take__bit__numeral__of__1,axiom,
! [K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
= one_one_int ) ).
% signed_take_bit_numeral_of_1
thf(fact_5058_in__set__replicate,axiom,
! [X: nat,N: nat,Y3: nat] :
( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N @ Y3 ) ) )
= ( ( X = Y3 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_5059_in__set__replicate,axiom,
! [X: real,N: nat,Y3: real] :
( ( member_real @ X @ ( set_real2 @ ( replicate_real @ N @ Y3 ) ) )
= ( ( X = Y3 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_5060_in__set__replicate,axiom,
! [X: complex,N: nat,Y3: complex] :
( ( member_complex @ X @ ( set_complex2 @ ( replicate_complex @ N @ Y3 ) ) )
= ( ( X = Y3 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_5061_in__set__replicate,axiom,
! [X: set_nat,N: nat,Y3: set_nat] :
( ( member_set_nat @ X @ ( set_set_nat2 @ ( replicate_set_nat @ N @ Y3 ) ) )
= ( ( X = Y3 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_5062_in__set__replicate,axiom,
! [X: int,N: nat,Y3: int] :
( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ Y3 ) ) )
= ( ( X = Y3 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_5063_in__set__replicate,axiom,
! [X: vEBT_VEBT,N: nat,Y3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ Y3 ) ) )
= ( ( X = Y3 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_5064_Bex__set__replicate,axiom,
! [N: nat,A: int,P: int > $o] :
( ( ? [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
& ( P @ X2 ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_5065_Bex__set__replicate,axiom,
! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ? [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
& ( P @ X2 ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_5066_Ball__set__replicate,axiom,
! [N: nat,A: int,P: int > $o] :
( ( ! [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
=> ( P @ X2 ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_5067_Ball__set__replicate,axiom,
! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
=> ( P @ X2 ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_5068_nth__replicate,axiom,
! [I4: nat,N: nat,X: nat] :
( ( ord_less_nat @ I4 @ N )
=> ( ( nth_nat @ ( replicate_nat @ N @ X ) @ I4 )
= X ) ) ).
% nth_replicate
thf(fact_5069_nth__replicate,axiom,
! [I4: nat,N: nat,X: int] :
( ( ord_less_nat @ I4 @ N )
=> ( ( nth_int @ ( replicate_int @ N @ X ) @ I4 )
= X ) ) ).
% nth_replicate
thf(fact_5070_nth__replicate,axiom,
! [I4: nat,N: nat,X: vEBT_VEBT] :
( ( ord_less_nat @ I4 @ N )
=> ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X ) @ I4 )
= X ) ) ).
% nth_replicate
thf(fact_5071_triangle__Suc,axiom,
! [N: nat] :
( ( nat_triangle @ ( suc @ N ) )
= ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).
% triangle_Suc
thf(fact_5072_signed__take__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_Suc_bit0
thf(fact_5073_odd__of__bool__self,axiom,
! [P2: $o] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( zero_n2687167440665602831ol_nat @ P2 ) ) )
= P2 ) ).
% odd_of_bool_self
thf(fact_5074_odd__of__bool__self,axiom,
! [P2: $o] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( zero_n2684676970156552555ol_int @ P2 ) ) )
= P2 ) ).
% odd_of_bool_self
thf(fact_5075_odd__of__bool__self,axiom,
! [P2: $o] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( zero_n356916108424825756nteger @ P2 ) ) )
= P2 ) ).
% odd_of_bool_self
thf(fact_5076_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% of_bool_half_eq_0
thf(fact_5077_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% of_bool_half_eq_0
thf(fact_5078_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ).
% of_bool_half_eq_0
thf(fact_5079_set__decode__0,axiom,
! [X: nat] :
( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) ) ).
% set_decode_0
thf(fact_5080_bits__1__div__exp,axiom,
! [N: nat] :
( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_5081_bits__1__div__exp,axiom,
! [N: nat] :
( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_5082_bits__1__div__exp,axiom,
! [N: nat] :
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_5083_one__div__2__pow__eq,axiom,
! [N: nat] :
( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_5084_one__div__2__pow__eq,axiom,
! [N: nat] :
( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_5085_one__div__2__pow__eq,axiom,
! [N: nat] :
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_5086_one__mod__2__pow__eq,axiom,
! [N: nat] :
( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% one_mod_2_pow_eq
thf(fact_5087_one__mod__2__pow__eq,axiom,
! [N: nat] :
( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% one_mod_2_pow_eq
thf(fact_5088_one__mod__2__pow__eq,axiom,
! [N: nat] :
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% one_mod_2_pow_eq
thf(fact_5089_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_5090_of__bool__eq__iff,axiom,
! [P2: $o,Q3: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P2 )
= ( zero_n2687167440665602831ol_nat @ Q3 ) )
= ( P2 = Q3 ) ) ).
% of_bool_eq_iff
thf(fact_5091_of__bool__eq__iff,axiom,
! [P2: $o,Q3: $o] :
( ( ( zero_n2684676970156552555ol_int @ P2 )
= ( zero_n2684676970156552555ol_int @ Q3 ) )
= ( P2 = Q3 ) ) ).
% of_bool_eq_iff
thf(fact_5092_of__bool__eq__iff,axiom,
! [P2: $o,Q3: $o] :
( ( ( zero_n356916108424825756nteger @ P2 )
= ( zero_n356916108424825756nteger @ Q3 ) )
= ( P2 = Q3 ) ) ).
% of_bool_eq_iff
thf(fact_5093_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n3304061248610475627l_real
@ ( P
& Q ) )
= ( times_times_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) ) ) ).
% of_bool_conj
thf(fact_5094_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2052037380579107095ol_rat
@ ( P
& Q ) )
= ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) ) ) ).
% of_bool_conj
thf(fact_5095_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2687167440665602831ol_nat
@ ( P
& Q ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).
% of_bool_conj
thf(fact_5096_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2684676970156552555ol_int
@ ( P
& Q ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).
% of_bool_conj
thf(fact_5097_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n356916108424825756nteger
@ ( P
& Q ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).
% of_bool_conj
thf(fact_5098_bot__nat__def,axiom,
bot_bot_nat = zero_zero_nat ).
% bot_nat_def
thf(fact_5099_signed__take__bit__mult,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ K @ L ) ) ) ).
% signed_take_bit_mult
thf(fact_5100_signed__take__bit__add,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L ) ) ) ).
% signed_take_bit_add
thf(fact_5101_signed__take__bit__diff,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).
% signed_take_bit_diff
thf(fact_5102_bot__enat__def,axiom,
bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).
% bot_enat_def
thf(fact_5103_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_5104_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_5105_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_5106_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_5107_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_5108_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real ) ).
% of_bool_less_eq_one
thf(fact_5109_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat ) ).
% of_bool_less_eq_one
thf(fact_5110_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat ) ).
% of_bool_less_eq_one
thf(fact_5111_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int ) ).
% of_bool_less_eq_one
thf(fact_5112_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer ) ).
% of_bool_less_eq_one
thf(fact_5113_of__bool__def,axiom,
( zero_n1201886186963655149omplex
= ( ^ [P5: $o] : ( if_complex @ P5 @ one_one_complex @ zero_zero_complex ) ) ) ).
% of_bool_def
thf(fact_5114_of__bool__def,axiom,
( zero_n3304061248610475627l_real
= ( ^ [P5: $o] : ( if_real @ P5 @ one_one_real @ zero_zero_real ) ) ) ).
% of_bool_def
thf(fact_5115_of__bool__def,axiom,
( zero_n2052037380579107095ol_rat
= ( ^ [P5: $o] : ( if_rat @ P5 @ one_one_rat @ zero_zero_rat ) ) ) ).
% of_bool_def
thf(fact_5116_of__bool__def,axiom,
( zero_n2687167440665602831ol_nat
= ( ^ [P5: $o] : ( if_nat @ P5 @ one_one_nat @ zero_zero_nat ) ) ) ).
% of_bool_def
thf(fact_5117_of__bool__def,axiom,
( zero_n2684676970156552555ol_int
= ( ^ [P5: $o] : ( if_int @ P5 @ one_one_int @ zero_zero_int ) ) ) ).
% of_bool_def
thf(fact_5118_of__bool__def,axiom,
( zero_n356916108424825756nteger
= ( ^ [P5: $o] : ( if_Code_integer @ P5 @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) ) ).
% of_bool_def
thf(fact_5119_split__of__bool,axiom,
! [P: complex > $o,P2: $o] :
( ( P @ ( zero_n1201886186963655149omplex @ P2 ) )
= ( ( P2
=> ( P @ one_one_complex ) )
& ( ~ P2
=> ( P @ zero_zero_complex ) ) ) ) ).
% split_of_bool
thf(fact_5120_split__of__bool,axiom,
! [P: real > $o,P2: $o] :
( ( P @ ( zero_n3304061248610475627l_real @ P2 ) )
= ( ( P2
=> ( P @ one_one_real ) )
& ( ~ P2
=> ( P @ zero_zero_real ) ) ) ) ).
% split_of_bool
thf(fact_5121_split__of__bool,axiom,
! [P: rat > $o,P2: $o] :
( ( P @ ( zero_n2052037380579107095ol_rat @ P2 ) )
= ( ( P2
=> ( P @ one_one_rat ) )
& ( ~ P2
=> ( P @ zero_zero_rat ) ) ) ) ).
% split_of_bool
thf(fact_5122_split__of__bool,axiom,
! [P: nat > $o,P2: $o] :
( ( P @ ( zero_n2687167440665602831ol_nat @ P2 ) )
= ( ( P2
=> ( P @ one_one_nat ) )
& ( ~ P2
=> ( P @ zero_zero_nat ) ) ) ) ).
% split_of_bool
thf(fact_5123_split__of__bool,axiom,
! [P: int > $o,P2: $o] :
( ( P @ ( zero_n2684676970156552555ol_int @ P2 ) )
= ( ( P2
=> ( P @ one_one_int ) )
& ( ~ P2
=> ( P @ zero_zero_int ) ) ) ) ).
% split_of_bool
thf(fact_5124_split__of__bool,axiom,
! [P: code_integer > $o,P2: $o] :
( ( P @ ( zero_n356916108424825756nteger @ P2 ) )
= ( ( P2
=> ( P @ one_one_Code_integer ) )
& ( ~ P2
=> ( P @ zero_z3403309356797280102nteger ) ) ) ) ).
% split_of_bool
thf(fact_5125_split__of__bool__asm,axiom,
! [P: complex > $o,P2: $o] :
( ( P @ ( zero_n1201886186963655149omplex @ P2 ) )
= ( ~ ( ( P2
& ~ ( P @ one_one_complex ) )
| ( ~ P2
& ~ ( P @ zero_zero_complex ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_5126_split__of__bool__asm,axiom,
! [P: real > $o,P2: $o] :
( ( P @ ( zero_n3304061248610475627l_real @ P2 ) )
= ( ~ ( ( P2
& ~ ( P @ one_one_real ) )
| ( ~ P2
& ~ ( P @ zero_zero_real ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_5127_split__of__bool__asm,axiom,
! [P: rat > $o,P2: $o] :
( ( P @ ( zero_n2052037380579107095ol_rat @ P2 ) )
= ( ~ ( ( P2
& ~ ( P @ one_one_rat ) )
| ( ~ P2
& ~ ( P @ zero_zero_rat ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_5128_split__of__bool__asm,axiom,
! [P: nat > $o,P2: $o] :
( ( P @ ( zero_n2687167440665602831ol_nat @ P2 ) )
= ( ~ ( ( P2
& ~ ( P @ one_one_nat ) )
| ( ~ P2
& ~ ( P @ zero_zero_nat ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_5129_split__of__bool__asm,axiom,
! [P: int > $o,P2: $o] :
( ( P @ ( zero_n2684676970156552555ol_int @ P2 ) )
= ( ~ ( ( P2
& ~ ( P @ one_one_int ) )
| ( ~ P2
& ~ ( P @ zero_zero_int ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_5130_split__of__bool__asm,axiom,
! [P: code_integer > $o,P2: $o] :
( ( P @ ( zero_n356916108424825756nteger @ P2 ) )
= ( ~ ( ( P2
& ~ ( P @ one_one_Code_integer ) )
| ( ~ P2
& ~ ( P @ zero_z3403309356797280102nteger ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_5131_replicate__length__same,axiom,
! [Xs: list_VEBT_VEBT,X: vEBT_VEBT] :
( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( X5 = X ) )
=> ( ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Xs ) @ X )
= Xs ) ) ).
% replicate_length_same
thf(fact_5132_replicate__length__same,axiom,
! [Xs: list_o,X: $o] :
( ! [X5: $o] :
( ( member_o @ X5 @ ( set_o2 @ Xs ) )
=> ( X5 = X ) )
=> ( ( replicate_o @ ( size_size_list_o @ Xs ) @ X )
= Xs ) ) ).
% replicate_length_same
thf(fact_5133_replicate__length__same,axiom,
! [Xs: list_int,X: int] :
( ! [X5: int] :
( ( member_int @ X5 @ ( set_int2 @ Xs ) )
=> ( X5 = X ) )
=> ( ( replicate_int @ ( size_size_list_int @ Xs ) @ X )
= Xs ) ) ).
% replicate_length_same
thf(fact_5134_replicate__eqI,axiom,
! [Xs: list_nat,N: nat,X: nat] :
( ( ( size_size_list_nat @ Xs )
= N )
=> ( ! [Y4: nat] :
( ( member_nat @ Y4 @ ( set_nat2 @ Xs ) )
=> ( Y4 = X ) )
=> ( Xs
= ( replicate_nat @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_5135_replicate__eqI,axiom,
! [Xs: list_real,N: nat,X: real] :
( ( ( size_size_list_real @ Xs )
= N )
=> ( ! [Y4: real] :
( ( member_real @ Y4 @ ( set_real2 @ Xs ) )
=> ( Y4 = X ) )
=> ( Xs
= ( replicate_real @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_5136_replicate__eqI,axiom,
! [Xs: list_complex,N: nat,X: complex] :
( ( ( size_s3451745648224563538omplex @ Xs )
= N )
=> ( ! [Y4: complex] :
( ( member_complex @ Y4 @ ( set_complex2 @ Xs ) )
=> ( Y4 = X ) )
=> ( Xs
= ( replicate_complex @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_5137_replicate__eqI,axiom,
! [Xs: list_set_nat,N: nat,X: set_nat] :
( ( ( size_s3254054031482475050et_nat @ Xs )
= N )
=> ( ! [Y4: set_nat] :
( ( member_set_nat @ Y4 @ ( set_set_nat2 @ Xs ) )
=> ( Y4 = X ) )
=> ( Xs
= ( replicate_set_nat @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_5138_replicate__eqI,axiom,
! [Xs: list_VEBT_VEBT,N: nat,X: vEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs )
= N )
=> ( ! [Y4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ Y4 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( Y4 = X ) )
=> ( Xs
= ( replicate_VEBT_VEBT @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_5139_replicate__eqI,axiom,
! [Xs: list_o,N: nat,X: $o] :
( ( ( size_size_list_o @ Xs )
= N )
=> ( ! [Y4: $o] :
( ( member_o @ Y4 @ ( set_o2 @ Xs ) )
=> ( Y4 = X ) )
=> ( Xs
= ( replicate_o @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_5140_replicate__eqI,axiom,
! [Xs: list_int,N: nat,X: int] :
( ( ( size_size_list_int @ Xs )
= N )
=> ( ! [Y4: int] :
( ( member_int @ Y4 @ ( set_int2 @ Xs ) )
=> ( Y4 = X ) )
=> ( Xs
= ( replicate_int @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_5141_subset__decode__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% subset_decode_imp_le
thf(fact_5142_of__bool__odd__eq__mod__2,axiom,
! [A: nat] :
( ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% of_bool_odd_eq_mod_2
thf(fact_5143_of__bool__odd__eq__mod__2,axiom,
! [A: int] :
( ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% of_bool_odd_eq_mod_2
thf(fact_5144_of__bool__odd__eq__mod__2,axiom,
! [A: code_integer] :
( ( zero_n356916108424825756nteger
@ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
= ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% of_bool_odd_eq_mod_2
thf(fact_5145_signed__take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% signed_take_bit_int_less_exp
thf(fact_5146_even__signed__take__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_signed_take_bit_iff
thf(fact_5147_even__signed__take__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_signed_take_bit_iff
thf(fact_5148_bits__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [A4: nat] :
( ( ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: nat,B4: $o] :
( ( P @ A4 )
=> ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_5149_bits__induct,axiom,
! [P: int > $o,A: int] :
( ! [A4: int] :
( ( ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: int,B4: $o] :
( ( P @ A4 )
=> ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B4 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B4 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_5150_bits__induct,axiom,
! [P: code_integer > $o,A: code_integer] :
( ! [A4: code_integer] :
( ( ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: code_integer,B4: $o] :
( ( P @ A4 )
=> ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B4 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B4 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_5151_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% signed_take_bit_int_greater_eq_self_iff
thf(fact_5152_signed__take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).
% signed_take_bit_int_less_self_iff
thf(fact_5153_add__0__iff,axiom,
! [B: complex,A: complex] :
( ( B
= ( plus_plus_complex @ B @ A ) )
= ( A = zero_zero_complex ) ) ).
% add_0_iff
thf(fact_5154_add__0__iff,axiom,
! [B: real,A: real] :
( ( B
= ( plus_plus_real @ B @ A ) )
= ( A = zero_zero_real ) ) ).
% add_0_iff
thf(fact_5155_add__0__iff,axiom,
! [B: rat,A: rat] :
( ( B
= ( plus_plus_rat @ B @ A ) )
= ( A = zero_zero_rat ) ) ).
% add_0_iff
thf(fact_5156_add__0__iff,axiom,
! [B: nat,A: nat] :
( ( B
= ( plus_plus_nat @ B @ A ) )
= ( A = zero_zero_nat ) ) ).
% add_0_iff
thf(fact_5157_add__0__iff,axiom,
! [B: int,A: int] :
( ( B
= ( plus_plus_int @ B @ A ) )
= ( A = zero_zero_int ) ) ).
% add_0_iff
thf(fact_5158_exp__mod__exp,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_5159_exp__mod__exp,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_5160_exp__mod__exp,axiom,
! [M: nat,N: nat] :
( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_5161_crossproduct__noteq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
!= ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_5162_crossproduct__noteq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) )
!= ( plus_plus_rat @ ( times_times_rat @ A @ D ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_5163_crossproduct__noteq,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
!= ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_5164_crossproduct__noteq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
!= ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_5165_crossproduct__eq,axiom,
! [W: real,Y3: real,X: real,Z4: real] :
( ( ( plus_plus_real @ ( times_times_real @ W @ Y3 ) @ ( times_times_real @ X @ Z4 ) )
= ( plus_plus_real @ ( times_times_real @ W @ Z4 ) @ ( times_times_real @ X @ Y3 ) ) )
= ( ( W = X )
| ( Y3 = Z4 ) ) ) ).
% crossproduct_eq
thf(fact_5166_crossproduct__eq,axiom,
! [W: rat,Y3: rat,X: rat,Z4: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ W @ Y3 ) @ ( times_times_rat @ X @ Z4 ) )
= ( plus_plus_rat @ ( times_times_rat @ W @ Z4 ) @ ( times_times_rat @ X @ Y3 ) ) )
= ( ( W = X )
| ( Y3 = Z4 ) ) ) ).
% crossproduct_eq
thf(fact_5167_crossproduct__eq,axiom,
! [W: nat,Y3: nat,X: nat,Z4: nat] :
( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y3 ) @ ( times_times_nat @ X @ Z4 ) )
= ( plus_plus_nat @ ( times_times_nat @ W @ Z4 ) @ ( times_times_nat @ X @ Y3 ) ) )
= ( ( W = X )
| ( Y3 = Z4 ) ) ) ).
% crossproduct_eq
thf(fact_5168_crossproduct__eq,axiom,
! [W: int,Y3: int,X: int,Z4: int] :
( ( ( plus_plus_int @ ( times_times_int @ W @ Y3 ) @ ( times_times_int @ X @ Z4 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z4 ) @ ( times_times_int @ X @ Y3 ) ) )
= ( ( W = X )
| ( Y3 = Z4 ) ) ) ).
% crossproduct_eq
thf(fact_5169_signed__take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
=> ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) ) ) ).
% signed_take_bit_int_less_eq
thf(fact_5170_option_Osize__gen_I1_J,axiom,
! [X: nat > nat] :
( ( size_option_nat @ X @ none_nat )
= ( suc @ zero_zero_nat ) ) ).
% option.size_gen(1)
thf(fact_5171_option_Osize__gen_I1_J,axiom,
! [X: product_prod_nat_nat > nat] :
( ( size_o8335143837870341156at_nat @ X @ none_P5556105721700978146at_nat )
= ( suc @ zero_zero_nat ) ) ).
% option.size_gen(1)
thf(fact_5172_option_Osize__gen_I1_J,axiom,
! [X: num > nat] :
( ( size_option_num @ X @ none_num )
= ( suc @ zero_zero_nat ) ) ).
% option.size_gen(1)
thf(fact_5173_set__decode__def,axiom,
( nat_set_decode
= ( ^ [X2: nat] :
( collect_nat
@ ^ [N2: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).
% set_decode_def
thf(fact_5174_exp__div__exp__eq,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat )
& ( ord_less_eq_nat @ N @ M ) ) )
@ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% exp_div_exp_eq
thf(fact_5175_exp__div__exp__eq,axiom,
! [M: nat,N: nat] :
( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int
@ ( zero_n2684676970156552555ol_int
@ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int )
& ( ord_less_eq_nat @ N @ M ) ) )
@ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% exp_div_exp_eq
thf(fact_5176_exp__div__exp__eq,axiom,
! [M: nat,N: nat] :
( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger
@ ( zero_n356916108424825756nteger
@ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
!= zero_z3403309356797280102nteger )
& ( ord_less_eq_nat @ N @ M ) ) )
@ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% exp_div_exp_eq
thf(fact_5177_vebt__buildup_Osimps_I3_J,axiom,
! [Va: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.simps(3)
thf(fact_5178_Divides_Oadjust__div__eq,axiom,
! [Q3: int,R2: int] :
( ( adjust_div @ ( product_Pair_int_int @ Q3 @ R2 ) )
= ( plus_plus_int @ Q3 @ ( zero_n2684676970156552555ol_int @ ( R2 != zero_zero_int ) ) ) ) ).
% Divides.adjust_div_eq
thf(fact_5179_signed__take__bit__rec,axiom,
( bit_ri6519982836138164636nteger
= ( ^ [N2: nat,A5: code_integer] : ( if_Code_integer @ ( N2 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A5 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A5 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A5 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_5180_signed__take__bit__rec,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N2: nat,A5: int] : ( if_int @ ( N2 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A5 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A5 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_int @ A5 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_5181_vebt__buildup_Opelims,axiom,
! [X: nat,Y3: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y3 )
=> ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X )
=> ( ( ( X = zero_zero_nat )
=> ( ( Y3
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( ( Y3
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va3: nat] :
( ( X
= ( suc @ ( suc @ Va3 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
=> ( Y3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
=> ( Y3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va3 ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.pelims
thf(fact_5182_artanh__def,axiom,
( artanh_real
= ( ^ [X2: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% artanh_def
thf(fact_5183_Sum__Icc__int,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ M @ N )
=> ( ( groups4538972089207619220nt_int
@ ^ [X2: int] : X2
@ ( set_or1266510415728281911st_int @ M @ N ) )
= ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N @ ( plus_plus_int @ N @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% Sum_Icc_int
thf(fact_5184_divmod__step__def,axiom,
( unique5026877609467782581ep_nat
= ( ^ [L2: num] :
( produc2626176000494625587at_nat
@ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_def
thf(fact_5185_divmod__step__def,axiom,
( unique5024387138958732305ep_int
= ( ^ [L2: num] :
( produc4245557441103728435nt_int
@ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L2 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_def
thf(fact_5186_divmod__step__def,axiom,
( unique4921790084139445826nteger
= ( ^ [L2: num] :
( produc6916734918728496179nteger
@ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L2 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_def
thf(fact_5187_even__set__encode__iff,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
= ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).
% even_set_encode_iff
thf(fact_5188_Compl__subset__Compl__iff,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( uminus1532241313380277803et_int @ B2 ) )
= ( ord_less_eq_set_int @ B2 @ A2 ) ) ).
% Compl_subset_Compl_iff
thf(fact_5189_Compl__anti__mono,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ B2 ) @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).
% Compl_anti_mono
thf(fact_5190_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_5191_neg__le__iff__le,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_5192_neg__le__iff__le,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_5193_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_5194_compl__le__compl__iff,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ ( uminus1532241313380277803et_int @ Y3 ) )
= ( ord_less_eq_set_int @ Y3 @ X ) ) ).
% compl_le_compl_iff
thf(fact_5195_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_5196_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_5197_neg__less__iff__less,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_5198_neg__less__iff__less,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_5199_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_5200_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_5201_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_5202_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_5203_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_5204_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_5205_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_5206_mult__minus__left,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_5207_mult__minus__left,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_5208_mult__minus__left,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_5209_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_5210_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_5211_minus__mult__minus,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( times_times_complex @ A @ B ) ) ).
% minus_mult_minus
thf(fact_5212_minus__mult__minus,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( times_times_rat @ A @ B ) ) ).
% minus_mult_minus
thf(fact_5213_minus__mult__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( times_3573771949741848930nteger @ A @ B ) ) ).
% minus_mult_minus
thf(fact_5214_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_5215_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_5216_mult__minus__right,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_5217_mult__minus__right,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_5218_mult__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_5219_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_5220_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_5221_add__minus__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_5222_add__minus__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_5223_add__minus__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_5224_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_5225_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_5226_minus__add__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_5227_minus__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_5228_minus__add__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_5229_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_5230_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_5231_minus__add__distrib,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_add_distrib
thf(fact_5232_minus__add__distrib,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_add_distrib
thf(fact_5233_minus__add__distrib,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_add_distrib
thf(fact_5234_minus__diff__eq,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
= ( minus_minus_real @ B @ A ) ) ).
% minus_diff_eq
thf(fact_5235_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_5236_minus__diff__eq,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
= ( minus_minus_complex @ B @ A ) ) ).
% minus_diff_eq
thf(fact_5237_minus__diff__eq,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
= ( minus_minus_rat @ B @ A ) ) ).
% minus_diff_eq
thf(fact_5238_minus__diff__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% minus_diff_eq
thf(fact_5239_div__minus__minus,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ A @ B ) ) ).
% div_minus_minus
thf(fact_5240_div__minus__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ).
% div_minus_minus
thf(fact_5241_minus__dvd__iff,axiom,
! [X: real,Y3: real] :
( ( dvd_dvd_real @ ( uminus_uminus_real @ X ) @ Y3 )
= ( dvd_dvd_real @ X @ Y3 ) ) ).
% minus_dvd_iff
thf(fact_5242_minus__dvd__iff,axiom,
! [X: int,Y3: int] :
( ( dvd_dvd_int @ ( uminus_uminus_int @ X ) @ Y3 )
= ( dvd_dvd_int @ X @ Y3 ) ) ).
% minus_dvd_iff
thf(fact_5243_minus__dvd__iff,axiom,
! [X: complex,Y3: complex] :
( ( dvd_dvd_complex @ ( uminus1482373934393186551omplex @ X ) @ Y3 )
= ( dvd_dvd_complex @ X @ Y3 ) ) ).
% minus_dvd_iff
thf(fact_5244_minus__dvd__iff,axiom,
! [X: rat,Y3: rat] :
( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X ) @ Y3 )
= ( dvd_dvd_rat @ X @ Y3 ) ) ).
% minus_dvd_iff
thf(fact_5245_minus__dvd__iff,axiom,
! [X: code_integer,Y3: code_integer] :
( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X ) @ Y3 )
= ( dvd_dvd_Code_integer @ X @ Y3 ) ) ).
% minus_dvd_iff
thf(fact_5246_dvd__minus__iff,axiom,
! [X: real,Y3: real] :
( ( dvd_dvd_real @ X @ ( uminus_uminus_real @ Y3 ) )
= ( dvd_dvd_real @ X @ Y3 ) ) ).
% dvd_minus_iff
thf(fact_5247_dvd__minus__iff,axiom,
! [X: int,Y3: int] :
( ( dvd_dvd_int @ X @ ( uminus_uminus_int @ Y3 ) )
= ( dvd_dvd_int @ X @ Y3 ) ) ).
% dvd_minus_iff
thf(fact_5248_dvd__minus__iff,axiom,
! [X: complex,Y3: complex] :
( ( dvd_dvd_complex @ X @ ( uminus1482373934393186551omplex @ Y3 ) )
= ( dvd_dvd_complex @ X @ Y3 ) ) ).
% dvd_minus_iff
thf(fact_5249_dvd__minus__iff,axiom,
! [X: rat,Y3: rat] :
( ( dvd_dvd_rat @ X @ ( uminus_uminus_rat @ Y3 ) )
= ( dvd_dvd_rat @ X @ Y3 ) ) ).
% dvd_minus_iff
thf(fact_5250_dvd__minus__iff,axiom,
! [X: code_integer,Y3: code_integer] :
( ( dvd_dvd_Code_integer @ X @ ( uminus1351360451143612070nteger @ Y3 ) )
= ( dvd_dvd_Code_integer @ X @ Y3 ) ) ).
% dvd_minus_iff
thf(fact_5251_mod__minus__minus,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_minus_minus
thf(fact_5252_mod__minus__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% mod_minus_minus
thf(fact_5253_real__add__minus__iff,axiom,
! [X: real,A: real] :
( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X = A ) ) ).
% real_add_minus_iff
thf(fact_5254_sum_Oneutral__const,axiom,
! [A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [Uu: int] : zero_zero_int
@ A2 )
= zero_zero_int ) ).
% sum.neutral_const
thf(fact_5255_sum_Oneutral__const,axiom,
! [A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [Uu: complex] : zero_zero_complex
@ A2 )
= zero_zero_complex ) ).
% sum.neutral_const
thf(fact_5256_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [Uu: nat] : zero_zero_nat
@ A2 )
= zero_zero_nat ) ).
% sum.neutral_const
thf(fact_5257_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [Uu: nat] : zero_zero_real
@ A2 )
= zero_zero_real ) ).
% sum.neutral_const
thf(fact_5258_case__prod__conv,axiom,
! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,A: nat,B: nat] :
( ( produc27273713700761075at_nat @ F @ ( product_Pair_nat_nat @ A @ B ) )
= ( F @ A @ B ) ) ).
% case_prod_conv
thf(fact_5259_case__prod__conv,axiom,
! [F: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat] :
( ( produc8739625826339149834_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
= ( F @ A @ B ) ) ).
% case_prod_conv
thf(fact_5260_case__prod__conv,axiom,
! [F: int > int > product_prod_int_int,A: int,B: int] :
( ( produc4245557441103728435nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
= ( F @ A @ B ) ) ).
% case_prod_conv
thf(fact_5261_case__prod__conv,axiom,
! [F: int > int > $o,A: int,B: int] :
( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
= ( F @ A @ B ) ) ).
% case_prod_conv
thf(fact_5262_case__prod__conv,axiom,
! [F: int > int > int,A: int,B: int] :
( ( produc8211389475949308722nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
= ( F @ A @ B ) ) ).
% case_prod_conv
thf(fact_5263_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_5264_neg__less__eq__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_5265_neg__less__eq__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_5266_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_5267_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_5268_less__eq__neg__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_eq_neg_nonpos
thf(fact_5269_less__eq__neg__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% less_eq_neg_nonpos
thf(fact_5270_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_5271_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_5272_neg__le__0__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_le_0_iff_le
thf(fact_5273_neg__le__0__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_le_0_iff_le
thf(fact_5274_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_5275_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_5276_neg__0__le__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_le_iff_le
thf(fact_5277_neg__0__le__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% neg_0_le_iff_le
thf(fact_5278_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_5279_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_5280_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_5281_neg__less__0__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_0_iff_less
thf(fact_5282_neg__less__0__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_0_iff_less
thf(fact_5283_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_5284_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_5285_neg__0__less__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% neg_0_less_iff_less
thf(fact_5286_neg__0__less__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_less_iff_less
thf(fact_5287_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_5288_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_5289_neg__less__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_pos
thf(fact_5290_neg__less__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_pos
thf(fact_5291_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_5292_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_5293_less__neg__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% less_neg_neg
thf(fact_5294_less__neg__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_neg_neg
thf(fact_5295_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_5296_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_5297_add_Oright__inverse,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
= zero_zero_complex ) ).
% add.right_inverse
thf(fact_5298_add_Oright__inverse,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
= zero_zero_rat ) ).
% add.right_inverse
thf(fact_5299_add_Oright__inverse,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= zero_z3403309356797280102nteger ) ).
% add.right_inverse
thf(fact_5300_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_5301_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_5302_ab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_left_minus
thf(fact_5303_ab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_left_minus
thf(fact_5304_ab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_left_minus
thf(fact_5305_verit__minus__simplify_I3_J,axiom,
! [B: real] :
( ( minus_minus_real @ zero_zero_real @ B )
= ( uminus_uminus_real @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_5306_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_5307_verit__minus__simplify_I3_J,axiom,
! [B: complex] :
( ( minus_minus_complex @ zero_zero_complex @ B )
= ( uminus1482373934393186551omplex @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_5308_verit__minus__simplify_I3_J,axiom,
! [B: rat] :
( ( minus_minus_rat @ zero_zero_rat @ B )
= ( uminus_uminus_rat @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_5309_verit__minus__simplify_I3_J,axiom,
! [B: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_5310_diff__0,axiom,
! [A: real] :
( ( minus_minus_real @ zero_zero_real @ A )
= ( uminus_uminus_real @ A ) ) ).
% diff_0
thf(fact_5311_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_5312_diff__0,axiom,
! [A: complex] :
( ( minus_minus_complex @ zero_zero_complex @ A )
= ( uminus1482373934393186551omplex @ A ) ) ).
% diff_0
thf(fact_5313_diff__0,axiom,
! [A: rat] :
( ( minus_minus_rat @ zero_zero_rat @ A )
= ( uminus_uminus_rat @ A ) ) ).
% diff_0
thf(fact_5314_diff__0,axiom,
! [A: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
= ( uminus1351360451143612070nteger @ A ) ) ).
% diff_0
thf(fact_5315_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5316_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5317_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5318_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5319_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5320_mult__minus1__right,axiom,
! [Z4: real] :
( ( times_times_real @ Z4 @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z4 ) ) ).
% mult_minus1_right
thf(fact_5321_mult__minus1__right,axiom,
! [Z4: int] :
( ( times_times_int @ Z4 @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z4 ) ) ).
% mult_minus1_right
thf(fact_5322_mult__minus1__right,axiom,
! [Z4: complex] :
( ( times_times_complex @ Z4 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ Z4 ) ) ).
% mult_minus1_right
thf(fact_5323_mult__minus1__right,axiom,
! [Z4: rat] :
( ( times_times_rat @ Z4 @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ Z4 ) ) ).
% mult_minus1_right
thf(fact_5324_mult__minus1__right,axiom,
! [Z4: code_integer] :
( ( times_3573771949741848930nteger @ Z4 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ Z4 ) ) ).
% mult_minus1_right
thf(fact_5325_mult__minus1,axiom,
! [Z4: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z4 )
= ( uminus_uminus_real @ Z4 ) ) ).
% mult_minus1
thf(fact_5326_mult__minus1,axiom,
! [Z4: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z4 )
= ( uminus_uminus_int @ Z4 ) ) ).
% mult_minus1
thf(fact_5327_mult__minus1,axiom,
! [Z4: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z4 )
= ( uminus1482373934393186551omplex @ Z4 ) ) ).
% mult_minus1
thf(fact_5328_mult__minus1,axiom,
! [Z4: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z4 )
= ( uminus_uminus_rat @ Z4 ) ) ).
% mult_minus1
thf(fact_5329_mult__minus1,axiom,
! [Z4: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z4 )
= ( uminus1351360451143612070nteger @ Z4 ) ) ).
% mult_minus1
thf(fact_5330_uminus__add__conv__diff,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
= ( minus_minus_real @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5331_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5332_uminus__add__conv__diff,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( minus_minus_complex @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5333_uminus__add__conv__diff,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( minus_minus_rat @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5334_uminus__add__conv__diff,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5335_diff__minus__eq__add,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
= ( plus_plus_real @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5336_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5337_diff__minus__eq__add,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( plus_plus_complex @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5338_diff__minus__eq__add,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( plus_plus_rat @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5339_diff__minus__eq__add,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( plus_p5714425477246183910nteger @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5340_div__minus1__right,axiom,
! [A: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ A ) ) ).
% div_minus1_right
thf(fact_5341_div__minus1__right,axiom,
! [A: code_integer] :
( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ A ) ) ).
% div_minus1_right
thf(fact_5342_divide__minus1,axiom,
! [X: real] :
( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ X ) ) ).
% divide_minus1
thf(fact_5343_divide__minus1,axiom,
! [X: complex] :
( ( divide1717551699836669952omplex @ X @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ X ) ) ).
% divide_minus1
thf(fact_5344_divide__minus1,axiom,
! [X: rat] :
( ( divide_divide_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ X ) ) ).
% divide_minus1
thf(fact_5345_minus__mod__self1,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_mod_self1
thf(fact_5346_minus__mod__self1,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% minus_mod_self1
thf(fact_5347_ln__le__cancel__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ) ).
% ln_le_cancel_iff
thf(fact_5348_ln__eq__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ln_ln_real @ X )
= zero_zero_real )
= ( X = one_one_real ) ) ) ).
% ln_eq_zero_iff
thf(fact_5349_ln__gt__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
= ( ord_less_real @ one_one_real @ X ) ) ) ).
% ln_gt_zero_iff
thf(fact_5350_ln__less__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ).
% ln_less_zero_iff
thf(fact_5351_ln__one,axiom,
( ( ln_ln_real @ one_one_real )
= zero_zero_real ) ).
% ln_one
thf(fact_5352_signed__take__bit__of__minus__1,axiom,
! [N: nat] :
( ( bit_ri6519982836138164636nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% signed_take_bit_of_minus_1
thf(fact_5353_signed__take__bit__of__minus__1,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% signed_take_bit_of_minus_1
thf(fact_5354_sum_Odelta,axiom,
! [S3: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S3 )
=> ( ( ( member_real @ A @ S3 )
=> ( ( groups5754745047067104278omplex
@ ^ [K3: real] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S3 )
=> ( ( groups5754745047067104278omplex
@ ^ [K3: real] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_5355_sum_Odelta,axiom,
! [S3: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S3 )
=> ( ( ( member_nat @ A @ S3 )
=> ( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S3 )
=> ( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_5356_sum_Odelta,axiom,
! [S3: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S3 )
=> ( ( ( member_int @ A @ S3 )
=> ( ( groups3049146728041665814omplex
@ ^ [K3: int] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S3 )
=> ( ( groups3049146728041665814omplex
@ ^ [K3: int] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_5357_sum_Odelta,axiom,
! [S3: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S3 )
=> ( ( ( member_real @ A @ S3 )
=> ( ( groups8097168146408367636l_real
@ ^ [K3: real] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S3 )
=> ( ( groups8097168146408367636l_real
@ ^ [K3: real] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_5358_sum_Odelta,axiom,
! [S3: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S3 )
=> ( ( ( member_int @ A @ S3 )
=> ( ( groups8778361861064173332t_real
@ ^ [K3: int] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S3 )
=> ( ( groups8778361861064173332t_real
@ ^ [K3: int] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_5359_sum_Odelta,axiom,
! [S3: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ( ( member_complex @ A @ S3 )
=> ( ( groups5808333547571424918x_real
@ ^ [K3: complex] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S3 )
=> ( ( groups5808333547571424918x_real
@ ^ [K3: complex] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_5360_sum_Odelta,axiom,
! [S3: set_real,A: real,B: real > rat] :
( ( finite_finite_real @ S3 )
=> ( ( ( member_real @ A @ S3 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K3: real] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S3 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K3: real] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta
thf(fact_5361_sum_Odelta,axiom,
! [S3: set_nat,A: nat,B: nat > rat] :
( ( finite_finite_nat @ S3 )
=> ( ( ( member_nat @ A @ S3 )
=> ( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S3 )
=> ( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta
thf(fact_5362_sum_Odelta,axiom,
! [S3: set_int,A: int,B: int > rat] :
( ( finite_finite_int @ S3 )
=> ( ( ( member_int @ A @ S3 )
=> ( ( groups3906332499630173760nt_rat
@ ^ [K3: int] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S3 )
=> ( ( groups3906332499630173760nt_rat
@ ^ [K3: int] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta
thf(fact_5363_sum_Odelta,axiom,
! [S3: set_complex,A: complex,B: complex > rat] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ( ( member_complex @ A @ S3 )
=> ( ( groups5058264527183730370ex_rat
@ ^ [K3: complex] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S3 )
=> ( ( groups5058264527183730370ex_rat
@ ^ [K3: complex] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta
thf(fact_5364_sum_Odelta_H,axiom,
! [S3: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S3 )
=> ( ( ( member_real @ A @ S3 )
=> ( ( groups5754745047067104278omplex
@ ^ [K3: real] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S3 )
=> ( ( groups5754745047067104278omplex
@ ^ [K3: real] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_5365_sum_Odelta_H,axiom,
! [S3: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S3 )
=> ( ( ( member_nat @ A @ S3 )
=> ( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S3 )
=> ( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_5366_sum_Odelta_H,axiom,
! [S3: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S3 )
=> ( ( ( member_int @ A @ S3 )
=> ( ( groups3049146728041665814omplex
@ ^ [K3: int] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S3 )
=> ( ( groups3049146728041665814omplex
@ ^ [K3: int] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
@ S3 )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_5367_sum_Odelta_H,axiom,
! [S3: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S3 )
=> ( ( ( member_real @ A @ S3 )
=> ( ( groups8097168146408367636l_real
@ ^ [K3: real] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S3 )
=> ( ( groups8097168146408367636l_real
@ ^ [K3: real] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_5368_sum_Odelta_H,axiom,
! [S3: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S3 )
=> ( ( ( member_int @ A @ S3 )
=> ( ( groups8778361861064173332t_real
@ ^ [K3: int] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S3 )
=> ( ( groups8778361861064173332t_real
@ ^ [K3: int] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_5369_sum_Odelta_H,axiom,
! [S3: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ( ( member_complex @ A @ S3 )
=> ( ( groups5808333547571424918x_real
@ ^ [K3: complex] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S3 )
=> ( ( groups5808333547571424918x_real
@ ^ [K3: complex] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
@ S3 )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_5370_sum_Odelta_H,axiom,
! [S3: set_real,A: real,B: real > rat] :
( ( finite_finite_real @ S3 )
=> ( ( ( member_real @ A @ S3 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K3: real] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S3 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K3: real] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta'
thf(fact_5371_sum_Odelta_H,axiom,
! [S3: set_nat,A: nat,B: nat > rat] :
( ( finite_finite_nat @ S3 )
=> ( ( ( member_nat @ A @ S3 )
=> ( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S3 )
=> ( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta'
thf(fact_5372_sum_Odelta_H,axiom,
! [S3: set_int,A: int,B: int > rat] :
( ( finite_finite_int @ S3 )
=> ( ( ( member_int @ A @ S3 )
=> ( ( groups3906332499630173760nt_rat
@ ^ [K3: int] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S3 )
=> ( ( groups3906332499630173760nt_rat
@ ^ [K3: int] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta'
thf(fact_5373_sum_Odelta_H,axiom,
! [S3: set_complex,A: complex,B: complex > rat] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ( ( member_complex @ A @ S3 )
=> ( ( groups5058264527183730370ex_rat
@ ^ [K3: complex] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S3 )
=> ( ( groups5058264527183730370ex_rat
@ ^ [K3: complex] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
@ S3 )
= zero_zero_rat ) ) ) ) ).
% sum.delta'
thf(fact_5374_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5375_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5376_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5377_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5378_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5379_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_5380_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_5381_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% add_neg_numeral_special(7)
thf(fact_5382_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% add_neg_numeral_special(7)
thf(fact_5383_add__neg__numeral__special_I7_J,axiom,
( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(7)
thf(fact_5384_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_5385_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_5386_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= zero_zero_complex ) ).
% add_neg_numeral_special(8)
thf(fact_5387_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= zero_zero_rat ) ).
% add_neg_numeral_special(8)
thf(fact_5388_add__neg__numeral__special_I8_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(8)
thf(fact_5389_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_5390_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_5391_diff__numeral__special_I12_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% diff_numeral_special(12)
thf(fact_5392_diff__numeral__special_I12_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% diff_numeral_special(12)
thf(fact_5393_diff__numeral__special_I12_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% diff_numeral_special(12)
thf(fact_5394_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5395_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5396_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5397_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5398_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5399_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5400_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5401_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5402_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_rat @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5403_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5404_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
= one_one_real ) ).
% minus_one_mult_self
thf(fact_5405_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_5406_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
= one_one_complex ) ).
% minus_one_mult_self
thf(fact_5407_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) )
= one_one_rat ) ).
% minus_one_mult_self
thf(fact_5408_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) )
= one_one_Code_integer ) ).
% minus_one_mult_self
thf(fact_5409_left__minus__one__mult__self,axiom,
! [N: nat,A: real] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5410_left__minus__one__mult__self,axiom,
! [N: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5411_left__minus__one__mult__self,axiom,
! [N: nat,A: complex] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5412_left__minus__one__mult__self,axiom,
! [N: nat,A: rat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5413_left__minus__one__mult__self,axiom,
! [N: nat,A: code_integer] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5414_mod__minus1__right,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% mod_minus1_right
thf(fact_5415_mod__minus1__right,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% mod_minus1_right
thf(fact_5416_max__number__of_I4_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
& ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) ) ) ) ).
% max_number_of(4)
thf(fact_5417_max__number__of_I4_J,axiom,
! [U2: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) ) ) ) ).
% max_number_of(4)
thf(fact_5418_max__number__of_I4_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
& ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) ) ) ) ).
% max_number_of(4)
thf(fact_5419_max__number__of_I4_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) ) ) ) ).
% max_number_of(4)
thf(fact_5420_max__number__of_I3_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ V ) ) )
& ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) @ ( numeral_numeral_real @ V ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ U2 ) ) ) ) ) ).
% max_number_of(3)
thf(fact_5421_max__number__of_I3_J,axiom,
! [U2: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( numera6620942414471956472nteger @ V ) )
= ( numera6620942414471956472nteger @ V ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) @ ( numera6620942414471956472nteger @ V ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U2 ) ) ) ) ) ).
% max_number_of(3)
thf(fact_5422_max__number__of_I3_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ V ) ) )
& ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) @ ( numeral_numeral_rat @ V ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ U2 ) ) ) ) ) ).
% max_number_of(3)
thf(fact_5423_max__number__of_I3_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ V ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) @ ( numeral_numeral_int @ V ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ U2 ) ) ) ) ) ).
% max_number_of(3)
thf(fact_5424_max__number__of_I2_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U2 ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U2 ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
& ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U2 ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U2 ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( numeral_numeral_real @ U2 ) ) ) ) ).
% max_number_of(2)
thf(fact_5425_max__number__of_I2_J,axiom,
! [U2: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U2 ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U2 ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U2 ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U2 ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( numera6620942414471956472nteger @ U2 ) ) ) ) ).
% max_number_of(2)
thf(fact_5426_max__number__of_I2_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U2 ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U2 ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
& ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U2 ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U2 ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( numeral_numeral_rat @ U2 ) ) ) ) ).
% max_number_of(2)
thf(fact_5427_max__number__of_I2_J,axiom,
! [U2: num,V: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( numeral_numeral_int @ U2 ) ) ) ) ).
% max_number_of(2)
thf(fact_5428_ln__ge__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ) ).
% ln_ge_zero_iff
thf(fact_5429_ln__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ).
% ln_le_zero_iff
thf(fact_5430_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y3: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
= ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(168)
thf(fact_5431_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y3: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
= ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(168)
thf(fact_5432_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y3: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y3 ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(168)
thf(fact_5433_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y3: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y3 ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(168)
thf(fact_5434_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y3: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y3 ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(168)
thf(fact_5435_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5436_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5437_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5438_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5439_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5440_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5441_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5442_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5443_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5444_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5445_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y3: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).
% semiring_norm(172)
thf(fact_5446_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y3: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).
% semiring_norm(172)
thf(fact_5447_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y3: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y3 ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).
% semiring_norm(172)
thf(fact_5448_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y3: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y3 ) )
= ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).
% semiring_norm(172)
thf(fact_5449_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y3: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y3 ) )
= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).
% semiring_norm(172)
thf(fact_5450_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y3: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(171)
thf(fact_5451_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y3: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(171)
thf(fact_5452_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y3: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y3 ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(171)
thf(fact_5453_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y3: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y3 ) )
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(171)
thf(fact_5454_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y3: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y3 ) )
= ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(171)
thf(fact_5455_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y3: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y3 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(170)
thf(fact_5456_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y3: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y3 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(170)
thf(fact_5457_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y3: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y3 ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(170)
thf(fact_5458_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y3: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y3 ) )
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(170)
thf(fact_5459_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y3: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y3 ) )
= ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(170)
thf(fact_5460_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5461_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5462_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5463_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5464_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5465_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5466_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5467_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5468_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5469_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5470_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5471_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5472_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5473_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5474_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5475_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5476_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5477_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5478_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5479_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5480_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5481_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5482_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5483_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5484_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5485_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5486_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5487_le__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_5488_le__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_5489_divide__le__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_5490_divide__le__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_5491_eq__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5492_eq__divide__eq__numeral1_I2_J,axiom,
! [A: complex,B: complex,W: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= B ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5493_eq__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( A
= ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5494_divide__eq__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5495_divide__eq__eq__numeral1_I2_J,axiom,
! [B: complex,W: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= A )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5496_divide__eq__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5497_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5498_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5499_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5500_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5501_less__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_5502_less__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_5503_divide__less__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_5504_divide__less__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_5505_power2__minus,axiom,
! [A: real] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5506_power2__minus,axiom,
! [A: int] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5507_power2__minus,axiom,
! [A: complex] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5508_power2__minus,axiom,
! [A: rat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5509_power2__minus,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5510_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5511_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5512_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5513_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5514_add__neg__numeral__special_I9_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5515_diff__numeral__special_I10_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5516_diff__numeral__special_I10_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5517_diff__numeral__special_I10_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5518_diff__numeral__special_I10_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5519_diff__numeral__special_I10_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5520_diff__numeral__special_I11_J,axiom,
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5521_diff__numeral__special_I11_J,axiom,
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5522_diff__numeral__special_I11_J,axiom,
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5523_diff__numeral__special_I11_J,axiom,
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5524_diff__numeral__special_I11_J,axiom,
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5525_minus__1__div__2__eq,axiom,
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_2_eq
thf(fact_5526_minus__1__div__2__eq,axiom,
( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% minus_1_div_2_eq
thf(fact_5527_minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% minus_1_mod_2_eq
thf(fact_5528_minus__1__mod__2__eq,axiom,
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% minus_1_mod_2_eq
thf(fact_5529_bits__minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_minus_1_mod_2_eq
thf(fact_5530_bits__minus__1__mod__2__eq,axiom,
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% bits_minus_1_mod_2_eq
thf(fact_5531_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5532_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5533_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5534_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5535_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5536_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5537_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5538_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: complex] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( power_power_complex @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5539_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5540_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5541_power__minus__odd,axiom,
! [N: nat,A: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5542_power__minus__odd,axiom,
! [N: nat,A: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5543_power__minus__odd,axiom,
! [N: nat,A: complex] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5544_power__minus__odd,axiom,
! [N: nat,A: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5545_power__minus__odd,axiom,
! [N: nat,A: code_integer] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5546_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5547_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5548_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5549_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5550_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5551_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5552_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5553_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5554_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5555_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5556_signed__take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_Suc_minus_bit0
thf(fact_5557_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5558_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5559_dbl__simps_I4_J,axiom,
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5560_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5561_dbl__simps_I4_J,axiom,
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5562_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_real ) ).
% power_minus1_even
thf(fact_5563_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_int ) ).
% power_minus1_even
thf(fact_5564_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_complex ) ).
% power_minus1_even
thf(fact_5565_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_rat ) ).
% power_minus1_even
thf(fact_5566_power__minus1__even,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_Code_integer ) ).
% power_minus1_even
thf(fact_5567_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= one_one_real ) ) ).
% neg_one_even_power
thf(fact_5568_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= one_one_int ) ) ).
% neg_one_even_power
thf(fact_5569_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= one_one_complex ) ) ).
% neg_one_even_power
thf(fact_5570_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= one_one_rat ) ) ).
% neg_one_even_power
thf(fact_5571_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= one_one_Code_integer ) ) ).
% neg_one_even_power
thf(fact_5572_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= ( uminus_uminus_real @ one_one_real ) ) ) ).
% neg_one_odd_power
thf(fact_5573_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% neg_one_odd_power
thf(fact_5574_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).
% neg_one_odd_power
thf(fact_5575_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ).
% neg_one_odd_power
thf(fact_5576_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).
% neg_one_odd_power
thf(fact_5577_signed__take__bit__0,axiom,
! [A: code_integer] :
( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_5578_signed__take__bit__0,axiom,
! [A: int] :
( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_5579_signed__take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).
% signed_take_bit_minus
thf(fact_5580_sum_Oswap,axiom,
! [G: int > int > int,B2: set_int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( groups4538972089207619220nt_int @ ( G @ I3 ) @ B2 )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [J3: int] :
( groups4538972089207619220nt_int
@ ^ [I3: int] : ( G @ I3 @ J3 )
@ A2 )
@ B2 ) ) ).
% sum.swap
thf(fact_5581_sum_Oswap,axiom,
! [G: complex > complex > complex,B2: set_complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [I3: complex] : ( groups7754918857620584856omplex @ ( G @ I3 ) @ B2 )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [J3: complex] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( G @ I3 @ J3 )
@ A2 )
@ B2 ) ) ).
% sum.swap
thf(fact_5582_sum_Oswap,axiom,
! [G: nat > nat > nat,B2: set_nat,A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( groups3542108847815614940at_nat @ ( G @ I3 ) @ B2 )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ I3 @ J3 )
@ A2 )
@ B2 ) ) ).
% sum.swap
thf(fact_5583_sum_Oswap,axiom,
! [G: nat > nat > real,B2: set_nat,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( groups6591440286371151544t_real @ ( G @ I3 ) @ B2 )
@ A2 )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ I3 @ J3 )
@ A2 )
@ B2 ) ) ).
% sum.swap
thf(fact_5584_sum__negf,axiom,
! [F: int > int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( uminus_uminus_int @ ( F @ X2 ) )
@ A2 )
= ( uminus_uminus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) ) ) ).
% sum_negf
thf(fact_5585_sum__negf,axiom,
! [F: complex > complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( uminus1482373934393186551omplex @ ( F @ X2 ) )
@ A2 )
= ( uminus1482373934393186551omplex @ ( groups7754918857620584856omplex @ F @ A2 ) ) ) ).
% sum_negf
thf(fact_5586_sum__negf,axiom,
! [F: nat > real,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( uminus_uminus_real @ ( F @ X2 ) )
@ A2 )
= ( uminus_uminus_real @ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).
% sum_negf
thf(fact_5587_prod_Ocase__distrib,axiom,
! [H2: $o > $o,F: int > int > $o,Prod: product_prod_int_int] :
( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
= ( produc4947309494688390418_int_o
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5588_prod_Ocase__distrib,axiom,
! [H2: $o > int,F: int > int > $o,Prod: product_prod_int_int] :
( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
= ( produc8211389475949308722nt_int
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5589_prod_Ocase__distrib,axiom,
! [H2: int > $o,F: int > int > int,Prod: product_prod_int_int] :
( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
= ( produc4947309494688390418_int_o
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5590_prod_Ocase__distrib,axiom,
! [H2: int > int,F: int > int > int,Prod: product_prod_int_int] :
( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
= ( produc8211389475949308722nt_int
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5591_prod_Ocase__distrib,axiom,
! [H2: product_prod_int_int > $o,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
= ( produc4947309494688390418_int_o
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5592_prod_Ocase__distrib,axiom,
! [H2: product_prod_int_int > int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
= ( produc8211389475949308722nt_int
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5593_prod_Ocase__distrib,axiom,
! [H2: $o > product_prod_int_int,F: int > int > $o,Prod: product_prod_int_int] :
( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
= ( produc4245557441103728435nt_int
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5594_prod_Ocase__distrib,axiom,
! [H2: int > product_prod_int_int,F: int > int > int,Prod: product_prod_int_int] :
( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
= ( produc4245557441103728435nt_int
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5595_prod_Ocase__distrib,axiom,
! [H2: product_prod_int_int > product_prod_int_int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
= ( produc4245557441103728435nt_int
@ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5596_prod_Ocase__distrib,axiom,
! [H2: ( product_prod_nat_nat > $o ) > product_prod_nat_nat > $o,F: nat > nat > product_prod_nat_nat > $o,Prod: product_prod_nat_nat] :
( ( H2 @ ( produc8739625826339149834_nat_o @ F @ Prod ) )
= ( produc8739625826339149834_nat_o
@ ^ [X15: nat,X24: nat] : ( H2 @ ( F @ X15 @ X24 ) )
@ Prod ) ) ).
% prod.case_distrib
thf(fact_5597_le__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% le_minus_iff
thf(fact_5598_le__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_minus_iff
thf(fact_5599_le__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% le_minus_iff
thf(fact_5600_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_5601_minus__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5602_minus__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5603_minus__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5604_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5605_le__imp__neg__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5606_le__imp__neg__le,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5607_le__imp__neg__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5608_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5609_compl__le__swap2,axiom,
! [Y3: set_int,X: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y3 ) @ X )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ Y3 ) ) ).
% compl_le_swap2
thf(fact_5610_compl__le__swap1,axiom,
! [Y3: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y3 @ ( uminus1532241313380277803et_int @ X ) )
=> ( ord_less_eq_set_int @ X @ ( uminus1532241313380277803et_int @ Y3 ) ) ) ).
% compl_le_swap1
thf(fact_5611_compl__mono,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_less_eq_set_int @ X @ Y3 )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y3 ) @ ( uminus1532241313380277803et_int @ X ) ) ) ).
% compl_mono
thf(fact_5612_verit__negate__coefficient_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5613_verit__negate__coefficient_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5614_verit__negate__coefficient_I2_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5615_verit__negate__coefficient_I2_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ B )
=> ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5616_minus__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5617_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5618_minus__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5619_minus__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5620_less__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% less_minus_iff
thf(fact_5621_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_5622_less__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% less_minus_iff
thf(fact_5623_less__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% less_minus_iff
thf(fact_5624_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_real @ M )
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5625_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ M )
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5626_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numera6690914467698888265omplex @ M )
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5627_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_rat @ M )
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5628_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numera6620942414471956472nteger @ M )
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5629_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
!= ( numeral_numeral_real @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5630_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
!= ( numeral_numeral_int @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5631_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
!= ( numera6690914467698888265omplex @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5632_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
!= ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5633_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
!= ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5634_square__eq__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ A )
= ( times_times_real @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5635_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5636_square__eq__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ A )
= ( times_times_complex @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5637_square__eq__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ A )
= ( times_times_rat @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5638_square__eq__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( times_3573771949741848930nteger @ A @ A )
= ( times_3573771949741848930nteger @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5639_minus__mult__commute,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_mult_commute
thf(fact_5640_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_5641_minus__mult__commute,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_mult_commute
thf(fact_5642_minus__mult__commute,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_mult_commute
thf(fact_5643_minus__mult__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_mult_commute
thf(fact_5644_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_5645_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_5646_one__neq__neg__one,axiom,
( one_one_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% one_neq_neg_one
thf(fact_5647_one__neq__neg__one,axiom,
( one_one_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% one_neq_neg_one
thf(fact_5648_one__neq__neg__one,axiom,
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% one_neq_neg_one
thf(fact_5649_group__cancel_Oneg1,axiom,
! [A2: real,K: real,A: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( uminus_uminus_real @ A2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5650_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5651_group__cancel_Oneg1,axiom,
! [A2: complex,K: complex,A: complex] :
( ( A2
= ( plus_plus_complex @ K @ A ) )
=> ( ( uminus1482373934393186551omplex @ A2 )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5652_group__cancel_Oneg1,axiom,
! [A2: rat,K: rat,A: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( uminus_uminus_rat @ A2 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5653_group__cancel_Oneg1,axiom,
! [A2: code_integer,K: code_integer,A: code_integer] :
( ( A2
= ( plus_p5714425477246183910nteger @ K @ A ) )
=> ( ( uminus1351360451143612070nteger @ A2 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5654_add_Oinverse__distrib__swap,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5655_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5656_add_Oinverse__distrib__swap,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5657_add_Oinverse__distrib__swap,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5658_add_Oinverse__distrib__swap,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5659_is__num__normalize_I8_J,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5660_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5661_is__num__normalize_I8_J,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5662_is__num__normalize_I8_J,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5663_is__num__normalize_I8_J,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5664_minus__diff__commute,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
= ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5665_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5666_minus__diff__commute,axiom,
! [B: complex,A: complex] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
= ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5667_minus__diff__commute,axiom,
! [B: rat,A: rat] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
= ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5668_minus__diff__commute,axiom,
! [B: code_integer,A: code_integer] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
= ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5669_minus__diff__minus,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5670_minus__diff__minus,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5671_minus__diff__minus,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5672_minus__diff__minus,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5673_minus__diff__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5674_div__minus__right,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% div_minus_right
thf(fact_5675_div__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% div_minus_right
thf(fact_5676_minus__divide__left,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5677_minus__divide__left,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5678_minus__divide__left,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5679_minus__divide__divide,axiom,
! [A: real,B: real] :
( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5680_minus__divide__divide,axiom,
! [A: complex,B: complex] :
( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5681_minus__divide__divide,axiom,
! [A: rat,B: rat] :
( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5682_minus__divide__right,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_divide_right
thf(fact_5683_minus__divide__right,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_divide_right
thf(fact_5684_minus__divide__right,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_divide_right
thf(fact_5685_old_Oprod_Ocase,axiom,
! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,X1: nat,X22: nat] :
( ( produc27273713700761075at_nat @ F @ ( product_Pair_nat_nat @ X1 @ X22 ) )
= ( F @ X1 @ X22 ) ) ).
% old.prod.case
thf(fact_5686_old_Oprod_Ocase,axiom,
! [F: nat > nat > product_prod_nat_nat > $o,X1: nat,X22: nat] :
( ( produc8739625826339149834_nat_o @ F @ ( product_Pair_nat_nat @ X1 @ X22 ) )
= ( F @ X1 @ X22 ) ) ).
% old.prod.case
thf(fact_5687_old_Oprod_Ocase,axiom,
! [F: int > int > product_prod_int_int,X1: int,X22: int] :
( ( produc4245557441103728435nt_int @ F @ ( product_Pair_int_int @ X1 @ X22 ) )
= ( F @ X1 @ X22 ) ) ).
% old.prod.case
thf(fact_5688_old_Oprod_Ocase,axiom,
! [F: int > int > $o,X1: int,X22: int] :
( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ X1 @ X22 ) )
= ( F @ X1 @ X22 ) ) ).
% old.prod.case
thf(fact_5689_old_Oprod_Ocase,axiom,
! [F: int > int > int,X1: int,X22: int] :
( ( produc8211389475949308722nt_int @ F @ ( product_Pair_int_int @ X1 @ X22 ) )
= ( F @ X1 @ X22 ) ) ).
% old.prod.case
thf(fact_5690_mod__minus__right,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% mod_minus_right
thf(fact_5691_mod__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% mod_minus_right
thf(fact_5692_mod__minus__cong,axiom,
! [A: int,B: int,A3: int] :
( ( ( modulo_modulo_int @ A @ B )
= ( modulo_modulo_int @ A3 @ B ) )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A3 ) @ B ) ) ) ).
% mod_minus_cong
thf(fact_5693_mod__minus__cong,axiom,
! [A: code_integer,B: code_integer,A3: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= ( modulo364778990260209775nteger @ A3 @ B ) )
=> ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A3 ) @ B ) ) ) ).
% mod_minus_cong
thf(fact_5694_mod__minus__eq,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% mod_minus_eq
thf(fact_5695_mod__minus__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% mod_minus_eq
thf(fact_5696_sum__mono,axiom,
! [K5: set_nat,F: nat > rat,G: nat > rat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ K5 ) @ ( groups2906978787729119204at_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5697_sum__mono,axiom,
! [K5: set_real,F: real > rat,G: real > rat] :
( ! [I2: real] :
( ( member_real @ I2 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ K5 ) @ ( groups1300246762558778688al_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5698_sum__mono,axiom,
! [K5: set_int,F: int > rat,G: int > rat] :
( ! [I2: int] :
( ( member_int @ I2 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ K5 ) @ ( groups3906332499630173760nt_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5699_sum__mono,axiom,
! [K5: set_complex,F: complex > rat,G: complex > rat] :
( ! [I2: complex] :
( ( member_complex @ I2 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ K5 ) @ ( groups5058264527183730370ex_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5700_sum__mono,axiom,
! [K5: set_real,F: real > nat,G: real > nat] :
( ! [I2: real] :
( ( member_real @ I2 @ K5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K5 ) @ ( groups1935376822645274424al_nat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5701_sum__mono,axiom,
! [K5: set_int,F: int > nat,G: int > nat] :
( ! [I2: int] :
( ( member_int @ I2 @ K5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ K5 ) @ ( groups4541462559716669496nt_nat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5702_sum__mono,axiom,
! [K5: set_complex,F: complex > nat,G: complex > nat] :
( ! [I2: complex] :
( ( member_complex @ I2 @ K5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ K5 ) @ ( groups5693394587270226106ex_nat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5703_sum__mono,axiom,
! [K5: set_nat,F: nat > int,G: nat > int] :
( ! [I2: nat] :
( ( member_nat @ I2 @ K5 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ K5 ) @ ( groups3539618377306564664at_int @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5704_sum__mono,axiom,
! [K5: set_real,F: real > int,G: real > int] :
( ! [I2: real] :
( ( member_real @ I2 @ K5 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K5 ) @ ( groups1932886352136224148al_int @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5705_sum__mono,axiom,
! [K5: set_complex,F: complex > int,G: complex > int] :
( ! [I2: complex] :
( ( member_complex @ I2 @ K5 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_int @ ( groups5690904116761175830ex_int @ F @ K5 ) @ ( groups5690904116761175830ex_int @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_5706_sum__product,axiom,
! [F: int > int,A2: set_int,G: int > int,B2: set_int] :
( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ B2 ) )
= ( groups4538972089207619220nt_int
@ ^ [I3: int] :
( groups4538972089207619220nt_int
@ ^ [J3: int] : ( times_times_int @ ( F @ I3 ) @ ( G @ J3 ) )
@ B2 )
@ A2 ) ) ).
% sum_product
thf(fact_5707_sum__product,axiom,
! [F: complex > complex,A2: set_complex,G: complex > complex,B2: set_complex] :
( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ B2 ) )
= ( groups7754918857620584856omplex
@ ^ [I3: complex] :
( groups7754918857620584856omplex
@ ^ [J3: complex] : ( times_times_complex @ ( F @ I3 ) @ ( G @ J3 ) )
@ B2 )
@ A2 ) ) ).
% sum_product
thf(fact_5708_sum__product,axiom,
! [F: nat > nat,A2: set_nat,G: nat > nat,B2: set_nat] :
( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ B2 ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] :
( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( times_times_nat @ ( F @ I3 ) @ ( G @ J3 ) )
@ B2 )
@ A2 ) ) ).
% sum_product
thf(fact_5709_sum__product,axiom,
! [F: nat > real,A2: set_nat,G: nat > real,B2: set_nat] :
( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ B2 ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] :
( groups6591440286371151544t_real
@ ^ [J3: nat] : ( times_times_real @ ( F @ I3 ) @ ( G @ J3 ) )
@ B2 )
@ A2 ) ) ).
% sum_product
thf(fact_5710_sum__distrib__right,axiom,
! [F: int > int,A2: set_int,R2: int] :
( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ R2 )
= ( groups4538972089207619220nt_int
@ ^ [N2: int] : ( times_times_int @ ( F @ N2 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_5711_sum__distrib__right,axiom,
! [F: complex > complex,A2: set_complex,R2: complex] :
( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
= ( groups7754918857620584856omplex
@ ^ [N2: complex] : ( times_times_complex @ ( F @ N2 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_5712_sum__distrib__right,axiom,
! [F: nat > nat,A2: set_nat,R2: nat] :
( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ R2 )
= ( groups3542108847815614940at_nat
@ ^ [N2: nat] : ( times_times_nat @ ( F @ N2 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_5713_sum__distrib__right,axiom,
! [F: nat > real,A2: set_nat,R2: real] :
( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
= ( groups6591440286371151544t_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_5714_sum__distrib__left,axiom,
! [R2: int,F: int > int,A2: set_int] :
( ( times_times_int @ R2 @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [N2: int] : ( times_times_int @ R2 @ ( F @ N2 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_5715_sum__distrib__left,axiom,
! [R2: complex,F: complex > complex,A2: set_complex] :
( ( times_times_complex @ R2 @ ( groups7754918857620584856omplex @ F @ A2 ) )
= ( groups7754918857620584856omplex
@ ^ [N2: complex] : ( times_times_complex @ R2 @ ( F @ N2 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_5716_sum__distrib__left,axiom,
! [R2: nat,F: nat > nat,A2: set_nat] :
( ( times_times_nat @ R2 @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3542108847815614940at_nat
@ ^ [N2: nat] : ( times_times_nat @ R2 @ ( F @ N2 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_5717_sum__distrib__left,axiom,
! [R2: real,F: nat > real,A2: set_nat] :
( ( times_times_real @ R2 @ ( groups6591440286371151544t_real @ F @ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [N2: nat] : ( times_times_real @ R2 @ ( F @ N2 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_5718_sum_Odistrib,axiom,
! [G: int > int,H2: int > int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( plus_plus_int @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ A2 ) @ ( groups4538972089207619220nt_int @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_5719_sum_Odistrib,axiom,
! [G: complex > complex,H2: complex > complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( plus_plus_complex @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_complex @ ( groups7754918857620584856omplex @ G @ A2 ) @ ( groups7754918857620584856omplex @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_5720_sum_Odistrib,axiom,
! [G: nat > nat,H2: nat > nat,A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( plus_plus_nat @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ A2 ) @ ( groups3542108847815614940at_nat @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_5721_sum_Odistrib,axiom,
! [G: nat > real,H2: nat > real,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( plus_plus_real @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ A2 ) @ ( groups6591440286371151544t_real @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_5722_sum__subtractf,axiom,
! [F: int > int,G: int > int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( minus_minus_int @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ).
% sum_subtractf
thf(fact_5723_sum__subtractf,axiom,
! [F: complex > complex,G: complex > complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( minus_minus_complex @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ A2 ) ) ) ).
% sum_subtractf
thf(fact_5724_sum__subtractf,axiom,
! [F: nat > real,G: nat > real,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( minus_minus_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ A2 ) ) ) ).
% sum_subtractf
thf(fact_5725_sum__divide__distrib,axiom,
! [F: complex > complex,A2: set_complex,R2: complex] :
( ( divide1717551699836669952omplex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
= ( groups7754918857620584856omplex
@ ^ [N2: complex] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ R2 )
@ A2 ) ) ).
% sum_divide_distrib
thf(fact_5726_sum__divide__distrib,axiom,
! [F: nat > real,A2: set_nat,R2: real] :
( ( divide_divide_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
= ( groups6591440286371151544t_real
@ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ R2 )
@ A2 ) ) ).
% sum_divide_distrib
thf(fact_5727_sum_Oswap__restrict,axiom,
! [A2: set_real,B2: set_int,G: real > int > int,R: real > int > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups1932886352136224148al_int
@ ^ [X2: real] :
( groups4538972089207619220nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y2: int] :
( ( member_int @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [Y2: int] :
( groups1932886352136224148al_int
@ ^ [X2: real] : ( G @ X2 @ Y2 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5728_sum_Oswap__restrict,axiom,
! [A2: set_nat,B2: set_int,G: nat > int > int,R: nat > int > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups3539618377306564664at_int
@ ^ [X2: nat] :
( groups4538972089207619220nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y2: int] :
( ( member_int @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [Y2: int] :
( groups3539618377306564664at_int
@ ^ [X2: nat] : ( G @ X2 @ Y2 )
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5729_sum_Oswap__restrict,axiom,
! [A2: set_complex,B2: set_int,G: complex > int > int,R: complex > int > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups5690904116761175830ex_int
@ ^ [X2: complex] :
( groups4538972089207619220nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y2: int] :
( ( member_int @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [Y2: int] :
( groups5690904116761175830ex_int
@ ^ [X2: complex] : ( G @ X2 @ Y2 )
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5730_sum_Oswap__restrict,axiom,
! [A2: set_real,B2: set_complex,G: real > complex > complex,R: real > complex > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ( groups5754745047067104278omplex
@ ^ [X2: real] :
( groups7754918857620584856omplex @ ( G @ X2 )
@ ( collect_complex
@ ^ [Y2: complex] :
( ( member_complex @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y2: complex] :
( groups5754745047067104278omplex
@ ^ [X2: real] : ( G @ X2 @ Y2 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5731_sum_Oswap__restrict,axiom,
! [A2: set_nat,B2: set_complex,G: nat > complex > complex,R: nat > complex > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ( groups2073611262835488442omplex
@ ^ [X2: nat] :
( groups7754918857620584856omplex @ ( G @ X2 )
@ ( collect_complex
@ ^ [Y2: complex] :
( ( member_complex @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y2: complex] :
( groups2073611262835488442omplex
@ ^ [X2: nat] : ( G @ X2 @ Y2 )
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5732_sum_Oswap__restrict,axiom,
! [A2: set_int,B2: set_complex,G: int > complex > complex,R: int > complex > $o] :
( ( finite_finite_int @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ( groups3049146728041665814omplex
@ ^ [X2: int] :
( groups7754918857620584856omplex @ ( G @ X2 )
@ ( collect_complex
@ ^ [Y2: complex] :
( ( member_complex @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y2: complex] :
( groups3049146728041665814omplex
@ ^ [X2: int] : ( G @ X2 @ Y2 )
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5733_sum_Oswap__restrict,axiom,
! [A2: set_real,B2: set_nat,G: real > nat > nat,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups1935376822645274424al_nat
@ ^ [X2: real] :
( groups3542108847815614940at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y2: nat] :
( ( member_nat @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y2: nat] :
( groups1935376822645274424al_nat
@ ^ [X2: real] : ( G @ X2 @ Y2 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5734_sum_Oswap__restrict,axiom,
! [A2: set_int,B2: set_nat,G: int > nat > nat,R: int > nat > $o] :
( ( finite_finite_int @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups4541462559716669496nt_nat
@ ^ [X2: int] :
( groups3542108847815614940at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y2: nat] :
( ( member_nat @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y2: nat] :
( groups4541462559716669496nt_nat
@ ^ [X2: int] : ( G @ X2 @ Y2 )
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5735_sum_Oswap__restrict,axiom,
! [A2: set_complex,B2: set_nat,G: complex > nat > nat,R: complex > nat > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups5693394587270226106ex_nat
@ ^ [X2: complex] :
( groups3542108847815614940at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y2: nat] :
( ( member_nat @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y2: nat] :
( groups5693394587270226106ex_nat
@ ^ [X2: complex] : ( G @ X2 @ Y2 )
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5736_sum_Oswap__restrict,axiom,
! [A2: set_real,B2: set_nat,G: real > nat > real,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups8097168146408367636l_real
@ ^ [X2: real] :
( groups6591440286371151544t_real @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y2: nat] :
( ( member_nat @ Y2 @ B2 )
& ( R @ X2 @ Y2 ) ) ) )
@ A2 )
= ( groups6591440286371151544t_real
@ ^ [Y2: nat] :
( groups8097168146408367636l_real
@ ^ [X2: real] : ( G @ X2 @ Y2 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y2 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_5737_mod__sum__eq,axiom,
! [F: int > int,A: int,A2: set_int] :
( ( modulo_modulo_int
@ ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( modulo_modulo_int @ ( F @ I3 ) @ A )
@ A2 )
@ A )
= ( modulo_modulo_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ A ) ) ).
% mod_sum_eq
thf(fact_5738_mod__sum__eq,axiom,
! [F: nat > nat,A: nat,A2: set_nat] :
( ( modulo_modulo_nat
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( modulo_modulo_nat @ ( F @ I3 ) @ A )
@ A2 )
@ A )
= ( modulo_modulo_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ A ) ) ).
% mod_sum_eq
thf(fact_5739_cond__case__prod__eta,axiom,
! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,G: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
( ! [X5: nat,Y4: nat] :
( ( F @ X5 @ Y4 )
= ( G @ ( product_Pair_nat_nat @ X5 @ Y4 ) ) )
=> ( ( produc27273713700761075at_nat @ F )
= G ) ) ).
% cond_case_prod_eta
thf(fact_5740_cond__case__prod__eta,axiom,
! [F: nat > nat > product_prod_nat_nat > $o,G: product_prod_nat_nat > product_prod_nat_nat > $o] :
( ! [X5: nat,Y4: nat] :
( ( F @ X5 @ Y4 )
= ( G @ ( product_Pair_nat_nat @ X5 @ Y4 ) ) )
=> ( ( produc8739625826339149834_nat_o @ F )
= G ) ) ).
% cond_case_prod_eta
thf(fact_5741_cond__case__prod__eta,axiom,
! [F: int > int > product_prod_int_int,G: product_prod_int_int > product_prod_int_int] :
( ! [X5: int,Y4: int] :
( ( F @ X5 @ Y4 )
= ( G @ ( product_Pair_int_int @ X5 @ Y4 ) ) )
=> ( ( produc4245557441103728435nt_int @ F )
= G ) ) ).
% cond_case_prod_eta
thf(fact_5742_cond__case__prod__eta,axiom,
! [F: int > int > $o,G: product_prod_int_int > $o] :
( ! [X5: int,Y4: int] :
( ( F @ X5 @ Y4 )
= ( G @ ( product_Pair_int_int @ X5 @ Y4 ) ) )
=> ( ( produc4947309494688390418_int_o @ F )
= G ) ) ).
% cond_case_prod_eta
thf(fact_5743_cond__case__prod__eta,axiom,
! [F: int > int > int,G: product_prod_int_int > int] :
( ! [X5: int,Y4: int] :
( ( F @ X5 @ Y4 )
= ( G @ ( product_Pair_int_int @ X5 @ Y4 ) ) )
=> ( ( produc8211389475949308722nt_int @ F )
= G ) ) ).
% cond_case_prod_eta
thf(fact_5744_case__prod__eta,axiom,
! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
( ( produc27273713700761075at_nat
@ ^ [X2: nat,Y2: nat] : ( F @ ( product_Pair_nat_nat @ X2 @ Y2 ) ) )
= F ) ).
% case_prod_eta
thf(fact_5745_case__prod__eta,axiom,
! [F: product_prod_nat_nat > product_prod_nat_nat > $o] :
( ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y2: nat] : ( F @ ( product_Pair_nat_nat @ X2 @ Y2 ) ) )
= F ) ).
% case_prod_eta
thf(fact_5746_case__prod__eta,axiom,
! [F: product_prod_int_int > product_prod_int_int] :
( ( produc4245557441103728435nt_int
@ ^ [X2: int,Y2: int] : ( F @ ( product_Pair_int_int @ X2 @ Y2 ) ) )
= F ) ).
% case_prod_eta
thf(fact_5747_case__prod__eta,axiom,
! [F: product_prod_int_int > $o] :
( ( produc4947309494688390418_int_o
@ ^ [X2: int,Y2: int] : ( F @ ( product_Pair_int_int @ X2 @ Y2 ) ) )
= F ) ).
% case_prod_eta
thf(fact_5748_case__prod__eta,axiom,
! [F: product_prod_int_int > int] :
( ( produc8211389475949308722nt_int
@ ^ [X2: int,Y2: int] : ( F @ ( product_Pair_int_int @ X2 @ Y2 ) ) )
= F ) ).
% case_prod_eta
thf(fact_5749_case__prodE2,axiom,
! [Q: ( product_prod_nat_nat > product_prod_nat_nat ) > $o,P: nat > nat > product_prod_nat_nat > product_prod_nat_nat,Z4: product_prod_nat_nat] :
( ( Q @ ( produc27273713700761075at_nat @ P @ Z4 ) )
=> ~ ! [X5: nat,Y4: nat] :
( ( Z4
= ( product_Pair_nat_nat @ X5 @ Y4 ) )
=> ~ ( Q @ ( P @ X5 @ Y4 ) ) ) ) ).
% case_prodE2
thf(fact_5750_case__prodE2,axiom,
! [Q: ( product_prod_nat_nat > $o ) > $o,P: nat > nat > product_prod_nat_nat > $o,Z4: product_prod_nat_nat] :
( ( Q @ ( produc8739625826339149834_nat_o @ P @ Z4 ) )
=> ~ ! [X5: nat,Y4: nat] :
( ( Z4
= ( product_Pair_nat_nat @ X5 @ Y4 ) )
=> ~ ( Q @ ( P @ X5 @ Y4 ) ) ) ) ).
% case_prodE2
thf(fact_5751_case__prodE2,axiom,
! [Q: product_prod_int_int > $o,P: int > int > product_prod_int_int,Z4: product_prod_int_int] :
( ( Q @ ( produc4245557441103728435nt_int @ P @ Z4 ) )
=> ~ ! [X5: int,Y4: int] :
( ( Z4
= ( product_Pair_int_int @ X5 @ Y4 ) )
=> ~ ( Q @ ( P @ X5 @ Y4 ) ) ) ) ).
% case_prodE2
thf(fact_5752_case__prodE2,axiom,
! [Q: $o > $o,P: int > int > $o,Z4: product_prod_int_int] :
( ( Q @ ( produc4947309494688390418_int_o @ P @ Z4 ) )
=> ~ ! [X5: int,Y4: int] :
( ( Z4
= ( product_Pair_int_int @ X5 @ Y4 ) )
=> ~ ( Q @ ( P @ X5 @ Y4 ) ) ) ) ).
% case_prodE2
thf(fact_5753_case__prodE2,axiom,
! [Q: int > $o,P: int > int > int,Z4: product_prod_int_int] :
( ( Q @ ( produc8211389475949308722nt_int @ P @ Z4 ) )
=> ~ ! [X5: int,Y4: int] :
( ( Z4
= ( product_Pair_int_int @ X5 @ Y4 ) )
=> ~ ( Q @ ( P @ X5 @ Y4 ) ) ) ) ).
% case_prodE2
thf(fact_5754_sum__nonpos,axiom,
! [A2: set_real,F: real > real] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_5755_sum__nonpos,axiom,
! [A2: set_int,F: int > real] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_5756_sum__nonpos,axiom,
! [A2: set_complex,F: complex > real] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_5757_sum__nonpos,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_5758_sum__nonpos,axiom,
! [A2: set_real,F: real > rat] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_5759_sum__nonpos,axiom,
! [A2: set_int,F: int > rat] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_5760_sum__nonpos,axiom,
! [A2: set_complex,F: complex > rat] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_5761_sum__nonpos,axiom,
! [A2: set_real,F: real > nat] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_5762_sum__nonpos,axiom,
! [A2: set_int,F: int > nat] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_5763_sum__nonpos,axiom,
! [A2: set_complex,F: complex > nat] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_5764_sum__nonneg,axiom,
! [A2: set_real,F: real > real] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5765_sum__nonneg,axiom,
! [A2: set_int,F: int > real] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5766_sum__nonneg,axiom,
! [A2: set_complex,F: complex > real] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5767_sum__nonneg,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5768_sum__nonneg,axiom,
! [A2: set_real,F: real > rat] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5769_sum__nonneg,axiom,
! [A2: set_int,F: int > rat] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5770_sum__nonneg,axiom,
! [A2: set_complex,F: complex > rat] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5771_sum__nonneg,axiom,
! [A2: set_real,F: real > nat] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5772_sum__nonneg,axiom,
! [A2: set_int,F: int > nat] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5773_sum__nonneg,axiom,
! [A2: set_complex,F: complex > nat] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_5774_ln__add__one__self__le__self2,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).
% ln_add_one_self_le_self2
thf(fact_5775_sum__mono__inv,axiom,
! [F: real > rat,I5: set_real,G: real > rat,I4: real] :
( ( ( groups1300246762558778688al_rat @ F @ I5 )
= ( groups1300246762558778688al_rat @ G @ I5 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_real @ I4 @ I5 )
=> ( ( finite_finite_real @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5776_sum__mono__inv,axiom,
! [F: nat > rat,I5: set_nat,G: nat > rat,I4: nat] :
( ( ( groups2906978787729119204at_rat @ F @ I5 )
= ( groups2906978787729119204at_rat @ G @ I5 ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_nat @ I4 @ I5 )
=> ( ( finite_finite_nat @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5777_sum__mono__inv,axiom,
! [F: int > rat,I5: set_int,G: int > rat,I4: int] :
( ( ( groups3906332499630173760nt_rat @ F @ I5 )
= ( groups3906332499630173760nt_rat @ G @ I5 ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_int @ I4 @ I5 )
=> ( ( finite_finite_int @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5778_sum__mono__inv,axiom,
! [F: complex > rat,I5: set_complex,G: complex > rat,I4: complex] :
( ( ( groups5058264527183730370ex_rat @ F @ I5 )
= ( groups5058264527183730370ex_rat @ G @ I5 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_complex @ I4 @ I5 )
=> ( ( finite3207457112153483333omplex @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5779_sum__mono__inv,axiom,
! [F: real > nat,I5: set_real,G: real > nat,I4: real] :
( ( ( groups1935376822645274424al_nat @ F @ I5 )
= ( groups1935376822645274424al_nat @ G @ I5 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_real @ I4 @ I5 )
=> ( ( finite_finite_real @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5780_sum__mono__inv,axiom,
! [F: int > nat,I5: set_int,G: int > nat,I4: int] :
( ( ( groups4541462559716669496nt_nat @ F @ I5 )
= ( groups4541462559716669496nt_nat @ G @ I5 ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_int @ I4 @ I5 )
=> ( ( finite_finite_int @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5781_sum__mono__inv,axiom,
! [F: complex > nat,I5: set_complex,G: complex > nat,I4: complex] :
( ( ( groups5693394587270226106ex_nat @ F @ I5 )
= ( groups5693394587270226106ex_nat @ G @ I5 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_complex @ I4 @ I5 )
=> ( ( finite3207457112153483333omplex @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5782_sum__mono__inv,axiom,
! [F: real > int,I5: set_real,G: real > int,I4: real] :
( ( ( groups1932886352136224148al_int @ F @ I5 )
= ( groups1932886352136224148al_int @ G @ I5 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_real @ I4 @ I5 )
=> ( ( finite_finite_real @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5783_sum__mono__inv,axiom,
! [F: nat > int,I5: set_nat,G: nat > int,I4: nat] :
( ( ( groups3539618377306564664at_int @ F @ I5 )
= ( groups3539618377306564664at_int @ G @ I5 ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_nat @ I4 @ I5 )
=> ( ( finite_finite_nat @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5784_sum__mono__inv,axiom,
! [F: complex > int,I5: set_complex,G: complex > int,I4: complex] :
( ( ( groups5690904116761175830ex_int @ F @ I5 )
= ( groups5690904116761175830ex_int @ G @ I5 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_complex @ I4 @ I5 )
=> ( ( finite3207457112153483333omplex @ I5 )
=> ( ( F @ I4 )
= ( G @ I4 ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_5785_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5786_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5787_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5788_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5789_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5790_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5791_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5792_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5793_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5794_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5795_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5796_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5797_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5798_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5799_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5800_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5801_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5802_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5803_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5804_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5805_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5806_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(4)
thf(fact_5807_le__minus__one__simps_I4_J,axiom,
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(4)
thf(fact_5808_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(4)
thf(fact_5809_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(4)
thf(fact_5810_le__minus__one__simps_I2_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% le_minus_one_simps(2)
thf(fact_5811_le__minus__one__simps_I2_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% le_minus_one_simps(2)
thf(fact_5812_le__minus__one__simps_I2_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% le_minus_one_simps(2)
thf(fact_5813_le__minus__one__simps_I2_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% le_minus_one_simps(2)
thf(fact_5814_zero__neq__neg__one,axiom,
( zero_zero_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% zero_neq_neg_one
thf(fact_5815_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_5816_zero__neq__neg__one,axiom,
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% zero_neq_neg_one
thf(fact_5817_zero__neq__neg__one,axiom,
( zero_zero_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% zero_neq_neg_one
thf(fact_5818_zero__neq__neg__one,axiom,
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% zero_neq_neg_one
thf(fact_5819_add__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5820_add__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5821_add__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
= ( B
= ( uminus1482373934393186551omplex @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5822_add__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
= ( B
= ( uminus_uminus_rat @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5823_add__eq__0__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5824_ab__group__add__class_Oab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5825_ab__group__add__class_Oab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5826_ab__group__add__class_Oab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5827_ab__group__add__class_Oab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5828_ab__group__add__class_Oab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5829_add_Oinverse__unique,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
=> ( ( uminus_uminus_real @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5830_add_Oinverse__unique,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
=> ( ( uminus_uminus_int @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5831_add_Oinverse__unique,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5832_add_Oinverse__unique,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
=> ( ( uminus_uminus_rat @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5833_add_Oinverse__unique,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
=> ( ( uminus1351360451143612070nteger @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5834_eq__neg__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5835_eq__neg__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5836_eq__neg__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( A
= ( uminus1482373934393186551omplex @ B ) )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5837_eq__neg__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( A
= ( uminus_uminus_rat @ B ) )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5838_eq__neg__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ B ) )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5839_neg__eq__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5840_neg__eq__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5841_neg__eq__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= B )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5842_neg__eq__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= B )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5843_neg__eq__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= B )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5844_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_5845_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_5846_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(4)
thf(fact_5847_less__minus__one__simps_I4_J,axiom,
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(4)
thf(fact_5848_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_5849_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_5850_less__minus__one__simps_I2_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% less_minus_one_simps(2)
thf(fact_5851_less__minus__one__simps_I2_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% less_minus_one_simps(2)
thf(fact_5852_numeral__times__minus__swap,axiom,
! [W: num,X: real] :
( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X ) )
= ( times_times_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5853_numeral__times__minus__swap,axiom,
! [W: num,X: int] :
( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X ) )
= ( times_times_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5854_numeral__times__minus__swap,axiom,
! [W: num,X: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X ) )
= ( times_times_complex @ X @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5855_numeral__times__minus__swap,axiom,
! [W: num,X: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X ) )
= ( times_times_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5856_numeral__times__minus__swap,axiom,
! [W: num,X: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X ) )
= ( times_3573771949741848930nteger @ X @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5857_nonzero__minus__divide__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5858_nonzero__minus__divide__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5859_nonzero__minus__divide__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5860_nonzero__minus__divide__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5861_nonzero__minus__divide__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5862_nonzero__minus__divide__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5863_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_real @ N )
!= ( uminus_uminus_real @ one_one_real ) ) ).
% numeral_neq_neg_one
thf(fact_5864_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_int @ N )
!= ( uminus_uminus_int @ one_one_int ) ) ).
% numeral_neq_neg_one
thf(fact_5865_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ N )
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% numeral_neq_neg_one
thf(fact_5866_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_rat @ N )
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% numeral_neq_neg_one
thf(fact_5867_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numera6620942414471956472nteger @ N )
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% numeral_neq_neg_one
thf(fact_5868_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5869_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5870_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5871_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5872_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5873_square__eq__1__iff,axiom,
! [X: real] :
( ( ( times_times_real @ X @ X )
= one_one_real )
= ( ( X = one_one_real )
| ( X
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_5874_square__eq__1__iff,axiom,
! [X: int] :
( ( ( times_times_int @ X @ X )
= one_one_int )
= ( ( X = one_one_int )
| ( X
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_5875_square__eq__1__iff,axiom,
! [X: complex] :
( ( ( times_times_complex @ X @ X )
= one_one_complex )
= ( ( X = one_one_complex )
| ( X
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% square_eq_1_iff
thf(fact_5876_square__eq__1__iff,axiom,
! [X: rat] :
( ( ( times_times_rat @ X @ X )
= one_one_rat )
= ( ( X = one_one_rat )
| ( X
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% square_eq_1_iff
thf(fact_5877_square__eq__1__iff,axiom,
! [X: code_integer] :
( ( ( times_3573771949741848930nteger @ X @ X )
= one_one_Code_integer )
= ( ( X = one_one_Code_integer )
| ( X
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% square_eq_1_iff
thf(fact_5878_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A5: real,B5: real] : ( plus_plus_real @ A5 @ ( uminus_uminus_real @ B5 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5879_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A5: int,B5: int] : ( plus_plus_int @ A5 @ ( uminus_uminus_int @ B5 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5880_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_complex
= ( ^ [A5: complex,B5: complex] : ( plus_plus_complex @ A5 @ ( uminus1482373934393186551omplex @ B5 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5881_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A5: rat,B5: rat] : ( plus_plus_rat @ A5 @ ( uminus_uminus_rat @ B5 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5882_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A5: code_integer,B5: code_integer] : ( plus_p5714425477246183910nteger @ A5 @ ( uminus1351360451143612070nteger @ B5 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5883_diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A5: real,B5: real] : ( plus_plus_real @ A5 @ ( uminus_uminus_real @ B5 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5884_diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A5: int,B5: int] : ( plus_plus_int @ A5 @ ( uminus_uminus_int @ B5 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5885_diff__conv__add__uminus,axiom,
( minus_minus_complex
= ( ^ [A5: complex,B5: complex] : ( plus_plus_complex @ A5 @ ( uminus1482373934393186551omplex @ B5 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5886_diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A5: rat,B5: rat] : ( plus_plus_rat @ A5 @ ( uminus_uminus_rat @ B5 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5887_diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A5: code_integer,B5: code_integer] : ( plus_p5714425477246183910nteger @ A5 @ ( uminus1351360451143612070nteger @ B5 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5888_group__cancel_Osub2,axiom,
! [B2: real,K: real,B: real,A: real] :
( ( B2
= ( plus_plus_real @ K @ B ) )
=> ( ( minus_minus_real @ A @ B2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5889_group__cancel_Osub2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( minus_minus_int @ A @ B2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5890_group__cancel_Osub2,axiom,
! [B2: complex,K: complex,B: complex,A: complex] :
( ( B2
= ( plus_plus_complex @ K @ B ) )
=> ( ( minus_minus_complex @ A @ B2 )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5891_group__cancel_Osub2,axiom,
! [B2: rat,K: rat,B: rat,A: rat] :
( ( B2
= ( plus_plus_rat @ K @ B ) )
=> ( ( minus_minus_rat @ A @ B2 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5892_group__cancel_Osub2,axiom,
! [B2: code_integer,K: code_integer,B: code_integer,A: code_integer] :
( ( B2
= ( plus_p5714425477246183910nteger @ K @ B ) )
=> ( ( minus_8373710615458151222nteger @ A @ B2 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5893_dvd__neg__div,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5894_dvd__neg__div,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5895_dvd__neg__div,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5896_dvd__neg__div,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5897_dvd__neg__div,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5898_dvd__div__neg,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5899_dvd__div__neg,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5900_dvd__div__neg,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5901_dvd__div__neg,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5902_dvd__div__neg,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5903_subset__Compl__self__eq,axiom,
! [A2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ ( uminus5710092332889474511et_nat @ A2 ) )
= ( A2 = bot_bot_set_nat ) ) ).
% subset_Compl_self_eq
thf(fact_5904_subset__Compl__self__eq,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( uminus612125837232591019t_real @ A2 ) )
= ( A2 = bot_bot_set_real ) ) ).
% subset_Compl_self_eq
thf(fact_5905_subset__Compl__self__eq,axiom,
! [A2: set_int] :
( ( ord_less_eq_set_int @ A2 @ ( uminus1532241313380277803et_int @ A2 ) )
= ( A2 = bot_bot_set_int ) ) ).
% subset_Compl_self_eq
thf(fact_5906_real__minus__mult__self__le,axiom,
! [U2: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U2 @ U2 ) ) @ ( times_times_real @ X @ X ) ) ).
% real_minus_mult_self_le
thf(fact_5907_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_5908_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_5909_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus_int @ zero_zero_int @ L )
= ( uminus_uminus_int @ L ) ) ).
% minus_int_code(2)
thf(fact_5910_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > complex,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups5754745047067104278omplex @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups5754745047067104278omplex
@ ^ [X2: real] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5911_sum_Ointer__filter,axiom,
! [A2: set_nat,G: nat > complex,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups2073611262835488442omplex @ G
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups2073611262835488442omplex
@ ^ [X2: nat] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5912_sum_Ointer__filter,axiom,
! [A2: set_int,G: int > complex,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups3049146728041665814omplex
@ ^ [X2: int] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5913_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > real,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups8097168146408367636l_real @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups8097168146408367636l_real
@ ^ [X2: real] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5914_sum_Ointer__filter,axiom,
! [A2: set_int,G: int > real,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups8778361861064173332t_real
@ ^ [X2: int] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5915_sum_Ointer__filter,axiom,
! [A2: set_complex,G: complex > real,P: complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups5808333547571424918x_real
@ ^ [X2: complex] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5916_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > rat,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups1300246762558778688al_rat @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups1300246762558778688al_rat
@ ^ [X2: real] : ( if_rat @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_rat )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5917_sum_Ointer__filter,axiom,
! [A2: set_nat,G: nat > rat,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups2906978787729119204at_rat @ G
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups2906978787729119204at_rat
@ ^ [X2: nat] : ( if_rat @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_rat )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5918_sum_Ointer__filter,axiom,
! [A2: set_int,G: int > rat,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups3906332499630173760nt_rat
@ ^ [X2: int] : ( if_rat @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_rat )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5919_sum_Ointer__filter,axiom,
! [A2: set_complex,G: complex > rat,P: complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups5058264527183730370ex_rat
@ ^ [X2: complex] : ( if_rat @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_rat )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_5920_minus__real__def,axiom,
( minus_minus_real
= ( ^ [X2: real,Y2: real] : ( plus_plus_real @ X2 @ ( uminus_uminus_real @ Y2 ) ) ) ) ).
% minus_real_def
thf(fact_5921_ln__one__minus__pos__upper__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).
% ln_one_minus_pos_upper_bound
thf(fact_5922_sum__le__included,axiom,
! [S2: set_int,T: set_int,G: int > real,I4: int > int,F: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( finite_finite_int @ T )
=> ( ! [X5: int] :
( ( member_int @ X5 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S2 ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5923_sum__le__included,axiom,
! [S2: set_int,T: set_complex,G: complex > real,I4: complex > int,F: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S2 ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5924_sum__le__included,axiom,
! [S2: set_complex,T: set_int,G: int > real,I4: int > complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( finite_finite_int @ T )
=> ( ! [X5: int] :
( ( member_int @ X5 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S2 ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5925_sum__le__included,axiom,
! [S2: set_complex,T: set_complex,G: complex > real,I4: complex > complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S2 ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5926_sum__le__included,axiom,
! [S2: set_nat,T: set_nat,G: nat > rat,I4: nat > nat,F: nat > rat] :
( ( finite_finite_nat @ S2 )
=> ( ( finite_finite_nat @ T )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S2 ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5927_sum__le__included,axiom,
! [S2: set_nat,T: set_int,G: int > rat,I4: int > nat,F: nat > rat] :
( ( finite_finite_nat @ S2 )
=> ( ( finite_finite_int @ T )
=> ( ! [X5: int] :
( ( member_int @ X5 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S2 ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5928_sum__le__included,axiom,
! [S2: set_nat,T: set_complex,G: complex > rat,I4: complex > nat,F: nat > rat] :
( ( finite_finite_nat @ S2 )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S2 ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5929_sum__le__included,axiom,
! [S2: set_int,T: set_nat,G: nat > rat,I4: nat > int,F: int > rat] :
( ( finite_finite_int @ S2 )
=> ( ( finite_finite_nat @ T )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S2 ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5930_sum__le__included,axiom,
! [S2: set_int,T: set_int,G: int > rat,I4: int > int,F: int > rat] :
( ( finite_finite_int @ S2 )
=> ( ( finite_finite_int @ T )
=> ( ! [X5: int] :
( ( member_int @ X5 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S2 ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5931_sum__le__included,axiom,
! [S2: set_int,T: set_complex,G: complex > rat,I4: complex > int,F: int > rat] :
( ( finite_finite_int @ S2 )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I4 @ Xa )
= X5 )
& ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S2 ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_5932_sum__nonneg__eq__0__iff,axiom,
! [A2: set_real,F: real > real] :
( ( finite_finite_real @ A2 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ A2 )
= zero_zero_real )
= ( ! [X2: real] :
( ( member_real @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5933_sum__nonneg__eq__0__iff,axiom,
! [A2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ A2 )
= zero_zero_real )
= ( ! [X2: int] :
( ( member_int @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5934_sum__nonneg__eq__0__iff,axiom,
! [A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ A2 )
= zero_zero_real )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5935_sum__nonneg__eq__0__iff,axiom,
! [A2: set_real,F: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: real] :
( ( member_real @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5936_sum__nonneg__eq__0__iff,axiom,
! [A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5937_sum__nonneg__eq__0__iff,axiom,
! [A2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: int] :
( ( member_int @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5938_sum__nonneg__eq__0__iff,axiom,
! [A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5939_sum__nonneg__eq__0__iff,axiom,
! [A2: set_real,F: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ( ( groups1935376822645274424al_nat @ F @ A2 )
= zero_zero_nat )
= ( ! [X2: real] :
( ( member_real @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5940_sum__nonneg__eq__0__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
= zero_zero_nat )
= ( ! [X2: int] :
( ( member_int @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5941_sum__nonneg__eq__0__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
= zero_zero_nat )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_5942_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5943_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5944_sum__strict__mono__ex1,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5945_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5946_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5947_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > nat,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5948_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > nat,G: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5949_sum__strict__mono__ex1,axiom,
! [A2: set_nat,F: nat > int,G: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ord_less_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5950_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > int,G: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ord_less_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5951_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > int,G: int > int] :
( ( finite_finite_int @ A2 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_int @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_5952_sum_Orelated,axiom,
! [R: complex > complex > $o,S3: set_nat,H2: nat > complex,G: nat > complex] :
( ( R @ zero_zero_complex @ zero_zero_complex )
=> ( ! [X16: complex,Y15: complex,X23: complex,Y23: complex] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_complex @ X16 @ Y15 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups2073611262835488442omplex @ H2 @ S3 ) @ ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5953_sum_Orelated,axiom,
! [R: complex > complex > $o,S3: set_int,H2: int > complex,G: int > complex] :
( ( R @ zero_zero_complex @ zero_zero_complex )
=> ( ! [X16: complex,Y15: complex,X23: complex,Y23: complex] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_complex @ X16 @ Y15 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups3049146728041665814omplex @ H2 @ S3 ) @ ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5954_sum_Orelated,axiom,
! [R: real > real > $o,S3: set_int,H2: int > real,G: int > real] :
( ( R @ zero_zero_real @ zero_zero_real )
=> ( ! [X16: real,Y15: real,X23: real,Y23: real] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_real @ X16 @ Y15 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups8778361861064173332t_real @ H2 @ S3 ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5955_sum_Orelated,axiom,
! [R: real > real > $o,S3: set_complex,H2: complex > real,G: complex > real] :
( ( R @ zero_zero_real @ zero_zero_real )
=> ( ! [X16: real,Y15: real,X23: real,Y23: real] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_real @ X16 @ Y15 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups5808333547571424918x_real @ H2 @ S3 ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5956_sum_Orelated,axiom,
! [R: rat > rat > $o,S3: set_nat,H2: nat > rat,G: nat > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X16: rat,Y15: rat,X23: rat,Y23: rat] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups2906978787729119204at_rat @ H2 @ S3 ) @ ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5957_sum_Orelated,axiom,
! [R: rat > rat > $o,S3: set_int,H2: int > rat,G: int > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X16: rat,Y15: rat,X23: rat,Y23: rat] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups3906332499630173760nt_rat @ H2 @ S3 ) @ ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5958_sum_Orelated,axiom,
! [R: rat > rat > $o,S3: set_complex,H2: complex > rat,G: complex > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X16: rat,Y15: rat,X23: rat,Y23: rat] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups5058264527183730370ex_rat @ H2 @ S3 ) @ ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5959_sum_Orelated,axiom,
! [R: nat > nat > $o,S3: set_int,H2: int > nat,G: int > nat] :
( ( R @ zero_zero_nat @ zero_zero_nat )
=> ( ! [X16: nat,Y15: nat,X23: nat,Y23: nat] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_nat @ X16 @ Y15 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups4541462559716669496nt_nat @ H2 @ S3 ) @ ( groups4541462559716669496nt_nat @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5960_sum_Orelated,axiom,
! [R: nat > nat > $o,S3: set_complex,H2: complex > nat,G: complex > nat] :
( ( R @ zero_zero_nat @ zero_zero_nat )
=> ( ! [X16: nat,Y15: nat,X23: nat,Y23: nat] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_nat @ X16 @ Y15 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups5693394587270226106ex_nat @ H2 @ S3 ) @ ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5961_sum_Orelated,axiom,
! [R: int > int > $o,S3: set_nat,H2: nat > int,G: nat > int] :
( ( R @ zero_zero_int @ zero_zero_int )
=> ( ! [X16: int,Y15: int,X23: int,Y23: int] :
( ( ( R @ X16 @ X23 )
& ( R @ Y15 @ Y23 ) )
=> ( R @ ( plus_plus_int @ X16 @ Y15 ) @ ( plus_plus_int @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S3 )
=> ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R @ ( groups3539618377306564664at_int @ H2 @ S3 ) @ ( groups3539618377306564664at_int @ G @ S3 ) ) ) ) ) ) ).
% sum.related
thf(fact_5962_sum__strict__mono,axiom,
! [A2: set_complex,F: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( A2 != bot_bot_set_complex )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5963_sum__strict__mono,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5964_sum__strict__mono,axiom,
! [A2: set_real,F: real > real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5965_sum__strict__mono,axiom,
! [A2: set_complex,F: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( A2 != bot_bot_set_complex )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5966_sum__strict__mono,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5967_sum__strict__mono,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5968_sum__strict__mono,axiom,
! [A2: set_real,F: real > rat,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5969_sum__strict__mono,axiom,
! [A2: set_complex,F: complex > nat,G: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( A2 != bot_bot_set_complex )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5970_sum__strict__mono,axiom,
! [A2: set_int,F: int > nat,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5971_sum__strict__mono,axiom,
! [A2: set_real,F: real > nat,G: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_5972_ln__bound,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).
% ln_bound
thf(fact_5973_ln__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).
% ln_gt_zero
thf(fact_5974_ln__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).
% ln_less_zero
thf(fact_5975_ln__gt__zero__imp__gt__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ one_one_real @ X ) ) ) ).
% ln_gt_zero_imp_gt_one
thf(fact_5976_ln__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).
% ln_ge_zero
thf(fact_5977_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_real,S3: set_real,I4: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_real @ ( I4 @ B4 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S3 )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5978_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_int,S3: set_real,I4: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_real @ ( I4 @ B4 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S3 )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5979_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_real,S3: set_int,I4: real > int,J: int > real,T3: set_real,G: int > complex,H2: real > complex] :
( ( finite_finite_int @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_int @ ( I4 @ B4 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S3 )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5980_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_int,S3: set_int,I4: int > int,J: int > int,T3: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_int @ ( I4 @ B4 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S3 )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5981_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_real,S3: set_real,I4: real > real,J: real > real,T3: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_real @ ( I4 @ B4 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ S3 )
= ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5982_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_int,S3: set_real,I4: int > real,J: real > int,T3: set_int,G: real > real,H2: int > real] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_real @ ( I4 @ B4 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ S3 )
= ( groups8778361861064173332t_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5983_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_complex,S3: set_real,I4: complex > real,J: real > complex,T3: set_complex,G: real > real,H2: complex > real] :
( ( finite_finite_real @ S4 )
=> ( ( finite3207457112153483333omplex @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S3 @ S4 ) )
=> ( member_complex @ ( J @ A4 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( member_real @ ( I4 @ B4 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ S3 )
= ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5984_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_real,S3: set_int,I4: real > int,J: int > real,T3: set_real,G: int > real,H2: real > real] :
( ( finite_finite_int @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_int @ ( I4 @ B4 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups8778361861064173332t_real @ G @ S3 )
= ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5985_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_int,S3: set_int,I4: int > int,J: int > int,T3: set_int,G: int > real,H2: int > real] :
( ( finite_finite_int @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_int @ ( I4 @ B4 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups8778361861064173332t_real @ G @ S3 )
= ( groups8778361861064173332t_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5986_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_complex,S3: set_int,I4: complex > int,J: int > complex,T3: set_complex,G: int > real,H2: complex > real] :
( ( finite_finite_int @ S4 )
=> ( ( finite3207457112153483333omplex @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S3 @ S4 ) )
=> ( member_complex @ ( J @ A4 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( ( J @ ( I4 @ B4 ) )
= B4 ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( member_int @ ( I4 @ B4 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S3 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups8778361861064173332t_real @ G @ S3 )
= ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_5987_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).
% neg_numeral_le_zero
thf(fact_5988_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_le_zero
thf(fact_5989_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).
% neg_numeral_le_zero
thf(fact_5990_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).
% neg_numeral_le_zero
thf(fact_5991_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5992_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5993_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5994_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5995_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5996_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5997_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5998_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5999_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).
% neg_numeral_less_zero
thf(fact_6000_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).
% neg_numeral_less_zero
thf(fact_6001_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).
% neg_numeral_less_zero
thf(fact_6002_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_less_zero
thf(fact_6003_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(3)
thf(fact_6004_le__minus__one__simps_I3_J,axiom,
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(3)
thf(fact_6005_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(3)
thf(fact_6006_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(3)
thf(fact_6007_le__minus__one__simps_I1_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% le_minus_one_simps(1)
thf(fact_6008_le__minus__one__simps_I1_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% le_minus_one_simps(1)
thf(fact_6009_le__minus__one__simps_I1_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% le_minus_one_simps(1)
thf(fact_6010_le__minus__one__simps_I1_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% le_minus_one_simps(1)
thf(fact_6011_less__minus__one__simps_I1_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% less_minus_one_simps(1)
thf(fact_6012_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_6013_less__minus__one__simps_I1_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% less_minus_one_simps(1)
thf(fact_6014_less__minus__one__simps_I1_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% less_minus_one_simps(1)
thf(fact_6015_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(3)
thf(fact_6016_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_6017_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(3)
thf(fact_6018_less__minus__one__simps_I3_J,axiom,
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(3)
thf(fact_6019_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_le_one
thf(fact_6020_neg__numeral__le__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_le_one
thf(fact_6021_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_le_one
thf(fact_6022_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_le_one
thf(fact_6023_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_le_numeral
thf(fact_6024_neg__one__le__numeral,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_le_numeral
thf(fact_6025_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_le_numeral
thf(fact_6026_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_le_numeral
thf(fact_6027_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% neg_numeral_le_neg_one
thf(fact_6028_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% neg_numeral_le_neg_one
thf(fact_6029_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% neg_numeral_le_neg_one
thf(fact_6030_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% neg_numeral_le_neg_one
thf(fact_6031_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_le_neg_one
thf(fact_6032_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_le_neg_one
thf(fact_6033_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_le_neg_one
thf(fact_6034_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_le_neg_one
thf(fact_6035_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_6036_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_6037_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_6038_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_6039_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_6040_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_6041_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_6042_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_6043_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_6044_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_6045_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_6046_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_6047_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_less_neg_one
thf(fact_6048_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_less_neg_one
thf(fact_6049_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_less_neg_one
thf(fact_6050_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_less_neg_one
thf(fact_6051_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_less_numeral
thf(fact_6052_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_less_numeral
thf(fact_6053_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_less_numeral
thf(fact_6054_neg__one__less__numeral,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_less_numeral
thf(fact_6055_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_less_one
thf(fact_6056_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_less_one
thf(fact_6057_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_less_one
thf(fact_6058_neg__numeral__less__one,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_less_one
thf(fact_6059_nonzero__neg__divide__eq__eq2,axiom,
! [B: real,C: real,A: real] :
( ( B != zero_zero_real )
=> ( ( C
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
= ( ( times_times_real @ C @ B )
= ( uminus_uminus_real @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_6060_nonzero__neg__divide__eq__eq2,axiom,
! [B: complex,C: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( C
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ( times_times_complex @ C @ B )
= ( uminus1482373934393186551omplex @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_6061_nonzero__neg__divide__eq__eq2,axiom,
! [B: rat,C: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( C
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
= ( ( times_times_rat @ C @ B )
= ( uminus_uminus_rat @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_6062_nonzero__neg__divide__eq__eq,axiom,
! [B: real,A: real,C: real] :
( ( B != zero_zero_real )
=> ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= C )
= ( ( uminus_uminus_real @ A )
= ( times_times_real @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_6063_nonzero__neg__divide__eq__eq,axiom,
! [B: complex,A: complex,C: complex] :
( ( B != zero_zero_complex )
=> ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= C )
= ( ( uminus1482373934393186551omplex @ A )
= ( times_times_complex @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_6064_nonzero__neg__divide__eq__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( B != zero_zero_rat )
=> ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= C )
= ( ( uminus_uminus_rat @ A )
= ( times_times_rat @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_6065_minus__divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
= A )
= ( ( ( C != zero_zero_real )
=> ( ( uminus_uminus_real @ B )
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_6066_minus__divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
= A )
= ( ( ( C != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ B )
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_6067_minus__divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
= A )
= ( ( ( C != zero_zero_rat )
=> ( ( uminus_uminus_rat @ B )
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_6068_eq__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= ( uminus_uminus_real @ B ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_6069_eq__minus__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_6070_eq__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= ( uminus_uminus_rat @ B ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_6071_mult__1s__ring__1_I1_J,axiom,
! [B: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_6072_mult__1s__ring__1_I1_J,axiom,
! [B: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_6073_mult__1s__ring__1_I1_J,axiom,
! [B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_6074_mult__1s__ring__1_I1_J,axiom,
! [B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_6075_mult__1s__ring__1_I1_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_6076_mult__1s__ring__1_I2_J,axiom,
! [B: real] :
( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_6077_mult__1s__ring__1_I2_J,axiom,
! [B: int] :
( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_6078_mult__1s__ring__1_I2_J,axiom,
! [B: complex] :
( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
= ( uminus1482373934393186551omplex @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_6079_mult__1s__ring__1_I2_J,axiom,
! [B: rat] :
( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_6080_mult__1s__ring__1_I2_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_6081_divide__eq__minus__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= ( uminus_uminus_real @ one_one_real ) )
= ( ( B != zero_zero_real )
& ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_6082_divide__eq__minus__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( ( B != zero_zero_complex )
& ( A
= ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_6083_divide__eq__minus__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( ( B != zero_zero_rat )
& ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_6084_uminus__numeral__One,axiom,
( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% uminus_numeral_One
thf(fact_6085_uminus__numeral__One,axiom,
( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% uminus_numeral_One
thf(fact_6086_uminus__numeral__One,axiom,
( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% uminus_numeral_One
thf(fact_6087_uminus__numeral__One,axiom,
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% uminus_numeral_One
thf(fact_6088_uminus__numeral__One,axiom,
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% uminus_numeral_One
thf(fact_6089_power__minus,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).
% power_minus
thf(fact_6090_power__minus,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).
% power_minus
thf(fact_6091_power__minus,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ A @ N ) ) ) ).
% power_minus
thf(fact_6092_power__minus,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ A @ N ) ) ) ).
% power_minus
thf(fact_6093_power__minus,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_minus
thf(fact_6094_power__minus__Bit0,axiom,
! [X: real,K: num] :
( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_6095_power__minus__Bit0,axiom,
! [X: int,K: num] :
( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_6096_power__minus__Bit0,axiom,
! [X: complex,K: num] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_6097_power__minus__Bit0,axiom,
! [X: rat,K: num] :
( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_6098_power__minus__Bit0,axiom,
! [X: code_integer,K: num] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_6099_sum__nonneg__leq__bound,axiom,
! [S2: set_real,F: real > real,B2: real,I4: real] :
( ( finite_finite_real @ S2 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ S2 )
= B2 )
=> ( ( member_real @ I4 @ S2 )
=> ( ord_less_eq_real @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6100_sum__nonneg__leq__bound,axiom,
! [S2: set_int,F: int > real,B2: real,I4: int] :
( ( finite_finite_int @ S2 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ S2 )
= B2 )
=> ( ( member_int @ I4 @ S2 )
=> ( ord_less_eq_real @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6101_sum__nonneg__leq__bound,axiom,
! [S2: set_complex,F: complex > real,B2: real,I4: complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ S2 )
= B2 )
=> ( ( member_complex @ I4 @ S2 )
=> ( ord_less_eq_real @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6102_sum__nonneg__leq__bound,axiom,
! [S2: set_real,F: real > rat,B2: rat,I4: real] :
( ( finite_finite_real @ S2 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ S2 )
= B2 )
=> ( ( member_real @ I4 @ S2 )
=> ( ord_less_eq_rat @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6103_sum__nonneg__leq__bound,axiom,
! [S2: set_nat,F: nat > rat,B2: rat,I4: nat] :
( ( finite_finite_nat @ S2 )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ S2 )
= B2 )
=> ( ( member_nat @ I4 @ S2 )
=> ( ord_less_eq_rat @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6104_sum__nonneg__leq__bound,axiom,
! [S2: set_int,F: int > rat,B2: rat,I4: int] :
( ( finite_finite_int @ S2 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ S2 )
= B2 )
=> ( ( member_int @ I4 @ S2 )
=> ( ord_less_eq_rat @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6105_sum__nonneg__leq__bound,axiom,
! [S2: set_complex,F: complex > rat,B2: rat,I4: complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ S2 )
= B2 )
=> ( ( member_complex @ I4 @ S2 )
=> ( ord_less_eq_rat @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6106_sum__nonneg__leq__bound,axiom,
! [S2: set_real,F: real > nat,B2: nat,I4: real] :
( ( finite_finite_real @ S2 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ( ( groups1935376822645274424al_nat @ F @ S2 )
= B2 )
=> ( ( member_real @ I4 @ S2 )
=> ( ord_less_eq_nat @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6107_sum__nonneg__leq__bound,axiom,
! [S2: set_int,F: int > nat,B2: nat,I4: int] :
( ( finite_finite_int @ S2 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ( ( groups4541462559716669496nt_nat @ F @ S2 )
= B2 )
=> ( ( member_int @ I4 @ S2 )
=> ( ord_less_eq_nat @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6108_sum__nonneg__leq__bound,axiom,
! [S2: set_complex,F: complex > nat,B2: nat,I4: complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ( ( groups5693394587270226106ex_nat @ F @ S2 )
= B2 )
=> ( ( member_complex @ I4 @ S2 )
=> ( ord_less_eq_nat @ ( F @ I4 ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6109_sum__nonneg__0,axiom,
! [S2: set_real,F: real > real,I4: real] :
( ( finite_finite_real @ S2 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ S2 )
= zero_zero_real )
=> ( ( member_real @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6110_sum__nonneg__0,axiom,
! [S2: set_int,F: int > real,I4: int] :
( ( finite_finite_int @ S2 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ S2 )
= zero_zero_real )
=> ( ( member_int @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6111_sum__nonneg__0,axiom,
! [S2: set_complex,F: complex > real,I4: complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ S2 )
= zero_zero_real )
=> ( ( member_complex @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6112_sum__nonneg__0,axiom,
! [S2: set_real,F: real > rat,I4: real] :
( ( finite_finite_real @ S2 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ S2 )
= zero_zero_rat )
=> ( ( member_real @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6113_sum__nonneg__0,axiom,
! [S2: set_nat,F: nat > rat,I4: nat] :
( ( finite_finite_nat @ S2 )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ S2 )
= zero_zero_rat )
=> ( ( member_nat @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6114_sum__nonneg__0,axiom,
! [S2: set_int,F: int > rat,I4: int] :
( ( finite_finite_int @ S2 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ S2 )
= zero_zero_rat )
=> ( ( member_int @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6115_sum__nonneg__0,axiom,
! [S2: set_complex,F: complex > rat,I4: complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ S2 )
= zero_zero_rat )
=> ( ( member_complex @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6116_sum__nonneg__0,axiom,
! [S2: set_real,F: real > nat,I4: real] :
( ( finite_finite_real @ S2 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ( ( groups1935376822645274424al_nat @ F @ S2 )
= zero_zero_nat )
=> ( ( member_real @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_nat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6117_sum__nonneg__0,axiom,
! [S2: set_int,F: int > nat,I4: int] :
( ( finite_finite_int @ S2 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ( ( groups4541462559716669496nt_nat @ F @ S2 )
= zero_zero_nat )
=> ( ( member_int @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_nat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6118_sum__nonneg__0,axiom,
! [S2: set_complex,F: complex > nat,I4: complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ( ( groups5693394587270226106ex_nat @ F @ S2 )
= zero_zero_nat )
=> ( ( member_complex @ I4 @ S2 )
=> ( ( F @ I4 )
= zero_zero_nat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6119_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > complex] :
( ( finite_finite_real @ A2 )
=> ( ( groups5754745047067104278omplex @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_complex ) ) ) )
= ( groups5754745047067104278omplex @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6120_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_complex ) ) ) )
= ( groups3049146728041665814omplex @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6121_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( groups8097168146408367636l_real @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_real ) ) ) )
= ( groups8097168146408367636l_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6122_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_real ) ) ) )
= ( groups8778361861064173332t_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6123_sum_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X2: complex] :
( ( G @ X2 )
= zero_zero_real ) ) ) )
= ( groups5808333547571424918x_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6124_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( groups1300246762558778688al_rat @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_rat ) ) ) )
= ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6125_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_rat ) ) ) )
= ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6126_sum_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X2: complex] :
( ( G @ X2 )
= zero_zero_rat ) ) ) )
= ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6127_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( groups1935376822645274424al_nat @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_nat ) ) ) )
= ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6128_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( groups4541462559716669496nt_nat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_nat ) ) ) )
= ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6129_real__0__less__add__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y3 ) )
= ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y3 ) ) ).
% real_0_less_add_iff
thf(fact_6130_real__add__less__0__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y3 ) @ zero_zero_real )
= ( ord_less_real @ Y3 @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_6131_real__0__le__add__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y3 ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y3 ) ) ).
% real_0_le_add_iff
thf(fact_6132_real__add__le__0__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y3 ) @ zero_zero_real )
= ( ord_less_eq_real @ Y3 @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_6133_zmod__zminus2__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).
% zmod_zminus2_eq_if
thf(fact_6134_zmod__zminus1__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% zmod_zminus1_eq_if
thf(fact_6135_sum__pos2,axiom,
! [I5: set_real,I4: real,F: real > real] :
( ( finite_finite_real @ I5 )
=> ( ( member_real @ I4 @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I4 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6136_sum__pos2,axiom,
! [I5: set_int,I4: int,F: int > real] :
( ( finite_finite_int @ I5 )
=> ( ( member_int @ I4 @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I4 ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6137_sum__pos2,axiom,
! [I5: set_complex,I4: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( member_complex @ I4 @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I4 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6138_sum__pos2,axiom,
! [I5: set_real,I4: real,F: real > rat] :
( ( finite_finite_real @ I5 )
=> ( ( member_real @ I4 @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I4 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6139_sum__pos2,axiom,
! [I5: set_nat,I4: nat,F: nat > rat] :
( ( finite_finite_nat @ I5 )
=> ( ( member_nat @ I4 @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I4 ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6140_sum__pos2,axiom,
! [I5: set_int,I4: int,F: int > rat] :
( ( finite_finite_int @ I5 )
=> ( ( member_int @ I4 @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I4 ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6141_sum__pos2,axiom,
! [I5: set_complex,I4: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( member_complex @ I4 @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I4 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6142_sum__pos2,axiom,
! [I5: set_real,I4: real,F: real > nat] :
( ( finite_finite_real @ I5 )
=> ( ( member_real @ I4 @ I5 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I4 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6143_sum__pos2,axiom,
! [I5: set_int,I4: int,F: int > nat] :
( ( finite_finite_int @ I5 )
=> ( ( member_int @ I4 @ I5 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I4 ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6144_sum__pos2,axiom,
! [I5: set_complex,I4: complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( member_complex @ I4 @ I5 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I4 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6145_sum__pos,axiom,
! [I5: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( I5 != bot_bot_set_complex )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6146_sum__pos,axiom,
! [I5: set_int,F: int > real] :
( ( finite_finite_int @ I5 )
=> ( ( I5 != bot_bot_set_int )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6147_sum__pos,axiom,
! [I5: set_real,F: real > real] :
( ( finite_finite_real @ I5 )
=> ( ( I5 != bot_bot_set_real )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6148_sum__pos,axiom,
! [I5: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( I5 != bot_bot_set_complex )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6149_sum__pos,axiom,
! [I5: set_nat,F: nat > rat] :
( ( finite_finite_nat @ I5 )
=> ( ( I5 != bot_bot_set_nat )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6150_sum__pos,axiom,
! [I5: set_int,F: int > rat] :
( ( finite_finite_int @ I5 )
=> ( ( I5 != bot_bot_set_int )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6151_sum__pos,axiom,
! [I5: set_real,F: real > rat] :
( ( finite_finite_real @ I5 )
=> ( ( I5 != bot_bot_set_real )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6152_sum__pos,axiom,
! [I5: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( I5 != bot_bot_set_complex )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6153_sum__pos,axiom,
! [I5: set_int,F: int > nat] :
( ( finite_finite_int @ I5 )
=> ( ( I5 != bot_bot_set_int )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6154_sum__pos,axiom,
! [I5: set_real,F: real > nat] :
( ( finite_finite_real @ I5 )
=> ( ( I5 != bot_bot_set_real )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ I5 ) ) ) ) ) ).
% sum_pos
thf(fact_6155_ln__ge__zero__imp__ge__one,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ one_one_real @ X ) ) ) ).
% ln_ge_zero_imp_ge_one
thf(fact_6156_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S3: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_complex ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ T3 )
= ( groups5754745047067104278omplex @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6157_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S3: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_real ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ T3 )
= ( groups8097168146408367636l_real @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6158_sum_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_real ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5808333547571424918x_real @ G @ T3 )
= ( groups5808333547571424918x_real @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6159_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S3: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1300246762558778688al_rat @ G @ T3 )
= ( groups1300246762558778688al_rat @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6160_sum_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5058264527183730370ex_rat @ G @ T3 )
= ( groups5058264527183730370ex_rat @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6161_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S3: set_real,G: real > nat,H2: real > nat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_nat ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1935376822645274424al_nat @ G @ T3 )
= ( groups1935376822645274424al_nat @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6162_sum_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > nat,H2: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_nat ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5693394587270226106ex_nat @ G @ T3 )
= ( groups5693394587270226106ex_nat @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6163_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S3: set_real,G: real > int,H2: real > int] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_int ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1932886352136224148al_int @ G @ T3 )
= ( groups1932886352136224148al_int @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6164_sum_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > int,H2: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_int ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5690904116761175830ex_int @ G @ T3 )
= ( groups5690904116761175830ex_int @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6165_sum_Omono__neutral__cong__right,axiom,
! [T3: set_nat,S3: set_nat,G: nat > complex,H2: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_complex ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups2073611262835488442omplex @ G @ T3 )
= ( groups2073611262835488442omplex @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6166_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S3: set_real,H2: real > complex,G: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_complex ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S3 )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6167_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S3: set_real,H2: real > real,G: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_real ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ S3 )
= ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6168_sum_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S3: set_complex,H2: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_real ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5808333547571424918x_real @ G @ S3 )
= ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6169_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S3: set_real,H2: real > rat,G: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_rat ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1300246762558778688al_rat @ G @ S3 )
= ( groups1300246762558778688al_rat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6170_sum_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S3: set_complex,H2: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_rat ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5058264527183730370ex_rat @ G @ S3 )
= ( groups5058264527183730370ex_rat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6171_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S3: set_real,H2: real > nat,G: real > nat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_nat ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1935376822645274424al_nat @ G @ S3 )
= ( groups1935376822645274424al_nat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6172_sum_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S3: set_complex,H2: complex > nat,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_nat ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5693394587270226106ex_nat @ G @ S3 )
= ( groups5693394587270226106ex_nat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6173_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S3: set_real,H2: real > int,G: real > int] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S3 @ T3 )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_int ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1932886352136224148al_int @ G @ S3 )
= ( groups1932886352136224148al_int @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6174_sum_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S3: set_complex,H2: complex > int,G: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_int ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups5690904116761175830ex_int @ G @ S3 )
= ( groups5690904116761175830ex_int @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6175_sum_Omono__neutral__cong__left,axiom,
! [T3: set_nat,S3: set_nat,H2: nat > complex,G: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( H2 @ X5 )
= zero_zero_complex ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups2073611262835488442omplex @ G @ S3 )
= ( groups2073611262835488442omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6176_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_real ) )
=> ( ( groups5808333547571424918x_real @ G @ T3 )
= ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6177_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ( groups5058264527183730370ex_rat @ G @ T3 )
= ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6178_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_nat ) )
=> ( ( groups5693394587270226106ex_nat @ G @ T3 )
= ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6179_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S3: set_complex,G: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_int ) )
=> ( ( groups5690904116761175830ex_int @ G @ T3 )
= ( groups5690904116761175830ex_int @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6180_sum_Omono__neutral__right,axiom,
! [T3: set_nat,S3: set_nat,G: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_complex ) )
=> ( ( groups2073611262835488442omplex @ G @ T3 )
= ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6181_sum_Omono__neutral__right,axiom,
! [T3: set_nat,S3: set_nat,G: nat > rat] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ( groups2906978787729119204at_rat @ G @ T3 )
= ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6182_sum_Omono__neutral__right,axiom,
! [T3: set_nat,S3: set_nat,G: nat > int] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_int ) )
=> ( ( groups3539618377306564664at_int @ G @ T3 )
= ( groups3539618377306564664at_int @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6183_sum_Omono__neutral__right,axiom,
! [T3: set_int,S3: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S3 @ T3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_complex ) )
=> ( ( groups3049146728041665814omplex @ G @ T3 )
= ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6184_sum_Omono__neutral__right,axiom,
! [T3: set_int,S3: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S3 @ T3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_real ) )
=> ( ( groups8778361861064173332t_real @ G @ T3 )
= ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6185_sum_Omono__neutral__right,axiom,
! [T3: set_int,S3: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S3 @ T3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ( groups3906332499630173760nt_rat @ G @ T3 )
= ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6186_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S3: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_real ) )
=> ( ( groups5808333547571424918x_real @ G @ S3 )
= ( groups5808333547571424918x_real @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6187_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S3: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ( groups5058264527183730370ex_rat @ G @ S3 )
= ( groups5058264527183730370ex_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6188_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S3: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_nat ) )
=> ( ( groups5693394587270226106ex_nat @ G @ S3 )
= ( groups5693394587270226106ex_nat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6189_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S3: set_complex,G: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S3 @ T3 )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_int ) )
=> ( ( groups5690904116761175830ex_int @ G @ S3 )
= ( groups5690904116761175830ex_int @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6190_sum_Omono__neutral__left,axiom,
! [T3: set_nat,S3: set_nat,G: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_complex ) )
=> ( ( groups2073611262835488442omplex @ G @ S3 )
= ( groups2073611262835488442omplex @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6191_sum_Omono__neutral__left,axiom,
! [T3: set_nat,S3: set_nat,G: nat > rat] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ( groups2906978787729119204at_rat @ G @ S3 )
= ( groups2906978787729119204at_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6192_sum_Omono__neutral__left,axiom,
! [T3: set_nat,S3: set_nat,G: nat > int] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S3 @ T3 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_int ) )
=> ( ( groups3539618377306564664at_int @ G @ S3 )
= ( groups3539618377306564664at_int @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6193_sum_Omono__neutral__left,axiom,
! [T3: set_int,S3: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S3 @ T3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_complex ) )
=> ( ( groups3049146728041665814omplex @ G @ S3 )
= ( groups3049146728041665814omplex @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6194_sum_Omono__neutral__left,axiom,
! [T3: set_int,S3: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S3 @ T3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_real ) )
=> ( ( groups8778361861064173332t_real @ G @ S3 )
= ( groups8778361861064173332t_real @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6195_sum_Omono__neutral__left,axiom,
! [T3: set_int,S3: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S3 @ T3 )
=> ( ! [X5: int] :
( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
=> ( ( G @ X5 )
= zero_zero_rat ) )
=> ( ( groups3906332499630173760nt_rat @ G @ S3 )
= ( groups3906332499630173760nt_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6196_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups5754745047067104278omplex @ G @ C4 )
= ( groups5754745047067104278omplex @ H2 @ C4 ) )
=> ( ( groups5754745047067104278omplex @ G @ A2 )
= ( groups5754745047067104278omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6197_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups8097168146408367636l_real @ G @ C4 )
= ( groups8097168146408367636l_real @ H2 @ C4 ) )
=> ( ( groups8097168146408367636l_real @ G @ A2 )
= ( groups8097168146408367636l_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6198_sum_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups5808333547571424918x_real @ G @ C4 )
= ( groups5808333547571424918x_real @ H2 @ C4 ) )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= ( groups5808333547571424918x_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6199_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups1300246762558778688al_rat @ G @ C4 )
= ( groups1300246762558778688al_rat @ H2 @ C4 ) )
=> ( ( groups1300246762558778688al_rat @ G @ A2 )
= ( groups1300246762558778688al_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6200_sum_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups5058264527183730370ex_rat @ G @ C4 )
= ( groups5058264527183730370ex_rat @ H2 @ C4 ) )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( groups5058264527183730370ex_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6201_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > nat,H2: real > nat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups1935376822645274424al_nat @ G @ C4 )
= ( groups1935376822645274424al_nat @ H2 @ C4 ) )
=> ( ( groups1935376822645274424al_nat @ G @ A2 )
= ( groups1935376822645274424al_nat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6202_sum_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > nat,H2: complex > nat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups5693394587270226106ex_nat @ G @ C4 )
= ( groups5693394587270226106ex_nat @ H2 @ C4 ) )
=> ( ( groups5693394587270226106ex_nat @ G @ A2 )
= ( groups5693394587270226106ex_nat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6203_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > int,H2: real > int] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_int ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_int ) )
=> ( ( ( groups1932886352136224148al_int @ G @ C4 )
= ( groups1932886352136224148al_int @ H2 @ C4 ) )
=> ( ( groups1932886352136224148al_int @ G @ A2 )
= ( groups1932886352136224148al_int @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6204_sum_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > int,H2: complex > int] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_int ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_int ) )
=> ( ( ( groups5690904116761175830ex_int @ G @ C4 )
= ( groups5690904116761175830ex_int @ H2 @ C4 ) )
=> ( ( groups5690904116761175830ex_int @ G @ A2 )
= ( groups5690904116761175830ex_int @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6205_sum_Osame__carrierI,axiom,
! [C4: set_nat,A2: set_nat,B2: set_nat,G: nat > complex,H2: nat > complex] :
( ( finite_finite_nat @ C4 )
=> ( ( ord_less_eq_set_nat @ A2 @ C4 )
=> ( ( ord_less_eq_set_nat @ B2 @ C4 )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ ( minus_minus_set_nat @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ ( minus_minus_set_nat @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups2073611262835488442omplex @ G @ C4 )
= ( groups2073611262835488442omplex @ H2 @ C4 ) )
=> ( ( groups2073611262835488442omplex @ G @ A2 )
= ( groups2073611262835488442omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6206_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups5754745047067104278omplex @ G @ A2 )
= ( groups5754745047067104278omplex @ H2 @ B2 ) )
= ( ( groups5754745047067104278omplex @ G @ C4 )
= ( groups5754745047067104278omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6207_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups8097168146408367636l_real @ G @ A2 )
= ( groups8097168146408367636l_real @ H2 @ B2 ) )
= ( ( groups8097168146408367636l_real @ G @ C4 )
= ( groups8097168146408367636l_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6208_sum_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups5808333547571424918x_real @ G @ A2 )
= ( groups5808333547571424918x_real @ H2 @ B2 ) )
= ( ( groups5808333547571424918x_real @ G @ C4 )
= ( groups5808333547571424918x_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6209_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups1300246762558778688al_rat @ G @ A2 )
= ( groups1300246762558778688al_rat @ H2 @ B2 ) )
= ( ( groups1300246762558778688al_rat @ G @ C4 )
= ( groups1300246762558778688al_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6210_sum_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( groups5058264527183730370ex_rat @ H2 @ B2 ) )
= ( ( groups5058264527183730370ex_rat @ G @ C4 )
= ( groups5058264527183730370ex_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6211_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > nat,H2: real > nat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups1935376822645274424al_nat @ G @ A2 )
= ( groups1935376822645274424al_nat @ H2 @ B2 ) )
= ( ( groups1935376822645274424al_nat @ G @ C4 )
= ( groups1935376822645274424al_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6212_sum_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > nat,H2: complex > nat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups5693394587270226106ex_nat @ G @ A2 )
= ( groups5693394587270226106ex_nat @ H2 @ B2 ) )
= ( ( groups5693394587270226106ex_nat @ G @ C4 )
= ( groups5693394587270226106ex_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6213_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > int,H2: real > int] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_int ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_int ) )
=> ( ( ( groups1932886352136224148al_int @ G @ A2 )
= ( groups1932886352136224148al_int @ H2 @ B2 ) )
= ( ( groups1932886352136224148al_int @ G @ C4 )
= ( groups1932886352136224148al_int @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6214_sum_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > int,H2: complex > int] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_int ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_int ) )
=> ( ( ( groups5690904116761175830ex_int @ G @ A2 )
= ( groups5690904116761175830ex_int @ H2 @ B2 ) )
= ( ( groups5690904116761175830ex_int @ G @ C4 )
= ( groups5690904116761175830ex_int @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6215_sum_Osame__carrier,axiom,
! [C4: set_nat,A2: set_nat,B2: set_nat,G: nat > complex,H2: nat > complex] :
( ( finite_finite_nat @ C4 )
=> ( ( ord_less_eq_set_nat @ A2 @ C4 )
=> ( ( ord_less_eq_set_nat @ B2 @ C4 )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ ( minus_minus_set_nat @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ ( minus_minus_set_nat @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups2073611262835488442omplex @ G @ A2 )
= ( groups2073611262835488442omplex @ H2 @ B2 ) )
= ( ( groups2073611262835488442omplex @ G @ C4 )
= ( groups2073611262835488442omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6216_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > real] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= ( plus_plus_real @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5808333547571424918x_real @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6217_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > rat] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5058264527183730370ex_rat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6218_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > nat] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5693394587270226106ex_nat @ G @ A2 )
= ( plus_plus_nat @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5693394587270226106ex_nat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6219_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > int] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5690904116761175830ex_int @ G @ A2 )
= ( plus_plus_int @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5690904116761175830ex_int @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6220_sum_Osubset__diff,axiom,
! [B2: set_nat,A2: set_nat,G: nat > rat] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( groups2906978787729119204at_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups2906978787729119204at_rat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6221_sum_Osubset__diff,axiom,
! [B2: set_nat,A2: set_nat,G: nat > int] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( groups3539618377306564664at_int @ G @ A2 )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups3539618377306564664at_int @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6222_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > real] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ A2 )
= ( plus_plus_real @ ( groups8778361861064173332t_real @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups8778361861064173332t_real @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6223_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > rat] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups3906332499630173760nt_rat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups3906332499630173760nt_rat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6224_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > nat] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups4541462559716669496nt_nat @ G @ A2 )
= ( plus_plus_nat @ ( groups4541462559716669496nt_nat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups4541462559716669496nt_nat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6225_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > int] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups4538972089207619220nt_int @ G @ A2 )
= ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups4538972089207619220nt_int @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6226_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6227_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6228_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6229_sum__diff,axiom,
! [A2: set_nat,B2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups2906978787729119204at_rat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6230_sum__diff,axiom,
! [A2: set_nat,B2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups3539618377306564664at_int @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6231_sum__diff,axiom,
! [A2: set_int,B2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6232_sum__diff,axiom,
! [A2: set_int,B2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6233_sum__diff,axiom,
! [A2: set_int,B2: set_int,F: int > int] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups4538972089207619220nt_int @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6234_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups7754918857620584856omplex @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6235_sum__diff,axiom,
! [A2: set_nat,B2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups6591440286371151544t_real @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6236_ln__add__one__self__le__self,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).
% ln_add_one_self_le_self
thf(fact_6237_ln__mult,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ln_ln_real @ ( times_times_real @ X @ Y3 ) )
= ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y3 ) ) ) ) ) ).
% ln_mult
thf(fact_6238_ln__eq__minus__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ln_ln_real @ X )
= ( minus_minus_real @ X @ one_one_real ) )
=> ( X = one_one_real ) ) ) ).
% ln_eq_minus_one
thf(fact_6239_ln__div,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ln_ln_real @ ( divide_divide_real @ X @ Y3 ) )
= ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y3 ) ) ) ) ) ).
% ln_div
thf(fact_6240_pos__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_6241_pos__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_6242_pos__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_6243_pos__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_6244_neg__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_6245_neg__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_6246_neg__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_6247_neg__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_6248_minus__divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_6249_minus__divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_6250_less__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_6251_less__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_6252_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_6253_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: complex,C: complex] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_6254_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_6255_divide__eq__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_6256_divide__eq__eq__numeral_I2_J,axiom,
! [B: complex,C: complex,W: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_6257_divide__eq__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ( divide_divide_rat @ B @ C )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_6258_minus__divide__add__eq__iff,axiom,
! [Z4: real,X: real,Y3: real] :
( ( Z4 != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z4 ) ) @ Y3 )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_6259_minus__divide__add__eq__iff,axiom,
! [Z4: complex,X: complex,Y3: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z4 ) ) @ Y3 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_6260_minus__divide__add__eq__iff,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( Z4 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z4 ) ) @ Y3 )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_6261_add__divide__eq__if__simps_I3_J,axiom,
! [Z4: real,A: real,B: real] :
( ( ( Z4 = zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z4 ) ) @ B )
= B ) )
& ( ( Z4 != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z4 ) ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_6262_add__divide__eq__if__simps_I3_J,axiom,
! [Z4: complex,A: complex,B: complex] :
( ( ( Z4 = zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z4 ) ) @ B )
= B ) )
& ( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z4 ) ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_6263_add__divide__eq__if__simps_I3_J,axiom,
! [Z4: rat,A: rat,B: rat] :
( ( ( Z4 = zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z4 ) ) @ B )
= B ) )
& ( ( Z4 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z4 ) ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_6264_minus__divide__diff__eq__iff,axiom,
! [Z4: real,X: real,Y3: real] :
( ( Z4 != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z4 ) ) @ Y3 )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_6265_minus__divide__diff__eq__iff,axiom,
! [Z4: complex,X: complex,Y3: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z4 ) ) @ Y3 )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_6266_minus__divide__diff__eq__iff,axiom,
! [Z4: rat,X: rat,Y3: rat] :
( ( Z4 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z4 ) ) @ Y3 )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y3 @ Z4 ) ) @ Z4 ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_6267_add__divide__eq__if__simps_I5_J,axiom,
! [Z4: real,A: real,B: real] :
( ( ( Z4 = zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z4 ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z4 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z4 ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_6268_add__divide__eq__if__simps_I5_J,axiom,
! [Z4: complex,A: complex,B: complex] :
( ( ( Z4 = zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z4 ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z4 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z4 ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_6269_add__divide__eq__if__simps_I5_J,axiom,
! [Z4: rat,A: rat,B: rat] :
( ( ( Z4 = zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z4 ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z4 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z4 ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_6270_add__divide__eq__if__simps_I6_J,axiom,
! [Z4: real,A: real,B: real] :
( ( ( Z4 = zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z4 ) ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z4 != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z4 ) ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_6271_add__divide__eq__if__simps_I6_J,axiom,
! [Z4: complex,A: complex,B: complex] :
( ( ( Z4 = zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z4 ) ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z4 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z4 ) ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_6272_add__divide__eq__if__simps_I6_J,axiom,
! [Z4: rat,A: rat,B: rat] :
( ( ( Z4 = zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z4 ) ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z4 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z4 ) ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z4 ) ) @ Z4 ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_6273_even__minus,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_minus
thf(fact_6274_even__minus,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_minus
thf(fact_6275_power2__eq__iff,axiom,
! [X: real,Y3: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y3 )
| ( X
= ( uminus_uminus_real @ Y3 ) ) ) ) ).
% power2_eq_iff
thf(fact_6276_power2__eq__iff,axiom,
! [X: int,Y3: int] :
( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y3 )
| ( X
= ( uminus_uminus_int @ Y3 ) ) ) ) ).
% power2_eq_iff
thf(fact_6277_power2__eq__iff,axiom,
! [X: complex,Y3: complex] :
( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y3 )
| ( X
= ( uminus1482373934393186551omplex @ Y3 ) ) ) ) ).
% power2_eq_iff
thf(fact_6278_power2__eq__iff,axiom,
! [X: rat,Y3: rat] :
( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y3 )
| ( X
= ( uminus_uminus_rat @ Y3 ) ) ) ) ).
% power2_eq_iff
thf(fact_6279_power2__eq__iff,axiom,
! [X: code_integer,Y3: code_integer] :
( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y3 )
| ( X
= ( uminus1351360451143612070nteger @ Y3 ) ) ) ) ).
% power2_eq_iff
thf(fact_6280_verit__less__mono__div__int2,axiom,
! [A2: int,B2: int,N: int] :
( ( ord_less_eq_int @ A2 @ B2 )
=> ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
=> ( ord_less_eq_int @ ( divide_divide_int @ B2 @ N ) @ ( divide_divide_int @ A2 @ N ) ) ) ) ).
% verit_less_mono_div_int2
thf(fact_6281_div__eq__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% div_eq_minus1
thf(fact_6282_sum__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > real] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
=> ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6283_sum__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6284_sum__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > rat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6285_sum__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
=> ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6286_sum__mono2,axiom,
! [B2: set_nat,A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6287_sum__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > nat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B4 ) ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6288_sum__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B4 ) ) )
=> ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6289_sum__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > int] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ B4 ) ) )
=> ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ A2 ) @ ( groups1932886352136224148al_int @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6290_sum__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ B4 ) ) )
=> ( ord_less_eq_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6291_sum__mono2,axiom,
! [B2: set_nat,A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ B4 ) ) )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6292_ln__le__minus__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).
% ln_le_minus_one
thf(fact_6293_ln__diff__le,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y3 ) ) @ ( divide_divide_real @ ( minus_minus_real @ X @ Y3 ) @ Y3 ) ) ) ) ).
% ln_diff_le
thf(fact_6294_le__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_6295_le__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_6296_minus__divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_6297_minus__divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_6298_neg__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_6299_neg__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_6300_neg__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_6301_neg__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_6302_pos__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_6303_pos__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_6304_pos__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_6305_pos__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_6306_less__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_6307_less__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_6308_divide__less__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_6309_divide__less__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_6310_power2__eq__1__iff,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
= ( ( A = one_one_real )
| ( A
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% power2_eq_1_iff
thf(fact_6311_power2__eq__1__iff,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int )
= ( ( A = one_one_int )
| ( A
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% power2_eq_1_iff
thf(fact_6312_power2__eq__1__iff,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex )
= ( ( A = one_one_complex )
| ( A
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% power2_eq_1_iff
thf(fact_6313_power2__eq__1__iff,axiom,
! [A: rat] :
( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat )
= ( ( A = one_one_rat )
| ( A
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% power2_eq_1_iff
thf(fact_6314_power2__eq__1__iff,axiom,
! [A: code_integer] :
( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_Code_integer )
= ( ( A = one_one_Code_integer )
| ( A
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% power2_eq_1_iff
thf(fact_6315_uminus__power__if,axiom,
! [N: nat,A: real] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_6316_uminus__power__if,axiom,
! [N: nat,A: int] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_6317_uminus__power__if,axiom,
! [N: nat,A: complex] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( power_power_complex @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_6318_uminus__power__if,axiom,
! [N: nat,A: rat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_6319_uminus__power__if,axiom,
! [N: nat,A: code_integer] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_6320_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6321_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6322_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6323_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6324_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N @ K ) )
= ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6325_realpow__square__minus__le,axiom,
! [U2: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% realpow_square_minus_le
thf(fact_6326_ln__one__minus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).
% ln_one_minus_pos_lower_bound
thf(fact_6327_signed__take__bit__int__greater__eq__minus__exp,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ).
% signed_take_bit_int_greater_eq_minus_exp
thf(fact_6328_signed__take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K ) ) ).
% signed_take_bit_int_less_eq_self_iff
thf(fact_6329_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_greater_self_iff
thf(fact_6330_minus__mod__int__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
= ( minus_minus_int @ ( minus_minus_int @ L @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L ) ) ) ) ).
% minus_mod_int_eq
thf(fact_6331_zmod__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( minus_minus_int @ B @ one_one_int ) ) ) ).
% zmod_minus1
thf(fact_6332_sum__strict__mono2,axiom,
! [B2: set_real,A2: set_real,B: real,F: real > real] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ B2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6333_sum__strict__mono2,axiom,
! [B2: set_complex,A2: set_complex,B: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ B2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6334_sum__strict__mono2,axiom,
! [B2: set_real,A2: set_real,B: real,F: real > rat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ B2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6335_sum__strict__mono2,axiom,
! [B2: set_complex,A2: set_complex,B: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ B2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6336_sum__strict__mono2,axiom,
! [B2: set_nat,A2: set_nat,B: nat,F: nat > rat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( member_nat @ B @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ B2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
=> ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6337_sum__strict__mono2,axiom,
! [B2: set_real,A2: set_real,B: real,F: real > nat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ B2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6338_sum__strict__mono2,axiom,
! [B2: set_complex,A2: set_complex,B: complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ B2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
=> ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6339_sum__strict__mono2,axiom,
! [B2: set_real,A2: set_real,B: real,F: real > int] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ B2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ X5 ) ) )
=> ( ord_less_int @ ( groups1932886352136224148al_int @ F @ A2 ) @ ( groups1932886352136224148al_int @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6340_sum__strict__mono2,axiom,
! [B2: set_complex,A2: set_complex,B: complex,F: complex > int] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
=> ( ! [X5: complex] :
( ( member_complex @ X5 @ B2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ X5 ) ) )
=> ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6341_sum__strict__mono2,axiom,
! [B2: set_nat,A2: set_nat,B: nat,F: nat > int] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( member_nat @ B @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ B2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ X5 ) ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6342_zdiv__zminus1__eq__if,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).
% zdiv_zminus1_eq_if
thf(fact_6343_zdiv__zminus2__eq__if,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).
% zdiv_zminus2_eq_if
thf(fact_6344_zminus1__lemma,axiom,
! [A: int,B: int,Q3: int,R2: int] :
( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q3 @ R2 ) )
=> ( ( B != zero_zero_int )
=> ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R2 = zero_zero_int ) @ ( uminus_uminus_int @ Q3 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q3 ) @ one_one_int ) ) @ ( if_int @ ( R2 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R2 ) ) ) ) ) ) ).
% zminus1_lemma
thf(fact_6345_le__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_6346_le__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_6347_divide__le__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_6348_divide__le__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_6349_square__le__1,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).
% square_le_1
thf(fact_6350_square__le__1,axiom,
! [X: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
=> ( ( ord_le3102999989581377725nteger @ X @ one_one_Code_integer )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).
% square_le_1
thf(fact_6351_square__le__1,axiom,
! [X: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X )
=> ( ( ord_less_eq_rat @ X @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).
% square_le_1
thf(fact_6352_square__le__1,axiom,
! [X: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X )
=> ( ( ord_less_eq_int @ X @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% square_le_1
thf(fact_6353_minus__power__mult__self,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_6354_minus__power__mult__self,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_6355_minus__power__mult__self,axiom,
! [A: complex,N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) )
= ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_6356_minus__power__mult__self,axiom,
! [A: rat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
= ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_6357_minus__power__mult__self,axiom,
! [A: code_integer,N: nat] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
= ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_6358_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= one_one_real ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% minus_one_power_iff
thf(fact_6359_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= one_one_int ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% minus_one_power_iff
thf(fact_6360_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= one_one_complex ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% minus_one_power_iff
thf(fact_6361_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= one_one_rat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% minus_one_power_iff
thf(fact_6362_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= one_one_Code_integer ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% minus_one_power_iff
thf(fact_6363_signed__take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_ri631733984087533419it_int @ N @ K )
= K )
= ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_eq_self_iff
thf(fact_6364_signed__take__bit__int__eq__self,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_ri631733984087533419it_int @ N @ K )
= K ) ) ) ).
% signed_take_bit_int_eq_self
thf(fact_6365_minus__1__div__exp__eq__int,axiom,
! [N: nat] :
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_exp_eq_int
thf(fact_6366_div__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( divide_divide_int @ K @ L )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% div_pos_neg_trivial
thf(fact_6367_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% power_minus1_odd
thf(fact_6368_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% power_minus1_odd
thf(fact_6369_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% power_minus1_odd
thf(fact_6370_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% power_minus1_odd
thf(fact_6371_power__minus1__odd,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% power_minus1_odd
thf(fact_6372_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ zero_zero_int )
=> ( ( P @ ( uminus_uminus_int @ one_one_int ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2 != zero_zero_int )
=> ( P @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( uminus_uminus_int @ one_one_int ) )
=> ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_6373_divmod__step__nat__def,axiom,
( unique5026877609467782581ep_nat
= ( ^ [L2: num] :
( produc2626176000494625587at_nat
@ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_nat_def
thf(fact_6374_ln__one__plus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( minus_minus_real @ X @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) ) ) ) ).
% ln_one_plus_pos_lower_bound
thf(fact_6375_signed__take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ) ).
% signed_take_bit_int_greater_eq
thf(fact_6376_divmod__step__int__def,axiom,
( unique5024387138958732305ep_int
= ( ^ [L2: num] :
( produc4245557441103728435nt_int
@ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L2 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_int_def
thf(fact_6377_ln__2__less__1,axiom,
ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).
% ln_2_less_1
thf(fact_6378_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_6379_tanh__ln__real,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( tanh_real @ ( ln_ln_real @ X ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% tanh_ln_real
thf(fact_6380_divmod__algorithm__code_I5_J,axiom,
! [M: num,N: num] :
( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( produc4245557441103728435nt_int
@ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) )
@ ( unique5052692396658037445od_int @ M @ N ) ) ) ).
% divmod_algorithm_code(5)
thf(fact_6381_divmod__algorithm__code_I5_J,axiom,
! [M: num,N: num] :
( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( produc2626176000494625587at_nat
@ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) )
@ ( unique5055182867167087721od_nat @ M @ N ) ) ) ).
% divmod_algorithm_code(5)
thf(fact_6382_divmod__algorithm__code_I5_J,axiom,
! [M: num,N: num] :
( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( produc6916734918728496179nteger
@ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) )
@ ( unique3479559517661332726nteger @ M @ N ) ) ) ).
% divmod_algorithm_code(5)
thf(fact_6383_divmod__nat__if,axiom,
( divmod_nat
= ( ^ [M6: nat,N2: nat] :
( if_Pro6206227464963214023at_nat
@ ( ( N2 = zero_zero_nat )
| ( ord_less_nat @ M6 @ N2 ) )
@ ( product_Pair_nat_nat @ zero_zero_nat @ M6 )
@ ( produc2626176000494625587at_nat
@ ^ [Q4: nat] : ( product_Pair_nat_nat @ ( suc @ Q4 ) )
@ ( divmod_nat @ ( minus_minus_nat @ M6 @ N2 ) @ N2 ) ) ) ) ) ).
% divmod_nat_if
thf(fact_6384_signed__take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_Suc_minus_bit1
thf(fact_6385_abs__ln__one__plus__x__minus__x__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound
thf(fact_6386_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( ( bit1 @ M )
= ( bit1 @ N ) )
= ( M = N ) ) ).
% semiring_norm(90)
thf(fact_6387_abs__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_abs
thf(fact_6388_abs__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_abs
thf(fact_6389_abs__abs,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_abs
thf(fact_6390_abs__abs,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_abs
thf(fact_6391_case__prodI,axiom,
! [F: code_integer > $o > $o,A: code_integer,B: $o] :
( ( F @ A @ B )
=> ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ).
% case_prodI
thf(fact_6392_case__prodI,axiom,
! [F: num > num > $o,A: num,B: num] :
( ( F @ A @ B )
=> ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) ) ) ).
% case_prodI
thf(fact_6393_case__prodI,axiom,
! [F: nat > num > $o,A: nat,B: num] :
( ( F @ A @ B )
=> ( produc4927758841916487424_num_o @ F @ ( product_Pair_nat_num @ A @ B ) ) ) ).
% case_prodI
thf(fact_6394_case__prodI,axiom,
! [F: nat > nat > $o,A: nat,B: nat] :
( ( F @ A @ B )
=> ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) ) ) ).
% case_prodI
thf(fact_6395_case__prodI,axiom,
! [F: int > int > $o,A: int,B: int] :
( ( F @ A @ B )
=> ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) ) ) ).
% case_prodI
thf(fact_6396_case__prodI2,axiom,
! [P2: produc6271795597528267376eger_o,C: code_integer > $o > $o] :
( ! [A4: code_integer,B4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ A4 @ B4 ) )
=> ( C @ A4 @ B4 ) )
=> ( produc7828578312038201481er_o_o @ C @ P2 ) ) ).
% case_prodI2
thf(fact_6397_case__prodI2,axiom,
! [P2: product_prod_num_num,C: num > num > $o] :
( ! [A4: num,B4: num] :
( ( P2
= ( product_Pair_num_num @ A4 @ B4 ) )
=> ( C @ A4 @ B4 ) )
=> ( produc5703948589228662326_num_o @ C @ P2 ) ) ).
% case_prodI2
thf(fact_6398_case__prodI2,axiom,
! [P2: product_prod_nat_num,C: nat > num > $o] :
( ! [A4: nat,B4: num] :
( ( P2
= ( product_Pair_nat_num @ A4 @ B4 ) )
=> ( C @ A4 @ B4 ) )
=> ( produc4927758841916487424_num_o @ C @ P2 ) ) ).
% case_prodI2
thf(fact_6399_case__prodI2,axiom,
! [P2: product_prod_nat_nat,C: nat > nat > $o] :
( ! [A4: nat,B4: nat] :
( ( P2
= ( product_Pair_nat_nat @ A4 @ B4 ) )
=> ( C @ A4 @ B4 ) )
=> ( produc6081775807080527818_nat_o @ C @ P2 ) ) ).
% case_prodI2
thf(fact_6400_case__prodI2,axiom,
! [P2: product_prod_int_int,C: int > int > $o] :
( ! [A4: int,B4: int] :
( ( P2
= ( product_Pair_int_int @ A4 @ B4 ) )
=> ( C @ A4 @ B4 ) )
=> ( produc4947309494688390418_int_o @ C @ P2 ) ) ).
% case_prodI2
thf(fact_6401_mem__case__prodI,axiom,
! [Z4: nat,C: code_integer > $o > set_nat,A: code_integer,B: $o] :
( ( member_nat @ Z4 @ ( C @ A @ B ) )
=> ( member_nat @ Z4 @ ( produc5431169771168744661et_nat @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6402_mem__case__prodI,axiom,
! [Z4: real,C: code_integer > $o > set_real,A: code_integer,B: $o] :
( ( member_real @ Z4 @ ( C @ A @ B ) )
=> ( member_real @ Z4 @ ( produc242741666403216561t_real @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6403_mem__case__prodI,axiom,
! [Z4: int,C: code_integer > $o > set_int,A: code_integer,B: $o] :
( ( member_int @ Z4 @ ( C @ A @ B ) )
=> ( member_int @ Z4 @ ( produc1253318751659547953et_int @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6404_mem__case__prodI,axiom,
! [Z4: complex,C: code_integer > $o > set_complex,A: code_integer,B: $o] :
( ( member_complex @ Z4 @ ( C @ A @ B ) )
=> ( member_complex @ Z4 @ ( produc1043322548047392435omplex @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6405_mem__case__prodI,axiom,
! [Z4: nat,C: num > num > set_nat,A: num,B: num] :
( ( member_nat @ Z4 @ ( C @ A @ B ) )
=> ( member_nat @ Z4 @ ( produc1361121860356118632et_nat @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6406_mem__case__prodI,axiom,
! [Z4: real,C: num > num > set_real,A: num,B: num] :
( ( member_real @ Z4 @ ( C @ A @ B ) )
=> ( member_real @ Z4 @ ( produc8296048397933160132t_real @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6407_mem__case__prodI,axiom,
! [Z4: int,C: num > num > set_int,A: num,B: num] :
( ( member_int @ Z4 @ ( C @ A @ B ) )
=> ( member_int @ Z4 @ ( produc6406642877701697732et_int @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6408_mem__case__prodI,axiom,
! [Z4: complex,C: num > num > set_complex,A: num,B: num] :
( ( member_complex @ Z4 @ ( C @ A @ B ) )
=> ( member_complex @ Z4 @ ( produc2866383454006189126omplex @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6409_mem__case__prodI,axiom,
! [Z4: nat,C: nat > num > set_nat,A: nat,B: num] :
( ( member_nat @ Z4 @ ( C @ A @ B ) )
=> ( member_nat @ Z4 @ ( produc4130284055270567454et_nat @ C @ ( product_Pair_nat_num @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6410_mem__case__prodI,axiom,
! [Z4: real,C: nat > num > set_real,A: nat,B: num] :
( ( member_real @ Z4 @ ( C @ A @ B ) )
=> ( member_real @ Z4 @ ( produc1435849484188172666t_real @ C @ ( product_Pair_nat_num @ A @ B ) ) ) ) ).
% mem_case_prodI
thf(fact_6411_mem__case__prodI2,axiom,
! [P2: produc6271795597528267376eger_o,Z4: nat,C: code_integer > $o > set_nat] :
( ! [A4: code_integer,B4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ A4 @ B4 ) )
=> ( member_nat @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_nat @ Z4 @ ( produc5431169771168744661et_nat @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6412_mem__case__prodI2,axiom,
! [P2: produc6271795597528267376eger_o,Z4: real,C: code_integer > $o > set_real] :
( ! [A4: code_integer,B4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ A4 @ B4 ) )
=> ( member_real @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_real @ Z4 @ ( produc242741666403216561t_real @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6413_mem__case__prodI2,axiom,
! [P2: produc6271795597528267376eger_o,Z4: int,C: code_integer > $o > set_int] :
( ! [A4: code_integer,B4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ A4 @ B4 ) )
=> ( member_int @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_int @ Z4 @ ( produc1253318751659547953et_int @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6414_mem__case__prodI2,axiom,
! [P2: produc6271795597528267376eger_o,Z4: complex,C: code_integer > $o > set_complex] :
( ! [A4: code_integer,B4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ A4 @ B4 ) )
=> ( member_complex @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_complex @ Z4 @ ( produc1043322548047392435omplex @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6415_mem__case__prodI2,axiom,
! [P2: product_prod_num_num,Z4: nat,C: num > num > set_nat] :
( ! [A4: num,B4: num] :
( ( P2
= ( product_Pair_num_num @ A4 @ B4 ) )
=> ( member_nat @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_nat @ Z4 @ ( produc1361121860356118632et_nat @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6416_mem__case__prodI2,axiom,
! [P2: product_prod_num_num,Z4: real,C: num > num > set_real] :
( ! [A4: num,B4: num] :
( ( P2
= ( product_Pair_num_num @ A4 @ B4 ) )
=> ( member_real @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_real @ Z4 @ ( produc8296048397933160132t_real @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6417_mem__case__prodI2,axiom,
! [P2: product_prod_num_num,Z4: int,C: num > num > set_int] :
( ! [A4: num,B4: num] :
( ( P2
= ( product_Pair_num_num @ A4 @ B4 ) )
=> ( member_int @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_int @ Z4 @ ( produc6406642877701697732et_int @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6418_mem__case__prodI2,axiom,
! [P2: product_prod_num_num,Z4: complex,C: num > num > set_complex] :
( ! [A4: num,B4: num] :
( ( P2
= ( product_Pair_num_num @ A4 @ B4 ) )
=> ( member_complex @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_complex @ Z4 @ ( produc2866383454006189126omplex @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6419_mem__case__prodI2,axiom,
! [P2: product_prod_nat_num,Z4: nat,C: nat > num > set_nat] :
( ! [A4: nat,B4: num] :
( ( P2
= ( product_Pair_nat_num @ A4 @ B4 ) )
=> ( member_nat @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_nat @ Z4 @ ( produc4130284055270567454et_nat @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6420_mem__case__prodI2,axiom,
! [P2: product_prod_nat_num,Z4: real,C: nat > num > set_real] :
( ! [A4: nat,B4: num] :
( ( P2
= ( product_Pair_nat_num @ A4 @ B4 ) )
=> ( member_real @ Z4 @ ( C @ A4 @ B4 ) ) )
=> ( member_real @ Z4 @ ( produc1435849484188172666t_real @ C @ P2 ) ) ) ).
% mem_case_prodI2
thf(fact_6421_case__prodI2_H,axiom,
! [P2: product_prod_nat_nat,C: nat > nat > product_prod_nat_nat > $o,X: product_prod_nat_nat] :
( ! [A4: nat,B4: nat] :
( ( ( product_Pair_nat_nat @ A4 @ B4 )
= P2 )
=> ( C @ A4 @ B4 @ X ) )
=> ( produc8739625826339149834_nat_o @ C @ P2 @ X ) ) ).
% case_prodI2'
thf(fact_6422_abs__0,axiom,
( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% abs_0
thf(fact_6423_abs__0,axiom,
( ( abs_abs_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% abs_0
thf(fact_6424_abs__0,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_0
thf(fact_6425_abs__0,axiom,
( ( abs_abs_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% abs_0
thf(fact_6426_abs__0,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_0
thf(fact_6427_semiring__norm_I89_J,axiom,
! [M: num,N: num] :
( ( bit1 @ M )
!= ( bit0 @ N ) ) ).
% semiring_norm(89)
thf(fact_6428_semiring__norm_I88_J,axiom,
! [M: num,N: num] :
( ( bit0 @ M )
!= ( bit1 @ N ) ) ).
% semiring_norm(88)
thf(fact_6429_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one ) ).
% semiring_norm(86)
thf(fact_6430_semiring__norm_I84_J,axiom,
! [N: num] :
( one
!= ( bit1 @ N ) ) ).
% semiring_norm(84)
thf(fact_6431_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N ) )
= ( numera6620942414471956472nteger @ N ) ) ).
% abs_numeral
thf(fact_6432_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_numeral
thf(fact_6433_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ N ) ) ).
% abs_numeral
thf(fact_6434_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% abs_numeral
thf(fact_6435_abs__mult__self__eq,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
= ( times_3573771949741848930nteger @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_6436_abs__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
= ( times_times_real @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_6437_abs__mult__self__eq,axiom,
! [A: rat] :
( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
= ( times_times_rat @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_6438_abs__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
= ( times_times_int @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_6439_abs__1,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_1
thf(fact_6440_abs__1,axiom,
( ( abs_abs_complex @ one_one_complex )
= one_one_complex ) ).
% abs_1
thf(fact_6441_abs__1,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_1
thf(fact_6442_abs__1,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_1
thf(fact_6443_abs__1,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_1
thf(fact_6444_abs__add__abs,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
= ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_add_abs
thf(fact_6445_abs__add__abs,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
= ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_add_abs
thf(fact_6446_abs__add__abs,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
= ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_add_abs
thf(fact_6447_abs__add__abs,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
= ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_add_abs
thf(fact_6448_abs__divide,axiom,
! [A: complex,B: complex] :
( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).
% abs_divide
thf(fact_6449_abs__divide,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_divide
thf(fact_6450_abs__divide,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_divide
thf(fact_6451_abs__minus,axiom,
! [A: real] :
( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_minus
thf(fact_6452_abs__minus,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus
thf(fact_6453_abs__minus,axiom,
! [A: complex] :
( ( abs_abs_complex @ ( uminus1482373934393186551omplex @ A ) )
= ( abs_abs_complex @ A ) ) ).
% abs_minus
thf(fact_6454_abs__minus,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_minus
thf(fact_6455_abs__minus,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_minus
thf(fact_6456_abs__dvd__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
= ( dvd_dvd_real @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_6457_abs__dvd__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
= ( dvd_dvd_int @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_6458_abs__dvd__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
= ( dvd_dvd_rat @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_6459_abs__dvd__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_6460_dvd__abs__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
= ( dvd_dvd_real @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_6461_dvd__abs__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
= ( dvd_dvd_int @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_6462_dvd__abs__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
= ( dvd_dvd_rat @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_6463_dvd__abs__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_6464_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_real @ ( zero_n3304061248610475627l_real @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% abs_bool_eq
thf(fact_6465_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
= ( zero_n2052037380579107095ol_rat @ P ) ) ).
% abs_bool_eq
thf(fact_6466_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_int @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% abs_bool_eq
thf(fact_6467_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_Code_integer @ ( zero_n356916108424825756nteger @ P ) )
= ( zero_n356916108424825756nteger @ P ) ) ).
% abs_bool_eq
thf(fact_6468_tanh__real__le__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( tanh_real @ X ) @ ( tanh_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ).
% tanh_real_le_iff
thf(fact_6469_semiring__norm_I73_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(73)
thf(fact_6470_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(80)
thf(fact_6471_abs__sum__abs,axiom,
! [F: int > int,A2: set_int] :
( ( abs_abs_int
@ ( groups4538972089207619220nt_int
@ ^ [A5: int] : ( abs_abs_int @ ( F @ A5 ) )
@ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [A5: int] : ( abs_abs_int @ ( F @ A5 ) )
@ A2 ) ) ).
% abs_sum_abs
thf(fact_6472_abs__sum__abs,axiom,
! [F: nat > real,A2: set_nat] :
( ( abs_abs_real
@ ( groups6591440286371151544t_real
@ ^ [A5: nat] : ( abs_abs_real @ ( F @ A5 ) )
@ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [A5: nat] : ( abs_abs_real @ ( F @ A5 ) )
@ A2 ) ) ).
% abs_sum_abs
thf(fact_6473_abs__of__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_6474_abs__of__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_6475_abs__of__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_6476_abs__of__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_6477_abs__le__self__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% abs_le_self_iff
thf(fact_6478_abs__le__self__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% abs_le_self_iff
thf(fact_6479_abs__le__self__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% abs_le_self_iff
thf(fact_6480_abs__le__self__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% abs_le_self_iff
thf(fact_6481_abs__le__zero__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_le_zero_iff
thf(fact_6482_abs__le__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_le_zero_iff
thf(fact_6483_abs__le__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_le_zero_iff
thf(fact_6484_abs__le__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_le_zero_iff
thf(fact_6485_zero__less__abs__iff,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
= ( A != zero_z3403309356797280102nteger ) ) ).
% zero_less_abs_iff
thf(fact_6486_zero__less__abs__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
= ( A != zero_zero_real ) ) ).
% zero_less_abs_iff
thf(fact_6487_zero__less__abs__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_abs_iff
thf(fact_6488_zero__less__abs__iff,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
= ( A != zero_zero_int ) ) ).
% zero_less_abs_iff
thf(fact_6489_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_neg_numeral
thf(fact_6490_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ N ) ) ).
% abs_neg_numeral
thf(fact_6491_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ N ) ) ).
% abs_neg_numeral
thf(fact_6492_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ N ) ) ).
% abs_neg_numeral
thf(fact_6493_abs__neg__one,axiom,
( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
= one_one_real ) ).
% abs_neg_one
thf(fact_6494_abs__neg__one,axiom,
( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
= one_one_int ) ).
% abs_neg_one
thf(fact_6495_abs__neg__one,axiom,
( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= one_one_rat ) ).
% abs_neg_one
thf(fact_6496_abs__neg__one,axiom,
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= one_one_Code_integer ) ).
% abs_neg_one
thf(fact_6497_abs__power__minus,axiom,
! [A: real,N: nat] :
( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
= ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_6498_abs__power__minus,axiom,
! [A: int,N: nat] :
( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
= ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_6499_abs__power__minus,axiom,
! [A: rat,N: nat] :
( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
= ( abs_abs_rat @ ( power_power_rat @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_6500_abs__power__minus,axiom,
! [A: code_integer,N: nat] :
( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
= ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_6501_semiring__norm_I7_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(7)
thf(fact_6502_semiring__norm_I9_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(9)
thf(fact_6503_semiring__norm_I14_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).
% semiring_norm(14)
thf(fact_6504_semiring__norm_I15_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).
% semiring_norm(15)
thf(fact_6505_semiring__norm_I72_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(72)
thf(fact_6506_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(81)
thf(fact_6507_semiring__norm_I70_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).
% semiring_norm(70)
thf(fact_6508_semiring__norm_I77_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).
% semiring_norm(77)
thf(fact_6509_tanh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( tanh_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% tanh_real_nonpos_iff
thf(fact_6510_tanh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% tanh_real_nonneg_iff
thf(fact_6511_sum__abs,axiom,
! [F: int > int,A2: set_int] :
( ord_less_eq_int @ ( abs_abs_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
@ ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( abs_abs_int @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs
thf(fact_6512_sum__abs,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ ( abs_abs_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( abs_abs_real @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs
thf(fact_6513_zero__le__divide__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( B = zero_zero_real ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_6514_zero__le__divide__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( B = zero_zero_rat ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_6515_divide__le__0__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
= ( ( ord_less_eq_real @ A @ zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_le_0_abs_iff
thf(fact_6516_divide__le__0__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
= ( ( ord_less_eq_rat @ A @ zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_le_0_abs_iff
thf(fact_6517_abs__of__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_nonpos
thf(fact_6518_abs__of__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_nonpos
thf(fact_6519_abs__of__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_nonpos
thf(fact_6520_abs__of__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_nonpos
thf(fact_6521_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_6522_semiring__norm_I10_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).
% semiring_norm(10)
thf(fact_6523_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ one )
= ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).
% semiring_norm(8)
thf(fact_6524_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ one )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_6525_semiring__norm_I4_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).
% semiring_norm(4)
thf(fact_6526_semiring__norm_I3_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit0 @ N ) )
= ( bit1 @ N ) ) ).
% semiring_norm(3)
thf(fact_6527_artanh__minus__real,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( artanh_real @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( artanh_real @ X ) ) ) ) ).
% artanh_minus_real
thf(fact_6528_sum__abs__ge__zero,axiom,
! [F: int > int,A2: set_int] :
( ord_less_eq_int @ zero_zero_int
@ ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( abs_abs_int @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs_ge_zero
thf(fact_6529_sum__abs__ge__zero,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ zero_zero_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( abs_abs_real @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs_ge_zero
thf(fact_6530_semiring__norm_I16_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).
% semiring_norm(16)
thf(fact_6531_semiring__norm_I74_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(74)
thf(fact_6532_semiring__norm_I79_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(79)
thf(fact_6533_minus__numeral__div__numeral,axiom,
! [M: num,N: num] :
( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% minus_numeral_div_numeral
thf(fact_6534_numeral__div__minus__numeral,axiom,
! [M: num,N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% numeral_div_minus_numeral
thf(fact_6535_zero__less__power__abs__iff,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) )
= ( ( A != zero_z3403309356797280102nteger )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_6536_zero__less__power__abs__iff,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
= ( ( A != zero_zero_real )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_6537_zero__less__power__abs__iff,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) )
= ( ( A != zero_zero_rat )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_6538_zero__less__power__abs__iff,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
= ( ( A != zero_zero_int )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_6539_abs__power2,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_6540_abs__power2,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_6541_abs__power2,axiom,
! [A: real] :
( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_6542_abs__power2,axiom,
! [A: int] :
( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_6543_power2__abs,axiom,
! [A: rat] :
( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_6544_power2__abs,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_6545_power2__abs,axiom,
! [A: real] :
( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_6546_power2__abs,axiom,
! [A: int] :
( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_6547_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > complex] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_complex ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_complex @ ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6548_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > rat] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_rat ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6549_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > int] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_int ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6550_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > nat] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_nat ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6551_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > real] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_real ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6552_dvd__numeral__simp,axiom,
! [M: num,N: num] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( unique6319869463603278526ux_int @ ( unique5052692396658037445od_int @ N @ M ) ) ) ).
% dvd_numeral_simp
thf(fact_6553_dvd__numeral__simp,axiom,
! [M: num,N: num] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( unique6322359934112328802ux_nat @ ( unique5055182867167087721od_nat @ N @ M ) ) ) ).
% dvd_numeral_simp
thf(fact_6554_dvd__numeral__simp,axiom,
! [M: num,N: num] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) )
= ( unique5706413561485394159nteger @ ( unique3479559517661332726nteger @ N @ M ) ) ) ).
% dvd_numeral_simp
thf(fact_6555_divmod__algorithm__code_I2_J,axiom,
! [M: num] :
( ( unique5052692396658037445od_int @ M @ one )
= ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).
% divmod_algorithm_code(2)
thf(fact_6556_divmod__algorithm__code_I2_J,axiom,
! [M: num] :
( ( unique5055182867167087721od_nat @ M @ one )
= ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).
% divmod_algorithm_code(2)
thf(fact_6557_divmod__algorithm__code_I2_J,axiom,
! [M: num] :
( ( unique3479559517661332726nteger @ M @ one )
= ( produc1086072967326762835nteger @ ( numera6620942414471956472nteger @ M ) @ zero_z3403309356797280102nteger ) ) ).
% divmod_algorithm_code(2)
thf(fact_6558_sum__zero__power,axiom,
! [A2: set_nat,C: nat > complex] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) )
@ A2 )
= zero_zero_complex ) ) ) ).
% sum_zero_power
thf(fact_6559_sum__zero__power,axiom,
! [A2: set_nat,C: nat > rat] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) )
@ A2 )
= zero_zero_rat ) ) ) ).
% sum_zero_power
thf(fact_6560_sum__zero__power,axiom,
! [A2: set_nat,C: nat > real] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) )
@ A2 )
= zero_zero_real ) ) ) ).
% sum_zero_power
thf(fact_6561_power__even__abs__numeral,axiom,
! [W: num,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_6562_power__even__abs__numeral,axiom,
! [W: num,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_6563_power__even__abs__numeral,axiom,
! [W: num,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_6564_power__even__abs__numeral,axiom,
! [W: num,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_6565_div__Suc__eq__div__add3,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).
% div_Suc_eq_div_add3
thf(fact_6566_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V: num] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_div_eq_add3_div_numeral
thf(fact_6567_divmod__algorithm__code_I3_J,axiom,
! [N: num] :
( ( unique5052692396658037445od_int @ one @ ( bit0 @ N ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_6568_divmod__algorithm__code_I3_J,axiom,
! [N: num] :
( ( unique5055182867167087721od_nat @ one @ ( bit0 @ N ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_6569_divmod__algorithm__code_I3_J,axiom,
! [N: num] :
( ( unique3479559517661332726nteger @ one @ ( bit0 @ N ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_6570_mod__Suc__eq__mod__add3,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).
% mod_Suc_eq_mod_add3
thf(fact_6571_Suc__mod__eq__add3__mod__numeral,axiom,
! [M: nat,V: num] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_mod_eq_add3_mod_numeral
thf(fact_6572_divmod__algorithm__code_I4_J,axiom,
! [N: num] :
( ( unique5052692396658037445od_int @ one @ ( bit1 @ N ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_6573_divmod__algorithm__code_I4_J,axiom,
! [N: num] :
( ( unique5055182867167087721od_nat @ one @ ( bit1 @ N ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_6574_divmod__algorithm__code_I4_J,axiom,
! [N: num] :
( ( unique3479559517661332726nteger @ one @ ( bit1 @ N ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_6575_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > complex,D: nat > complex] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) ) @ ( D @ I3 ) )
@ A2 )
= ( divide1717551699836669952omplex @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) ) @ ( D @ I3 ) )
@ A2 )
= zero_zero_complex ) ) ) ).
% sum_zero_power'
thf(fact_6576_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > rat,D: nat > rat] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) ) @ ( D @ I3 ) )
@ A2 )
= ( divide_divide_rat @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) ) @ ( D @ I3 ) )
@ A2 )
= zero_zero_rat ) ) ) ).
% sum_zero_power'
thf(fact_6577_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > real,D: nat > real] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) ) @ ( D @ I3 ) )
@ A2 )
= ( divide_divide_real @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) ) @ ( D @ I3 ) )
@ A2 )
= zero_zero_real ) ) ) ).
% sum_zero_power'
thf(fact_6578_minus__one__div__numeral,axiom,
! [N: num] :
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% minus_one_div_numeral
thf(fact_6579_one__div__minus__numeral,axiom,
! [N: num] :
( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% one_div_minus_numeral
thf(fact_6580_zmod__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).
% zmod_numeral_Bit1
thf(fact_6581_divmod__algorithm__code_I7_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_num @ M @ N )
=> ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq_num @ M @ N )
=> ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_6582_divmod__algorithm__code_I7_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_num @ M @ N )
=> ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq_num @ M @ N )
=> ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_6583_divmod__algorithm__code_I7_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_num @ M @ N )
=> ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq_num @ M @ N )
=> ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_6584_divmod__algorithm__code_I8_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_num @ M @ N )
=> ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less_num @ M @ N )
=> ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_6585_divmod__algorithm__code_I8_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_num @ M @ N )
=> ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less_num @ M @ N )
=> ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_6586_divmod__algorithm__code_I8_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_num @ M @ N )
=> ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less_num @ M @ N )
=> ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_6587_signed__take__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_Suc_bit1
thf(fact_6588_divmod__algorithm__code_I6_J,axiom,
! [M: num,N: num] :
( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( produc4245557441103728435nt_int
@ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) @ one_one_int ) )
@ ( unique5052692396658037445od_int @ M @ N ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_6589_divmod__algorithm__code_I6_J,axiom,
! [M: num,N: num] :
( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( produc2626176000494625587at_nat
@ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) @ one_one_nat ) )
@ ( unique5055182867167087721od_nat @ M @ N ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_6590_divmod__algorithm__code_I6_J,axiom,
! [M: num,N: num] :
( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( produc6916734918728496179nteger
@ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) @ one_one_Code_integer ) )
@ ( unique3479559517661332726nteger @ M @ N ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_6591_Compl__eq,axiom,
( uminus8566677241136511917omplex
= ( ^ [A6: set_complex] :
( collect_complex
@ ^ [X2: complex] :
~ ( member_complex @ X2 @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6592_Compl__eq,axiom,
( uminus612125837232591019t_real
= ( ^ [A6: set_real] :
( collect_real
@ ^ [X2: real] :
~ ( member_real @ X2 @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6593_Compl__eq,axiom,
( uminus613421341184616069et_nat
= ( ^ [A6: set_set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] :
~ ( member_set_nat @ X2 @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6594_Compl__eq,axiom,
( uminus5710092332889474511et_nat
= ( ^ [A6: set_nat] :
( collect_nat
@ ^ [X2: nat] :
~ ( member_nat @ X2 @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6595_Compl__eq,axiom,
( uminus1532241313380277803et_int
= ( ^ [A6: set_int] :
( collect_int
@ ^ [X2: int] :
~ ( member_int @ X2 @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6596_Collect__neg__eq,axiom,
! [P: complex > $o] :
( ( collect_complex
@ ^ [X2: complex] :
~ ( P @ X2 ) )
= ( uminus8566677241136511917omplex @ ( collect_complex @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6597_Collect__neg__eq,axiom,
! [P: real > $o] :
( ( collect_real
@ ^ [X2: real] :
~ ( P @ X2 ) )
= ( uminus612125837232591019t_real @ ( collect_real @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6598_Collect__neg__eq,axiom,
! [P: set_nat > $o] :
( ( collect_set_nat
@ ^ [X2: set_nat] :
~ ( P @ X2 ) )
= ( uminus613421341184616069et_nat @ ( collect_set_nat @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6599_Collect__neg__eq,axiom,
! [P: nat > $o] :
( ( collect_nat
@ ^ [X2: nat] :
~ ( P @ X2 ) )
= ( uminus5710092332889474511et_nat @ ( collect_nat @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6600_Collect__neg__eq,axiom,
! [P: int > $o] :
( ( collect_int
@ ^ [X2: int] :
~ ( P @ X2 ) )
= ( uminus1532241313380277803et_int @ ( collect_int @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6601_uminus__set__def,axiom,
( uminus8566677241136511917omplex
= ( ^ [A6: set_complex] :
( collect_complex
@ ( uminus1680532995456772888plex_o
@ ^ [X2: complex] : ( member_complex @ X2 @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6602_uminus__set__def,axiom,
( uminus612125837232591019t_real
= ( ^ [A6: set_real] :
( collect_real
@ ( uminus_uminus_real_o
@ ^ [X2: real] : ( member_real @ X2 @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6603_uminus__set__def,axiom,
( uminus613421341184616069et_nat
= ( ^ [A6: set_set_nat] :
( collect_set_nat
@ ( uminus6401447641752708672_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6604_uminus__set__def,axiom,
( uminus5710092332889474511et_nat
= ( ^ [A6: set_nat] :
( collect_nat
@ ( uminus_uminus_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6605_uminus__set__def,axiom,
( uminus1532241313380277803et_int
= ( ^ [A6: set_int] :
( collect_int
@ ( uminus_uminus_int_o
@ ^ [X2: int] : ( member_int @ X2 @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6606_abs__ge__self,axiom,
! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).
% abs_ge_self
thf(fact_6607_abs__ge__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_self
thf(fact_6608_abs__ge__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).
% abs_ge_self
thf(fact_6609_abs__ge__self,axiom,
! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).
% abs_ge_self
thf(fact_6610_abs__le__D1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% abs_le_D1
thf(fact_6611_abs__le__D1,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% abs_le_D1
thf(fact_6612_abs__le__D1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% abs_le_D1
thf(fact_6613_abs__le__D1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% abs_le_D1
thf(fact_6614_abs__eq__0__iff,axiom,
! [A: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_eq_0_iff
thf(fact_6615_abs__eq__0__iff,axiom,
! [A: complex] :
( ( ( abs_abs_complex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% abs_eq_0_iff
thf(fact_6616_abs__eq__0__iff,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0_iff
thf(fact_6617_abs__eq__0__iff,axiom,
! [A: rat] :
( ( ( abs_abs_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_eq_0_iff
thf(fact_6618_abs__eq__0__iff,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0_iff
thf(fact_6619_abs__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_mult
thf(fact_6620_abs__mult,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_mult
thf(fact_6621_abs__mult,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_mult
thf(fact_6622_abs__mult,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_mult
thf(fact_6623_abs__one,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_one
thf(fact_6624_abs__one,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_one
thf(fact_6625_abs__one,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_one
thf(fact_6626_abs__one,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_one
thf(fact_6627_abs__minus__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_6628_abs__minus__commute,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
= ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_6629_abs__minus__commute,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
= ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_6630_abs__minus__commute,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
= ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_6631_abs__eq__iff,axiom,
! [X: real,Y3: real] :
( ( ( abs_abs_real @ X )
= ( abs_abs_real @ Y3 ) )
= ( ( X = Y3 )
| ( X
= ( uminus_uminus_real @ Y3 ) ) ) ) ).
% abs_eq_iff
thf(fact_6632_abs__eq__iff,axiom,
! [X: int,Y3: int] :
( ( ( abs_abs_int @ X )
= ( abs_abs_int @ Y3 ) )
= ( ( X = Y3 )
| ( X
= ( uminus_uminus_int @ Y3 ) ) ) ) ).
% abs_eq_iff
thf(fact_6633_abs__eq__iff,axiom,
! [X: rat,Y3: rat] :
( ( ( abs_abs_rat @ X )
= ( abs_abs_rat @ Y3 ) )
= ( ( X = Y3 )
| ( X
= ( uminus_uminus_rat @ Y3 ) ) ) ) ).
% abs_eq_iff
thf(fact_6634_abs__eq__iff,axiom,
! [X: code_integer,Y3: code_integer] :
( ( ( abs_abs_Code_integer @ X )
= ( abs_abs_Code_integer @ Y3 ) )
= ( ( X = Y3 )
| ( X
= ( uminus1351360451143612070nteger @ Y3 ) ) ) ) ).
% abs_eq_iff
thf(fact_6635_power__abs,axiom,
! [A: rat,N: nat] :
( ( abs_abs_rat @ ( power_power_rat @ A @ N ) )
= ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).
% power_abs
thf(fact_6636_power__abs,axiom,
! [A: code_integer,N: nat] :
( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
= ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).
% power_abs
thf(fact_6637_power__abs,axiom,
! [A: real,N: nat] :
( ( abs_abs_real @ ( power_power_real @ A @ N ) )
= ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).
% power_abs
thf(fact_6638_power__abs,axiom,
! [A: int,N: nat] :
( ( abs_abs_int @ ( power_power_int @ A @ N ) )
= ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).
% power_abs
thf(fact_6639_dvd__if__abs__eq,axiom,
! [L: real,K: real] :
( ( ( abs_abs_real @ L )
= ( abs_abs_real @ K ) )
=> ( dvd_dvd_real @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_6640_dvd__if__abs__eq,axiom,
! [L: int,K: int] :
( ( ( abs_abs_int @ L )
= ( abs_abs_int @ K ) )
=> ( dvd_dvd_int @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_6641_dvd__if__abs__eq,axiom,
! [L: rat,K: rat] :
( ( ( abs_abs_rat @ L )
= ( abs_abs_rat @ K ) )
=> ( dvd_dvd_rat @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_6642_dvd__if__abs__eq,axiom,
! [L: code_integer,K: code_integer] :
( ( ( abs_abs_Code_integer @ L )
= ( abs_abs_Code_integer @ K ) )
=> ( dvd_dvd_Code_integer @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_6643_mem__case__prodE,axiom,
! [Z4: nat,C: code_integer > $o > set_nat,P2: produc6271795597528267376eger_o] :
( ( member_nat @ Z4 @ ( produc5431169771168744661et_nat @ C @ P2 ) )
=> ~ ! [X5: code_integer,Y4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ X5 @ Y4 ) )
=> ~ ( member_nat @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6644_mem__case__prodE,axiom,
! [Z4: real,C: code_integer > $o > set_real,P2: produc6271795597528267376eger_o] :
( ( member_real @ Z4 @ ( produc242741666403216561t_real @ C @ P2 ) )
=> ~ ! [X5: code_integer,Y4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ X5 @ Y4 ) )
=> ~ ( member_real @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6645_mem__case__prodE,axiom,
! [Z4: int,C: code_integer > $o > set_int,P2: produc6271795597528267376eger_o] :
( ( member_int @ Z4 @ ( produc1253318751659547953et_int @ C @ P2 ) )
=> ~ ! [X5: code_integer,Y4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ X5 @ Y4 ) )
=> ~ ( member_int @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6646_mem__case__prodE,axiom,
! [Z4: complex,C: code_integer > $o > set_complex,P2: produc6271795597528267376eger_o] :
( ( member_complex @ Z4 @ ( produc1043322548047392435omplex @ C @ P2 ) )
=> ~ ! [X5: code_integer,Y4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ X5 @ Y4 ) )
=> ~ ( member_complex @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6647_mem__case__prodE,axiom,
! [Z4: nat,C: num > num > set_nat,P2: product_prod_num_num] :
( ( member_nat @ Z4 @ ( produc1361121860356118632et_nat @ C @ P2 ) )
=> ~ ! [X5: num,Y4: num] :
( ( P2
= ( product_Pair_num_num @ X5 @ Y4 ) )
=> ~ ( member_nat @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6648_mem__case__prodE,axiom,
! [Z4: real,C: num > num > set_real,P2: product_prod_num_num] :
( ( member_real @ Z4 @ ( produc8296048397933160132t_real @ C @ P2 ) )
=> ~ ! [X5: num,Y4: num] :
( ( P2
= ( product_Pair_num_num @ X5 @ Y4 ) )
=> ~ ( member_real @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6649_mem__case__prodE,axiom,
! [Z4: int,C: num > num > set_int,P2: product_prod_num_num] :
( ( member_int @ Z4 @ ( produc6406642877701697732et_int @ C @ P2 ) )
=> ~ ! [X5: num,Y4: num] :
( ( P2
= ( product_Pair_num_num @ X5 @ Y4 ) )
=> ~ ( member_int @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6650_mem__case__prodE,axiom,
! [Z4: complex,C: num > num > set_complex,P2: product_prod_num_num] :
( ( member_complex @ Z4 @ ( produc2866383454006189126omplex @ C @ P2 ) )
=> ~ ! [X5: num,Y4: num] :
( ( P2
= ( product_Pair_num_num @ X5 @ Y4 ) )
=> ~ ( member_complex @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6651_mem__case__prodE,axiom,
! [Z4: nat,C: nat > num > set_nat,P2: product_prod_nat_num] :
( ( member_nat @ Z4 @ ( produc4130284055270567454et_nat @ C @ P2 ) )
=> ~ ! [X5: nat,Y4: num] :
( ( P2
= ( product_Pair_nat_num @ X5 @ Y4 ) )
=> ~ ( member_nat @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6652_mem__case__prodE,axiom,
! [Z4: real,C: nat > num > set_real,P2: product_prod_nat_num] :
( ( member_real @ Z4 @ ( produc1435849484188172666t_real @ C @ P2 ) )
=> ~ ! [X5: nat,Y4: num] :
( ( P2
= ( product_Pair_nat_num @ X5 @ Y4 ) )
=> ~ ( member_real @ Z4 @ ( C @ X5 @ Y4 ) ) ) ) ).
% mem_case_prodE
thf(fact_6653_verit__eq__simplify_I14_J,axiom,
! [X22: num,X32: num] :
( ( bit0 @ X22 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_6654_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_6655_case__prodD,axiom,
! [F: code_integer > $o > $o,A: code_integer,B: $o] :
( ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) )
=> ( F @ A @ B ) ) ).
% case_prodD
thf(fact_6656_case__prodD,axiom,
! [F: num > num > $o,A: num,B: num] :
( ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) )
=> ( F @ A @ B ) ) ).
% case_prodD
thf(fact_6657_case__prodD,axiom,
! [F: nat > num > $o,A: nat,B: num] :
( ( produc4927758841916487424_num_o @ F @ ( product_Pair_nat_num @ A @ B ) )
=> ( F @ A @ B ) ) ).
% case_prodD
thf(fact_6658_case__prodD,axiom,
! [F: nat > nat > $o,A: nat,B: nat] :
( ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
=> ( F @ A @ B ) ) ).
% case_prodD
thf(fact_6659_case__prodD,axiom,
! [F: int > int > $o,A: int,B: int] :
( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
=> ( F @ A @ B ) ) ).
% case_prodD
thf(fact_6660_case__prodE,axiom,
! [C: code_integer > $o > $o,P2: produc6271795597528267376eger_o] :
( ( produc7828578312038201481er_o_o @ C @ P2 )
=> ~ ! [X5: code_integer,Y4: $o] :
( ( P2
= ( produc6677183202524767010eger_o @ X5 @ Y4 ) )
=> ~ ( C @ X5 @ Y4 ) ) ) ).
% case_prodE
thf(fact_6661_case__prodE,axiom,
! [C: num > num > $o,P2: product_prod_num_num] :
( ( produc5703948589228662326_num_o @ C @ P2 )
=> ~ ! [X5: num,Y4: num] :
( ( P2
= ( product_Pair_num_num @ X5 @ Y4 ) )
=> ~ ( C @ X5 @ Y4 ) ) ) ).
% case_prodE
thf(fact_6662_case__prodE,axiom,
! [C: nat > num > $o,P2: product_prod_nat_num] :
( ( produc4927758841916487424_num_o @ C @ P2 )
=> ~ ! [X5: nat,Y4: num] :
( ( P2
= ( product_Pair_nat_num @ X5 @ Y4 ) )
=> ~ ( C @ X5 @ Y4 ) ) ) ).
% case_prodE
thf(fact_6663_case__prodE,axiom,
! [C: nat > nat > $o,P2: product_prod_nat_nat] :
( ( produc6081775807080527818_nat_o @ C @ P2 )
=> ~ ! [X5: nat,Y4: nat] :
( ( P2
= ( product_Pair_nat_nat @ X5 @ Y4 ) )
=> ~ ( C @ X5 @ Y4 ) ) ) ).
% case_prodE
thf(fact_6664_case__prodE,axiom,
! [C: int > int > $o,P2: product_prod_int_int] :
( ( produc4947309494688390418_int_o @ C @ P2 )
=> ~ ! [X5: int,Y4: int] :
( ( P2
= ( product_Pair_int_int @ X5 @ Y4 ) )
=> ~ ( C @ X5 @ Y4 ) ) ) ).
% case_prodE
thf(fact_6665_case__prodD_H,axiom,
! [R: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat,C: product_prod_nat_nat] :
( ( produc8739625826339149834_nat_o @ R @ ( product_Pair_nat_nat @ A @ B ) @ C )
=> ( R @ A @ B @ C ) ) ).
% case_prodD'
thf(fact_6666_case__prodE_H,axiom,
! [C: nat > nat > product_prod_nat_nat > $o,P2: product_prod_nat_nat,Z4: product_prod_nat_nat] :
( ( produc8739625826339149834_nat_o @ C @ P2 @ Z4 )
=> ~ ! [X5: nat,Y4: nat] :
( ( P2
= ( product_Pair_nat_nat @ X5 @ Y4 ) )
=> ~ ( C @ X5 @ Y4 @ Z4 ) ) ) ).
% case_prodE'
thf(fact_6667_abs__ge__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_zero
thf(fact_6668_abs__ge__zero,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).
% abs_ge_zero
thf(fact_6669_abs__ge__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).
% abs_ge_zero
thf(fact_6670_abs__ge__zero,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).
% abs_ge_zero
thf(fact_6671_abs__not__less__zero,axiom,
! [A: code_integer] :
~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).
% abs_not_less_zero
thf(fact_6672_abs__not__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).
% abs_not_less_zero
thf(fact_6673_abs__not__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).
% abs_not_less_zero
thf(fact_6674_abs__not__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).
% abs_not_less_zero
thf(fact_6675_abs__of__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_pos
thf(fact_6676_abs__of__pos,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_pos
thf(fact_6677_abs__of__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_pos
thf(fact_6678_abs__of__pos,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_pos
thf(fact_6679_abs__triangle__ineq,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_6680_abs__triangle__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_6681_abs__triangle__ineq,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_6682_abs__triangle__ineq,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_6683_abs__mult__less,axiom,
! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
=> ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D )
=> ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_6684_abs__mult__less,axiom,
! [A: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
=> ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
=> ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_6685_abs__mult__less,axiom,
! [A: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
=> ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D )
=> ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_6686_abs__mult__less,axiom,
! [A: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
=> ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
=> ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_6687_abs__triangle__ineq2__sym,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_6688_abs__triangle__ineq2__sym,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_6689_abs__triangle__ineq2__sym,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_6690_abs__triangle__ineq2__sym,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_6691_abs__triangle__ineq3,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_6692_abs__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_6693_abs__triangle__ineq3,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_6694_abs__triangle__ineq3,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_6695_abs__triangle__ineq2,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_6696_abs__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_6697_abs__triangle__ineq2,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_6698_abs__triangle__ineq2,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_6699_nonzero__abs__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_6700_nonzero__abs__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_6701_abs__ge__minus__self,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).
% abs_ge_minus_self
thf(fact_6702_abs__ge__minus__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_minus_self
thf(fact_6703_abs__ge__minus__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).
% abs_ge_minus_self
thf(fact_6704_abs__ge__minus__self,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).
% abs_ge_minus_self
thf(fact_6705_abs__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_eq_real @ A @ B )
& ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_6706_abs__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le3102999989581377725nteger @ A @ B )
& ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_6707_abs__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_eq_rat @ A @ B )
& ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_6708_abs__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_eq_int @ A @ B )
& ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_6709_abs__le__D2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_6710_abs__le__D2,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_6711_abs__le__D2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_6712_abs__le__D2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_6713_abs__leI,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
=> ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_6714_abs__leI,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_6715_abs__leI,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_6716_abs__leI,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
=> ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_6717_abs__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_real @ A @ B )
& ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_6718_abs__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_int @ A @ B )
& ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_6719_abs__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_rat @ A @ B )
& ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_6720_abs__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le6747313008572928689nteger @ A @ B )
& ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_6721_sum__cong__Suc,axiom,
! [A2: set_nat,F: nat > nat,G: nat > nat] :
( ~ ( member_nat @ zero_zero_nat @ A2 )
=> ( ! [X5: nat] :
( ( member_nat @ ( suc @ X5 ) @ A2 )
=> ( ( F @ ( suc @ X5 ) )
= ( G @ ( suc @ X5 ) ) ) )
=> ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).
% sum_cong_Suc
thf(fact_6722_sum__cong__Suc,axiom,
! [A2: set_nat,F: nat > real,G: nat > real] :
( ~ ( member_nat @ zero_zero_nat @ A2 )
=> ( ! [X5: nat] :
( ( member_nat @ ( suc @ X5 ) @ A2 )
=> ( ( F @ ( suc @ X5 ) )
= ( G @ ( suc @ X5 ) ) ) )
=> ( ( groups6591440286371151544t_real @ F @ A2 )
= ( groups6591440286371151544t_real @ G @ A2 ) ) ) ) ).
% sum_cong_Suc
thf(fact_6723_abs__real__def,axiom,
( abs_abs_real
= ( ^ [A5: real] : ( if_real @ ( ord_less_real @ A5 @ zero_zero_real ) @ ( uminus_uminus_real @ A5 ) @ A5 ) ) ) ).
% abs_real_def
thf(fact_6724_xor__num_Ocases,axiom,
! [X: product_prod_num_num] :
( ( X
!= ( product_Pair_num_num @ one @ one ) )
=> ( ! [N3: num] :
( X
!= ( product_Pair_num_num @ one @ ( bit0 @ N3 ) ) )
=> ( ! [N3: num] :
( X
!= ( product_Pair_num_num @ one @ ( bit1 @ N3 ) ) )
=> ( ! [M5: num] :
( X
!= ( product_Pair_num_num @ ( bit0 @ M5 ) @ one ) )
=> ( ! [M5: num,N3: num] :
( X
!= ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit0 @ N3 ) ) )
=> ( ! [M5: num,N3: num] :
( X
!= ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit1 @ N3 ) ) )
=> ( ! [M5: num] :
( X
!= ( product_Pair_num_num @ ( bit1 @ M5 ) @ one ) )
=> ( ! [M5: num,N3: num] :
( X
!= ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit0 @ N3 ) ) )
=> ~ ! [M5: num,N3: num] :
( X
!= ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit1 @ N3 ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.cases
thf(fact_6725_num_Oexhaust,axiom,
! [Y3: num] :
( ( Y3 != one )
=> ( ! [X23: num] :
( Y3
!= ( bit0 @ X23 ) )
=> ~ ! [X33: num] :
( Y3
!= ( bit1 @ X33 ) ) ) ) ).
% num.exhaust
thf(fact_6726_sin__bound__lemma,axiom,
! [X: real,Y3: real,U2: real,V: real] :
( ( X = Y3 )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ U2 ) @ V )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X @ U2 ) @ Y3 ) ) @ V ) ) ) ).
% sin_bound_lemma
thf(fact_6727_sum__subtractf__nat,axiom,
! [A2: set_real,G: real > nat,F: real > nat] :
( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
=> ( ( groups1935376822645274424al_nat
@ ^ [X2: real] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6728_sum__subtractf__nat,axiom,
! [A2: set_int,G: int > nat,F: int > nat] :
( ! [X5: int] :
( ( member_int @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
=> ( ( groups4541462559716669496nt_nat
@ ^ [X2: int] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6729_sum__subtractf__nat,axiom,
! [A2: set_complex,G: complex > nat,F: complex > nat] :
( ! [X5: complex] :
( ( member_complex @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
=> ( ( groups5693394587270226106ex_nat
@ ^ [X2: complex] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6730_sum__subtractf__nat,axiom,
! [A2: set_set_nat,G: set_nat > nat,F: set_nat > nat] :
( ! [X5: set_nat] :
( ( member_set_nat @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
=> ( ( groups8294997508430121362at_nat
@ ^ [X2: set_nat] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups8294997508430121362at_nat @ F @ A2 ) @ ( groups8294997508430121362at_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6731_sum__subtractf__nat,axiom,
! [A2: set_nat,G: nat > nat,F: nat > nat] :
( ! [X5: nat] :
( ( member_nat @ X5 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
=> ( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6732_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > nat,M: nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_6733_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > real,M: nat,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_6734_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > nat,M: nat,K: nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ I3 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_6735_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > real,M: nat,K: nat,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ I3 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_6736_tanh__real__lt__1,axiom,
! [X: real] : ( ord_less_real @ ( tanh_real @ X ) @ one_one_real ) ).
% tanh_real_lt_1
thf(fact_6737_tanh__real__gt__neg1,axiom,
! [X: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X ) ) ).
% tanh_real_gt_neg1
thf(fact_6738_dense__eq0__I,axiom,
! [X: real] :
( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ( ord_less_eq_real @ ( abs_abs_real @ X ) @ E2 ) )
=> ( X = zero_zero_real ) ) ).
% dense_eq0_I
thf(fact_6739_dense__eq0__I,axiom,
! [X: rat] :
( ! [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ E2 ) )
=> ( X = zero_zero_rat ) ) ).
% dense_eq0_I
thf(fact_6740_abs__mult__pos,axiom,
! [X: code_integer,Y3: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
=> ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y3 ) @ X )
= ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y3 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_6741_abs__mult__pos,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( times_times_real @ ( abs_abs_real @ Y3 ) @ X )
= ( abs_abs_real @ ( times_times_real @ Y3 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_6742_abs__mult__pos,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( times_times_rat @ ( abs_abs_rat @ Y3 ) @ X )
= ( abs_abs_rat @ ( times_times_rat @ Y3 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_6743_abs__mult__pos,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( times_times_int @ ( abs_abs_int @ Y3 ) @ X )
= ( abs_abs_int @ ( times_times_int @ Y3 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_6744_abs__eq__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
| ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
& ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
| ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
=> ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_6745_abs__eq__mult,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( ord_less_eq_real @ A @ zero_zero_real ) )
& ( ( ord_less_eq_real @ zero_zero_real @ B )
| ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_6746_abs__eq__mult,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( ord_less_eq_rat @ A @ zero_zero_rat ) )
& ( ( ord_less_eq_rat @ zero_zero_rat @ B )
| ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_6747_abs__eq__mult,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
| ( ord_less_eq_int @ A @ zero_zero_int ) )
& ( ( ord_less_eq_int @ zero_zero_int @ B )
| ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_6748_abs__minus__le__zero,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).
% abs_minus_le_zero
thf(fact_6749_abs__minus__le__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).
% abs_minus_le_zero
thf(fact_6750_abs__minus__le__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).
% abs_minus_le_zero
thf(fact_6751_abs__minus__le__zero,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).
% abs_minus_le_zero
thf(fact_6752_abs__eq__iff_H,axiom,
! [A: real,B: real] :
( ( ( abs_abs_real @ A )
= B )
= ( ( ord_less_eq_real @ zero_zero_real @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_6753_abs__eq__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= B )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
& ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_6754_abs__eq__iff_H,axiom,
! [A: rat,B: rat] :
( ( ( abs_abs_rat @ A )
= B )
= ( ( ord_less_eq_rat @ zero_zero_rat @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_6755_abs__eq__iff_H,axiom,
! [A: int,B: int] :
( ( ( abs_abs_int @ A )
= B )
= ( ( ord_less_eq_int @ zero_zero_int @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_6756_eq__abs__iff_H,axiom,
! [A: real,B: real] :
( ( A
= ( abs_abs_real @ B ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_real @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_6757_eq__abs__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( abs_abs_Code_integer @ B ) )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
& ( ( B = A )
| ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_6758_eq__abs__iff_H,axiom,
! [A: rat,B: rat] :
( ( A
= ( abs_abs_rat @ B ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_rat @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_6759_eq__abs__iff_H,axiom,
! [A: int,B: int] :
( ( A
= ( abs_abs_int @ B ) )
= ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_int @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_6760_abs__div__pos,axiom,
! [Y3: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( divide_divide_real @ ( abs_abs_real @ X ) @ Y3 )
= ( abs_abs_real @ ( divide_divide_real @ X @ Y3 ) ) ) ) ).
% abs_div_pos
thf(fact_6761_abs__div__pos,axiom,
! [Y3: rat,X: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y3 )
=> ( ( divide_divide_rat @ ( abs_abs_rat @ X ) @ Y3 )
= ( abs_abs_rat @ ( divide_divide_rat @ X @ Y3 ) ) ) ) ).
% abs_div_pos
thf(fact_6762_zero__le__power__abs,axiom,
! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_6763_zero__le__power__abs,axiom,
! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_6764_zero__le__power__abs,axiom,
! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_6765_zero__le__power__abs,axiom,
! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_6766_abs__of__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_neg
thf(fact_6767_abs__of__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_neg
thf(fact_6768_abs__of__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_neg
thf(fact_6769_abs__of__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_neg
thf(fact_6770_abs__if,axiom,
( abs_abs_real
= ( ^ [A5: real] : ( if_real @ ( ord_less_real @ A5 @ zero_zero_real ) @ ( uminus_uminus_real @ A5 ) @ A5 ) ) ) ).
% abs_if
thf(fact_6771_abs__if,axiom,
( abs_abs_int
= ( ^ [A5: int] : ( if_int @ ( ord_less_int @ A5 @ zero_zero_int ) @ ( uminus_uminus_int @ A5 ) @ A5 ) ) ) ).
% abs_if
thf(fact_6772_abs__if,axiom,
( abs_abs_rat
= ( ^ [A5: rat] : ( if_rat @ ( ord_less_rat @ A5 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A5 ) @ A5 ) ) ) ).
% abs_if
thf(fact_6773_abs__if,axiom,
( abs_abs_Code_integer
= ( ^ [A5: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A5 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A5 ) @ A5 ) ) ) ).
% abs_if
thf(fact_6774_abs__if__raw,axiom,
( abs_abs_real
= ( ^ [A5: real] : ( if_real @ ( ord_less_real @ A5 @ zero_zero_real ) @ ( uminus_uminus_real @ A5 ) @ A5 ) ) ) ).
% abs_if_raw
thf(fact_6775_abs__if__raw,axiom,
( abs_abs_int
= ( ^ [A5: int] : ( if_int @ ( ord_less_int @ A5 @ zero_zero_int ) @ ( uminus_uminus_int @ A5 ) @ A5 ) ) ) ).
% abs_if_raw
thf(fact_6776_abs__if__raw,axiom,
( abs_abs_rat
= ( ^ [A5: rat] : ( if_rat @ ( ord_less_rat @ A5 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A5 ) @ A5 ) ) ) ).
% abs_if_raw
thf(fact_6777_abs__if__raw,axiom,
( abs_abs_Code_integer
= ( ^ [A5: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A5 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A5 ) @ A5 ) ) ) ).
% abs_if_raw
thf(fact_6778_abs__diff__le__iff,axiom,
! [X: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R2 )
= ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X )
& ( ord_le3102999989581377725nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_6779_abs__diff__le__iff,axiom,
! [X: real,A: real,R2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R2 )
= ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R2 ) @ X )
& ( ord_less_eq_real @ X @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_6780_abs__diff__le__iff,axiom,
! [X: rat,A: rat,R2: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R2 )
= ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R2 ) @ X )
& ( ord_less_eq_rat @ X @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_6781_abs__diff__le__iff,axiom,
! [X: int,A: int,R2: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R2 )
= ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R2 ) @ X )
& ( ord_less_eq_int @ X @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_6782_abs__triangle__ineq4,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_6783_abs__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_6784_abs__triangle__ineq4,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_6785_abs__triangle__ineq4,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_6786_abs__diff__triangle__ineq,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_6787_abs__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_6788_abs__diff__triangle__ineq,axiom,
! [A: rat,B: rat,C: rat,D: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_6789_abs__diff__triangle__ineq,axiom,
! [A: int,B: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_6790_abs__diff__less__iff,axiom,
! [X: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R2 )
= ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X )
& ( ord_le6747313008572928689nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_6791_abs__diff__less__iff,axiom,
! [X: real,A: real,R2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R2 )
= ( ( ord_less_real @ ( minus_minus_real @ A @ R2 ) @ X )
& ( ord_less_real @ X @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_6792_abs__diff__less__iff,axiom,
! [X: rat,A: rat,R2: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R2 )
= ( ( ord_less_rat @ ( minus_minus_rat @ A @ R2 ) @ X )
& ( ord_less_rat @ X @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_6793_abs__diff__less__iff,axiom,
! [X: int,A: int,R2: int] :
( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R2 )
= ( ( ord_less_int @ ( minus_minus_int @ A @ R2 ) @ X )
& ( ord_less_int @ X @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_6794_sum__eq__Suc0__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= ( suc @ zero_zero_nat ) )
& ! [Y2: int] :
( ( member_int @ Y2 @ A2 )
=> ( ( X2 != Y2 )
=> ( ( F @ Y2 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_6795_sum__eq__Suc0__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( ( F @ X2 )
= ( suc @ zero_zero_nat ) )
& ! [Y2: complex] :
( ( member_complex @ Y2 @ A2 )
=> ( ( X2 != Y2 )
=> ( ( F @ Y2 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_6796_sum__eq__Suc0__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( ( F @ X2 )
= ( suc @ zero_zero_nat ) )
& ! [Y2: nat] :
( ( member_nat @ Y2 @ A2 )
=> ( ( X2 != Y2 )
=> ( ( F @ Y2 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_6797_sum__SucD,axiom,
! [F: nat > nat,A2: set_nat,N: nat] :
( ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( suc @ N ) )
=> ? [X5: nat] :
( ( member_nat @ X5 @ A2 )
& ( ord_less_nat @ zero_zero_nat @ ( F @ X5 ) ) ) ) ).
% sum_SucD
thf(fact_6798_sum__eq__1__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
= one_one_nat )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= one_one_nat )
& ! [Y2: int] :
( ( member_int @ Y2 @ A2 )
=> ( ( X2 != Y2 )
=> ( ( F @ Y2 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_6799_sum__eq__1__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
= one_one_nat )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( ( F @ X2 )
= one_one_nat )
& ! [Y2: complex] :
( ( member_complex @ Y2 @ A2 )
=> ( ( X2 != Y2 )
=> ( ( F @ Y2 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_6800_sum__eq__1__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups3542108847815614940at_nat @ F @ A2 )
= one_one_nat )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( ( F @ X2 )
= one_one_nat )
& ! [Y2: nat] :
( ( member_nat @ Y2 @ A2 )
=> ( ( X2 != Y2 )
=> ( ( F @ Y2 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_6801_numeral__Bit1,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).
% numeral_Bit1
thf(fact_6802_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit1 @ N ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).
% numeral_Bit1
thf(fact_6803_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit1 @ N ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).
% numeral_Bit1
thf(fact_6804_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).
% numeral_Bit1
thf(fact_6805_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit1 @ N ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).
% numeral_Bit1
thf(fact_6806_eval__nat__numeral_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).
% eval_nat_numeral(3)
thf(fact_6807_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q3: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q3 ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_6808_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q3: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q3 ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_6809_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q3: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q3 ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_6810_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q3: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_6811_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q3: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_6812_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q3: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_6813_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q3: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_6814_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q3: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_6815_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q3: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_6816_power__minus__Bit1,axiom,
! [X: real,K: num] :
( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_6817_power__minus__Bit1,axiom,
! [X: int,K: num] :
( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_6818_power__minus__Bit1,axiom,
! [X: complex,K: num] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_6819_power__minus__Bit1,axiom,
! [X: rat,K: num] :
( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_6820_power__minus__Bit1,axiom,
! [X: code_integer,K: num] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_6821_lemma__interval__lt,axiom,
! [A: real,X: real,B: real] :
( ( ord_less_real @ A @ X )
=> ( ( ord_less_real @ X @ B )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [Y5: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D3 )
=> ( ( ord_less_real @ A @ Y5 )
& ( ord_less_real @ Y5 @ B ) ) ) ) ) ) ).
% lemma_interval_lt
thf(fact_6822_sum__power__add,axiom,
! [X: complex,M: nat,I5: set_nat] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( power_power_complex @ X @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6823_sum__power__add,axiom,
! [X: rat,M: nat,I5: set_nat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( power_power_rat @ X @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6824_sum__power__add,axiom,
! [X: int,M: nat,I5: set_nat] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( power_power_int @ X @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_int @ ( power_power_int @ X @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6825_sum__power__add,axiom,
! [X: real,M: nat,I5: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( power_power_real @ X @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_real @ ( power_power_real @ X @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6826_sum_OatLeastAtMost__rev,axiom,
! [G: nat > nat,N: nat,M: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ N @ M ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ I3 ) )
@ ( set_or1269000886237332187st_nat @ N @ M ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_6827_sum_OatLeastAtMost__rev,axiom,
! [G: nat > real,N: nat,M: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ N @ M ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ I3 ) )
@ ( set_or1269000886237332187st_nat @ N @ M ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_6828_numeral__code_I3_J,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).
% numeral_code(3)
thf(fact_6829_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit1 @ N ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).
% numeral_code(3)
thf(fact_6830_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit1 @ N ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).
% numeral_code(3)
thf(fact_6831_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).
% numeral_code(3)
thf(fact_6832_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit1 @ N ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).
% numeral_code(3)
thf(fact_6833_power__numeral__odd,axiom,
! [Z4: complex,W: num] :
( ( power_power_complex @ Z4 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_complex @ ( times_times_complex @ Z4 @ ( power_power_complex @ Z4 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_complex @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_6834_power__numeral__odd,axiom,
! [Z4: real,W: num] :
( ( power_power_real @ Z4 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_real @ ( times_times_real @ Z4 @ ( power_power_real @ Z4 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_real @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_6835_power__numeral__odd,axiom,
! [Z4: rat,W: num] :
( ( power_power_rat @ Z4 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_rat @ ( times_times_rat @ Z4 @ ( power_power_rat @ Z4 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_rat @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_6836_power__numeral__odd,axiom,
! [Z4: nat,W: num] :
( ( power_power_nat @ Z4 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_nat @ ( times_times_nat @ Z4 @ ( power_power_nat @ Z4 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_nat @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_6837_power__numeral__odd,axiom,
! [Z4: int,W: num] :
( ( power_power_int @ Z4 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_int @ ( times_times_int @ Z4 @ ( power_power_int @ Z4 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_int @ Z4 @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_6838_sum__roots__unity,axiom,
! [N: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( groups7754918857620584856omplex
@ ^ [X2: complex] : X2
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= one_one_complex ) ) )
= zero_zero_complex ) ) ).
% sum_roots_unity
thf(fact_6839_sum__nth__roots,axiom,
! [N: nat,C: complex] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( groups7754918857620584856omplex
@ ^ [X2: complex] : X2
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= C ) ) )
= zero_zero_complex ) ) ).
% sum_nth_roots
thf(fact_6840_abs__add__one__gt__zero,axiom,
! [X: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_6841_abs__add__one__gt__zero,axiom,
! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_6842_abs__add__one__gt__zero,axiom,
! [X: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_6843_abs__add__one__gt__zero,axiom,
! [X: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_6844_sum__diff__nat,axiom,
! [B2: set_complex,A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5693394587270226106ex_nat @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B2 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_6845_sum__diff__nat,axiom,
! [B2: set_int,A2: set_int,F: int > nat] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups4541462559716669496nt_nat @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ F @ B2 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_6846_sum__diff__nat,axiom,
! [B2: set_nat,A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups3542108847815614940at_nat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ F @ B2 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_6847_sum__shift__lb__Suc0__0,axiom,
! [F: nat > complex,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_complex )
=> ( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6848_sum__shift__lb__Suc0__0,axiom,
! [F: nat > rat,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_rat )
=> ( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6849_sum__shift__lb__Suc0__0,axiom,
! [F: nat > int,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_int )
=> ( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6850_sum__shift__lb__Suc0__0,axiom,
! [F: nat > nat,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_nat )
=> ( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6851_sum__shift__lb__Suc0__0,axiom,
! [F: nat > real,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_real )
=> ( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6852_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6853_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6854_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6855_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6856_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_rat @ ( G @ M ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6857_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_int @ ( G @ M ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6858_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_nat @ ( G @ M ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6859_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_real @ ( G @ M ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6860_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ ( suc @ N ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6861_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ ( suc @ N ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6862_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ ( suc @ N ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6863_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ ( suc @ N ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6864_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_6865_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_6866_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_6867_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_6868_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_6869_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q3: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
!= zero_zero_nat ) ).
% cong_exp_iff_simps(3)
thf(fact_6870_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q3: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
!= zero_zero_int ) ).
% cong_exp_iff_simps(3)
thf(fact_6871_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q3: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
!= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(3)
thf(fact_6872_power3__eq__cube,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_6873_power3__eq__cube,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_6874_power3__eq__cube,axiom,
! [A: rat] :
( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_6875_power3__eq__cube,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_6876_power3__eq__cube,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_6877_numeral__3__eq__3,axiom,
( ( numeral_numeral_nat @ ( bit1 @ one ) )
= ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).
% numeral_3_eq_3
thf(fact_6878_lemma__interval,axiom,
! [A: real,X: real,B: real] :
( ( ord_less_real @ A @ X )
=> ( ( ord_less_real @ X @ B )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [Y5: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D3 )
=> ( ( ord_less_eq_real @ A @ Y5 )
& ( ord_less_eq_real @ Y5 @ B ) ) ) ) ) ) ).
% lemma_interval
thf(fact_6879_Suc3__eq__add__3,axiom,
! [N: nat] :
( ( suc @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).
% Suc3_eq_add_3
thf(fact_6880_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ M )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6881_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ M )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6882_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ M )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6883_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ M )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6884_sum__Suc__diff,axiom,
! [M: nat,N: nat,F: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( minus_minus_rat @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_rat @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6885_sum__Suc__diff,axiom,
! [M: nat,N: nat,F: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_int @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6886_sum__Suc__diff,axiom,
! [M: nat,N: nat,F: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( minus_minus_real @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_real @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6887_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= zero_zero_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= one_one_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).
% mod_exhaust_less_4
thf(fact_6888_abs__le__square__iff,axiom,
! [X: code_integer,Y3: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ ( abs_abs_Code_integer @ Y3 ) )
= ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_6889_abs__le__square__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y3 ) )
= ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_6890_abs__le__square__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ ( abs_abs_rat @ Y3 ) )
= ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_6891_abs__le__square__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y3 ) )
= ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_6892_abs__square__eq__1,axiom,
! [X: code_integer] :
( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_Code_integer )
= ( ( abs_abs_Code_integer @ X )
= one_one_Code_integer ) ) ).
% abs_square_eq_1
thf(fact_6893_abs__square__eq__1,axiom,
! [X: rat] :
( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat )
= ( ( abs_abs_rat @ X )
= one_one_rat ) ) ).
% abs_square_eq_1
thf(fact_6894_abs__square__eq__1,axiom,
! [X: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
= ( ( abs_abs_real @ X )
= one_one_real ) ) ).
% abs_square_eq_1
thf(fact_6895_abs__square__eq__1,axiom,
! [X: int] :
( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int )
= ( ( abs_abs_int @ X )
= one_one_int ) ) ).
% abs_square_eq_1
thf(fact_6896_num_Osize_I6_J,axiom,
! [X32: num] :
( ( size_size_num @ ( bit1 @ X32 ) )
= ( plus_plus_nat @ ( size_size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(6)
thf(fact_6897_power__even__abs,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) ) ).
% power_even_abs
thf(fact_6898_power__even__abs,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_even_abs
thf(fact_6899_power__even__abs,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( abs_abs_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) ) ).
% power_even_abs
thf(fact_6900_power__even__abs,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( abs_abs_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) ) ).
% power_even_abs
thf(fact_6901_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > rat,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6902_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > int,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6903_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > nat,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6904_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > real,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6905_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q3: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q3 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(11)
thf(fact_6906_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q3: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q3 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(11)
thf(fact_6907_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q3: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q3 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(11)
thf(fact_6908_cong__exp__iff__simps_I7_J,axiom,
! [Q3: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(7)
thf(fact_6909_cong__exp__iff__simps_I7_J,axiom,
! [Q3: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(7)
thf(fact_6910_cong__exp__iff__simps_I7_J,axiom,
! [Q3: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(7)
thf(fact_6911_Suc__div__eq__add3__div,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).
% Suc_div_eq_add3_div
thf(fact_6912_Suc__mod__eq__add3__mod,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).
% Suc_mod_eq_add3_mod
thf(fact_6913_set__encode__def,axiom,
( nat_set_encode
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% set_encode_def
thf(fact_6914_divmod__int__def,axiom,
( unique5052692396658037445od_int
= ( ^ [M6: num,N2: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N2 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).
% divmod_int_def
thf(fact_6915_Divides_Oadjust__div__def,axiom,
( adjust_div
= ( produc8211389475949308722nt_int
@ ^ [Q4: int,R5: int] : ( plus_plus_int @ Q4 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).
% Divides.adjust_div_def
thf(fact_6916_abs__sqrt__wlog,axiom,
! [P: code_integer > code_integer > $o,X: code_integer] :
( ! [X5: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X5 )
=> ( P @ X5 @ ( power_8256067586552552935nteger @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_Code_integer @ X ) @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6917_abs__sqrt__wlog,axiom,
! [P: real > real > $o,X: real] :
( ! [X5: real] :
( ( ord_less_eq_real @ zero_zero_real @ X5 )
=> ( P @ X5 @ ( power_power_real @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6918_abs__sqrt__wlog,axiom,
! [P: rat > rat > $o,X: rat] :
( ! [X5: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X5 )
=> ( P @ X5 @ ( power_power_rat @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_rat @ X ) @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6919_abs__sqrt__wlog,axiom,
! [P: int > int > $o,X: int] :
( ! [X5: int] :
( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> ( P @ X5 @ ( power_power_int @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_int @ X ) @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6920_power2__le__iff__abs__le,axiom,
! [Y3: code_integer,X: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y3 )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ Y3 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_6921_power2__le__iff__abs__le,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_real @ ( abs_abs_real @ X ) @ Y3 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_6922_power2__le__iff__abs__le,axiom,
! [Y3: rat,X: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ Y3 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_6923_power2__le__iff__abs__le,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ ( abs_abs_int @ X ) @ Y3 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_6924_abs__square__le__1,axiom,
! [X: code_integer] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).
% abs_square_le_1
thf(fact_6925_abs__square__le__1,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).
% abs_square_le_1
thf(fact_6926_abs__square__le__1,axiom,
! [X: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).
% abs_square_le_1
thf(fact_6927_abs__square__le__1,axiom,
! [X: int] :
( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_eq_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).
% abs_square_le_1
thf(fact_6928_divmod__def,axiom,
( unique5052692396658037445od_int
= ( ^ [M6: num,N2: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N2 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).
% divmod_def
thf(fact_6929_divmod__def,axiom,
( unique5055182867167087721od_nat
= ( ^ [M6: num,N2: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N2 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).
% divmod_def
thf(fact_6930_divmod__def,axiom,
( unique3479559517661332726nteger
= ( ^ [M6: num,N2: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ) ).
% divmod_def
thf(fact_6931_abs__square__less__1,axiom,
! [X: code_integer] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).
% abs_square_less_1
thf(fact_6932_abs__square__less__1,axiom,
! [X: real] :
( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).
% abs_square_less_1
thf(fact_6933_abs__square__less__1,axiom,
! [X: rat] :
( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).
% abs_square_less_1
thf(fact_6934_abs__square__less__1,axiom,
! [X: int] :
( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).
% abs_square_less_1
thf(fact_6935_power__mono__even,axiom,
! [N: nat,A: code_integer,B: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_6936_power__mono__even,axiom,
! [N: nat,A: real,B: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_6937_power__mono__even,axiom,
! [N: nat,A: rat,B: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_6938_power__mono__even,axiom,
! [N: nat,A: int,B: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_6939_divmod_H__nat__def,axiom,
( unique5055182867167087721od_nat
= ( ^ [M6: num,N2: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N2 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).
% divmod'_nat_def
thf(fact_6940_convex__sum__bound__le,axiom,
! [I5: set_nat,X: nat > code_integer,A: nat > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I2 ) ) )
=> ( ( ( groups7501900531339628137nteger @ X @ I5 )
= one_one_Code_integer )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6941_convex__sum__bound__le,axiom,
! [I5: set_real,X: real > code_integer,A: real > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I2 ) ) )
=> ( ( ( groups7713935264441627589nteger @ X @ I5 )
= one_one_Code_integer )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7713935264441627589nteger
@ ^ [I3: real] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6942_convex__sum__bound__le,axiom,
! [I5: set_int,X: int > code_integer,A: int > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I2 ) ) )
=> ( ( ( groups7873554091576472773nteger @ X @ I5 )
= one_one_Code_integer )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7873554091576472773nteger
@ ^ [I3: int] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6943_convex__sum__bound__le,axiom,
! [I5: set_complex,X: complex > code_integer,A: complex > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I2 ) ) )
=> ( ( ( groups6621422865394947399nteger @ X @ I5 )
= one_one_Code_integer )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups6621422865394947399nteger
@ ^ [I3: complex] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6944_convex__sum__bound__le,axiom,
! [I5: set_real,X: real > real,A: real > real,B: real,Delta: real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X @ I2 ) ) )
=> ( ( ( groups8097168146408367636l_real @ X @ I5 )
= one_one_real )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups8097168146408367636l_real
@ ^ [I3: real] : ( times_times_real @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6945_convex__sum__bound__le,axiom,
! [I5: set_int,X: int > real,A: int > real,B: real,Delta: real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X @ I2 ) ) )
=> ( ( ( groups8778361861064173332t_real @ X @ I5 )
= one_one_real )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups8778361861064173332t_real
@ ^ [I3: int] : ( times_times_real @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6946_convex__sum__bound__le,axiom,
! [I5: set_complex,X: complex > real,A: complex > real,B: real,Delta: real] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X @ I2 ) ) )
=> ( ( ( groups5808333547571424918x_real @ X @ I5 )
= one_one_real )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups5808333547571424918x_real
@ ^ [I3: complex] : ( times_times_real @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6947_convex__sum__bound__le,axiom,
! [I5: set_nat,X: nat > rat,A: nat > rat,B: rat,Delta: rat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X @ I2 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ X @ I5 )
= one_one_rat )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6948_convex__sum__bound__le,axiom,
! [I5: set_real,X: real > rat,A: real > rat,B: rat,Delta: rat] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X @ I2 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ X @ I5 )
= one_one_rat )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups1300246762558778688al_rat
@ ^ [I3: real] : ( times_times_rat @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6949_convex__sum__bound__le,axiom,
! [I5: set_int,X: int > rat,A: int > rat,B: rat,Delta: rat] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X @ I2 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ X @ I5 )
= one_one_rat )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups3906332499630173760nt_rat
@ ^ [I3: int] : ( times_times_rat @ ( A @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6950_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > complex] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( minus_minus_complex @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_complex @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( minus_minus_complex @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_complex ) ) ) ).
% sum_natinterval_diff
thf(fact_6951_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > rat] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_rat @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_rat ) ) ) ).
% sum_natinterval_diff
thf(fact_6952_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > int] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int
@ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_int @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int
@ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_int ) ) ) ).
% sum_natinterval_diff
thf(fact_6953_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > real] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_real @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_real ) ) ) ).
% sum_natinterval_diff
thf(fact_6954_sum__telescope_H_H,axiom,
! [M: nat,N: nat,F: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( minus_minus_rat @ ( F @ N ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6955_sum__telescope_H_H,axiom,
! [M: nat,N: nat,F: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int
@ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( minus_minus_int @ ( F @ N ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6956_sum__telescope_H_H,axiom,
! [M: nat,N: nat,F: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( minus_minus_real @ ( F @ N ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6957_mask__eq__sum__exp,axiom,
! [N: nat] :
( ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int )
= ( groups3539618377306564664at_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6958_mask__eq__sum__exp,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat )
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6959_divmod__nat__def,axiom,
( divmod_nat
= ( ^ [M6: nat,N2: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M6 @ N2 ) @ ( modulo_modulo_nat @ M6 @ N2 ) ) ) ) ).
% divmod_nat_def
thf(fact_6960_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_complex @ ( power_power_complex @ X @ M ) @ ( power_power_complex @ X @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6961_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X: rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_rat @ ( power_power_rat @ X @ M ) @ ( power_power_rat @ X @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6962_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6963_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_real @ ( power_power_real @ X @ M ) @ ( power_power_real @ X @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6964_sum_Oin__pairs,axiom,
! [G: nat > rat,M: nat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6965_sum_Oin__pairs,axiom,
! [G: nat > int,M: nat,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6966_sum_Oin__pairs,axiom,
! [G: nat > nat,M: nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6967_sum_Oin__pairs,axiom,
! [G: nat > real,M: nat,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6968_eq__diff__eq_H,axiom,
! [X: real,Y3: real,Z4: real] :
( ( X
= ( minus_minus_real @ Y3 @ Z4 ) )
= ( Y3
= ( plus_plus_real @ X @ Z4 ) ) ) ).
% eq_diff_eq'
thf(fact_6969_mask__eq__sum__exp__nat,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp_nat
thf(fact_6970_gauss__sum__nat,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_nat
thf(fact_6971_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_6972_arith__series__nat,axiom,
! [A: nat,D: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I3 @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% arith_series_nat
thf(fact_6973_Sum__Icc__nat,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( plus_plus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Icc_nat
thf(fact_6974_odd__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% odd_mod_4_div_2
thf(fact_6975_divmod__divmod__step,axiom,
( unique5055182867167087721od_nat
= ( ^ [M6: num,N2: num] : ( if_Pro6206227464963214023at_nat @ ( ord_less_num @ M6 @ N2 ) @ ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ M6 ) ) @ ( unique5026877609467782581ep_nat @ N2 @ ( unique5055182867167087721od_nat @ M6 @ ( bit0 @ N2 ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_6976_divmod__divmod__step,axiom,
( unique5052692396658037445od_int
= ( ^ [M6: num,N2: num] : ( if_Pro3027730157355071871nt_int @ ( ord_less_num @ M6 @ N2 ) @ ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ M6 ) ) @ ( unique5024387138958732305ep_int @ N2 @ ( unique5052692396658037445od_int @ M6 @ ( bit0 @ N2 ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_6977_divmod__divmod__step,axiom,
( unique3479559517661332726nteger
= ( ^ [M6: num,N2: num] : ( if_Pro6119634080678213985nteger @ ( ord_less_num @ M6 @ N2 ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ M6 ) ) @ ( unique4921790084139445826nteger @ N2 @ ( unique3479559517661332726nteger @ M6 @ ( bit0 @ N2 ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_6978_signed__take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_numeral_minus_bit1
thf(fact_6979_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6980_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6981_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6982_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6983_dbl__dec__simps_I4_J,axiom,
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6984_signed__take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_numeral_bit1
thf(fact_6985_arctan__double,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X ) )
= ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% arctan_double
thf(fact_6986_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8557863876264182079omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6987_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8295874005876285629c_real @ one_one_real )
= ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6988_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6989_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5851722552734809277nc_int @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6990_sum__gp,axiom,
! [N: nat,M: nat,X: complex] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_complex ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( ( X = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( semiri8010041392384452111omplex @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
& ( ( X != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X @ M ) @ ( power_power_complex @ X @ ( suc @ N ) ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6991_sum__gp,axiom,
! [N: nat,M: nat,X: rat] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_rat ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( ( X = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( semiri681578069525770553at_rat @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
& ( ( X != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X @ M ) @ ( power_power_rat @ X @ ( suc @ N ) ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6992_sum__gp,axiom,
! [N: nat,M: nat,X: real] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_real ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( ( X = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( semiri5074537144036343181t_real @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
& ( ( X != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ M ) @ ( power_power_real @ X @ ( suc @ N ) ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6993_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_6994_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_6995_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= ( semiri1316708129612266289at_nat @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_6996_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri681578069525770553at_rat @ M )
= ( semiri681578069525770553at_rat @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_6997_split__part,axiom,
! [P: $o,Q: int > int > $o] :
( ( produc4947309494688390418_int_o
@ ^ [A5: int,B5: int] :
( P
& ( Q @ A5 @ B5 ) ) )
= ( ^ [Ab: product_prod_int_int] :
( P
& ( produc4947309494688390418_int_o @ Q @ Ab ) ) ) ) ).
% split_part
thf(fact_6998_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiri1314217659103216013at_int @ M )
= ( numeral_numeral_int @ V ) )
= ( M
= ( numeral_numeral_nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_6999_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
= ( semiri4939895301339042750nteger @ N ) ) ).
% abs_of_nat
thf(fact_7000_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% abs_of_nat
thf(fact_7001_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% abs_of_nat
thf(fact_7002_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( semiri681578069525770553at_rat @ N ) ) ).
% abs_of_nat
thf(fact_7003_negative__zle,axiom,
! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zle
thf(fact_7004_zdvd1__eq,axiom,
! [X: int] :
( ( dvd_dvd_int @ X @ one_one_int )
= ( ( abs_abs_int @ X )
= one_one_int ) ) ).
% zdvd1_eq
thf(fact_7005_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6511756317524482435omplex @ one_one_complex )
= one_one_complex ) ).
% dbl_dec_simps(3)
thf(fact_7006_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6075765906172075777c_real @ one_one_real )
= one_one_real ) ).
% dbl_dec_simps(3)
thf(fact_7007_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
= one_one_rat ) ).
% dbl_dec_simps(3)
thf(fact_7008_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3811975205180677377ec_int @ one_one_int )
= one_one_int ) ).
% dbl_dec_simps(3)
thf(fact_7009_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= zero_zero_complex )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_7010_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_7011_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_7012_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_7013_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri681578069525770553at_rat @ M )
= zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_7014_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_7015_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_7016_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_7017_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_7018_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_7019_of__nat__0,axiom,
( ( semiri8010041392384452111omplex @ zero_zero_nat )
= zero_zero_complex ) ).
% of_nat_0
thf(fact_7020_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_7021_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_7022_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_7023_of__nat__0,axiom,
( ( semiri681578069525770553at_rat @ zero_zero_nat )
= zero_zero_rat ) ).
% of_nat_0
thf(fact_7024_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_7025_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_7026_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_7027_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_7028_of__nat__numeral,axiom,
! [N: num] :
( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N ) )
= ( numera6690914467698888265omplex @ N ) ) ).
% of_nat_numeral
thf(fact_7029_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% of_nat_numeral
thf(fact_7030_of__nat__numeral,axiom,
! [N: num] :
( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% of_nat_numeral
thf(fact_7031_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ N ) ) ).
% of_nat_numeral
thf(fact_7032_of__nat__numeral,axiom,
! [N: num] :
( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_rat @ N ) ) ).
% of_nat_numeral
thf(fact_7033_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_7034_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_7035_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_7036_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_7037_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_add
thf(fact_7038_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_add
thf(fact_7039_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_add
thf(fact_7040_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% of_nat_add
thf(fact_7041_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_7042_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_7043_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_7044_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% of_nat_mult
thf(fact_7045_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri8010041392384452111omplex @ N )
= one_one_complex )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_7046_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_7047_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_7048_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_7049_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri681578069525770553at_rat @ N )
= one_one_rat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_7050_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_7051_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_7052_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_7053_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_7054_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_7055_of__nat__1,axiom,
( ( semiri8010041392384452111omplex @ one_one_nat )
= one_one_complex ) ).
% of_nat_1
thf(fact_7056_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_7057_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_7058_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_7059_of__nat__1,axiom,
( ( semiri681578069525770553at_rat @ one_one_nat )
= one_one_rat ) ).
% of_nat_1
thf(fact_7060_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N ) )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N ) ) ).
% of_nat_power
thf(fact_7061_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).
% of_nat_power
thf(fact_7062_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).
% of_nat_power
thf(fact_7063_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).
% of_nat_power
thf(fact_7064_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( power_power_nat @ M @ N ) )
= ( power_power_rat @ ( semiri681578069525770553at_rat @ M ) @ N ) ) ).
% of_nat_power
thf(fact_7065_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
= ( semiri8010041392384452111omplex @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7066_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
= ( semiri1314217659103216013at_int @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7067_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
= ( semiri5074537144036343181t_real @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7068_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
= ( semiri1316708129612266289at_nat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7069_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W )
= ( semiri681578069525770553at_rat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7070_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri8010041392384452111omplex @ X )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7071_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1314217659103216013at_int @ X )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7072_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri5074537144036343181t_real @ X )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7073_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7074_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri681578069525770553at_rat @ X )
= ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7075_negative__zless,axiom,
! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zless
thf(fact_7076_zabs__less__one__iff,axiom,
! [Z4: int] :
( ( ord_less_int @ ( abs_abs_int @ Z4 ) @ one_one_int )
= ( Z4 = zero_zero_int ) ) ).
% zabs_less_one_iff
thf(fact_7077_pred__numeral__simps_I1_J,axiom,
( ( pred_numeral @ one )
= zero_zero_nat ) ).
% pred_numeral_simps(1)
thf(fact_7078_eq__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral_nat @ K )
= ( suc @ N ) )
= ( ( pred_numeral @ K )
= N ) ) ).
% eq_numeral_Suc
thf(fact_7079_Suc__eq__numeral,axiom,
! [N: nat,K: num] :
( ( ( suc @ N )
= ( numeral_numeral_nat @ K ) )
= ( N
= ( pred_numeral @ K ) ) ) ).
% Suc_eq_numeral
thf(fact_7080_arctan__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( arctan @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% arctan_le_zero_iff
thf(fact_7081_zero__le__arctan__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% zero_le_arctan_iff
thf(fact_7082_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
= one_one_complex ) ).
% dbl_inc_simps(2)
thf(fact_7083_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_7084_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
= one_one_rat ) ).
% dbl_inc_simps(2)
thf(fact_7085_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_7086_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri5074537144036343181t_real @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% of_nat_of_bool
thf(fact_7087_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri681578069525770553at_rat @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2052037380579107095ol_rat @ P ) ) ).
% of_nat_of_bool
thf(fact_7088_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri1316708129612266289at_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2687167440665602831ol_nat @ P ) ) ).
% of_nat_of_bool
thf(fact_7089_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri1314217659103216013at_int @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% of_nat_of_bool
thf(fact_7090_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri4939895301339042750nteger @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n356916108424825756nteger @ P ) ) ).
% of_nat_of_bool
thf(fact_7091_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_inc_simps(4)
thf(fact_7092_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_inc_simps(4)
thf(fact_7093_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_inc_simps(4)
thf(fact_7094_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_inc_simps(4)
thf(fact_7095_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_inc_simps(4)
thf(fact_7096_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
= ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7097_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7098_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
= ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7099_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7100_of__nat__sum,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_7101_of__nat__sum,axiom,
! [F: complex > nat,A2: set_complex] :
( ( semiri8010041392384452111omplex @ ( groups5693394587270226106ex_nat @ F @ A2 ) )
= ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( semiri8010041392384452111omplex @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_7102_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3539618377306564664at_int
@ ^ [X2: nat] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_7103_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri681578069525770553at_rat @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups2906978787729119204at_rat
@ ^ [X2: nat] : ( semiri681578069525770553at_rat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_7104_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1316708129612266289at_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( semiri1316708129612266289at_nat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_7105_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri5074537144036343181t_real @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( semiri5074537144036343181t_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_7106_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_7107_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_7108_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_7109_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_7110_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ M ) )
= ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).
% of_nat_Suc
thf(fact_7111_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% of_nat_Suc
thf(fact_7112_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ M ) )
= ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).
% of_nat_Suc
thf(fact_7113_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).
% of_nat_Suc
thf(fact_7114_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ M ) )
= ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).
% of_nat_Suc
thf(fact_7115_real__of__nat__less__numeral__iff,axiom,
! [N: nat,W: num] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
= ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_7116_numeral__less__real__of__nat__iff,axiom,
! [W: num,N: nat] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_7117_numeral__le__real__of__nat__iff,axiom,
! [N: num,M: nat] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_7118_less__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( ord_less_nat @ ( pred_numeral @ K ) @ N ) ) ).
% less_numeral_Suc
thf(fact_7119_less__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_nat @ N @ ( pred_numeral @ K ) ) ) ).
% less_Suc_numeral
thf(fact_7120_pred__numeral__simps_I3_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit1 @ K ) )
= ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).
% pred_numeral_simps(3)
thf(fact_7121_le__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_eq_nat @ N @ ( pred_numeral @ K ) ) ) ).
% le_Suc_numeral
thf(fact_7122_le__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N ) ) ).
% le_numeral_Suc
thf(fact_7123_diff__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( minus_minus_nat @ ( pred_numeral @ K ) @ N ) ) ).
% diff_numeral_Suc
thf(fact_7124_diff__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( minus_minus_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( minus_minus_nat @ N @ ( pred_numeral @ K ) ) ) ).
% diff_Suc_numeral
thf(fact_7125_max__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_max_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( suc @ ( ord_max_nat @ N @ ( pred_numeral @ K ) ) ) ) ).
% max_Suc_numeral
thf(fact_7126_max__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N ) ) ) ).
% max_numeral_Suc
thf(fact_7127_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6075765906172075777c_real @ zero_zero_real )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_dec_simps(2)
thf(fact_7128_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_dec_simps(2)
thf(fact_7129_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_dec_simps(2)
thf(fact_7130_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_dec_simps(2)
thf(fact_7131_dbl__dec__simps_I2_J,axiom,
( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_dec_simps(2)
thf(fact_7132_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_7133_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_7134_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_7135_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_7136_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7137_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7138_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7139_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7140_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7141_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7142_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7143_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7144_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7145_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7146_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_7147_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_7148_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_7149_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_7150_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_7151_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_7152_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_7153_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_7154_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y3: nat,X: num,N: nat] :
( ( ( semiri8010041392384452111omplex @ Y3 )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
= ( Y3
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7155_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y3: nat,X: num,N: nat] :
( ( ( semiri1314217659103216013at_int @ Y3 )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
= ( Y3
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7156_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y3: nat,X: num,N: nat] :
( ( ( semiri5074537144036343181t_real @ Y3 )
= ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( Y3
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7157_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y3: nat,X: num,N: nat] :
( ( ( semiri1316708129612266289at_nat @ Y3 )
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( Y3
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7158_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y3: nat,X: num,N: nat] :
( ( ( semiri681578069525770553at_rat @ Y3 )
= ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
= ( Y3
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7159_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y3: nat] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
= ( semiri8010041392384452111omplex @ Y3 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y3 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_7160_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y3: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= ( semiri1314217659103216013at_int @ Y3 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y3 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_7161_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y3: nat] :
( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
= ( semiri5074537144036343181t_real @ Y3 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y3 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_7162_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y3: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= ( semiri1316708129612266289at_nat @ Y3 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y3 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_7163_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y3: nat] :
( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N )
= ( semiri681578069525770553at_rat @ Y3 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y3 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_7164_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_7165_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_7166_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_7167_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_7168_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_7169_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_7170_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_7171_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_7172_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_7173_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_7174_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_7175_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_7176_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_7177_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_7178_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_7179_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I4 ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_7180_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I4 ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_7181_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_7182_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I4 ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_7183_numeral__power__less__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I4 ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_7184_numeral__power__less__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I4 ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_7185_numeral__power__less__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_7186_numeral__power__less__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I4 ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_7187_numeral__power__le__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I4 ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_7188_numeral__power__le__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I4 ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_7189_numeral__power__le__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_7190_numeral__power__le__of__nat__cancel__iff,axiom,
! [I4: num,N: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I4 ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_7191_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I4 ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_7192_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I4 ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_7193_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_7194_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I4: num,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I4 ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I4 ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_7195_signed__take__bit__numeral__bit0,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_numeral_bit0
thf(fact_7196_signed__take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_numeral_minus_bit0
thf(fact_7197_Collect__case__prod__mono,axiom,
! [A2: int > int > $o,B2: int > int > $o] :
( ( ord_le6741204236512500942_int_o @ A2 @ B2 )
=> ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ A2 ) ) @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ B2 ) ) ) ) ).
% Collect_case_prod_mono
thf(fact_7198_prod_Odisc__eq__case,axiom,
! [Prod: product_prod_int_int] :
( produc4947309494688390418_int_o
@ ^ [Uu: int,Uv3: int] : $true
@ Prod ) ).
% prod.disc_eq_case
thf(fact_7199_mult__of__nat__commute,axiom,
! [X: nat,Y3: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y3 )
= ( times_times_int @ Y3 @ ( semiri1314217659103216013at_int @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_7200_mult__of__nat__commute,axiom,
! [X: nat,Y3: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y3 )
= ( times_times_real @ Y3 @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_7201_mult__of__nat__commute,axiom,
! [X: nat,Y3: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y3 )
= ( times_times_nat @ Y3 @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_7202_mult__of__nat__commute,axiom,
! [X: nat,Y3: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ X ) @ Y3 )
= ( times_times_rat @ Y3 @ ( semiri681578069525770553at_rat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_7203_arctan__monotone_H,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y3 ) ) ) ).
% arctan_monotone'
thf(fact_7204_arctan__le__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ).
% arctan_le_iff
thf(fact_7205_int__diff__cases,axiom,
! [Z4: int] :
~ ! [M5: nat,N3: nat] :
( Z4
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% int_diff_cases
thf(fact_7206_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_7207_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_7208_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_7209_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_7210_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_7211_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_7212_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_7213_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).
% of_nat_less_0_iff
thf(fact_7214_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ N ) )
!= zero_zero_complex ) ).
% of_nat_neq_0
thf(fact_7215_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_7216_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_7217_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_7218_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ N ) )
!= zero_zero_rat ) ).
% of_nat_neq_0
thf(fact_7219_div__mult2__eq_H,axiom,
! [A: int,M: nat,N: nat] :
( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% div_mult2_eq'
thf(fact_7220_div__mult2__eq_H,axiom,
! [A: nat,M: nat,N: nat] :
( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% div_mult2_eq'
thf(fact_7221_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_7222_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_7223_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_7224_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_7225_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_7226_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_7227_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_7228_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_7229_of__nat__mono,axiom,
! [I4: nat,J: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I4 ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_7230_of__nat__mono,axiom,
! [I4: nat,J: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I4 ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).
% of_nat_mono
thf(fact_7231_of__nat__mono,axiom,
! [I4: nat,J: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I4 ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_7232_of__nat__mono,axiom,
! [I4: nat,J: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I4 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_7233_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_7234_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_7235_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_7236_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_7237_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_7238_int__ops_I3_J,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% int_ops(3)
thf(fact_7239_abs__zmult__eq__1,axiom,
! [M: int,N: int] :
( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
= one_one_int )
=> ( ( abs_abs_int @ M )
= one_one_int ) ) ).
% abs_zmult_eq_1
thf(fact_7240_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A5: nat,B5: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_7241_int__cases,axiom,
! [Z4: int] :
( ! [N3: nat] :
( Z4
!= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ! [N3: nat] :
( Z4
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).
% int_cases
thf(fact_7242_int__of__nat__induct,axiom,
! [P: int > $o,Z4: int] :
( ! [N3: nat] : ( P @ ( semiri1314217659103216013at_int @ N3 ) )
=> ( ! [N3: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) )
=> ( P @ Z4 ) ) ) ).
% int_of_nat_induct
thf(fact_7243_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_7244_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A5: nat,B5: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_7245_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_7246_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( K
!= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% nonneg_int_cases
thf(fact_7247_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) ) ).
% of_nat_mod
thf(fact_7248_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mod
thf(fact_7249_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mod
thf(fact_7250_zadd__int__left,axiom,
! [M: nat,N: nat,Z4: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z4 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z4 ) ) ).
% zadd_int_left
thf(fact_7251_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_7252_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_7253_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_7254_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_7255_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W3: int,Z2: int] :
? [N2: nat] :
( Z2
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_7256_zdiv__int,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% zdiv_int
thf(fact_7257_int__sum,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% int_sum
thf(fact_7258_int__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3539618377306564664at_int
@ ^ [X2: nat] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% int_sum
thf(fact_7259_numeral__eq__Suc,axiom,
( numeral_numeral_nat
= ( ^ [K3: num] : ( suc @ ( pred_numeral @ K3 ) ) ) ) ).
% numeral_eq_Suc
thf(fact_7260_of__nat__max,axiom,
! [X: nat,Y3: nat] :
( ( semiri4216267220026989637d_enat @ ( ord_max_nat @ X @ Y3 ) )
= ( ord_ma741700101516333627d_enat @ ( semiri4216267220026989637d_enat @ X ) @ ( semiri4216267220026989637d_enat @ Y3 ) ) ) ).
% of_nat_max
thf(fact_7261_of__nat__max,axiom,
! [X: nat,Y3: nat] :
( ( semiri1314217659103216013at_int @ ( ord_max_nat @ X @ Y3 ) )
= ( ord_max_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y3 ) ) ) ).
% of_nat_max
thf(fact_7262_of__nat__max,axiom,
! [X: nat,Y3: nat] :
( ( semiri5074537144036343181t_real @ ( ord_max_nat @ X @ Y3 ) )
= ( ord_max_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ Y3 ) ) ) ).
% of_nat_max
thf(fact_7263_of__nat__max,axiom,
! [X: nat,Y3: nat] :
( ( semiri1316708129612266289at_nat @ ( ord_max_nat @ X @ Y3 ) )
= ( ord_max_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( semiri1316708129612266289at_nat @ Y3 ) ) ) ).
% of_nat_max
thf(fact_7264_of__nat__max,axiom,
! [X: nat,Y3: nat] :
( ( semiri681578069525770553at_rat @ ( ord_max_nat @ X @ Y3 ) )
= ( ord_max_rat @ ( semiri681578069525770553at_rat @ X ) @ ( semiri681578069525770553at_rat @ Y3 ) ) ) ).
% of_nat_max
thf(fact_7265_zmod__int,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
= ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% zmod_int
thf(fact_7266_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A5: nat,B5: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ).
% nat_less_as_int
thf(fact_7267_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A5: nat,B5: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ).
% nat_leq_as_int
thf(fact_7268_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% of_nat_diff
thf(fact_7269_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% of_nat_diff
thf(fact_7270_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_7271_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_7272_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y5: real] :
? [N3: nat] : ( ord_less_real @ Y5 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_7273_int__cases4,axiom,
! [M: int] :
( ! [N3: nat] :
( M
!= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( M
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% int_cases4
thf(fact_7274_dvd__imp__le__int,axiom,
! [I4: int,D: int] :
( ( I4 != zero_zero_int )
=> ( ( dvd_dvd_int @ D @ I4 )
=> ( ord_less_eq_int @ ( abs_abs_int @ D ) @ ( abs_abs_int @ I4 ) ) ) ) ).
% dvd_imp_le_int
thf(fact_7275_real__of__nat__div4,axiom,
! [N: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% real_of_nat_div4
thf(fact_7276_int__zle__neg,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_7277_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_7278_int__Suc,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).
% int_Suc
thf(fact_7279_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W3: int,Z2: int] :
? [N2: nat] :
( Z2
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_7280_abs__mod__less,axiom,
! [L: int,K: int] :
( ( L != zero_zero_int )
=> ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L ) ) @ ( abs_abs_int @ L ) ) ) ).
% abs_mod_less
thf(fact_7281_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N3: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% nonpos_int_cases
thf(fact_7282_negative__zle__0,axiom,
! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_7283_real__of__nat__div,axiom,
! [D: nat,N: nat] :
( ( dvd_dvd_nat @ D @ N )
=> ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ D ) )
= ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).
% real_of_nat_div
thf(fact_7284_pred__numeral__def,axiom,
( pred_numeral
= ( ^ [K3: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K3 ) @ one_one_nat ) ) ) ).
% pred_numeral_def
thf(fact_7285_mod__mult2__eq_H,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_7286_mod__mult2__eq_H,axiom,
! [A: int,M: nat,N: nat] :
( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_7287_mod__mult2__eq_H,axiom,
! [A: nat,M: nat,N: nat] :
( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_7288_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_7289_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_7290_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_7291_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
& ( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_7292_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% pos_int_cases
thf(fact_7293_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
=> ~ ! [N3: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).
% int_cases3
thf(fact_7294_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N2: nat,M6: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M6 ) ) ) ) ).
% nat_less_real_le
thf(fact_7295_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N2: nat,M6: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M6 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_7296_zmult__zless__mono2__lemma,axiom,
! [I4: int,J: int,K: nat] :
( ( ord_less_int @ I4 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I4 ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_7297_zdvd__mult__cancel1,axiom,
! [M: int,N: int] :
( ( M != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ M @ N ) @ M )
= ( ( abs_abs_int @ N )
= one_one_int ) ) ) ).
% zdvd_mult_cancel1
thf(fact_7298_not__zle__0__negative,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).
% not_zle_0_negative
thf(fact_7299_negative__zless__0,axiom,
! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).
% negative_zless_0
thf(fact_7300_negD,axiom,
! [X: int] :
( ( ord_less_int @ X @ zero_zero_int )
=> ? [N3: nat] :
( X
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).
% negD
thf(fact_7301_dbl__inc__def,axiom,
( neg_nu8557863876264182079omplex
= ( ^ [X2: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X2 @ X2 ) @ one_one_complex ) ) ) ).
% dbl_inc_def
thf(fact_7302_dbl__inc__def,axiom,
( neg_nu8295874005876285629c_real
= ( ^ [X2: real] : ( plus_plus_real @ ( plus_plus_real @ X2 @ X2 ) @ one_one_real ) ) ) ).
% dbl_inc_def
thf(fact_7303_dbl__inc__def,axiom,
( neg_nu5219082963157363817nc_rat
= ( ^ [X2: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X2 @ X2 ) @ one_one_rat ) ) ) ).
% dbl_inc_def
thf(fact_7304_dbl__inc__def,axiom,
( neg_nu5851722552734809277nc_int
= ( ^ [X2: int] : ( plus_plus_int @ ( plus_plus_int @ X2 @ X2 ) @ one_one_int ) ) ) ).
% dbl_inc_def
thf(fact_7305_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_7306_real__of__nat__div__aux,axiom,
! [X: nat,D: nat] :
( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ D ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X @ D ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X @ D ) ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).
% real_of_nat_div_aux
thf(fact_7307_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_7308_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_7309_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_7310_inverse__of__nat__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( N != zero_zero_nat )
=> ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_7311_inverse__of__nat__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( N != zero_zero_nat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_7312_even__add__abs__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L ) ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_add_abs_iff
thf(fact_7313_even__abs__add__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_abs_add_iff
thf(fact_7314_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M5: nat] :
( ( ord_less_nat @ zero_zero_nat @ M5 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M5 ) @ X ) @ C ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_7315_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N3: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% neg_int_cases
thf(fact_7316_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y3: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y3 ) ) )
= ( ( ( ord_less_eq_nat @ Y3 @ X )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y3 ) ) ) )
& ( ( ord_less_nat @ X @ Y3 )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_7317_real__of__nat__div2,axiom,
! [N: nat,X: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) ) ).
% real_of_nat_div2
thf(fact_7318_real__of__nat__div3,axiom,
! [N: nat,X: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) @ one_one_real ) ).
% real_of_nat_div3
thf(fact_7319_ln__realpow,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ln_ln_real @ ( power_power_real @ X @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X ) ) ) ) ).
% ln_realpow
thf(fact_7320_nat__intermed__int__val,axiom,
! [M: nat,N: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ( ord_less_eq_nat @ M @ I2 )
& ( ord_less_nat @ I2 @ N ) )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_int @ ( F @ M ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ M @ I2 )
& ( ord_less_eq_nat @ I2 @ N )
& ( ( F @ I2 )
= K ) ) ) ) ) ) ).
% nat_intermed_int_val
thf(fact_7321_dbl__dec__def,axiom,
( neg_nu6511756317524482435omplex
= ( ^ [X2: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X2 @ X2 ) @ one_one_complex ) ) ) ).
% dbl_dec_def
thf(fact_7322_dbl__dec__def,axiom,
( neg_nu6075765906172075777c_real
= ( ^ [X2: real] : ( minus_minus_real @ ( plus_plus_real @ X2 @ X2 ) @ one_one_real ) ) ) ).
% dbl_dec_def
thf(fact_7323_dbl__dec__def,axiom,
( neg_nu3179335615603231917ec_rat
= ( ^ [X2: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X2 @ X2 ) @ one_one_rat ) ) ) ).
% dbl_dec_def
thf(fact_7324_dbl__dec__def,axiom,
( neg_nu3811975205180677377ec_int
= ( ^ [X2: int] : ( minus_minus_int @ ( plus_plus_int @ X2 @ X2 ) @ one_one_int ) ) ) ).
% dbl_dec_def
thf(fact_7325_decr__lemma,axiom,
! [D: int,X: int,Z4: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z4 ) ) @ one_one_int ) @ D ) ) @ Z4 ) ) ).
% decr_lemma
thf(fact_7326_incr__lemma,axiom,
! [D: int,Z4: int,X: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ Z4 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z4 ) ) @ one_one_int ) @ D ) ) ) ) ).
% incr_lemma
thf(fact_7327_linear__plus__1__le__power,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_7328_Bernoulli__inequality,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).
% Bernoulli_inequality
thf(fact_7329_nat__ivt__aux,axiom,
! [N: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ I2 @ N )
& ( ( F @ I2 )
= K ) ) ) ) ) ).
% nat_ivt_aux
thf(fact_7330_nat0__intermed__int__val,axiom,
! [N: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ I2 @ N )
& ( ( F @ I2 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_7331_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) ) ).
% double_gauss_sum
thf(fact_7332_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ).
% double_gauss_sum
thf(fact_7333_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) ) ).
% double_gauss_sum
thf(fact_7334_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) ) ).
% double_gauss_sum
thf(fact_7335_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) ) ).
% double_gauss_sum
thf(fact_7336_double__arith__series,axiom,
! [A: complex,D: complex,N: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( plus_plus_complex @ A @ ( times_times_complex @ ( semiri8010041392384452111omplex @ I3 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_7337_double__arith__series,axiom,
! [A: int,D: int,N: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I3 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_7338_double__arith__series,axiom,
! [A: rat,D: rat,N: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ A @ ( times_times_rat @ ( semiri681578069525770553at_rat @ I3 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_7339_double__arith__series,axiom,
! [A: nat,D: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I3 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_7340_double__arith__series,axiom,
! [A: real,D: real,N: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( plus_plus_real @ A @ ( times_times_real @ ( semiri5074537144036343181t_real @ I3 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_7341_arctan__add,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( plus_plus_real @ ( arctan @ X ) @ ( arctan @ Y3 ) )
= ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X @ Y3 ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X @ Y3 ) ) ) ) ) ) ) ).
% arctan_add
thf(fact_7342_arith__series,axiom,
! [A: int,D: int,N: nat] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I3 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_int @ ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ D ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% arith_series
thf(fact_7343_arith__series,axiom,
! [A: nat,D: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I3 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% arith_series
thf(fact_7344_gauss__sum,axiom,
! [N: nat] :
( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% gauss_sum
thf(fact_7345_gauss__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum
thf(fact_7346_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_7347_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_7348_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_7349_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_7350_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_7351_Bernoulli__inequality__even,axiom,
! [N: nat,X: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).
% Bernoulli_inequality_even
thf(fact_7352_sum__gp__offset,axiom,
! [X: complex,M: nat,N: nat] :
( ( ( X = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) )
& ( ( X != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N ) ) ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ).
% sum_gp_offset
thf(fact_7353_sum__gp__offset,axiom,
! [X: rat,M: nat,N: nat] :
( ( ( X = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) )
& ( ( X != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N ) ) ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ).
% sum_gp_offset
thf(fact_7354_sum__gp__offset,axiom,
! [X: real,M: nat,N: nat] :
( ( ( X = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) )
& ( ( X != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( divide_divide_real @ ( times_times_real @ ( power_power_real @ X @ M ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N ) ) ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).
% sum_gp_offset
thf(fact_7355_gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_7356_gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_7357_of__nat__code__if,axiom,
( semiri8010041392384452111omplex
= ( ^ [N2: nat] :
( if_complex @ ( N2 = zero_zero_nat ) @ zero_zero_complex
@ ( produc1917071388513777916omplex
@ ^ [M6: nat,Q4: nat] : ( if_complex @ ( Q4 = zero_zero_nat ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M6 ) ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M6 ) ) @ one_one_complex ) )
@ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7358_of__nat__code__if,axiom,
( semiri1314217659103216013at_int
= ( ^ [N2: nat] :
( if_int @ ( N2 = zero_zero_nat ) @ zero_zero_int
@ ( produc6840382203811409530at_int
@ ^ [M6: nat,Q4: nat] : ( if_int @ ( Q4 = zero_zero_nat ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M6 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M6 ) ) @ one_one_int ) )
@ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7359_of__nat__code__if,axiom,
( semiri5074537144036343181t_real
= ( ^ [N2: nat] :
( if_real @ ( N2 = zero_zero_nat ) @ zero_zero_real
@ ( produc1703576794950452218t_real
@ ^ [M6: nat,Q4: nat] : ( if_real @ ( Q4 = zero_zero_nat ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M6 ) ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M6 ) ) @ one_one_real ) )
@ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7360_of__nat__code__if,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N2: nat] :
( if_nat @ ( N2 = zero_zero_nat ) @ zero_zero_nat
@ ( produc6842872674320459806at_nat
@ ^ [M6: nat,Q4: nat] : ( if_nat @ ( Q4 = zero_zero_nat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M6 ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M6 ) ) @ one_one_nat ) )
@ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7361_of__nat__code__if,axiom,
( semiri681578069525770553at_rat
= ( ^ [N2: nat] :
( if_rat @ ( N2 = zero_zero_nat ) @ zero_zero_rat
@ ( produc6207742614233964070at_rat
@ ^ [M6: nat,Q4: nat] : ( if_rat @ ( Q4 = zero_zero_nat ) @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M6 ) ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M6 ) ) @ one_one_rat ) )
@ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7362_nat__approx__posE,axiom,
! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ~ ! [N3: nat] :
~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ E ) ) ).
% nat_approx_posE
thf(fact_7363_nat__approx__posE,axiom,
! [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
=> ~ ! [N3: nat] :
~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) ) @ E ) ) ).
% nat_approx_posE
thf(fact_7364_monoseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( topolo6980174941875973593q_real
@ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% monoseq_arctan_series
thf(fact_7365_lemma__termdiff3,axiom,
! [H2: real,Z4: real,K5: real,N: nat] :
( ( H2 != zero_zero_real )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z4 ) @ K5 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z4 @ H2 ) ) @ K5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z4 @ H2 ) @ N ) @ ( power_power_real @ Z4 @ N ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z4 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H2 ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_7366_lemma__termdiff3,axiom,
! [H2: complex,Z4: complex,K5: real,N: nat] :
( ( H2 != zero_zero_complex )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z4 ) @ K5 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z4 @ H2 ) ) @ K5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z4 @ H2 ) @ N ) @ ( power_power_complex @ Z4 @ N ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z4 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H2 ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_7367_ex__less__of__nat__mult,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [N3: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).
% ex_less_of_nat_mult
thf(fact_7368_ex__less__of__nat__mult,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ? [N3: nat] : ( ord_less_rat @ Y3 @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N3 ) @ X ) ) ) ).
% ex_less_of_nat_mult
thf(fact_7369_ln__series,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ( ln_ln_real @ X )
= ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X @ one_one_real ) @ ( suc @ N2 ) ) ) ) ) ) ) ).
% ln_series
thf(fact_7370_powser__zero,axiom,
! [F: nat > complex] :
( ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) ) )
= ( F @ zero_zero_nat ) ) ).
% powser_zero
thf(fact_7371_powser__zero,axiom,
! [F: nat > real] :
( ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) ) )
= ( F @ zero_zero_nat ) ) ).
% powser_zero
thf(fact_7372_complex__mod__minus__le__complex__mod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% complex_mod_minus_le_complex_mod
thf(fact_7373_complex__mod__triangle__ineq2,axiom,
! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).
% complex_mod_triangle_ineq2
thf(fact_7374_monoseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( topolo6980174941875973593q_real @ ( power_power_real @ X ) ) ) ) ).
% monoseq_realpow
thf(fact_7375_real__arch__simple,axiom,
! [X: real] :
? [N3: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).
% real_arch_simple
thf(fact_7376_real__arch__simple,axiom,
! [X: rat] :
? [N3: nat] : ( ord_less_eq_rat @ X @ ( semiri681578069525770553at_rat @ N3 ) ) ).
% real_arch_simple
thf(fact_7377_reals__Archimedean2,axiom,
! [X: real] :
? [N3: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).
% reals_Archimedean2
thf(fact_7378_reals__Archimedean2,axiom,
! [X: rat] :
? [N3: nat] : ( ord_less_rat @ X @ ( semiri681578069525770553at_rat @ N3 ) ) ).
% reals_Archimedean2
thf(fact_7379_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_1: nat] : ( P @ X_1 )
=> ? [N3: nat] :
( ~ ( P @ N3 )
& ( P @ ( suc @ N3 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_7380_arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( arctan @ X )
= ( suminf_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).
% arctan_series
thf(fact_7381_norm__divide__numeral,axiom,
! [A: real,W: num] :
( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_divide_numeral
thf(fact_7382_norm__divide__numeral,axiom,
! [A: complex,W: num] :
( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_divide_numeral
thf(fact_7383_norm__mult__numeral2,axiom,
! [A: real,W: num] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
= ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_mult_numeral2
thf(fact_7384_norm__mult__numeral2,axiom,
! [A: complex,W: num] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
= ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_mult_numeral2
thf(fact_7385_norm__mult__numeral1,axiom,
! [W: num,A: real] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
= ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).
% norm_mult_numeral1
thf(fact_7386_norm__mult__numeral1,axiom,
! [W: num,A: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
= ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).
% norm_mult_numeral1
thf(fact_7387_norm__neg__numeral,axiom,
! [W: num] :
( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_neg_numeral
thf(fact_7388_norm__neg__numeral,axiom,
! [W: num] :
( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_neg_numeral
thf(fact_7389_norm__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ zero_zero_real )
= ( X = zero_zero_real ) ) ).
% norm_le_zero_iff
thf(fact_7390_norm__le__zero__iff,axiom,
! [X: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ zero_zero_real )
= ( X = zero_zero_complex ) ) ).
% norm_le_zero_iff
thf(fact_7391_suminf__geometric,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( ( suminf_real @ ( power_power_real @ C ) )
= ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).
% suminf_geometric
thf(fact_7392_suminf__geometric,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( ( suminf_complex @ ( power_power_complex @ C ) )
= ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).
% suminf_geometric
thf(fact_7393_suminf__zero,axiom,
( ( suminf_complex
@ ^ [N2: nat] : zero_zero_complex )
= zero_zero_complex ) ).
% suminf_zero
thf(fact_7394_suminf__zero,axiom,
( ( suminf_real
@ ^ [N2: nat] : zero_zero_real )
= zero_zero_real ) ).
% suminf_zero
thf(fact_7395_suminf__zero,axiom,
( ( suminf_nat
@ ^ [N2: nat] : zero_zero_nat )
= zero_zero_nat ) ).
% suminf_zero
thf(fact_7396_suminf__zero,axiom,
( ( suminf_int
@ ^ [N2: nat] : zero_zero_int )
= zero_zero_int ) ).
% suminf_zero
thf(fact_7397_norm__one,axiom,
( ( real_V7735802525324610683m_real @ one_one_real )
= one_one_real ) ).
% norm_one
thf(fact_7398_norm__one,axiom,
( ( real_V1022390504157884413omplex @ one_one_complex )
= one_one_real ) ).
% norm_one
thf(fact_7399_norm__numeral,axiom,
! [W: num] :
( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_numeral
thf(fact_7400_norm__numeral,axiom,
! [W: num] :
( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_numeral
thf(fact_7401_norm__minus__commute,axiom,
! [A: real,B: real] :
( ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) )
= ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ A ) ) ) ).
% norm_minus_commute
thf(fact_7402_norm__minus__commute,axiom,
! [A: complex,B: complex] :
( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) )
= ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ A ) ) ) ).
% norm_minus_commute
thf(fact_7403_norm__ge__zero,axiom,
! [X: complex] : ( ord_less_eq_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X ) ) ).
% norm_ge_zero
thf(fact_7404_norm__mult,axiom,
! [X: real,Y3: real] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y3 ) )
= ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y3 ) ) ) ).
% norm_mult
thf(fact_7405_norm__mult,axiom,
! [X: complex,Y3: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y3 ) )
= ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) ) ) ).
% norm_mult
thf(fact_7406_sum__norm__le,axiom,
! [S3: set_real,F: real > complex,G: real > real] :
( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups5754745047067104278omplex @ F @ S3 ) ) @ ( groups8097168146408367636l_real @ G @ S3 ) ) ) ).
% sum_norm_le
thf(fact_7407_sum__norm__le,axiom,
! [S3: set_int,F: int > complex,G: int > real] :
( ! [X5: int] :
( ( member_int @ X5 @ S3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups3049146728041665814omplex @ F @ S3 ) ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ).
% sum_norm_le
thf(fact_7408_sum__norm__le,axiom,
! [S3: set_set_nat,F: set_nat > complex,G: set_nat > real] :
( ! [X5: set_nat] :
( ( member_set_nat @ X5 @ S3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups8255218700646806128omplex @ F @ S3 ) ) @ ( groups5107569545109728110t_real @ G @ S3 ) ) ) ).
% sum_norm_le
thf(fact_7409_sum__norm__le,axiom,
! [S3: set_nat,F: nat > complex,G: nat > real] :
( ! [X5: nat] :
( ( member_nat @ X5 @ S3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).
% sum_norm_le
thf(fact_7410_sum__norm__le,axiom,
! [S3: set_complex,F: complex > complex,G: complex > real] :
( ! [X5: complex] :
( ( member_complex @ X5 @ S3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ S3 ) ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ).
% sum_norm_le
thf(fact_7411_sum__norm__le,axiom,
! [S3: set_nat,F: nat > real,G: nat > real] :
( ! [X5: nat] :
( ( member_nat @ X5 @ S3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).
% sum_norm_le
thf(fact_7412_norm__divide,axiom,
! [A: real,B: real] :
( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).
% norm_divide
thf(fact_7413_norm__divide,axiom,
! [A: complex,B: complex] :
( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).
% norm_divide
thf(fact_7414_norm__power,axiom,
! [X: real,N: nat] :
( ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N ) )
= ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ).
% norm_power
thf(fact_7415_norm__power,axiom,
! [X: complex,N: nat] :
( ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N ) )
= ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N ) ) ).
% norm_power
thf(fact_7416_norm__sum,axiom,
! [F: nat > complex,A2: set_nat] :
( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ A2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( real_V1022390504157884413omplex @ ( F @ I3 ) )
@ A2 ) ) ).
% norm_sum
thf(fact_7417_norm__sum,axiom,
! [F: complex > complex,A2: set_complex] :
( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ A2 ) )
@ ( groups5808333547571424918x_real
@ ^ [I3: complex] : ( real_V1022390504157884413omplex @ ( F @ I3 ) )
@ A2 ) ) ).
% norm_sum
thf(fact_7418_norm__sum,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( real_V7735802525324610683m_real @ ( F @ I3 ) )
@ A2 ) ) ).
% norm_sum
thf(fact_7419_norm__uminus__minus,axiom,
! [X: real,Y3: real] :
( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ Y3 ) )
= ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y3 ) ) ) ).
% norm_uminus_minus
thf(fact_7420_norm__uminus__minus,axiom,
! [X: complex,Y3: complex] :
( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ Y3 ) )
= ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y3 ) ) ) ).
% norm_uminus_minus
thf(fact_7421_nonzero__norm__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_7422_nonzero__norm__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_7423_power__eq__imp__eq__norm,axiom,
! [W: real,N: nat,Z4: real] :
( ( ( power_power_real @ W @ N )
= ( power_power_real @ Z4 @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( real_V7735802525324610683m_real @ W )
= ( real_V7735802525324610683m_real @ Z4 ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_7424_power__eq__imp__eq__norm,axiom,
! [W: complex,N: nat,Z4: complex] :
( ( ( power_power_complex @ W @ N )
= ( power_power_complex @ Z4 @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( real_V1022390504157884413omplex @ W )
= ( real_V1022390504157884413omplex @ Z4 ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_7425_norm__mult__less,axiom,
! [X: real,R2: real,Y3: real,S2: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R2 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y3 ) @ S2 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y3 ) ) @ ( times_times_real @ R2 @ S2 ) ) ) ) ).
% norm_mult_less
thf(fact_7426_norm__mult__less,axiom,
! [X: complex,R2: real,Y3: complex,S2: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R2 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y3 ) @ S2 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y3 ) ) @ ( times_times_real @ R2 @ S2 ) ) ) ) ).
% norm_mult_less
thf(fact_7427_norm__mult__ineq,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y3 ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y3 ) ) ) ).
% norm_mult_ineq
thf(fact_7428_norm__mult__ineq,axiom,
! [X: complex,Y3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y3 ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) ) ) ).
% norm_mult_ineq
thf(fact_7429_norm__triangle__lt,axiom,
! [X: real,Y3: real,E: real] :
( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y3 ) ) @ E )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y3 ) ) @ E ) ) ).
% norm_triangle_lt
thf(fact_7430_norm__triangle__lt,axiom,
! [X: complex,Y3: complex,E: real] :
( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) ) @ E )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y3 ) ) @ E ) ) ).
% norm_triangle_lt
thf(fact_7431_norm__add__less,axiom,
! [X: real,R2: real,Y3: real,S2: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R2 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y3 ) @ S2 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y3 ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).
% norm_add_less
thf(fact_7432_norm__add__less,axiom,
! [X: complex,R2: real,Y3: complex,S2: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R2 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y3 ) @ S2 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y3 ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).
% norm_add_less
thf(fact_7433_norm__power__ineq,axiom,
! [X: real,N: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ).
% norm_power_ineq
thf(fact_7434_norm__power__ineq,axiom,
! [X: complex,N: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N ) ) ).
% norm_power_ineq
thf(fact_7435_norm__add__leD,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_7436_norm__add__leD,axiom,
! [A: complex,B: complex,C: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_7437_norm__triangle__le,axiom,
! [X: real,Y3: real,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y3 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y3 ) ) @ E ) ) ).
% norm_triangle_le
thf(fact_7438_norm__triangle__le,axiom,
! [X: complex,Y3: complex,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y3 ) ) @ E ) ) ).
% norm_triangle_le
thf(fact_7439_norm__triangle__ineq,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y3 ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y3 ) ) ) ).
% norm_triangle_ineq
thf(fact_7440_norm__triangle__ineq,axiom,
! [X: complex,Y3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y3 ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) ) ) ).
% norm_triangle_ineq
thf(fact_7441_norm__triangle__mono,axiom,
! [A: real,R2: real,B: real,S2: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).
% norm_triangle_mono
thf(fact_7442_norm__triangle__mono,axiom,
! [A: complex,R2: real,B: complex,S2: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).
% norm_triangle_mono
thf(fact_7443_norm__diff__triangle__less,axiom,
! [X: real,Y3: real,E1: real,Z4: real,E22: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y3 ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y3 @ Z4 ) ) @ E22 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z4 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_7444_norm__diff__triangle__less,axiom,
! [X: complex,Y3: complex,E1: real,Z4: complex,E22: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y3 ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y3 @ Z4 ) ) @ E22 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z4 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_7445_norm__triangle__le__diff,axiom,
! [X: real,Y3: real,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y3 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y3 ) ) @ E ) ) ).
% norm_triangle_le_diff
thf(fact_7446_norm__triangle__le__diff,axiom,
! [X: complex,Y3: complex,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y3 ) ) @ E ) ) ).
% norm_triangle_le_diff
thf(fact_7447_norm__diff__triangle__le,axiom,
! [X: real,Y3: real,E1: real,Z4: real,E22: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y3 ) ) @ E1 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y3 @ Z4 ) ) @ E22 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z4 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_le
thf(fact_7448_norm__diff__triangle__le,axiom,
! [X: complex,Y3: complex,E1: real,Z4: complex,E22: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y3 ) ) @ E1 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y3 @ Z4 ) ) @ E22 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z4 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_le
thf(fact_7449_norm__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).
% norm_triangle_ineq4
thf(fact_7450_norm__triangle__ineq4,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).
% norm_triangle_ineq4
thf(fact_7451_norm__triangle__sub,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y3 ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y3 ) ) ) ) ).
% norm_triangle_sub
thf(fact_7452_norm__triangle__sub,axiom,
! [X: complex,Y3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y3 ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y3 ) ) ) ) ).
% norm_triangle_sub
thf(fact_7453_norm__diff__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_7454_norm__diff__ineq,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_7455_norm__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).
% norm_triangle_ineq2
thf(fact_7456_norm__triangle__ineq2,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% norm_triangle_ineq2
thf(fact_7457_suminf__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_complex ) )
=> ( ( suminf_complex @ F )
= ( groups2073611262835488442omplex @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7458_suminf__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_int ) )
=> ( ( suminf_int @ F )
= ( groups3539618377306564664at_int @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7459_suminf__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_nat ) )
=> ( ( suminf_nat @ F )
= ( groups3542108847815614940at_nat @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7460_suminf__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_real ) )
=> ( ( suminf_real @ F )
= ( groups6591440286371151544t_real @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7461_power__eq__1__iff,axiom,
! [W: real,N: nat] :
( ( ( power_power_real @ W @ N )
= one_one_real )
=> ( ( ( real_V7735802525324610683m_real @ W )
= one_one_real )
| ( N = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_7462_power__eq__1__iff,axiom,
! [W: complex,N: nat] :
( ( ( power_power_complex @ W @ N )
= one_one_complex )
=> ( ( ( real_V1022390504157884413omplex @ W )
= one_one_real )
| ( N = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_7463_norm__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_7464_norm__diff__triangle__ineq,axiom,
! [A: complex,B: complex,C: complex,D: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_7465_norm__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).
% norm_triangle_ineq3
thf(fact_7466_norm__triangle__ineq3,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% norm_triangle_ineq3
thf(fact_7467_square__norm__one,axiom,
! [X: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
=> ( ( real_V7735802525324610683m_real @ X )
= one_one_real ) ) ).
% square_norm_one
thf(fact_7468_square__norm__one,axiom,
! [X: complex] :
( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex )
=> ( ( real_V1022390504157884413omplex @ X )
= one_one_real ) ) ).
% square_norm_one
thf(fact_7469_norm__power__diff,axiom,
! [Z4: real,W: real,M: nat] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z4 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z4 @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z4 @ W ) ) ) ) ) ) ).
% norm_power_diff
thf(fact_7470_norm__power__diff,axiom,
! [Z4: complex,W: complex,M: nat] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z4 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z4 @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z4 @ W ) ) ) ) ) ) ).
% norm_power_diff
thf(fact_7471_pi__series,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suminf_real
@ ^ [K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% pi_series
thf(fact_7472_lemma__termdiff2,axiom,
! [H2: complex,Z4: complex,N: nat] :
( ( H2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z4 @ H2 ) @ N ) @ ( power_power_complex @ Z4 @ N ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z4 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_complex @ H2
@ ( groups2073611262835488442omplex
@ ^ [P5: nat] :
( groups2073611262835488442omplex
@ ^ [Q4: nat] : ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z4 @ H2 ) @ Q4 ) @ ( power_power_complex @ Z4 @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_7473_lemma__termdiff2,axiom,
! [H2: rat,Z4: rat,N: nat] :
( ( H2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z4 @ H2 ) @ N ) @ ( power_power_rat @ Z4 @ N ) ) @ H2 ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ Z4 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_rat @ H2
@ ( groups2906978787729119204at_rat
@ ^ [P5: nat] :
( groups2906978787729119204at_rat
@ ^ [Q4: nat] : ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z4 @ H2 ) @ Q4 ) @ ( power_power_rat @ Z4 @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_7474_lemma__termdiff2,axiom,
! [H2: real,Z4: real,N: nat] :
( ( H2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z4 @ H2 ) @ N ) @ ( power_power_real @ Z4 @ N ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z4 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_real @ H2
@ ( groups6591440286371151544t_real
@ ^ [P5: nat] :
( groups6591440286371151544t_real
@ ^ [Q4: nat] : ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z4 @ H2 ) @ Q4 ) @ ( power_power_real @ Z4 @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_7475_summable__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( summable_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).
% summable_arctan_series
thf(fact_7476_pred__subset__eq2,axiom,
! [R: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
( ( ord_le2162486998276636481er_o_o
@ ^ [X2: code_integer,Y2: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X2 @ Y2 ) @ R )
@ ^ [X2: code_integer,Y2: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X2 @ Y2 ) @ S3 ) )
= ( ord_le8980329558974975238eger_o @ R @ S3 ) ) ).
% pred_subset_eq2
thf(fact_7477_pred__subset__eq2,axiom,
! [R: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
( ( ord_le6124364862034508274_num_o
@ ^ [X2: num,Y2: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X2 @ Y2 ) @ R )
@ ^ [X2: num,Y2: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X2 @ Y2 ) @ S3 ) )
= ( ord_le880128212290418581um_num @ R @ S3 ) ) ).
% pred_subset_eq2
thf(fact_7478_pred__subset__eq2,axiom,
! [R: set_Pr6200539531224447659at_num,S3: set_Pr6200539531224447659at_num] :
( ( ord_le3404735783095501756_num_o
@ ^ [X2: nat,Y2: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X2 @ Y2 ) @ R )
@ ^ [X2: nat,Y2: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X2 @ Y2 ) @ S3 ) )
= ( ord_le8085105155179020875at_num @ R @ S3 ) ) ).
% pred_subset_eq2
thf(fact_7479_pred__subset__eq2,axiom,
! [R: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
( ( ord_le2646555220125990790_nat_o
@ ^ [X2: nat,Y2: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X2 @ Y2 ) @ R )
@ ^ [X2: nat,Y2: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X2 @ Y2 ) @ S3 ) )
= ( ord_le3146513528884898305at_nat @ R @ S3 ) ) ).
% pred_subset_eq2
thf(fact_7480_pred__subset__eq2,axiom,
! [R: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
( ( ord_le6741204236512500942_int_o
@ ^ [X2: int,Y2: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X2 @ Y2 ) @ R )
@ ^ [X2: int,Y2: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X2 @ Y2 ) @ S3 ) )
= ( ord_le2843351958646193337nt_int @ R @ S3 ) ) ).
% pred_subset_eq2
thf(fact_7481_infinite__int__iff__unbounded__le,axiom,
! [S3: set_int] :
( ( ~ ( finite_finite_int @ S3 ) )
= ( ! [M6: int] :
? [N2: int] :
( ( ord_less_eq_int @ M6 @ ( abs_abs_int @ N2 ) )
& ( member_int @ N2 @ S3 ) ) ) ) ).
% infinite_int_iff_unbounded_le
thf(fact_7482_accp__subset,axiom,
! [R1: product_prod_num_num > product_prod_num_num > $o,R22: product_prod_num_num > product_prod_num_num > $o] :
( ( ord_le2556027599737686990_num_o @ R1 @ R22 )
=> ( ord_le2239182809043710856_num_o @ ( accp_P3113834385874906142um_num @ R22 ) @ ( accp_P3113834385874906142um_num @ R1 ) ) ) ).
% accp_subset
thf(fact_7483_accp__subset,axiom,
! [R1: product_prod_nat_nat > product_prod_nat_nat > $o,R22: product_prod_nat_nat > product_prod_nat_nat > $o] :
( ( ord_le5604493270027003598_nat_o @ R1 @ R22 )
=> ( ord_le704812498762024988_nat_o @ ( accp_P4275260045618599050at_nat @ R22 ) @ ( accp_P4275260045618599050at_nat @ R1 ) ) ) ).
% accp_subset
thf(fact_7484_accp__subset,axiom,
! [R1: product_prod_int_int > product_prod_int_int > $o,R22: product_prod_int_int > product_prod_int_int > $o] :
( ( ord_le1598226405681992910_int_o @ R1 @ R22 )
=> ( ord_le8369615600986905444_int_o @ ( accp_P1096762738010456898nt_int @ R22 ) @ ( accp_P1096762738010456898nt_int @ R1 ) ) ) ).
% accp_subset
thf(fact_7485_accp__subset,axiom,
! [R1: list_nat > list_nat > $o,R22: list_nat > list_nat > $o] :
( ( ord_le6558929396352911974_nat_o @ R1 @ R22 )
=> ( ord_le1520216061033275535_nat_o @ ( accp_list_nat @ R22 ) @ ( accp_list_nat @ R1 ) ) ) ).
% accp_subset
thf(fact_7486_accp__subset,axiom,
! [R1: nat > nat > $o,R22: nat > nat > $o] :
( ( ord_le2646555220125990790_nat_o @ R1 @ R22 )
=> ( ord_less_eq_nat_o @ ( accp_nat @ R22 ) @ ( accp_nat @ R1 ) ) ) ).
% accp_subset
thf(fact_7487_lessThan__iff,axiom,
! [I4: set_nat,K: set_nat] :
( ( member_set_nat @ I4 @ ( set_or890127255671739683et_nat @ K ) )
= ( ord_less_set_nat @ I4 @ K ) ) ).
% lessThan_iff
thf(fact_7488_lessThan__iff,axiom,
! [I4: rat,K: rat] :
( ( member_rat @ I4 @ ( set_ord_lessThan_rat @ K ) )
= ( ord_less_rat @ I4 @ K ) ) ).
% lessThan_iff
thf(fact_7489_lessThan__iff,axiom,
! [I4: num,K: num] :
( ( member_num @ I4 @ ( set_ord_lessThan_num @ K ) )
= ( ord_less_num @ I4 @ K ) ) ).
% lessThan_iff
thf(fact_7490_lessThan__iff,axiom,
! [I4: nat,K: nat] :
( ( member_nat @ I4 @ ( set_ord_lessThan_nat @ K ) )
= ( ord_less_nat @ I4 @ K ) ) ).
% lessThan_iff
thf(fact_7491_lessThan__iff,axiom,
! [I4: int,K: int] :
( ( member_int @ I4 @ ( set_ord_lessThan_int @ K ) )
= ( ord_less_int @ I4 @ K ) ) ).
% lessThan_iff
thf(fact_7492_lessThan__iff,axiom,
! [I4: real,K: real] :
( ( member_real @ I4 @ ( set_or5984915006950818249n_real @ K ) )
= ( ord_less_real @ I4 @ K ) ) ).
% lessThan_iff
thf(fact_7493_lessThan__iff,axiom,
! [I4: $o,K: $o] :
( ( member_o @ I4 @ ( set_ord_lessThan_o @ K ) )
= ( ord_less_o @ I4 @ K ) ) ).
% lessThan_iff
thf(fact_7494_summable__zero,axiom,
( summable_complex
@ ^ [N2: nat] : zero_zero_complex ) ).
% summable_zero
thf(fact_7495_summable__zero,axiom,
( summable_real
@ ^ [N2: nat] : zero_zero_real ) ).
% summable_zero
thf(fact_7496_summable__zero,axiom,
( summable_nat
@ ^ [N2: nat] : zero_zero_nat ) ).
% summable_zero
thf(fact_7497_summable__zero,axiom,
( summable_int
@ ^ [N2: nat] : zero_zero_int ) ).
% summable_zero
thf(fact_7498_summable__single,axiom,
! [I4: nat,F: nat > complex] :
( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ).
% summable_single
thf(fact_7499_summable__single,axiom,
! [I4: nat,F: nat > real] :
( summable_real
@ ^ [R5: nat] : ( if_real @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_real ) ) ).
% summable_single
thf(fact_7500_summable__single,axiom,
! [I4: nat,F: nat > nat] :
( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ).
% summable_single
thf(fact_7501_summable__single,axiom,
! [I4: nat,F: nat > int] :
( summable_int
@ ^ [R5: nat] : ( if_int @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_int ) ) ).
% summable_single
thf(fact_7502_summable__iff__shift,axiom,
! [F: nat > real,K: nat] :
( ( summable_real
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) )
= ( summable_real @ F ) ) ).
% summable_iff_shift
thf(fact_7503_summable__iff__shift,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) )
= ( summable_complex @ F ) ) ).
% summable_iff_shift
thf(fact_7504_lessThan__subset__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_lessThan_rat @ X ) @ ( set_ord_lessThan_rat @ Y3 ) )
= ( ord_less_eq_rat @ X @ Y3 ) ) ).
% lessThan_subset_iff
thf(fact_7505_lessThan__subset__iff,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_set_num @ ( set_ord_lessThan_num @ X ) @ ( set_ord_lessThan_num @ Y3 ) )
= ( ord_less_eq_num @ X @ Y3 ) ) ).
% lessThan_subset_iff
thf(fact_7506_lessThan__subset__iff,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X ) @ ( set_ord_lessThan_nat @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ).
% lessThan_subset_iff
thf(fact_7507_lessThan__subset__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_set_int @ ( set_ord_lessThan_int @ X ) @ ( set_ord_lessThan_int @ Y3 ) )
= ( ord_less_eq_int @ X @ Y3 ) ) ).
% lessThan_subset_iff
thf(fact_7508_lessThan__subset__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_set_real @ ( set_or5984915006950818249n_real @ X ) @ ( set_or5984915006950818249n_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ).
% lessThan_subset_iff
thf(fact_7509_lessThan__subset__iff,axiom,
! [X: $o,Y3: $o] :
( ( ord_less_eq_set_o @ ( set_ord_lessThan_o @ X ) @ ( set_ord_lessThan_o @ Y3 ) )
= ( ord_less_eq_o @ X @ Y3 ) ) ).
% lessThan_subset_iff
thf(fact_7510_summable__cmult__iff,axiom,
! [C: complex,F: nat > complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) )
= ( ( C = zero_zero_complex )
| ( summable_complex @ F ) ) ) ).
% summable_cmult_iff
thf(fact_7511_summable__cmult__iff,axiom,
! [C: real,F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) )
= ( ( C = zero_zero_real )
| ( summable_real @ F ) ) ) ).
% summable_cmult_iff
thf(fact_7512_summable__divide__iff,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C ) )
= ( ( C = zero_zero_complex )
| ( summable_complex @ F ) ) ) ).
% summable_divide_iff
thf(fact_7513_summable__divide__iff,axiom,
! [F: nat > real,C: real] :
( ( summable_real
@ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C ) )
= ( ( C = zero_zero_real )
| ( summable_real @ F ) ) ) ).
% summable_divide_iff
thf(fact_7514_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).
% summable_If_finite_set
thf(fact_7515_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( summable_real
@ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).
% summable_If_finite_set
thf(fact_7516_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).
% summable_If_finite_set
thf(fact_7517_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( summable_int
@ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).
% summable_If_finite_set
thf(fact_7518_summable__If__finite,axiom,
! [P: nat > $o,F: nat > complex] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).
% summable_If_finite
thf(fact_7519_summable__If__finite,axiom,
! [P: nat > $o,F: nat > real] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_real
@ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).
% summable_If_finite
thf(fact_7520_summable__If__finite,axiom,
! [P: nat > $o,F: nat > nat] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).
% summable_If_finite
thf(fact_7521_summable__If__finite,axiom,
! [P: nat > $o,F: nat > int] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_int
@ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).
% summable_If_finite
thf(fact_7522_sum_OlessThan__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7523_sum_OlessThan__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7524_sum_OlessThan__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7525_sum_OlessThan__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7526_summable__geometric__iff,axiom,
! [C: real] :
( ( summable_real @ ( power_power_real @ C ) )
= ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real ) ) ).
% summable_geometric_iff
thf(fact_7527_summable__geometric__iff,axiom,
! [C: complex] :
( ( summable_complex @ ( power_power_complex @ C ) )
= ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real ) ) ).
% summable_geometric_iff
thf(fact_7528_summable__norm__cancel,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( F @ N2 ) ) )
=> ( summable_real @ F ) ) ).
% summable_norm_cancel
thf(fact_7529_summable__norm__cancel,axiom,
! [F: nat > complex] :
( ( summable_real
@ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) )
=> ( summable_complex @ F ) ) ).
% summable_norm_cancel
thf(fact_7530_summable__comparison__test_H,axiom,
! [G: nat > real,N5: nat,F: nat > real] :
( ( summable_real @ G )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( summable_real @ F ) ) ) ).
% summable_comparison_test'
thf(fact_7531_summable__comparison__test_H,axiom,
! [G: nat > real,N5: nat,F: nat > complex] :
( ( summable_real @ G )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( summable_complex @ F ) ) ) ).
% summable_comparison_test'
thf(fact_7532_summable__comparison__test,axiom,
! [F: nat > real,G: nat > real] :
( ? [N7: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N7 @ N3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real @ F ) ) ) ).
% summable_comparison_test
thf(fact_7533_summable__comparison__test,axiom,
! [F: nat > complex,G: nat > real] :
( ? [N7: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N7 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_complex @ F ) ) ) ).
% summable_comparison_test
thf(fact_7534_summable__const__iff,axiom,
! [C: complex] :
( ( summable_complex
@ ^ [Uu: nat] : C )
= ( C = zero_zero_complex ) ) ).
% summable_const_iff
thf(fact_7535_summable__const__iff,axiom,
! [C: real] :
( ( summable_real
@ ^ [Uu: nat] : C )
= ( C = zero_zero_real ) ) ).
% summable_const_iff
thf(fact_7536_summable__mult2,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C ) ) ) ).
% summable_mult2
thf(fact_7537_summable__mult2,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C ) ) ) ).
% summable_mult2
thf(fact_7538_summable__mult,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) ) ) ).
% summable_mult
thf(fact_7539_summable__mult,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) ) ) ).
% summable_mult
thf(fact_7540_summable__add,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( summable_complex
@ ^ [N2: nat] : ( plus_plus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).
% summable_add
thf(fact_7541_summable__add,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N2: nat] : ( plus_plus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).
% summable_add
thf(fact_7542_summable__add,axiom,
! [F: nat > nat,G: nat > nat] :
( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( summable_nat
@ ^ [N2: nat] : ( plus_plus_nat @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).
% summable_add
thf(fact_7543_summable__add,axiom,
! [F: nat > int,G: nat > int] :
( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( summable_int
@ ^ [N2: nat] : ( plus_plus_int @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).
% summable_add
thf(fact_7544_summable__diff,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( summable_complex
@ ^ [N2: nat] : ( minus_minus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).
% summable_diff
thf(fact_7545_summable__diff,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).
% summable_diff
thf(fact_7546_summable__divide,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C ) ) ) ).
% summable_divide
thf(fact_7547_summable__divide,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C ) ) ) ).
% summable_divide
thf(fact_7548_summable__minus__iff,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) ) )
= ( summable_real @ F ) ) ).
% summable_minus_iff
thf(fact_7549_summable__minus__iff,axiom,
! [F: nat > complex] :
( ( summable_complex
@ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) ) )
= ( summable_complex @ F ) ) ).
% summable_minus_iff
thf(fact_7550_summable__minus,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) ) ) ) ).
% summable_minus
thf(fact_7551_summable__minus,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) ) ) ) ).
% summable_minus
thf(fact_7552_summable__Suc__iff,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
= ( summable_real @ F ) ) ).
% summable_Suc_iff
thf(fact_7553_summable__Suc__iff,axiom,
! [F: nat > complex] :
( ( summable_complex
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
= ( summable_complex @ F ) ) ).
% summable_Suc_iff
thf(fact_7554_summable__sum,axiom,
! [I5: set_real,F: real > nat > real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N2: nat] :
( groups8097168146408367636l_real
@ ^ [I3: real] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7555_summable__sum,axiom,
! [I5: set_int,F: int > nat > real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N2: nat] :
( groups8778361861064173332t_real
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7556_summable__sum,axiom,
! [I5: set_complex,F: complex > nat > real] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N2: nat] :
( groups5808333547571424918x_real
@ ^ [I3: complex] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7557_summable__sum,axiom,
! [I5: set_nat,F: nat > nat > complex] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N2: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7558_summable__sum,axiom,
! [I5: set_real,F: real > nat > complex] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N2: nat] :
( groups5754745047067104278omplex
@ ^ [I3: real] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7559_summable__sum,axiom,
! [I5: set_int,F: int > nat > complex] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N2: nat] :
( groups3049146728041665814omplex
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7560_summable__sum,axiom,
! [I5: set_int,F: int > nat > int] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_int @ ( F @ I2 ) ) )
=> ( summable_int
@ ^ [N2: nat] :
( groups4538972089207619220nt_int
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7561_summable__sum,axiom,
! [I5: set_complex,F: complex > nat > complex] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N2: nat] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7562_summable__sum,axiom,
! [I5: set_nat,F: nat > nat > nat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_nat @ ( F @ I2 ) ) )
=> ( summable_nat
@ ^ [N2: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7563_summable__sum,axiom,
! [I5: set_nat,F: nat > nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_7564_summable__ignore__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) ) ) ).
% summable_ignore_initial_segment
thf(fact_7565_summable__ignore__initial__segment,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) ) ) ).
% summable_ignore_initial_segment
thf(fact_7566_suminf__le__const,axiom,
! [F: nat > int,X: int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X )
=> ( ord_less_eq_int @ ( suminf_int @ F ) @ X ) ) ) ).
% suminf_le_const
thf(fact_7567_suminf__le__const,axiom,
! [F: nat > nat,X: nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X )
=> ( ord_less_eq_nat @ ( suminf_nat @ F ) @ X ) ) ) ).
% suminf_le_const
thf(fact_7568_suminf__le__const,axiom,
! [F: nat > real,X: real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X )
=> ( ord_less_eq_real @ ( suminf_real @ F ) @ X ) ) ) ).
% suminf_le_const
thf(fact_7569_summable__rabs__cancel,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) )
=> ( summable_real @ F ) ) ).
% summable_rabs_cancel
thf(fact_7570_lessThan__def,axiom,
( set_or890127255671739683et_nat
= ( ^ [U3: set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] : ( ord_less_set_nat @ X2 @ U3 ) ) ) ) ).
% lessThan_def
thf(fact_7571_lessThan__def,axiom,
( set_ord_lessThan_rat
= ( ^ [U3: rat] :
( collect_rat
@ ^ [X2: rat] : ( ord_less_rat @ X2 @ U3 ) ) ) ) ).
% lessThan_def
thf(fact_7572_lessThan__def,axiom,
( set_ord_lessThan_num
= ( ^ [U3: num] :
( collect_num
@ ^ [X2: num] : ( ord_less_num @ X2 @ U3 ) ) ) ) ).
% lessThan_def
thf(fact_7573_lessThan__def,axiom,
( set_ord_lessThan_nat
= ( ^ [U3: nat] :
( collect_nat
@ ^ [X2: nat] : ( ord_less_nat @ X2 @ U3 ) ) ) ) ).
% lessThan_def
thf(fact_7574_lessThan__def,axiom,
( set_ord_lessThan_int
= ( ^ [U3: int] :
( collect_int
@ ^ [X2: int] : ( ord_less_int @ X2 @ U3 ) ) ) ) ).
% lessThan_def
thf(fact_7575_lessThan__def,axiom,
( set_or5984915006950818249n_real
= ( ^ [U3: real] :
( collect_real
@ ^ [X2: real] : ( ord_less_real @ X2 @ U3 ) ) ) ) ).
% lessThan_def
thf(fact_7576_lessThan__def,axiom,
( set_ord_lessThan_o
= ( ^ [U3: $o] :
( collect_o
@ ^ [X2: $o] : ( ord_less_o @ X2 @ U3 ) ) ) ) ).
% lessThan_def
thf(fact_7577_summableI__nonneg__bounded,axiom,
! [F: nat > int,X: int] :
( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X )
=> ( summable_int @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7578_summableI__nonneg__bounded,axiom,
! [F: nat > nat,X: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X )
=> ( summable_nat @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7579_summableI__nonneg__bounded,axiom,
! [F: nat > real,X: real] :
( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X )
=> ( summable_real @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7580_finite__nat__iff__bounded,axiom,
( finite_finite_nat
= ( ^ [S5: set_nat] :
? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_lessThan_nat @ K3 ) ) ) ) ).
% finite_nat_iff_bounded
thf(fact_7581_finite__nat__bounded,axiom,
! [S3: set_nat] :
( ( finite_finite_nat @ S3 )
=> ? [K2: nat] : ( ord_less_eq_set_nat @ S3 @ ( set_ord_lessThan_nat @ K2 ) ) ) ).
% finite_nat_bounded
thf(fact_7582_powser__insidea,axiom,
! [F: nat > real,X: real,Z4: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ X @ N2 ) ) )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( real_V7735802525324610683m_real @ X ) )
=> ( summable_real
@ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) ) ) ) ) ).
% powser_insidea
thf(fact_7583_powser__insidea,axiom,
! [F: nat > complex,X: complex,Z4: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ X @ N2 ) ) )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( real_V1022390504157884413omplex @ X ) )
=> ( summable_real
@ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) ) ) ) ) ).
% powser_insidea
thf(fact_7584_suminf__le,axiom,
! [F: nat > real,G: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ord_less_eq_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) ) ) ) ) ).
% suminf_le
thf(fact_7585_suminf__le,axiom,
! [F: nat > nat,G: nat > nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( ord_less_eq_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) ) ) ) ) ).
% suminf_le
thf(fact_7586_suminf__le,axiom,
! [F: nat > int,G: nat > int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( ord_less_eq_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) ) ) ) ) ).
% suminf_le
thf(fact_7587_suminf__split__initial__segment,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex @ F )
=> ( ( suminf_complex @ F )
= ( plus_plus_complex
@ ( suminf_complex
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) )
@ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_split_initial_segment
thf(fact_7588_suminf__split__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ( suminf_real @ F )
= ( plus_plus_real
@ ( suminf_real
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) )
@ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_split_initial_segment
thf(fact_7589_suminf__minus__initial__segment,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) )
= ( minus_minus_complex @ ( suminf_complex @ F ) @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_minus_initial_segment
thf(fact_7590_suminf__minus__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K ) ) )
= ( minus_minus_real @ ( suminf_real @ F ) @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_minus_initial_segment
thf(fact_7591_lessThan__strict__subset__iff,axiom,
! [M: rat,N: rat] :
( ( ord_less_set_rat @ ( set_ord_lessThan_rat @ M ) @ ( set_ord_lessThan_rat @ N ) )
= ( ord_less_rat @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_7592_lessThan__strict__subset__iff,axiom,
! [M: num,N: num] :
( ( ord_less_set_num @ ( set_ord_lessThan_num @ M ) @ ( set_ord_lessThan_num @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_7593_lessThan__strict__subset__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_set_nat @ ( set_ord_lessThan_nat @ M ) @ ( set_ord_lessThan_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_7594_lessThan__strict__subset__iff,axiom,
! [M: int,N: int] :
( ( ord_less_set_int @ ( set_ord_lessThan_int @ M ) @ ( set_ord_lessThan_int @ N ) )
= ( ord_less_int @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_7595_lessThan__strict__subset__iff,axiom,
! [M: real,N: real] :
( ( ord_less_set_real @ ( set_or5984915006950818249n_real @ M ) @ ( set_or5984915006950818249n_real @ N ) )
= ( ord_less_real @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_7596_lessThan__strict__subset__iff,axiom,
! [M: $o,N: $o] :
( ( ord_less_set_o @ ( set_ord_lessThan_o @ M ) @ ( set_ord_lessThan_o @ N ) )
= ( ord_less_o @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_7597_summable__mult__D,axiom,
! [C: complex,F: nat > complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) )
=> ( ( C != zero_zero_complex )
=> ( summable_complex @ F ) ) ) ).
% summable_mult_D
thf(fact_7598_summable__mult__D,axiom,
! [C: real,F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) )
=> ( ( C != zero_zero_real )
=> ( summable_real @ F ) ) ) ).
% summable_mult_D
thf(fact_7599_summable__zero__power,axiom,
summable_real @ ( power_power_real @ zero_zero_real ) ).
% summable_zero_power
thf(fact_7600_summable__zero__power,axiom,
summable_int @ ( power_power_int @ zero_zero_int ) ).
% summable_zero_power
thf(fact_7601_summable__zero__power,axiom,
summable_complex @ ( power_power_complex @ zero_zero_complex ) ).
% summable_zero_power
thf(fact_7602_pi__ge__zero,axiom,
ord_less_eq_real @ zero_zero_real @ pi ).
% pi_ge_zero
thf(fact_7603_sum__less__suminf,axiom,
! [F: nat > int,N: nat] :
( ( summable_int @ F )
=> ( ! [M5: nat] :
( ( ord_less_eq_nat @ N @ M5 )
=> ( ord_less_int @ zero_zero_int @ ( F @ M5 ) ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_int @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_7604_sum__less__suminf,axiom,
! [F: nat > nat,N: nat] :
( ( summable_nat @ F )
=> ( ! [M5: nat] :
( ( ord_less_eq_nat @ N @ M5 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ M5 ) ) )
=> ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_nat @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_7605_sum__less__suminf,axiom,
! [F: nat > real,N: nat] :
( ( summable_real @ F )
=> ( ! [M5: nat] :
( ( ord_less_eq_nat @ N @ M5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ M5 ) ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_real @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_7606_suminf__mult2,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( ( times_times_complex @ ( suminf_complex @ F ) @ C )
= ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C ) ) ) ) ).
% suminf_mult2
thf(fact_7607_suminf__mult2,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( ( times_times_real @ ( suminf_real @ F ) @ C )
= ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C ) ) ) ) ).
% suminf_mult2
thf(fact_7608_suminf__mult,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) )
= ( times_times_complex @ C @ ( suminf_complex @ F ) ) ) ) ).
% suminf_mult
thf(fact_7609_suminf__mult,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) )
= ( times_times_real @ C @ ( suminf_real @ F ) ) ) ) ).
% suminf_mult
thf(fact_7610_suminf__add,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( ( plus_plus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
= ( suminf_complex
@ ^ [N2: nat] : ( plus_plus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).
% suminf_add
thf(fact_7611_suminf__add,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ( plus_plus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
= ( suminf_real
@ ^ [N2: nat] : ( plus_plus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).
% suminf_add
thf(fact_7612_suminf__add,axiom,
! [F: nat > nat,G: nat > nat] :
( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( ( plus_plus_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) )
= ( suminf_nat
@ ^ [N2: nat] : ( plus_plus_nat @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).
% suminf_add
thf(fact_7613_suminf__add,axiom,
! [F: nat > int,G: nat > int] :
( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( ( plus_plus_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) )
= ( suminf_int
@ ^ [N2: nat] : ( plus_plus_int @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).
% suminf_add
thf(fact_7614_suminf__diff,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( ( minus_minus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
= ( suminf_complex
@ ^ [N2: nat] : ( minus_minus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).
% suminf_diff
thf(fact_7615_suminf__diff,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ( minus_minus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
= ( suminf_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).
% suminf_diff
thf(fact_7616_suminf__divide,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C ) )
= ( divide1717551699836669952omplex @ ( suminf_complex @ F ) @ C ) ) ) ).
% suminf_divide
thf(fact_7617_suminf__divide,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C ) )
= ( divide_divide_real @ ( suminf_real @ F ) @ C ) ) ) ).
% suminf_divide
thf(fact_7618_suminf__minus,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) ) )
= ( uminus_uminus_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_minus
thf(fact_7619_suminf__minus,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) ) )
= ( uminus1482373934393186551omplex @ ( suminf_complex @ F ) ) ) ) ).
% suminf_minus
thf(fact_7620_suminf__sum,axiom,
! [I5: set_real,F: real > nat > real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N2: nat] :
( groups8097168146408367636l_real
@ ^ [I3: real] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups8097168146408367636l_real
@ ^ [I3: real] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7621_suminf__sum,axiom,
! [I5: set_int,F: int > nat > real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N2: nat] :
( groups8778361861064173332t_real
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups8778361861064173332t_real
@ ^ [I3: int] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7622_suminf__sum,axiom,
! [I5: set_complex,F: complex > nat > real] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N2: nat] :
( groups5808333547571424918x_real
@ ^ [I3: complex] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups5808333547571424918x_real
@ ^ [I3: complex] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7623_suminf__sum,axiom,
! [I5: set_nat,F: nat > nat > complex] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N2: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7624_suminf__sum,axiom,
! [I5: set_real,F: real > nat > complex] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N2: nat] :
( groups5754745047067104278omplex
@ ^ [I3: real] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups5754745047067104278omplex
@ ^ [I3: real] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7625_suminf__sum,axiom,
! [I5: set_int,F: int > nat > complex] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N2: nat] :
( groups3049146728041665814omplex
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups3049146728041665814omplex
@ ^ [I3: int] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7626_suminf__sum,axiom,
! [I5: set_int,F: int > nat > int] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_int @ ( F @ I2 ) ) )
=> ( ( suminf_int
@ ^ [N2: nat] :
( groups4538972089207619220nt_int
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( suminf_int @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7627_suminf__sum,axiom,
! [I5: set_complex,F: complex > nat > complex] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N2: nat] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups7754918857620584856omplex
@ ^ [I3: complex] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7628_suminf__sum,axiom,
! [I5: set_nat,F: nat > nat > nat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_nat @ ( F @ I2 ) ) )
=> ( ( suminf_nat
@ ^ [N2: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( suminf_nat @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7629_suminf__sum,axiom,
! [I5: set_nat,F: nat > nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_7630_sum__less__suminf2,axiom,
! [F: nat > int,N: nat,I4: nat] :
( ( summable_int @ F )
=> ( ! [M5: nat] :
( ( ord_less_eq_nat @ N @ M5 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ M5 ) ) )
=> ( ( ord_less_eq_nat @ N @ I4 )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ I4 ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_int @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_7631_sum__less__suminf2,axiom,
! [F: nat > nat,N: nat,I4: nat] :
( ( summable_nat @ F )
=> ( ! [M5: nat] :
( ( ord_less_eq_nat @ N @ M5 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ M5 ) ) )
=> ( ( ord_less_eq_nat @ N @ I4 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I4 ) )
=> ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_nat @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_7632_sum__less__suminf2,axiom,
! [F: nat > real,N: nat,I4: nat] :
( ( summable_real @ F )
=> ( ! [M5: nat] :
( ( ord_less_eq_nat @ N @ M5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ M5 ) ) )
=> ( ( ord_less_eq_nat @ N @ I4 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I4 ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_real @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_7633_suminf__eq__zero__iff,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ( ( suminf_real @ F )
= zero_zero_real )
= ( ! [N2: nat] :
( ( F @ N2 )
= zero_zero_real ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_7634_suminf__eq__zero__iff,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ( ( suminf_nat @ F )
= zero_zero_nat )
= ( ! [N2: nat] :
( ( F @ N2 )
= zero_zero_nat ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_7635_suminf__eq__zero__iff,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ( ( suminf_int @ F )
= zero_zero_int )
= ( ! [N2: nat] :
( ( F @ N2 )
= zero_zero_int ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_7636_suminf__nonneg,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_7637_suminf__nonneg,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_7638_suminf__nonneg,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_7639_suminf__pos,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_pos
thf(fact_7640_suminf__pos,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).
% suminf_pos
thf(fact_7641_suminf__pos,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).
% suminf_pos
thf(fact_7642_summable__0__powser,axiom,
! [F: nat > complex] :
( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) ) ) ).
% summable_0_powser
thf(fact_7643_summable__0__powser,axiom,
! [F: nat > real] :
( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) ) ) ).
% summable_0_powser
thf(fact_7644_summable__zero__power_H,axiom,
! [F: nat > complex] :
( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) ) ) ).
% summable_zero_power'
thf(fact_7645_summable__zero__power_H,axiom,
! [F: nat > real] :
( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) ) ) ).
% summable_zero_power'
thf(fact_7646_summable__zero__power_H,axiom,
! [F: nat > int] :
( summable_int
@ ^ [N2: nat] : ( times_times_int @ ( F @ N2 ) @ ( power_power_int @ zero_zero_int @ N2 ) ) ) ).
% summable_zero_power'
thf(fact_7647_powser__split__head_I3_J,axiom,
! [F: nat > complex,Z4: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) )
=> ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z4 @ N2 ) ) ) ) ).
% powser_split_head(3)
thf(fact_7648_powser__split__head_I3_J,axiom,
! [F: nat > real,Z4: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z4 @ N2 ) ) ) ) ).
% powser_split_head(3)
thf(fact_7649_summable__powser__split__head,axiom,
! [F: nat > complex,Z4: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z4 @ N2 ) ) )
= ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) ) ) ).
% summable_powser_split_head
thf(fact_7650_summable__powser__split__head,axiom,
! [F: nat > real,Z4: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z4 @ N2 ) ) )
= ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) ) ) ).
% summable_powser_split_head
thf(fact_7651_summable__powser__ignore__initial__segment,axiom,
! [F: nat > complex,M: nat,Z4: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ ( plus_plus_nat @ N2 @ M ) ) @ ( power_power_complex @ Z4 @ N2 ) ) )
= ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_7652_summable__powser__ignore__initial__segment,axiom,
! [F: nat > real,M: nat,Z4: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ ( plus_plus_nat @ N2 @ M ) ) @ ( power_power_real @ Z4 @ N2 ) ) )
= ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_7653_summable__norm__comparison__test,axiom,
! [F: nat > complex,G: nat > real] :
( ? [N7: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N7 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) ) ) ) ).
% summable_norm_comparison_test
thf(fact_7654_summable__rabs__comparison__test,axiom,
! [F: nat > real,G: nat > real] :
( ? [N7: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N7 @ N3 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) ) ) ) ).
% summable_rabs_comparison_test
thf(fact_7655_sum_Onat__diff__reindex,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nat_diff_reindex
thf(fact_7656_sum_Onat__diff__reindex,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nat_diff_reindex
thf(fact_7657_summable__rabs,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
@ ( suminf_real
@ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) ) ) ) ).
% summable_rabs
thf(fact_7658_sum__diff__distrib,axiom,
! [Q: int > nat,P: int > nat,N: int] :
( ! [X5: int] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
=> ( ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ P @ ( set_ord_lessThan_int @ N ) ) @ ( groups4541462559716669496nt_nat @ Q @ ( set_ord_lessThan_int @ N ) ) )
= ( groups4541462559716669496nt_nat
@ ^ [X2: int] : ( minus_minus_nat @ ( P @ X2 ) @ ( Q @ X2 ) )
@ ( set_ord_lessThan_int @ N ) ) ) ) ).
% sum_diff_distrib
thf(fact_7659_sum__diff__distrib,axiom,
! [Q: real > nat,P: real > nat,N: real] :
( ! [X5: real] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
=> ( ( minus_minus_nat @ ( groups1935376822645274424al_nat @ P @ ( set_or5984915006950818249n_real @ N ) ) @ ( groups1935376822645274424al_nat @ Q @ ( set_or5984915006950818249n_real @ N ) ) )
= ( groups1935376822645274424al_nat
@ ^ [X2: real] : ( minus_minus_nat @ ( P @ X2 ) @ ( Q @ X2 ) )
@ ( set_or5984915006950818249n_real @ N ) ) ) ) ).
% sum_diff_distrib
thf(fact_7660_sum__diff__distrib,axiom,
! [Q: $o > nat,P: $o > nat,N: $o] :
( ! [X5: $o] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
=> ( ( minus_minus_nat @ ( groups8507830703676809646_o_nat @ P @ ( set_ord_lessThan_o @ N ) ) @ ( groups8507830703676809646_o_nat @ Q @ ( set_ord_lessThan_o @ N ) ) )
= ( groups8507830703676809646_o_nat
@ ^ [X2: $o] : ( minus_minus_nat @ ( P @ X2 ) @ ( Q @ X2 ) )
@ ( set_ord_lessThan_o @ N ) ) ) ) ).
% sum_diff_distrib
thf(fact_7661_sum__diff__distrib,axiom,
! [Q: nat > nat,P: nat > nat,N: nat] :
( ! [X5: nat] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
=> ( ( minus_minus_nat @ ( groups3542108847815614940at_nat @ P @ ( set_ord_lessThan_nat @ N ) ) @ ( groups3542108847815614940at_nat @ Q @ ( set_ord_lessThan_nat @ N ) ) )
= ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( minus_minus_nat @ ( P @ X2 ) @ ( Q @ X2 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum_diff_distrib
thf(fact_7662_suminf__pos__iff,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) )
= ( ? [I3: nat] : ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_7663_suminf__pos__iff,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) )
= ( ? [I3: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_7664_suminf__pos__iff,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) )
= ( ? [I3: nat] : ( ord_less_int @ zero_zero_int @ ( F @ I3 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_7665_suminf__pos2,axiom,
! [F: nat > real,I4: nat] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I4 ) )
=> ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_7666_suminf__pos2,axiom,
! [F: nat > nat,I4: nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I4 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_7667_suminf__pos2,axiom,
! [F: nat > int,I4: nat] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ I4 ) )
=> ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_7668_powser__inside,axiom,
! [F: nat > real,X: real,Z4: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ X @ N2 ) ) )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( real_V7735802525324610683m_real @ X ) )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) ) ) ) ).
% powser_inside
thf(fact_7669_powser__inside,axiom,
! [F: nat > complex,X: complex,Z4: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ X @ N2 ) ) )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( real_V1022390504157884413omplex @ X ) )
=> ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) ) ) ) ).
% powser_inside
thf(fact_7670_complete__algebra__summable__geometric,axiom,
! [X: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ one_one_real )
=> ( summable_real @ ( power_power_real @ X ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_7671_complete__algebra__summable__geometric,axiom,
! [X: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ one_one_real )
=> ( summable_complex @ ( power_power_complex @ X ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_7672_summable__geometric,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( summable_real @ ( power_power_real @ C ) ) ) ).
% summable_geometric
thf(fact_7673_summable__geometric,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( summable_complex @ ( power_power_complex @ C ) ) ) ).
% summable_geometric
thf(fact_7674_suminf__split__head,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
= ( minus_minus_complex @ ( suminf_complex @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).
% suminf_split_head
thf(fact_7675_suminf__split__head,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
= ( minus_minus_real @ ( suminf_real @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).
% suminf_split_head
thf(fact_7676_pi__less__4,axiom,
ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).
% pi_less_4
thf(fact_7677_pi__ge__two,axiom,
ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).
% pi_ge_two
thf(fact_7678_pi__half__neq__two,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_neq_two
thf(fact_7679_sum__pos__lt__pair,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ! [D3: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D3 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D3 ) @ one_one_nat ) ) ) ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).
% sum_pos_lt_pair
thf(fact_7680_sum_OlessThan__Suc__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7681_sum_OlessThan__Suc__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7682_sum_OlessThan__Suc__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7683_sum_OlessThan__Suc__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7684_sumr__diff__mult__const2,axiom,
! [F: nat > int,N: nat,R2: int] :
( ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ R2 ) )
= ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( minus_minus_int @ ( F @ I3 ) @ R2 )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sumr_diff_mult_const2
thf(fact_7685_sumr__diff__mult__const2,axiom,
! [F: nat > rat,N: nat,R2: rat] :
( ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ R2 ) )
= ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( minus_minus_rat @ ( F @ I3 ) @ R2 )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sumr_diff_mult_const2
thf(fact_7686_sumr__diff__mult__const2,axiom,
! [F: nat > real,N: nat,R2: real] :
( ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ R2 ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( minus_minus_real @ ( F @ I3 ) @ R2 )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sumr_diff_mult_const2
thf(fact_7687_sum__lessThan__telescope,axiom,
! [F: nat > rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [N2: nat] : ( minus_minus_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_rat @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7688_sum__lessThan__telescope,axiom,
! [F: nat > int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [N2: nat] : ( minus_minus_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_int @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7689_sum__lessThan__telescope,axiom,
! [F: nat > real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_real @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7690_sum__lessThan__telescope_H,axiom,
! [F: nat > rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [N2: nat] : ( minus_minus_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7691_sum__lessThan__telescope_H,axiom,
! [F: nat > int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [N2: nat] : ( minus_minus_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7692_sum__lessThan__telescope_H,axiom,
! [F: nat > real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7693_summable__norm,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( F @ N2 ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( suminf_real @ F ) )
@ ( suminf_real
@ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( F @ N2 ) ) ) ) ) ).
% summable_norm
thf(fact_7694_summable__norm,axiom,
! [F: nat > complex] :
( ( summable_real
@ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( suminf_complex @ F ) )
@ ( suminf_real
@ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) ) ) ) ).
% summable_norm
thf(fact_7695_sum_OatLeast1__atMost__eq,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_7696_sum_OatLeast1__atMost__eq,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_7697_sum__le__suminf,axiom,
! [F: nat > int,I5: set_nat] :
( ( summable_int @ F )
=> ( ( finite_finite_nat @ I5 )
=> ( ! [N3: nat] :
( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I5 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) ) )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ I5 ) @ ( suminf_int @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_7698_sum__le__suminf,axiom,
! [F: nat > nat,I5: set_nat] :
( ( summable_nat @ F )
=> ( ( finite_finite_nat @ I5 )
=> ( ! [N3: nat] :
( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I5 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ I5 ) @ ( suminf_nat @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_7699_sum__le__suminf,axiom,
! [F: nat > real,I5: set_nat] :
( ( summable_real @ F )
=> ( ( finite_finite_nat @ I5 )
=> ( ! [N3: nat] :
( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I5 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) ) )
=> ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ I5 ) @ ( suminf_real @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_7700_bot__empty__eq2,axiom,
( bot_bo4731626569425807221er_o_o
= ( ^ [X2: code_integer,Y2: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X2 @ Y2 ) @ bot_bo5379713665208646970eger_o ) ) ) ).
% bot_empty_eq2
thf(fact_7701_bot__empty__eq2,axiom,
( bot_bot_num_num_o
= ( ^ [X2: num,Y2: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X2 @ Y2 ) @ bot_bo9056780473022590049um_num ) ) ) ).
% bot_empty_eq2
thf(fact_7702_bot__empty__eq2,axiom,
( bot_bot_nat_num_o
= ( ^ [X2: nat,Y2: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X2 @ Y2 ) @ bot_bo7038385379056416535at_num ) ) ) ).
% bot_empty_eq2
thf(fact_7703_bot__empty__eq2,axiom,
( bot_bot_nat_nat_o
= ( ^ [X2: nat,Y2: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X2 @ Y2 ) @ bot_bo2099793752762293965at_nat ) ) ) ).
% bot_empty_eq2
thf(fact_7704_bot__empty__eq2,axiom,
( bot_bot_int_int_o
= ( ^ [X2: int,Y2: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X2 @ Y2 ) @ bot_bo1796632182523588997nt_int ) ) ) ).
% bot_empty_eq2
thf(fact_7705_pred__equals__eq2,axiom,
! [R: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
( ( ( ^ [X2: code_integer,Y2: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X2 @ Y2 ) @ R ) )
= ( ^ [X2: code_integer,Y2: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X2 @ Y2 ) @ S3 ) ) )
= ( R = S3 ) ) ).
% pred_equals_eq2
thf(fact_7706_pred__equals__eq2,axiom,
! [R: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
( ( ( ^ [X2: num,Y2: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X2 @ Y2 ) @ R ) )
= ( ^ [X2: num,Y2: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X2 @ Y2 ) @ S3 ) ) )
= ( R = S3 ) ) ).
% pred_equals_eq2
thf(fact_7707_pred__equals__eq2,axiom,
! [R: set_Pr6200539531224447659at_num,S3: set_Pr6200539531224447659at_num] :
( ( ( ^ [X2: nat,Y2: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X2 @ Y2 ) @ R ) )
= ( ^ [X2: nat,Y2: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X2 @ Y2 ) @ S3 ) ) )
= ( R = S3 ) ) ).
% pred_equals_eq2
thf(fact_7708_pred__equals__eq2,axiom,
! [R: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
( ( ( ^ [X2: nat,Y2: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X2 @ Y2 ) @ R ) )
= ( ^ [X2: nat,Y2: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X2 @ Y2 ) @ S3 ) ) )
= ( R = S3 ) ) ).
% pred_equals_eq2
thf(fact_7709_pred__equals__eq2,axiom,
! [R: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
( ( ( ^ [X2: int,Y2: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X2 @ Y2 ) @ R ) )
= ( ^ [X2: int,Y2: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X2 @ Y2 ) @ S3 ) ) )
= ( R = S3 ) ) ).
% pred_equals_eq2
thf(fact_7710_pi__half__neq__zero,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= zero_zero_real ) ).
% pi_half_neq_zero
thf(fact_7711_pi__half__less__two,axiom,
ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% pi_half_less_two
thf(fact_7712_pi__half__le__two,axiom,
ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% pi_half_le_two
thf(fact_7713_one__diff__power__eq,axiom,
! [X: complex,N: nat] :
( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7714_one__diff__power__eq,axiom,
! [X: rat,N: nat] :
( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7715_one__diff__power__eq,axiom,
! [X: int,N: nat] :
( ( minus_minus_int @ one_one_int @ ( power_power_int @ X @ N ) )
= ( times_times_int @ ( minus_minus_int @ one_one_int @ X ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7716_one__diff__power__eq,axiom,
! [X: real,N: nat] :
( ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ N ) )
= ( times_times_real @ ( minus_minus_real @ one_one_real @ X ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7717_power__diff__1__eq,axiom,
! [X: complex,N: nat] :
( ( minus_minus_complex @ ( power_power_complex @ X @ N ) @ one_one_complex )
= ( times_times_complex @ ( minus_minus_complex @ X @ one_one_complex ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7718_power__diff__1__eq,axiom,
! [X: rat,N: nat] :
( ( minus_minus_rat @ ( power_power_rat @ X @ N ) @ one_one_rat )
= ( times_times_rat @ ( minus_minus_rat @ X @ one_one_rat ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7719_power__diff__1__eq,axiom,
! [X: int,N: nat] :
( ( minus_minus_int @ ( power_power_int @ X @ N ) @ one_one_int )
= ( times_times_int @ ( minus_minus_int @ X @ one_one_int ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7720_power__diff__1__eq,axiom,
! [X: real,N: nat] :
( ( minus_minus_real @ ( power_power_real @ X @ N ) @ one_one_real )
= ( times_times_real @ ( minus_minus_real @ X @ one_one_real ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7721_geometric__sum,axiom,
! [X: complex,N: nat] :
( ( X != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X @ N ) @ one_one_complex ) @ ( minus_minus_complex @ X @ one_one_complex ) ) ) ) ).
% geometric_sum
thf(fact_7722_geometric__sum,axiom,
! [X: rat,N: nat] :
( ( X != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X @ N ) @ one_one_rat ) @ ( minus_minus_rat @ X @ one_one_rat ) ) ) ) ).
% geometric_sum
thf(fact_7723_geometric__sum,axiom,
! [X: real,N: nat] :
( ( X != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ N ) @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ) ).
% geometric_sum
thf(fact_7724_powser__split__head_I1_J,axiom,
! [F: nat > complex,Z4: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) )
=> ( ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) )
= ( plus_plus_complex @ ( F @ zero_zero_nat )
@ ( times_times_complex
@ ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z4 @ N2 ) ) )
@ Z4 ) ) ) ) ).
% powser_split_head(1)
thf(fact_7725_powser__split__head_I1_J,axiom,
! [F: nat > real,Z4: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) )
=> ( ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) )
= ( plus_plus_real @ ( F @ zero_zero_nat )
@ ( times_times_real
@ ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z4 @ N2 ) ) )
@ Z4 ) ) ) ) ).
% powser_split_head(1)
thf(fact_7726_powser__split__head_I2_J,axiom,
! [F: nat > complex,Z4: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) )
=> ( ( times_times_complex
@ ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z4 @ N2 ) ) )
@ Z4 )
= ( minus_minus_complex
@ ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z4 @ N2 ) ) )
@ ( F @ zero_zero_nat ) ) ) ) ).
% powser_split_head(2)
thf(fact_7727_powser__split__head_I2_J,axiom,
! [F: nat > real,Z4: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) )
=> ( ( times_times_real
@ ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z4 @ N2 ) ) )
@ Z4 )
= ( minus_minus_real
@ ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z4 @ N2 ) ) )
@ ( F @ zero_zero_nat ) ) ) ) ).
% powser_split_head(2)
thf(fact_7728_summable__partial__sum__bound,axiom,
! [F: nat > complex,E: real] :
( ( summable_complex @ F )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ~ ! [N8: nat] :
~ ! [M2: nat] :
( ( ord_less_eq_nat @ N8 @ M2 )
=> ! [N9: nat] : ( ord_less_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ M2 @ N9 ) ) ) @ E ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_7729_summable__partial__sum__bound,axiom,
! [F: nat > real,E: real] :
( ( summable_real @ F )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ~ ! [N8: nat] :
~ ! [M2: nat] :
( ( ord_less_eq_nat @ N8 @ M2 )
=> ! [N9: nat] : ( ord_less_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ M2 @ N9 ) ) ) @ E ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_7730_suminf__exist__split,axiom,
! [R2: real,F: nat > real] :
( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ( summable_real @ F )
=> ? [N8: nat] :
! [N9: nat] :
( ( ord_less_eq_nat @ N8 @ N9 )
=> ( ord_less_real
@ ( real_V7735802525324610683m_real
@ ( suminf_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N9 ) ) ) )
@ R2 ) ) ) ) ).
% suminf_exist_split
thf(fact_7731_suminf__exist__split,axiom,
! [R2: real,F: nat > complex] :
( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ( summable_complex @ F )
=> ? [N8: nat] :
! [N9: nat] :
( ( ord_less_eq_nat @ N8 @ N9 )
=> ( ord_less_real
@ ( real_V1022390504157884413omplex
@ ( suminf_complex
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N9 ) ) ) )
@ R2 ) ) ) ) ).
% suminf_exist_split
thf(fact_7732_summable__power__series,axiom,
! [F: nat > real,Z4: real] :
( ! [I2: nat] : ( ord_less_eq_real @ ( F @ I2 ) @ one_one_real )
=> ( ! [I2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Z4 )
=> ( ( ord_less_real @ Z4 @ one_one_real )
=> ( summable_real
@ ^ [I3: nat] : ( times_times_real @ ( F @ I3 ) @ ( power_power_real @ Z4 @ I3 ) ) ) ) ) ) ) ).
% summable_power_series
thf(fact_7733_Abel__lemma,axiom,
! [R2: real,R0: real,A: nat > complex,M7: real] :
( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ( ord_less_real @ R2 @ R0 )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N3 ) ) @ ( power_power_real @ R0 @ N3 ) ) @ M7 )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N2 ) ) @ ( power_power_real @ R2 @ N2 ) ) ) ) ) ) ).
% Abel_lemma
thf(fact_7734_sum__gp__strict,axiom,
! [X: complex,N: nat] :
( ( ( X = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( semiri8010041392384452111omplex @ N ) ) )
& ( ( X != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ N ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7735_sum__gp__strict,axiom,
! [X: rat,N: nat] :
( ( ( X = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( semiri681578069525770553at_rat @ N ) ) )
& ( ( X != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ N ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7736_sum__gp__strict,axiom,
! [X: real,N: nat] :
( ( ( X = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) )
& ( ( X != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ N ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7737_lemma__termdiff1,axiom,
! [Z4: complex,H2: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [P5: nat] : ( minus_minus_complex @ ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z4 @ P5 ) ) @ ( power_power_complex @ Z4 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ Z4 @ P5 ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z4 @ ( minus_minus_nat @ M @ P5 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7738_lemma__termdiff1,axiom,
! [Z4: rat,H2: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [P5: nat] : ( minus_minus_rat @ ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z4 @ P5 ) ) @ ( power_power_rat @ Z4 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ Z4 @ P5 ) @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z4 @ ( minus_minus_nat @ M @ P5 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7739_lemma__termdiff1,axiom,
! [Z4: int,H2: int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [P5: nat] : ( minus_minus_int @ ( times_times_int @ ( power_power_int @ ( plus_plus_int @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z4 @ P5 ) ) @ ( power_power_int @ Z4 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups3539618377306564664at_int
@ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ Z4 @ P5 ) @ ( minus_minus_int @ ( power_power_int @ ( plus_plus_int @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z4 @ ( minus_minus_nat @ M @ P5 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7740_lemma__termdiff1,axiom,
! [Z4: real,H2: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [P5: nat] : ( minus_minus_real @ ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z4 @ P5 ) ) @ ( power_power_real @ Z4 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ Z4 @ P5 ) @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z4 @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z4 @ ( minus_minus_nat @ M @ P5 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7741_pi__half__gt__zero,axiom,
ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_gt_zero
thf(fact_7742_power__diff__sumr2,axiom,
! [X: complex,N: nat,Y3: complex] :
( ( minus_minus_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y3 @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ X @ Y3 )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7743_power__diff__sumr2,axiom,
! [X: rat,N: nat,Y3: rat] :
( ( minus_minus_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ Y3 @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ X @ Y3 )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_rat @ X @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7744_power__diff__sumr2,axiom,
! [X: int,N: nat,Y3: int] :
( ( minus_minus_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y3 @ N ) )
= ( times_times_int @ ( minus_minus_int @ X @ Y3 )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( power_power_int @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_int @ X @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7745_power__diff__sumr2,axiom,
! [X: real,N: nat,Y3: real] :
( ( minus_minus_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y3 @ N ) )
= ( times_times_real @ ( minus_minus_real @ X @ Y3 )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7746_diff__power__eq__sum,axiom,
! [X: complex,N: nat,Y3: complex] :
( ( minus_minus_complex @ ( power_power_complex @ X @ ( suc @ N ) ) @ ( power_power_complex @ Y3 @ ( suc @ N ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X @ Y3 )
@ ( groups2073611262835488442omplex
@ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ X @ P5 ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7747_diff__power__eq__sum,axiom,
! [X: rat,N: nat,Y3: rat] :
( ( minus_minus_rat @ ( power_power_rat @ X @ ( suc @ N ) ) @ ( power_power_rat @ Y3 @ ( suc @ N ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X @ Y3 )
@ ( groups2906978787729119204at_rat
@ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ X @ P5 ) @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7748_diff__power__eq__sum,axiom,
! [X: int,N: nat,Y3: int] :
( ( minus_minus_int @ ( power_power_int @ X @ ( suc @ N ) ) @ ( power_power_int @ Y3 @ ( suc @ N ) ) )
= ( times_times_int @ ( minus_minus_int @ X @ Y3 )
@ ( groups3539618377306564664at_int
@ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ X @ P5 ) @ ( power_power_int @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7749_diff__power__eq__sum,axiom,
! [X: real,N: nat,Y3: real] :
( ( minus_minus_real @ ( power_power_real @ X @ ( suc @ N ) ) @ ( power_power_real @ Y3 @ ( suc @ N ) ) )
= ( times_times_real @ ( minus_minus_real @ X @ Y3 )
@ ( groups6591440286371151544t_real
@ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ X @ P5 ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7750_pi__half__ge__zero,axiom,
ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_ge_zero
thf(fact_7751_m2pi__less__pi,axiom,
ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).
% m2pi_less_pi
thf(fact_7752_summable__ratio__test,axiom,
! [C: real,N5: nat,F: nat > real] :
( ( ord_less_real @ C @ one_one_real )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) ) ) )
=> ( summable_real @ F ) ) ) ).
% summable_ratio_test
thf(fact_7753_summable__ratio__test,axiom,
! [C: real,N5: nat,F: nat > complex] :
( ( ord_less_real @ C @ one_one_real )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) )
=> ( summable_complex @ F ) ) ) ).
% summable_ratio_test
thf(fact_7754_arctan__ubound,axiom,
! [Y3: real] : ( ord_less_real @ ( arctan @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arctan_ubound
thf(fact_7755_arctan__one,axiom,
( ( arctan @ one_one_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% arctan_one
thf(fact_7756_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > rat,K5: rat,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N )
=> ( ord_less_eq_rat @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ K5 )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7757_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > int,K5: int,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N )
=> ( ord_less_eq_int @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K5 )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7758_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > nat,K5: nat,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N )
=> ( ord_less_eq_nat @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ K5 )
=> ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7759_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > real,K5: real,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N )
=> ( ord_less_eq_real @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ K5 )
=> ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7760_one__diff__power__eq_H,axiom,
! [X: complex,N: nat] :
( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( power_power_complex @ X @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7761_one__diff__power__eq_H,axiom,
! [X: rat,N: nat] :
( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( power_power_rat @ X @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7762_one__diff__power__eq_H,axiom,
! [X: int,N: nat] :
( ( minus_minus_int @ one_one_int @ ( power_power_int @ X @ N ) )
= ( times_times_int @ ( minus_minus_int @ one_one_int @ X )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( power_power_int @ X @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7763_one__diff__power__eq_H,axiom,
! [X: real,N: nat] :
( ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ N ) )
= ( times_times_real @ ( minus_minus_real @ one_one_real @ X )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( power_power_real @ X @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7764_subrelI,axiom,
! [R2: set_Pr448751882837621926eger_o,S2: set_Pr448751882837621926eger_o] :
( ! [X5: code_integer,Y4: $o] :
( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X5 @ Y4 ) @ R2 )
=> ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X5 @ Y4 ) @ S2 ) )
=> ( ord_le8980329558974975238eger_o @ R2 @ S2 ) ) ).
% subrelI
thf(fact_7765_subrelI,axiom,
! [R2: set_Pr8218934625190621173um_num,S2: set_Pr8218934625190621173um_num] :
( ! [X5: num,Y4: num] :
( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X5 @ Y4 ) @ R2 )
=> ( member7279096912039735102um_num @ ( product_Pair_num_num @ X5 @ Y4 ) @ S2 ) )
=> ( ord_le880128212290418581um_num @ R2 @ S2 ) ) ).
% subrelI
thf(fact_7766_subrelI,axiom,
! [R2: set_Pr6200539531224447659at_num,S2: set_Pr6200539531224447659at_num] :
( ! [X5: nat,Y4: num] :
( ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X5 @ Y4 ) @ R2 )
=> ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X5 @ Y4 ) @ S2 ) )
=> ( ord_le8085105155179020875at_num @ R2 @ S2 ) ) ).
% subrelI
thf(fact_7767_subrelI,axiom,
! [R2: set_Pr1261947904930325089at_nat,S2: set_Pr1261947904930325089at_nat] :
( ! [X5: nat,Y4: nat] :
( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X5 @ Y4 ) @ R2 )
=> ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X5 @ Y4 ) @ S2 ) )
=> ( ord_le3146513528884898305at_nat @ R2 @ S2 ) ) ).
% subrelI
thf(fact_7768_subrelI,axiom,
! [R2: set_Pr958786334691620121nt_int,S2: set_Pr958786334691620121nt_int] :
( ! [X5: int,Y4: int] :
( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X5 @ Y4 ) @ R2 )
=> ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X5 @ Y4 ) @ S2 ) )
=> ( ord_le2843351958646193337nt_int @ R2 @ S2 ) ) ).
% subrelI
thf(fact_7769_minus__pi__half__less__zero,axiom,
ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).
% minus_pi_half_less_zero
thf(fact_7770_arctan__lbound,axiom,
! [Y3: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y3 ) ) ).
% arctan_lbound
thf(fact_7771_arctan__bounded,axiom,
! [Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y3 ) )
& ( ord_less_real @ ( arctan @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% arctan_bounded
thf(fact_7772_infinite__nat__iff__unbounded,axiom,
! [S3: set_nat] :
( ( ~ ( finite_finite_nat @ S3 ) )
= ( ! [M6: nat] :
? [N2: nat] :
( ( ord_less_nat @ M6 @ N2 )
& ( member_nat @ N2 @ S3 ) ) ) ) ).
% infinite_nat_iff_unbounded
thf(fact_7773_unbounded__k__infinite,axiom,
! [K: nat,S3: set_nat] :
( ! [M5: nat] :
( ( ord_less_nat @ K @ M5 )
=> ? [N9: nat] :
( ( ord_less_nat @ M5 @ N9 )
& ( member_nat @ N9 @ S3 ) ) )
=> ~ ( finite_finite_nat @ S3 ) ) ).
% unbounded_k_infinite
thf(fact_7774_infinite__nat__iff__unbounded__le,axiom,
! [S3: set_nat] :
( ( ~ ( finite_finite_nat @ S3 ) )
= ( ! [M6: nat] :
? [N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
& ( member_nat @ N2 @ S3 ) ) ) ) ).
% infinite_nat_iff_unbounded_le
thf(fact_7775_accp__subset__induct,axiom,
! [D4: product_prod_num_num > $o,R: product_prod_num_num > product_prod_num_num > $o,X: product_prod_num_num,P: product_prod_num_num > $o] :
( ( ord_le2239182809043710856_num_o @ D4 @ ( accp_P3113834385874906142um_num @ R ) )
=> ( ! [X5: product_prod_num_num,Z3: product_prod_num_num] :
( ( D4 @ X5 )
=> ( ( R @ Z3 @ X5 )
=> ( D4 @ Z3 ) ) )
=> ( ( D4 @ X )
=> ( ! [X5: product_prod_num_num] :
( ( D4 @ X5 )
=> ( ! [Z5: product_prod_num_num] :
( ( R @ Z5 @ X5 )
=> ( P @ Z5 ) )
=> ( P @ X5 ) ) )
=> ( P @ X ) ) ) ) ) ).
% accp_subset_induct
thf(fact_7776_accp__subset__induct,axiom,
! [D4: product_prod_nat_nat > $o,R: product_prod_nat_nat > product_prod_nat_nat > $o,X: product_prod_nat_nat,P: product_prod_nat_nat > $o] :
( ( ord_le704812498762024988_nat_o @ D4 @ ( accp_P4275260045618599050at_nat @ R ) )
=> ( ! [X5: product_prod_nat_nat,Z3: product_prod_nat_nat] :
( ( D4 @ X5 )
=> ( ( R @ Z3 @ X5 )
=> ( D4 @ Z3 ) ) )
=> ( ( D4 @ X )
=> ( ! [X5: product_prod_nat_nat] :
( ( D4 @ X5 )
=> ( ! [Z5: product_prod_nat_nat] :
( ( R @ Z5 @ X5 )
=> ( P @ Z5 ) )
=> ( P @ X5 ) ) )
=> ( P @ X ) ) ) ) ) ).
% accp_subset_induct
thf(fact_7777_accp__subset__induct,axiom,
! [D4: product_prod_int_int > $o,R: product_prod_int_int > product_prod_int_int > $o,X: product_prod_int_int,P: product_prod_int_int > $o] :
( ( ord_le8369615600986905444_int_o @ D4 @ ( accp_P1096762738010456898nt_int @ R ) )
=> ( ! [X5: product_prod_int_int,Z3: product_prod_int_int] :
( ( D4 @ X5 )
=> ( ( R @ Z3 @ X5 )
=> ( D4 @ Z3 ) ) )
=> ( ( D4 @ X )
=> ( ! [X5: product_prod_int_int] :
( ( D4 @ X5 )
=> ( ! [Z5: product_prod_int_int] :
( ( R @ Z5 @ X5 )
=> ( P @ Z5 ) )
=> ( P @ X5 ) ) )
=> ( P @ X ) ) ) ) ) ).
% accp_subset_induct
thf(fact_7778_accp__subset__induct,axiom,
! [D4: list_nat > $o,R: list_nat > list_nat > $o,X: list_nat,P: list_nat > $o] :
( ( ord_le1520216061033275535_nat_o @ D4 @ ( accp_list_nat @ R ) )
=> ( ! [X5: list_nat,Z3: list_nat] :
( ( D4 @ X5 )
=> ( ( R @ Z3 @ X5 )
=> ( D4 @ Z3 ) ) )
=> ( ( D4 @ X )
=> ( ! [X5: list_nat] :
( ( D4 @ X5 )
=> ( ! [Z5: list_nat] :
( ( R @ Z5 @ X5 )
=> ( P @ Z5 ) )
=> ( P @ X5 ) ) )
=> ( P @ X ) ) ) ) ) ).
% accp_subset_induct
thf(fact_7779_accp__subset__induct,axiom,
! [D4: nat > $o,R: nat > nat > $o,X: nat,P: nat > $o] :
( ( ord_less_eq_nat_o @ D4 @ ( accp_nat @ R ) )
=> ( ! [X5: nat,Z3: nat] :
( ( D4 @ X5 )
=> ( ( R @ Z3 @ X5 )
=> ( D4 @ Z3 ) ) )
=> ( ( D4 @ X )
=> ( ! [X5: nat] :
( ( D4 @ X5 )
=> ( ! [Z5: nat] :
( ( R @ Z5 @ X5 )
=> ( P @ Z5 ) )
=> ( P @ X5 ) ) )
=> ( P @ X ) ) ) ) ) ).
% accp_subset_induct
thf(fact_7780_sum__split__even__odd,axiom,
! [F: nat > real,G: nat > real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( F @ I3 ) @ ( G @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ one_one_nat ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum_split_even_odd
thf(fact_7781_pred__subset__eq,axiom,
! [R: set_nat,S3: set_nat] :
( ( ord_less_eq_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ R )
@ ^ [X2: nat] : ( member_nat @ X2 @ S3 ) )
= ( ord_less_eq_set_nat @ R @ S3 ) ) ).
% pred_subset_eq
thf(fact_7782_pred__subset__eq,axiom,
! [R: set_real,S3: set_real] :
( ( ord_less_eq_real_o
@ ^ [X2: real] : ( member_real @ X2 @ R )
@ ^ [X2: real] : ( member_real @ X2 @ S3 ) )
= ( ord_less_eq_set_real @ R @ S3 ) ) ).
% pred_subset_eq
thf(fact_7783_pred__subset__eq,axiom,
! [R: set_complex,S3: set_complex] :
( ( ord_le4573692005234683329plex_o
@ ^ [X2: complex] : ( member_complex @ X2 @ R )
@ ^ [X2: complex] : ( member_complex @ X2 @ S3 ) )
= ( ord_le211207098394363844omplex @ R @ S3 ) ) ).
% pred_subset_eq
thf(fact_7784_pred__subset__eq,axiom,
! [R: set_set_nat,S3: set_set_nat] :
( ( ord_le3964352015994296041_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ R )
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ S3 ) )
= ( ord_le6893508408891458716et_nat @ R @ S3 ) ) ).
% pred_subset_eq
thf(fact_7785_pred__subset__eq,axiom,
! [R: set_int,S3: set_int] :
( ( ord_less_eq_int_o
@ ^ [X2: int] : ( member_int @ X2 @ R )
@ ^ [X2: int] : ( member_int @ X2 @ S3 ) )
= ( ord_less_eq_set_int @ R @ S3 ) ) ).
% pred_subset_eq
thf(fact_7786_machin__Euler,axiom,
( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% machin_Euler
thf(fact_7787_machin,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% machin
thf(fact_7788_vebt__mint_Opelims,axiom,
! [X: vEBT_VEBT,Y3: option_nat] :
( ( ( vEBT_vebt_mint @ X )
= Y3 )
=> ( ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ X )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( A4
=> ( Y3
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( ( B4
=> ( Y3
= ( some_nat @ one_one_nat ) ) )
& ( ~ B4
=> ( Y3 = none_nat ) ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A4 @ B4 ) ) ) )
=> ( ! [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ( ( Y3 = none_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y3
= ( some_nat @ Mi2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_mint.pelims
thf(fact_7789_vebt__maxt_Opelims,axiom,
! [X: vEBT_VEBT,Y3: option_nat] :
( ( ( vEBT_vebt_maxt @ X )
= Y3 )
=> ( ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ X )
=> ( ! [A4: $o,B4: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( B4
=> ( Y3
= ( some_nat @ one_one_nat ) ) )
& ( ~ B4
=> ( ( A4
=> ( Y3
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y3 = none_nat ) ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A4 @ B4 ) ) ) )
=> ( ! [Uu3: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) )
=> ( ( Y3 = none_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu3 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y3
= ( some_nat @ Ma2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_maxt.pelims
thf(fact_7790_sum__bounds__lt__plus1,axiom,
! [F: nat > nat,Mm: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( F @ ( suc @ K3 ) )
@ ( set_ord_lessThan_nat @ Mm ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ one_one_nat @ Mm ) ) ) ).
% sum_bounds_lt_plus1
thf(fact_7791_sum__bounds__lt__plus1,axiom,
! [F: nat > real,Mm: nat] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( F @ ( suc @ K3 ) )
@ ( set_ord_lessThan_nat @ Mm ) )
= ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ one_one_nat @ Mm ) ) ) ).
% sum_bounds_lt_plus1
thf(fact_7792_fold__atLeastAtMost__nat_Opinduct,axiom,
! [A0: nat > num > num,A1: nat,A22: nat,A32: num,P: ( nat > num > num ) > nat > nat > num > $o] :
( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ A0 @ ( produc1195630363706982562at_num @ A1 @ ( product_Pair_nat_num @ A22 @ A32 ) ) ) )
=> ( ! [F2: nat > num > num,A4: nat,B4: nat,Acc: num] :
( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ F2 @ ( produc1195630363706982562at_num @ A4 @ ( product_Pair_nat_num @ B4 @ Acc ) ) ) )
=> ( ( ~ ( ord_less_nat @ B4 @ A4 )
=> ( P @ F2 @ ( plus_plus_nat @ A4 @ one_one_nat ) @ B4 @ ( F2 @ A4 @ Acc ) ) )
=> ( P @ F2 @ A4 @ B4 @ Acc ) ) )
=> ( P @ A0 @ A1 @ A22 @ A32 ) ) ) ).
% fold_atLeastAtMost_nat.pinduct
thf(fact_7793_fold__atLeastAtMost__nat_Opinduct,axiom,
! [A0: nat > nat > nat,A1: nat,A22: nat,A32: nat,P: ( nat > nat > nat ) > nat > nat > nat > $o] :
( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ A0 @ ( produc487386426758144856at_nat @ A1 @ ( product_Pair_nat_nat @ A22 @ A32 ) ) ) )
=> ( ! [F2: nat > nat > nat,A4: nat,B4: nat,Acc: nat] :
( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F2 @ ( produc487386426758144856at_nat @ A4 @ ( product_Pair_nat_nat @ B4 @ Acc ) ) ) )
=> ( ( ~ ( ord_less_nat @ B4 @ A4 )
=> ( P @ F2 @ ( plus_plus_nat @ A4 @ one_one_nat ) @ B4 @ ( F2 @ A4 @ Acc ) ) )
=> ( P @ F2 @ A4 @ B4 @ Acc ) ) )
=> ( P @ A0 @ A1 @ A22 @ A32 ) ) ) ).
% fold_atLeastAtMost_nat.pinduct
thf(fact_7794_VEBT__internal_Ooption__shift_Opelims,axiom,
! [X: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa2: option4927543243414619207at_nat,Xb2: option4927543243414619207at_nat,Y3: option4927543243414619207at_nat] :
( ( ( vEBT_V1502963449132264192at_nat @ X @ Xa2 @ Xb2 )
= Y3 )
=> ( ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ Xa2 @ Xb2 ) ) )
=> ( ( ( Xa2 = none_P5556105721700978146at_nat )
=> ( ( Y3 = none_P5556105721700978146at_nat )
=> ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Xb2 ) ) ) ) )
=> ( ! [V2: product_prod_nat_nat] :
( ( Xa2
= ( some_P7363390416028606310at_nat @ V2 ) )
=> ( ( Xb2 = none_P5556105721700978146at_nat )
=> ( ( Y3 = none_P5556105721700978146at_nat )
=> ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) ) ) ) )
=> ~ ! [A4: product_prod_nat_nat] :
( ( Xa2
= ( some_P7363390416028606310at_nat @ A4 ) )
=> ! [B4: product_prod_nat_nat] :
( ( Xb2
= ( some_P7363390416028606310at_nat @ B4 ) )
=> ( ( Y3
= ( some_P7363390416028606310at_nat @ ( X @ A4 @ B4 ) ) )
=> ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A4 ) @ ( some_P7363390416028606310at_nat @ B4 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.option_shift.pelims
thf(fact_7795_VEBT__internal_Ooption__shift_Opelims,axiom,
! [X: num > num > num,Xa2: option_num,Xb2: option_num,Y3: option_num] :
( ( ( vEBT_V819420779217536731ft_num @ X @ Xa2 @ Xb2 )
= Y3 )
=> ( ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ Xa2 @ Xb2 ) ) )
=> ( ( ( Xa2 = none_num )
=> ( ( Y3 = none_num )
=> ~ ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ none_num @ Xb2 ) ) ) ) )
=> ( ! [V2: num] :
( ( Xa2
= ( some_num @ V2 ) )
=> ( ( Xb2 = none_num )
=> ( ( Y3 = none_num )
=> ~ ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) ) ) ) )
=> ~ ! [A4: num] :
( ( Xa2
= ( some_num @ A4 ) )
=> ! [B4: num] :
( ( Xb2
= ( some_num @ B4 ) )
=> ( ( Y3
= ( some_num @ ( X @ A4 @ B4 ) ) )
=> ~ ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ ( some_num @ A4 ) @ ( some_num @ B4 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.option_shift.pelims
thf(fact_7796_VEBT__internal_Ooption__shift_Opelims,axiom,
! [X: nat > nat > nat,Xa2: option_nat,Xb2: option_nat,Y3: option_nat] :
( ( ( vEBT_V4262088993061758097ft_nat @ X @ Xa2 @ Xb2 )
= Y3 )
=> ( ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ Xa2 @ Xb2 ) ) )
=> ( ( ( Xa2 = none_nat )
=> ( ( Y3 = none_nat )
=> ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ none_nat @ Xb2 ) ) ) ) )
=> ( ! [V2: nat] :
( ( Xa2
= ( some_nat @ V2 ) )
=> ( ( Xb2 = none_nat )
=> ( ( Y3 = none_nat )
=> ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) ) ) ) )
=> ~ ! [A4: nat] :
( ( Xa2
= ( some_nat @ A4 ) )
=> ! [B4: nat] :
( ( Xb2
= ( some_nat @ B4 ) )
=> ( ( Y3
= ( some_nat @ ( X @ A4 @ B4 ) ) )
=> ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ ( some_nat @ A4 ) @ ( some_nat @ B4 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.option_shift.pelims
thf(fact_7797_sin__cos__npi,axiom,
! [N: nat] :
( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% sin_cos_npi
thf(fact_7798_sin__pi__minus,axiom,
! [X: real] :
( ( sin_real @ ( minus_minus_real @ pi @ X ) )
= ( sin_real @ X ) ) ).
% sin_pi_minus
thf(fact_7799_sin__periodic__pi2,axiom,
! [X: real] :
( ( sin_real @ ( plus_plus_real @ pi @ X ) )
= ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).
% sin_periodic_pi2
thf(fact_7800_sin__periodic__pi,axiom,
! [X: real] :
( ( sin_real @ ( plus_plus_real @ X @ pi ) )
= ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).
% sin_periodic_pi
thf(fact_7801_sin__minus__pi,axiom,
! [X: real] :
( ( sin_real @ ( minus_minus_real @ X @ pi ) )
= ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).
% sin_minus_pi
thf(fact_7802_sin__npi2,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
= zero_zero_real ) ).
% sin_npi2
thf(fact_7803_sin__npi,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% sin_npi
thf(fact_7804_sin__two__pi,axiom,
( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= zero_zero_real ) ).
% sin_two_pi
thf(fact_7805_sin__pi__half,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_pi_half
thf(fact_7806_sin__periodic,axiom,
! [X: real] :
( ( sin_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( sin_real @ X ) ) ).
% sin_periodic
thf(fact_7807_sin__2npi,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
= zero_zero_real ) ).
% sin_2npi
thf(fact_7808_sin__2pi__minus,axiom,
! [X: real] :
( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
= ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).
% sin_2pi_minus
thf(fact_7809_sin__3over2__pi,axiom,
( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% sin_3over2_pi
thf(fact_7810_sin__x__le__x,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( sin_real @ X ) @ X ) ) ).
% sin_x_le_x
thf(fact_7811_sin__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( sin_real @ X ) @ one_one_real ) ).
% sin_le_one
thf(fact_7812_abs__sin__x__le__abs__x,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ ( abs_abs_real @ X ) ) ).
% abs_sin_x_le_abs_x
thf(fact_7813_sin__x__ge__neg__x,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ ( sin_real @ X ) ) ) ).
% sin_x_ge_neg_x
thf(fact_7814_sin__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).
% sin_ge_zero
thf(fact_7815_sin__ge__minus__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X ) ) ).
% sin_ge_minus_one
thf(fact_7816_abs__sin__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ one_one_real ) ).
% abs_sin_le_one
thf(fact_7817_sin__gt__zero__02,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).
% sin_gt_zero_02
thf(fact_7818_sin__pi__divide__n__ge__0,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% sin_pi_divide_n_ge_0
thf(fact_7819_sin__gt__zero2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).
% sin_gt_zero2
thf(fact_7820_sin__lt__zero,axiom,
! [X: real] :
( ( ord_less_real @ pi @ X )
=> ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).
% sin_lt_zero
thf(fact_7821_sin__30,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_30
thf(fact_7822_sin__monotone__2pi__le,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( sin_real @ Y3 ) @ ( sin_real @ X ) ) ) ) ) ).
% sin_monotone_2pi_le
thf(fact_7823_sin__mono__le__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( sin_real @ X ) @ ( sin_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ) ) ) ).
% sin_mono_le_eq
thf(fact_7824_sin__inj__pi,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ( sin_real @ X )
= ( sin_real @ Y3 ) )
=> ( X = Y3 ) ) ) ) ) ) ).
% sin_inj_pi
thf(fact_7825_sin__le__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ pi @ X )
=> ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_eq_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).
% sin_le_zero
thf(fact_7826_sin__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).
% sin_less_zero
thf(fact_7827_sin__monotone__2pi,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sin_real @ Y3 ) @ ( sin_real @ X ) ) ) ) ) ).
% sin_monotone_2pi
thf(fact_7828_sin__mono__less__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( sin_real @ X ) @ ( sin_real @ Y3 ) )
= ( ord_less_real @ X @ Y3 ) ) ) ) ) ) ).
% sin_mono_less_eq
thf(fact_7829_sin__total,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ? [X5: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
& ( ord_less_eq_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ X5 )
= Y3 )
& ! [Y5: real] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y5 )
& ( ord_less_eq_real @ Y5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ Y5 )
= Y3 ) )
=> ( Y5 = X5 ) ) ) ) ) ).
% sin_total
thf(fact_7830_sin__pi__divide__n__gt__0,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% sin_pi_divide_n_gt_0
thf(fact_7831_sin__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ( sin_real @ X )
= zero_zero_real )
=> ? [N3: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_zero_lemma
thf(fact_7832_sin__zero__iff,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
= ( ? [N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
| ? [N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X
= ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% sin_zero_iff
thf(fact_7833_sumr__cos__zero__one,axiom,
! [N: nat] :
( ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ zero_zero_real @ M6 ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= one_one_real ) ).
% sumr_cos_zero_one
thf(fact_7834_fold__atLeastAtMost__nat_Opsimps,axiom,
! [F: nat > num > num,A: nat,B: nat,Acc2: num] :
( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ F @ ( produc1195630363706982562at_num @ A @ ( product_Pair_nat_num @ B @ Acc2 ) ) ) )
=> ( ( ( ord_less_nat @ B @ A )
=> ( ( set_fo8365102181078989356at_num @ F @ A @ B @ Acc2 )
= Acc2 ) )
& ( ~ ( ord_less_nat @ B @ A )
=> ( ( set_fo8365102181078989356at_num @ F @ A @ B @ Acc2 )
= ( set_fo8365102181078989356at_num @ F @ ( plus_plus_nat @ A @ one_one_nat ) @ B @ ( F @ A @ Acc2 ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.psimps
thf(fact_7835_fold__atLeastAtMost__nat_Opsimps,axiom,
! [F: nat > nat > nat,A: nat,B: nat,Acc2: nat] :
( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F @ ( produc487386426758144856at_nat @ A @ ( product_Pair_nat_nat @ B @ Acc2 ) ) ) )
=> ( ( ( ord_less_nat @ B @ A )
=> ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
= Acc2 ) )
& ( ~ ( ord_less_nat @ B @ A )
=> ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
= ( set_fo2584398358068434914at_nat @ F @ ( plus_plus_nat @ A @ one_one_nat ) @ B @ ( F @ A @ Acc2 ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.psimps
thf(fact_7836_fold__atLeastAtMost__nat_Opelims,axiom,
! [X: nat > num > num,Xa2: nat,Xb2: nat,Xc: num,Y3: num] :
( ( ( set_fo8365102181078989356at_num @ X @ Xa2 @ Xb2 @ Xc )
= Y3 )
=> ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ X @ ( produc1195630363706982562at_num @ Xa2 @ ( product_Pair_nat_num @ Xb2 @ Xc ) ) ) )
=> ~ ( ( ( ( ord_less_nat @ Xb2 @ Xa2 )
=> ( Y3 = Xc ) )
& ( ~ ( ord_less_nat @ Xb2 @ Xa2 )
=> ( Y3
= ( set_fo8365102181078989356at_num @ X @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb2 @ ( X @ Xa2 @ Xc ) ) ) ) )
=> ~ ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ X @ ( produc1195630363706982562at_num @ Xa2 @ ( product_Pair_nat_num @ Xb2 @ Xc ) ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.pelims
thf(fact_7837_fold__atLeastAtMost__nat_Opelims,axiom,
! [X: nat > nat > nat,Xa2: nat,Xb2: nat,Xc: nat,Y3: nat] :
( ( ( set_fo2584398358068434914at_nat @ X @ Xa2 @ Xb2 @ Xc )
= Y3 )
=> ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X @ ( produc487386426758144856at_nat @ Xa2 @ ( product_Pair_nat_nat @ Xb2 @ Xc ) ) ) )
=> ~ ( ( ( ( ord_less_nat @ Xb2 @ Xa2 )
=> ( Y3 = Xc ) )
& ( ~ ( ord_less_nat @ Xb2 @ Xa2 )
=> ( Y3
= ( set_fo2584398358068434914at_nat @ X @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb2 @ ( X @ Xa2 @ Xc ) ) ) ) )
=> ~ ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X @ ( produc487386426758144856at_nat @ Xa2 @ ( product_Pair_nat_nat @ Xb2 @ Xc ) ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.pelims
thf(fact_7838_cos__pi__eq__zero,axiom,
! [M: nat] :
( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_pi_eq_zero
thf(fact_7839_sincos__total__2pi,axiom,
! [X: real,Y3: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ~ ! [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
=> ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ( X
= ( cos_real @ T5 ) )
=> ( Y3
!= ( sin_real @ T5 ) ) ) ) ) ) ).
% sincos_total_2pi
thf(fact_7840_cos__zero,axiom,
( ( cos_complex @ zero_zero_complex )
= one_one_complex ) ).
% cos_zero
thf(fact_7841_cos__zero,axiom,
( ( cos_real @ zero_zero_real )
= one_one_real ) ).
% cos_zero
thf(fact_7842_cos__coeff__0,axiom,
( ( cos_coeff @ zero_zero_nat )
= one_one_real ) ).
% cos_coeff_0
thf(fact_7843_cos__pi,axiom,
( ( cos_real @ pi )
= ( uminus_uminus_real @ one_one_real ) ) ).
% cos_pi
thf(fact_7844_cos__periodic__pi,axiom,
! [X: real] :
( ( cos_real @ ( plus_plus_real @ X @ pi ) )
= ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).
% cos_periodic_pi
thf(fact_7845_cos__periodic__pi2,axiom,
! [X: real] :
( ( cos_real @ ( plus_plus_real @ pi @ X ) )
= ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).
% cos_periodic_pi2
thf(fact_7846_cos__minus__pi,axiom,
! [X: real] :
( ( cos_real @ ( minus_minus_real @ X @ pi ) )
= ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).
% cos_minus_pi
thf(fact_7847_cos__pi__minus,axiom,
! [X: real] :
( ( cos_real @ ( minus_minus_real @ pi @ X ) )
= ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).
% cos_pi_minus
thf(fact_7848_sin__cos__squared__add3,axiom,
! [X: complex] :
( ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ X ) ) @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ X ) ) )
= one_one_complex ) ).
% sin_cos_squared_add3
thf(fact_7849_sin__cos__squared__add3,axiom,
! [X: real] :
( ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ X ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ X ) ) )
= one_one_real ) ).
% sin_cos_squared_add3
thf(fact_7850_cos__pi__half,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_pi_half
thf(fact_7851_cos__two__pi,axiom,
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= one_one_real ) ).
% cos_two_pi
thf(fact_7852_cos__periodic,axiom,
! [X: real] :
( ( cos_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( cos_real @ X ) ) ).
% cos_periodic
thf(fact_7853_cos__2pi__minus,axiom,
! [X: real] :
( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
= ( cos_real @ X ) ) ).
% cos_2pi_minus
thf(fact_7854_cos__npi,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% cos_npi
thf(fact_7855_cos__npi2,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% cos_npi2
thf(fact_7856_sin__cos__squared__add2,axiom,
! [X: real] :
( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_cos_squared_add2
thf(fact_7857_sin__cos__squared__add2,axiom,
! [X: complex] :
( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_cos_squared_add2
thf(fact_7858_sin__cos__squared__add,axiom,
! [X: real] :
( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_cos_squared_add
thf(fact_7859_sin__cos__squared__add,axiom,
! [X: complex] :
( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_cos_squared_add
thf(fact_7860_cos__2npi,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
= one_one_real ) ).
% cos_2npi
thf(fact_7861_cos__3over2__pi,axiom,
( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
= zero_zero_real ) ).
% cos_3over2_pi
thf(fact_7862_cos__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( cos_real @ X ) @ one_one_real ) ).
% cos_le_one
thf(fact_7863_polar__Ex,axiom,
! [X: real,Y3: real] :
? [R4: real,A4: real] :
( ( X
= ( times_times_real @ R4 @ ( cos_real @ A4 ) ) )
& ( Y3
= ( times_times_real @ R4 @ ( sin_real @ A4 ) ) ) ) ).
% polar_Ex
thf(fact_7864_cos__one__sin__zero,axiom,
! [X: complex] :
( ( ( cos_complex @ X )
= one_one_complex )
=> ( ( sin_complex @ X )
= zero_zero_complex ) ) ).
% cos_one_sin_zero
thf(fact_7865_cos__one__sin__zero,axiom,
! [X: real] :
( ( ( cos_real @ X )
= one_one_real )
=> ( ( sin_real @ X )
= zero_zero_real ) ) ).
% cos_one_sin_zero
thf(fact_7866_sin__add,axiom,
! [X: real,Y3: real] :
( ( sin_real @ ( plus_plus_real @ X @ Y3 ) )
= ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y3 ) ) ) ) ).
% sin_add
thf(fact_7867_sin__diff,axiom,
! [X: real,Y3: real] :
( ( sin_real @ ( minus_minus_real @ X @ Y3 ) )
= ( minus_minus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y3 ) ) ) ) ).
% sin_diff
thf(fact_7868_cos__inj__pi,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ pi )
=> ( ( ( cos_real @ X )
= ( cos_real @ Y3 ) )
=> ( X = Y3 ) ) ) ) ) ) ).
% cos_inj_pi
thf(fact_7869_cos__mono__le__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ pi )
=> ( ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) )
= ( ord_less_eq_real @ Y3 @ X ) ) ) ) ) ) ).
% cos_mono_le_eq
thf(fact_7870_cos__monotone__0__pi__le,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) ) ) ) ) ).
% cos_monotone_0_pi_le
thf(fact_7871_cos__ge__minus__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X ) ) ).
% cos_ge_minus_one
thf(fact_7872_abs__cos__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X ) ) @ one_one_real ) ).
% abs_cos_le_one
thf(fact_7873_cos__diff,axiom,
! [X: real,Y3: real] :
( ( cos_real @ ( minus_minus_real @ X @ Y3 ) )
= ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y3 ) ) ) ) ).
% cos_diff
thf(fact_7874_cos__add,axiom,
! [X: real,Y3: real] :
( ( cos_real @ ( plus_plus_real @ X @ Y3 ) )
= ( minus_minus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y3 ) ) ) ) ).
% cos_add
thf(fact_7875_sin__zero__norm__cos__one,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( cos_real @ X ) )
= one_one_real ) ) ).
% sin_zero_norm_cos_one
thf(fact_7876_sin__zero__norm__cos__one,axiom,
! [X: complex] :
( ( ( sin_complex @ X )
= zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( cos_complex @ X ) )
= one_one_real ) ) ).
% sin_zero_norm_cos_one
thf(fact_7877_cos__two__neq__zero,axiom,
( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= zero_zero_real ) ).
% cos_two_neq_zero
thf(fact_7878_cos__mono__less__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ pi )
=> ( ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) )
= ( ord_less_real @ Y3 @ X ) ) ) ) ) ) ).
% cos_mono_less_eq
thf(fact_7879_cos__monotone__0__pi,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ Y3 @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) ) ) ) ) ).
% cos_monotone_0_pi
thf(fact_7880_cos__monotone__minus__pi__0_H,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ X )
=> ( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ord_less_eq_real @ ( cos_real @ Y3 ) @ ( cos_real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0'
thf(fact_7881_sin__zero__abs__cos__one,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
=> ( ( abs_abs_real @ ( cos_real @ X ) )
= one_one_real ) ) ).
% sin_zero_abs_cos_one
thf(fact_7882_sin__double,axiom,
! [X: complex] :
( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X ) ) @ ( cos_complex @ X ) ) ) ).
% sin_double
thf(fact_7883_sin__double,axiom,
! [X: real] :
( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X ) ) @ ( cos_real @ X ) ) ) ).
% sin_double
thf(fact_7884_cos__two__less__zero,axiom,
ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).
% cos_two_less_zero
thf(fact_7885_cos__two__le__zero,axiom,
ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).
% cos_two_le_zero
thf(fact_7886_cos__is__zero,axiom,
? [X5: real] :
( ( ord_less_eq_real @ zero_zero_real @ X5 )
& ( ord_less_eq_real @ X5 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X5 )
= zero_zero_real )
& ! [Y5: real] :
( ( ( ord_less_eq_real @ zero_zero_real @ Y5 )
& ( ord_less_eq_real @ Y5 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ Y5 )
= zero_zero_real ) )
=> ( Y5 = X5 ) ) ) ).
% cos_is_zero
thf(fact_7887_fold__atLeastAtMost__nat_Oelims,axiom,
! [X: nat > nat > nat,Xa2: nat,Xb2: nat,Xc: nat,Y3: nat] :
( ( ( set_fo2584398358068434914at_nat @ X @ Xa2 @ Xb2 @ Xc )
= Y3 )
=> ( ( ( ord_less_nat @ Xb2 @ Xa2 )
=> ( Y3 = Xc ) )
& ( ~ ( ord_less_nat @ Xb2 @ Xa2 )
=> ( Y3
= ( set_fo2584398358068434914at_nat @ X @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb2 @ ( X @ Xa2 @ Xc ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.elims
thf(fact_7888_fold__atLeastAtMost__nat_Osimps,axiom,
( set_fo2584398358068434914at_nat
= ( ^ [F3: nat > nat > nat,A5: nat,B5: nat,Acc3: nat] : ( if_nat @ ( ord_less_nat @ B5 @ A5 ) @ Acc3 @ ( set_fo2584398358068434914at_nat @ F3 @ ( plus_plus_nat @ A5 @ one_one_nat ) @ B5 @ ( F3 @ A5 @ Acc3 ) ) ) ) ) ).
% fold_atLeastAtMost_nat.simps
thf(fact_7889_cos__monotone__minus__pi__0,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ X )
=> ( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( cos_real @ Y3 ) @ ( cos_real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0
thf(fact_7890_cos__total,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ? [X5: real] :
( ( ord_less_eq_real @ zero_zero_real @ X5 )
& ( ord_less_eq_real @ X5 @ pi )
& ( ( cos_real @ X5 )
= Y3 )
& ! [Y5: real] :
( ( ( ord_less_eq_real @ zero_zero_real @ Y5 )
& ( ord_less_eq_real @ Y5 @ pi )
& ( ( cos_real @ Y5 )
= Y3 ) )
=> ( Y5 = X5 ) ) ) ) ) ).
% cos_total
thf(fact_7891_sincos__principal__value,axiom,
! [X: real] :
? [Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y4 )
& ( ord_less_eq_real @ Y4 @ pi )
& ( ( sin_real @ Y4 )
= ( sin_real @ X ) )
& ( ( cos_real @ Y4 )
= ( cos_real @ X ) ) ) ).
% sincos_principal_value
thf(fact_7892_sin__cos__le1,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) ) ) ) @ one_one_real ) ).
% sin_cos_le1
thf(fact_7893_cos__plus__cos,axiom,
! [W: complex,Z4: complex] :
( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z4 ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z4 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z4 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_7894_cos__plus__cos,axiom,
! [W: real,Z4: real] :
( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z4 ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_7895_cos__times__cos,axiom,
! [W: complex,Z4: complex] :
( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z4 ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z4 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% cos_times_cos
thf(fact_7896_cos__times__cos,axiom,
! [W: real,Z4: real] :
( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z4 ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z4 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_times_cos
thf(fact_7897_cos__squared__eq,axiom,
! [X: complex] :
( ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_squared_eq
thf(fact_7898_cos__squared__eq,axiom,
! [X: real] :
( ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_squared_eq
thf(fact_7899_sin__squared__eq,axiom,
! [X: complex] :
( ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sin_squared_eq
thf(fact_7900_sin__squared__eq,axiom,
! [X: real] :
( ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sin_squared_eq
thf(fact_7901_cos__double__less__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ).
% cos_double_less_one
thf(fact_7902_cos__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).
% cos_gt_zero
thf(fact_7903_cos__60,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_60
thf(fact_7904_sum__atLeastAtMost__code,axiom,
! [F: nat > complex,A: nat,B: nat] :
( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1517530859248394432omplex
@ ^ [A5: nat] : ( plus_plus_complex @ ( F @ A5 ) )
@ A
@ B
@ zero_zero_complex ) ) ).
% sum_atLeastAtMost_code
thf(fact_7905_sum__atLeastAtMost__code,axiom,
! [F: nat > rat,A: nat,B: nat] :
( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1949268297981939178at_rat
@ ^ [A5: nat] : ( plus_plus_rat @ ( F @ A5 ) )
@ A
@ B
@ zero_zero_rat ) ) ).
% sum_atLeastAtMost_code
thf(fact_7906_sum__atLeastAtMost__code,axiom,
! [F: nat > int,A: nat,B: nat] :
( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2581907887559384638at_int
@ ^ [A5: nat] : ( plus_plus_int @ ( F @ A5 ) )
@ A
@ B
@ zero_zero_int ) ) ).
% sum_atLeastAtMost_code
thf(fact_7907_sum__atLeastAtMost__code,axiom,
! [F: nat > nat,A: nat,B: nat] :
( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2584398358068434914at_nat
@ ^ [A5: nat] : ( plus_plus_nat @ ( F @ A5 ) )
@ A
@ B
@ zero_zero_nat ) ) ).
% sum_atLeastAtMost_code
thf(fact_7908_sum__atLeastAtMost__code,axiom,
! [F: nat > real,A: nat,B: nat] :
( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo3111899725591712190t_real
@ ^ [A5: nat] : ( plus_plus_real @ ( F @ A5 ) )
@ A
@ B
@ zero_zero_real ) ) ).
% sum_atLeastAtMost_code
thf(fact_7909_cos__double__cos,axiom,
! [W: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).
% cos_double_cos
thf(fact_7910_cos__double__cos,axiom,
! [W: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).
% cos_double_cos
thf(fact_7911_cos__treble__cos,axiom,
! [X: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X ) ) ) ) ).
% cos_treble_cos
thf(fact_7912_cos__treble__cos,axiom,
! [X: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X ) ) ) ) ).
% cos_treble_cos
thf(fact_7913_cos__diff__cos,axiom,
! [W: complex,Z4: complex] :
( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z4 ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z4 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z4 @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_7914_cos__diff__cos,axiom,
! [W: real,Z4: real] :
( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z4 ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z4 @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_7915_sin__diff__sin,axiom,
! [W: complex,Z4: complex] :
( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z4 ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z4 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z4 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_7916_sin__diff__sin,axiom,
! [W: real,Z4: real] :
( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z4 ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_7917_sin__plus__sin,axiom,
! [W: complex,Z4: complex] :
( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z4 ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z4 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z4 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_7918_sin__plus__sin,axiom,
! [W: real,Z4: real] :
( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z4 ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_7919_cos__times__sin,axiom,
! [W: complex,Z4: complex] :
( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z4 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z4 ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z4 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% cos_times_sin
thf(fact_7920_cos__times__sin,axiom,
! [W: real,Z4: real] :
( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z4 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z4 ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z4 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_times_sin
thf(fact_7921_sin__times__cos,axiom,
! [W: complex,Z4: complex] :
( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z4 ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z4 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% sin_times_cos
thf(fact_7922_sin__times__cos,axiom,
! [W: real,Z4: real] :
( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z4 ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z4 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_times_cos
thf(fact_7923_sin__times__sin,axiom,
! [W: complex,Z4: complex] :
( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z4 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z4 ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z4 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% sin_times_sin
thf(fact_7924_sin__times__sin,axiom,
! [W: real,Z4: real] :
( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z4 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z4 ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z4 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_times_sin
thf(fact_7925_cos__double,axiom,
! [X: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_double
thf(fact_7926_cos__double,axiom,
! [X: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( minus_minus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_double
thf(fact_7927_cos__gt__zero__pi,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).
% cos_gt_zero_pi
thf(fact_7928_cos__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).
% cos_ge_zero
thf(fact_7929_cos__one__2pi,axiom,
! [X: real] :
( ( ( cos_real @ X )
= one_one_real )
= ( ? [X2: nat] :
( X
= ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
| ? [X2: nat] :
( X
= ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).
% cos_one_2pi
thf(fact_7930_cos__double__sin,axiom,
! [W: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_7931_cos__double__sin,axiom,
! [W: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_7932_sincos__total__pi,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ pi )
& ( X
= ( cos_real @ T5 ) )
& ( Y3
= ( sin_real @ T5 ) ) ) ) ) ).
% sincos_total_pi
thf(fact_7933_sin__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_expansion_lemma
thf(fact_7934_cos__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ( cos_real @ X )
= zero_zero_real )
=> ? [N3: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_zero_lemma
thf(fact_7935_cos__zero__iff,axiom,
! [X: real] :
( ( ( cos_real @ X )
= zero_zero_real )
= ( ? [N2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
| ? [N2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X
= ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% cos_zero_iff
thf(fact_7936_cos__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% cos_expansion_lemma
thf(fact_7937_sincos__total__pi__half,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( X
= ( cos_real @ T5 ) )
& ( Y3
= ( sin_real @ T5 ) ) ) ) ) ) ).
% sincos_total_pi_half
thf(fact_7938_sincos__total__2pi__le,axiom,
! [X: real,Y3: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
& ( X
= ( cos_real @ T5 ) )
& ( Y3
= ( sin_real @ T5 ) ) ) ) ).
% sincos_total_2pi_le
thf(fact_7939_Maclaurin__minus__cos__expansion,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ? [T5: real] :
( ( ord_less_real @ X @ T5 )
& ( ord_less_real @ T5 @ zero_zero_real )
& ( ( cos_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_minus_cos_expansion
thf(fact_7940_Maclaurin__cos__expansion2,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_real @ T5 @ X )
& ( ( cos_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_cos_expansion2
thf(fact_7941_Maclaurin__cos__expansion,axiom,
! [X: real,N: nat] :
? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( cos_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).
% Maclaurin_cos_expansion
thf(fact_7942_tan__double,axiom,
! [X: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_7943_tan__double,axiom,
! [X: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
!= zero_zero_real )
=> ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_7944_in__measure,axiom,
! [X: num,Y3: num,F: num > nat] :
( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y3 ) @ ( measure_num @ F ) )
= ( ord_less_nat @ ( F @ X ) @ ( F @ Y3 ) ) ) ).
% in_measure
thf(fact_7945_in__measure,axiom,
! [X: nat,Y3: nat,F: nat > nat] :
( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y3 ) @ ( measure_nat @ F ) )
= ( ord_less_nat @ ( F @ X ) @ ( F @ Y3 ) ) ) ).
% in_measure
thf(fact_7946_in__measure,axiom,
! [X: int,Y3: int,F: int > nat] :
( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y3 ) @ ( measure_int @ F ) )
= ( ord_less_nat @ ( F @ X ) @ ( F @ Y3 ) ) ) ).
% in_measure
thf(fact_7947_tan__periodic__pi,axiom,
! [X: real] :
( ( tan_real @ ( plus_plus_real @ X @ pi ) )
= ( tan_real @ X ) ) ).
% tan_periodic_pi
thf(fact_7948_fact__0,axiom,
( ( semiri5044797733671781792omplex @ zero_zero_nat )
= one_one_complex ) ).
% fact_0
thf(fact_7949_fact__0,axiom,
( ( semiri773545260158071498ct_rat @ zero_zero_nat )
= one_one_rat ) ).
% fact_0
thf(fact_7950_fact__0,axiom,
( ( semiri1406184849735516958ct_int @ zero_zero_nat )
= one_one_int ) ).
% fact_0
thf(fact_7951_fact__0,axiom,
( ( semiri2265585572941072030t_real @ zero_zero_nat )
= one_one_real ) ).
% fact_0
thf(fact_7952_fact__0,axiom,
( ( semiri1408675320244567234ct_nat @ zero_zero_nat )
= one_one_nat ) ).
% fact_0
thf(fact_7953_fact__1,axiom,
( ( semiri5044797733671781792omplex @ one_one_nat )
= one_one_complex ) ).
% fact_1
thf(fact_7954_fact__1,axiom,
( ( semiri773545260158071498ct_rat @ one_one_nat )
= one_one_rat ) ).
% fact_1
thf(fact_7955_fact__1,axiom,
( ( semiri1406184849735516958ct_int @ one_one_nat )
= one_one_int ) ).
% fact_1
thf(fact_7956_fact__1,axiom,
( ( semiri2265585572941072030t_real @ one_one_nat )
= one_one_real ) ).
% fact_1
thf(fact_7957_fact__1,axiom,
( ( semiri1408675320244567234ct_nat @ one_one_nat )
= one_one_nat ) ).
% fact_1
thf(fact_7958_fact__Suc__0,axiom,
( ( semiri5044797733671781792omplex @ ( suc @ zero_zero_nat ) )
= one_one_complex ) ).
% fact_Suc_0
thf(fact_7959_fact__Suc__0,axiom,
( ( semiri773545260158071498ct_rat @ ( suc @ zero_zero_nat ) )
= one_one_rat ) ).
% fact_Suc_0
thf(fact_7960_fact__Suc__0,axiom,
( ( semiri1406184849735516958ct_int @ ( suc @ zero_zero_nat ) )
= one_one_int ) ).
% fact_Suc_0
thf(fact_7961_fact__Suc__0,axiom,
( ( semiri2265585572941072030t_real @ ( suc @ zero_zero_nat ) )
= one_one_real ) ).
% fact_Suc_0
thf(fact_7962_fact__Suc__0,axiom,
( ( semiri1408675320244567234ct_nat @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% fact_Suc_0
thf(fact_7963_fact__Suc,axiom,
! [N: nat] :
( ( semiri1406184849735516958ct_int @ ( suc @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% fact_Suc
thf(fact_7964_fact__Suc,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ ( suc @ N ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_Suc
thf(fact_7965_fact__Suc,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ ( suc @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_Suc
thf(fact_7966_fact__Suc,axiom,
! [N: nat] :
( ( semiri1408675320244567234ct_nat @ ( suc @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_Suc
thf(fact_7967_tan__npi,axiom,
! [N: nat] :
( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% tan_npi
thf(fact_7968_tan__periodic__n,axiom,
! [X: real,N: num] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ N ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic_n
thf(fact_7969_tan__periodic__nat,axiom,
! [X: real,N: nat] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic_nat
thf(fact_7970_fact__2,axiom,
( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7971_fact__2,axiom,
( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7972_fact__2,axiom,
( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7973_fact__2,axiom,
( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7974_fact__2,axiom,
( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7975_tan__periodic,axiom,
! [X: real] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic
thf(fact_7976_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_ge_zero
thf(fact_7977_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_ge_zero
thf(fact_7978_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_ge_zero
thf(fact_7979_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_zero
thf(fact_7980_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_rat @ ( semiri773545260158071498ct_rat @ N ) @ zero_zero_rat ) ).
% fact_not_neg
thf(fact_7981_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_int @ ( semiri1406184849735516958ct_int @ N ) @ zero_zero_int ) ).
% fact_not_neg
thf(fact_7982_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_real @ ( semiri2265585572941072030t_real @ N ) @ zero_zero_real ) ).
% fact_not_neg
thf(fact_7983_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ N ) @ zero_zero_nat ) ).
% fact_not_neg
thf(fact_7984_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_gt_zero
thf(fact_7985_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_gt_zero
thf(fact_7986_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_gt_zero
thf(fact_7987_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_gt_zero
thf(fact_7988_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_rat @ one_one_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_ge_1
thf(fact_7989_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_int @ one_one_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_ge_1
thf(fact_7990_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_ge_1
thf(fact_7991_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_nat @ one_one_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_1
thf(fact_7992_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_mono
thf(fact_7993_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% fact_mono
thf(fact_7994_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_mono
thf(fact_7995_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_mono
thf(fact_7996_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) ) ) ).
% fact_dvd
thf(fact_7997_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_Code_integer @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) ) ) ).
% fact_dvd
thf(fact_7998_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ M ) ) ) ).
% fact_dvd
thf(fact_7999_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) ) ) ).
% fact_dvd
thf(fact_8000_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ) ).
% fact_less_mono
thf(fact_8001_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ) ).
% fact_less_mono
thf(fact_8002_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ).
% fact_less_mono
thf(fact_8003_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% fact_less_mono
thf(fact_8004_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) )
= zero_zero_int ) ) ).
% fact_mod
thf(fact_8005_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo364778990260209775nteger @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) )
= zero_z3403309356797280102nteger ) ) ).
% fact_mod
thf(fact_8006_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) )
= zero_zero_nat ) ) ).
% fact_mod
thf(fact_8007_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ N ) ) @ ( semiri3624122377584611663nteger @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_8008_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ N ) ) @ ( semiri773545260158071498ct_rat @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_8009_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ N ) ) @ ( semiri1406184849735516958ct_int @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_8010_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_8011_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ N ) ) @ ( semiri1408675320244567234ct_nat @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_8012_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri681578069525770553at_rat @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_8013_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1314217659103216013at_int @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_8014_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri5074537144036343181t_real @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_8015_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1316708129612266289at_nat @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_8016_tan__def,axiom,
( tan_complex
= ( ^ [X2: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ X2 ) @ ( cos_complex @ X2 ) ) ) ) ).
% tan_def
thf(fact_8017_tan__def,axiom,
( tan_real
= ( ^ [X2: real] : ( divide_divide_real @ ( sin_real @ X2 ) @ ( cos_real @ X2 ) ) ) ) ).
% tan_def
thf(fact_8018_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).
% choose_dvd
thf(fact_8019_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% choose_dvd
thf(fact_8020_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% choose_dvd
thf(fact_8021_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% choose_dvd
thf(fact_8022_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% choose_dvd
thf(fact_8023_fact__numeral,axiom,
! [K: num] :
( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ K ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ K ) @ ( semiri5044797733671781792omplex @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_8024_fact__numeral,axiom,
! [K: num] :
( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ K ) )
= ( times_times_rat @ ( numeral_numeral_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_8025_fact__numeral,axiom,
! [K: num] :
( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ K ) )
= ( times_times_int @ ( numeral_numeral_int @ K ) @ ( semiri1406184849735516958ct_int @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_8026_fact__numeral,axiom,
! [K: num] :
( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ K ) )
= ( times_times_real @ ( numeral_numeral_real @ K ) @ ( semiri2265585572941072030t_real @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_8027_fact__numeral,axiom,
! [K: num] :
( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ K ) )
= ( times_times_nat @ ( numeral_numeral_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_8028_square__fact__le__2__fact,axiom,
! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% square_fact_le_2_fact
thf(fact_8029_tan__45,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= one_one_real ) ).
% tan_45
thf(fact_8030_fact__num__eq__if,axiom,
( semiri5044797733671781792omplex
= ( ^ [M6: nat] : ( if_complex @ ( M6 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ M6 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_8031_fact__num__eq__if,axiom,
( semiri1406184849735516958ct_int
= ( ^ [M6: nat] : ( if_int @ ( M6 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_8032_fact__num__eq__if,axiom,
( semiri773545260158071498ct_rat
= ( ^ [M6: nat] : ( if_rat @ ( M6 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ M6 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_8033_fact__num__eq__if,axiom,
( semiri2265585572941072030t_real
= ( ^ [M6: nat] : ( if_real @ ( M6 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M6 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_8034_fact__num__eq__if,axiom,
( semiri1408675320244567234ct_nat
= ( ^ [M6: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M6 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_8035_fact__code,axiom,
( semiri1406184849735516958ct_int
= ( ^ [N2: nat] : ( semiri1314217659103216013at_int @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_8036_fact__code,axiom,
( semiri773545260158071498ct_rat
= ( ^ [N2: nat] : ( semiri681578069525770553at_rat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_8037_fact__code,axiom,
( semiri2265585572941072030t_real
= ( ^ [N2: nat] : ( semiri5074537144036343181t_real @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_8038_fact__code,axiom,
( semiri1408675320244567234ct_nat
= ( ^ [N2: nat] : ( semiri1316708129612266289at_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_8039_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri1406184849735516958ct_int @ N )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_8040_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri773545260158071498ct_rat @ N )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_8041_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri2265585572941072030t_real @ N )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_8042_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri1408675320244567234ct_nat @ N )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_8043_lemma__tan__total,axiom,
! [Y3: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ? [X5: real] :
( ( ord_less_real @ zero_zero_real @ X5 )
& ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ord_less_real @ Y3 @ ( tan_real @ X5 ) ) ) ) ).
% lemma_tan_total
thf(fact_8044_tan__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).
% tan_gt_zero
thf(fact_8045_tan__total,axiom,
! [Y3: real] :
? [X5: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
& ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X5 )
= Y3 )
& ! [Y5: real] :
( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y5 )
& ( ord_less_real @ Y5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ Y5 )
= Y3 ) )
=> ( Y5 = X5 ) ) ) ).
% tan_total
thf(fact_8046_tan__monotone,axiom,
! [Y3: real,X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( tan_real @ Y3 ) @ ( tan_real @ X ) ) ) ) ) ).
% tan_monotone
thf(fact_8047_tan__monotone_H,axiom,
! [Y3: real,X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y3 @ X )
= ( ord_less_real @ ( tan_real @ Y3 ) @ ( tan_real @ X ) ) ) ) ) ) ) ).
% tan_monotone'
thf(fact_8048_tan__mono__lt__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) )
= ( ord_less_real @ X @ Y3 ) ) ) ) ) ) ).
% tan_mono_lt_eq
thf(fact_8049_lemma__tan__total1,axiom,
! [Y3: real] :
? [X5: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
& ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X5 )
= Y3 ) ) ).
% lemma_tan_total1
thf(fact_8050_tan__minus__45,axiom,
( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% tan_minus_45
thf(fact_8051_tan__inverse,axiom,
! [Y3: real] :
( ( divide_divide_real @ one_one_real @ ( tan_real @ Y3 ) )
= ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y3 ) ) ) ).
% tan_inverse
thf(fact_8052_add__tan__eq,axiom,
! [X: complex,Y3: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y3 )
!= zero_zero_complex )
=> ( ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y3 ) )
= ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X @ Y3 ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y3 ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_8053_add__tan__eq,axiom,
! [X: real,Y3: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y3 )
!= zero_zero_real )
=> ( ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) )
= ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_8054_tan__pos__pi2__le,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).
% tan_pos_pi2_le
thf(fact_8055_tan__total__pos,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ? [X5: real] :
( ( ord_less_eq_real @ zero_zero_real @ X5 )
& ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X5 )
= Y3 ) ) ) ).
% tan_total_pos
thf(fact_8056_tan__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( tan_real @ X ) @ zero_zero_real ) ) ) ).
% tan_less_zero
thf(fact_8057_tan__mono__le,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) ) ) ) ) ).
% tan_mono_le
thf(fact_8058_tan__mono__le__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ) ) ) ).
% tan_mono_le_eq
thf(fact_8059_tan__bound__pi2,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X ) ) @ one_one_real ) ) ).
% tan_bound_pi2
thf(fact_8060_arctan,axiom,
! [Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y3 ) )
& ( ord_less_real @ ( arctan @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ ( arctan @ Y3 ) )
= Y3 ) ) ).
% arctan
thf(fact_8061_arctan__tan,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( arctan @ ( tan_real @ X ) )
= X ) ) ) ).
% arctan_tan
thf(fact_8062_arctan__unique,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ( tan_real @ X )
= Y3 )
=> ( ( arctan @ Y3 )
= X ) ) ) ) ).
% arctan_unique
thf(fact_8063_Maclaurin__zero,axiom,
! [X: real,N: nat,Diff: nat > complex > real] :
( ( X = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_complex ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_complex ) ) ) ) ).
% Maclaurin_zero
thf(fact_8064_Maclaurin__zero,axiom,
! [X: real,N: nat,Diff: nat > real > real] :
( ( X = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_real ) ) ) ) ).
% Maclaurin_zero
thf(fact_8065_Maclaurin__zero,axiom,
! [X: real,N: nat,Diff: nat > rat > real] :
( ( X = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_rat ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_rat ) ) ) ) ).
% Maclaurin_zero
thf(fact_8066_Maclaurin__zero,axiom,
! [X: real,N: nat,Diff: nat > nat > real] :
( ( X = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_nat ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_nat ) ) ) ) ).
% Maclaurin_zero
thf(fact_8067_Maclaurin__zero,axiom,
! [X: real,N: nat,Diff: nat > int > real] :
( ( X = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_int ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_int ) ) ) ) ).
% Maclaurin_zero
thf(fact_8068_Maclaurin__lemma,axiom,
! [H2: real,F: real > real,J: nat > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ? [B8: real] :
( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M6 ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ B8 @ ( divide_divide_real @ ( power_power_real @ H2 @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ) ).
% Maclaurin_lemma
thf(fact_8069_tan__add,axiom,
! [X: complex,Y3: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y3 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( plus_plus_complex @ X @ Y3 ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( plus_plus_complex @ X @ Y3 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y3 ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y3 ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_8070_tan__add,axiom,
! [X: real,Y3: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y3 )
!= zero_zero_real )
=> ( ( ( cos_real @ ( plus_plus_real @ X @ Y3 ) )
!= zero_zero_real )
=> ( ( tan_real @ ( plus_plus_real @ X @ Y3 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_8071_tan__diff,axiom,
! [X: complex,Y3: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y3 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( minus_minus_complex @ X @ Y3 ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( minus_minus_complex @ X @ Y3 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y3 ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y3 ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_8072_tan__diff,axiom,
! [X: real,Y3: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y3 )
!= zero_zero_real )
=> ( ( ( cos_real @ ( minus_minus_real @ X @ Y3 ) )
!= zero_zero_real )
=> ( ( tan_real @ ( minus_minus_real @ X @ Y3 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_8073_lemma__tan__add1,axiom,
! [X: complex,Y3: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y3 )
!= zero_zero_complex )
=> ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y3 ) ) )
= ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X @ Y3 ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y3 ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_8074_lemma__tan__add1,axiom,
! [X: real,Y3: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y3 )
!= zero_zero_real )
=> ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y3 ) ) )
= ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y3 ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_8075_tan__total__pi4,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ? [Z3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z3 )
& ( ord_less_real @ Z3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
& ( ( tan_real @ Z3 )
= X ) ) ) ).
% tan_total_pi4
thf(fact_8076_tan__half,axiom,
( tan_complex
= ( ^ [X2: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) ) @ one_one_complex ) ) ) ) ).
% tan_half
thf(fact_8077_tan__half,axiom,
( tan_real
= ( ^ [X2: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) @ one_one_real ) ) ) ) ).
% tan_half
thf(fact_8078_cos__coeff__def,axiom,
( cos_coeff
= ( ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ zero_zero_real ) ) ) ).
% cos_coeff_def
thf(fact_8079_Maclaurin__sin__expansion3,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_real @ T5 @ X )
& ( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_sin_expansion3
thf(fact_8080_Maclaurin__sin__expansion4,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ X )
& ( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).
% Maclaurin_sin_expansion4
thf(fact_8081_Maclaurin__sin__expansion2,axiom,
! [X: real,N: nat] :
? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).
% Maclaurin_sin_expansion2
thf(fact_8082_Maclaurin__sin__expansion,axiom,
! [X: real,N: nat] :
? [T5: real] :
( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ).
% Maclaurin_sin_expansion
thf(fact_8083_sin__coeff__def,axiom,
( sin_coeff
= ( ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ) ).
% sin_coeff_def
thf(fact_8084_fact__ge__self,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_self
thf(fact_8085_fact__mono__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_mono_nat
thf(fact_8086_fact__less__mono__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% fact_less_mono_nat
thf(fact_8087_fact__ge__Suc__0__nat,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_Suc_0_nat
thf(fact_8088_dvd__fact,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% dvd_fact
thf(fact_8089_fact__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) )
= ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).
% fact_diff_Suc
thf(fact_8090_fact__div__fact__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq_nat @ R2 @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ R2 ) ) ) @ ( power_power_nat @ N @ R2 ) ) ) ).
% fact_div_fact_le_pow
thf(fact_8091_sin__coeff__Suc,axiom,
! [N: nat] :
( ( sin_coeff @ ( suc @ N ) )
= ( divide_divide_real @ ( cos_coeff @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).
% sin_coeff_Suc
thf(fact_8092_cos__coeff__Suc,axiom,
! [N: nat] :
( ( cos_coeff @ ( suc @ N ) )
= ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).
% cos_coeff_Suc
thf(fact_8093_sin__tan,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( sin_real @ X )
= ( divide_divide_real @ ( tan_real @ X ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_tan
thf(fact_8094_cos__tan,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( cos_real @ X )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_tan
thf(fact_8095_complex__unimodular__polar,axiom,
! [Z4: complex] :
( ( ( real_V1022390504157884413omplex @ Z4 )
= one_one_real )
=> ~ ! [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
=> ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( Z4
!= ( complex2 @ ( cos_real @ T5 ) @ ( sin_real @ T5 ) ) ) ) ) ) ).
% complex_unimodular_polar
thf(fact_8096_Maclaurin__exp__lt,axiom,
! [X: real,N: nat] :
( ( X != zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
& ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( exp_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( divide_divide_real @ ( power_power_real @ X @ M6 ) @ ( semiri2265585572941072030t_real @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_exp_lt
thf(fact_8097_sin__paired,axiom,
! [X: real] :
( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
@ ( sin_real @ X ) ) ).
% sin_paired
thf(fact_8098_real__sqrt__eq__iff,axiom,
! [X: real,Y3: real] :
( ( ( sqrt @ X )
= ( sqrt @ Y3 ) )
= ( X = Y3 ) ) ).
% real_sqrt_eq_iff
thf(fact_8099_real__sqrt__eq__zero__cancel__iff,axiom,
! [X: real] :
( ( ( sqrt @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% real_sqrt_eq_zero_cancel_iff
thf(fact_8100_real__sqrt__zero,axiom,
( ( sqrt @ zero_zero_real )
= zero_zero_real ) ).
% real_sqrt_zero
thf(fact_8101_real__sqrt__less__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y3 ) )
= ( ord_less_real @ X @ Y3 ) ) ).
% real_sqrt_less_iff
thf(fact_8102_real__sqrt__le__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ).
% real_sqrt_le_iff
thf(fact_8103_real__sqrt__one,axiom,
( ( sqrt @ one_one_real )
= one_one_real ) ).
% real_sqrt_one
thf(fact_8104_real__sqrt__eq__1__iff,axiom,
! [X: real] :
( ( ( sqrt @ X )
= one_one_real )
= ( X = one_one_real ) ) ).
% real_sqrt_eq_1_iff
thf(fact_8105_exp__le__cancel__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( exp_real @ X ) @ ( exp_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ).
% exp_le_cancel_iff
thf(fact_8106_sums__zero,axiom,
( sums_complex
@ ^ [N2: nat] : zero_zero_complex
@ zero_zero_complex ) ).
% sums_zero
thf(fact_8107_sums__zero,axiom,
( sums_real
@ ^ [N2: nat] : zero_zero_real
@ zero_zero_real ) ).
% sums_zero
thf(fact_8108_sums__zero,axiom,
( sums_nat
@ ^ [N2: nat] : zero_zero_nat
@ zero_zero_nat ) ).
% sums_zero
thf(fact_8109_sums__zero,axiom,
( sums_int
@ ^ [N2: nat] : zero_zero_int
@ zero_zero_int ) ).
% sums_zero
thf(fact_8110_exp__zero,axiom,
( ( exp_complex @ zero_zero_complex )
= one_one_complex ) ).
% exp_zero
thf(fact_8111_exp__zero,axiom,
( ( exp_real @ zero_zero_real )
= one_one_real ) ).
% exp_zero
thf(fact_8112_real__sqrt__lt__0__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( sqrt @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% real_sqrt_lt_0_iff
thf(fact_8113_real__sqrt__gt__0__iff,axiom,
! [Y3: real] :
( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y3 ) )
= ( ord_less_real @ zero_zero_real @ Y3 ) ) ).
% real_sqrt_gt_0_iff
thf(fact_8114_real__sqrt__ge__0__iff,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y3 ) )
= ( ord_less_eq_real @ zero_zero_real @ Y3 ) ) ).
% real_sqrt_ge_0_iff
thf(fact_8115_real__sqrt__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% real_sqrt_le_0_iff
thf(fact_8116_real__sqrt__lt__1__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( sqrt @ X ) @ one_one_real )
= ( ord_less_real @ X @ one_one_real ) ) ).
% real_sqrt_lt_1_iff
thf(fact_8117_real__sqrt__gt__1__iff,axiom,
! [Y3: real] :
( ( ord_less_real @ one_one_real @ ( sqrt @ Y3 ) )
= ( ord_less_real @ one_one_real @ Y3 ) ) ).
% real_sqrt_gt_1_iff
thf(fact_8118_real__sqrt__ge__1__iff,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y3 ) )
= ( ord_less_eq_real @ one_one_real @ Y3 ) ) ).
% real_sqrt_ge_1_iff
thf(fact_8119_real__sqrt__le__1__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ).
% real_sqrt_le_1_iff
thf(fact_8120_exp__eq__one__iff,axiom,
! [X: real] :
( ( ( exp_real @ X )
= one_one_real )
= ( X = zero_zero_real ) ) ).
% exp_eq_one_iff
thf(fact_8121_real__sqrt__abs2,axiom,
! [X: real] :
( ( sqrt @ ( times_times_real @ X @ X ) )
= ( abs_abs_real @ X ) ) ).
% real_sqrt_abs2
thf(fact_8122_real__sqrt__mult__self,axiom,
! [A: real] :
( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
= ( abs_abs_real @ A ) ) ).
% real_sqrt_mult_self
thf(fact_8123_real__sqrt__four,axiom,
( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% real_sqrt_four
thf(fact_8124_exp__less__one__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( exp_real @ X ) @ one_one_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% exp_less_one_iff
thf(fact_8125_one__less__exp__iff,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ ( exp_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% one_less_exp_iff
thf(fact_8126_exp__le__one__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( exp_real @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% exp_le_one_iff
thf(fact_8127_one__le__exp__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% one_le_exp_iff
thf(fact_8128_powser__sums__zero__iff,axiom,
! [A: nat > complex,X: complex] :
( ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ ( A @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) )
@ X )
= ( ( A @ zero_zero_nat )
= X ) ) ).
% powser_sums_zero_iff
thf(fact_8129_powser__sums__zero__iff,axiom,
! [A: nat > real,X: real] :
( ( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( A @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) )
@ X )
= ( ( A @ zero_zero_nat )
= X ) ) ).
% powser_sums_zero_iff
thf(fact_8130_norm__cos__sin,axiom,
! [T: real] :
( ( real_V1022390504157884413omplex @ ( complex2 @ ( cos_real @ T ) @ ( sin_real @ T ) ) )
= one_one_real ) ).
% norm_cos_sin
thf(fact_8131_real__sqrt__abs,axiom,
! [X: real] :
( ( sqrt @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( abs_abs_real @ X ) ) ).
% real_sqrt_abs
thf(fact_8132_real__sqrt__pow2__iff,axiom,
! [X: real] :
( ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% real_sqrt_pow2_iff
thf(fact_8133_real__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X ) ) ).
% real_sqrt_pow2
thf(fact_8134_real__sqrt__sum__squares__mult__squared__eq,axiom,
! [X: real,Y3: real,Xa2: real,Ya: real] :
( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_squared_eq
thf(fact_8135_real__sqrt__power,axiom,
! [X: real,K: nat] :
( ( sqrt @ ( power_power_real @ X @ K ) )
= ( power_power_real @ ( sqrt @ X ) @ K ) ) ).
% real_sqrt_power
thf(fact_8136_norm__exp,axiom,
! [X: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ X ) ) @ ( exp_real @ ( real_V7735802525324610683m_real @ X ) ) ) ).
% norm_exp
thf(fact_8137_norm__exp,axiom,
! [X: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ X ) ) @ ( exp_real @ ( real_V1022390504157884413omplex @ X ) ) ) ).
% norm_exp
thf(fact_8138_sums__le,axiom,
! [F: nat > real,G: nat > real,S2: real,T: real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( sums_real @ F @ S2 )
=> ( ( sums_real @ G @ T )
=> ( ord_less_eq_real @ S2 @ T ) ) ) ) ).
% sums_le
thf(fact_8139_sums__le,axiom,
! [F: nat > nat,G: nat > nat,S2: nat,T: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( sums_nat @ F @ S2 )
=> ( ( sums_nat @ G @ T )
=> ( ord_less_eq_nat @ S2 @ T ) ) ) ) ).
% sums_le
thf(fact_8140_sums__le,axiom,
! [F: nat > int,G: nat > int,S2: int,T: int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( sums_int @ F @ S2 )
=> ( ( sums_int @ G @ T )
=> ( ord_less_eq_int @ S2 @ T ) ) ) ) ).
% sums_le
thf(fact_8141_real__sqrt__mult,axiom,
! [X: real,Y3: real] :
( ( sqrt @ ( times_times_real @ X @ Y3 ) )
= ( times_times_real @ ( sqrt @ X ) @ ( sqrt @ Y3 ) ) ) ).
% real_sqrt_mult
thf(fact_8142_real__sqrt__divide,axiom,
! [X: real,Y3: real] :
( ( sqrt @ ( divide_divide_real @ X @ Y3 ) )
= ( divide_divide_real @ ( sqrt @ X ) @ ( sqrt @ Y3 ) ) ) ).
% real_sqrt_divide
thf(fact_8143_real__sqrt__le__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y3 ) ) ) ).
% real_sqrt_le_mono
thf(fact_8144_real__sqrt__less__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y3 ) ) ) ).
% real_sqrt_less_mono
thf(fact_8145_exp__times__arg__commute,axiom,
! [A2: complex] :
( ( times_times_complex @ ( exp_complex @ A2 ) @ A2 )
= ( times_times_complex @ A2 @ ( exp_complex @ A2 ) ) ) ).
% exp_times_arg_commute
thf(fact_8146_exp__times__arg__commute,axiom,
! [A2: real] :
( ( times_times_real @ ( exp_real @ A2 ) @ A2 )
= ( times_times_real @ A2 @ ( exp_real @ A2 ) ) ) ).
% exp_times_arg_commute
thf(fact_8147_real__sqrt__minus,axiom,
! [X: real] :
( ( sqrt @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_minus
thf(fact_8148_complex__diff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( minus_minus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
= ( complex2 @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ).
% complex_diff
thf(fact_8149_sums__single,axiom,
! [I4: nat,F: nat > complex] :
( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( F @ I4 ) ) ).
% sums_single
thf(fact_8150_sums__single,axiom,
! [I4: nat,F: nat > real] :
( sums_real
@ ^ [R5: nat] : ( if_real @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_real )
@ ( F @ I4 ) ) ).
% sums_single
thf(fact_8151_sums__single,axiom,
! [I4: nat,F: nat > nat] :
( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( F @ I4 ) ) ).
% sums_single
thf(fact_8152_sums__single,axiom,
! [I4: nat,F: nat > int] :
( sums_int
@ ^ [R5: nat] : ( if_int @ ( R5 = I4 ) @ ( F @ R5 ) @ zero_zero_int )
@ ( F @ I4 ) ) ).
% sums_single
thf(fact_8153_sums__mult,axiom,
! [F: nat > complex,A: complex,C: complex] :
( ( sums_complex @ F @ A )
=> ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) )
@ ( times_times_complex @ C @ A ) ) ) ).
% sums_mult
thf(fact_8154_sums__mult,axiom,
! [F: nat > real,A: real,C: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) )
@ ( times_times_real @ C @ A ) ) ) ).
% sums_mult
thf(fact_8155_sums__mult2,axiom,
! [F: nat > complex,A: complex,C: complex] :
( ( sums_complex @ F @ A )
=> ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C )
@ ( times_times_complex @ A @ C ) ) ) ).
% sums_mult2
thf(fact_8156_sums__mult2,axiom,
! [F: nat > real,A: real,C: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C )
@ ( times_times_real @ A @ C ) ) ) ).
% sums_mult2
thf(fact_8157_sums__add,axiom,
! [F: nat > complex,A: complex,G: nat > complex,B: complex] :
( ( sums_complex @ F @ A )
=> ( ( sums_complex @ G @ B )
=> ( sums_complex
@ ^ [N2: nat] : ( plus_plus_complex @ ( F @ N2 ) @ ( G @ N2 ) )
@ ( plus_plus_complex @ A @ B ) ) ) ) ).
% sums_add
thf(fact_8158_sums__add,axiom,
! [F: nat > real,A: real,G: nat > real,B: real] :
( ( sums_real @ F @ A )
=> ( ( sums_real @ G @ B )
=> ( sums_real
@ ^ [N2: nat] : ( plus_plus_real @ ( F @ N2 ) @ ( G @ N2 ) )
@ ( plus_plus_real @ A @ B ) ) ) ) ).
% sums_add
thf(fact_8159_sums__add,axiom,
! [F: nat > nat,A: nat,G: nat > nat,B: nat] :
( ( sums_nat @ F @ A )
=> ( ( sums_nat @ G @ B )
=> ( sums_nat
@ ^ [N2: nat] : ( plus_plus_nat @ ( F @ N2 ) @ ( G @ N2 ) )
@ ( plus_plus_nat @ A @ B ) ) ) ) ).
% sums_add
thf(fact_8160_sums__add,axiom,
! [F: nat > int,A: int,G: nat > int,B: int] :
( ( sums_int @ F @ A )
=> ( ( sums_int @ G @ B )
=> ( sums_int
@ ^ [N2: nat] : ( plus_plus_int @ ( F @ N2 ) @ ( G @ N2 ) )
@ ( plus_plus_int @ A @ B ) ) ) ) ).
% sums_add
thf(fact_8161_sums__diff,axiom,
! [F: nat > complex,A: complex,G: nat > complex,B: complex] :
( ( sums_complex @ F @ A )
=> ( ( sums_complex @ G @ B )
=> ( sums_complex
@ ^ [N2: nat] : ( minus_minus_complex @ ( F @ N2 ) @ ( G @ N2 ) )
@ ( minus_minus_complex @ A @ B ) ) ) ) ).
% sums_diff
thf(fact_8162_sums__diff,axiom,
! [F: nat > real,A: real,G: nat > real,B: real] :
( ( sums_real @ F @ A )
=> ( ( sums_real @ G @ B )
=> ( sums_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) )
@ ( minus_minus_real @ A @ B ) ) ) ) ).
% sums_diff
thf(fact_8163_sums__divide,axiom,
! [F: nat > complex,A: complex,C: complex] :
( ( sums_complex @ F @ A )
=> ( sums_complex
@ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C )
@ ( divide1717551699836669952omplex @ A @ C ) ) ) ).
% sums_divide
thf(fact_8164_sums__divide,axiom,
! [F: nat > real,A: real,C: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C )
@ ( divide_divide_real @ A @ C ) ) ) ).
% sums_divide
thf(fact_8165_sums__minus,axiom,
! [F: nat > real,A: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) )
@ ( uminus_uminus_real @ A ) ) ) ).
% sums_minus
thf(fact_8166_sums__minus,axiom,
! [F: nat > complex,A: complex] :
( ( sums_complex @ F @ A )
=> ( sums_complex
@ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) )
@ ( uminus1482373934393186551omplex @ A ) ) ) ).
% sums_minus
thf(fact_8167_sums__sum,axiom,
! [I5: set_real,F: real > nat > real,X: real > real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_real
@ ^ [N2: nat] :
( groups8097168146408367636l_real
@ ^ [I3: real] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups8097168146408367636l_real @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8168_sums__sum,axiom,
! [I5: set_int,F: int > nat > real,X: int > real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_real
@ ^ [N2: nat] :
( groups8778361861064173332t_real
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups8778361861064173332t_real @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8169_sums__sum,axiom,
! [I5: set_complex,F: complex > nat > real,X: complex > real] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_real
@ ^ [N2: nat] :
( groups5808333547571424918x_real
@ ^ [I3: complex] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups5808333547571424918x_real @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8170_sums__sum,axiom,
! [I5: set_nat,F: nat > nat > complex,X: nat > complex] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( sums_complex @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_complex
@ ^ [N2: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups2073611262835488442omplex @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8171_sums__sum,axiom,
! [I5: set_real,F: real > nat > complex,X: real > complex] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( sums_complex @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_complex
@ ^ [N2: nat] :
( groups5754745047067104278omplex
@ ^ [I3: real] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups5754745047067104278omplex @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8172_sums__sum,axiom,
! [I5: set_int,F: int > nat > complex,X: int > complex] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( sums_complex @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_complex
@ ^ [N2: nat] :
( groups3049146728041665814omplex
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups3049146728041665814omplex @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8173_sums__sum,axiom,
! [I5: set_int,F: int > nat > int,X: int > int] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( sums_int @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_int
@ ^ [N2: nat] :
( groups4538972089207619220nt_int
@ ^ [I3: int] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups4538972089207619220nt_int @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8174_sums__sum,axiom,
! [I5: set_complex,F: complex > nat > complex,X: complex > complex] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( sums_complex @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_complex
@ ^ [N2: nat] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups7754918857620584856omplex @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8175_sums__sum,axiom,
! [I5: set_nat,F: nat > nat > nat,X: nat > nat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( sums_nat @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_nat
@ ^ [N2: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups3542108847815614940at_nat @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8176_sums__sum,axiom,
! [I5: set_nat,F: nat > nat > real,X: nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X @ I2 ) ) )
=> ( sums_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ I3 @ N2 )
@ I5 )
@ ( groups6591440286371151544t_real @ X @ I5 ) ) ) ).
% sums_sum
thf(fact_8177_real__sqrt__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_gt_zero
thf(fact_8178_real__sqrt__eq__zero__cancel,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ( sqrt @ X )
= zero_zero_real )
=> ( X = zero_zero_real ) ) ) ).
% real_sqrt_eq_zero_cancel
thf(fact_8179_real__sqrt__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_ge_zero
thf(fact_8180_not__exp__le__zero,axiom,
! [X: real] :
~ ( ord_less_eq_real @ ( exp_real @ X ) @ zero_zero_real ) ).
% not_exp_le_zero
thf(fact_8181_exp__ge__zero,axiom,
! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X ) ) ).
% exp_ge_zero
thf(fact_8182_real__sqrt__ge__one,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ one_one_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_ge_one
thf(fact_8183_exp__add__commuting,axiom,
! [X: complex,Y3: complex] :
( ( ( times_times_complex @ X @ Y3 )
= ( times_times_complex @ Y3 @ X ) )
=> ( ( exp_complex @ ( plus_plus_complex @ X @ Y3 ) )
= ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y3 ) ) ) ) ).
% exp_add_commuting
thf(fact_8184_exp__add__commuting,axiom,
! [X: real,Y3: real] :
( ( ( times_times_real @ X @ Y3 )
= ( times_times_real @ Y3 @ X ) )
=> ( ( exp_real @ ( plus_plus_real @ X @ Y3 ) )
= ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y3 ) ) ) ) ).
% exp_add_commuting
thf(fact_8185_mult__exp__exp,axiom,
! [X: complex,Y3: complex] :
( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y3 ) )
= ( exp_complex @ ( plus_plus_complex @ X @ Y3 ) ) ) ).
% mult_exp_exp
thf(fact_8186_mult__exp__exp,axiom,
! [X: real,Y3: real] :
( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y3 ) )
= ( exp_real @ ( plus_plus_real @ X @ Y3 ) ) ) ).
% mult_exp_exp
thf(fact_8187_exp__diff,axiom,
! [X: complex,Y3: complex] :
( ( exp_complex @ ( minus_minus_complex @ X @ Y3 ) )
= ( divide1717551699836669952omplex @ ( exp_complex @ X ) @ ( exp_complex @ Y3 ) ) ) ).
% exp_diff
thf(fact_8188_exp__diff,axiom,
! [X: real,Y3: real] :
( ( exp_real @ ( minus_minus_real @ X @ Y3 ) )
= ( divide_divide_real @ ( exp_real @ X ) @ ( exp_real @ Y3 ) ) ) ).
% exp_diff
thf(fact_8189_sums__mult__iff,axiom,
! [C: complex,F: nat > complex,D: complex] :
( ( C != zero_zero_complex )
=> ( ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) )
@ ( times_times_complex @ C @ D ) )
= ( sums_complex @ F @ D ) ) ) ).
% sums_mult_iff
thf(fact_8190_sums__mult__iff,axiom,
! [C: real,F: nat > real,D: real] :
( ( C != zero_zero_real )
=> ( ( sums_real
@ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) )
@ ( times_times_real @ C @ D ) )
= ( sums_real @ F @ D ) ) ) ).
% sums_mult_iff
thf(fact_8191_sums__mult2__iff,axiom,
! [C: complex,F: nat > complex,D: complex] :
( ( C != zero_zero_complex )
=> ( ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C )
@ ( times_times_complex @ D @ C ) )
= ( sums_complex @ F @ D ) ) ) ).
% sums_mult2_iff
thf(fact_8192_sums__mult2__iff,axiom,
! [C: real,F: nat > real,D: real] :
( ( C != zero_zero_real )
=> ( ( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C )
@ ( times_times_real @ D @ C ) )
= ( sums_real @ F @ D ) ) ) ).
% sums_mult2_iff
thf(fact_8193_Complex__eq__numeral,axiom,
! [A: real,B: real,W: num] :
( ( ( complex2 @ A @ B )
= ( numera6690914467698888265omplex @ W ) )
= ( ( A
= ( numeral_numeral_real @ W ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_numeral
thf(fact_8194_complex__add,axiom,
! [A: real,B: real,C: real,D: real] :
( ( plus_plus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
= ( complex2 @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ).
% complex_add
thf(fact_8195_complex__norm,axiom,
! [X: real,Y3: real] :
( ( real_V1022390504157884413omplex @ ( complex2 @ X @ Y3 ) )
= ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% complex_norm
thf(fact_8196_exp__gt__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ one_one_real @ ( exp_real @ X ) ) ) ).
% exp_gt_one
thf(fact_8197_real__div__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( divide_divide_real @ X @ ( sqrt @ X ) )
= ( sqrt @ X ) ) ) ).
% real_div_sqrt
thf(fact_8198_sqrt__add__le__add__sqrt,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X @ Y3 ) ) @ ( plus_plus_real @ ( sqrt @ X ) @ ( sqrt @ Y3 ) ) ) ) ) ).
% sqrt_add_le_add_sqrt
thf(fact_8199_sums__mult__D,axiom,
! [C: complex,F: nat > complex,A: complex] :
( ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) )
@ A )
=> ( ( C != zero_zero_complex )
=> ( sums_complex @ F @ ( divide1717551699836669952omplex @ A @ C ) ) ) ) ).
% sums_mult_D
thf(fact_8200_sums__mult__D,axiom,
! [C: real,F: nat > real,A: real] :
( ( sums_real
@ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) )
@ A )
=> ( ( C != zero_zero_real )
=> ( sums_real @ F @ ( divide_divide_real @ A @ C ) ) ) ) ).
% sums_mult_D
thf(fact_8201_exp__ge__add__one__self,axiom,
! [X: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ).
% exp_ge_add_one_self
thf(fact_8202_sums__Suc__imp,axiom,
! [F: nat > complex,S2: complex] :
( ( ( F @ zero_zero_nat )
= zero_zero_complex )
=> ( ( sums_complex
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ S2 )
=> ( sums_complex @ F @ S2 ) ) ) ).
% sums_Suc_imp
thf(fact_8203_sums__Suc__imp,axiom,
! [F: nat > real,S2: real] :
( ( ( F @ zero_zero_nat )
= zero_zero_real )
=> ( ( sums_real
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ S2 )
=> ( sums_real @ F @ S2 ) ) ) ).
% sums_Suc_imp
thf(fact_8204_le__real__sqrt__sumsq,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y3 @ Y3 ) ) ) ) ).
% le_real_sqrt_sumsq
thf(fact_8205_sums__Suc,axiom,
! [F: nat > complex,L: complex] :
( ( sums_complex
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ L )
=> ( sums_complex @ F @ ( plus_plus_complex @ L @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_8206_sums__Suc,axiom,
! [F: nat > real,L: real] :
( ( sums_real
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ L )
=> ( sums_real @ F @ ( plus_plus_real @ L @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_8207_sums__Suc,axiom,
! [F: nat > nat,L: nat] :
( ( sums_nat
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ L )
=> ( sums_nat @ F @ ( plus_plus_nat @ L @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_8208_sums__Suc,axiom,
! [F: nat > int,L: int] :
( ( sums_int
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ L )
=> ( sums_int @ F @ ( plus_plus_int @ L @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_8209_sums__Suc__iff,axiom,
! [F: nat > complex,S2: complex] :
( ( sums_complex
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ S2 )
= ( sums_complex @ F @ ( plus_plus_complex @ S2 @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc_iff
thf(fact_8210_sums__Suc__iff,axiom,
! [F: nat > real,S2: real] :
( ( sums_real
@ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
@ S2 )
= ( sums_real @ F @ ( plus_plus_real @ S2 @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc_iff
thf(fact_8211_sums__zero__iff__shift,axiom,
! [N: nat,F: nat > complex,S2: complex] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( F @ I2 )
= zero_zero_complex ) )
=> ( ( sums_complex
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ S2 )
= ( sums_complex @ F @ S2 ) ) ) ).
% sums_zero_iff_shift
thf(fact_8212_sums__zero__iff__shift,axiom,
! [N: nat,F: nat > real,S2: real] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( F @ I2 )
= zero_zero_real ) )
=> ( ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ S2 )
= ( sums_real @ F @ S2 ) ) ) ).
% sums_zero_iff_shift
thf(fact_8213_exp__minus__inverse,axiom,
! [X: real] :
( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) )
= one_one_real ) ).
% exp_minus_inverse
thf(fact_8214_exp__minus__inverse,axiom,
! [X: complex] :
( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) )
= one_one_complex ) ).
% exp_minus_inverse
thf(fact_8215_exp__of__nat2__mult,axiom,
! [X: complex,N: nat] :
( ( exp_complex @ ( times_times_complex @ X @ ( semiri8010041392384452111omplex @ N ) ) )
= ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).
% exp_of_nat2_mult
thf(fact_8216_exp__of__nat2__mult,axiom,
! [X: real,N: nat] :
( ( exp_real @ ( times_times_real @ X @ ( semiri5074537144036343181t_real @ N ) ) )
= ( power_power_real @ ( exp_real @ X ) @ N ) ) ).
% exp_of_nat2_mult
thf(fact_8217_exp__of__nat__mult,axiom,
! [N: nat,X: complex] :
( ( exp_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ X ) )
= ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).
% exp_of_nat_mult
thf(fact_8218_exp__of__nat__mult,axiom,
! [N: nat,X: real] :
( ( exp_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) )
= ( power_power_real @ ( exp_real @ X ) @ N ) ) ).
% exp_of_nat_mult
thf(fact_8219_Complex__eq__neg__numeral,axiom,
! [A: real,B: real,W: num] :
( ( ( complex2 @ A @ B )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( A
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_neg_numeral
thf(fact_8220_sums__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_complex ) )
=> ( sums_complex @ F @ ( groups2073611262835488442omplex @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_8221_sums__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_int ) )
=> ( sums_int @ F @ ( groups3539618377306564664at_int @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_8222_sums__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_nat ) )
=> ( sums_nat @ F @ ( groups3542108847815614940at_nat @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_8223_sums__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_real ) )
=> ( sums_real @ F @ ( groups6591440286371151544t_real @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_8224_sums__If__finite,axiom,
! [P: nat > $o,F: nat > complex] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( groups2073611262835488442omplex @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_8225_sums__If__finite,axiom,
! [P: nat > $o,F: nat > int] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_int
@ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int )
@ ( groups3539618377306564664at_int @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_8226_sums__If__finite,axiom,
! [P: nat > $o,F: nat > nat] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( groups3542108847815614940at_nat @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_8227_sums__If__finite,axiom,
! [P: nat > $o,F: nat > real] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_real
@ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real )
@ ( groups6591440286371151544t_real @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_8228_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( groups2073611262835488442omplex @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_8229_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( sums_int
@ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int )
@ ( groups3539618377306564664at_int @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_8230_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( groups3542108847815614940at_nat @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_8231_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( sums_real
@ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real )
@ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_8232_complex__mult,axiom,
! [A: real,B: real,C: real,D: real] :
( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
= ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).
% complex_mult
thf(fact_8233_Complex__eq__1,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= one_one_complex )
= ( ( A = one_one_real )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_1
thf(fact_8234_one__complex_Ocode,axiom,
( one_one_complex
= ( complex2 @ one_one_real @ zero_zero_real ) ) ).
% one_complex.code
thf(fact_8235_powser__sums__if,axiom,
! [M: nat,Z4: complex] :
( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ ( if_complex @ ( N2 = M ) @ one_one_complex @ zero_zero_complex ) @ ( power_power_complex @ Z4 @ N2 ) )
@ ( power_power_complex @ Z4 @ M ) ) ).
% powser_sums_if
thf(fact_8236_powser__sums__if,axiom,
! [M: nat,Z4: real] :
( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( if_real @ ( N2 = M ) @ one_one_real @ zero_zero_real ) @ ( power_power_real @ Z4 @ N2 ) )
@ ( power_power_real @ Z4 @ M ) ) ).
% powser_sums_if
thf(fact_8237_powser__sums__if,axiom,
! [M: nat,Z4: int] :
( sums_int
@ ^ [N2: nat] : ( times_times_int @ ( if_int @ ( N2 = M ) @ one_one_int @ zero_zero_int ) @ ( power_power_int @ Z4 @ N2 ) )
@ ( power_power_int @ Z4 @ M ) ) ).
% powser_sums_if
thf(fact_8238_sqrt2__less__2,axiom,
ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% sqrt2_less_2
thf(fact_8239_powser__sums__zero,axiom,
! [A: nat > complex] :
( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ ( A @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_8240_powser__sums__zero,axiom,
! [A: nat > real] :
( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( A @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_8241_exp__ge__add__one__self__aux,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ) ).
% exp_ge_add_one_self_aux
thf(fact_8242_lemma__exp__total,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ one_one_real @ Y3 )
=> ? [X5: real] :
( ( ord_less_eq_real @ zero_zero_real @ X5 )
& ( ord_less_eq_real @ X5 @ ( minus_minus_real @ Y3 @ one_one_real ) )
& ( ( exp_real @ X5 )
= Y3 ) ) ) ).
% lemma_exp_total
thf(fact_8243_ln__ge__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y3 @ ( ln_ln_real @ X ) )
= ( ord_less_eq_real @ ( exp_real @ Y3 ) @ X ) ) ) ).
% ln_ge_iff
thf(fact_8244_ln__x__over__x__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y3 ) @ Y3 ) @ ( divide_divide_real @ ( ln_ln_real @ X ) @ X ) ) ) ) ).
% ln_x_over_x_mono
thf(fact_8245_sums__iff__shift,axiom,
! [F: nat > complex,N: nat,S2: complex] :
( ( sums_complex
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ S2 )
= ( sums_complex @ F @ ( plus_plus_complex @ S2 @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% sums_iff_shift
thf(fact_8246_sums__iff__shift,axiom,
! [F: nat > real,N: nat,S2: real] :
( ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ S2 )
= ( sums_real @ F @ ( plus_plus_real @ S2 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% sums_iff_shift
thf(fact_8247_sums__iff__shift_H,axiom,
! [F: nat > complex,N: nat,S2: complex] :
( ( sums_complex
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ ( minus_minus_complex @ S2 @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N ) ) ) )
= ( sums_complex @ F @ S2 ) ) ).
% sums_iff_shift'
thf(fact_8248_sums__iff__shift_H,axiom,
! [F: nat > real,N: nat,S2: real] :
( ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ ( minus_minus_real @ S2 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) ) )
= ( sums_real @ F @ S2 ) ) ).
% sums_iff_shift'
thf(fact_8249_sums__split__initial__segment,axiom,
! [F: nat > complex,S2: complex,N: nat] :
( ( sums_complex @ F @ S2 )
=> ( sums_complex
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ ( minus_minus_complex @ S2 @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% sums_split_initial_segment
thf(fact_8250_sums__split__initial__segment,axiom,
! [F: nat > real,S2: real,N: nat] :
( ( sums_real @ F @ S2 )
=> ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ ( minus_minus_real @ S2 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% sums_split_initial_segment
thf(fact_8251_sums__If__finite__set_H,axiom,
! [G: nat > complex,S3: complex,A2: set_nat,S4: complex,F: nat > complex] :
( ( sums_complex @ G @ S3 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( S4
= ( plus_plus_complex @ S3
@ ( groups2073611262835488442omplex
@ ^ [N2: nat] : ( minus_minus_complex @ ( F @ N2 ) @ ( G @ N2 ) )
@ A2 ) ) )
=> ( sums_complex
@ ^ [N2: nat] : ( if_complex @ ( member_nat @ N2 @ A2 ) @ ( F @ N2 ) @ ( G @ N2 ) )
@ S4 ) ) ) ) ).
% sums_If_finite_set'
thf(fact_8252_sums__If__finite__set_H,axiom,
! [G: nat > real,S3: real,A2: set_nat,S4: real,F: nat > real] :
( ( sums_real @ G @ S3 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( S4
= ( plus_plus_real @ S3
@ ( groups6591440286371151544t_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) )
@ A2 ) ) )
=> ( sums_real
@ ^ [N2: nat] : ( if_real @ ( member_nat @ N2 @ A2 ) @ ( F @ N2 ) @ ( G @ N2 ) )
@ S4 ) ) ) ) ).
% sums_If_finite_set'
thf(fact_8253_Complex__sum_H,axiom,
! [F: nat > real,S2: set_nat] :
( ( groups2073611262835488442omplex
@ ^ [X2: nat] : ( complex2 @ ( F @ X2 ) @ zero_zero_real )
@ S2 )
= ( complex2 @ ( groups6591440286371151544t_real @ F @ S2 ) @ zero_zero_real ) ) ).
% Complex_sum'
thf(fact_8254_Complex__sum_H,axiom,
! [F: complex > real,S2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( complex2 @ ( F @ X2 ) @ zero_zero_real )
@ S2 )
= ( complex2 @ ( groups5808333547571424918x_real @ F @ S2 ) @ zero_zero_real ) ) ).
% Complex_sum'
thf(fact_8255_Complex__eq__neg__1,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( ( A
= ( uminus_uminus_real @ one_one_real ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_neg_1
thf(fact_8256_real__less__rsqrt,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y3 )
=> ( ord_less_real @ X @ ( sqrt @ Y3 ) ) ) ).
% real_less_rsqrt
thf(fact_8257_real__le__rsqrt,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y3 )
=> ( ord_less_eq_real @ X @ ( sqrt @ Y3 ) ) ) ).
% real_le_rsqrt
thf(fact_8258_sqrt__le__D,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ Y3 )
=> ( ord_less_eq_real @ X @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sqrt_le_D
thf(fact_8259_exp__le,axiom,
ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).
% exp_le
thf(fact_8260_exp__divide__power__eq,axiom,
! [N: nat,X: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_complex @ ( exp_complex @ ( divide1717551699836669952omplex @ X @ ( semiri8010041392384452111omplex @ N ) ) ) @ N )
= ( exp_complex @ X ) ) ) ).
% exp_divide_power_eq
thf(fact_8261_exp__divide__power__eq,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ ( exp_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N )
= ( exp_real @ X ) ) ) ).
% exp_divide_power_eq
thf(fact_8262_tanh__altdef,axiom,
( tanh_real
= ( ^ [X2: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X2 ) @ ( exp_real @ ( uminus_uminus_real @ X2 ) ) ) @ ( plus_plus_real @ ( exp_real @ X2 ) @ ( exp_real @ ( uminus_uminus_real @ X2 ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_8263_tanh__altdef,axiom,
( tanh_complex
= ( ^ [X2: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X2 ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X2 ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_8264_real__sqrt__unique,axiom,
! [Y3: real,X: real] :
( ( ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( sqrt @ X )
= Y3 ) ) ) ).
% real_sqrt_unique
thf(fact_8265_real__le__lsqrt,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ X @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( sqrt @ X ) @ Y3 ) ) ) ) ).
% real_le_lsqrt
thf(fact_8266_lemma__real__divide__sqrt__less,axiom,
! [U2: real] :
( ( ord_less_real @ zero_zero_real @ U2 )
=> ( ord_less_real @ ( divide_divide_real @ U2 @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U2 ) ) ).
% lemma_real_divide_sqrt_less
thf(fact_8267_real__sqrt__sum__squares__eq__cancel2,axiom,
! [X: real,Y3: real] :
( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= Y3 )
=> ( X = zero_zero_real ) ) ).
% real_sqrt_sum_squares_eq_cancel2
thf(fact_8268_real__sqrt__sum__squares__eq__cancel,axiom,
! [X: real,Y3: real] :
( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= X )
=> ( Y3 = zero_zero_real ) ) ).
% real_sqrt_sum_squares_eq_cancel
thf(fact_8269_real__sqrt__sum__squares__triangle__ineq,axiom,
! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_triangle_ineq
thf(fact_8270_real__sqrt__sum__squares__ge2,axiom,
! [Y3: real,X: real] : ( ord_less_eq_real @ Y3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge2
thf(fact_8271_real__sqrt__sum__squares__ge1,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge1
thf(fact_8272_exp__half__le2,axiom,
ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% exp_half_le2
thf(fact_8273_sqrt__ge__absD,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ Y3 ) )
=> ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y3 ) ) ).
% sqrt_ge_absD
thf(fact_8274_cos__45,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_45
thf(fact_8275_sin__45,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_45
thf(fact_8276_tan__60,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% tan_60
thf(fact_8277_exp__double,axiom,
! [Z4: complex] :
( ( exp_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z4 ) )
= ( power_power_complex @ ( exp_complex @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% exp_double
thf(fact_8278_exp__double,axiom,
! [Z4: real] :
( ( exp_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z4 ) )
= ( power_power_real @ ( exp_real @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% exp_double
thf(fact_8279_geometric__sums,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( sums_real @ ( power_power_real @ C ) @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).
% geometric_sums
thf(fact_8280_geometric__sums,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( sums_complex @ ( power_power_complex @ C ) @ ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).
% geometric_sums
thf(fact_8281_real__less__lsqrt,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ X @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sqrt @ X ) @ Y3 ) ) ) ) ).
% real_less_lsqrt
thf(fact_8282_power__half__series,axiom,
( sums_real
@ ^ [N2: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N2 ) )
@ one_one_real ) ).
% power_half_series
thf(fact_8283_sqrt__sum__squares__le__sum,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X @ Y3 ) ) ) ) ).
% sqrt_sum_squares_le_sum
thf(fact_8284_sqrt__even__pow2,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% sqrt_even_pow2
thf(fact_8285_sqrt__sum__squares__le__sum__abs,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y3 ) ) ) ).
% sqrt_sum_squares_le_sum_abs
thf(fact_8286_real__sqrt__ge__abs2,axiom,
! [Y3: real,X: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_ge_abs2
thf(fact_8287_real__sqrt__ge__abs1,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_ge_abs1
thf(fact_8288_ln__sqrt,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ln_ln_real @ ( sqrt @ X ) )
= ( divide_divide_real @ ( ln_ln_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% ln_sqrt
thf(fact_8289_cos__30,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_30
thf(fact_8290_sin__60,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_60
thf(fact_8291_exp__bound__half,axiom,
! [Z4: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z4 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% exp_bound_half
thf(fact_8292_exp__bound__half,axiom,
! [Z4: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z4 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% exp_bound_half
thf(fact_8293_sums__if_H,axiom,
! [G: nat > real,X: real] :
( ( sums_real @ G @ X )
=> ( sums_real
@ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ X ) ) ).
% sums_if'
thf(fact_8294_sums__if,axiom,
! [G: nat > real,X: real,F: nat > real,Y3: real] :
( ( sums_real @ G @ X )
=> ( ( sums_real @ F @ Y3 )
=> ( sums_real
@ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( F @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_real @ X @ Y3 ) ) ) ) ).
% sums_if
thf(fact_8295_arsinh__real__aux,axiom,
! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% arsinh_real_aux
thf(fact_8296_exp__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% exp_bound
thf(fact_8297_real__sqrt__power__even,axiom,
! [N: nat,X: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( sqrt @ X ) @ N )
= ( power_power_real @ X @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_power_even
thf(fact_8298_real__sqrt__sum__squares__mult__ge__zero,axiom,
! [X: real,Y3: real,Xa2: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_ge_zero
thf(fact_8299_arith__geo__mean__sqrt,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X @ Y3 ) ) @ ( divide_divide_real @ ( plus_plus_real @ X @ Y3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arith_geo_mean_sqrt
thf(fact_8300_tan__30,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).
% tan_30
thf(fact_8301_real__exp__bound__lemma,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ) ) ) ).
% real_exp_bound_lemma
thf(fact_8302_cos__x__y__le__one,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).
% cos_x_y_le_one
thf(fact_8303_real__sqrt__sum__squares__less,axiom,
! [X: real,U2: real,Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ U2 @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ord_less_real @ ( abs_abs_real @ Y3 ) @ ( divide_divide_real @ U2 @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U2 ) ) ) ).
% real_sqrt_sum_squares_less
thf(fact_8304_arcosh__real__def,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( arcosh_real @ X )
= ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).
% arcosh_real_def
thf(fact_8305_exp__ge__one__plus__x__over__n__power__n,axiom,
! [N: nat,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ X )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ X ) ) ) ) ).
% exp_ge_one_plus_x_over_n_power_n
thf(fact_8306_exp__ge__one__minus__x__over__n__power__n,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ) ).
% exp_ge_one_minus_x_over_n_power_n
thf(fact_8307_cos__arctan,axiom,
! [X: real] :
( ( cos_real @ ( arctan @ X ) )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% cos_arctan
thf(fact_8308_sin__arctan,axiom,
! [X: real] :
( ( sin_real @ ( arctan @ X ) )
= ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_arctan
thf(fact_8309_exp__bound__lemma,axiom,
! [Z4: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z4 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V7735802525324610683m_real @ Z4 ) ) ) ) ) ).
% exp_bound_lemma
thf(fact_8310_exp__bound__lemma,axiom,
! [Z4: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z4 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V1022390504157884413omplex @ Z4 ) ) ) ) ) ).
% exp_bound_lemma
thf(fact_8311_Maclaurin__exp__le,axiom,
! [X: real,N: nat] :
? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( exp_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( divide_divide_real @ ( power_power_real @ X @ M6 ) @ ( semiri2265585572941072030t_real @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).
% Maclaurin_exp_le
thf(fact_8312_sqrt__sum__squares__half__less,axiom,
! [X: real,U2: real,Y3: real] :
( ( ord_less_real @ X @ ( divide_divide_real @ U2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y3 @ ( divide_divide_real @ U2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U2 ) ) ) ) ) ).
% sqrt_sum_squares_half_less
thf(fact_8313_exp__lower__Taylor__quadratic,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( divide_divide_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X ) ) ) ).
% exp_lower_Taylor_quadratic
thf(fact_8314_sin__cos__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) )
=> ( ( sin_real @ X )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_cos_sqrt
thf(fact_8315_arctan__half,axiom,
( arctan
= ( ^ [X2: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X2 @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% arctan_half
thf(fact_8316_tanh__real__altdef,axiom,
( tanh_real
= ( ^ [X2: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) ) ) ) ) ) ).
% tanh_real_altdef
thf(fact_8317_cos__paired,axiom,
! [X: real] :
( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( power_power_real @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( cos_real @ X ) ) ).
% cos_paired
thf(fact_8318_geometric__deriv__sums,axiom,
! [Z4: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z4 ) @ one_one_real )
=> ( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( power_power_real @ Z4 @ N2 ) )
@ ( divide_divide_real @ one_one_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_8319_geometric__deriv__sums,axiom,
! [Z4: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z4 ) @ one_one_real )
=> ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N2 ) ) @ ( power_power_complex @ Z4 @ N2 ) )
@ ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ ( minus_minus_complex @ one_one_complex @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_8320_diffs__equiv,axiom,
! [C: nat > complex,X: complex] :
( ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) )
=> ( sums_complex
@ ^ [N2: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( C @ N2 ) ) @ ( power_power_complex @ X @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) )
@ ( suminf_complex
@ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ) ).
% diffs_equiv
thf(fact_8321_diffs__equiv,axiom,
! [C: nat > real,X: real] :
( ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) )
=> ( sums_real
@ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( C @ N2 ) ) @ ( power_power_real @ X @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) )
@ ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ).
% diffs_equiv
thf(fact_8322_arsinh__real__def,axiom,
( arsinh_real
= ( ^ [X2: real] : ( ln_ln_real @ ( plus_plus_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).
% arsinh_real_def
thf(fact_8323_binomial__code,axiom,
( binomial
= ( ^ [N2: nat,K3: nat] : ( if_nat @ ( ord_less_nat @ N2 @ K3 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K3 ) ) @ ( binomial @ N2 @ ( minus_minus_nat @ N2 @ K3 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N2 @ K3 ) @ one_one_nat ) @ N2 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K3 ) ) ) ) ) ) ).
% binomial_code
thf(fact_8324_cos__arcsin,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( cos_real @ ( arcsin @ X ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_arcsin
thf(fact_8325_sin__arccos__abs,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( sin_real @ ( arccos @ Y3 ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_arccos_abs
thf(fact_8326_binomial__Suc__n,axiom,
! [N: nat] :
( ( binomial @ ( suc @ N ) @ N )
= ( suc @ N ) ) ).
% binomial_Suc_n
thf(fact_8327_binomial__n__n,axiom,
! [N: nat] :
( ( binomial @ N @ N )
= one_one_nat ) ).
% binomial_n_n
thf(fact_8328_binomial__1,axiom,
! [N: nat] :
( ( binomial @ N @ ( suc @ zero_zero_nat ) )
= N ) ).
% binomial_1
thf(fact_8329_binomial__0__Suc,axiom,
! [K: nat] :
( ( binomial @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% binomial_0_Suc
thf(fact_8330_binomial__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( binomial @ N @ K )
= zero_zero_nat )
= ( ord_less_nat @ N @ K ) ) ).
% binomial_eq_0_iff
thf(fact_8331_binomial__Suc__Suc,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_Suc_Suc
thf(fact_8332_binomial__n__0,axiom,
! [N: nat] :
( ( binomial @ N @ zero_zero_nat )
= one_one_nat ) ).
% binomial_n_0
thf(fact_8333_arccos__1,axiom,
( ( arccos @ one_one_real )
= zero_zero_real ) ).
% arccos_1
thf(fact_8334_zero__less__binomial__iff,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) )
= ( ord_less_eq_nat @ K @ N ) ) ).
% zero_less_binomial_iff
thf(fact_8335_arccos__minus__1,axiom,
( ( arccos @ ( uminus_uminus_real @ one_one_real ) )
= pi ) ).
% arccos_minus_1
thf(fact_8336_cos__arccos,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ( cos_real @ ( arccos @ Y3 ) )
= Y3 ) ) ) ).
% cos_arccos
thf(fact_8337_sin__arcsin,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ( sin_real @ ( arcsin @ Y3 ) )
= Y3 ) ) ) ).
% sin_arcsin
thf(fact_8338_arccos__0,axiom,
( ( arccos @ zero_zero_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arccos_0
thf(fact_8339_arcsin__1,axiom,
( ( arcsin @ one_one_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arcsin_1
thf(fact_8340_arcsin__minus__1,axiom,
( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% arcsin_minus_1
thf(fact_8341_choose__one,axiom,
! [N: nat] :
( ( binomial @ N @ one_one_nat )
= N ) ).
% choose_one
thf(fact_8342_binomial__eq__0,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( binomial @ N @ K )
= zero_zero_nat ) ) ).
% binomial_eq_0
thf(fact_8343_Suc__times__binomial,axiom,
! [K: nat,N: nat] :
( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) )
= ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) ) ).
% Suc_times_binomial
thf(fact_8344_Suc__times__binomial__eq,axiom,
! [N: nat,K: nat] :
( ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) )
= ( times_times_nat @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).
% Suc_times_binomial_eq
thf(fact_8345_binomial__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( binomial @ N @ K )
= ( binomial @ N @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% binomial_symmetric
thf(fact_8346_choose__mult__lemma,axiom,
! [M: nat,R2: nat,K: nat] :
( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
= ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R2 ) @ M ) ) ) ).
% choose_mult_lemma
thf(fact_8347_binomial__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq_nat @ R2 @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ R2 ) @ ( power_power_nat @ N @ R2 ) ) ) ).
% binomial_le_pow
thf(fact_8348_diffs__minus,axiom,
! [C: nat > real] :
( ( diffs_real
@ ^ [N2: nat] : ( uminus_uminus_real @ ( C @ N2 ) ) )
= ( ^ [N2: nat] : ( uminus_uminus_real @ ( diffs_real @ C @ N2 ) ) ) ) ).
% diffs_minus
thf(fact_8349_diffs__minus,axiom,
! [C: nat > int] :
( ( diffs_int
@ ^ [N2: nat] : ( uminus_uminus_int @ ( C @ N2 ) ) )
= ( ^ [N2: nat] : ( uminus_uminus_int @ ( diffs_int @ C @ N2 ) ) ) ) ).
% diffs_minus
thf(fact_8350_diffs__minus,axiom,
! [C: nat > complex] :
( ( diffs_complex
@ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( C @ N2 ) ) )
= ( ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( diffs_complex @ C @ N2 ) ) ) ) ).
% diffs_minus
thf(fact_8351_diffs__minus,axiom,
! [C: nat > rat] :
( ( diffs_rat
@ ^ [N2: nat] : ( uminus_uminus_rat @ ( C @ N2 ) ) )
= ( ^ [N2: nat] : ( uminus_uminus_rat @ ( diffs_rat @ C @ N2 ) ) ) ) ).
% diffs_minus
thf(fact_8352_diffs__minus,axiom,
! [C: nat > code_integer] :
( ( diffs_Code_integer
@ ^ [N2: nat] : ( uminus1351360451143612070nteger @ ( C @ N2 ) ) )
= ( ^ [N2: nat] : ( uminus1351360451143612070nteger @ ( diffs_Code_integer @ C @ N2 ) ) ) ) ).
% diffs_minus
thf(fact_8353_zero__less__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) ) ) ).
% zero_less_binomial
thf(fact_8354_Suc__times__binomial__add,axiom,
! [A: nat,B: nat] :
( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
= ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).
% Suc_times_binomial_add
thf(fact_8355_binomial__Suc__Suc__eq__times,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) @ ( suc @ K ) ) ) ).
% binomial_Suc_Suc_eq_times
thf(fact_8356_choose__mult,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
= ( times_times_nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).
% choose_mult
thf(fact_8357_binomial__absorb__comp,axiom,
! [N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ N @ K ) @ ( binomial @ N @ K ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).
% binomial_absorb_comp
thf(fact_8358_arccos__le__arccos,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y3 ) @ ( arccos @ X ) ) ) ) ) ).
% arccos_le_arccos
thf(fact_8359_arccos__le__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( arccos @ X ) @ ( arccos @ Y3 ) )
= ( ord_less_eq_real @ Y3 @ X ) ) ) ) ).
% arccos_le_mono
thf(fact_8360_arccos__eq__iff,axiom,
! [X: real,Y3: real] :
( ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
& ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real ) )
=> ( ( ( arccos @ X )
= ( arccos @ Y3 ) )
= ( X = Y3 ) ) ) ).
% arccos_eq_iff
thf(fact_8361_arcsin__le__arcsin,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y3 ) ) ) ) ) ).
% arcsin_le_arcsin
thf(fact_8362_arcsin__minus,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( arcsin @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( arcsin @ X ) ) ) ) ) ).
% arcsin_minus
thf(fact_8363_arcsin__le__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ) ).
% arcsin_le_mono
thf(fact_8364_arcsin__eq__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( ( arcsin @ X )
= ( arcsin @ Y3 ) )
= ( X = Y3 ) ) ) ) ).
% arcsin_eq_iff
thf(fact_8365_binomial__absorption,axiom,
! [K: nat,N: nat] :
( ( times_times_nat @ ( suc @ K ) @ ( binomial @ N @ ( suc @ K ) ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).
% binomial_absorption
thf(fact_8366_binomial__fact__lemma,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( binomial @ N @ K ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% binomial_fact_lemma
thf(fact_8367_diffs__def,axiom,
( diffs_int
= ( ^ [C3: nat > int,N2: nat] : ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) @ ( C3 @ ( suc @ N2 ) ) ) ) ) ).
% diffs_def
thf(fact_8368_diffs__def,axiom,
( diffs_real
= ( ^ [C3: nat > real,N2: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( C3 @ ( suc @ N2 ) ) ) ) ) ).
% diffs_def
thf(fact_8369_diffs__def,axiom,
( diffs_rat
= ( ^ [C3: nat > rat,N2: nat] : ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) @ ( C3 @ ( suc @ N2 ) ) ) ) ) ).
% diffs_def
thf(fact_8370_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_8371_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_8372_binomial__mono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_eq_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).
% binomial_mono
thf(fact_8373_binomial__maximum_H,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).
% binomial_maximum'
thf(fact_8374_binomial__maximum,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% binomial_maximum
thf(fact_8375_binomial__antimono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_eq_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
=> ( ( ord_less_eq_nat @ K6 @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_antimono
thf(fact_8376_binomial__le__pow2,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% binomial_le_pow2
thf(fact_8377_arccos__lbound,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y3 ) ) ) ) ).
% arccos_lbound
thf(fact_8378_arccos__less__arccos,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_real @ ( arccos @ Y3 ) @ ( arccos @ X ) ) ) ) ) ).
% arccos_less_arccos
thf(fact_8379_choose__reduce__nat,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( binomial @ N @ K )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ) ).
% choose_reduce_nat
thf(fact_8380_times__binomial__minus1__eq,axiom,
! [K: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( times_times_nat @ K @ ( binomial @ N @ K ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% times_binomial_minus1_eq
thf(fact_8381_arccos__less__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( ord_less_real @ ( arccos @ X ) @ ( arccos @ Y3 ) )
= ( ord_less_real @ Y3 @ X ) ) ) ) ).
% arccos_less_mono
thf(fact_8382_arccos__ubound,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y3 ) @ pi ) ) ) ).
% arccos_ubound
thf(fact_8383_arccos__cos,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( arccos @ ( cos_real @ X ) )
= X ) ) ) ).
% arccos_cos
thf(fact_8384_arcsin__less__arcsin,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y3 ) ) ) ) ) ).
% arcsin_less_arcsin
thf(fact_8385_termdiff__converges__all,axiom,
! [C: nat > complex,X: complex] :
( ! [X5: complex] :
( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( C @ N2 ) @ ( power_power_complex @ X5 @ N2 ) ) )
=> ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ).
% termdiff_converges_all
thf(fact_8386_termdiff__converges__all,axiom,
! [C: nat > real,X: real] :
( ! [X5: real] :
( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( C @ N2 ) @ ( power_power_real @ X5 @ N2 ) ) )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ).
% termdiff_converges_all
thf(fact_8387_arcsin__less__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y3 ) )
= ( ord_less_real @ X @ Y3 ) ) ) ) ).
% arcsin_less_mono
thf(fact_8388_cos__arccos__abs,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
=> ( ( cos_real @ ( arccos @ Y3 ) )
= Y3 ) ) ).
% cos_arccos_abs
thf(fact_8389_arccos__cos__eq__abs,axiom,
! [Theta: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
=> ( ( arccos @ ( cos_real @ Theta ) )
= ( abs_abs_real @ Theta ) ) ) ).
% arccos_cos_eq_abs
thf(fact_8390_binomial__altdef__nat,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( binomial @ N @ K )
= ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_altdef_nat
thf(fact_8391_binomial__less__binomial__Suc,axiom,
! [K: nat,N: nat] :
( ( ord_less_nat @ K @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_less_binomial_Suc
thf(fact_8392_binomial__strict__mono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
=> ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).
% binomial_strict_mono
thf(fact_8393_binomial__strict__antimono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
=> ( ( ord_less_eq_nat @ K6 @ N )
=> ( ord_less_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_strict_antimono
thf(fact_8394_central__binomial__odd,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( binomial @ N @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% central_binomial_odd
thf(fact_8395_binomial__addition__formula,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( binomial @ N @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ).
% binomial_addition_formula
thf(fact_8396_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) )
= ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_8397_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) )
= ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_8398_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
= ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_8399_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) ) )
= ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_8400_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) )
= ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_8401_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) )
= ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_8402_arccos__lt__bounded,axiom,
! [Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y3 ) )
& ( ord_less_real @ ( arccos @ Y3 ) @ pi ) ) ) ) ).
% arccos_lt_bounded
thf(fact_8403_arccos__bounded,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y3 ) )
& ( ord_less_eq_real @ ( arccos @ Y3 ) @ pi ) ) ) ) ).
% arccos_bounded
thf(fact_8404_sin__arccos__nonzero,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ( sin_real @ ( arccos @ X ) )
!= zero_zero_real ) ) ) ).
% sin_arccos_nonzero
thf(fact_8405_arccos__cos2,axiom,
! [X: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X )
=> ( ( arccos @ ( cos_real @ X ) )
= ( uminus_uminus_real @ X ) ) ) ) ).
% arccos_cos2
thf(fact_8406_arccos__minus,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( arccos @ ( uminus_uminus_real @ X ) )
= ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ) ).
% arccos_minus
thf(fact_8407_cos__arcsin__nonzero,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ( cos_real @ ( arcsin @ X ) )
!= zero_zero_real ) ) ) ).
% cos_arcsin_nonzero
thf(fact_8408_choose__two,axiom,
! [N: nat] :
( ( binomial @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% choose_two
thf(fact_8409_arccos,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y3 ) )
& ( ord_less_eq_real @ ( arccos @ Y3 ) @ pi )
& ( ( cos_real @ ( arccos @ Y3 ) )
= Y3 ) ) ) ) ).
% arccos
thf(fact_8410_arccos__minus__abs,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( arccos @ ( uminus_uminus_real @ X ) )
= ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ).
% arccos_minus_abs
thf(fact_8411_termdiff__converges,axiom,
! [X: real,K5: real,C: nat > real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ K5 )
=> ( ! [X5: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X5 ) @ K5 )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( C @ N2 ) @ ( power_power_real @ X5 @ N2 ) ) ) )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ).
% termdiff_converges
thf(fact_8412_termdiff__converges,axiom,
! [X: complex,K5: real,C: nat > complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ K5 )
=> ( ! [X5: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X5 ) @ K5 )
=> ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( C @ N2 ) @ ( power_power_complex @ X5 @ N2 ) ) ) )
=> ( summable_complex
@ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ) ).
% termdiff_converges
thf(fact_8413_arccos__le__pi2,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arccos_le_pi2
thf(fact_8414_arcsin__lt__bounded,axiom,
! [Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_real @ Y3 @ one_one_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
& ( ord_less_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arcsin_lt_bounded
thf(fact_8415_arcsin__bounded,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
& ( ord_less_eq_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arcsin_bounded
thf(fact_8416_arcsin__ubound,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arcsin_ubound
thf(fact_8417_arcsin__lbound,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) ) ) ) ).
% arcsin_lbound
thf(fact_8418_arcsin__sin,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( arcsin @ ( sin_real @ X ) )
= X ) ) ) ).
% arcsin_sin
thf(fact_8419_le__arcsin__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ Y3 @ ( arcsin @ X ) )
= ( ord_less_eq_real @ ( sin_real @ Y3 ) @ X ) ) ) ) ) ) ).
% le_arcsin_iff
thf(fact_8420_arcsin__le__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( arcsin @ X ) @ Y3 )
= ( ord_less_eq_real @ X @ ( sin_real @ Y3 ) ) ) ) ) ) ) ).
% arcsin_le_iff
thf(fact_8421_arcsin__pi,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
& ( ord_less_eq_real @ ( arcsin @ Y3 ) @ pi )
& ( ( sin_real @ ( arcsin @ Y3 ) )
= Y3 ) ) ) ) ).
% arcsin_pi
thf(fact_8422_arcsin,axiom,
! [Y3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
& ( ord_less_eq_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ ( arcsin @ Y3 ) )
= Y3 ) ) ) ) ).
% arcsin
thf(fact_8423_central__binomial__lower__bound,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ) ) ).
% central_binomial_lower_bound
thf(fact_8424_sin__arccos,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( sin_real @ ( arccos @ X ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_arccos
thf(fact_8425_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] :
( if_complex
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri8010041392384452111omplex @ ( binomial @ N @ I3 ) )
@ zero_zero_complex )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8426_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] :
( if_int
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri1314217659103216013at_int @ ( binomial @ N @ I3 ) )
@ zero_zero_int )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8427_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] :
( if_rat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri681578069525770553at_rat @ ( binomial @ N @ I3 ) )
@ zero_zero_rat )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8428_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] :
( if_real
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri5074537144036343181t_real @ ( binomial @ N @ I3 ) )
@ zero_zero_real )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8429_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I3 ) ) @ zero_zero_complex )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8430_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( if_int @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I3 ) ) @ zero_zero_int )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8431_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( if_rat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I3 ) ) @ zero_zero_rat )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8432_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I3 ) ) @ zero_zero_real )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8433_monoseq__def,axiom,
( topolo6980174941875973593q_real
= ( ^ [X3: nat > real] :
( ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_real @ ( X3 @ M6 ) @ ( X3 @ N2 ) ) )
| ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_real @ ( X3 @ N2 ) @ ( X3 @ M6 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8434_monoseq__def,axiom,
( topolo3100542954746470799et_int
= ( ^ [X3: nat > set_int] :
( ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_set_int @ ( X3 @ M6 ) @ ( X3 @ N2 ) ) )
| ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_set_int @ ( X3 @ N2 ) @ ( X3 @ M6 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8435_monoseq__def,axiom,
( topolo4267028734544971653eq_rat
= ( ^ [X3: nat > rat] :
( ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_rat @ ( X3 @ M6 ) @ ( X3 @ N2 ) ) )
| ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_rat @ ( X3 @ N2 ) @ ( X3 @ M6 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8436_monoseq__def,axiom,
( topolo1459490580787246023eq_num
= ( ^ [X3: nat > num] :
( ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_num @ ( X3 @ M6 ) @ ( X3 @ N2 ) ) )
| ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_num @ ( X3 @ N2 ) @ ( X3 @ M6 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8437_monoseq__def,axiom,
( topolo4902158794631467389eq_nat
= ( ^ [X3: nat > nat] :
( ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_nat @ ( X3 @ M6 ) @ ( X3 @ N2 ) ) )
| ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_nat @ ( X3 @ N2 ) @ ( X3 @ M6 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8438_monoseq__def,axiom,
( topolo4899668324122417113eq_int
= ( ^ [X3: nat > int] :
( ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_int @ ( X3 @ M6 ) @ ( X3 @ N2 ) ) )
| ! [M6: nat,N2: nat] :
( ( ord_less_eq_nat @ M6 @ N2 )
=> ( ord_less_eq_int @ ( X3 @ N2 ) @ ( X3 @ M6 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8439_monoI2,axiom,
! [X8: nat > real] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_real @ ( X8 @ N3 ) @ ( X8 @ M5 ) ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% monoI2
thf(fact_8440_monoI2,axiom,
! [X8: nat > set_int] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_set_int @ ( X8 @ N3 ) @ ( X8 @ M5 ) ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% monoI2
thf(fact_8441_monoI2,axiom,
! [X8: nat > rat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_rat @ ( X8 @ N3 ) @ ( X8 @ M5 ) ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% monoI2
thf(fact_8442_monoI2,axiom,
! [X8: nat > num] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_num @ ( X8 @ N3 ) @ ( X8 @ M5 ) ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% monoI2
thf(fact_8443_monoI2,axiom,
! [X8: nat > nat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_nat @ ( X8 @ N3 ) @ ( X8 @ M5 ) ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% monoI2
thf(fact_8444_monoI2,axiom,
! [X8: nat > int] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_int @ ( X8 @ N3 ) @ ( X8 @ M5 ) ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% monoI2
thf(fact_8445_monoI1,axiom,
! [X8: nat > real] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_real @ ( X8 @ M5 ) @ ( X8 @ N3 ) ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% monoI1
thf(fact_8446_monoI1,axiom,
! [X8: nat > set_int] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_set_int @ ( X8 @ M5 ) @ ( X8 @ N3 ) ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% monoI1
thf(fact_8447_monoI1,axiom,
! [X8: nat > rat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_rat @ ( X8 @ M5 ) @ ( X8 @ N3 ) ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% monoI1
thf(fact_8448_monoI1,axiom,
! [X8: nat > num] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_num @ ( X8 @ M5 ) @ ( X8 @ N3 ) ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% monoI1
thf(fact_8449_monoI1,axiom,
! [X8: nat > nat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_nat @ ( X8 @ M5 ) @ ( X8 @ N3 ) ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% monoI1
thf(fact_8450_monoI1,axiom,
! [X8: nat > int] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_int @ ( X8 @ M5 ) @ ( X8 @ N3 ) ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% monoI1
thf(fact_8451_atMost__iff,axiom,
! [I4: real,K: real] :
( ( member_real @ I4 @ ( set_ord_atMost_real @ K ) )
= ( ord_less_eq_real @ I4 @ K ) ) ).
% atMost_iff
thf(fact_8452_atMost__iff,axiom,
! [I4: set_nat,K: set_nat] :
( ( member_set_nat @ I4 @ ( set_or4236626031148496127et_nat @ K ) )
= ( ord_less_eq_set_nat @ I4 @ K ) ) ).
% atMost_iff
thf(fact_8453_atMost__iff,axiom,
! [I4: set_int,K: set_int] :
( ( member_set_int @ I4 @ ( set_or58775011639299419et_int @ K ) )
= ( ord_less_eq_set_int @ I4 @ K ) ) ).
% atMost_iff
thf(fact_8454_atMost__iff,axiom,
! [I4: rat,K: rat] :
( ( member_rat @ I4 @ ( set_ord_atMost_rat @ K ) )
= ( ord_less_eq_rat @ I4 @ K ) ) ).
% atMost_iff
thf(fact_8455_atMost__iff,axiom,
! [I4: num,K: num] :
( ( member_num @ I4 @ ( set_ord_atMost_num @ K ) )
= ( ord_less_eq_num @ I4 @ K ) ) ).
% atMost_iff
thf(fact_8456_atMost__iff,axiom,
! [I4: nat,K: nat] :
( ( member_nat @ I4 @ ( set_ord_atMost_nat @ K ) )
= ( ord_less_eq_nat @ I4 @ K ) ) ).
% atMost_iff
thf(fact_8457_atMost__iff,axiom,
! [I4: int,K: int] :
( ( member_int @ I4 @ ( set_ord_atMost_int @ K ) )
= ( ord_less_eq_int @ I4 @ K ) ) ).
% atMost_iff
thf(fact_8458_atMost__subset__iff,axiom,
! [X: set_int,Y3: set_int] :
( ( ord_le4403425263959731960et_int @ ( set_or58775011639299419et_int @ X ) @ ( set_or58775011639299419et_int @ Y3 ) )
= ( ord_less_eq_set_int @ X @ Y3 ) ) ).
% atMost_subset_iff
thf(fact_8459_atMost__subset__iff,axiom,
! [X: rat,Y3: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ X ) @ ( set_ord_atMost_rat @ Y3 ) )
= ( ord_less_eq_rat @ X @ Y3 ) ) ).
% atMost_subset_iff
thf(fact_8460_atMost__subset__iff,axiom,
! [X: num,Y3: num] :
( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ X ) @ ( set_ord_atMost_num @ Y3 ) )
= ( ord_less_eq_num @ X @ Y3 ) ) ).
% atMost_subset_iff
thf(fact_8461_atMost__subset__iff,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X ) @ ( set_ord_atMost_nat @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ).
% atMost_subset_iff
thf(fact_8462_atMost__subset__iff,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X ) @ ( set_ord_atMost_int @ Y3 ) )
= ( ord_less_eq_int @ X @ Y3 ) ) ).
% atMost_subset_iff
thf(fact_8463_Icc__subset__Iic__iff,axiom,
! [L: set_int,H2: set_int,H3: set_int] :
( ( ord_le4403425263959731960et_int @ ( set_or370866239135849197et_int @ L @ H2 ) @ ( set_or58775011639299419et_int @ H3 ) )
= ( ~ ( ord_less_eq_set_int @ L @ H2 )
| ( ord_less_eq_set_int @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8464_Icc__subset__Iic__iff,axiom,
! [L: rat,H2: rat,H3: rat] :
( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ L @ H2 ) @ ( set_ord_atMost_rat @ H3 ) )
= ( ~ ( ord_less_eq_rat @ L @ H2 )
| ( ord_less_eq_rat @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8465_Icc__subset__Iic__iff,axiom,
! [L: num,H2: num,H3: num] :
( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ L @ H2 ) @ ( set_ord_atMost_num @ H3 ) )
= ( ~ ( ord_less_eq_num @ L @ H2 )
| ( ord_less_eq_num @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8466_Icc__subset__Iic__iff,axiom,
! [L: nat,H2: nat,H3: nat] :
( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ L @ H2 ) @ ( set_ord_atMost_nat @ H3 ) )
= ( ~ ( ord_less_eq_nat @ L @ H2 )
| ( ord_less_eq_nat @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8467_Icc__subset__Iic__iff,axiom,
! [L: int,H2: int,H3: int] :
( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ L @ H2 ) @ ( set_ord_atMost_int @ H3 ) )
= ( ~ ( ord_less_eq_int @ L @ H2 )
| ( ord_less_eq_int @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8468_Icc__subset__Iic__iff,axiom,
! [L: real,H2: real,H3: real] :
( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ L @ H2 ) @ ( set_ord_atMost_real @ H3 ) )
= ( ~ ( ord_less_eq_real @ L @ H2 )
| ( ord_less_eq_real @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8469_sum_OatMost__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8470_sum_OatMost__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8471_sum_OatMost__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8472_sum_OatMost__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8473_atMost__def,axiom,
( set_ord_atMost_real
= ( ^ [U3: real] :
( collect_real
@ ^ [X2: real] : ( ord_less_eq_real @ X2 @ U3 ) ) ) ) ).
% atMost_def
thf(fact_8474_atMost__def,axiom,
( set_or4236626031148496127et_nat
= ( ^ [U3: set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] : ( ord_less_eq_set_nat @ X2 @ U3 ) ) ) ) ).
% atMost_def
thf(fact_8475_atMost__def,axiom,
( set_or58775011639299419et_int
= ( ^ [U3: set_int] :
( collect_set_int
@ ^ [X2: set_int] : ( ord_less_eq_set_int @ X2 @ U3 ) ) ) ) ).
% atMost_def
thf(fact_8476_atMost__def,axiom,
( set_ord_atMost_rat
= ( ^ [U3: rat] :
( collect_rat
@ ^ [X2: rat] : ( ord_less_eq_rat @ X2 @ U3 ) ) ) ) ).
% atMost_def
thf(fact_8477_atMost__def,axiom,
( set_ord_atMost_num
= ( ^ [U3: num] :
( collect_num
@ ^ [X2: num] : ( ord_less_eq_num @ X2 @ U3 ) ) ) ) ).
% atMost_def
thf(fact_8478_atMost__def,axiom,
( set_ord_atMost_nat
= ( ^ [U3: nat] :
( collect_nat
@ ^ [X2: nat] : ( ord_less_eq_nat @ X2 @ U3 ) ) ) ) ).
% atMost_def
thf(fact_8479_atMost__def,axiom,
( set_ord_atMost_int
= ( ^ [U3: int] :
( collect_int
@ ^ [X2: int] : ( ord_less_eq_int @ X2 @ U3 ) ) ) ) ).
% atMost_def
thf(fact_8480_lessThan__Suc__atMost,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( set_ord_atMost_nat @ K ) ) ).
% lessThan_Suc_atMost
thf(fact_8481_not__Iic__le__Icc,axiom,
! [H2: int,L3: int,H3: int] :
~ ( ord_less_eq_set_int @ ( set_ord_atMost_int @ H2 ) @ ( set_or1266510415728281911st_int @ L3 @ H3 ) ) ).
% not_Iic_le_Icc
thf(fact_8482_not__Iic__le__Icc,axiom,
! [H2: real,L3: real,H3: real] :
~ ( ord_less_eq_set_real @ ( set_ord_atMost_real @ H2 ) @ ( set_or1222579329274155063t_real @ L3 @ H3 ) ) ).
% not_Iic_le_Icc
thf(fact_8483_finite__nat__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [S5: set_nat] :
? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_atMost_nat @ K3 ) ) ) ) ).
% finite_nat_iff_bounded_le
thf(fact_8484_Iic__subset__Iio__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ A ) @ ( set_ord_lessThan_rat @ B ) )
= ( ord_less_rat @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8485_Iic__subset__Iio__iff,axiom,
! [A: num,B: num] :
( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ A ) @ ( set_ord_lessThan_num @ B ) )
= ( ord_less_num @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8486_Iic__subset__Iio__iff,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ A ) @ ( set_ord_lessThan_nat @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8487_Iic__subset__Iio__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ A ) @ ( set_ord_lessThan_int @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8488_Iic__subset__Iio__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_set_real @ ( set_ord_atMost_real @ A ) @ ( set_or5984915006950818249n_real @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8489_Iic__subset__Iio__iff,axiom,
! [A: $o,B: $o] :
( ( ord_less_eq_set_o @ ( set_ord_atMost_o @ A ) @ ( set_ord_lessThan_o @ B ) )
= ( ord_less_o @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8490_sum__choose__upper,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( binomial @ K3 @ M )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( suc @ N ) @ ( suc @ M ) ) ) ).
% sum_choose_upper
thf(fact_8491_sum_OatMost__Suc__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8492_sum_OatMost__Suc__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8493_sum_OatMost__Suc__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8494_sum_OatMost__Suc__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8495_sum__telescope,axiom,
! [F: nat > rat,I4: nat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( minus_minus_rat @ ( F @ I3 ) @ ( F @ ( suc @ I3 ) ) )
@ ( set_ord_atMost_nat @ I4 ) )
= ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I4 ) ) ) ) ).
% sum_telescope
thf(fact_8496_sum__telescope,axiom,
! [F: nat > int,I4: nat] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( minus_minus_int @ ( F @ I3 ) @ ( F @ ( suc @ I3 ) ) )
@ ( set_ord_atMost_nat @ I4 ) )
= ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I4 ) ) ) ) ).
% sum_telescope
thf(fact_8497_sum__telescope,axiom,
! [F: nat > real,I4: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( minus_minus_real @ ( F @ I3 ) @ ( F @ ( suc @ I3 ) ) )
@ ( set_ord_atMost_nat @ I4 ) )
= ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I4 ) ) ) ) ).
% sum_telescope
thf(fact_8498_polyfun__eq__coeffs,axiom,
! [C: nat > complex,N: nat,D: nat > complex] :
( ( ! [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( D @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= ( D @ I3 ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_8499_polyfun__eq__coeffs,axiom,
! [C: nat > real,N: nat,D: nat > real] :
( ( ! [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( D @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= ( D @ I3 ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_8500_bounded__imp__summable,axiom,
! [A: nat > int,B2: int] :
( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B2 )
=> ( summable_int @ A ) ) ) ).
% bounded_imp_summable
thf(fact_8501_bounded__imp__summable,axiom,
! [A: nat > nat,B2: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B2 )
=> ( summable_nat @ A ) ) ) ).
% bounded_imp_summable
thf(fact_8502_bounded__imp__summable,axiom,
! [A: nat > real,B2: real] :
( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B2 )
=> ( summable_real @ A ) ) ) ).
% bounded_imp_summable
thf(fact_8503_sum_Onested__swap_H,axiom,
! [A: nat > nat > nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( groups3542108847815614940at_nat @ ( A @ I3 ) @ ( set_ord_lessThan_nat @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( A @ I3 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nested_swap'
thf(fact_8504_sum_Onested__swap_H,axiom,
! [A: nat > nat > real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( groups6591440286371151544t_real @ ( A @ I3 ) @ ( set_ord_lessThan_nat @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( A @ I3 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nested_swap'
thf(fact_8505_sum__choose__lower,axiom,
! [R2: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( binomial @ ( plus_plus_nat @ R2 @ K3 ) @ K3 )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( suc @ ( plus_plus_nat @ R2 @ N ) ) @ N ) ) ).
% sum_choose_lower
thf(fact_8506_choose__rising__sum_I2_J,axiom,
! [N: nat,M: nat] :
( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ M ) ) ).
% choose_rising_sum(2)
thf(fact_8507_choose__rising__sum_I1_J,axiom,
! [N: nat,M: nat] :
( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ).
% choose_rising_sum(1)
thf(fact_8508_zero__polynom__imp__zero__coeffs,axiom,
! [C: nat > complex,N: nat,K: nat] :
( ! [W2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ W2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( C @ K )
= zero_zero_complex ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_8509_zero__polynom__imp__zero__coeffs,axiom,
! [C: nat > real,N: nat,K: nat] :
( ! [W2: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ W2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( C @ K )
= zero_zero_real ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_8510_polyfun__eq__0,axiom,
! [C: nat > complex,N: nat] :
( ( ! [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= zero_zero_complex ) ) ) ) ).
% polyfun_eq_0
thf(fact_8511_polyfun__eq__0,axiom,
! [C: nat > real,N: nat] :
( ( ! [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= zero_zero_real ) ) ) ) ).
% polyfun_eq_0
thf(fact_8512_sum_OatMost__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8513_sum_OatMost__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8514_sum_OatMost__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8515_sum_OatMost__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8516_sum__up__index__split,axiom,
! [F: nat > rat,M: nat,N: nat] :
( ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8517_sum__up__index__split,axiom,
! [F: nat > int,M: nat,N: nat] :
( ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8518_sum__up__index__split,axiom,
! [F: nat > nat,M: nat,N: nat] :
( ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8519_sum__up__index__split,axiom,
! [F: nat > real,M: nat,N: nat] :
( ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8520_sum_Otriangle__reindex__eq,axiom,
! [G: nat > nat > nat,N: nat] :
( ( groups977919841031483927at_nat @ ( produc6842872674320459806at_nat @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I3: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ J3 ) @ N ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [K3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus_nat @ K3 @ I3 ) )
@ ( set_ord_atMost_nat @ K3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.triangle_reindex_eq
thf(fact_8521_sum_Otriangle__reindex__eq,axiom,
! [G: nat > nat > real,N: nat] :
( ( groups4567486121110086003t_real @ ( produc1703576794950452218t_real @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I3: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ J3 ) @ N ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [K3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus_nat @ K3 @ I3 ) )
@ ( set_ord_atMost_nat @ K3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.triangle_reindex_eq
thf(fact_8522_sum__choose__diagonal,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( binomial @ ( minus_minus_nat @ N @ K3 ) @ ( minus_minus_nat @ M @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( suc @ N ) @ M ) ) ) ).
% sum_choose_diagonal
thf(fact_8523_vandermonde,axiom,
! [M: nat,N: nat,R2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( times_times_nat @ ( binomial @ M @ K3 ) @ ( binomial @ N @ ( minus_minus_nat @ R2 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R2 ) )
= ( binomial @ ( plus_plus_nat @ M @ N ) @ R2 ) ) ).
% vandermonde
thf(fact_8524_sum__gp__basic,axiom,
! [X: complex,N: nat] :
( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8525_sum__gp__basic,axiom,
! [X: rat,N: nat] :
( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8526_sum__gp__basic,axiom,
! [X: int,N: nat] :
( ( times_times_int @ ( minus_minus_int @ one_one_int @ X ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_int @ one_one_int @ ( power_power_int @ X @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8527_sum__gp__basic,axiom,
! [X: real,N: nat] :
( ( times_times_real @ ( minus_minus_real @ one_one_real @ X ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8528_polyfun__roots__finite,axiom,
! [C: nat > complex,K: nat,N: nat] :
( ( ( C @ K )
!= zero_zero_complex )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_8529_polyfun__roots__finite,axiom,
! [C: nat > real,K: nat,N: nat] :
( ( ( C @ K )
!= zero_zero_real )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Z2: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_8530_polyfun__finite__roots,axiom,
! [C: nat > complex,N: nat] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) )
= ( ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
& ( ( C @ I3 )
!= zero_zero_complex ) ) ) ) ).
% polyfun_finite_roots
thf(fact_8531_polyfun__finite__roots,axiom,
! [C: nat > real,N: nat] :
( ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) )
= ( ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
& ( ( C @ I3 )
!= zero_zero_real ) ) ) ) ).
% polyfun_finite_roots
thf(fact_8532_polyfun__linear__factor__root,axiom,
! [C: nat > complex,A: complex,N: nat] :
( ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex )
=> ~ ! [B4: nat > complex] :
~ ! [Z5: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ Z5 @ A )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( B4 @ I3 ) @ ( power_power_complex @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8533_polyfun__linear__factor__root,axiom,
! [C: nat > rat,A: rat,N: nat] :
( ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_rat )
=> ~ ! [B4: nat > rat] :
~ ! [Z5: rat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ Z5 @ A )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( B4 @ I3 ) @ ( power_power_rat @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8534_polyfun__linear__factor__root,axiom,
! [C: nat > int,A: int,N: nat] :
( ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_int )
=> ~ ! [B4: nat > int] :
~ ! [Z5: int] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_int @ ( minus_minus_int @ Z5 @ A )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( B4 @ I3 ) @ ( power_power_int @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8535_polyfun__linear__factor__root,axiom,
! [C: nat > real,A: real,N: nat] :
( ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real )
=> ~ ! [B4: nat > real] :
~ ! [Z5: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_real @ ( minus_minus_real @ Z5 @ A )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( B4 @ I3 ) @ ( power_power_real @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8536_polyfun__linear__factor,axiom,
! [C: nat > complex,N: nat,A: complex] :
? [B4: nat > complex] :
! [Z5: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_complex
@ ( times_times_complex @ ( minus_minus_complex @ Z5 @ A )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( B4 @ I3 ) @ ( power_power_complex @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8537_polyfun__linear__factor,axiom,
! [C: nat > rat,N: nat,A: rat] :
? [B4: nat > rat] :
! [Z5: rat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_rat
@ ( times_times_rat @ ( minus_minus_rat @ Z5 @ A )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( B4 @ I3 ) @ ( power_power_rat @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8538_polyfun__linear__factor,axiom,
! [C: nat > int,N: nat,A: int] :
? [B4: nat > int] :
! [Z5: int] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_int
@ ( times_times_int @ ( minus_minus_int @ Z5 @ A )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( B4 @ I3 ) @ ( power_power_int @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8539_polyfun__linear__factor,axiom,
! [C: nat > real,N: nat,A: real] :
? [B4: nat > real] :
! [Z5: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_real
@ ( times_times_real @ ( minus_minus_real @ Z5 @ A )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( B4 @ I3 ) @ ( power_power_real @ Z5 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8540_sum__power__shift,axiom,
! [M: nat,N: nat,X: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8541_sum__power__shift,axiom,
! [M: nat,N: nat,X: rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8542_sum__power__shift,axiom,
! [M: nat,N: nat,X: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_int @ ( power_power_int @ X @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8543_sum__power__shift,axiom,
! [M: nat,N: nat,X: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_real @ ( power_power_real @ X @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8544_sum_Otriangle__reindex,axiom,
! [G: nat > nat > nat,N: nat] :
( ( groups977919841031483927at_nat @ ( produc6842872674320459806at_nat @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I3: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I3 @ J3 ) @ N ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [K3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus_nat @ K3 @ I3 ) )
@ ( set_ord_atMost_nat @ K3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.triangle_reindex
thf(fact_8545_sum_Otriangle__reindex,axiom,
! [G: nat > nat > real,N: nat] :
( ( groups4567486121110086003t_real @ ( produc1703576794950452218t_real @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I3: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I3 @ J3 ) @ N ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [K3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus_nat @ K3 @ I3 ) )
@ ( set_ord_atMost_nat @ K3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.triangle_reindex
thf(fact_8546_summable__Cauchy__product,axiom,
! [A: nat > complex,B: nat > complex] :
( ( summable_real
@ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
=> ( ( summable_real
@ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
=> ( summable_complex
@ ^ [K3: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K3 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ).
% summable_Cauchy_product
thf(fact_8547_summable__Cauchy__product,axiom,
! [A: nat > real,B: nat > real] :
( ( summable_real
@ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
=> ( ( summable_real
@ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
=> ( summable_real
@ ^ [K3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K3 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ).
% summable_Cauchy_product
thf(fact_8548_choose__row__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat @ ( binomial @ N ) @ ( set_ord_atMost_nat @ N ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% choose_row_sum
thf(fact_8549_Cauchy__product,axiom,
! [A: nat > complex,B: nat > complex] :
( ( summable_real
@ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
=> ( ( summable_real
@ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
=> ( ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) )
= ( suminf_complex
@ ^ [K3: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K3 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ) ).
% Cauchy_product
thf(fact_8550_Cauchy__product,axiom,
! [A: nat > real,B: nat > real] :
( ( summable_real
@ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
=> ( ( summable_real
@ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
=> ( ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) )
= ( suminf_real
@ ^ [K3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K3 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ) ).
% Cauchy_product
thf(fact_8551_binomial,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
= ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial
thf(fact_8552_sum_Oin__pairs__0,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8553_sum_Oin__pairs__0,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8554_sum_Oin__pairs__0,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8555_sum_Oin__pairs__0,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8556_polynomial__product,axiom,
! [M: nat,A: nat > complex,N: nat,B: nat > complex,X: complex] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_complex ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_complex ) )
=> ( ( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( times_times_complex @ ( B @ J3 ) @ ( power_power_complex @ X @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups2073611262835488442omplex
@ ^ [R5: nat] :
( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_complex @ X @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8557_polynomial__product,axiom,
! [M: nat,A: nat > rat,N: nat,B: nat > rat,X: rat] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_rat ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_rat ) )
=> ( ( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ X @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( times_times_rat @ ( B @ J3 ) @ ( power_power_rat @ X @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups2906978787729119204at_rat
@ ^ [R5: nat] :
( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_rat @ X @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8558_polynomial__product,axiom,
! [M: nat,A: nat > int,N: nat,B: nat > int,X: int] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_int ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_int ) )
=> ( ( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ X @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( times_times_int @ ( B @ J3 ) @ ( power_power_int @ X @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups3539618377306564664at_int
@ ^ [R5: nat] :
( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [K3: nat] : ( times_times_int @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_int @ X @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8559_polynomial__product,axiom,
! [M: nat,A: nat > real,N: nat,B: nat > real,X: real] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_real ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_real ) )
=> ( ( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( times_times_real @ ( B @ J3 ) @ ( power_power_real @ X @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups6591440286371151544t_real
@ ^ [R5: nat] :
( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_real @ X @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8560_polyfun__eq__const,axiom,
! [C: nat > complex,N: nat,K: complex] :
( ( ! [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= K ) )
= ( ( ( C @ zero_zero_nat )
= K )
& ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) )
=> ( ( C @ X2 )
= zero_zero_complex ) ) ) ) ).
% polyfun_eq_const
thf(fact_8561_polyfun__eq__const,axiom,
! [C: nat > real,N: nat,K: real] :
( ( ! [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= K ) )
= ( ( ( C @ zero_zero_nat )
= K )
& ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) )
=> ( ( C @ X2 )
= zero_zero_real ) ) ) ) ).
% polyfun_eq_const
thf(fact_8562_binomial__ring,axiom,
! [A: complex,B: complex,N: nat] :
( ( power_power_complex @ ( plus_plus_complex @ A @ B ) @ N )
= ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K3 ) ) @ ( power_power_complex @ A @ K3 ) ) @ ( power_power_complex @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial_ring
thf(fact_8563_binomial__ring,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( plus_plus_int @ A @ B ) @ N )
= ( groups3539618377306564664at_int
@ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N @ K3 ) ) @ ( power_power_int @ A @ K3 ) ) @ ( power_power_int @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial_ring
thf(fact_8564_binomial__ring,axiom,
! [A: rat,B: rat,N: nat] :
( ( power_power_rat @ ( plus_plus_rat @ A @ B ) @ N )
= ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K3 ) ) @ ( power_power_rat @ A @ K3 ) ) @ ( power_power_rat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial_ring
thf(fact_8565_binomial__ring,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
= ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial_ring
thf(fact_8566_binomial__ring,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( plus_plus_real @ A @ B ) @ N )
= ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K3 ) ) @ ( power_power_real @ A @ K3 ) ) @ ( power_power_real @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial_ring
thf(fact_8567_polynomial__product__nat,axiom,
! [M: nat,A: nat > nat,N: nat,B: nat > nat,X: nat] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_nat ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_nat ) )
=> ( ( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( times_times_nat @ ( A @ I3 ) @ ( power_power_nat @ X @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups3542108847815614940at_nat
@ ^ [R5: nat] :
( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( times_times_nat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_nat @ X @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product_nat
thf(fact_8568_choose__square__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( power_power_nat @ ( binomial @ N @ K3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).
% choose_square_sum
thf(fact_8569_Cauchy__product__sums,axiom,
! [A: nat > complex,B: nat > complex] :
( ( summable_real
@ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
=> ( ( summable_real
@ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
=> ( sums_complex
@ ^ [K3: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K3 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K3 ) )
@ ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) ) ) ) ) ).
% Cauchy_product_sums
thf(fact_8570_Cauchy__product__sums,axiom,
! [A: nat > real,B: nat > real] :
( ( summable_real
@ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
=> ( ( summable_real
@ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
=> ( sums_real
@ ^ [K3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K3 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K3 ) )
@ ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) ) ) ) ) ).
% Cauchy_product_sums
thf(fact_8571_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > complex,H2: nat > complex] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ zero_zero_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8572_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > rat,H2: nat > rat] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ zero_zero_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8573_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > int,H2: nat > int] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ zero_zero_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8574_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > nat,H2: nat > nat] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ zero_zero_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8575_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > real,H2: nat > real] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ zero_zero_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8576_root__polyfun,axiom,
! [N: nat,Z4: int,A: int] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_int @ Z4 @ N )
= A )
= ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( if_int @ ( I3 = zero_zero_nat ) @ ( uminus_uminus_int @ A ) @ ( if_int @ ( I3 = N ) @ one_one_int @ zero_zero_int ) ) @ ( power_power_int @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_int ) ) ) ).
% root_polyfun
thf(fact_8577_root__polyfun,axiom,
! [N: nat,Z4: complex,A: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_complex @ Z4 @ N )
= A )
= ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( if_complex @ ( I3 = zero_zero_nat ) @ ( uminus1482373934393186551omplex @ A ) @ ( if_complex @ ( I3 = N ) @ one_one_complex @ zero_zero_complex ) ) @ ( power_power_complex @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) ) ).
% root_polyfun
thf(fact_8578_root__polyfun,axiom,
! [N: nat,Z4: rat,A: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_rat @ Z4 @ N )
= A )
= ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( if_rat @ ( I3 = zero_zero_nat ) @ ( uminus_uminus_rat @ A ) @ ( if_rat @ ( I3 = N ) @ one_one_rat @ zero_zero_rat ) ) @ ( power_power_rat @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_rat ) ) ) ).
% root_polyfun
thf(fact_8579_root__polyfun,axiom,
! [N: nat,Z4: code_integer,A: code_integer] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_8256067586552552935nteger @ Z4 @ N )
= A )
= ( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( if_Code_integer @ ( I3 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ A ) @ ( if_Code_integer @ ( I3 = N ) @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) @ ( power_8256067586552552935nteger @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_z3403309356797280102nteger ) ) ) ).
% root_polyfun
thf(fact_8580_root__polyfun,axiom,
! [N: nat,Z4: real,A: real] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_real @ Z4 @ N )
= A )
= ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( if_real @ ( I3 = zero_zero_nat ) @ ( uminus_uminus_real @ A ) @ ( if_real @ ( I3 = N ) @ one_one_real @ zero_zero_real ) ) @ ( power_power_real @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) ) ).
% root_polyfun
thf(fact_8581_sum__gp0,axiom,
! [X: complex,N: nat] :
( ( ( X = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N ) )
= ( semiri8010041392384452111omplex @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
& ( ( X != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N ) ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ).
% sum_gp0
thf(fact_8582_sum__gp0,axiom,
! [X: rat,N: nat] :
( ( ( X = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N ) )
= ( semiri681578069525770553at_rat @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
& ( ( X != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N ) ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ).
% sum_gp0
thf(fact_8583_sum__gp0,axiom,
! [X: real,N: nat] :
( ( ( X = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N ) )
= ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
& ( ( X != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N ) ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).
% sum_gp0
thf(fact_8584_choose__alternating__linear__sum,axiom,
! [N: nat] :
( ( N != one_one_nat )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I3 ) @ ( semiri8010041392384452111omplex @ I3 ) ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) ).
% choose_alternating_linear_sum
thf(fact_8585_choose__alternating__linear__sum,axiom,
! [N: nat] :
( ( N != one_one_nat )
=> ( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I3 ) @ ( semiri4939895301339042750nteger @ I3 ) ) @ ( semiri4939895301339042750nteger @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_z3403309356797280102nteger ) ) ).
% choose_alternating_linear_sum
thf(fact_8586_choose__alternating__linear__sum,axiom,
! [N: nat] :
( ( N != one_one_nat )
=> ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I3 ) @ ( semiri1314217659103216013at_int @ I3 ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_int ) ) ).
% choose_alternating_linear_sum
thf(fact_8587_choose__alternating__linear__sum,axiom,
! [N: nat] :
( ( N != one_one_nat )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I3 ) @ ( semiri681578069525770553at_rat @ I3 ) ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_rat ) ) ).
% choose_alternating_linear_sum
thf(fact_8588_choose__alternating__linear__sum,axiom,
! [N: nat] :
( ( N != one_one_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( semiri5074537144036343181t_real @ I3 ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) ).
% choose_alternating_linear_sum
thf(fact_8589_polyfun__diff__alt,axiom,
! [N: nat,A: nat > complex,X: complex,Y3: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X @ Y3 )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] :
( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_complex @ Y3 @ K3 ) ) @ ( power_power_complex @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8590_polyfun__diff__alt,axiom,
! [N: nat,A: nat > rat,X: rat,Y3: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X @ Y3 )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] :
( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_rat @ Y3 @ K3 ) ) @ ( power_power_rat @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8591_polyfun__diff__alt,axiom,
! [N: nat,A: nat > int,X: int,Y3: int] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_int @ ( minus_minus_int @ X @ Y3 )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] :
( groups3539618377306564664at_int
@ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_int @ Y3 @ K3 ) ) @ ( power_power_int @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8592_polyfun__diff__alt,axiom,
! [N: nat,A: nat > real,X: real,Y3: real] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_real @ ( minus_minus_real @ X @ Y3 )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_real @ Y3 @ K3 ) ) @ ( power_power_real @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8593_monoseq__minus,axiom,
! [A: nat > int] :
( ( topolo4899668324122417113eq_int @ A )
=> ( topolo4899668324122417113eq_int
@ ^ [N2: nat] : ( uminus_uminus_int @ ( A @ N2 ) ) ) ) ).
% monoseq_minus
thf(fact_8594_monoseq__minus,axiom,
! [A: nat > rat] :
( ( topolo4267028734544971653eq_rat @ A )
=> ( topolo4267028734544971653eq_rat
@ ^ [N2: nat] : ( uminus_uminus_rat @ ( A @ N2 ) ) ) ) ).
% monoseq_minus
thf(fact_8595_monoseq__minus,axiom,
! [A: nat > code_integer] :
( ( topolo2919662092509805066nteger @ A )
=> ( topolo2919662092509805066nteger
@ ^ [N2: nat] : ( uminus1351360451143612070nteger @ ( A @ N2 ) ) ) ) ).
% monoseq_minus
thf(fact_8596_monoseq__minus,axiom,
! [A: nat > real] :
( ( topolo6980174941875973593q_real @ A )
=> ( topolo6980174941875973593q_real
@ ^ [N2: nat] : ( uminus_uminus_real @ ( A @ N2 ) ) ) ) ).
% monoseq_minus
thf(fact_8597_binomial__r__part__sum,axiom,
! [M: nat] :
( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% binomial_r_part_sum
thf(fact_8598_choose__linear__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( times_times_nat @ I3 @ ( binomial @ N @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% choose_linear_sum
thf(fact_8599_choose__alternating__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I3 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) ).
% choose_alternating_sum
thf(fact_8600_choose__alternating__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I3 ) @ ( semiri4939895301339042750nteger @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_z3403309356797280102nteger ) ) ).
% choose_alternating_sum
thf(fact_8601_choose__alternating__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I3 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_int ) ) ).
% choose_alternating_sum
thf(fact_8602_choose__alternating__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I3 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_rat ) ) ).
% choose_alternating_sum
thf(fact_8603_choose__alternating__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I3 ) ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) ).
% choose_alternating_sum
thf(fact_8604_polyfun__extremal__lemma,axiom,
! [E: real,C: nat > complex,N: nat] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [M8: real] :
! [Z5: complex] :
( ( ord_less_eq_real @ M8 @ ( real_V1022390504157884413omplex @ Z5 ) )
=> ( ord_less_eq_real
@ ( real_V1022390504157884413omplex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
@ ( times_times_real @ E @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z5 ) @ ( suc @ N ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_8605_polyfun__extremal__lemma,axiom,
! [E: real,C: nat > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [M8: real] :
! [Z5: real] :
( ( ord_less_eq_real @ M8 @ ( real_V7735802525324610683m_real @ Z5 ) )
=> ( ord_less_eq_real
@ ( real_V7735802525324610683m_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
@ ( times_times_real @ E @ ( power_power_real @ ( real_V7735802525324610683m_real @ Z5 ) @ ( suc @ N ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_8606_polyfun__diff,axiom,
! [N: nat,A: nat > complex,X: complex,Y3: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X @ Y3 )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] :
( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_complex @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8607_polyfun__diff,axiom,
! [N: nat,A: nat > rat,X: rat,Y3: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X @ Y3 )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] :
( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_rat @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8608_polyfun__diff,axiom,
! [N: nat,A: nat > int,X: int,Y3: int] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_int @ ( minus_minus_int @ X @ Y3 )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] :
( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_int @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8609_polyfun__diff,axiom,
! [N: nat,A: nat > real,X: real,Y3: real] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ Y3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_real @ ( minus_minus_real @ X @ Y3 )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_real @ X @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8610_mono__SucI1,axiom,
! [X8: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% mono_SucI1
thf(fact_8611_mono__SucI1,axiom,
! [X8: nat > set_int] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% mono_SucI1
thf(fact_8612_mono__SucI1,axiom,
! [X8: nat > rat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% mono_SucI1
thf(fact_8613_mono__SucI1,axiom,
! [X8: nat > num] :
( ! [N3: nat] : ( ord_less_eq_num @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% mono_SucI1
thf(fact_8614_mono__SucI1,axiom,
! [X8: nat > nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% mono_SucI1
thf(fact_8615_mono__SucI1,axiom,
! [X8: nat > int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% mono_SucI1
thf(fact_8616_mono__SucI2,axiom,
! [X8: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% mono_SucI2
thf(fact_8617_mono__SucI2,axiom,
! [X8: nat > set_int] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% mono_SucI2
thf(fact_8618_mono__SucI2,axiom,
! [X8: nat > rat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% mono_SucI2
thf(fact_8619_mono__SucI2,axiom,
! [X8: nat > num] :
( ! [N3: nat] : ( ord_less_eq_num @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% mono_SucI2
thf(fact_8620_mono__SucI2,axiom,
! [X8: nat > nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% mono_SucI2
thf(fact_8621_mono__SucI2,axiom,
! [X8: nat > int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% mono_SucI2
thf(fact_8622_monoseq__Suc,axiom,
( topolo6980174941875973593q_real
= ( ^ [X3: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( X3 @ N2 ) @ ( X3 @ ( suc @ N2 ) ) )
| ! [N2: nat] : ( ord_less_eq_real @ ( X3 @ ( suc @ N2 ) ) @ ( X3 @ N2 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8623_monoseq__Suc,axiom,
( topolo3100542954746470799et_int
= ( ^ [X3: nat > set_int] :
( ! [N2: nat] : ( ord_less_eq_set_int @ ( X3 @ N2 ) @ ( X3 @ ( suc @ N2 ) ) )
| ! [N2: nat] : ( ord_less_eq_set_int @ ( X3 @ ( suc @ N2 ) ) @ ( X3 @ N2 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8624_monoseq__Suc,axiom,
( topolo4267028734544971653eq_rat
= ( ^ [X3: nat > rat] :
( ! [N2: nat] : ( ord_less_eq_rat @ ( X3 @ N2 ) @ ( X3 @ ( suc @ N2 ) ) )
| ! [N2: nat] : ( ord_less_eq_rat @ ( X3 @ ( suc @ N2 ) ) @ ( X3 @ N2 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8625_monoseq__Suc,axiom,
( topolo1459490580787246023eq_num
= ( ^ [X3: nat > num] :
( ! [N2: nat] : ( ord_less_eq_num @ ( X3 @ N2 ) @ ( X3 @ ( suc @ N2 ) ) )
| ! [N2: nat] : ( ord_less_eq_num @ ( X3 @ ( suc @ N2 ) ) @ ( X3 @ N2 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8626_monoseq__Suc,axiom,
( topolo4902158794631467389eq_nat
= ( ^ [X3: nat > nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( X3 @ N2 ) @ ( X3 @ ( suc @ N2 ) ) )
| ! [N2: nat] : ( ord_less_eq_nat @ ( X3 @ ( suc @ N2 ) ) @ ( X3 @ N2 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8627_monoseq__Suc,axiom,
( topolo4899668324122417113eq_int
= ( ^ [X3: nat > int] :
( ! [N2: nat] : ( ord_less_eq_int @ ( X3 @ N2 ) @ ( X3 @ ( suc @ N2 ) ) )
| ! [N2: nat] : ( ord_less_eq_int @ ( X3 @ ( suc @ N2 ) ) @ ( X3 @ N2 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8628_gbinomial__partial__row__sum,axiom,
! [A: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K3 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ one_one_complex ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8629_gbinomial__partial__row__sum,axiom,
! [A: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K3 ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ one_one_rat ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8630_gbinomial__partial__row__sum,axiom,
! [A: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ A @ K3 ) @ ( minus_minus_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8631_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups2073611262835488442omplex @ ( gbinomial_complex @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M ) ) @ one_one_complex ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8632_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups2906978787729119204at_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M ) ) @ one_one_rat ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8633_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups6591440286371151544t_real @ ( gbinomial_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8634_pochhammer__double,axiom,
! [Z4: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s2602460028002588243omplex @ Z4 @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z4 @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_8635_pochhammer__double,axiom,
! [Z4: real,N: nat] :
( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s7457072308508201937r_real @ Z4 @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z4 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_8636_pochhammer__double,axiom,
! [Z4: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s4028243227959126397er_rat @ Z4 @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z4 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_8637_of__nat__code,axiom,
( semiri8010041392384452111omplex
= ( ^ [N2: nat] :
( semiri2816024913162550771omplex
@ ^ [I3: complex] : ( plus_plus_complex @ I3 @ one_one_complex )
@ N2
@ zero_zero_complex ) ) ) ).
% of_nat_code
thf(fact_8638_of__nat__code,axiom,
( semiri1314217659103216013at_int
= ( ^ [N2: nat] :
( semiri8420488043553186161ux_int
@ ^ [I3: int] : ( plus_plus_int @ I3 @ one_one_int )
@ N2
@ zero_zero_int ) ) ) ).
% of_nat_code
thf(fact_8639_of__nat__code,axiom,
( semiri5074537144036343181t_real
= ( ^ [N2: nat] :
( semiri7260567687927622513x_real
@ ^ [I3: real] : ( plus_plus_real @ I3 @ one_one_real )
@ N2
@ zero_zero_real ) ) ) ).
% of_nat_code
thf(fact_8640_of__nat__code,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N2: nat] :
( semiri8422978514062236437ux_nat
@ ^ [I3: nat] : ( plus_plus_nat @ I3 @ one_one_nat )
@ N2
@ zero_zero_nat ) ) ) ).
% of_nat_code
thf(fact_8641_of__nat__code,axiom,
( semiri681578069525770553at_rat
= ( ^ [N2: nat] :
( semiri7787848453975740701ux_rat
@ ^ [I3: rat] : ( plus_plus_rat @ I3 @ one_one_rat )
@ N2
@ zero_zero_rat ) ) ) ).
% of_nat_code
thf(fact_8642_VEBT__internal_OminNull_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Y3: $o] :
( ( ( vEBT_VEBT_minNull @ X )
= Y3 )
=> ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ( Y3
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
=> ( ! [Uv2: $o] :
( ( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ~ Y3
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
=> ( ! [Uu3: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ $true ) )
=> ( ~ Y3
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu3 @ $true ) ) ) )
=> ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ( Y3
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
=> ( ~ Y3
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(1)
thf(fact_8643_of__nat__id,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N2: nat] : N2 ) ) ).
% of_nat_id
thf(fact_8644_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_complex @ zero_zero_complex @ ( suc @ K ) )
= zero_zero_complex ) ).
% gbinomial_0(2)
thf(fact_8645_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_real @ zero_zero_real @ ( suc @ K ) )
= zero_zero_real ) ).
% gbinomial_0(2)
thf(fact_8646_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_rat @ zero_zero_rat @ ( suc @ K ) )
= zero_zero_rat ) ).
% gbinomial_0(2)
thf(fact_8647_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_nat @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% gbinomial_0(2)
thf(fact_8648_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_int @ zero_zero_int @ ( suc @ K ) )
= zero_zero_int ) ).
% gbinomial_0(2)
thf(fact_8649_gbinomial__0_I1_J,axiom,
! [A: complex] :
( ( gbinomial_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% gbinomial_0(1)
thf(fact_8650_gbinomial__0_I1_J,axiom,
! [A: real] :
( ( gbinomial_real @ A @ zero_zero_nat )
= one_one_real ) ).
% gbinomial_0(1)
thf(fact_8651_gbinomial__0_I1_J,axiom,
! [A: rat] :
( ( gbinomial_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% gbinomial_0(1)
thf(fact_8652_gbinomial__0_I1_J,axiom,
! [A: nat] :
( ( gbinomial_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% gbinomial_0(1)
thf(fact_8653_gbinomial__0_I1_J,axiom,
! [A: int] :
( ( gbinomial_int @ A @ zero_zero_nat )
= one_one_int ) ).
% gbinomial_0(1)
thf(fact_8654_pochhammer__0,axiom,
! [A: complex] :
( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
= one_one_complex ) ).
% pochhammer_0
thf(fact_8655_pochhammer__0,axiom,
! [A: real] :
( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
= one_one_real ) ).
% pochhammer_0
thf(fact_8656_pochhammer__0,axiom,
! [A: rat] :
( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% pochhammer_0
thf(fact_8657_pochhammer__0,axiom,
! [A: nat] :
( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% pochhammer_0
thf(fact_8658_pochhammer__0,axiom,
! [A: int] :
( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
= one_one_int ) ).
% pochhammer_0
thf(fact_8659_pochhammer__pos,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_8660_pochhammer__pos,axiom,
! [X: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_8661_pochhammer__pos,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ X )
=> ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_8662_pochhammer__pos,axiom,
! [X: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_8663_pochhammer__eq__0__mono,axiom,
! [A: complex,N: nat,M: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N )
= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ M )
= zero_zero_complex ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_8664_pochhammer__eq__0__mono,axiom,
! [A: real,N: nat,M: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N )
= zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ M )
= zero_zero_real ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_8665_pochhammer__eq__0__mono,axiom,
! [A: rat,N: nat,M: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N )
= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ M )
= zero_zero_rat ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_8666_pochhammer__neq__0__mono,axiom,
! [A: complex,M: nat,N: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ M )
!= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ N )
!= zero_zero_complex ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_8667_pochhammer__neq__0__mono,axiom,
! [A: real,M: nat,N: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ M )
!= zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ N )
!= zero_zero_real ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_8668_pochhammer__neq__0__mono,axiom,
! [A: rat,M: nat,N: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ M )
!= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ N )
!= zero_zero_rat ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_8669_pochhammer__fact,axiom,
( semiri5044797733671781792omplex
= ( comm_s2602460028002588243omplex @ one_one_complex ) ) ).
% pochhammer_fact
thf(fact_8670_pochhammer__fact,axiom,
( semiri773545260158071498ct_rat
= ( comm_s4028243227959126397er_rat @ one_one_rat ) ) ).
% pochhammer_fact
thf(fact_8671_pochhammer__fact,axiom,
( semiri1406184849735516958ct_int
= ( comm_s4660882817536571857er_int @ one_one_int ) ) ).
% pochhammer_fact
thf(fact_8672_pochhammer__fact,axiom,
( semiri2265585572941072030t_real
= ( comm_s7457072308508201937r_real @ one_one_real ) ) ).
% pochhammer_fact
thf(fact_8673_pochhammer__fact,axiom,
( semiri1408675320244567234ct_nat
= ( comm_s4663373288045622133er_nat @ one_one_nat ) ) ).
% pochhammer_fact
thf(fact_8674_gbinomial__pochhammer,axiom,
( gbinomial_complex
= ( ^ [A5: complex,K3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ A5 ) @ K3 ) ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_8675_gbinomial__pochhammer,axiom,
( gbinomial_rat
= ( ^ [A5: rat,K3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ A5 ) @ K3 ) ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_8676_gbinomial__pochhammer,axiom,
( gbinomial_real
= ( ^ [A5: real,K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ A5 ) @ K3 ) ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_8677_gbinomial__pochhammer_H,axiom,
( gbinomial_complex
= ( ^ [A5: complex,K3: nat] : ( divide1717551699836669952omplex @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ A5 @ ( semiri8010041392384452111omplex @ K3 ) ) @ one_one_complex ) @ K3 ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_8678_gbinomial__pochhammer_H,axiom,
( gbinomial_rat
= ( ^ [A5: rat,K3: nat] : ( divide_divide_rat @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ A5 @ ( semiri681578069525770553at_rat @ K3 ) ) @ one_one_rat ) @ K3 ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_8679_gbinomial__pochhammer_H,axiom,
( gbinomial_real
= ( ^ [A5: real,K3: nat] : ( divide_divide_real @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ A5 @ ( semiri5074537144036343181t_real @ K3 ) ) @ one_one_real ) @ K3 ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_8680_gbinomial__Suc__Suc,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8681_gbinomial__Suc__Suc,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8682_gbinomial__Suc__Suc,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8683_gbinomial__of__nat__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_8684_gbinomial__of__nat__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K )
= ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_8685_pochhammer__nonneg,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_8686_pochhammer__nonneg,axiom,
! [X: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_8687_pochhammer__nonneg,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ X )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_8688_pochhammer__nonneg,axiom,
! [X: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_8689_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
= one_one_complex ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ) ).
% pochhammer_0_left
thf(fact_8690_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% pochhammer_0_left
thf(fact_8691_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
= one_one_rat ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ) ).
% pochhammer_0_left
thf(fact_8692_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% pochhammer_0_left
thf(fact_8693_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% pochhammer_0_left
thf(fact_8694_gbinomial__addition__formula,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ A @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8695_gbinomial__addition__formula,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ A @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8696_gbinomial__addition__formula,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ A @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8697_gbinomial__absorb__comp,axiom,
! [A: complex,K: nat] :
( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ A @ K ) )
= ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_8698_gbinomial__absorb__comp,axiom,
! [A: real,K: nat] :
( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ A @ K ) )
= ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_8699_gbinomial__absorb__comp,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ A @ K ) )
= ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_8700_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_8701_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: rat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_8702_gbinomial__mult__1_H,axiom,
! [A: real,K: nat] :
( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_8703_gbinomial__mult__1_H,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_8704_gbinomial__mult__1,axiom,
! [A: real,K: nat] :
( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_8705_gbinomial__mult__1,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_8706_pochhammer__rec,axiom,
! [A: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
= ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_8707_pochhammer__rec,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_8708_pochhammer__rec,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_8709_pochhammer__rec,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_8710_pochhammer__rec,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_8711_pochhammer__rec_H,axiom,
! [Z4: int,N: nat] :
( ( comm_s4660882817536571857er_int @ Z4 @ ( suc @ N ) )
= ( times_times_int @ ( plus_plus_int @ Z4 @ ( semiri1314217659103216013at_int @ N ) ) @ ( comm_s4660882817536571857er_int @ Z4 @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8712_pochhammer__rec_H,axiom,
! [Z4: real,N: nat] :
( ( comm_s7457072308508201937r_real @ Z4 @ ( suc @ N ) )
= ( times_times_real @ ( plus_plus_real @ Z4 @ ( semiri5074537144036343181t_real @ N ) ) @ ( comm_s7457072308508201937r_real @ Z4 @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8713_pochhammer__rec_H,axiom,
! [Z4: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ Z4 @ ( suc @ N ) )
= ( times_times_nat @ ( plus_plus_nat @ Z4 @ ( semiri1316708129612266289at_nat @ N ) ) @ ( comm_s4663373288045622133er_nat @ Z4 @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8714_pochhammer__rec_H,axiom,
! [Z4: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ Z4 @ ( suc @ N ) )
= ( times_times_rat @ ( plus_plus_rat @ Z4 @ ( semiri681578069525770553at_rat @ N ) ) @ ( comm_s4028243227959126397er_rat @ Z4 @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8715_pochhammer__Suc,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8716_pochhammer__Suc,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8717_pochhammer__Suc,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8718_pochhammer__Suc,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8719_pochhammer__eq__0__iff,axiom,
! [A: complex,N: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N )
= zero_zero_complex )
= ( ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ( A
= ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K3 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_8720_pochhammer__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N )
= zero_zero_real )
= ( ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ( A
= ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K3 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_8721_pochhammer__eq__0__iff,axiom,
! [A: rat,N: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N )
= zero_zero_rat )
= ( ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ( A
= ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K3 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_8722_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
= zero_zero_complex )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8723_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
= zero_z3403309356797280102nteger )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8724_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
= zero_zero_int )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8725_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
= zero_zero_real )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8726_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
= zero_zero_rat )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8727_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8728_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8729_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8730_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8731_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8732_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
!= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8733_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
!= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8734_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
!= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8735_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
!= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8736_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
!= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8737_pochhammer__product_H,axiom,
! [Z4: int,N: nat,M: nat] :
( ( comm_s4660882817536571857er_int @ Z4 @ ( plus_plus_nat @ N @ M ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z4 @ N ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z4 @ ( semiri1314217659103216013at_int @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8738_pochhammer__product_H,axiom,
! [Z4: real,N: nat,M: nat] :
( ( comm_s7457072308508201937r_real @ Z4 @ ( plus_plus_nat @ N @ M ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z4 @ N ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z4 @ ( semiri5074537144036343181t_real @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8739_pochhammer__product_H,axiom,
! [Z4: nat,N: nat,M: nat] :
( ( comm_s4663373288045622133er_nat @ Z4 @ ( plus_plus_nat @ N @ M ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z4 @ N ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z4 @ ( semiri1316708129612266289at_nat @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8740_pochhammer__product_H,axiom,
! [Z4: rat,N: nat,M: nat] :
( ( comm_s4028243227959126397er_rat @ Z4 @ ( plus_plus_nat @ N @ M ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z4 @ N ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z4 @ ( semiri681578069525770553at_rat @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8741_Suc__times__gbinomial,axiom,
! [K: nat,A: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
= ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8742_Suc__times__gbinomial,axiom,
! [K: nat,A: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
= ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8743_Suc__times__gbinomial,axiom,
! [K: nat,A: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
= ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8744_gbinomial__absorption,axiom,
! [K: nat,A: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) )
= ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8745_gbinomial__absorption,axiom,
! [K: nat,A: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) )
= ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8746_gbinomial__absorption,axiom,
! [K: nat,A: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) )
= ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8747_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: real] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8748_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: rat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8749_pochhammer__product,axiom,
! [M: nat,N: nat,Z4: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4660882817536571857er_int @ Z4 @ N )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z4 @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z4 @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8750_pochhammer__product,axiom,
! [M: nat,N: nat,Z4: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s7457072308508201937r_real @ Z4 @ N )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z4 @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z4 @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8751_pochhammer__product,axiom,
! [M: nat,N: nat,Z4: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4663373288045622133er_nat @ Z4 @ N )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z4 @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z4 @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8752_pochhammer__product,axiom,
! [M: nat,N: nat,Z4: rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4028243227959126397er_rat @ Z4 @ N )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z4 @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z4 @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8753_gbinomial__parallel__sum,axiom,
! [A: complex,N: nat] :
( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( gbinomial_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K3 ) ) @ K3 )
@ ( set_ord_atMost_nat @ N ) )
= ( gbinomial_complex @ ( plus_plus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ N ) ) ).
% gbinomial_parallel_sum
thf(fact_8754_gbinomial__parallel__sum,axiom,
! [A: rat,N: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( gbinomial_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K3 ) ) @ K3 )
@ ( set_ord_atMost_nat @ N ) )
= ( gbinomial_rat @ ( plus_plus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ N ) ) ).
% gbinomial_parallel_sum
thf(fact_8755_gbinomial__parallel__sum,axiom,
! [A: real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( gbinomial_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K3 ) ) @ K3 )
@ ( set_ord_atMost_nat @ N ) )
= ( gbinomial_real @ ( plus_plus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ N ) ) ).
% gbinomial_parallel_sum
thf(fact_8756_gbinomial__rec,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8757_gbinomial__rec,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8758_gbinomial__rec,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8759_gbinomial__factors,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8760_gbinomial__factors,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8761_gbinomial__factors,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8762_gbinomial__negated__upper,axiom,
( gbinomial_complex
= ( ^ [A5: complex,K3: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ K3 ) @ A5 ) @ one_one_complex ) @ K3 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8763_gbinomial__negated__upper,axiom,
( gbinomial_real
= ( ^ [A5: real,K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( gbinomial_real @ ( minus_minus_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ K3 ) @ A5 ) @ one_one_real ) @ K3 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8764_gbinomial__negated__upper,axiom,
( gbinomial_rat
= ( ^ [A5: rat,K3: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A5 ) @ one_one_rat ) @ K3 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8765_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ K ) )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8766_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ K ) )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8767_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ K ) )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8768_pochhammer__absorb__comp,axiom,
! [R2: complex,K: nat] :
( ( times_times_complex @ ( minus_minus_complex @ R2 @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R2 ) @ K ) )
= ( times_times_complex @ R2 @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R2 ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8769_pochhammer__absorb__comp,axiom,
! [R2: code_integer,K: nat] :
( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R2 @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R2 ) @ K ) )
= ( times_3573771949741848930nteger @ R2 @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R2 ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8770_pochhammer__absorb__comp,axiom,
! [R2: int,K: nat] :
( ( times_times_int @ ( minus_minus_int @ R2 @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R2 ) @ K ) )
= ( times_times_int @ R2 @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R2 ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8771_pochhammer__absorb__comp,axiom,
! [R2: real,K: nat] :
( ( times_times_real @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R2 ) @ K ) )
= ( times_times_real @ R2 @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R2 ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8772_pochhammer__absorb__comp,axiom,
! [R2: rat,K: nat] :
( ( times_times_rat @ ( minus_minus_rat @ R2 @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R2 ) @ K ) )
= ( times_times_rat @ R2 @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R2 ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8773_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ N )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).
% pochhammer_same
thf(fact_8774_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ N )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).
% pochhammer_same
thf(fact_8775_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% pochhammer_same
thf(fact_8776_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ N )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% pochhammer_same
thf(fact_8777_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% pochhammer_same
thf(fact_8778_gbinomial__minus,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8779_gbinomial__minus,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8780_gbinomial__minus,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8781_gbinomial__reduce__nat,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8782_gbinomial__reduce__nat,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8783_gbinomial__reduce__nat,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8784_pochhammer__minus_H,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8785_pochhammer__minus_H,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8786_pochhammer__minus_H,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8787_pochhammer__minus_H,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8788_pochhammer__minus_H,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8789_pochhammer__minus,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8790_pochhammer__minus,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8791_pochhammer__minus,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8792_pochhammer__minus,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8793_pochhammer__minus,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8794_gbinomial__sum__lower__neg,axiom,
! [A: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K3 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ M ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ M ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_8795_gbinomial__sum__lower__neg,axiom,
! [A: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K3 ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ M ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ M ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_8796_gbinomial__sum__lower__neg,axiom,
! [A: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ A @ K3 ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ M ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ M ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_8797_pochhammer__binomial__sum,axiom,
! [A: int,B: int,N: nat] :
( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ B ) @ N )
= ( groups3539618377306564664at_int
@ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N @ K3 ) ) @ ( comm_s4660882817536571857er_int @ A @ K3 ) ) @ ( comm_s4660882817536571857er_int @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% pochhammer_binomial_sum
thf(fact_8798_pochhammer__binomial__sum,axiom,
! [A: rat,B: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ B ) @ N )
= ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ A @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% pochhammer_binomial_sum
thf(fact_8799_pochhammer__binomial__sum,axiom,
! [A: real,B: real,N: nat] :
( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ B ) @ N )
= ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K3 ) ) @ ( comm_s7457072308508201937r_real @ A @ K3 ) ) @ ( comm_s7457072308508201937r_real @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% pochhammer_binomial_sum
thf(fact_8800_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: complex,X: complex,Y3: complex] :
( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K3 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ K3 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X @ Y3 ) @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8801_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: rat,X: rat,Y3: rat] :
( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K3 ) @ ( power_power_rat @ ( uminus_uminus_rat @ X ) @ K3 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X @ Y3 ) @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8802_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: real,X: real,Y3: real] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K3 ) @ ( power_power_real @ ( uminus_uminus_real @ X ) @ K3 ) ) @ ( power_power_real @ ( plus_plus_real @ X @ Y3 ) @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8803_gbinomial__sum__up__index,axiom,
! [K: nat,N: nat] :
( ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( gbinomial_complex @ ( semiri8010041392384452111omplex @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8804_gbinomial__sum__up__index,axiom,
! [K: nat,N: nat] :
( ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( gbinomial_rat @ ( semiri681578069525770553at_rat @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8805_gbinomial__sum__up__index,axiom,
! [K: nat,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( gbinomial_real @ ( semiri5074537144036343181t_real @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8806_gbinomial__absorption_H,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8807_gbinomial__absorption_H,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8808_gbinomial__absorption_H,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8809_pochhammer__code,axiom,
( comm_s2602460028002588243omplex
= ( ^ [A5: complex,N2: nat] :
( if_complex @ ( N2 = zero_zero_nat ) @ one_one_complex
@ ( set_fo1517530859248394432omplex
@ ^ [O: nat] : ( times_times_complex @ ( plus_plus_complex @ A5 @ ( semiri8010041392384452111omplex @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N2 @ one_one_nat )
@ one_one_complex ) ) ) ) ).
% pochhammer_code
thf(fact_8810_pochhammer__code,axiom,
( comm_s4660882817536571857er_int
= ( ^ [A5: int,N2: nat] :
( if_int @ ( N2 = zero_zero_nat ) @ one_one_int
@ ( set_fo2581907887559384638at_int
@ ^ [O: nat] : ( times_times_int @ ( plus_plus_int @ A5 @ ( semiri1314217659103216013at_int @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N2 @ one_one_nat )
@ one_one_int ) ) ) ) ).
% pochhammer_code
thf(fact_8811_pochhammer__code,axiom,
( comm_s7457072308508201937r_real
= ( ^ [A5: real,N2: nat] :
( if_real @ ( N2 = zero_zero_nat ) @ one_one_real
@ ( set_fo3111899725591712190t_real
@ ^ [O: nat] : ( times_times_real @ ( plus_plus_real @ A5 @ ( semiri5074537144036343181t_real @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N2 @ one_one_nat )
@ one_one_real ) ) ) ) ).
% pochhammer_code
thf(fact_8812_pochhammer__code,axiom,
( comm_s4028243227959126397er_rat
= ( ^ [A5: rat,N2: nat] :
( if_rat @ ( N2 = zero_zero_nat ) @ one_one_rat
@ ( set_fo1949268297981939178at_rat
@ ^ [O: nat] : ( times_times_rat @ ( plus_plus_rat @ A5 @ ( semiri681578069525770553at_rat @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N2 @ one_one_nat )
@ one_one_rat ) ) ) ) ).
% pochhammer_code
thf(fact_8813_pochhammer__code,axiom,
( comm_s4663373288045622133er_nat
= ( ^ [A5: nat,N2: nat] :
( if_nat @ ( N2 = zero_zero_nat ) @ one_one_nat
@ ( set_fo2584398358068434914at_nat
@ ^ [O: nat] : ( times_times_nat @ ( plus_plus_nat @ A5 @ ( semiri1316708129612266289at_nat @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N2 @ one_one_nat )
@ one_one_nat ) ) ) ) ).
% pochhammer_code
thf(fact_8814_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( divide1717551699836669952omplex @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8815_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( divide_divide_rat @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8816_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( divide_divide_real @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8817_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: complex,X: complex,Y3: complex] :
( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ K3 ) @ A ) @ one_one_complex ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X @ Y3 ) @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8818_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: rat,X: rat,Y3: rat] :
( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A ) @ one_one_rat ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X @ Y3 ) @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8819_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: real,X: real,Y3: real] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ K3 ) @ A ) @ one_one_real ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ ( plus_plus_real @ X @ Y3 ) @ ( minus_minus_nat @ M @ K3 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8820_VEBT__internal_OminNull_Opelims_I3_J,axiom,
! [X: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X )
=> ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ! [Uv2: $o] :
( ( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) )
=> ( ! [Uu3: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ $true ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu3 @ $true ) ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(3)
thf(fact_8821_VEBT__internal_OminNull_Opelims_I2_J,axiom,
! [X: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X )
=> ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(2)
thf(fact_8822_fact__double,axiom,
! [N: nat] :
( ( semiri5044797733671781792omplex @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s2602460028002588243omplex @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).
% fact_double
thf(fact_8823_fact__double,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_double
thf(fact_8824_fact__double,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_real @ ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s7457072308508201937r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_double
thf(fact_8825_gbinomial__code,axiom,
( gbinomial_complex
= ( ^ [A5: complex,K3: nat] :
( if_complex @ ( K3 = zero_zero_nat ) @ one_one_complex
@ ( divide1717551699836669952omplex
@ ( set_fo1517530859248394432omplex
@ ^ [L2: nat] : ( times_times_complex @ ( minus_minus_complex @ A5 @ ( semiri8010041392384452111omplex @ L2 ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K3 @ one_one_nat )
@ one_one_complex )
@ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8826_gbinomial__code,axiom,
( gbinomial_rat
= ( ^ [A5: rat,K3: nat] :
( if_rat @ ( K3 = zero_zero_nat ) @ one_one_rat
@ ( divide_divide_rat
@ ( set_fo1949268297981939178at_rat
@ ^ [L2: nat] : ( times_times_rat @ ( minus_minus_rat @ A5 @ ( semiri681578069525770553at_rat @ L2 ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K3 @ one_one_nat )
@ one_one_rat )
@ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8827_gbinomial__code,axiom,
( gbinomial_real
= ( ^ [A5: real,K3: nat] :
( if_real @ ( K3 = zero_zero_nat ) @ one_one_real
@ ( divide_divide_real
@ ( set_fo3111899725591712190t_real
@ ^ [L2: nat] : ( times_times_real @ ( minus_minus_real @ A5 @ ( semiri5074537144036343181t_real @ L2 ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K3 @ one_one_nat )
@ one_one_real )
@ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8828_gchoose__row__sum__weighted,axiom,
! [R2: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ R2 @ K3 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ R2 @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K3 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ ( suc @ M ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_8829_gchoose__row__sum__weighted,axiom,
! [R2: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ R2 @ K3 ) @ ( minus_minus_rat @ ( divide_divide_rat @ R2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K3 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ ( suc @ M ) ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_8830_gchoose__row__sum__weighted,axiom,
! [R2: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ R2 @ K3 ) @ ( minus_minus_real @ ( divide_divide_real @ R2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K3 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_8831_pochhammer__times__pochhammer__half,axiom,
! [Z4: complex,N: nat] :
( ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z4 @ ( suc @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z4 @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
= ( groups6464643781859351333omplex
@ ^ [K3: nat] : ( plus_plus_complex @ Z4 @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ K3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_8832_pochhammer__times__pochhammer__half,axiom,
! [Z4: real,N: nat] :
( ( times_times_real @ ( comm_s7457072308508201937r_real @ Z4 @ ( suc @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z4 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
= ( groups129246275422532515t_real
@ ^ [K3: nat] : ( plus_plus_real @ Z4 @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ K3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_8833_pochhammer__times__pochhammer__half,axiom,
! [Z4: rat,N: nat] :
( ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z4 @ ( suc @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z4 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
= ( groups73079841787564623at_rat
@ ^ [K3: nat] : ( plus_plus_rat @ Z4 @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ K3 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_8834_sin__x__sin__y,axiom,
! [X: real,Y3: real] :
( sums_real
@ ^ [P5: nat] :
( groups6591440286371151544t_real
@ ^ [N2: nat] :
( if_real
@ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 )
& ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
@ ( times_times_real @ ( real_V1485227260804924795R_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) ) @ ( power_power_real @ X @ N2 ) ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ P5 @ N2 ) ) )
@ zero_zero_real )
@ ( set_ord_atMost_nat @ P5 ) )
@ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y3 ) ) ) ).
% sin_x_sin_y
thf(fact_8835_sin__x__sin__y,axiom,
! [X: complex,Y3: complex] :
( sums_complex
@ ^ [P5: nat] :
( groups2073611262835488442omplex
@ ^ [N2: nat] :
( if_complex
@ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 )
& ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
@ ( times_times_complex @ ( real_V2046097035970521341omplex @ ( uminus_uminus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) ) @ ( power_power_complex @ X @ N2 ) ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ P5 @ N2 ) ) )
@ zero_zero_complex )
@ ( set_ord_atMost_nat @ P5 ) )
@ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ Y3 ) ) ) ).
% sin_x_sin_y
thf(fact_8836_Maclaurin__sin__bound,axiom,
! [X: real,N: nat] :
( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real @ ( sin_real @ X )
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) )
@ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( abs_abs_real @ X ) @ N ) ) ) ).
% Maclaurin_sin_bound
thf(fact_8837_sums__cos__x__plus__y,axiom,
! [X: real,Y3: real] :
( sums_real
@ ^ [P5: nat] :
( groups6591440286371151544t_real
@ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 ) @ ( times_times_real @ ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ X @ N2 ) ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ P5 @ N2 ) ) ) @ zero_zero_real )
@ ( set_ord_atMost_nat @ P5 ) )
@ ( cos_real @ ( plus_plus_real @ X @ Y3 ) ) ) ).
% sums_cos_x_plus_y
thf(fact_8838_sums__cos__x__plus__y,axiom,
! [X: complex,Y3: complex] :
( sums_complex
@ ^ [P5: nat] :
( groups2073611262835488442omplex
@ ^ [N2: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 ) @ ( times_times_complex @ ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_complex @ X @ N2 ) ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ P5 @ N2 ) ) ) @ zero_zero_complex )
@ ( set_ord_atMost_nat @ P5 ) )
@ ( cos_complex @ ( plus_plus_complex @ X @ Y3 ) ) ) ).
% sums_cos_x_plus_y
thf(fact_8839_divmod__BitM__2__eq,axiom,
! [M: num] :
( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
= ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).
% divmod_BitM_2_eq
thf(fact_8840_mult__scaleR__right,axiom,
! [X: real,A: real,Y3: real] :
( ( times_times_real @ X @ ( real_V1485227260804924795R_real @ A @ Y3 ) )
= ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y3 ) ) ) ).
% mult_scaleR_right
thf(fact_8841_mult__scaleR__right,axiom,
! [X: complex,A: real,Y3: complex] :
( ( times_times_complex @ X @ ( real_V2046097035970521341omplex @ A @ Y3 ) )
= ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y3 ) ) ) ).
% mult_scaleR_right
thf(fact_8842_mult__scaleR__left,axiom,
! [A: real,X: real,Y3: real] :
( ( times_times_real @ ( real_V1485227260804924795R_real @ A @ X ) @ Y3 )
= ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y3 ) ) ) ).
% mult_scaleR_left
thf(fact_8843_mult__scaleR__left,axiom,
! [A: real,X: complex,Y3: complex] :
( ( times_times_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ Y3 )
= ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y3 ) ) ) ).
% mult_scaleR_left
thf(fact_8844_inverse__mult__distrib,axiom,
! [A: real,B: real] :
( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_8845_inverse__mult__distrib,axiom,
! [A: complex,B: complex] :
( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
= ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_8846_inverse__mult__distrib,axiom,
! [A: rat,B: rat] :
( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_8847_inverse__eq__1__iff,axiom,
! [X: real] :
( ( ( inverse_inverse_real @ X )
= one_one_real )
= ( X = one_one_real ) ) ).
% inverse_eq_1_iff
thf(fact_8848_inverse__eq__1__iff,axiom,
! [X: complex] :
( ( ( invers8013647133539491842omplex @ X )
= one_one_complex )
= ( X = one_one_complex ) ) ).
% inverse_eq_1_iff
thf(fact_8849_inverse__eq__1__iff,axiom,
! [X: rat] :
( ( ( inverse_inverse_rat @ X )
= one_one_rat )
= ( X = one_one_rat ) ) ).
% inverse_eq_1_iff
thf(fact_8850_inverse__1,axiom,
( ( inverse_inverse_real @ one_one_real )
= one_one_real ) ).
% inverse_1
thf(fact_8851_inverse__1,axiom,
( ( invers8013647133539491842omplex @ one_one_complex )
= one_one_complex ) ).
% inverse_1
thf(fact_8852_inverse__1,axiom,
( ( inverse_inverse_rat @ one_one_rat )
= one_one_rat ) ).
% inverse_1
thf(fact_8853_inverse__divide,axiom,
! [A: real,B: real] :
( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ B @ A ) ) ).
% inverse_divide
thf(fact_8854_inverse__divide,axiom,
! [A: complex,B: complex] :
( ( invers8013647133539491842omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ B @ A ) ) ).
% inverse_divide
thf(fact_8855_inverse__divide,axiom,
! [A: rat,B: rat] :
( ( inverse_inverse_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ B @ A ) ) ).
% inverse_divide
thf(fact_8856_scaleR__one,axiom,
! [X: real] :
( ( real_V1485227260804924795R_real @ one_one_real @ X )
= X ) ).
% scaleR_one
thf(fact_8857_scaleR__one,axiom,
! [X: complex] :
( ( real_V2046097035970521341omplex @ one_one_real @ X )
= X ) ).
% scaleR_one
thf(fact_8858_scaleR__scaleR,axiom,
! [A: real,B: real,X: real] :
( ( real_V1485227260804924795R_real @ A @ ( real_V1485227260804924795R_real @ B @ X ) )
= ( real_V1485227260804924795R_real @ ( times_times_real @ A @ B ) @ X ) ) ).
% scaleR_scaleR
thf(fact_8859_scaleR__scaleR,axiom,
! [A: real,B: real,X: complex] :
( ( real_V2046097035970521341omplex @ A @ ( real_V2046097035970521341omplex @ B @ X ) )
= ( real_V2046097035970521341omplex @ ( times_times_real @ A @ B ) @ X ) ) ).
% scaleR_scaleR
thf(fact_8860_prod_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups708209901874060359at_nat
@ ^ [Uu: nat] : one_one_nat
@ A2 )
= one_one_nat ) ).
% prod.neutral_const
thf(fact_8861_prod_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups705719431365010083at_int
@ ^ [Uu: nat] : one_one_int
@ A2 )
= one_one_int ) ).
% prod.neutral_const
thf(fact_8862_prod_Oneutral__const,axiom,
! [A2: set_int] :
( ( groups1705073143266064639nt_int
@ ^ [Uu: int] : one_one_int
@ A2 )
= one_one_int ) ).
% prod.neutral_const
thf(fact_8863_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri5074537144036343181t_real @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups129246275422532515t_real
@ ^ [X2: nat] : ( semiri5074537144036343181t_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8864_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri681578069525770553at_rat @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups73079841787564623at_rat
@ ^ [X2: nat] : ( semiri681578069525770553at_rat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8865_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1316708129612266289at_nat @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups708209901874060359at_nat
@ ^ [X2: nat] : ( semiri1316708129612266289at_nat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8866_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [X2: nat] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8867_pred__numeral__simps_I2_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit0 @ K ) )
= ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).
% pred_numeral_simps(2)
thf(fact_8868_sin__npi__int,axiom,
! [N: int] :
( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= zero_zero_real ) ).
% sin_npi_int
thf(fact_8869_tan__periodic__int,axiom,
! [X: real,I4: int] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic_int
thf(fact_8870_sin__int__2pin,axiom,
! [N: int] :
( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
= zero_zero_real ) ).
% sin_int_2pin
thf(fact_8871_cos__int__2pin,axiom,
! [N: int] :
( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
= one_one_real ) ).
% cos_int_2pin
thf(fact_8872_cos__npi__int,axiom,
! [N: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= one_one_real ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% cos_npi_int
thf(fact_8873_real__scaleR__def,axiom,
real_V1485227260804924795R_real = times_times_real ).
% real_scaleR_def
thf(fact_8874_real__sqrt__inverse,axiom,
! [X: real] :
( ( sqrt @ ( inverse_inverse_real @ X ) )
= ( inverse_inverse_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_inverse
thf(fact_8875_semiring__norm_I26_J,axiom,
( ( bitM @ one )
= one ) ).
% semiring_norm(26)
thf(fact_8876_divide__real__def,axiom,
( divide_divide_real
= ( ^ [X2: real,Y2: real] : ( times_times_real @ X2 @ ( inverse_inverse_real @ Y2 ) ) ) ) ).
% divide_real_def
thf(fact_8877_complex__scaleR,axiom,
! [R2: real,A: real,B: real] :
( ( real_V2046097035970521341omplex @ R2 @ ( complex2 @ A @ B ) )
= ( complex2 @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ B ) ) ) ).
% complex_scaleR
thf(fact_8878_semiring__norm_I27_J,axiom,
! [N: num] :
( ( bitM @ ( bit0 @ N ) )
= ( bit1 @ ( bitM @ N ) ) ) ).
% semiring_norm(27)
thf(fact_8879_semiring__norm_I28_J,axiom,
! [N: num] :
( ( bitM @ ( bit1 @ N ) )
= ( bit1 @ ( bit0 @ N ) ) ) ).
% semiring_norm(28)
thf(fact_8880_real__of__int__div4,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) ) ).
% real_of_int_div4
thf(fact_8881_real__of__int__div,axiom,
! [D: int,N: int] :
( ( dvd_dvd_int @ D @ N )
=> ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D ) )
= ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D ) ) ) ) ).
% real_of_int_div
thf(fact_8882_eval__nat__numeral_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( suc @ ( numeral_numeral_nat @ ( bitM @ N ) ) ) ) ).
% eval_nat_numeral(2)
thf(fact_8883_one__plus__BitM,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% one_plus_BitM
thf(fact_8884_BitM__plus__one,axiom,
! [N: num] :
( ( plus_plus_num @ ( bitM @ N ) @ one )
= ( bit0 @ N ) ) ).
% BitM_plus_one
thf(fact_8885_forall__pos__mono__1,axiom,
! [P: real > $o,E: real] :
( ! [D3: real,E2: real] :
( ( ord_less_real @ D3 @ E2 )
=> ( ( P @ D3 )
=> ( P @ E2 ) ) )
=> ( ! [N3: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ( P @ E ) ) ) ) ).
% forall_pos_mono_1
thf(fact_8886_forall__pos__mono,axiom,
! [P: real > $o,E: real] :
( ! [D3: real,E2: real] :
( ( ord_less_real @ D3 @ E2 )
=> ( ( P @ D3 )
=> ( P @ E2 ) ) )
=> ( ! [N3: nat] :
( ( N3 != zero_zero_nat )
=> ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ( P @ E ) ) ) ) ).
% forall_pos_mono
thf(fact_8887_real__arch__inverse,axiom,
! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
= ( ? [N2: nat] :
( ( N2 != zero_zero_nat )
& ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) )
& ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ E ) ) ) ) ).
% real_arch_inverse
thf(fact_8888_int__le__real__less,axiom,
( ord_less_eq_int
= ( ^ [N2: int,M6: int] : ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M6 ) @ one_one_real ) ) ) ) ).
% int_le_real_less
thf(fact_8889_sqrt__divide__self__eq,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( divide_divide_real @ ( sqrt @ X ) @ X )
= ( inverse_inverse_real @ ( sqrt @ X ) ) ) ) ).
% sqrt_divide_self_eq
thf(fact_8890_int__less__real__le,axiom,
( ord_less_int
= ( ^ [N2: int,M6: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) @ ( ring_1_of_int_real @ M6 ) ) ) ) ).
% int_less_real_le
thf(fact_8891_sin__zero__iff__int2,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
= ( ? [I3: int] :
( X
= ( times_times_real @ ( ring_1_of_int_real @ I3 ) @ pi ) ) ) ) ).
% sin_zero_iff_int2
thf(fact_8892_real__of__int__div__aux,axiom,
! [X: int,D: int] :
( ( divide_divide_real @ ( ring_1_of_int_real @ X ) @ ( ring_1_of_int_real @ D ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X @ D ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X @ D ) ) @ ( ring_1_of_int_real @ D ) ) ) ) ).
% real_of_int_div_aux
thf(fact_8893_real__of__int__div2,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) ) ).
% real_of_int_div2
thf(fact_8894_real__of__int__div3,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) @ one_one_real ) ).
% real_of_int_div3
thf(fact_8895_fact__eq__fact__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1408675320244567234ct_nat @ M )
= ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N )
@ ( groups708209901874060359at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ ( suc @ N ) @ M ) ) ) ) ) ).
% fact_eq_fact_times
thf(fact_8896_exp__plus__inverse__exp,axiom,
! [X: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) ) ).
% exp_plus_inverse_exp
thf(fact_8897_fact__div__fact,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) )
= ( groups708209901874060359at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) ) ).
% fact_div_fact
thf(fact_8898_plus__inverse__ge__2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) ) ) ).
% plus_inverse_ge_2
thf(fact_8899_real__inv__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( inverse_inverse_real @ X ) ) ) ).
% real_inv_sqrt_pow2
thf(fact_8900_cos__one__2pi__int,axiom,
! [X: real] :
( ( ( cos_real @ X )
= one_one_real )
= ( ? [X2: int] :
( X
= ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).
% cos_one_2pi_int
thf(fact_8901_tan__cot,axiom,
! [X: real] :
( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
= ( inverse_inverse_real @ ( tan_real @ X ) ) ) ).
% tan_cot
thf(fact_8902_real__le__x__sinh,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ X @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% real_le_x_sinh
thf(fact_8903_real__le__abs__sinh,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% real_le_abs_sinh
thf(fact_8904_arccos__cos__eq__abs__2pi,axiom,
! [Theta: real] :
~ ! [K2: int] :
( ( arccos @ ( cos_real @ Theta ) )
!= ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).
% arccos_cos_eq_abs_2pi
thf(fact_8905_cos__zero__iff__int,axiom,
! [X: real] :
( ( ( cos_real @ X )
= zero_zero_real )
= ( ? [I3: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I3 )
& ( X
= ( times_times_real @ ( ring_1_of_int_real @ I3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_zero_iff_int
thf(fact_8906_sin__zero__iff__int,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
= ( ? [I3: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I3 )
& ( X
= ( times_times_real @ ( ring_1_of_int_real @ I3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_zero_iff_int
thf(fact_8907_sinh__real__le__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ ( sinh_real @ X ) @ ( sinh_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ).
% sinh_real_le_iff
thf(fact_8908_sinh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sinh_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% sinh_real_nonpos_iff
thf(fact_8909_sinh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% sinh_real_nonneg_iff
thf(fact_8910_divide__complex__def,axiom,
( divide1717551699836669952omplex
= ( ^ [X2: complex,Y2: complex] : ( times_times_complex @ X2 @ ( invers8013647133539491842omplex @ Y2 ) ) ) ) ).
% divide_complex_def
thf(fact_8911_prod__int__eq,axiom,
! [I4: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I4 @ J ) )
= ( groups1705073143266064639nt_int
@ ^ [X2: int] : X2
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I4 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).
% prod_int_eq
thf(fact_8912_prod__int__plus__eq,axiom,
! [I4: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I4 @ ( plus_plus_nat @ I4 @ J ) ) )
= ( groups1705073143266064639nt_int
@ ^ [X2: int] : X2
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I4 ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I4 @ J ) ) ) ) ) ).
% prod_int_plus_eq
thf(fact_8913_complex__inverse,axiom,
! [A: real,B: real] :
( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
= ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% complex_inverse
thf(fact_8914_sinh__ln__real,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( sinh_real @ ( ln_ln_real @ X ) )
= ( divide_divide_real @ ( minus_minus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% sinh_ln_real
thf(fact_8915_cot__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( cot_real @ X ) @ zero_zero_real ) ) ) ).
% cot_less_zero
thf(fact_8916_i__even__power,axiom,
! [N: nat] :
( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) ) ).
% i_even_power
thf(fact_8917_log__base__10__eq1,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X ) ) ) ) ).
% log_base_10_eq1
thf(fact_8918_log__one,axiom,
! [A: real] :
( ( log @ A @ one_one_real )
= zero_zero_real ) ).
% log_one
thf(fact_8919_norm__ii,axiom,
( ( real_V1022390504157884413omplex @ imaginary_unit )
= one_one_real ) ).
% norm_ii
thf(fact_8920_complex__i__mult__minus,axiom,
! [X: complex] :
( ( times_times_complex @ imaginary_unit @ ( times_times_complex @ imaginary_unit @ X ) )
= ( uminus1482373934393186551omplex @ X ) ) ).
% complex_i_mult_minus
thf(fact_8921_log__eq__one,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ A )
= one_one_real ) ) ) ).
% log_eq_one
thf(fact_8922_log__less__cancel__iff,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ ( log @ A @ X ) @ ( log @ A @ Y3 ) )
= ( ord_less_real @ X @ Y3 ) ) ) ) ) ).
% log_less_cancel_iff
thf(fact_8923_log__less__one__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ A @ X ) @ one_one_real )
= ( ord_less_real @ X @ A ) ) ) ) ).
% log_less_one_cancel_iff
thf(fact_8924_one__less__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ ( log @ A @ X ) )
= ( ord_less_real @ A @ X ) ) ) ) ).
% one_less_log_cancel_iff
thf(fact_8925_log__less__zero__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ A @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ) ).
% log_less_zero_cancel_iff
thf(fact_8926_zero__less__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X ) )
= ( ord_less_real @ one_one_real @ X ) ) ) ) ).
% zero_less_log_cancel_iff
thf(fact_8927_divide__i,axiom,
! [X: complex] :
( ( divide1717551699836669952omplex @ X @ imaginary_unit )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ imaginary_unit ) @ X ) ) ).
% divide_i
thf(fact_8928_i__squared,axiom,
( ( times_times_complex @ imaginary_unit @ imaginary_unit )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% i_squared
thf(fact_8929_log__le__cancel__iff,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ ( log @ A @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ) ) ).
% log_le_cancel_iff
thf(fact_8930_log__le__one__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ A ) ) ) ) ).
% log_le_one_cancel_iff
thf(fact_8931_one__le__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X ) )
= ( ord_less_eq_real @ A @ X ) ) ) ) ).
% one_le_log_cancel_iff
thf(fact_8932_log__le__zero__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ) ).
% log_le_zero_cancel_iff
thf(fact_8933_zero__le__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ) ) ).
% zero_le_log_cancel_iff
thf(fact_8934_cot__npi,axiom,
! [N: nat] :
( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% cot_npi
thf(fact_8935_divide__numeral__i,axiom,
! [Z4: complex,N: num] :
( ( divide1717551699836669952omplex @ Z4 @ ( times_times_complex @ ( numera6690914467698888265omplex @ N ) @ imaginary_unit ) )
= ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z4 ) ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% divide_numeral_i
thf(fact_8936_log__pow__cancel,axiom,
! [A: real,B: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( power_power_real @ A @ B ) )
= ( semiri5074537144036343181t_real @ B ) ) ) ) ).
% log_pow_cancel
thf(fact_8937_cot__periodic,axiom,
! [X: real] :
( ( cot_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( cot_real @ X ) ) ).
% cot_periodic
thf(fact_8938_power2__i,axiom,
( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% power2_i
thf(fact_8939_sinh__le__cosh__real,axiom,
! [X: real] : ( ord_less_eq_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) ) ).
% sinh_le_cosh_real
thf(fact_8940_complex__i__not__one,axiom,
imaginary_unit != one_one_complex ).
% complex_i_not_one
thf(fact_8941_complex__i__not__numeral,axiom,
! [W: num] :
( imaginary_unit
!= ( numera6690914467698888265omplex @ W ) ) ).
% complex_i_not_numeral
thf(fact_8942_cosh__real__nonpos__le__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y3 ) )
= ( ord_less_eq_real @ Y3 @ X ) ) ) ) ).
% cosh_real_nonpos_le_iff
thf(fact_8943_cosh__real__nonneg__le__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ) ).
% cosh_real_nonneg_le_iff
thf(fact_8944_cosh__real__nonneg,axiom,
! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X ) ) ).
% cosh_real_nonneg
thf(fact_8945_cosh__real__ge__1,axiom,
! [X: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X ) ) ).
% cosh_real_ge_1
thf(fact_8946_i__times__eq__iff,axiom,
! [W: complex,Z4: complex] :
( ( ( times_times_complex @ imaginary_unit @ W )
= Z4 )
= ( W
= ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z4 ) ) ) ) ).
% i_times_eq_iff
thf(fact_8947_complex__i__not__neg__numeral,axiom,
! [W: num] :
( imaginary_unit
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).
% complex_i_not_neg_numeral
thf(fact_8948_cosh__real__nonpos__less__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
=> ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y3 ) )
= ( ord_less_real @ Y3 @ X ) ) ) ) ).
% cosh_real_nonpos_less_iff
thf(fact_8949_cosh__real__nonneg__less__iff,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y3 ) )
= ( ord_less_real @ X @ Y3 ) ) ) ) ).
% cosh_real_nonneg_less_iff
thf(fact_8950_cosh__real__strict__mono,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y3 ) ) ) ) ).
% cosh_real_strict_mono
thf(fact_8951_log__ln,axiom,
( ln_ln_real
= ( log @ ( exp_real @ one_one_real ) ) ) ).
% log_ln
thf(fact_8952_arcosh__cosh__real,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( arcosh_real @ ( cosh_real @ X ) )
= X ) ) ).
% arcosh_cosh_real
thf(fact_8953_Complex__eq__i,axiom,
! [X: real,Y3: real] :
( ( ( complex2 @ X @ Y3 )
= imaginary_unit )
= ( ( X = zero_zero_real )
& ( Y3 = one_one_real ) ) ) ).
% Complex_eq_i
thf(fact_8954_imaginary__unit_Ocode,axiom,
( imaginary_unit
= ( complex2 @ zero_zero_real @ one_one_real ) ) ).
% imaginary_unit.code
thf(fact_8955_Complex__mult__i,axiom,
! [A: real,B: real] :
( ( times_times_complex @ ( complex2 @ A @ B ) @ imaginary_unit )
= ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).
% Complex_mult_i
thf(fact_8956_i__mult__Complex,axiom,
! [A: real,B: real] :
( ( times_times_complex @ imaginary_unit @ ( complex2 @ A @ B ) )
= ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).
% i_mult_Complex
thf(fact_8957_log__base__change,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ B @ X )
= ( divide_divide_real @ ( log @ A @ X ) @ ( log @ A @ B ) ) ) ) ) ).
% log_base_change
thf(fact_8958_less__log__of__power,axiom,
! [B: real,N: nat,M: real] :
( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).
% less_log_of_power
thf(fact_8959_log__of__power__eq,axiom,
! [M: nat,B: real,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( semiri5074537144036343181t_real @ N )
= ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).
% log_of_power_eq
thf(fact_8960_log__mult,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( log @ A @ ( times_times_real @ X @ Y3 ) )
= ( plus_plus_real @ ( log @ A @ X ) @ ( log @ A @ Y3 ) ) ) ) ) ) ) ).
% log_mult
thf(fact_8961_log__divide,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( log @ A @ ( divide_divide_real @ X @ Y3 ) )
= ( minus_minus_real @ ( log @ A @ X ) @ ( log @ A @ Y3 ) ) ) ) ) ) ) ).
% log_divide
thf(fact_8962_le__log__of__power,axiom,
! [B: real,N: nat,M: real] :
( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).
% le_log_of_power
thf(fact_8963_log__base__pow,axiom,
! [A: real,N: nat,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ ( power_power_real @ A @ N ) @ X )
= ( divide_divide_real @ ( log @ A @ X ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log_base_pow
thf(fact_8964_log__nat__power,axiom,
! [X: real,B: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ B @ ( power_power_real @ X @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X ) ) ) ) ).
% log_nat_power
thf(fact_8965_log__inverse,axiom,
! [A: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ A @ ( inverse_inverse_real @ X ) )
= ( uminus_uminus_real @ ( log @ A @ X ) ) ) ) ) ) ).
% log_inverse
thf(fact_8966_log2__of__power__eq,axiom,
! [M: nat,N: nat] :
( ( M
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( semiri5074537144036343181t_real @ N )
= ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% log2_of_power_eq
thf(fact_8967_log__of__power__less,axiom,
! [M: nat,B: real,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_of_power_less
thf(fact_8968_log__eq__div__ln__mult__log,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ A @ X )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X ) ) ) ) ) ) ) ) ).
% log_eq_div_ln_mult_log
thf(fact_8969_log__of__power__le,axiom,
! [M: nat,B: real,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_of_power_le
thf(fact_8970_less__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% less_log2_of_power
thf(fact_8971_le__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% le_log2_of_power
thf(fact_8972_log2__of__power__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log2_of_power_less
thf(fact_8973_cosh__ln__real,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( cosh_real @ ( ln_ln_real @ X ) )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% cosh_ln_real
thf(fact_8974_cot__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cot_real @ X ) ) ) ) ).
% cot_gt_zero
thf(fact_8975_log2__of__power__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log2_of_power_le
thf(fact_8976_log__base__10__eq2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
= ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X ) ) ) ) ).
% log_base_10_eq2
thf(fact_8977_tan__cot_H,axiom,
! [X: real] :
( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
= ( cot_real @ X ) ) ).
% tan_cot'
thf(fact_8978_Arg__minus__ii,axiom,
( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
= ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% Arg_minus_ii
thf(fact_8979_ceiling__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) )
= ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).
% ceiling_log_nat_eq_powr_iff
thf(fact_8980_Arg__ii,axiom,
( ( arg @ imaginary_unit )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% Arg_ii
thf(fact_8981_ceiling__log__nat__eq__if,axiom,
! [B: nat,N: nat,K: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
=> ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ) ) ).
% ceiling_log_nat_eq_if
thf(fact_8982_ceiling__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).
% ceiling_divide_eq_div_numeral
thf(fact_8983_ceiling__minus__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).
% ceiling_minus_divide_eq_div_numeral
thf(fact_8984_Arg__bounded,axiom,
! [Z4: complex] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z4 ) )
& ( ord_less_eq_real @ ( arg @ Z4 ) @ pi ) ) ).
% Arg_bounded
thf(fact_8985_ceiling__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).
% ceiling_log2_div2
thf(fact_8986_cis__minus__pi__half,axiom,
( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).
% cis_minus_pi_half
thf(fact_8987_ceiling__log__eq__powr__iff,axiom,
! [X: real,B: real,K: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim7802044766580827645g_real @ ( log @ B @ X ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
= ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X )
& ( ord_less_eq_real @ X @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).
% ceiling_log_eq_powr_iff
thf(fact_8988_floor__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N ) )
= ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).
% floor_log_nat_eq_powr_iff
thf(fact_8989_int__ge__less__than__def,axiom,
( int_ge_less_than
= ( ^ [D2: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z6: int,Z2: int] :
( ( ord_less_eq_int @ D2 @ Z6 )
& ( ord_less_int @ Z6 @ Z2 ) ) ) ) ) ) ).
% int_ge_less_than_def
thf(fact_8990_powr__nonneg__iff,axiom,
! [A: real,X: real] :
( ( ord_less_eq_real @ ( powr_real @ A @ X ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% powr_nonneg_iff
thf(fact_8991_powr__less__cancel__iff,axiom,
! [X: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% powr_less_cancel_iff
thf(fact_8992_norm__cis,axiom,
! [A: real] :
( ( real_V1022390504157884413omplex @ ( cis @ A ) )
= one_one_real ) ).
% norm_cis
thf(fact_8993_cis__zero,axiom,
( ( cis @ zero_zero_real )
= one_one_complex ) ).
% cis_zero
thf(fact_8994_powr__eq__one__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( powr_real @ A @ X )
= one_one_real )
= ( X = zero_zero_real ) ) ) ).
% powr_eq_one_iff
thf(fact_8995_powr__one,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ one_one_real )
= X ) ) ).
% powr_one
thf(fact_8996_powr__one__gt__zero__iff,axiom,
! [X: real] :
( ( ( powr_real @ X @ one_one_real )
= X )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% powr_one_gt_zero_iff
thf(fact_8997_powr__le__cancel__iff,axiom,
! [X: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% powr_le_cancel_iff
thf(fact_8998_numeral__powr__numeral__real,axiom,
! [M: num,N: num] :
( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_powr_numeral_real
thf(fact_8999_cis__pi,axiom,
( ( cis @ pi )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% cis_pi
thf(fact_9000_log__powr__cancel,axiom,
! [A: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( powr_real @ A @ Y3 ) )
= Y3 ) ) ) ).
% log_powr_cancel
thf(fact_9001_powr__log__cancel,axiom,
! [A: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ A @ ( log @ A @ X ) )
= X ) ) ) ) ).
% powr_log_cancel
thf(fact_9002_floor__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_divide_eq_div_numeral
thf(fact_9003_powr__numeral,axiom,
! [X: real,N: num] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( numeral_numeral_real @ N ) )
= ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ).
% powr_numeral
thf(fact_9004_cis__pi__half,axiom,
( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= imaginary_unit ) ).
% cis_pi_half
thf(fact_9005_floor__one__divide__eq__div__numeral,axiom,
! [B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).
% floor_one_divide_eq_div_numeral
thf(fact_9006_cis__2pi,axiom,
( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= one_one_complex ) ).
% cis_2pi
thf(fact_9007_floor__minus__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
= ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_minus_divide_eq_div_numeral
thf(fact_9008_square__powr__half,axiom,
! [X: real] :
( ( powr_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( abs_abs_real @ X ) ) ).
% square_powr_half
thf(fact_9009_floor__minus__one__divide__eq__div__numeral,axiom,
! [B: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
= ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_minus_one_divide_eq_div_numeral
thf(fact_9010_powr__powr,axiom,
! [X: real,A: real,B: real] :
( ( powr_real @ ( powr_real @ X @ A ) @ B )
= ( powr_real @ X @ ( times_times_real @ A @ B ) ) ) ).
% powr_powr
thf(fact_9011_powr__ge__pzero,axiom,
! [X: real,Y3: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X @ Y3 ) ) ).
% powr_ge_pzero
thf(fact_9012_powr__mono2,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).
% powr_mono2
thf(fact_9013_powr__less__cancel,axiom,
! [X: real,A: real,B: real] :
( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
=> ( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ A @ B ) ) ) ).
% powr_less_cancel
thf(fact_9014_powr__less__mono,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).
% powr_less_mono
thf(fact_9015_powr__mono,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).
% powr_mono
thf(fact_9016_cis__mult,axiom,
! [A: real,B: real] :
( ( times_times_complex @ ( cis @ A ) @ ( cis @ B ) )
= ( cis @ ( plus_plus_real @ A @ B ) ) ) ).
% cis_mult
thf(fact_9017_cis__divide,axiom,
! [A: real,B: real] :
( ( divide1717551699836669952omplex @ ( cis @ A ) @ ( cis @ B ) )
= ( cis @ ( minus_minus_real @ A @ B ) ) ) ).
% cis_divide
thf(fact_9018_powr__less__mono2,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).
% powr_less_mono2
thf(fact_9019_powr__mono2_H,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ ( powr_real @ Y3 @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).
% powr_mono2'
thf(fact_9020_powr__inj,axiom,
! [A: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ( powr_real @ A @ X )
= ( powr_real @ A @ Y3 ) )
= ( X = Y3 ) ) ) ) ).
% powr_inj
thf(fact_9021_gr__one__powr,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ord_less_real @ one_one_real @ ( powr_real @ X @ Y3 ) ) ) ) ).
% gr_one_powr
thf(fact_9022_powr__le1,axiom,
! [A: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ one_one_real ) ) ) ) ).
% powr_le1
thf(fact_9023_powr__mono__both,axiom,
! [A: real,B: real,X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y3 @ B ) ) ) ) ) ) ).
% powr_mono_both
thf(fact_9024_ge__one__powr__ge__zero,axiom,
! [X: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ) ).
% ge_one_powr_ge_zero
thf(fact_9025_powr__divide,axiom,
! [X: real,Y3: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( powr_real @ ( divide_divide_real @ X @ Y3 ) @ A )
= ( divide_divide_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).
% powr_divide
thf(fact_9026_powr__mult,axiom,
! [X: real,Y3: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( powr_real @ ( times_times_real @ X @ Y3 ) @ A )
= ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).
% powr_mult
thf(fact_9027_inverse__powr,axiom,
! [Y3: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( powr_real @ ( inverse_inverse_real @ Y3 ) @ A )
= ( inverse_inverse_real @ ( powr_real @ Y3 @ A ) ) ) ) ).
% inverse_powr
thf(fact_9028_divide__powr__uminus,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
= ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).
% divide_powr_uminus
thf(fact_9029_ln__powr,axiom,
! [X: real,Y3: real] :
( ( X != zero_zero_real )
=> ( ( ln_ln_real @ ( powr_real @ X @ Y3 ) )
= ( times_times_real @ Y3 @ ( ln_ln_real @ X ) ) ) ) ).
% ln_powr
thf(fact_9030_log__powr,axiom,
! [X: real,B: real,Y3: real] :
( ( X != zero_zero_real )
=> ( ( log @ B @ ( powr_real @ X @ Y3 ) )
= ( times_times_real @ Y3 @ ( log @ B @ X ) ) ) ) ).
% log_powr
thf(fact_9031_floor__log__eq__powr__iff,axiom,
! [X: real,B: real,K: int] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim6058952711729229775r_real @ ( log @ B @ X ) )
= K )
= ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X )
& ( ord_less_real @ X @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).
% floor_log_eq_powr_iff
thf(fact_9032_powr__realpow,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( semiri5074537144036343181t_real @ N ) )
= ( power_power_real @ X @ N ) ) ) ).
% powr_realpow
thf(fact_9033_less__log__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y3 @ ( log @ B @ X ) )
= ( ord_less_real @ ( powr_real @ B @ Y3 ) @ X ) ) ) ) ).
% less_log_iff
thf(fact_9034_log__less__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ B @ X ) @ Y3 )
= ( ord_less_real @ X @ ( powr_real @ B @ Y3 ) ) ) ) ) ).
% log_less_iff
thf(fact_9035_less__powr__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( powr_real @ B @ Y3 ) )
= ( ord_less_real @ ( log @ B @ X ) @ Y3 ) ) ) ) ).
% less_powr_iff
thf(fact_9036_powr__less__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( powr_real @ B @ Y3 ) @ X )
= ( ord_less_real @ Y3 @ ( log @ B @ X ) ) ) ) ) ).
% powr_less_iff
thf(fact_9037_floor__eq,axiom,
! [N: int,X: real] :
( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X )
= N ) ) ) ).
% floor_eq
thf(fact_9038_real__of__int__floor__add__one__gt,axiom,
! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_gt
thf(fact_9039_real__of__int__floor__add__one__ge,axiom,
! [R2: real] : ( ord_less_eq_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_ge
thf(fact_9040_real__of__int__floor__gt__diff__one,axiom,
! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).
% real_of_int_floor_gt_diff_one
thf(fact_9041_real__of__int__floor__ge__diff__one,axiom,
! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).
% real_of_int_floor_ge_diff_one
thf(fact_9042_DeMoivre,axiom,
! [A: real,N: nat] :
( ( power_power_complex @ ( cis @ A ) @ N )
= ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).
% DeMoivre
thf(fact_9043_powr__neg__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( uminus_uminus_real @ one_one_real ) )
= ( divide_divide_real @ one_one_real @ X ) ) ) ).
% powr_neg_one
thf(fact_9044_powr__mult__base,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( times_times_real @ X @ ( powr_real @ X @ Y3 ) )
= ( powr_real @ X @ ( plus_plus_real @ one_one_real @ Y3 ) ) ) ) ).
% powr_mult_base
thf(fact_9045_powr__le__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( powr_real @ B @ Y3 ) @ X )
= ( ord_less_eq_real @ Y3 @ ( log @ B @ X ) ) ) ) ) ).
% powr_le_iff
thf(fact_9046_le__powr__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ ( powr_real @ B @ Y3 ) )
= ( ord_less_eq_real @ ( log @ B @ X ) @ Y3 ) ) ) ) ).
% le_powr_iff
thf(fact_9047_log__le__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ B @ X ) @ Y3 )
= ( ord_less_eq_real @ X @ ( powr_real @ B @ Y3 ) ) ) ) ) ).
% log_le_iff
thf(fact_9048_le__log__iff,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y3 @ ( log @ B @ X ) )
= ( ord_less_eq_real @ ( powr_real @ B @ Y3 ) @ X ) ) ) ) ).
% le_log_iff
thf(fact_9049_floor__eq2,axiom,
! [N: int,X: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X )
= N ) ) ) ).
% floor_eq2
thf(fact_9050_floor__divide__real__eq__div,axiom,
! [B: int,A: real] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
= ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).
% floor_divide_real_eq_div
thf(fact_9051_ln__powr__bound,axiom,
! [X: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( divide_divide_real @ ( powr_real @ X @ A ) @ A ) ) ) ) ).
% ln_powr_bound
thf(fact_9052_ln__powr__bound2,axiom,
! [X: real,A: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X ) ) ) ) ).
% ln_powr_bound2
thf(fact_9053_add__log__eq__powr,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( plus_plus_real @ Y3 @ ( log @ B @ X ) )
= ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y3 ) @ X ) ) ) ) ) ) ).
% add_log_eq_powr
thf(fact_9054_log__add__eq__powr,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( plus_plus_real @ ( log @ B @ X ) @ Y3 )
= ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ Y3 ) ) ) ) ) ) ) ).
% log_add_eq_powr
thf(fact_9055_minus__log__eq__powr,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( minus_minus_real @ Y3 @ ( log @ B @ X ) )
= ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y3 ) @ X ) ) ) ) ) ) ).
% minus_log_eq_powr
thf(fact_9056_log__minus__eq__powr,axiom,
! [B: real,X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( minus_minus_real @ ( log @ B @ X ) @ Y3 )
= ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ ( uminus_uminus_real @ Y3 ) ) ) ) ) ) ) ) ).
% log_minus_eq_powr
thf(fact_9057_powr__half__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( sqrt @ X ) ) ) ).
% powr_half_sqrt
thf(fact_9058_powr__neg__numeral,axiom,
! [X: real,N: num] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ) ).
% powr_neg_numeral
thf(fact_9059_floor__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).
% floor_log2_div2
thf(fact_9060_floor__log__nat__eq__if,axiom,
! [B: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
=> ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).
% floor_log_nat_eq_if
thf(fact_9061_int__ge__less__than2__def,axiom,
( int_ge_less_than2
= ( ^ [D2: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z6: int,Z2: int] :
( ( ord_less_eq_int @ D2 @ Z2 )
& ( ord_less_int @ Z6 @ Z2 ) ) ) ) ) ) ).
% int_ge_less_than2_def
thf(fact_9062_bij__betw__roots__unity,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( bij_betw_nat_complex
@ ^ [K3: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K3 ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
@ ( set_ord_lessThan_nat @ N )
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= one_one_complex ) ) ) ) ).
% bij_betw_roots_unity
thf(fact_9063_summable__complex__of__real,axiom,
! [F: nat > real] :
( ( summable_complex
@ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( F @ N2 ) ) )
= ( summable_real @ F ) ) ).
% summable_complex_of_real
thf(fact_9064_exp__pi__i_H,axiom,
( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ pi ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% exp_pi_i'
thf(fact_9065_exp__pi__i,axiom,
( ( exp_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ imaginary_unit ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% exp_pi_i
thf(fact_9066_exp__two__pi__i_H,axiom,
( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
= one_one_complex ) ).
% exp_two_pi_i'
thf(fact_9067_exp__two__pi__i,axiom,
( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
= one_one_complex ) ).
% exp_two_pi_i
thf(fact_9068_complex__exp__exists,axiom,
! [Z4: complex] :
? [A4: complex,R4: real] :
( Z4
= ( times_times_complex @ ( real_V4546457046886955230omplex @ R4 ) @ ( exp_complex @ A4 ) ) ) ).
% complex_exp_exists
thf(fact_9069_complex__of__real__mult__Complex,axiom,
! [R2: real,X: real,Y3: real] :
( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X @ Y3 ) )
= ( complex2 @ ( times_times_real @ R2 @ X ) @ ( times_times_real @ R2 @ Y3 ) ) ) ).
% complex_of_real_mult_Complex
thf(fact_9070_Complex__mult__complex__of__real,axiom,
! [X: real,Y3: real,R2: real] :
( ( times_times_complex @ ( complex2 @ X @ Y3 ) @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ ( times_times_real @ X @ R2 ) @ ( times_times_real @ Y3 @ R2 ) ) ) ).
% Complex_mult_complex_of_real
thf(fact_9071_Complex__add__complex__of__real,axiom,
! [X: real,Y3: real,R2: real] :
( ( plus_plus_complex @ ( complex2 @ X @ Y3 ) @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ ( plus_plus_real @ X @ R2 ) @ Y3 ) ) ).
% Complex_add_complex_of_real
thf(fact_9072_complex__of__real__add__Complex,axiom,
! [R2: real,X: real,Y3: real] :
( ( plus_plus_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X @ Y3 ) )
= ( complex2 @ ( plus_plus_real @ R2 @ X ) @ Y3 ) ) ).
% complex_of_real_add_Complex
thf(fact_9073_cis__conv__exp,axiom,
( cis
= ( ^ [B5: real] : ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B5 ) ) ) ) ) ).
% cis_conv_exp
thf(fact_9074_complex__of__real__i,axiom,
! [R2: real] :
( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ imaginary_unit )
= ( complex2 @ zero_zero_real @ R2 ) ) ).
% complex_of_real_i
thf(fact_9075_i__complex__of__real,axiom,
! [R2: real] :
( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ zero_zero_real @ R2 ) ) ).
% i_complex_of_real
thf(fact_9076_Complex__eq,axiom,
( complex2
= ( ^ [A5: real,B5: real] : ( plus_plus_complex @ ( real_V4546457046886955230omplex @ A5 ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B5 ) ) ) ) ) ).
% Complex_eq
thf(fact_9077_complex__split__polar,axiom,
! [Z4: complex] :
? [R4: real,A4: real] :
( Z4
= ( times_times_complex @ ( real_V4546457046886955230omplex @ R4 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A4 ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A4 ) ) ) ) ) ) ).
% complex_split_polar
thf(fact_9078_cmod__unit__one,axiom,
! [A: real] :
( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) )
= one_one_real ) ).
% cmod_unit_one
thf(fact_9079_cmod__complex__polar,axiom,
! [R2: real,A: real] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) ) )
= ( abs_abs_real @ R2 ) ) ).
% cmod_complex_polar
thf(fact_9080_csqrt__ii,axiom,
( ( csqrt @ imaginary_unit )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% csqrt_ii
thf(fact_9081_upto_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [I2: int,J2: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I2 @ J2 ) )
=> ( ( ( ord_less_eq_int @ I2 @ J2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) @ J2 ) )
=> ( P @ I2 @ J2 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% upto.pinduct
thf(fact_9082_arctan__def,axiom,
( arctan
= ( ^ [Y2: real] :
( the_real
@ ^ [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
& ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X2 )
= Y2 ) ) ) ) ) ).
% arctan_def
thf(fact_9083_arcsin__def,axiom,
( arcsin
= ( ^ [Y2: real] :
( the_real
@ ^ [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
& ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ X2 )
= Y2 ) ) ) ) ) ).
% arcsin_def
thf(fact_9084_csqrt__1,axiom,
( ( csqrt @ one_one_complex )
= one_one_complex ) ).
% csqrt_1
thf(fact_9085_csqrt__eq__1,axiom,
! [Z4: complex] :
( ( ( csqrt @ Z4 )
= one_one_complex )
= ( Z4 = one_one_complex ) ) ).
% csqrt_eq_1
thf(fact_9086_power2__csqrt,axiom,
! [Z4: complex] :
( ( power_power_complex @ ( csqrt @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= Z4 ) ).
% power2_csqrt
thf(fact_9087_ln__real__def,axiom,
( ln_ln_real
= ( ^ [X2: real] :
( the_real
@ ^ [U3: real] :
( ( exp_real @ U3 )
= X2 ) ) ) ) ).
% ln_real_def
thf(fact_9088_ln__neg__is__const,axiom,
! [X: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ln_ln_real @ X )
= ( the_real
@ ^ [X2: real] : $false ) ) ) ).
% ln_neg_is_const
thf(fact_9089_of__real__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( real_V4546457046886955230omplex @ ( sqrt @ X ) )
= ( csqrt @ ( real_V4546457046886955230omplex @ X ) ) ) ) ).
% of_real_sqrt
thf(fact_9090_arccos__def,axiom,
( arccos
= ( ^ [Y2: real] :
( the_real
@ ^ [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
& ( ord_less_eq_real @ X2 @ pi )
& ( ( cos_real @ X2 )
= Y2 ) ) ) ) ) ).
% arccos_def
thf(fact_9091_pi__half,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( the_real
@ ^ [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
& ( ord_less_eq_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X2 )
= zero_zero_real ) ) ) ) ).
% pi_half
thf(fact_9092_pi__def,axiom,
( pi
= ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( the_real
@ ^ [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
& ( ord_less_eq_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X2 )
= zero_zero_real ) ) ) ) ) ).
% pi_def
thf(fact_9093_floor__real__def,axiom,
( archim6058952711729229775r_real
= ( ^ [X2: real] :
( the_int
@ ^ [Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X2 )
& ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ) ) ) ).
% floor_real_def
thf(fact_9094_bij__betw__nth__root__unity,axiom,
! [C: complex,N: nat] :
( ( C != zero_zero_complex )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= one_one_complex ) )
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= C ) ) ) ) ) ).
% bij_betw_nth_root_unity
thf(fact_9095_modulo__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
& ( ~ ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L )
@ ( minus_minus_int
@ ( semiri1314217659103216013at_int
@ ( times_times_nat @ N
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N @ M ) ) ) )
@ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ) ) ) ) ).
% modulo_int_unfold
thf(fact_9096_num_Osize__gen_I3_J,axiom,
! [X32: num] :
( ( size_num @ ( bit1 @ X32 ) )
= ( plus_plus_nat @ ( size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(3)
thf(fact_9097_mask__nat__positive__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% mask_nat_positive_iff
thf(fact_9098_real__root__zero,axiom,
! [N: nat] :
( ( root @ N @ zero_zero_real )
= zero_zero_real ) ).
% real_root_zero
thf(fact_9099_real__root__Suc__0,axiom,
! [X: real] :
( ( root @ ( suc @ zero_zero_nat ) @ X )
= X ) ).
% real_root_Suc_0
thf(fact_9100_root__0,axiom,
! [X: real] :
( ( root @ zero_zero_nat @ X )
= zero_zero_real ) ).
% root_0
thf(fact_9101_real__root__eq__iff,axiom,
! [N: nat,X: real,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X )
= ( root @ N @ Y3 ) )
= ( X = Y3 ) ) ) ).
% real_root_eq_iff
thf(fact_9102_real__root__eq__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ) ).
% real_root_eq_0_iff
thf(fact_9103_real__root__less__iff,axiom,
! [N: nat,X: real,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y3 ) )
= ( ord_less_real @ X @ Y3 ) ) ) ).
% real_root_less_iff
thf(fact_9104_real__root__le__iff,axiom,
! [N: nat,X: real,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y3 ) )
= ( ord_less_eq_real @ X @ Y3 ) ) ) ).
% real_root_le_iff
thf(fact_9105_real__root__eq__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X )
= one_one_real )
= ( X = one_one_real ) ) ) ).
% real_root_eq_1_iff
thf(fact_9106_real__root__one,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ one_one_real )
= one_one_real ) ) ).
% real_root_one
thf(fact_9107_sgn__mult__dvd__iff,axiom,
! [R2: int,L: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ L ) @ K )
= ( ( dvd_dvd_int @ L @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% sgn_mult_dvd_iff
thf(fact_9108_mult__sgn__dvd__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ L @ ( sgn_sgn_int @ R2 ) ) @ K )
= ( ( dvd_dvd_int @ L @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% mult_sgn_dvd_iff
thf(fact_9109_dvd__sgn__mult__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd_int @ L @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ K ) )
= ( ( dvd_dvd_int @ L @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_sgn_mult_iff
thf(fact_9110_dvd__mult__sgn__iff,axiom,
! [L: int,K: int,R2: int] :
( ( dvd_dvd_int @ L @ ( times_times_int @ K @ ( sgn_sgn_int @ R2 ) ) )
= ( ( dvd_dvd_int @ L @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_mult_sgn_iff
thf(fact_9111_real__root__lt__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ) ).
% real_root_lt_0_iff
thf(fact_9112_real__root__gt__0__iff,axiom,
! [N: nat,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y3 ) )
= ( ord_less_real @ zero_zero_real @ Y3 ) ) ) ).
% real_root_gt_0_iff
thf(fact_9113_real__root__ge__0__iff,axiom,
! [N: nat,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y3 ) )
= ( ord_less_eq_real @ zero_zero_real @ Y3 ) ) ) ).
% real_root_ge_0_iff
thf(fact_9114_real__root__le__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ) ).
% real_root_le_0_iff
thf(fact_9115_real__root__lt__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X ) @ one_one_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ).
% real_root_lt_1_iff
thf(fact_9116_real__root__gt__1__iff,axiom,
! [N: nat,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ one_one_real @ ( root @ N @ Y3 ) )
= ( ord_less_real @ one_one_real @ Y3 ) ) ) ).
% real_root_gt_1_iff
thf(fact_9117_real__root__ge__1__iff,axiom,
! [N: nat,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y3 ) )
= ( ord_less_eq_real @ one_one_real @ Y3 ) ) ) ).
% real_root_ge_1_iff
thf(fact_9118_real__root__le__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ).
% real_root_le_1_iff
thf(fact_9119_real__root__pow__pos2,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( root @ N @ X ) @ N )
= X ) ) ) ).
% real_root_pow_pos2
thf(fact_9120_less__eq__mask,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).
% less_eq_mask
thf(fact_9121_real__root__mult__exp,axiom,
! [M: nat,N: nat,X: real] :
( ( root @ ( times_times_nat @ M @ N ) @ X )
= ( root @ M @ ( root @ N @ X ) ) ) ).
% real_root_mult_exp
thf(fact_9122_real__root__mult,axiom,
! [N: nat,X: real,Y3: real] :
( ( root @ N @ ( times_times_real @ X @ Y3 ) )
= ( times_times_real @ ( root @ N @ X ) @ ( root @ N @ Y3 ) ) ) ).
% real_root_mult
thf(fact_9123_real__root__minus,axiom,
! [N: nat,X: real] :
( ( root @ N @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( root @ N @ X ) ) ) ).
% real_root_minus
thf(fact_9124_real__root__commute,axiom,
! [M: nat,N: nat,X: real] :
( ( root @ M @ ( root @ N @ X ) )
= ( root @ N @ ( root @ M @ X ) ) ) ).
% real_root_commute
thf(fact_9125_real__root__divide,axiom,
! [N: nat,X: real,Y3: real] :
( ( root @ N @ ( divide_divide_real @ X @ Y3 ) )
= ( divide_divide_real @ ( root @ N @ X ) @ ( root @ N @ Y3 ) ) ) ).
% real_root_divide
thf(fact_9126_real__root__inverse,axiom,
! [N: nat,X: real] :
( ( root @ N @ ( inverse_inverse_real @ X ) )
= ( inverse_inverse_real @ ( root @ N @ X ) ) ) ).
% real_root_inverse
thf(fact_9127_real__root__pos__pos__le,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ).
% real_root_pos_pos_le
thf(fact_9128_int__sgnE,axiom,
! [K: int] :
~ ! [N3: nat,L4: int] :
( K
!= ( times_times_int @ ( sgn_sgn_int @ L4 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% int_sgnE
thf(fact_9129_mask__nonnegative__int,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).
% mask_nonnegative_int
thf(fact_9130_not__mask__negative__int,axiom,
! [N: nat] :
~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).
% not_mask_negative_int
thf(fact_9131_real__root__less__mono,axiom,
! [N: nat,X: real,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y3 ) ) ) ) ).
% real_root_less_mono
thf(fact_9132_real__root__le__mono,axiom,
! [N: nat,X: real,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y3 ) ) ) ) ).
% real_root_le_mono
thf(fact_9133_real__root__power,axiom,
! [N: nat,X: real,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( power_power_real @ X @ K ) )
= ( power_power_real @ ( root @ N @ X ) @ K ) ) ) ).
% real_root_power
thf(fact_9134_real__root__abs,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( abs_abs_real @ X ) )
= ( abs_abs_real @ ( root @ N @ X ) ) ) ) ).
% real_root_abs
thf(fact_9135_sgn__mod,axiom,
! [L: int,K: int] :
( ( L != zero_zero_int )
=> ( ~ ( dvd_dvd_int @ L @ K )
=> ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L ) )
= ( sgn_sgn_int @ L ) ) ) ) ).
% sgn_mod
thf(fact_9136_less__mask,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).
% less_mask
thf(fact_9137_real__root__gt__zero,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).
% real_root_gt_zero
thf(fact_9138_real__root__strict__decreasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).
% real_root_strict_decreasing
thf(fact_9139_sqrt__def,axiom,
( sqrt
= ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% sqrt_def
thf(fact_9140_root__abs__power,axiom,
! [N: nat,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( abs_abs_real @ ( root @ N @ ( power_power_real @ Y3 @ N ) ) )
= ( abs_abs_real @ Y3 ) ) ) ).
% root_abs_power
thf(fact_9141_zsgn__def,axiom,
( sgn_sgn_int
= ( ^ [I3: int] : ( if_int @ ( I3 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I3 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zsgn_def
thf(fact_9142_div__sgn__abs__cancel,axiom,
! [V: int,K: int,L: int] :
( ( V != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L ) ) )
= ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).
% div_sgn_abs_cancel
thf(fact_9143_div__dvd__sgn__abs,axiom,
! [L: int,K: int] :
( ( dvd_dvd_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( sgn_sgn_int @ L ) ) @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ) ).
% div_dvd_sgn_abs
thf(fact_9144_real__root__pos__pos,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).
% real_root_pos_pos
thf(fact_9145_real__root__strict__increasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_strict_increasing
thf(fact_9146_real__root__decreasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).
% real_root_decreasing
thf(fact_9147_real__root__pow__pos,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( root @ N @ X ) @ N )
= X ) ) ) ).
% real_root_pow_pos
thf(fact_9148_real__root__pos__unique,axiom,
! [N: nat,Y3: real,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ( power_power_real @ Y3 @ N )
= X )
=> ( ( root @ N @ X )
= Y3 ) ) ) ) ).
% real_root_pos_unique
thf(fact_9149_real__root__power__cancel,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( root @ N @ ( power_power_real @ X @ N ) )
= X ) ) ) ).
% real_root_power_cancel
thf(fact_9150_odd__real__root__power__cancel,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( root @ N @ ( power_power_real @ X @ N ) )
= X ) ) ).
% odd_real_root_power_cancel
thf(fact_9151_odd__real__root__unique,axiom,
! [N: nat,Y3: real,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ( power_power_real @ Y3 @ N )
= X )
=> ( ( root @ N @ X )
= Y3 ) ) ) ).
% odd_real_root_unique
thf(fact_9152_odd__real__root__pow,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( root @ N @ X ) @ N )
= X ) ) ).
% odd_real_root_pow
thf(fact_9153_num_Osize__gen_I1_J,axiom,
( ( size_num @ one )
= zero_zero_nat ) ).
% num.size_gen(1)
thf(fact_9154_real__root__increasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_increasing
thf(fact_9155_Suc__mask__eq__exp,axiom,
! [N: nat] :
( ( suc @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_mask_eq_exp
thf(fact_9156_mask__nat__less__exp,axiom,
! [N: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% mask_nat_less_exp
thf(fact_9157_eucl__rel__int__remainderI,axiom,
! [R2: int,L: int,K: int,Q3: int] :
( ( ( sgn_sgn_int @ R2 )
= ( sgn_sgn_int @ L ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ L ) )
=> ( ( K
= ( plus_plus_int @ ( times_times_int @ Q3 @ L ) @ R2 ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q3 @ R2 ) ) ) ) ) ).
% eucl_rel_int_remainderI
thf(fact_9158_ln__root,axiom,
! [N: nat,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ln_ln_real @ ( root @ N @ B ) )
= ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% ln_root
thf(fact_9159_log__root,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ B @ ( root @ N @ A ) )
= ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_root
thf(fact_9160_log__base__root,axiom,
! [N: nat,B: real,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( log @ ( root @ N @ B ) @ X )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X ) ) ) ) ) ).
% log_base_root
thf(fact_9161_mask__nat__def,axiom,
( bit_se2002935070580805687sk_nat
= ( ^ [N2: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ).
% mask_nat_def
thf(fact_9162_mask__half__int,axiom,
! [N: nat] :
( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% mask_half_int
thf(fact_9163_mask__int__def,axiom,
( bit_se2000444600071755411sk_int
= ( ^ [N2: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) ) ) ).
% mask_int_def
thf(fact_9164_eucl__rel__int_Osimps,axiom,
( eucl_rel_int
= ( ^ [A12: int,A23: int,A33: product_prod_int_int] :
( ? [K3: int] :
( ( A12 = K3 )
& ( A23 = zero_zero_int )
& ( A33
= ( product_Pair_int_int @ zero_zero_int @ K3 ) ) )
| ? [L2: int,K3: int,Q4: int] :
( ( A12 = K3 )
& ( A23 = L2 )
& ( A33
= ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
& ( L2 != zero_zero_int )
& ( K3
= ( times_times_int @ Q4 @ L2 ) ) )
| ? [R5: int,L2: int,K3: int,Q4: int] :
( ( A12 = K3 )
& ( A23 = L2 )
& ( A33
= ( product_Pair_int_int @ Q4 @ R5 ) )
& ( ( sgn_sgn_int @ R5 )
= ( sgn_sgn_int @ L2 ) )
& ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L2 ) )
& ( K3
= ( plus_plus_int @ ( times_times_int @ Q4 @ L2 ) @ R5 ) ) ) ) ) ) ).
% eucl_rel_int.simps
thf(fact_9165_eucl__rel__int_Ocases,axiom,
! [A1: int,A22: int,A32: product_prod_int_int] :
( ( eucl_rel_int @ A1 @ A22 @ A32 )
=> ( ( ( A22 = zero_zero_int )
=> ( A32
!= ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
=> ( ! [Q2: int] :
( ( A32
= ( product_Pair_int_int @ Q2 @ zero_zero_int ) )
=> ( ( A22 != zero_zero_int )
=> ( A1
!= ( times_times_int @ Q2 @ A22 ) ) ) )
=> ~ ! [R4: int,Q2: int] :
( ( A32
= ( product_Pair_int_int @ Q2 @ R4 ) )
=> ( ( ( sgn_sgn_int @ R4 )
= ( sgn_sgn_int @ A22 ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R4 ) @ ( abs_abs_int @ A22 ) )
=> ( A1
!= ( plus_plus_int @ ( times_times_int @ Q2 @ A22 ) @ R4 ) ) ) ) ) ) ) ) ).
% eucl_rel_int.cases
thf(fact_9166_div__noneq__sgn__abs,axiom,
! [L: int,K: int] :
( ( L != zero_zero_int )
=> ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ K @ L )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ L @ K ) ) ) ) ) ) ).
% div_noneq_sgn_abs
thf(fact_9167_root__powr__inverse,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( root @ N @ X )
= ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).
% root_powr_inverse
thf(fact_9168_num_Osize__gen_I2_J,axiom,
! [X22: num] :
( ( size_num @ ( bit0 @ X22 ) )
= ( plus_plus_nat @ ( size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(2)
thf(fact_9169_divide__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= zero_zero_int ) )
& ( ~ ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ M @ N )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).
% divide_int_unfold
thf(fact_9170_floor__rat__def,axiom,
( archim3151403230148437115or_rat
= ( ^ [X2: rat] :
( the_int
@ ^ [Z2: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ X2 )
& ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ) ) ) ).
% floor_rat_def
thf(fact_9171_modulo__int__def,axiom,
( modulo_modulo_int
= ( ^ [K3: int,L2: int] :
( if_int @ ( L2 = zero_zero_int ) @ K3
@ ( if_int
@ ( ( sgn_sgn_int @ K3 )
= ( sgn_sgn_int @ L2 ) )
@ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) )
@ ( times_times_int @ ( sgn_sgn_int @ L2 )
@ ( minus_minus_int
@ ( times_times_int @ ( abs_abs_int @ L2 )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ L2 @ K3 ) ) )
@ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ) ) ) ) ) ).
% modulo_int_def
thf(fact_9172_divide__int__def,axiom,
( divide_divide_int
= ( ^ [K3: int,L2: int] :
( if_int @ ( L2 = zero_zero_int ) @ zero_zero_int
@ ( if_int
@ ( ( sgn_sgn_int @ K3 )
= ( sgn_sgn_int @ L2 ) )
@ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) )
@ ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_int @ L2 @ K3 ) ) ) ) ) ) ) ) ) ).
% divide_int_def
thf(fact_9173_powr__int,axiom,
! [X: real,I4: int] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ I4 )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ I4 ) )
= ( power_power_real @ X @ ( nat2 @ I4 ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ I4 )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ I4 ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ I4 ) ) ) ) ) ) ) ) ).
% powr_int
thf(fact_9174_sgn__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sgn_sgn_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% sgn_le_0_iff
thf(fact_9175_zero__le__sgn__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% zero_le_sgn_iff
thf(fact_9176_nat__numeral,axiom,
! [K: num] :
( ( nat2 @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% nat_numeral
thf(fact_9177_nat__1,axiom,
( ( nat2 @ one_one_int )
= ( suc @ zero_zero_nat ) ) ).
% nat_1
thf(fact_9178_nat__0__iff,axiom,
! [I4: int] :
( ( ( nat2 @ I4 )
= zero_zero_nat )
= ( ord_less_eq_int @ I4 @ zero_zero_int ) ) ).
% nat_0_iff
thf(fact_9179_nat__le__0,axiom,
! [Z4: int] :
( ( ord_less_eq_int @ Z4 @ zero_zero_int )
=> ( ( nat2 @ Z4 )
= zero_zero_nat ) ) ).
% nat_le_0
thf(fact_9180_zless__nat__conj,axiom,
! [W: int,Z4: int] :
( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z4 ) )
= ( ( ord_less_int @ zero_zero_int @ Z4 )
& ( ord_less_int @ W @ Z4 ) ) ) ).
% zless_nat_conj
thf(fact_9181_nat__neg__numeral,axiom,
! [K: num] :
( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= zero_zero_nat ) ).
% nat_neg_numeral
thf(fact_9182_int__nat__eq,axiom,
! [Z4: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z4 ) )
= Z4 ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z4 ) )
= zero_zero_int ) ) ) ).
% int_nat_eq
thf(fact_9183_zero__less__nat__eq,axiom,
! [Z4: int] :
( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z4 ) )
= ( ord_less_int @ zero_zero_int @ Z4 ) ) ).
% zero_less_nat_eq
thf(fact_9184_diff__nat__numeral,axiom,
! [V: num,V3: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V3 ) )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V3 ) ) ) ) ).
% diff_nat_numeral
thf(fact_9185_numeral__power__eq__nat__cancel__iff,axiom,
! [X: num,N: nat,Y3: int] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= ( nat2 @ Y3 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= Y3 ) ) ).
% numeral_power_eq_nat_cancel_iff
thf(fact_9186_nat__eq__numeral__power__cancel__iff,axiom,
! [Y3: int,X: num,N: nat] :
( ( ( nat2 @ Y3 )
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( Y3
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% nat_eq_numeral_power_cancel_iff
thf(fact_9187_nat__ceiling__le__eq,axiom,
! [X: real,A: nat] :
( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A )
= ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A ) ) ) ).
% nat_ceiling_le_eq
thf(fact_9188_one__less__nat__eq,axiom,
! [Z4: int] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z4 ) )
= ( ord_less_int @ one_one_int @ Z4 ) ) ).
% one_less_nat_eq
thf(fact_9189_nat__numeral__diff__1,axiom,
! [V: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).
% nat_numeral_diff_1
thf(fact_9190_numeral__power__less__nat__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_less_nat_cancel_iff
thf(fact_9191_nat__less__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% nat_less_numeral_power_cancel_iff
thf(fact_9192_numeral__power__le__nat__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_le_nat_cancel_iff
thf(fact_9193_nat__le__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% nat_le_numeral_power_cancel_iff
thf(fact_9194_sgn__rat__def,axiom,
( sgn_sgn_rat
= ( ^ [A5: rat] : ( if_rat @ ( A5 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A5 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).
% sgn_rat_def
thf(fact_9195_nat__mask__eq,axiom,
! [N: nat] :
( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
= ( bit_se2002935070580805687sk_nat @ N ) ) ).
% nat_mask_eq
thf(fact_9196_obtain__pos__sum,axiom,
! [R2: rat] :
( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ~ ! [S: rat] :
( ( ord_less_rat @ zero_zero_rat @ S )
=> ! [T5: rat] :
( ( ord_less_rat @ zero_zero_rat @ T5 )
=> ( R2
!= ( plus_plus_rat @ S @ T5 ) ) ) ) ) ).
% obtain_pos_sum
thf(fact_9197_less__eq__rat__def,axiom,
( ord_less_eq_rat
= ( ^ [X2: rat,Y2: rat] :
( ( ord_less_rat @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% less_eq_rat_def
thf(fact_9198_nat__numeral__as__int,axiom,
( numeral_numeral_nat
= ( ^ [I3: num] : ( nat2 @ ( numeral_numeral_int @ I3 ) ) ) ) ).
% nat_numeral_as_int
thf(fact_9199_nat__mono,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y3 ) ) ) ).
% nat_mono
thf(fact_9200_ex__nat,axiom,
( ( ^ [P3: nat > $o] :
? [X6: nat] : ( P3 @ X6 ) )
= ( ^ [P4: nat > $o] :
? [X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
& ( P4 @ ( nat2 @ X2 ) ) ) ) ) ).
% ex_nat
thf(fact_9201_all__nat,axiom,
( ( ^ [P3: nat > $o] :
! [X6: nat] : ( P3 @ X6 ) )
= ( ^ [P4: nat > $o] :
! [X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( P4 @ ( nat2 @ X2 ) ) ) ) ) ).
% all_nat
thf(fact_9202_eq__nat__nat__iff,axiom,
! [Z4: int,Z7: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
=> ( ( ( nat2 @ Z4 )
= ( nat2 @ Z7 ) )
= ( Z4 = Z7 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_9203_nat__one__as__int,axiom,
( one_one_nat
= ( nat2 @ one_one_int ) ) ).
% nat_one_as_int
thf(fact_9204_unset__bit__nat__def,axiom,
( bit_se4205575877204974255it_nat
= ( ^ [M6: nat,N2: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M6 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% unset_bit_nat_def
thf(fact_9205_sgn__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( sgn_sgn_real @ ( root @ N @ X ) )
= ( sgn_sgn_real @ X ) ) ) ).
% sgn_root
thf(fact_9206_nat__mono__iff,axiom,
! [Z4: int,W: int] :
( ( ord_less_int @ zero_zero_int @ Z4 )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z4 ) )
= ( ord_less_int @ W @ Z4 ) ) ) ).
% nat_mono_iff
thf(fact_9207_zless__nat__eq__int__zless,axiom,
! [M: nat,Z4: int] :
( ( ord_less_nat @ M @ ( nat2 @ Z4 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z4 ) ) ).
% zless_nat_eq_int_zless
thf(fact_9208_nat__le__iff,axiom,
! [X: int,N: nat] :
( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
= ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% nat_le_iff
thf(fact_9209_int__eq__iff,axiom,
! [M: nat,Z4: int] :
( ( ( semiri1314217659103216013at_int @ M )
= Z4 )
= ( ( M
= ( nat2 @ Z4 ) )
& ( ord_less_eq_int @ zero_zero_int @ Z4 ) ) ) ).
% int_eq_iff
thf(fact_9210_nat__0__le,axiom,
! [Z4: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z4 ) )
= Z4 ) ) ).
% nat_0_le
thf(fact_9211_nat__int__add,axiom,
! [A: nat,B: nat] :
( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
= ( plus_plus_nat @ A @ B ) ) ).
% nat_int_add
thf(fact_9212_int__minus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
= ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).
% int_minus
thf(fact_9213_nat__abs__mult__distrib,axiom,
! [W: int,Z4: int] :
( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z4 ) ) )
= ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z4 ) ) ) ) ).
% nat_abs_mult_distrib
thf(fact_9214_nat__plus__as__int,axiom,
( plus_plus_nat
= ( ^ [A5: nat,B5: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ) ).
% nat_plus_as_int
thf(fact_9215_nat__times__as__int,axiom,
( times_times_nat
= ( ^ [A5: nat,B5: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ) ).
% nat_times_as_int
thf(fact_9216_real__nat__ceiling__ge,axiom,
! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).
% real_nat_ceiling_ge
thf(fact_9217_nat__minus__as__int,axiom,
( minus_minus_nat
= ( ^ [A5: nat,B5: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ) ).
% nat_minus_as_int
thf(fact_9218_nat__div__as__int,axiom,
( divide_divide_nat
= ( ^ [A5: nat,B5: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ) ).
% nat_div_as_int
thf(fact_9219_nat__mod__as__int,axiom,
( modulo_modulo_nat
= ( ^ [A5: nat,B5: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B5 ) ) ) ) ) ).
% nat_mod_as_int
thf(fact_9220_sgn__real__def,axiom,
( sgn_sgn_real
= ( ^ [A5: real] : ( if_real @ ( A5 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A5 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).
% sgn_real_def
thf(fact_9221_nat__less__eq__zless,axiom,
! [W: int,Z4: int] :
( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z4 ) )
= ( ord_less_int @ W @ Z4 ) ) ) ).
% nat_less_eq_zless
thf(fact_9222_nat__le__eq__zle,axiom,
! [W: int,Z4: int] :
( ( ( ord_less_int @ zero_zero_int @ W )
| ( ord_less_eq_int @ zero_zero_int @ Z4 ) )
=> ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z4 ) )
= ( ord_less_eq_int @ W @ Z4 ) ) ) ).
% nat_le_eq_zle
thf(fact_9223_nat__eq__iff,axiom,
! [W: int,M: nat] :
( ( ( nat2 @ W )
= M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( W
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff
thf(fact_9224_nat__eq__iff2,axiom,
! [M: nat,W: int] :
( ( M
= ( nat2 @ W ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( W
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff2
thf(fact_9225_le__nat__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
= ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).
% le_nat_iff
thf(fact_9226_nat__add__distrib,axiom,
! [Z4: int,Z7: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
=> ( ( nat2 @ ( plus_plus_int @ Z4 @ Z7 ) )
= ( plus_plus_nat @ ( nat2 @ Z4 ) @ ( nat2 @ Z7 ) ) ) ) ) ).
% nat_add_distrib
thf(fact_9227_nat__mult__distrib,axiom,
! [Z4: int,Z7: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( nat2 @ ( times_times_int @ Z4 @ Z7 ) )
= ( times_times_nat @ ( nat2 @ Z4 ) @ ( nat2 @ Z7 ) ) ) ) ).
% nat_mult_distrib
thf(fact_9228_Suc__as__int,axiom,
( suc
= ( ^ [A5: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A5 ) @ one_one_int ) ) ) ) ).
% Suc_as_int
thf(fact_9229_nat__diff__distrib_H,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( nat2 @ ( minus_minus_int @ X @ Y3 ) )
= ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y3 ) ) ) ) ) ).
% nat_diff_distrib'
thf(fact_9230_nat__diff__distrib,axiom,
! [Z7: int,Z4: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z7 )
=> ( ( ord_less_eq_int @ Z7 @ Z4 )
=> ( ( nat2 @ ( minus_minus_int @ Z4 @ Z7 ) )
= ( minus_minus_nat @ ( nat2 @ Z4 ) @ ( nat2 @ Z7 ) ) ) ) ) ).
% nat_diff_distrib
thf(fact_9231_nat__abs__triangle__ineq,axiom,
! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).
% nat_abs_triangle_ineq
thf(fact_9232_nat__div__distrib,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( nat2 @ ( divide_divide_int @ X @ Y3 ) )
= ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y3 ) ) ) ) ).
% nat_div_distrib
thf(fact_9233_nat__div__distrib_H,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( nat2 @ ( divide_divide_int @ X @ Y3 ) )
= ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y3 ) ) ) ) ).
% nat_div_distrib'
thf(fact_9234_nat__power__eq,axiom,
! [Z4: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( nat2 @ ( power_power_int @ Z4 @ N ) )
= ( power_power_nat @ ( nat2 @ Z4 ) @ N ) ) ) ).
% nat_power_eq
thf(fact_9235_nat__floor__neg,axiom,
! [X: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
= zero_zero_nat ) ) ).
% nat_floor_neg
thf(fact_9236_nat__mod__distrib,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( nat2 @ ( modulo_modulo_int @ X @ Y3 ) )
= ( modulo_modulo_nat @ ( nat2 @ X ) @ ( nat2 @ Y3 ) ) ) ) ) ).
% nat_mod_distrib
thf(fact_9237_div__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).
% div_abs_eq_div_nat
thf(fact_9238_floor__eq3,axiom,
! [N: nat,X: real] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
= N ) ) ) ).
% floor_eq3
thf(fact_9239_le__nat__floor,axiom,
! [X: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ A )
=> ( ord_less_eq_nat @ X @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).
% le_nat_floor
thf(fact_9240_mod__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( modulo_modulo_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
= ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).
% mod_abs_eq_div_nat
thf(fact_9241_nat__2,axiom,
( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% nat_2
thf(fact_9242_sgn__power__injE,axiom,
! [A: real,N: nat,X: real,B: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
= X )
=> ( ( X
= ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ).
% sgn_power_injE
thf(fact_9243_Suc__nat__eq__nat__zadd1,axiom,
! [Z4: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( ( suc @ ( nat2 @ Z4 ) )
= ( nat2 @ ( plus_plus_int @ one_one_int @ Z4 ) ) ) ) ).
% Suc_nat_eq_nat_zadd1
thf(fact_9244_nat__less__iff,axiom,
! [W: int,M: nat] :
( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ M )
= ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% nat_less_iff
thf(fact_9245_nat__mult__distrib__neg,axiom,
! [Z4: int,Z7: int] :
( ( ord_less_eq_int @ Z4 @ zero_zero_int )
=> ( ( nat2 @ ( times_times_int @ Z4 @ Z7 ) )
= ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z4 ) ) @ ( nat2 @ ( uminus_uminus_int @ Z7 ) ) ) ) ) ).
% nat_mult_distrib_neg
thf(fact_9246_nat__abs__int__diff,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ B @ A ) ) )
& ( ~ ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ A @ B ) ) ) ) ).
% nat_abs_int_diff
thf(fact_9247_floor__eq4,axiom,
! [N: nat,X: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
= N ) ) ) ).
% floor_eq4
thf(fact_9248_diff__nat__eq__if,axiom,
! [Z7: int,Z4: int] :
( ( ( ord_less_int @ Z7 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z4 ) @ ( nat2 @ Z7 ) )
= ( nat2 @ Z4 ) ) )
& ( ~ ( ord_less_int @ Z7 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z4 ) @ ( nat2 @ Z7 ) )
= ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z4 @ Z7 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z4 @ Z7 ) ) ) ) ) ) ).
% diff_nat_eq_if
thf(fact_9249_sgn__power__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N @ X ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N @ X ) ) @ N ) )
= X ) ) ).
% sgn_power_root
thf(fact_9250_root__sgn__power,axiom,
! [N: nat,Y3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( times_times_real @ ( sgn_sgn_real @ Y3 ) @ ( power_power_real @ ( abs_abs_real @ Y3 ) @ N ) ) )
= Y3 ) ) ).
% root_sgn_power
thf(fact_9251_nat__dvd__iff,axiom,
! [Z4: int,M: nat] :
( ( dvd_dvd_nat @ ( nat2 @ Z4 ) @ M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( dvd_dvd_int @ Z4 @ ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z4 )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_dvd_iff
thf(fact_9252_cis__Arg__unique,axiom,
! [Z4: complex,X: real] :
( ( ( sgn_sgn_complex @ Z4 )
= ( cis @ X ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( arg @ Z4 )
= X ) ) ) ) ).
% cis_Arg_unique
thf(fact_9253_split__root,axiom,
! [P: real > $o,N: nat,X: real] :
( ( P @ ( root @ N @ X ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_real ) )
& ( ( ord_less_nat @ zero_zero_nat @ N )
=> ! [Y2: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N ) )
= X )
=> ( P @ Y2 ) ) ) ) ) ).
% split_root
thf(fact_9254_Arg__correct,axiom,
! [Z4: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( ( sgn_sgn_complex @ Z4 )
= ( cis @ ( arg @ Z4 ) ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z4 ) )
& ( ord_less_eq_real @ ( arg @ Z4 ) @ pi ) ) ) ).
% Arg_correct
thf(fact_9255_even__nat__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).
% even_nat_iff
thf(fact_9256_powr__real__of__int,axiom,
! [X: real,N: int] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
= ( power_power_real @ X @ ( nat2 @ N ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
= ( inverse_inverse_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ N ) ) ) ) ) ) ) ) ).
% powr_real_of_int
thf(fact_9257_arctan__inverse,axiom,
! [X: real] :
( ( X != zero_zero_real )
=> ( ( arctan @ ( divide_divide_real @ one_one_real @ X ) )
= ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X ) ) ) ) ).
% arctan_inverse
thf(fact_9258_and__int__unfold,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K3: int,L2: int] :
( if_int
@ ( ( K3 = zero_zero_int )
| ( L2 = zero_zero_int ) )
@ zero_zero_int
@ ( if_int
@ ( K3
= ( uminus_uminus_int @ one_one_int ) )
@ L2
@ ( if_int
@ ( L2
= ( uminus_uminus_int @ one_one_int ) )
@ K3
@ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% and_int_unfold
thf(fact_9259_concat__bit__of__zero__2,axiom,
! [N: nat,K: int] :
( ( bit_concat_bit @ N @ K @ zero_zero_int )
= ( bit_se2923211474154528505it_int @ N @ K ) ) ).
% concat_bit_of_zero_2
thf(fact_9260_and__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
| ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% and_nonnegative_int_iff
thf(fact_9261_and__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% and_negative_int_iff
thf(fact_9262_take__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% take_bit_of_Suc_0
thf(fact_9263_and__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= one_one_int ) ).
% and_minus_numerals(2)
thf(fact_9264_and__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
= one_one_int ) ).
% and_minus_numerals(6)
thf(fact_9265_and__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
= zero_zero_int ) ).
% and_minus_numerals(5)
thf(fact_9266_and__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= zero_zero_int ) ).
% and_minus_numerals(1)
thf(fact_9267_take__bit__nat__less__eq__self,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M ) ).
% take_bit_nat_less_eq_self
thf(fact_9268_take__bit__tightened__less__eq__nat,axiom,
! [M: nat,N: nat,Q3: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q3 ) @ ( bit_se2925701944663578781it_nat @ N @ Q3 ) ) ) ).
% take_bit_tightened_less_eq_nat
thf(fact_9269_take__bit__nat__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).
% take_bit_nat_eq
thf(fact_9270_nat__take__bit__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) ) ) ) ).
% nat_take_bit_eq
thf(fact_9271_diff__rat__def,axiom,
( minus_minus_rat
= ( ^ [Q4: rat,R5: rat] : ( plus_plus_rat @ Q4 @ ( uminus_uminus_rat @ R5 ) ) ) ) ).
% diff_rat_def
thf(fact_9272_concat__bit__eq__iff,axiom,
! [N: nat,K: int,L: int,R2: int,S2: int] :
( ( ( bit_concat_bit @ N @ K @ L )
= ( bit_concat_bit @ N @ R2 @ S2 ) )
= ( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2923211474154528505it_int @ N @ R2 ) )
& ( L = S2 ) ) ) ).
% concat_bit_eq_iff
thf(fact_9273_concat__bit__take__bit__eq,axiom,
! [N: nat,B: int] :
( ( bit_concat_bit @ N @ ( bit_se2923211474154528505it_int @ N @ B ) )
= ( bit_concat_bit @ N @ B ) ) ).
% concat_bit_take_bit_eq
thf(fact_9274_take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).
% take_bit_minus
thf(fact_9275_take__bit__mult,axiom,
! [N: nat,K: int,L: int] :
( ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ K @ L ) ) ) ).
% take_bit_mult
thf(fact_9276_take__bit__diff,axiom,
! [N: nat,K: int,L: int] :
( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).
% take_bit_diff
thf(fact_9277_take__bit__tightened__less__eq__int,axiom,
! [M: nat,N: nat,K: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_tightened_less_eq_int
thf(fact_9278_AND__upper2_H,axiom,
! [Y3: int,Z4: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ Z4 )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y3 ) @ Z4 ) ) ) ).
% AND_upper2'
thf(fact_9279_AND__upper1_H,axiom,
! [Y3: int,Z4: int,Ya: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ Z4 )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y3 @ Ya ) @ Z4 ) ) ) ).
% AND_upper1'
thf(fact_9280_AND__upper2,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y3 ) @ Y3 ) ) ).
% AND_upper2
thf(fact_9281_AND__upper1,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y3 ) @ X ) ) ).
% AND_upper1
thf(fact_9282_AND__lower,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X @ Y3 ) ) ) ).
% AND_lower
thf(fact_9283_take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% take_bit_int_less_eq_self_iff
thf(fact_9284_take__bit__nonnegative,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ).
% take_bit_nonnegative
thf(fact_9285_not__take__bit__negative,axiom,
! [N: nat,K: int] :
~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ zero_zero_int ) ).
% not_take_bit_negative
thf(fact_9286_take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% take_bit_int_greater_self_iff
thf(fact_9287_pow_Osimps_I1_J,axiom,
! [X: num] :
( ( pow @ X @ one )
= X ) ).
% pow.simps(1)
thf(fact_9288_and__less__eq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ K ) ) ).
% and_less_eq
thf(fact_9289_AND__upper1_H_H,axiom,
! [Y3: int,Z4: int,Ya: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ord_less_int @ Y3 @ Z4 )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y3 @ Ya ) @ Z4 ) ) ) ).
% AND_upper1''
thf(fact_9290_AND__upper2_H_H,axiom,
! [Y3: int,Z4: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ord_less_int @ Y3 @ Z4 )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ X @ Y3 ) @ Z4 ) ) ) ).
% AND_upper2''
thf(fact_9291_take__bit__decr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
!= zero_zero_int )
=> ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ one_one_int ) )
= ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ one_one_int ) ) ) ).
% take_bit_decr_eq
thf(fact_9292_even__and__iff__int,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ).
% even_and_iff_int
thf(fact_9293_take__bit__eq__mask__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2000444600071755411sk_int @ N ) )
= ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
= zero_zero_int ) ) ).
% take_bit_eq_mask_iff
thf(fact_9294_take__bit__nat__eq__self__iff,axiom,
! [N: nat,M: nat] :
( ( ( bit_se2925701944663578781it_nat @ N @ M )
= M )
= ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_nat_eq_self_iff
thf(fact_9295_take__bit__nat__less__exp,axiom,
! [N: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% take_bit_nat_less_exp
thf(fact_9296_take__bit__nat__eq__self,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2925701944663578781it_nat @ N @ M )
= M ) ) ).
% take_bit_nat_eq_self
thf(fact_9297_take__bit__nat__def,axiom,
( bit_se2925701944663578781it_nat
= ( ^ [N2: nat,M6: nat] : ( modulo_modulo_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% take_bit_nat_def
thf(fact_9298_take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% take_bit_int_less_exp
thf(fact_9299_take__bit__int__def,axiom,
( bit_se2923211474154528505it_int
= ( ^ [N2: nat,K3: int] : ( modulo_modulo_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% take_bit_int_def
thf(fact_9300_take__bit__nat__less__self__iff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M ) ) ).
% take_bit_nat_less_self_iff
thf(fact_9301_take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_minus_bit0
thf(fact_9302_take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).
% take_bit_int_less_self_iff
thf(fact_9303_take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_int_greater_eq_self_iff
thf(fact_9304_take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= K )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% take_bit_int_eq_self_iff
thf(fact_9305_take__bit__int__eq__self,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2923211474154528505it_int @ N @ K )
= K ) ) ) ).
% take_bit_int_eq_self
thf(fact_9306_take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_numeral_minus_bit0
thf(fact_9307_take__bit__incr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
!= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
=> ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
= ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).
% take_bit_incr_eq
thf(fact_9308_take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% take_bit_int_less_eq
thf(fact_9309_take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_int_greater_eq
thf(fact_9310_signed__take__bit__eq__take__bit__shift,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N2: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( plus_plus_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% signed_take_bit_eq_take_bit_shift
thf(fact_9311_and__int__rec,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K3: int,L2: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% and_int_rec
thf(fact_9312_take__bit__eq__mask__iff__exp__dvd,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2000444600071755411sk_int @ N ) )
= ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).
% take_bit_eq_mask_iff_exp_dvd
thf(fact_9313_take__bit__minus__small__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ) ) ).
% take_bit_minus_small_eq
thf(fact_9314_take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_numeral_minus_bit1
thf(fact_9315_and__int_Oelims,axiom,
! [X: int,Xa2: int,Y3: int] :
( ( ( bit_se725231765392027082nd_int @ X @ Xa2 )
= Y3 )
=> ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y3
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y3
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.elims
thf(fact_9316_and__int_Osimps,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K3: int,L2: int] :
( if_int
@ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
@ ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
@ ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_int.simps
thf(fact_9317_take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_Suc_minus_bit1
thf(fact_9318_pred__numeral__inc,axiom,
! [K: num] :
( ( pred_numeral @ ( inc @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% pred_numeral_inc
thf(fact_9319_and__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% and_nat_numerals(3)
thf(fact_9320_and__nat__numerals_I1_J,axiom,
! [Y3: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
= zero_zero_nat ) ).
% and_nat_numerals(1)
thf(fact_9321_and__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% and_nat_numerals(4)
thf(fact_9322_and__nat__numerals_I2_J,axiom,
! [Y3: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
= one_one_nat ) ).
% and_nat_numerals(2)
thf(fact_9323_Suc__0__and__eq,axiom,
! [N: nat] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N )
= ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Suc_0_and_eq
thf(fact_9324_and__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se727722235901077358nd_nat @ N @ ( suc @ zero_zero_nat ) )
= ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% and_Suc_0_eq
thf(fact_9325_num__induct,axiom,
! [P: num > $o,X: num] :
( ( P @ one )
=> ( ! [X5: num] :
( ( P @ X5 )
=> ( P @ ( inc @ X5 ) ) )
=> ( P @ X ) ) ) ).
% num_induct
thf(fact_9326_add__inc,axiom,
! [X: num,Y3: num] :
( ( plus_plus_num @ X @ ( inc @ Y3 ) )
= ( inc @ ( plus_plus_num @ X @ Y3 ) ) ) ).
% add_inc
thf(fact_9327_inc_Osimps_I1_J,axiom,
( ( inc @ one )
= ( bit0 @ one ) ) ).
% inc.simps(1)
thf(fact_9328_inc_Osimps_I3_J,axiom,
! [X: num] :
( ( inc @ ( bit1 @ X ) )
= ( bit0 @ ( inc @ X ) ) ) ).
% inc.simps(3)
thf(fact_9329_inc_Osimps_I2_J,axiom,
! [X: num] :
( ( inc @ ( bit0 @ X ) )
= ( bit1 @ X ) ) ).
% inc.simps(2)
thf(fact_9330_add__One,axiom,
! [X: num] :
( ( plus_plus_num @ X @ one )
= ( inc @ X ) ) ).
% add_One
thf(fact_9331_inc__BitM__eq,axiom,
! [N: num] :
( ( inc @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% inc_BitM_eq
thf(fact_9332_BitM__inc__eq,axiom,
! [N: num] :
( ( bitM @ ( inc @ N ) )
= ( bit1 @ N ) ) ).
% BitM_inc_eq
thf(fact_9333_and__nat__def,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M6: nat,N2: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% and_nat_def
thf(fact_9334_mult__inc,axiom,
! [X: num,Y3: num] :
( ( times_times_num @ X @ ( inc @ Y3 ) )
= ( plus_plus_num @ ( times_times_num @ X @ Y3 ) @ X ) ) ).
% mult_inc
thf(fact_9335_atLeastAtMostPlus1__int__conv,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
=> ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
= ( insert_int @ ( plus_plus_int @ one_one_int @ N ) @ ( set_or1266510415728281911st_int @ M @ N ) ) ) ) ).
% atLeastAtMostPlus1_int_conv
thf(fact_9336_simp__from__to,axiom,
( set_or1266510415728281911st_int
= ( ^ [I3: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I3 ) @ bot_bot_set_int @ ( insert_int @ I3 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I3 @ one_one_int ) @ J3 ) ) ) ) ) ).
% simp_from_to
thf(fact_9337_and__nat__unfold,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M6: nat,N2: nat] :
( if_nat
@ ( ( M6 = zero_zero_nat )
| ( N2 = zero_zero_nat ) )
@ zero_zero_nat
@ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_nat_unfold
thf(fact_9338_and__nat__rec,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M6: nat,N2: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M6 )
& ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% and_nat_rec
thf(fact_9339_and__int_Opelims,axiom,
! [X: int,Xa2: int,Y3: int] :
( ( ( bit_se725231765392027082nd_int @ X @ Xa2 )
= Y3 )
=> ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa2 ) )
=> ~ ( ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y3
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y3
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa2 ) ) ) ) ) ).
% and_int.pelims
thf(fact_9340_and__int_Opsimps,axiom,
! [K: int,L: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L ) )
=> ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L )
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ) ) )
& ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L )
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.psimps
thf(fact_9341_and__int_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [K2: int,L4: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K2 @ L4 ) )
=> ( ( ~ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L4 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( P @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
=> ( P @ K2 @ L4 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% and_int.pinduct
thf(fact_9342_set__encode__insert,axiom,
! [A2: set_nat,N: nat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ N @ A2 )
=> ( ( nat_set_encode @ ( insert_nat @ N @ A2 ) )
= ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).
% set_encode_insert
thf(fact_9343_lessThan__Suc,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( insert_nat @ K @ ( set_ord_lessThan_nat @ K ) ) ) ).
% lessThan_Suc
thf(fact_9344_atMost__Suc,axiom,
! [K: nat] :
( ( set_ord_atMost_nat @ ( suc @ K ) )
= ( insert_nat @ ( suc @ K ) @ ( set_ord_atMost_nat @ K ) ) ) ).
% atMost_Suc
thf(fact_9345_atLeast0__atMost__Suc,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% atLeast0_atMost_Suc
thf(fact_9346_Icc__eq__insert__lb__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( set_or1269000886237332187st_nat @ M @ N )
= ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ).
% Icc_eq_insert_lb_nat
thf(fact_9347_atLeastAtMostSuc__conv,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) )
= ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ).
% atLeastAtMostSuc_conv
thf(fact_9348_atLeastAtMost__insertL,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% atLeastAtMost_insertL
thf(fact_9349_lessThan__nat__numeral,axiom,
! [K: num] :
( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).
% lessThan_nat_numeral
thf(fact_9350_atMost__nat__numeral,axiom,
! [K: num] :
( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).
% atMost_nat_numeral
thf(fact_9351_atLeast1__atMost__eq__remove0,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_atMost_eq_remove0
thf(fact_9352_set__decode__plus__power__2,axiom,
! [N: nat,Z4: nat] :
( ~ ( member_nat @ N @ ( nat_set_decode @ Z4 ) )
=> ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Z4 ) )
= ( insert_nat @ N @ ( nat_set_decode @ Z4 ) ) ) ) ).
% set_decode_plus_power_2
thf(fact_9353_Arg__def,axiom,
( arg
= ( ^ [Z2: complex] :
( if_real @ ( Z2 = zero_zero_complex ) @ zero_zero_real
@ ( fChoice_real
@ ^ [A5: real] :
( ( ( sgn_sgn_complex @ Z2 )
= ( cis @ A5 ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A5 )
& ( ord_less_eq_real @ A5 @ pi ) ) ) ) ) ) ).
% Arg_def
thf(fact_9354_signed__take__bit__eq__take__bit__minus,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N2: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ K3 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N2 ) ) ) ) ) ) ).
% signed_take_bit_eq_take_bit_minus
thf(fact_9355_or__int__unfold,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K3: int,L2: int] :
( if_int
@ ( ( K3
= ( uminus_uminus_int @ one_one_int ) )
| ( L2
= ( uminus_uminus_int @ one_one_int ) ) )
@ ( uminus_uminus_int @ one_one_int )
@ ( if_int @ ( K3 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% or_int_unfold
thf(fact_9356_or__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% or_nonnegative_int_iff
thf(fact_9357_or__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
| ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% or_negative_int_iff
thf(fact_9358_signed__take__bit__nonnegative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% signed_take_bit_nonnegative_iff
thf(fact_9359_signed__take__bit__negative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ zero_zero_int )
= ( bit_se1146084159140164899it_int @ K @ N ) ) ).
% signed_take_bit_negative_iff
thf(fact_9360_bit__minus__numeral__Bit0__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
= ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N ) ) ).
% bit_minus_numeral_Bit0_Suc_iff
thf(fact_9361_bit__minus__numeral__Bit1__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
= ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N ) ) ) ).
% bit_minus_numeral_Bit1_Suc_iff
thf(fact_9362_or__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(6)
thf(fact_9363_or__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(2)
thf(fact_9364_bit__minus__numeral__int_I1_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
= ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N ) ) ) ).
% bit_minus_numeral_int(1)
thf(fact_9365_bit__minus__numeral__int_I2_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
= ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ) ).
% bit_minus_numeral_int(2)
thf(fact_9366_bit__or__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
| ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).
% bit_or_int_iff
thf(fact_9367_bit__and__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
& ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).
% bit_and_int_iff
thf(fact_9368_OR__lower,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X @ Y3 ) ) ) ) ).
% OR_lower
thf(fact_9369_or__greater__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L )
=> ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L ) ) ) ).
% or_greater_eq
thf(fact_9370_plus__and__or,axiom,
! [X: int,Y3: int] :
( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X @ Y3 ) @ ( bit_se1409905431419307370or_int @ X @ Y3 ) )
= ( plus_plus_int @ X @ Y3 ) ) ).
% plus_and_or
thf(fact_9371_bit__not__int__iff_H,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_not_int_iff'
thf(fact_9372_bit__imp__take__bit__positive,axiom,
! [N: nat,M: nat,K: int] :
( ( ord_less_nat @ N @ M )
=> ( ( bit_se1146084159140164899it_int @ K @ N )
=> ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).
% bit_imp_take_bit_positive
thf(fact_9373_bit__concat__bit__iff,axiom,
! [M: nat,K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L ) @ N )
= ( ( ( ord_less_nat @ N @ M )
& ( bit_se1146084159140164899it_int @ K @ N ) )
| ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1146084159140164899it_int @ L @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% bit_concat_bit_iff
thf(fact_9374_signed__take__bit__eq__concat__bit,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N2: nat,K3: int] : ( bit_concat_bit @ N2 @ K3 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N2 ) ) ) ) ) ) ).
% signed_take_bit_eq_concat_bit
thf(fact_9375_int__bit__bound,axiom,
! [K: int] :
~ ! [N3: nat] :
( ! [M2: nat] :
( ( ord_less_eq_nat @ N3 @ M2 )
=> ( ( bit_se1146084159140164899it_int @ K @ M2 )
= ( bit_se1146084159140164899it_int @ K @ N3 ) ) )
=> ~ ( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N3 @ one_one_nat ) )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N3 ) ) ) ) ) ).
% int_bit_bound
thf(fact_9376_bit__int__def,axiom,
( bit_se1146084159140164899it_int
= ( ^ [K3: int,N2: nat] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% bit_int_def
thf(fact_9377_OR__upper,axiom,
! [X: int,N: nat,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_int @ Y3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_int @ ( bit_se1409905431419307370or_int @ X @ Y3 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% OR_upper
thf(fact_9378_or__int__rec,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K3: int,L2: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
| ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% or_int_rec
thf(fact_9379_set__bit__eq,axiom,
( bit_se7879613467334960850it_int
= ( ^ [N2: nat,K3: int] :
( plus_plus_int @ K3
@ ( times_times_int
@ ( zero_n2684676970156552555ol_int
@ ~ ( bit_se1146084159140164899it_int @ K3 @ N2 ) )
@ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% set_bit_eq
thf(fact_9380_unset__bit__eq,axiom,
( bit_se4203085406695923979it_int
= ( ^ [N2: nat,K3: int] : ( minus_minus_int @ K3 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% unset_bit_eq
thf(fact_9381_take__bit__Suc__from__most,axiom,
! [N: nat,K: int] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K )
= ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N ) ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_Suc_from_most
thf(fact_9382_or__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(5)
thf(fact_9383_or__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(1)
thf(fact_9384_cis__multiple__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= one_one_complex ) ) ).
% cis_multiple_2pi
thf(fact_9385_or__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(4)
thf(fact_9386_or__nat__numerals_I2_J,axiom,
! [Y3: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).
% or_nat_numerals(2)
thf(fact_9387_or__nat__numerals_I1_J,axiom,
! [Y3: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).
% or_nat_numerals(1)
thf(fact_9388_or__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(3)
thf(fact_9389_or__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(8)
thf(fact_9390_or__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(4)
thf(fact_9391_or__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(7)
thf(fact_9392_or__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(3)
thf(fact_9393_or__not__num__neg_Osimps_I1_J,axiom,
( ( bit_or_not_num_neg @ one @ one )
= one ) ).
% or_not_num_neg.simps(1)
thf(fact_9394_not__bit__Suc__0__Suc,axiom,
! [N: nat] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N ) ) ).
% not_bit_Suc_0_Suc
thf(fact_9395_bit__Suc__0__iff,axiom,
! [N: nat] :
( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N )
= ( N = zero_zero_nat ) ) ).
% bit_Suc_0_iff
thf(fact_9396_or__not__num__neg_Osimps_I4_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one )
= ( bit0 @ one ) ) ).
% or_not_num_neg.simps(4)
thf(fact_9397_or__not__num__neg_Osimps_I6_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
= ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(6)
thf(fact_9398_or__not__num__neg_Osimps_I3_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(3)
thf(fact_9399_or__not__num__neg_Osimps_I7_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one )
= one ) ).
% or_not_num_neg.simps(7)
thf(fact_9400_or__not__num__neg_Osimps_I5_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(5)
thf(fact_9401_not__bit__Suc__0__numeral,axiom,
! [N: num] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N ) ) ).
% not_bit_Suc_0_numeral
thf(fact_9402_or__not__num__neg_Osimps_I9_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(9)
thf(fact_9403_or__nat__def,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M6: nat,N2: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% or_nat_def
thf(fact_9404_or__not__num__neg_Osimps_I2_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(2)
thf(fact_9405_or__not__num__neg_Osimps_I8_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(8)
thf(fact_9406_bit__nat__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_nat_iff
thf(fact_9407_sin__times__pi__eq__0,axiom,
! [X: real] :
( ( ( sin_real @ ( times_times_real @ X @ pi ) )
= zero_zero_real )
= ( member_real @ X @ ring_1_Ints_real ) ) ).
% sin_times_pi_eq_0
thf(fact_9408_or__not__num__neg_Oelims,axiom,
! [X: num,Xa2: num,Y3: num] :
( ( ( bit_or_not_num_neg @ X @ Xa2 )
= Y3 )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( Y3 != one ) ) )
=> ( ( ( X = one )
=> ! [M5: num] :
( ( Xa2
= ( bit0 @ M5 ) )
=> ( Y3
!= ( bit1 @ M5 ) ) ) )
=> ( ( ( X = one )
=> ! [M5: num] :
( ( Xa2
= ( bit1 @ M5 ) )
=> ( Y3
!= ( bit1 @ M5 ) ) ) )
=> ( ( ? [N3: num] :
( X
= ( bit0 @ N3 ) )
=> ( ( Xa2 = one )
=> ( Y3
!= ( bit0 @ one ) ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit0 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit0 @ M5 ) )
=> ( Y3
!= ( bitM @ ( bit_or_not_num_neg @ N3 @ M5 ) ) ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit0 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit1 @ M5 ) )
=> ( Y3
!= ( bit0 @ ( bit_or_not_num_neg @ N3 @ M5 ) ) ) ) )
=> ( ( ? [N3: num] :
( X
= ( bit1 @ N3 ) )
=> ( ( Xa2 = one )
=> ( Y3 != one ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit1 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit0 @ M5 ) )
=> ( Y3
!= ( bitM @ ( bit_or_not_num_neg @ N3 @ M5 ) ) ) ) )
=> ~ ! [N3: num] :
( ( X
= ( bit1 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit1 @ M5 ) )
=> ( Y3
!= ( bitM @ ( bit_or_not_num_neg @ N3 @ M5 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.elims
thf(fact_9409_bit__nat__def,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [M6: nat,N2: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% bit_nat_def
thf(fact_9410_sin__integer__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= zero_zero_real ) ) ).
% sin_integer_2pi
thf(fact_9411_cos__integer__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= one_one_real ) ) ).
% cos_integer_2pi
thf(fact_9412_Suc__0__or__eq,axiom,
! [N: nat] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N )
= ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% Suc_0_or_eq
thf(fact_9413_or__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se1412395901928357646or_nat @ N @ ( suc @ zero_zero_nat ) )
= ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% or_Suc_0_eq
thf(fact_9414_or__nat__rec,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M6: nat,N2: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M6 )
| ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% or_nat_rec
thf(fact_9415_or__nat__unfold,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M6: nat,N2: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ N2 @ ( if_nat @ ( N2 = zero_zero_nat ) @ M6 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% or_nat_unfold
thf(fact_9416_or__not__num__neg_Opelims,axiom,
! [X: num,Xa2: num,Y3: num] :
( ( ( bit_or_not_num_neg @ X @ Xa2 )
= Y3 )
=> ( ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ X @ Xa2 ) )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( ( Y3 = one )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [M5: num] :
( ( Xa2
= ( bit0 @ M5 ) )
=> ( ( Y3
= ( bit1 @ M5 ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit0 @ M5 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [M5: num] :
( ( Xa2
= ( bit1 @ M5 ) )
=> ( ( Y3
= ( bit1 @ M5 ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit1 @ M5 ) ) ) ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit0 @ N3 ) )
=> ( ( Xa2 = one )
=> ( ( Y3
= ( bit0 @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ one ) ) ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit0 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit0 @ M5 ) )
=> ( ( Y3
= ( bitM @ ( bit_or_not_num_neg @ N3 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ ( bit0 @ M5 ) ) ) ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit0 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit1 @ M5 ) )
=> ( ( Y3
= ( bit0 @ ( bit_or_not_num_neg @ N3 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ ( bit1 @ M5 ) ) ) ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit1 @ N3 ) )
=> ( ( Xa2 = one )
=> ( ( Y3 = one )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ one ) ) ) ) )
=> ( ! [N3: num] :
( ( X
= ( bit1 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit0 @ M5 ) )
=> ( ( Y3
= ( bitM @ ( bit_or_not_num_neg @ N3 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ ( bit0 @ M5 ) ) ) ) ) )
=> ~ ! [N3: num] :
( ( X
= ( bit1 @ N3 ) )
=> ! [M5: num] :
( ( Xa2
= ( bit1 @ M5 ) )
=> ( ( Y3
= ( bitM @ ( bit_or_not_num_neg @ N3 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ ( bit1 @ M5 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.pelims
thf(fact_9417_rat__inverse__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( inverse_inverse_rat @ P2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A5: int,B5: int] : ( if_Pro3027730157355071871nt_int @ ( A5 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A5 ) @ B5 ) @ ( abs_abs_int @ A5 ) ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_inverse_code
thf(fact_9418_quotient__of__number_I3_J,axiom,
! [K: num] :
( ( quotient_of @ ( numeral_numeral_rat @ K ) )
= ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).
% quotient_of_number(3)
thf(fact_9419_rat__one__code,axiom,
( ( quotient_of @ one_one_rat )
= ( product_Pair_int_int @ one_one_int @ one_one_int ) ) ).
% rat_one_code
thf(fact_9420_rat__zero__code,axiom,
( ( quotient_of @ zero_zero_rat )
= ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).
% rat_zero_code
thf(fact_9421_quotient__of__number_I5_J,axiom,
! [K: num] :
( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).
% quotient_of_number(5)
thf(fact_9422_quotient__of__number_I4_J,axiom,
( ( quotient_of @ ( uminus_uminus_rat @ one_one_rat ) )
= ( product_Pair_int_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ) ) ).
% quotient_of_number(4)
thf(fact_9423_divide__rat__def,axiom,
( divide_divide_rat
= ( ^ [Q4: rat,R5: rat] : ( times_times_rat @ Q4 @ ( inverse_inverse_rat @ R5 ) ) ) ) ).
% divide_rat_def
thf(fact_9424_rat__abs__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( abs_abs_rat @ P2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A5: int] : ( product_Pair_int_int @ ( abs_abs_int @ A5 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_abs_code
thf(fact_9425_rat__uminus__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( uminus_uminus_rat @ P2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A5: int] : ( product_Pair_int_int @ ( uminus_uminus_int @ A5 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_uminus_code
thf(fact_9426_rat__less__code,axiom,
( ord_less_rat
= ( ^ [P5: rat,Q4: rat] :
( produc4947309494688390418_int_o
@ ^ [A5: int,C3: int] :
( produc4947309494688390418_int_o
@ ^ [B5: int,D2: int] : ( ord_less_int @ ( times_times_int @ A5 @ D2 ) @ ( times_times_int @ C3 @ B5 ) )
@ ( quotient_of @ Q4 ) )
@ ( quotient_of @ P5 ) ) ) ) ).
% rat_less_code
thf(fact_9427_rat__floor__code,axiom,
( archim3151403230148437115or_rat
= ( ^ [P5: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P5 ) ) ) ) ).
% rat_floor_code
thf(fact_9428_rat__less__eq__code,axiom,
( ord_less_eq_rat
= ( ^ [P5: rat,Q4: rat] :
( produc4947309494688390418_int_o
@ ^ [A5: int,C3: int] :
( produc4947309494688390418_int_o
@ ^ [B5: int,D2: int] : ( ord_less_eq_int @ ( times_times_int @ A5 @ D2 ) @ ( times_times_int @ C3 @ B5 ) )
@ ( quotient_of @ Q4 ) )
@ ( quotient_of @ P5 ) ) ) ) ).
% rat_less_eq_code
thf(fact_9429_quotient__of__int,axiom,
! [A: int] :
( ( quotient_of @ ( of_int @ A ) )
= ( product_Pair_int_int @ A @ one_one_int ) ) ).
% quotient_of_int
thf(fact_9430_rat__minus__code,axiom,
! [P2: rat,Q3: rat] :
( ( quotient_of @ ( minus_minus_rat @ P2 @ Q3 ) )
= ( produc4245557441103728435nt_int
@ ^ [A5: int,C3: int] :
( produc4245557441103728435nt_int
@ ^ [B5: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A5 @ D2 ) @ ( times_times_int @ B5 @ C3 ) ) @ ( times_times_int @ C3 @ D2 ) ) )
@ ( quotient_of @ Q3 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_minus_code
thf(fact_9431_rat__plus__code,axiom,
! [P2: rat,Q3: rat] :
( ( quotient_of @ ( plus_plus_rat @ P2 @ Q3 ) )
= ( produc4245557441103728435nt_int
@ ^ [A5: int,C3: int] :
( produc4245557441103728435nt_int
@ ^ [B5: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A5 @ D2 ) @ ( times_times_int @ B5 @ C3 ) ) @ ( times_times_int @ C3 @ D2 ) ) )
@ ( quotient_of @ Q3 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_plus_code
thf(fact_9432_normalize__denom__zero,axiom,
! [P2: int] :
( ( normalize @ ( product_Pair_int_int @ P2 @ zero_zero_int ) )
= ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).
% normalize_denom_zero
thf(fact_9433_normalize__crossproduct,axiom,
! [Q3: int,S2: int,P2: int,R2: int] :
( ( Q3 != zero_zero_int )
=> ( ( S2 != zero_zero_int )
=> ( ( ( normalize @ ( product_Pair_int_int @ P2 @ Q3 ) )
= ( normalize @ ( product_Pair_int_int @ R2 @ S2 ) ) )
=> ( ( times_times_int @ P2 @ S2 )
= ( times_times_int @ R2 @ Q3 ) ) ) ) ) ).
% normalize_crossproduct
thf(fact_9434_rat__times__code,axiom,
! [P2: rat,Q3: rat] :
( ( quotient_of @ ( times_times_rat @ P2 @ Q3 ) )
= ( produc4245557441103728435nt_int
@ ^ [A5: int,C3: int] :
( produc4245557441103728435nt_int
@ ^ [B5: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A5 @ B5 ) @ ( times_times_int @ C3 @ D2 ) ) )
@ ( quotient_of @ Q3 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_times_code
thf(fact_9435_rat__divide__code,axiom,
! [P2: rat,Q3: rat] :
( ( quotient_of @ ( divide_divide_rat @ P2 @ Q3 ) )
= ( produc4245557441103728435nt_int
@ ^ [A5: int,C3: int] :
( produc4245557441103728435nt_int
@ ^ [B5: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A5 @ D2 ) @ ( times_times_int @ C3 @ B5 ) ) )
@ ( quotient_of @ Q3 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_divide_code
thf(fact_9436_Frct__code__post_I5_J,axiom,
! [K: num] :
( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
= ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).
% Frct_code_post(5)
thf(fact_9437_Suc__0__xor__eq,axiom,
! [N: nat] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% Suc_0_xor_eq
thf(fact_9438_xor__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se6528837805403552850or_nat @ N @ ( suc @ zero_zero_nat ) )
= ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% xor_Suc_0_eq
thf(fact_9439_xor__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).
% xor_nat_numerals(4)
thf(fact_9440_xor__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% xor_nat_numerals(3)
thf(fact_9441_xor__nat__numerals_I2_J,axiom,
! [Y3: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
= ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) ) ).
% xor_nat_numerals(2)
thf(fact_9442_xor__nat__numerals_I1_J,axiom,
! [Y3: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).
% xor_nat_numerals(1)
thf(fact_9443_Frct__code__post_I3_J,axiom,
( ( frct @ ( product_Pair_int_int @ one_one_int @ one_one_int ) )
= one_one_rat ) ).
% Frct_code_post(3)
thf(fact_9444_Frct__code__post_I4_J,axiom,
! [K: num] :
( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
= ( numeral_numeral_rat @ K ) ) ).
% Frct_code_post(4)
thf(fact_9445_xor__nat__unfold,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M6: nat,N2: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ N2 @ ( if_nat @ ( N2 = zero_zero_nat ) @ M6 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% xor_nat_unfold
thf(fact_9446_xor__nat__rec,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M6: nat,N2: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M6 ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% xor_nat_rec
thf(fact_9447_Frct__code__post_I6_J,axiom,
! [K: num,L: num] :
( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L ) ) )
= ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L ) ) ) ).
% Frct_code_post(6)
thf(fact_9448_horner__sum__of__bool__2__less,axiom,
! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).
% horner_sum_of_bool_2_less
thf(fact_9449_push__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% push_bit_nonnegative_int_iff
thf(fact_9450_push__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% push_bit_negative_int_iff
thf(fact_9451_concat__bit__of__zero__1,axiom,
! [N: nat,L: int] :
( ( bit_concat_bit @ N @ zero_zero_int @ L )
= ( bit_se545348938243370406it_int @ N @ L ) ) ).
% concat_bit_of_zero_1
thf(fact_9452_xor__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
= ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% xor_nonnegative_int_iff
thf(fact_9453_xor__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
!= ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% xor_negative_int_iff
thf(fact_9454_push__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% push_bit_of_Suc_0
thf(fact_9455_bit__xor__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
!= ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).
% bit_xor_int_iff
thf(fact_9456_flip__bit__int__def,axiom,
( bit_se2159334234014336723it_int
= ( ^ [N2: nat,K3: int] : ( bit_se6526347334894502574or_int @ K3 @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ).
% flip_bit_int_def
thf(fact_9457_push__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se547839408752420682it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).
% push_bit_nat_eq
thf(fact_9458_XOR__lower,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X @ Y3 ) ) ) ) ).
% XOR_lower
thf(fact_9459_set__bit__nat__def,axiom,
( bit_se7882103937844011126it_nat
= ( ^ [M6: nat,N2: nat] : ( bit_se1412395901928357646or_nat @ N2 @ ( bit_se547839408752420682it_nat @ M6 @ one_one_nat ) ) ) ) ).
% set_bit_nat_def
thf(fact_9460_flip__bit__nat__def,axiom,
( bit_se2161824704523386999it_nat
= ( ^ [M6: nat,N2: nat] : ( bit_se6528837805403552850or_nat @ N2 @ ( bit_se547839408752420682it_nat @ M6 @ one_one_nat ) ) ) ) ).
% flip_bit_nat_def
thf(fact_9461_bit__push__bit__iff__int,axiom,
! [M: nat,K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N )
= ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_int
thf(fact_9462_xor__nat__def,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M6: nat,N2: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% xor_nat_def
thf(fact_9463_bit__push__bit__iff__nat,axiom,
! [M: nat,Q3: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q3 ) @ N )
= ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1148574629649215175it_nat @ Q3 @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_nat
thf(fact_9464_concat__bit__eq,axiom,
( bit_concat_bit
= ( ^ [N2: nat,K3: int,L2: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N2 @ K3 ) @ ( bit_se545348938243370406it_int @ N2 @ L2 ) ) ) ) ).
% concat_bit_eq
thf(fact_9465_concat__bit__def,axiom,
( bit_concat_bit
= ( ^ [N2: nat,K3: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N2 @ K3 ) @ ( bit_se545348938243370406it_int @ N2 @ L2 ) ) ) ) ).
% concat_bit_def
thf(fact_9466_set__bit__int__def,axiom,
( bit_se7879613467334960850it_int
= ( ^ [N2: nat,K3: int] : ( bit_se1409905431419307370or_int @ K3 @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ).
% set_bit_int_def
thf(fact_9467_push__bit__int__def,axiom,
( bit_se545348938243370406it_int
= ( ^ [N2: nat,K3: int] : ( times_times_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% push_bit_int_def
thf(fact_9468_push__bit__nat__def,axiom,
( bit_se547839408752420682it_nat
= ( ^ [N2: nat,M6: nat] : ( times_times_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% push_bit_nat_def
thf(fact_9469_push__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% push_bit_minus_one
thf(fact_9470_XOR__upper,axiom,
! [X: int,N: nat,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_int @ Y3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_int @ ( bit_se6526347334894502574or_int @ X @ Y3 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% XOR_upper
thf(fact_9471_xor__int__rec,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K3: int,L2: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% xor_int_rec
thf(fact_9472_xor__int__unfold,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K3: int,L2: int] :
( if_int
@ ( K3
= ( uminus_uminus_int @ one_one_int ) )
@ ( bit_ri7919022796975470100ot_int @ L2 )
@ ( if_int
@ ( L2
= ( uminus_uminus_int @ one_one_int ) )
@ ( bit_ri7919022796975470100ot_int @ K3 )
@ ( if_int @ ( K3 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_int_unfold
thf(fact_9473_Sum__Ico__nat,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Ico_nat
thf(fact_9474_not__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% not_nonnegative_int_iff
thf(fact_9475_not__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% not_negative_int_iff
thf(fact_9476_atLeastLessThan__singleton,axiom,
! [M: nat] :
( ( set_or4665077453230672383an_nat @ M @ ( suc @ M ) )
= ( insert_nat @ M @ bot_bot_set_nat ) ) ).
% atLeastLessThan_singleton
thf(fact_9477_or__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).
% or_minus_minus_numerals
thf(fact_9478_and__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).
% and_minus_minus_numerals
thf(fact_9479_bit__not__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_not_int_iff
thf(fact_9480_all__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M6: nat] :
( ( ord_less_nat @ M6 @ N )
=> ( P @ M6 ) ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( P @ X2 ) ) ) ) ).
% all_nat_less_eq
thf(fact_9481_ex__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M6: nat] :
( ( ord_less_nat @ M6 @ N )
& ( P @ M6 ) ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
& ( P @ X2 ) ) ) ) ).
% ex_nat_less_eq
thf(fact_9482_atLeastLessThanSuc__atLeastAtMost,axiom,
! [L: nat,U2: nat] :
( ( set_or4665077453230672383an_nat @ L @ ( suc @ U2 ) )
= ( set_or1269000886237332187st_nat @ L @ U2 ) ) ).
% atLeastLessThanSuc_atLeastAtMost
thf(fact_9483_or__int__def,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K3: int,L2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ ( bit_ri7919022796975470100ot_int @ L2 ) ) ) ) ) ).
% or_int_def
thf(fact_9484_not__int__def,axiom,
( bit_ri7919022796975470100ot_int
= ( ^ [K3: int] : ( minus_minus_int @ ( uminus_uminus_int @ K3 ) @ one_one_int ) ) ) ).
% not_int_def
thf(fact_9485_and__not__numerals_I1_J,axiom,
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= zero_zero_int ) ).
% and_not_numerals(1)
thf(fact_9486_or__not__numerals_I1_J,axiom,
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).
% or_not_numerals(1)
thf(fact_9487_atLeast0__lessThan__Suc,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).
% atLeast0_lessThan_Suc
thf(fact_9488_unset__bit__int__def,axiom,
( bit_se4203085406695923979it_int
= ( ^ [N2: nat,K3: int] : ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ) ).
% unset_bit_int_def
thf(fact_9489_xor__int__def,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K3: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ L2 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ L2 ) ) ) ) ).
% xor_int_def
thf(fact_9490_subset__eq__atLeast0__lessThan__finite,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_lessThan_finite
thf(fact_9491_not__int__div__2,axiom,
! [K: int] :
( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% not_int_div_2
thf(fact_9492_even__not__iff__int,axiom,
! [K: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).
% even_not_iff_int
thf(fact_9493_and__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(4)
thf(fact_9494_and__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= one_one_int ) ).
% and_not_numerals(2)
thf(fact_9495_or__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(2)
thf(fact_9496_or__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).
% or_not_numerals(4)
thf(fact_9497_bit__minus__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N )
= ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N ) ) ).
% bit_minus_int_iff
thf(fact_9498_int__numeral__or__not__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).
% int_numeral_or_not_num_neg
thf(fact_9499_int__numeral__not__or__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).
% int_numeral_not_or_num_neg
thf(fact_9500_numeral__or__not__num__eq,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) )
= ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% numeral_or_not_num_eq
thf(fact_9501_atLeastLessThanSuc,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
= ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThanSuc
thf(fact_9502_prod__Suc__Suc__fact,axiom,
! [N: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% prod_Suc_Suc_fact
thf(fact_9503_prod__Suc__fact,axiom,
! [N: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% prod_Suc_fact
thf(fact_9504_and__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(5)
thf(fact_9505_and__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(7)
thf(fact_9506_or__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(3)
thf(fact_9507_and__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= zero_zero_int ) ).
% and_not_numerals(3)
thf(fact_9508_or__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).
% or_not_numerals(7)
thf(fact_9509_atLeastLessThan__nat__numeral,axiom,
! [M: nat,K: num] :
( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThan_nat_numeral
thf(fact_9510_and__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(9)
thf(fact_9511_and__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(6)
thf(fact_9512_or__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% or_not_numerals(6)
thf(fact_9513_or__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(5)
thf(fact_9514_atLeast1__lessThan__eq__remove0,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_lessThan_eq_remove0
thf(fact_9515_and__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% and_not_numerals(8)
thf(fact_9516_or__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(9)
thf(fact_9517_or__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(8)
thf(fact_9518_not__int__rec,axiom,
( bit_ri7919022796975470100ot_int
= ( ^ [K3: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% not_int_rec
thf(fact_9519_sum__power2,axiom,
! [K: nat] :
( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
= ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).
% sum_power2
thf(fact_9520_Chebyshev__sum__upper__nat,axiom,
! [N: nat,A: nat > nat,B: nat > nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ N )
=> ( ord_less_eq_nat @ ( A @ I2 ) @ ( A @ J2 ) ) ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ N )
=> ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I2 ) ) ) )
=> ( ord_less_eq_nat
@ ( times_times_nat @ N
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( times_times_nat @ ( A @ I3 ) @ ( B @ I3 ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
@ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).
% Chebyshev_sum_upper_nat
thf(fact_9521_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
! [L: int,U2: int] :
( ( set_or4662586982721622107an_int @ L @ ( plus_plus_int @ U2 @ one_one_int ) )
= ( set_or1266510415728281911st_int @ L @ U2 ) ) ).
% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9522_VEBT_Osize_I3_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size(3)
thf(fact_9523_Cauchy__iff2,axiom,
( topolo4055970368930404560y_real
= ( ^ [X3: nat > real] :
! [J3: nat] :
? [M9: nat] :
! [M6: nat] :
( ( ord_less_eq_nat @ M9 @ M6 )
=> ! [N2: nat] :
( ( ord_less_eq_nat @ M9 @ N2 )
=> ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X3 @ M6 ) @ ( X3 @ N2 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).
% Cauchy_iff2
thf(fact_9524_VEBT_Osize__gen_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size_gen(1)
thf(fact_9525_valid__eq2,axiom,
! [T: vEBT_VEBT,D: nat] :
( ( vEBT_VEBT_valid @ T @ D )
=> ( vEBT_invar_vebt @ T @ D ) ) ).
% valid_eq2
thf(fact_9526_valid__eq1,axiom,
! [T: vEBT_VEBT,D: nat] :
( ( vEBT_invar_vebt @ T @ D )
=> ( vEBT_VEBT_valid @ T @ D ) ) ).
% valid_eq1
thf(fact_9527_valid__eq,axiom,
vEBT_VEBT_valid = vEBT_invar_vebt ).
% valid_eq
thf(fact_9528_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
! [Uu2: $o,Uv: $o,D: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu2 @ Uv ) @ D )
= ( D = one_one_nat ) ) ).
% VEBT_internal.valid'.simps(1)
thf(fact_9529_VEBT_Osize__gen_I2_J,axiom,
! [X21: $o,X222: $o] :
( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size_gen(2)
thf(fact_9530_Code__Target__Int_Opositive__def,axiom,
code_Target_positive = numeral_numeral_int ).
% Code_Target_Int.positive_def
thf(fact_9531_divmod__step__integer__def,axiom,
( unique4921790084139445826nteger
= ( ^ [L2: num] :
( produc6916734918728496179nteger
@ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L2 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_integer_def
thf(fact_9532_divmod__integer_H__def,axiom,
( unique3479559517661332726nteger
= ( ^ [M6: num,N2: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ) ).
% divmod_integer'_def
thf(fact_9533_times__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% times_integer_code(1)
thf(fact_9534_times__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L )
= zero_z3403309356797280102nteger ) ).
% times_integer_code(2)
thf(fact_9535_sgn__integer__code,axiom,
( sgn_sgn_Code_integer
= ( ^ [K3: code_integer] : ( if_Code_integer @ ( K3 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).
% sgn_integer_code
thf(fact_9536_less__eq__integer__code_I1_J,axiom,
ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ).
% less_eq_integer_code(1)
thf(fact_9537_plus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
= K ) ).
% plus_integer_code(1)
thf(fact_9538_plus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L )
= L ) ).
% plus_integer_code(2)
thf(fact_9539_minus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ L )
= ( uminus1351360451143612070nteger @ L ) ) ).
% minus_integer_code(2)
thf(fact_9540_minus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( minus_8373710615458151222nteger @ K @ zero_z3403309356797280102nteger )
= K ) ).
% minus_integer_code(1)
thf(fact_9541_one__integer_Orsp,axiom,
one_one_int = one_one_int ).
% one_integer.rsp
thf(fact_9542_one__natural_Orsp,axiom,
one_one_nat = one_one_nat ).
% one_natural.rsp
thf(fact_9543_integer__of__int__code,axiom,
( code_integer_of_int
= ( ^ [K3: int] :
( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K3 ) ) )
@ ( if_Code_integer @ ( K3 = zero_zero_int ) @ zero_z3403309356797280102nteger
@ ( if_Code_integer
@ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).
% integer_of_int_code
thf(fact_9544_Code__Numeral_Opositive__def,axiom,
code_positive = numera6620942414471956472nteger ).
% Code_Numeral.positive_def
thf(fact_9545_plus__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( plus_p5714425477246183910nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( plus_plus_int @ Xa2 @ X ) ) ) ).
% plus_integer.abs_eq
thf(fact_9546_times__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( times_times_int @ Xa2 @ X ) ) ) ).
% times_integer.abs_eq
thf(fact_9547_one__integer__def,axiom,
( one_one_Code_integer
= ( code_integer_of_int @ one_one_int ) ) ).
% one_integer_def
thf(fact_9548_less__eq__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( ord_le3102999989581377725nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( ord_less_eq_int @ Xa2 @ X ) ) ).
% less_eq_integer.abs_eq
thf(fact_9549_minus__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( minus_8373710615458151222nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( minus_minus_int @ Xa2 @ X ) ) ) ).
% minus_integer.abs_eq
thf(fact_9550_integer__of__num_I3_J,axiom,
! [N: num] :
( ( code_integer_of_num @ ( bit1 @ N ) )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) @ one_one_Code_integer ) ) ).
% integer_of_num(3)
thf(fact_9551_int__of__integer__code,axiom,
( code_int_of_integer
= ( ^ [K3: code_integer] :
( if_int @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K3 ) ) )
@ ( if_int @ ( K3 = zero_z3403309356797280102nteger ) @ zero_zero_int
@ ( produc1553301316500091796er_int
@ ^ [L2: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ one_one_int ) )
@ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% int_of_integer_code
thf(fact_9552_int__of__integer__numeral,axiom,
! [K: num] :
( ( code_int_of_integer @ ( numera6620942414471956472nteger @ K ) )
= ( numeral_numeral_int @ K ) ) ).
% int_of_integer_numeral
thf(fact_9553_plus__integer_Orep__eq,axiom,
! [X: code_integer,Xa2: code_integer] :
( ( code_int_of_integer @ ( plus_p5714425477246183910nteger @ X @ Xa2 ) )
= ( plus_plus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).
% plus_integer.rep_eq
thf(fact_9554_times__integer_Orep__eq,axiom,
! [X: code_integer,Xa2: code_integer] :
( ( code_int_of_integer @ ( times_3573771949741848930nteger @ X @ Xa2 ) )
= ( times_times_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).
% times_integer.rep_eq
thf(fact_9555_one__integer_Orep__eq,axiom,
( ( code_int_of_integer @ one_one_Code_integer )
= one_one_int ) ).
% one_integer.rep_eq
thf(fact_9556_minus__integer_Orep__eq,axiom,
! [X: code_integer,Xa2: code_integer] :
( ( code_int_of_integer @ ( minus_8373710615458151222nteger @ X @ Xa2 ) )
= ( minus_minus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).
% minus_integer.rep_eq
thf(fact_9557_less__eq__integer_Orep__eq,axiom,
( ord_le3102999989581377725nteger
= ( ^ [X2: code_integer,Xa4: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).
% less_eq_integer.rep_eq
thf(fact_9558_integer__less__eq__iff,axiom,
( ord_le3102999989581377725nteger
= ( ^ [K3: code_integer,L2: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ K3 ) @ ( code_int_of_integer @ L2 ) ) ) ) ).
% integer_less_eq_iff
thf(fact_9559_integer__of__num__def,axiom,
code_integer_of_num = numera6620942414471956472nteger ).
% integer_of_num_def
thf(fact_9560_integer__of__num__triv_I1_J,axiom,
( ( code_integer_of_num @ one )
= one_one_Code_integer ) ).
% integer_of_num_triv(1)
thf(fact_9561_integer__of__num_I2_J,axiom,
! [N: num] :
( ( code_integer_of_num @ ( bit0 @ N ) )
= ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) ) ).
% integer_of_num(2)
thf(fact_9562_integer__of__num__triv_I2_J,axiom,
( ( code_integer_of_num @ ( bit0 @ one ) )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% integer_of_num_triv(2)
thf(fact_9563_num__of__integer__code,axiom,
( code_num_of_integer
= ( ^ [K3: code_integer] :
( if_num @ ( ord_le3102999989581377725nteger @ K3 @ one_one_Code_integer ) @ one
@ ( produc7336495610019696514er_num
@ ^ [L2: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ one ) )
@ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% num_of_integer_code
thf(fact_9564_nat__of__integer__code,axiom,
( code_nat_of_integer
= ( ^ [K3: code_integer] :
( if_nat @ ( ord_le3102999989581377725nteger @ K3 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
@ ( produc1555791787009142072er_nat
@ ^ [L2: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ one_one_nat ) )
@ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% nat_of_integer_code
thf(fact_9565_bit__cut__integer__def,axiom,
( code_bit_cut_integer
= ( ^ [K3: code_integer] :
( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
@ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K3 ) ) ) ) ).
% bit_cut_integer_def
thf(fact_9566_nat__of__integer__non__positive,axiom,
! [K: code_integer] :
( ( ord_le3102999989581377725nteger @ K @ zero_z3403309356797280102nteger )
=> ( ( code_nat_of_integer @ K )
= zero_zero_nat ) ) ).
% nat_of_integer_non_positive
thf(fact_9567_nat__of__integer__code__post_I3_J,axiom,
! [K: num] :
( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% nat_of_integer_code_post(3)
thf(fact_9568_nat__of__integer__code__post_I2_J,axiom,
( ( code_nat_of_integer @ one_one_Code_integer )
= one_one_nat ) ).
% nat_of_integer_code_post(2)
thf(fact_9569_bit__cut__integer__code,axiom,
( code_bit_cut_integer
= ( ^ [K3: code_integer] :
( if_Pro5737122678794959658eger_o @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
@ ( produc9125791028180074456eger_o
@ ^ [R5: code_integer,S6: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S6 ) ) @ ( S6 = one_one_Code_integer ) )
@ ( code_divmod_abs @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_cut_integer_code
thf(fact_9570_csqrt_Osimps_I1_J,axiom,
! [Z4: complex] :
( ( re @ ( csqrt @ Z4 ) )
= ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( re @ Z4 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% csqrt.simps(1)
thf(fact_9571_card__Collect__less__nat,axiom,
! [N: nat] :
( ( finite_card_nat
@ ( collect_nat
@ ^ [I3: nat] : ( ord_less_nat @ I3 @ N ) ) )
= N ) ).
% card_Collect_less_nat
thf(fact_9572_card__atMost,axiom,
! [U2: nat] :
( ( finite_card_nat @ ( set_ord_atMost_nat @ U2 ) )
= ( suc @ U2 ) ) ).
% card_atMost
thf(fact_9573_card__atLeastLessThan,axiom,
! [L: nat,U2: nat] :
( ( finite_card_nat @ ( set_or4665077453230672383an_nat @ L @ U2 ) )
= ( minus_minus_nat @ U2 @ L ) ) ).
% card_atLeastLessThan
thf(fact_9574_card__Collect__le__nat,axiom,
! [N: nat] :
( ( finite_card_nat
@ ( collect_nat
@ ^ [I3: nat] : ( ord_less_eq_nat @ I3 @ N ) ) )
= ( suc @ N ) ) ).
% card_Collect_le_nat
thf(fact_9575_card__atLeastAtMost,axiom,
! [L: nat,U2: nat] :
( ( finite_card_nat @ ( set_or1269000886237332187st_nat @ L @ U2 ) )
= ( minus_minus_nat @ ( suc @ U2 ) @ L ) ) ).
% card_atLeastAtMost
thf(fact_9576_complex__Re__numeral,axiom,
! [V: num] :
( ( re @ ( numera6690914467698888265omplex @ V ) )
= ( numeral_numeral_real @ V ) ) ).
% complex_Re_numeral
thf(fact_9577_card__atLeastLessThan__int,axiom,
! [L: int,U2: int] :
( ( finite_card_int @ ( set_or4662586982721622107an_int @ L @ U2 ) )
= ( nat2 @ ( minus_minus_int @ U2 @ L ) ) ) ).
% card_atLeastLessThan_int
thf(fact_9578_card__atLeastAtMost__int,axiom,
! [L: int,U2: int] :
( ( finite_card_int @ ( set_or1266510415728281911st_int @ L @ U2 ) )
= ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U2 @ L ) @ one_one_int ) ) ) ).
% card_atLeastAtMost_int
thf(fact_9579_Re__divide__numeral,axiom,
! [Z4: complex,W: num] :
( ( re @ ( divide1717551699836669952omplex @ Z4 @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide_divide_real @ ( re @ Z4 ) @ ( numeral_numeral_real @ W ) ) ) ).
% Re_divide_numeral
thf(fact_9580_sums__Re,axiom,
! [X8: nat > complex,A: complex] :
( ( sums_complex @ X8 @ A )
=> ( sums_real
@ ^ [N2: nat] : ( re @ ( X8 @ N2 ) )
@ ( re @ A ) ) ) ).
% sums_Re
thf(fact_9581_Cauchy__Re,axiom,
! [X8: nat > complex] :
( ( topolo6517432010174082258omplex @ X8 )
=> ( topolo4055970368930404560y_real
@ ^ [N2: nat] : ( re @ ( X8 @ N2 ) ) ) ) ).
% Cauchy_Re
thf(fact_9582_complex__Re__le__cmod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( re @ X ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% complex_Re_le_cmod
thf(fact_9583_one__complex_Osimps_I1_J,axiom,
( ( re @ one_one_complex )
= one_one_real ) ).
% one_complex.simps(1)
thf(fact_9584_plus__complex_Osimps_I1_J,axiom,
! [X: complex,Y3: complex] :
( ( re @ ( plus_plus_complex @ X @ Y3 ) )
= ( plus_plus_real @ ( re @ X ) @ ( re @ Y3 ) ) ) ).
% plus_complex.simps(1)
thf(fact_9585_scaleR__complex_Osimps_I1_J,axiom,
! [R2: real,X: complex] :
( ( re @ ( real_V2046097035970521341omplex @ R2 @ X ) )
= ( times_times_real @ R2 @ ( re @ X ) ) ) ).
% scaleR_complex.simps(1)
thf(fact_9586_minus__complex_Osimps_I1_J,axiom,
! [X: complex,Y3: complex] :
( ( re @ ( minus_minus_complex @ X @ Y3 ) )
= ( minus_minus_real @ ( re @ X ) @ ( re @ Y3 ) ) ) ).
% minus_complex.simps(1)
thf(fact_9587_summable__Re,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( summable_real
@ ^ [X2: nat] : ( re @ ( F @ X2 ) ) ) ) ).
% summable_Re
thf(fact_9588_abs__Re__le__cmod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% abs_Re_le_cmod
thf(fact_9589_Re__csqrt,axiom,
! [Z4: complex] : ( ord_less_eq_real @ zero_zero_real @ ( re @ ( csqrt @ Z4 ) ) ) ).
% Re_csqrt
thf(fact_9590_card__less,axiom,
! [M7: set_nat,I4: nat] :
( ( member_nat @ zero_zero_nat @ M7 )
=> ( ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ K3 @ M7 )
& ( ord_less_nat @ K3 @ ( suc @ I4 ) ) ) ) )
!= zero_zero_nat ) ) ).
% card_less
thf(fact_9591_card__less__Suc,axiom,
! [M7: set_nat,I4: nat] :
( ( member_nat @ zero_zero_nat @ M7 )
=> ( ( suc
@ ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ ( suc @ K3 ) @ M7 )
& ( ord_less_nat @ K3 @ I4 ) ) ) ) )
= ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ K3 @ M7 )
& ( ord_less_nat @ K3 @ ( suc @ I4 ) ) ) ) ) ) ) ).
% card_less_Suc
thf(fact_9592_card__less__Suc2,axiom,
! [M7: set_nat,I4: nat] :
( ~ ( member_nat @ zero_zero_nat @ M7 )
=> ( ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ ( suc @ K3 ) @ M7 )
& ( ord_less_nat @ K3 @ I4 ) ) ) )
= ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ K3 @ M7 )
& ( ord_less_nat @ K3 @ ( suc @ I4 ) ) ) ) ) ) ) ).
% card_less_Suc2
thf(fact_9593_subset__card__intvl__is__intvl,axiom,
! [A2: set_nat,K: nat] :
( ( ord_less_eq_set_nat @ A2 @ ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) )
=> ( A2
= ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) ) ) ).
% subset_card_intvl_is_intvl
thf(fact_9594_subset__eq__atLeast0__lessThan__card,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( ord_less_eq_nat @ ( finite_card_nat @ N5 ) @ N ) ) ).
% subset_eq_atLeast0_lessThan_card
thf(fact_9595_card__sum__le__nat__sum,axiom,
! [S3: set_nat] :
( ord_less_eq_nat
@ ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S3 ) ) )
@ ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ S3 ) ) ).
% card_sum_le_nat_sum
thf(fact_9596_card__nth__roots,axiom,
! [C: complex,N: nat] :
( ( C != zero_zero_complex )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( finite_card_complex
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= C ) ) )
= N ) ) ) ).
% card_nth_roots
thf(fact_9597_card__roots__unity__eq,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( finite_card_complex
@ ( collect_complex
@ ^ [Z2: complex] :
( ( power_power_complex @ Z2 @ N )
= one_one_complex ) ) )
= N ) ) ).
% card_roots_unity_eq
thf(fact_9598_cmod__plus__Re__le__0__iff,axiom,
! [Z4: complex] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( re @ Z4 ) ) @ zero_zero_real )
= ( ( re @ Z4 )
= ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z4 ) ) ) ) ).
% cmod_plus_Re_le_0_iff
thf(fact_9599_cos__n__Re__cis__pow__n,axiom,
! [N: nat,A: real] :
( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
= ( re @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).
% cos_n_Re_cis_pow_n
thf(fact_9600_divmod__integer__code,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L2: code_integer] :
( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L2 )
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ ( code_divmod_abs @ K3 @ L2 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L2 @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) )
@ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
@ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K3 @ L2 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L2 ) @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ) ).
% divmod_integer_code
thf(fact_9601_csqrt_Ocode,axiom,
( csqrt
= ( ^ [Z2: complex] :
( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
@ ( times_times_real
@ ( if_real
@ ( ( im @ Z2 )
= zero_zero_real )
@ one_one_real
@ ( sgn_sgn_real @ ( im @ Z2 ) ) )
@ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% csqrt.code
thf(fact_9602_csqrt_Osimps_I2_J,axiom,
! [Z4: complex] :
( ( im @ ( csqrt @ Z4 ) )
= ( times_times_real
@ ( if_real
@ ( ( im @ Z4 )
= zero_zero_real )
@ one_one_real
@ ( sgn_sgn_real @ ( im @ Z4 ) ) )
@ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( re @ Z4 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% csqrt.simps(2)
thf(fact_9603_Im__power__real,axiom,
! [X: complex,N: nat] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( im @ ( power_power_complex @ X @ N ) )
= zero_zero_real ) ) ).
% Im_power_real
thf(fact_9604_complex__Im__numeral,axiom,
! [V: num] :
( ( im @ ( numera6690914467698888265omplex @ V ) )
= zero_zero_real ) ).
% complex_Im_numeral
thf(fact_9605_Im__i__times,axiom,
! [Z4: complex] :
( ( im @ ( times_times_complex @ imaginary_unit @ Z4 ) )
= ( re @ Z4 ) ) ).
% Im_i_times
thf(fact_9606_Re__power__real,axiom,
! [X: complex,N: nat] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( re @ ( power_power_complex @ X @ N ) )
= ( power_power_real @ ( re @ X ) @ N ) ) ) ).
% Re_power_real
thf(fact_9607_Re__i__times,axiom,
! [Z4: complex] :
( ( re @ ( times_times_complex @ imaginary_unit @ Z4 ) )
= ( uminus_uminus_real @ ( im @ Z4 ) ) ) ).
% Re_i_times
thf(fact_9608_Im__divide__numeral,axiom,
! [Z4: complex,W: num] :
( ( im @ ( divide1717551699836669952omplex @ Z4 @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide_divide_real @ ( im @ Z4 ) @ ( numeral_numeral_real @ W ) ) ) ).
% Im_divide_numeral
thf(fact_9609_csqrt__of__real__nonneg,axiom,
! [X: complex] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) )
=> ( ( csqrt @ X )
= ( real_V4546457046886955230omplex @ ( sqrt @ ( re @ X ) ) ) ) ) ) ).
% csqrt_of_real_nonneg
thf(fact_9610_csqrt__minus,axiom,
! [X: complex] :
( ( ( ord_less_real @ ( im @ X ) @ zero_zero_real )
| ( ( ( im @ X )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) ) ) )
=> ( ( csqrt @ ( uminus1482373934393186551omplex @ X ) )
= ( times_times_complex @ imaginary_unit @ ( csqrt @ X ) ) ) ) ).
% csqrt_minus
thf(fact_9611_csqrt__of__real__nonpos,axiom,
! [X: complex] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( ord_less_eq_real @ ( re @ X ) @ zero_zero_real )
=> ( ( csqrt @ X )
= ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X ) ) ) ) ) ) ) ) ).
% csqrt_of_real_nonpos
thf(fact_9612_sums__Im,axiom,
! [X8: nat > complex,A: complex] :
( ( sums_complex @ X8 @ A )
=> ( sums_real
@ ^ [N2: nat] : ( im @ ( X8 @ N2 ) )
@ ( im @ A ) ) ) ).
% sums_Im
thf(fact_9613_Cauchy__Im,axiom,
! [X8: nat > complex] :
( ( topolo6517432010174082258omplex @ X8 )
=> ( topolo4055970368930404560y_real
@ ^ [N2: nat] : ( im @ ( X8 @ N2 ) ) ) ) ).
% Cauchy_Im
thf(fact_9614_imaginary__unit_Osimps_I2_J,axiom,
( ( im @ imaginary_unit )
= one_one_real ) ).
% imaginary_unit.simps(2)
thf(fact_9615_one__complex_Osimps_I2_J,axiom,
( ( im @ one_one_complex )
= zero_zero_real ) ).
% one_complex.simps(2)
thf(fact_9616_plus__complex_Osimps_I2_J,axiom,
! [X: complex,Y3: complex] :
( ( im @ ( plus_plus_complex @ X @ Y3 ) )
= ( plus_plus_real @ ( im @ X ) @ ( im @ Y3 ) ) ) ).
% plus_complex.simps(2)
thf(fact_9617_scaleR__complex_Osimps_I2_J,axiom,
! [R2: real,X: complex] :
( ( im @ ( real_V2046097035970521341omplex @ R2 @ X ) )
= ( times_times_real @ R2 @ ( im @ X ) ) ) ).
% scaleR_complex.simps(2)
thf(fact_9618_minus__complex_Osimps_I2_J,axiom,
! [X: complex,Y3: complex] :
( ( im @ ( minus_minus_complex @ X @ Y3 ) )
= ( minus_minus_real @ ( im @ X ) @ ( im @ Y3 ) ) ) ).
% minus_complex.simps(2)
thf(fact_9619_sums__complex__iff,axiom,
( sums_complex
= ( ^ [F3: nat > complex,X2: complex] :
( ( sums_real
@ ^ [Y2: nat] : ( re @ ( F3 @ Y2 ) )
@ ( re @ X2 ) )
& ( sums_real
@ ^ [Y2: nat] : ( im @ ( F3 @ Y2 ) )
@ ( im @ X2 ) ) ) ) ) ).
% sums_complex_iff
thf(fact_9620_summable__Im,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( summable_real
@ ^ [X2: nat] : ( im @ ( F @ X2 ) ) ) ) ).
% summable_Im
thf(fact_9621_abs__Im__le__cmod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% abs_Im_le_cmod
thf(fact_9622_summable__complex__iff,axiom,
( summable_complex
= ( ^ [F3: nat > complex] :
( ( summable_real
@ ^ [X2: nat] : ( re @ ( F3 @ X2 ) ) )
& ( summable_real
@ ^ [X2: nat] : ( im @ ( F3 @ X2 ) ) ) ) ) ) ).
% summable_complex_iff
thf(fact_9623_times__complex_Osimps_I2_J,axiom,
! [X: complex,Y3: complex] :
( ( im @ ( times_times_complex @ X @ Y3 ) )
= ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( im @ Y3 ) ) @ ( times_times_real @ ( im @ X ) @ ( re @ Y3 ) ) ) ) ).
% times_complex.simps(2)
thf(fact_9624_cmod__Re__le__iff,axiom,
! [X: complex,Y3: complex] :
( ( ( im @ X )
= ( im @ Y3 ) )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) )
= ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( abs_abs_real @ ( re @ Y3 ) ) ) ) ) ).
% cmod_Re_le_iff
thf(fact_9625_cmod__Im__le__iff,axiom,
! [X: complex,Y3: complex] :
( ( ( re @ X )
= ( re @ Y3 ) )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y3 ) )
= ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( abs_abs_real @ ( im @ Y3 ) ) ) ) ) ).
% cmod_Im_le_iff
thf(fact_9626_times__complex_Osimps_I1_J,axiom,
! [X: complex,Y3: complex] :
( ( re @ ( times_times_complex @ X @ Y3 ) )
= ( minus_minus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y3 ) ) ) ) ).
% times_complex.simps(1)
thf(fact_9627_plus__complex_Ocode,axiom,
( plus_plus_complex
= ( ^ [X2: complex,Y2: complex] : ( complex2 @ ( plus_plus_real @ ( re @ X2 ) @ ( re @ Y2 ) ) @ ( plus_plus_real @ ( im @ X2 ) @ ( im @ Y2 ) ) ) ) ) ).
% plus_complex.code
thf(fact_9628_scaleR__complex_Ocode,axiom,
( real_V2046097035970521341omplex
= ( ^ [R5: real,X2: complex] : ( complex2 @ ( times_times_real @ R5 @ ( re @ X2 ) ) @ ( times_times_real @ R5 @ ( im @ X2 ) ) ) ) ) ).
% scaleR_complex.code
thf(fact_9629_minus__complex_Ocode,axiom,
( minus_minus_complex
= ( ^ [X2: complex,Y2: complex] : ( complex2 @ ( minus_minus_real @ ( re @ X2 ) @ ( re @ Y2 ) ) @ ( minus_minus_real @ ( im @ X2 ) @ ( im @ Y2 ) ) ) ) ) ).
% minus_complex.code
thf(fact_9630_csqrt__principal,axiom,
! [Z4: complex] :
( ( ord_less_real @ zero_zero_real @ ( re @ ( csqrt @ Z4 ) ) )
| ( ( ( re @ ( csqrt @ Z4 ) )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( im @ ( csqrt @ Z4 ) ) ) ) ) ).
% csqrt_principal
thf(fact_9631_cmod__le,axiom,
! [Z4: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z4 ) ) @ ( abs_abs_real @ ( im @ Z4 ) ) ) ) ).
% cmod_le
thf(fact_9632_sin__n__Im__cis__pow__n,axiom,
! [N: nat,A: real] :
( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
= ( im @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).
% sin_n_Im_cis_pow_n
thf(fact_9633_Re__exp,axiom,
! [Z4: complex] :
( ( re @ ( exp_complex @ Z4 ) )
= ( times_times_real @ ( exp_real @ ( re @ Z4 ) ) @ ( cos_real @ ( im @ Z4 ) ) ) ) ).
% Re_exp
thf(fact_9634_Im__exp,axiom,
! [Z4: complex] :
( ( im @ ( exp_complex @ Z4 ) )
= ( times_times_real @ ( exp_real @ ( re @ Z4 ) ) @ ( sin_real @ ( im @ Z4 ) ) ) ) ).
% Im_exp
thf(fact_9635_complex__eq,axiom,
! [A: complex] :
( A
= ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( re @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( im @ A ) ) ) ) ) ).
% complex_eq
thf(fact_9636_times__complex_Ocode,axiom,
( times_times_complex
= ( ^ [X2: complex,Y2: complex] : ( complex2 @ ( minus_minus_real @ ( times_times_real @ ( re @ X2 ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X2 ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( times_times_real @ ( re @ X2 ) @ ( im @ Y2 ) ) @ ( times_times_real @ ( im @ X2 ) @ ( re @ Y2 ) ) ) ) ) ) ).
% times_complex.code
thf(fact_9637_exp__eq__polar,axiom,
( exp_complex
= ( ^ [Z2: complex] : ( times_times_complex @ ( real_V4546457046886955230omplex @ ( exp_real @ ( re @ Z2 ) ) ) @ ( cis @ ( im @ Z2 ) ) ) ) ) ).
% exp_eq_polar
thf(fact_9638_cmod__power2,axiom,
! [Z4: complex] :
( ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( power_power_real @ ( re @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cmod_power2
thf(fact_9639_Im__power2,axiom,
! [X: complex] :
( ( im @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X ) ) @ ( im @ X ) ) ) ).
% Im_power2
thf(fact_9640_Re__power2,axiom,
! [X: complex] :
( ( re @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Re_power2
thf(fact_9641_complex__eq__0,axiom,
! [Z4: complex] :
( ( Z4 = zero_zero_complex )
= ( ( plus_plus_real @ ( power_power_real @ ( re @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ) ).
% complex_eq_0
thf(fact_9642_norm__complex__def,axiom,
( real_V1022390504157884413omplex
= ( ^ [Z2: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% norm_complex_def
thf(fact_9643_inverse__complex_Osimps_I1_J,axiom,
! [X: complex] :
( ( re @ ( invers8013647133539491842omplex @ X ) )
= ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% inverse_complex.simps(1)
thf(fact_9644_complex__neq__0,axiom,
! [Z4: complex] :
( ( Z4 != zero_zero_complex )
= ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% complex_neq_0
thf(fact_9645_Re__divide,axiom,
! [X: complex,Y3: complex] :
( ( re @ ( divide1717551699836669952omplex @ X @ Y3 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y3 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Re_divide
thf(fact_9646_csqrt__square,axiom,
! [B: complex] :
( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
| ( ( ( re @ B )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
=> ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= B ) ) ).
% csqrt_square
thf(fact_9647_csqrt__unique,axiom,
! [W: complex,Z4: complex] :
( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= Z4 )
=> ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
| ( ( ( re @ W )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
=> ( ( csqrt @ Z4 )
= W ) ) ) ).
% csqrt_unique
thf(fact_9648_inverse__complex_Osimps_I2_J,axiom,
! [X: complex] :
( ( im @ ( invers8013647133539491842omplex @ X ) )
= ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% inverse_complex.simps(2)
thf(fact_9649_Im__divide,axiom,
! [X: complex,Y3: complex] :
( ( im @ ( divide1717551699836669952omplex @ X @ Y3 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y3 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Im_divide
thf(fact_9650_complex__abs__le__norm,axiom,
! [Z4: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z4 ) ) @ ( abs_abs_real @ ( im @ Z4 ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z4 ) ) ) ).
% complex_abs_le_norm
thf(fact_9651_complex__unit__circle,axiom,
! [Z4: complex] :
( ( Z4 != zero_zero_complex )
=> ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z4 ) @ ( real_V1022390504157884413omplex @ Z4 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z4 ) @ ( real_V1022390504157884413omplex @ Z4 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ) ).
% complex_unit_circle
thf(fact_9652_inverse__complex_Ocode,axiom,
( invers8013647133539491842omplex
= ( ^ [X2: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X2 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X2 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% inverse_complex.code
thf(fact_9653_Complex__divide,axiom,
( divide1717551699836669952omplex
= ( ^ [X2: complex,Y2: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X2 ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X2 ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X2 ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( re @ X2 ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% Complex_divide
thf(fact_9654_Im__Reals__divide,axiom,
! [R2: complex,Z4: complex] :
( ( member_complex @ R2 @ real_V2521375963428798218omplex )
=> ( ( im @ ( divide1717551699836669952omplex @ R2 @ Z4 ) )
= ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R2 ) ) @ ( im @ Z4 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Im_Reals_divide
thf(fact_9655_imaginary__eq__real__iff,axiom,
! [Y3: complex,X: complex] :
( ( member_complex @ Y3 @ real_V2521375963428798218omplex )
=> ( ( member_complex @ X @ real_V2521375963428798218omplex )
=> ( ( ( times_times_complex @ imaginary_unit @ Y3 )
= X )
= ( ( X = zero_zero_complex )
& ( Y3 = zero_zero_complex ) ) ) ) ) ).
% imaginary_eq_real_iff
thf(fact_9656_real__eq__imaginary__iff,axiom,
! [Y3: complex,X: complex] :
( ( member_complex @ Y3 @ real_V2521375963428798218omplex )
=> ( ( member_complex @ X @ real_V2521375963428798218omplex )
=> ( ( X
= ( times_times_complex @ imaginary_unit @ Y3 ) )
= ( ( X = zero_zero_complex )
& ( Y3 = zero_zero_complex ) ) ) ) ) ).
% real_eq_imaginary_iff
thf(fact_9657_Re__Reals__divide,axiom,
! [R2: complex,Z4: complex] :
( ( member_complex @ R2 @ real_V2521375963428798218omplex )
=> ( ( re @ ( divide1717551699836669952omplex @ R2 @ Z4 ) )
= ( divide_divide_real @ ( times_times_real @ ( re @ R2 ) @ ( re @ Z4 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Re_Reals_divide
thf(fact_9658_complex__diff__cnj,axiom,
! [Z4: complex] :
( ( minus_minus_complex @ Z4 @ ( cnj @ Z4 ) )
= ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z4 ) ) ) @ imaginary_unit ) ) ).
% complex_diff_cnj
thf(fact_9659_complex__mult__cnj,axiom,
! [Z4: complex] :
( ( times_times_complex @ Z4 @ ( cnj @ Z4 ) )
= ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% complex_mult_cnj
thf(fact_9660_complex__cnj__mult,axiom,
! [X: complex,Y3: complex] :
( ( cnj @ ( times_times_complex @ X @ Y3 ) )
= ( times_times_complex @ ( cnj @ X ) @ ( cnj @ Y3 ) ) ) ).
% complex_cnj_mult
thf(fact_9661_complex__cnj__one__iff,axiom,
! [Z4: complex] :
( ( ( cnj @ Z4 )
= one_one_complex )
= ( Z4 = one_one_complex ) ) ).
% complex_cnj_one_iff
thf(fact_9662_complex__cnj__one,axiom,
( ( cnj @ one_one_complex )
= one_one_complex ) ).
% complex_cnj_one
thf(fact_9663_complex__cnj__power,axiom,
! [X: complex,N: nat] :
( ( cnj @ ( power_power_complex @ X @ N ) )
= ( power_power_complex @ ( cnj @ X ) @ N ) ) ).
% complex_cnj_power
thf(fact_9664_complex__cnj__add,axiom,
! [X: complex,Y3: complex] :
( ( cnj @ ( plus_plus_complex @ X @ Y3 ) )
= ( plus_plus_complex @ ( cnj @ X ) @ ( cnj @ Y3 ) ) ) ).
% complex_cnj_add
thf(fact_9665_complex__cnj__numeral,axiom,
! [W: num] :
( ( cnj @ ( numera6690914467698888265omplex @ W ) )
= ( numera6690914467698888265omplex @ W ) ) ).
% complex_cnj_numeral
thf(fact_9666_complex__cnj__diff,axiom,
! [X: complex,Y3: complex] :
( ( cnj @ ( minus_minus_complex @ X @ Y3 ) )
= ( minus_minus_complex @ ( cnj @ X ) @ ( cnj @ Y3 ) ) ) ).
% complex_cnj_diff
thf(fact_9667_complex__cnj__neg__numeral,axiom,
! [W: num] :
( ( cnj @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).
% complex_cnj_neg_numeral
thf(fact_9668_complex__In__mult__cnj__zero,axiom,
! [Z4: complex] :
( ( im @ ( times_times_complex @ Z4 @ ( cnj @ Z4 ) ) )
= zero_zero_real ) ).
% complex_In_mult_cnj_zero
thf(fact_9669_sums__cnj,axiom,
! [F: nat > complex,L: complex] :
( ( sums_complex
@ ^ [X2: nat] : ( cnj @ ( F @ X2 ) )
@ ( cnj @ L ) )
= ( sums_complex @ F @ L ) ) ).
% sums_cnj
thf(fact_9670_Re__complex__div__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
= zero_zero_real )
= ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
= zero_zero_real ) ) ).
% Re_complex_div_eq_0
thf(fact_9671_Im__complex__div__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
= zero_zero_real )
= ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
= zero_zero_real ) ) ).
% Im_complex_div_eq_0
thf(fact_9672_complex__mod__sqrt__Re__mult__cnj,axiom,
( real_V1022390504157884413omplex
= ( ^ [Z2: complex] : ( sqrt @ ( re @ ( times_times_complex @ Z2 @ ( cnj @ Z2 ) ) ) ) ) ) ).
% complex_mod_sqrt_Re_mult_cnj
thf(fact_9673_Re__complex__div__lt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Re_complex_div_lt_0
thf(fact_9674_Re__complex__div__gt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Re_complex_div_gt_0
thf(fact_9675_Re__complex__div__le__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Re_complex_div_le_0
thf(fact_9676_Re__complex__div__ge__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Re_complex_div_ge_0
thf(fact_9677_Im__complex__div__lt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Im_complex_div_lt_0
thf(fact_9678_Im__complex__div__gt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Im_complex_div_gt_0
thf(fact_9679_Im__complex__div__le__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Im_complex_div_le_0
thf(fact_9680_Im__complex__div__ge__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Im_complex_div_ge_0
thf(fact_9681_complex__mod__mult__cnj,axiom,
! [Z4: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z4 @ ( cnj @ Z4 ) ) )
= ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% complex_mod_mult_cnj
thf(fact_9682_complex__div__gt__0,axiom,
! [A: complex,B: complex] :
( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
& ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).
% complex_div_gt_0
thf(fact_9683_complex__norm__square,axiom,
! [Z4: complex] :
( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( times_times_complex @ Z4 @ ( cnj @ Z4 ) ) ) ).
% complex_norm_square
thf(fact_9684_complex__add__cnj,axiom,
! [Z4: complex] :
( ( plus_plus_complex @ Z4 @ ( cnj @ Z4 ) )
= ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z4 ) ) ) ) ).
% complex_add_cnj
thf(fact_9685_complex__div__cnj,axiom,
( divide1717551699836669952omplex
= ( ^ [A5: complex,B5: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A5 @ ( cnj @ B5 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B5 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% complex_div_cnj
thf(fact_9686_cnj__add__mult__eq__Re,axiom,
! [Z4: complex,W: complex] :
( ( plus_plus_complex @ ( times_times_complex @ Z4 @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z4 ) @ W ) )
= ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z4 @ ( cnj @ W ) ) ) ) ) ) ).
% cnj_add_mult_eq_Re
thf(fact_9687_nat_Odisc__eq__case_I2_J,axiom,
! [Nat: nat] :
( ( Nat != zero_zero_nat )
= ( case_nat_o @ $false
@ ^ [Uu: nat] : $true
@ Nat ) ) ).
% nat.disc_eq_case(2)
thf(fact_9688_nat_Odisc__eq__case_I1_J,axiom,
! [Nat: nat] :
( ( Nat = zero_zero_nat )
= ( case_nat_o @ $true
@ ^ [Uu: nat] : $false
@ Nat ) ) ).
% nat.disc_eq_case(1)
thf(fact_9689_less__eq__nat_Osimps_I2_J,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).
% less_eq_nat.simps(2)
thf(fact_9690_max__Suc1,axiom,
! [N: nat,M: nat] :
( ( ord_max_nat @ ( suc @ N ) @ M )
= ( case_nat_nat @ ( suc @ N )
@ ^ [M3: nat] : ( suc @ ( ord_max_nat @ N @ M3 ) )
@ M ) ) ).
% max_Suc1
thf(fact_9691_max__Suc2,axiom,
! [M: nat,N: nat] :
( ( ord_max_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ ( suc @ N )
@ ^ [M3: nat] : ( suc @ ( ord_max_nat @ M3 @ N ) )
@ M ) ) ).
% max_Suc2
thf(fact_9692_diff__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ zero_zero_nat
@ ^ [K3: nat] : K3
@ ( minus_minus_nat @ M @ N ) ) ) ).
% diff_Suc
thf(fact_9693_binomial__def,axiom,
( binomial
= ( ^ [N2: nat,K3: nat] :
( finite_card_set_nat
@ ( collect_set_nat
@ ^ [K7: set_nat] :
( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) )
& ( ( finite_card_nat @ K7 )
= K3 ) ) ) ) ) ) ).
% binomial_def
thf(fact_9694_bezw__0,axiom,
! [X: nat] :
( ( bezw @ X @ zero_zero_nat )
= ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) ).
% bezw_0
thf(fact_9695_pred__def,axiom,
( pred
= ( case_nat_nat @ zero_zero_nat
@ ^ [X24: nat] : X24 ) ) ).
% pred_def
thf(fact_9696_prod__decode__aux_Osimps,axiom,
( nat_prod_decode_aux
= ( ^ [K3: nat,M6: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M6 @ K3 ) @ ( product_Pair_nat_nat @ M6 @ ( minus_minus_nat @ K3 @ M6 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus_nat @ M6 @ ( suc @ K3 ) ) ) ) ) ) ).
% prod_decode_aux.simps
thf(fact_9697_prod__decode__aux_Oelims,axiom,
! [X: nat,Xa2: nat,Y3: product_prod_nat_nat] :
( ( ( nat_prod_decode_aux @ X @ Xa2 )
= Y3 )
=> ( ( ( ord_less_eq_nat @ Xa2 @ X )
=> ( Y3
= ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq_nat @ Xa2 @ X )
=> ( Y3
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X ) ) ) ) ) ) ) ).
% prod_decode_aux.elims
thf(fact_9698_drop__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_numeral_minus_bit1
thf(fact_9699_drop__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% drop_bit_nonnegative_int_iff
thf(fact_9700_drop__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% drop_bit_negative_int_iff
thf(fact_9701_drop__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% drop_bit_minus_one
thf(fact_9702_drop__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% drop_bit_Suc_minus_bit0
thf(fact_9703_drop__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% drop_bit_numeral_minus_bit0
thf(fact_9704_drop__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_Suc_minus_bit1
thf(fact_9705_drop__bit__push__bit__int,axiom,
! [M: nat,N: nat,K: int] :
( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N @ K ) )
= ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N @ M ) @ K ) ) ) ).
% drop_bit_push_bit_int
thf(fact_9706_drop__bit__int__def,axiom,
( bit_se8568078237143864401it_int
= ( ^ [N2: nat,K3: int] : ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% drop_bit_int_def
thf(fact_9707_prod__decode__aux_Opelims,axiom,
! [X: nat,Xa2: nat,Y3: product_prod_nat_nat] :
( ( ( nat_prod_decode_aux @ X @ Xa2 )
= Y3 )
=> ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) )
=> ~ ( ( ( ( ord_less_eq_nat @ Xa2 @ X )
=> ( Y3
= ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq_nat @ Xa2 @ X )
=> ( Y3
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X ) ) ) ) ) )
=> ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) ) ) ) ) ).
% prod_decode_aux.pelims
thf(fact_9708_Suc__0__div__numeral,axiom,
! [K: num] :
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
= ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).
% Suc_0_div_numeral
thf(fact_9709_Suc__0__mod__numeral,axiom,
! [K: num] :
( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
= ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).
% Suc_0_mod_numeral
thf(fact_9710_drop__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% drop_bit_of_Suc_0
thf(fact_9711_fst__divmod__nat,axiom,
! [M: nat,N: nat] :
( ( product_fst_nat_nat @ ( divmod_nat @ M @ N ) )
= ( divide_divide_nat @ M @ N ) ) ).
% fst_divmod_nat
thf(fact_9712_snd__divmod__nat,axiom,
! [M: nat,N: nat] :
( ( product_snd_nat_nat @ ( divmod_nat @ M @ N ) )
= ( modulo_modulo_nat @ M @ N ) ) ).
% snd_divmod_nat
thf(fact_9713_drop__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se8570568707652914677it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se8568078237143864401it_int @ N @ K ) ) ) ).
% drop_bit_nat_eq
thf(fact_9714_drop__bit__nat__def,axiom,
( bit_se8570568707652914677it_nat
= ( ^ [N2: nat,M6: nat] : ( divide_divide_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% drop_bit_nat_def
thf(fact_9715_bezw__non__0,axiom,
! [Y3: nat,X: nat] :
( ( ord_less_nat @ zero_zero_nat @ Y3 )
=> ( ( bezw @ X @ Y3 )
= ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X @ Y3 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X @ Y3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X @ Y3 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y3 ) ) ) ) ) ) ) ).
% bezw_non_0
thf(fact_9716_bezw_Oelims,axiom,
! [X: nat,Xa2: nat,Y3: product_prod_int_int] :
( ( ( bezw @ X @ Xa2 )
= Y3 )
=> ( ( ( Xa2 = zero_zero_nat )
=> ( Y3
= ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
& ( ( Xa2 != zero_zero_nat )
=> ( Y3
= ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa2 ) ) ) ) ) ) ) ) ) ).
% bezw.elims
thf(fact_9717_bezw_Osimps,axiom,
( bezw
= ( ^ [X2: nat,Y2: nat] : ( if_Pro3027730157355071871nt_int @ ( Y2 = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X2 @ Y2 ) ) ) ) ) ) ) ) ).
% bezw.simps
thf(fact_9718_rat__sgn__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( sgn_sgn_rat @ P2 ) )
= ( product_Pair_int_int @ ( sgn_sgn_int @ ( product_fst_int_int @ ( quotient_of @ P2 ) ) ) @ one_one_int ) ) ).
% rat_sgn_code
thf(fact_9719_bezw_Opelims,axiom,
! [X: nat,Xa2: nat,Y3: product_prod_int_int] :
( ( ( bezw @ X @ Xa2 )
= Y3 )
=> ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) )
=> ~ ( ( ( ( Xa2 = zero_zero_nat )
=> ( Y3
= ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
& ( ( Xa2 != zero_zero_nat )
=> ( Y3
= ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa2 ) ) ) ) ) ) ) )
=> ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) ) ) ) ) ).
% bezw.pelims
thf(fact_9720_minus__one__mod__numeral,axiom,
! [N: num] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
= ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% minus_one_mod_numeral
thf(fact_9721_one__mod__minus__numeral,axiom,
! [N: num] :
( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ) ).
% one_mod_minus_numeral
thf(fact_9722_minus__numeral__mod__numeral,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% minus_numeral_mod_numeral
thf(fact_9723_numeral__mod__minus__numeral,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ) ).
% numeral_mod_minus_numeral
thf(fact_9724_Divides_Oadjust__mod__def,axiom,
( adjust_mod
= ( ^ [L2: int,R5: int] : ( if_int @ ( R5 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ L2 @ R5 ) ) ) ) ).
% Divides.adjust_mod_def
thf(fact_9725_normalize__def,axiom,
( normalize
= ( ^ [P5: product_prod_int_int] :
( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P5 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) )
@ ( if_Pro3027730157355071871nt_int
@ ( ( product_snd_int_int @ P5 )
= zero_zero_int )
@ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
@ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) ) ) ) ) ) ).
% normalize_def
thf(fact_9726_finite__enumerate,axiom,
! [S3: set_nat] :
( ( finite_finite_nat @ S3 )
=> ? [R4: nat > nat] :
( ( strict1292158309912662752at_nat @ R4 @ ( set_ord_lessThan_nat @ ( finite_card_nat @ S3 ) ) )
& ! [N9: nat] :
( ( ord_less_nat @ N9 @ ( finite_card_nat @ S3 ) )
=> ( member_nat @ ( R4 @ N9 ) @ S3 ) ) ) ) ).
% finite_enumerate
thf(fact_9727_gcd__1__int,axiom,
! [M: int] :
( ( gcd_gcd_int @ M @ one_one_int )
= one_one_int ) ).
% gcd_1_int
thf(fact_9728_gcd__neg__numeral__2__int,axiom,
! [X: int,N: num] :
( ( gcd_gcd_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( gcd_gcd_int @ X @ ( numeral_numeral_int @ N ) ) ) ).
% gcd_neg_numeral_2_int
thf(fact_9729_gcd__neg__numeral__1__int,axiom,
! [N: num,X: int] :
( ( gcd_gcd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ X )
= ( gcd_gcd_int @ ( numeral_numeral_int @ N ) @ X ) ) ).
% gcd_neg_numeral_1_int
thf(fact_9730_gcd__ge__0__int,axiom,
! [X: int,Y3: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_gcd_int @ X @ Y3 ) ) ).
% gcd_ge_0_int
thf(fact_9731_bezout__int,axiom,
! [X: int,Y3: int] :
? [U4: int,V2: int] :
( ( plus_plus_int @ ( times_times_int @ U4 @ X ) @ ( times_times_int @ V2 @ Y3 ) )
= ( gcd_gcd_int @ X @ Y3 ) ) ).
% bezout_int
thf(fact_9732_gcd__mult__distrib__int,axiom,
! [K: int,M: int,N: int] :
( ( times_times_int @ ( abs_abs_int @ K ) @ ( gcd_gcd_int @ M @ N ) )
= ( gcd_gcd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) ) ) ).
% gcd_mult_distrib_int
thf(fact_9733_gcd__le1__int,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).
% gcd_le1_int
thf(fact_9734_gcd__le2__int,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).
% gcd_le2_int
thf(fact_9735_gcd__cases__int,axiom,
! [X: int,Y3: int,P: int > $o] :
( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( P @ ( gcd_gcd_int @ X @ Y3 ) ) ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ Y3 @ zero_zero_int )
=> ( P @ ( gcd_gcd_int @ X @ ( uminus_uminus_int @ Y3 ) ) ) ) )
=> ( ( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ Y3 ) ) ) )
=> ( ( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y3 @ zero_zero_int )
=> ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ ( uminus_uminus_int @ Y3 ) ) ) ) )
=> ( P @ ( gcd_gcd_int @ X @ Y3 ) ) ) ) ) ) ).
% gcd_cases_int
thf(fact_9736_gcd__unique__int,axiom,
! [D: int,A: int,B: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ D )
& ( dvd_dvd_int @ D @ A )
& ( dvd_dvd_int @ D @ B )
& ! [E3: int] :
( ( ( dvd_dvd_int @ E3 @ A )
& ( dvd_dvd_int @ E3 @ B ) )
=> ( dvd_dvd_int @ E3 @ D ) ) )
= ( D
= ( gcd_gcd_int @ A @ B ) ) ) ).
% gcd_unique_int
thf(fact_9737_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M: nat] :
( ! [K2: nat] :
( ( ord_less_nat @ N @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ! [I: nat] :
( ( ord_less_nat @ K2 @ I )
=> ( P @ I ) )
=> ( P @ K2 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_9738_gcd__1__nat,axiom,
! [M: nat] :
( ( gcd_gcd_nat @ M @ one_one_nat )
= one_one_nat ) ).
% gcd_1_nat
thf(fact_9739_gcd__Suc__0,axiom,
! [M: nat] :
( ( gcd_gcd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( suc @ zero_zero_nat ) ) ).
% gcd_Suc_0
thf(fact_9740_gcd__pos__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N ) )
= ( ( M != zero_zero_nat )
| ( N != zero_zero_nat ) ) ) ).
% gcd_pos_nat
thf(fact_9741_gcd__diff2__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( gcd_gcd_nat @ ( minus_minus_nat @ N @ M ) @ N )
= ( gcd_gcd_nat @ M @ N ) ) ) ).
% gcd_diff2_nat
thf(fact_9742_gcd__diff1__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N ) @ N )
= ( gcd_gcd_nat @ M @ N ) ) ) ).
% gcd_diff1_nat
thf(fact_9743_gcd__le1__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).
% gcd_le1_nat
thf(fact_9744_gcd__le2__nat,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).
% gcd_le2_nat
thf(fact_9745_gcd__mult__distrib__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( gcd_gcd_nat @ M @ N ) )
= ( gcd_gcd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% gcd_mult_distrib_nat
thf(fact_9746_gcd__red__nat,axiom,
( gcd_gcd_nat
= ( ^ [X2: nat,Y2: nat] : ( gcd_gcd_nat @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) ) ).
% gcd_red_nat
thf(fact_9747_gcd__non__0__nat,axiom,
! [Y3: nat,X: nat] :
( ( Y3 != zero_zero_nat )
=> ( ( gcd_gcd_nat @ X @ Y3 )
= ( gcd_gcd_nat @ Y3 @ ( modulo_modulo_nat @ X @ Y3 ) ) ) ) ).
% gcd_non_0_nat
thf(fact_9748_gcd__nat_Osimps,axiom,
( gcd_gcd_nat
= ( ^ [X2: nat,Y2: nat] : ( if_nat @ ( Y2 = zero_zero_nat ) @ X2 @ ( gcd_gcd_nat @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) ) ) ).
% gcd_nat.simps
thf(fact_9749_gcd__nat_Oelims,axiom,
! [X: nat,Xa2: nat,Y3: nat] :
( ( ( gcd_gcd_nat @ X @ Xa2 )
= Y3 )
=> ( ( ( Xa2 = zero_zero_nat )
=> ( Y3 = X ) )
& ( ( Xa2 != zero_zero_nat )
=> ( Y3
= ( gcd_gcd_nat @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) ) ) ) ).
% gcd_nat.elims
thf(fact_9750_bezout__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [X5: nat,Y4: nat] :
( ( times_times_nat @ A @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).
% bezout_nat
thf(fact_9751_bezout__gcd__nat_H,axiom,
! [B: nat,A: nat] :
? [X5: nat,Y4: nat] :
( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y4 ) @ ( times_times_nat @ A @ X5 ) )
& ( ( minus_minus_nat @ ( times_times_nat @ A @ X5 ) @ ( times_times_nat @ B @ Y4 ) )
= ( gcd_gcd_nat @ A @ B ) ) )
| ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y4 ) @ ( times_times_nat @ B @ X5 ) )
& ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A @ Y4 ) )
= ( gcd_gcd_nat @ A @ B ) ) ) ) ).
% bezout_gcd_nat'
thf(fact_9752_bezw__aux,axiom,
! [X: nat,Y3: nat] :
( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X @ Y3 ) )
= ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X @ Y3 ) ) @ ( semiri1314217659103216013at_int @ X ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X @ Y3 ) ) @ ( semiri1314217659103216013at_int @ Y3 ) ) ) ) ).
% bezw_aux
thf(fact_9753_gcd__nat_Opelims,axiom,
! [X: nat,Xa2: nat,Y3: nat] :
( ( ( gcd_gcd_nat @ X @ Xa2 )
= Y3 )
=> ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) )
=> ~ ( ( ( ( Xa2 = zero_zero_nat )
=> ( Y3 = X ) )
& ( ( Xa2 != zero_zero_nat )
=> ( Y3
= ( gcd_gcd_nat @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) ) )
=> ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) ) ) ) ) ).
% gcd_nat.pelims
thf(fact_9754_card__greaterThanLessThan__int,axiom,
! [L: int,U2: int] :
( ( finite_card_int @ ( set_or5832277885323065728an_int @ L @ U2 ) )
= ( nat2 @ ( minus_minus_int @ U2 @ ( plus_plus_int @ L @ one_one_int ) ) ) ) ).
% card_greaterThanLessThan_int
thf(fact_9755_xor__minus__numerals_I2_J,axiom,
! [K: int,N: num] :
( ( bit_se6526347334894502574or_int @ K @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K @ ( neg_numeral_sub_int @ N @ one ) ) ) ) ).
% xor_minus_numerals(2)
thf(fact_9756_xor__minus__numerals_I1_J,axiom,
! [N: num,K: int] :
( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ K )
= ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N @ one ) @ K ) ) ) ).
% xor_minus_numerals(1)
thf(fact_9757_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
! [L: int,U2: int] :
( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L @ one_one_int ) @ U2 )
= ( set_or5832277885323065728an_int @ L @ U2 ) ) ).
% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_9758_sub__BitM__One__eq,axiom,
! [N: num] :
( ( neg_numeral_sub_int @ ( bitM @ N ) @ one )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N @ one ) ) ) ).
% sub_BitM_One_eq
thf(fact_9759_card__greaterThanLessThan,axiom,
! [L: nat,U2: nat] :
( ( finite_card_nat @ ( set_or5834768355832116004an_nat @ L @ U2 ) )
= ( minus_minus_nat @ U2 @ ( suc @ L ) ) ) ).
% card_greaterThanLessThan
thf(fact_9760_atLeastSucLessThan__greaterThanLessThan,axiom,
! [L: nat,U2: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ L ) @ U2 )
= ( set_or5834768355832116004an_nat @ L @ U2 ) ) ).
% atLeastSucLessThan_greaterThanLessThan
thf(fact_9761_tanh__real__bounds,axiom,
! [X: real] : ( member_real @ ( tanh_real @ X ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) ).
% tanh_real_bounds
thf(fact_9762_Suc__funpow,axiom,
! [N: nat] :
( ( compow_nat_nat @ N @ suc )
= ( plus_plus_nat @ N ) ) ).
% Suc_funpow
thf(fact_9763_divmod__integer__eq__cases,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L2: code_integer] :
( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
@ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
@ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L2
@ ( if_Pro6119634080678213985nteger
@ ( ( sgn_sgn_Code_integer @ K3 )
= ( sgn_sgn_Code_integer @ L2 ) )
@ ( code_divmod_abs @ K3 @ L2 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L2 ) @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ).
% divmod_integer_eq_cases
thf(fact_9764_card_Ocomp__fun__commute__on,axiom,
( ( comp_nat_nat_nat @ suc @ suc )
= ( comp_nat_nat_nat @ suc @ suc ) ) ).
% card.comp_fun_commute_on
thf(fact_9765_Code__Numeral_Onegative__def,axiom,
( code_negative
= ( comp_C3531382070062128313er_num @ uminus1351360451143612070nteger @ numera6620942414471956472nteger ) ) ).
% Code_Numeral.negative_def
thf(fact_9766_Code__Target__Int_Onegative__def,axiom,
( code_Target_negative
= ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).
% Code_Target_Int.negative_def
thf(fact_9767_max__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
@ ^ [X2: nat,Y2: nat] : ( ord_less_eq_nat @ Y2 @ X2 )
@ ^ [X2: nat,Y2: nat] : ( ord_less_nat @ Y2 @ X2 ) ) ).
% max_nat.semilattice_neutr_order_axioms
thf(fact_9768_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1623282765462674594er_nat @ gcd_gcd_nat @ zero_zero_nat @ dvd_dvd_nat
@ ^ [M6: nat,N2: nat] :
( ( dvd_dvd_nat @ M6 @ N2 )
& ( M6 != N2 ) ) ) ).
% gcd_nat.semilattice_neutr_order_axioms
thf(fact_9769_times__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( times_times_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y2: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X2 @ U3 ) @ ( times_times_nat @ Y2 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X2 @ V4 ) @ ( times_times_nat @ Y2 @ U3 ) ) ) )
@ Xa2
@ X ) ) ) ).
% times_int.abs_eq
thf(fact_9770_Gcd__remove0__nat,axiom,
! [M7: set_nat] :
( ( finite_finite_nat @ M7 )
=> ( ( gcd_Gcd_nat @ M7 )
= ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M7 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).
% Gcd_remove0_nat
thf(fact_9771_eq__Abs__Integ,axiom,
! [Z4: int] :
~ ! [X5: nat,Y4: nat] :
( Z4
!= ( abs_Integ @ ( product_Pair_nat_nat @ X5 @ Y4 ) ) ) ).
% eq_Abs_Integ
thf(fact_9772_Gcd__nat__eq__one,axiom,
! [N5: set_nat] :
( ( member_nat @ one_one_nat @ N5 )
=> ( ( gcd_Gcd_nat @ N5 )
= one_one_nat ) ) ).
% Gcd_nat_eq_one
thf(fact_9773_nat_Oabs__eq,axiom,
! [X: product_prod_nat_nat] :
( ( nat2 @ ( abs_Integ @ X ) )
= ( produc6842872674320459806at_nat @ minus_minus_nat @ X ) ) ).
% nat.abs_eq
thf(fact_9774_zero__int__def,axiom,
( zero_zero_int
= ( abs_Integ @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) ) ).
% zero_int_def
thf(fact_9775_int__def,axiom,
( semiri1314217659103216013at_int
= ( ^ [N2: nat] : ( abs_Integ @ ( product_Pair_nat_nat @ N2 @ zero_zero_nat ) ) ) ) ).
% int_def
thf(fact_9776_uminus__int_Oabs__eq,axiom,
! [X: product_prod_nat_nat] :
( ( uminus_uminus_int @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc2626176000494625587at_nat
@ ^ [X2: nat,Y2: nat] : ( product_Pair_nat_nat @ Y2 @ X2 )
@ X ) ) ) ).
% uminus_int.abs_eq
thf(fact_9777_one__int__def,axiom,
( one_one_int
= ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).
% one_int_def
thf(fact_9778_less__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( ord_less_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y2: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U3 @ Y2 ) ) )
@ Xa2
@ X ) ) ).
% less_int.abs_eq
thf(fact_9779_less__eq__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( ord_less_eq_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y2: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U3 @ Y2 ) ) )
@ Xa2
@ X ) ) ).
% less_eq_int.abs_eq
thf(fact_9780_plus__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( plus_plus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y2: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ U3 ) @ ( plus_plus_nat @ Y2 @ V4 ) ) )
@ Xa2
@ X ) ) ) ).
% plus_int.abs_eq
thf(fact_9781_minus__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( minus_minus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y2: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ Y2 @ U3 ) ) )
@ Xa2
@ X ) ) ) ).
% minus_int.abs_eq
thf(fact_9782_Gcd__int__greater__eq__0,axiom,
! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Gcd_int @ K5 ) ) ).
% Gcd_int_greater_eq_0
thf(fact_9783_less__eq__int_Orep__eq,axiom,
( ord_less_eq_int
= ( ^ [X2: int,Xa4: int] :
( produc8739625826339149834_nat_o
@ ^ [Y2: nat,Z2: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y2 @ V4 ) @ ( plus_plus_nat @ U3 @ Z2 ) ) )
@ ( rep_Integ @ X2 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_eq_int.rep_eq
thf(fact_9784_less__int_Orep__eq,axiom,
( ord_less_int
= ( ^ [X2: int,Xa4: int] :
( produc8739625826339149834_nat_o
@ ^ [Y2: nat,Z2: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y2 @ V4 ) @ ( plus_plus_nat @ U3 @ Z2 ) ) )
@ ( rep_Integ @ X2 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_int.rep_eq
thf(fact_9785_nat_Orep__eq,axiom,
( nat2
= ( ^ [X2: int] : ( produc6842872674320459806at_nat @ minus_minus_nat @ ( rep_Integ @ X2 ) ) ) ) ).
% nat.rep_eq
thf(fact_9786_prod__encode__def,axiom,
( nat_prod_encode
= ( produc6842872674320459806at_nat
@ ^ [M6: nat,N2: nat] : ( plus_plus_nat @ ( nat_triangle @ ( plus_plus_nat @ M6 @ N2 ) ) @ M6 ) ) ) ).
% prod_encode_def
thf(fact_9787_uminus__int__def,axiom,
( uminus_uminus_int
= ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
@ ( produc2626176000494625587at_nat
@ ^ [X2: nat,Y2: nat] : ( product_Pair_nat_nat @ Y2 @ X2 ) ) ) ) ).
% uminus_int_def
thf(fact_9788_le__prod__encode__2,axiom,
! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).
% le_prod_encode_2
thf(fact_9789_le__prod__encode__1,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).
% le_prod_encode_1
thf(fact_9790_prod__encode__prod__decode__aux,axiom,
! [K: nat,M: nat] :
( ( nat_prod_encode @ ( nat_prod_decode_aux @ K @ M ) )
= ( plus_plus_nat @ ( nat_triangle @ K ) @ M ) ) ).
% prod_encode_prod_decode_aux
thf(fact_9791_times__int__def,axiom,
( times_times_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y2: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X2 @ U3 ) @ ( times_times_nat @ Y2 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X2 @ V4 ) @ ( times_times_nat @ Y2 @ U3 ) ) ) ) ) ) ) ).
% times_int_def
thf(fact_9792_minus__int__def,axiom,
( minus_minus_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y2: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ Y2 @ U3 ) ) ) ) ) ) ).
% minus_int_def
thf(fact_9793_plus__int__def,axiom,
( plus_plus_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y2: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ U3 ) @ ( plus_plus_nat @ Y2 @ V4 ) ) ) ) ) ) ).
% plus_int_def
thf(fact_9794_num__of__nat_Osimps_I2_J,axiom,
! [N: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= ( inc @ ( num_of_nat @ N ) ) ) )
& ( ~ ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= one ) ) ) ).
% num_of_nat.simps(2)
thf(fact_9795_pred__nat__def,axiom,
( pred_nat
= ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [M6: nat,N2: nat] :
( N2
= ( suc @ M6 ) ) ) ) ) ).
% pred_nat_def
thf(fact_9796_num__of__nat__numeral__eq,axiom,
! [Q3: num] :
( ( num_of_nat @ ( numeral_numeral_nat @ Q3 ) )
= Q3 ) ).
% num_of_nat_numeral_eq
thf(fact_9797_num__of__nat_Osimps_I1_J,axiom,
( ( num_of_nat @ zero_zero_nat )
= one ) ).
% num_of_nat.simps(1)
thf(fact_9798_numeral__num__of__nat,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( numeral_numeral_nat @ ( num_of_nat @ N ) )
= N ) ) ).
% numeral_num_of_nat
thf(fact_9799_num__of__nat__One,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ one_one_nat )
=> ( ( num_of_nat @ N )
= one ) ) ).
% num_of_nat_One
thf(fact_9800_num__of__nat__double,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( plus_plus_nat @ N @ N ) )
= ( bit0 @ ( num_of_nat @ N ) ) ) ) ).
% num_of_nat_double
thf(fact_9801_num__of__nat__plus__distrib,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N ) ) ) ) ) ).
% num_of_nat_plus_distrib
thf(fact_9802_nth__sorted__list__of__set__greaterThanLessThan,axiom,
! [N: nat,J: nat,I4: nat] :
( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ ( suc @ I4 ) ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I4 @ J ) ) @ N )
= ( suc @ ( plus_plus_nat @ I4 @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9803_pow_Osimps_I3_J,axiom,
! [X: num,Y3: num] :
( ( pow @ X @ ( bit1 @ Y3 ) )
= ( times_times_num @ ( sqr @ ( pow @ X @ Y3 ) ) @ X ) ) ).
% pow.simps(3)
thf(fact_9804_sqr_Osimps_I2_J,axiom,
! [N: num] :
( ( sqr @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( sqr @ N ) ) ) ) ).
% sqr.simps(2)
thf(fact_9805_sqr_Osimps_I1_J,axiom,
( ( sqr @ one )
= one ) ).
% sqr.simps(1)
thf(fact_9806_sqr__conv__mult,axiom,
( sqr
= ( ^ [X2: num] : ( times_times_num @ X2 @ X2 ) ) ) ).
% sqr_conv_mult
thf(fact_9807_pow_Osimps_I2_J,axiom,
! [X: num,Y3: num] :
( ( pow @ X @ ( bit0 @ Y3 ) )
= ( sqr @ ( pow @ X @ Y3 ) ) ) ).
% pow.simps(2)
thf(fact_9808_sqr_Osimps_I3_J,axiom,
! [N: num] :
( ( sqr @ ( bit1 @ N ) )
= ( bit1 @ ( bit0 @ ( plus_plus_num @ ( sqr @ N ) @ N ) ) ) ) ).
% sqr.simps(3)
thf(fact_9809_nth__sorted__list__of__set__greaterThanAtMost,axiom,
! [N: nat,J: nat,I4: nat] :
( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ I4 ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I4 @ J ) ) @ N )
= ( suc @ ( plus_plus_nat @ I4 @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9810_card__greaterThanAtMost,axiom,
! [L: nat,U2: nat] :
( ( finite_card_nat @ ( set_or6659071591806873216st_nat @ L @ U2 ) )
= ( minus_minus_nat @ U2 @ L ) ) ).
% card_greaterThanAtMost
thf(fact_9811_atLeastSucAtMost__greaterThanAtMost,axiom,
! [L: nat,U2: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ L ) @ U2 )
= ( set_or6659071591806873216st_nat @ L @ U2 ) ) ).
% atLeastSucAtMost_greaterThanAtMost
thf(fact_9812_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( ? [Uu3: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( Xa2 = one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Deg2 = Xa2 )
& ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(3)
thf(fact_9813_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( ? [Uu3: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( Xa2 != one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(2)
thf(fact_9814_card__greaterThanAtMost__int,axiom,
! [L: int,U2: int] :
( ( finite_card_int @ ( set_or6656581121297822940st_int @ L @ U2 ) )
= ( nat2 @ ( minus_minus_int @ U2 @ L ) ) ) ).
% card_greaterThanAtMost_int
thf(fact_9815_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
! [L: int,U2: int] :
( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L @ one_one_int ) @ U2 )
= ( set_or6656581121297822940st_int @ L @ U2 ) ) ).
% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_9816_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg4: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList @ Summary ) @ Deg4 )
= ( ( Deg = Deg4 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima2 ) ) ) ).
% VEBT_internal.valid'.simps(2)
thf(fact_9817_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa2 )
= Y3 )
=> ( ( ? [Uu3: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( Y3
= ( Xa2 != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y3
= ( ~ ( ( Deg2 = Xa2 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.elims(1)
thf(fact_9818_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y3: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa2 )
= Y3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [Uu3: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( ( Y3
= ( Xa2 = one_one_nat ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ Uv2 ) @ Xa2 ) ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y3
= ( ( Deg2 = Xa2 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(1)
thf(fact_9819_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [Uu3: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ Uv2 ) @ Xa2 ) )
=> ( Xa2 != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa2 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(2)
thf(fact_9820_Sup__int__def,axiom,
( complete_Sup_Sup_int
= ( ^ [X3: set_int] :
( the_int
@ ^ [X2: int] :
( ( member_int @ X2 @ X3 )
& ! [Y2: int] :
( ( member_int @ Y2 @ X3 )
=> ( ord_less_eq_int @ Y2 @ X2 ) ) ) ) ) ) ).
% Sup_int_def
thf(fact_9821_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
=> ( ! [Uu3: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu3 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu3 @ Uv2 ) @ Xa2 ) )
=> ( Xa2 = one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa2 ) )
=> ( ( Deg2 = Xa2 )
& ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X3 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X3: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X3 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(3)
thf(fact_9822_take__bit__numeral__minus__numeral__int,axiom,
! [M: num,N: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( case_option_int_num @ zero_zero_int
@ ^ [Q4: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q4 ) ) )
@ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N ) ) ) ).
% take_bit_numeral_minus_numeral_int
thf(fact_9823_take__bit__num__simps_I1_J,axiom,
! [M: num] :
( ( bit_take_bit_num @ zero_zero_nat @ M )
= none_num ) ).
% take_bit_num_simps(1)
thf(fact_9824_take__bit__num__simps_I2_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ ( suc @ N ) @ one )
= ( some_num @ one ) ) ).
% take_bit_num_simps(2)
thf(fact_9825_take__bit__num__simps_I5_J,axiom,
! [R2: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ one )
= ( some_num @ one ) ) ).
% take_bit_num_simps(5)
thf(fact_9826_take__bit__num__simps_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit0 @ M ) )
= ( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ N @ M ) ) ) ).
% take_bit_num_simps(3)
thf(fact_9827_take__bit__num__simps_I4_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit1 @ M ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N @ M ) ) ) ) ).
% take_bit_num_simps(4)
thf(fact_9828_take__bit__num__simps_I6_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit0 @ M ) )
= ( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ).
% take_bit_num_simps(6)
thf(fact_9829_take__bit__num__simps_I7_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit1 @ M ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ) ).
% take_bit_num_simps(7)
thf(fact_9830_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit0 @ M ) )
= ( case_nat_option_num @ none_num
@ ^ [N2: nat] :
( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ N2 @ M ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_9831_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ N @ one )
= ( case_nat_option_num @ none_num
@ ^ [N2: nat] : ( some_num @ one )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_9832_GreatestI__ex__nat,axiom,
! [P: nat > $o,B: nat] :
( ? [X_1: nat] : ( P @ X_1 )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_9833_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ B ) )
=> ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_9834_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_9835_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit1 @ M ) )
= ( case_nat_option_num @ none_num
@ ^ [N2: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N2 @ M ) ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_9836_take__bit__num__def,axiom,
( bit_take_bit_num
= ( ^ [N2: nat,M6: num] :
( if_option_num
@ ( ( bit_se2925701944663578781it_nat @ N2 @ ( numeral_numeral_nat @ M6 ) )
= zero_zero_nat )
@ none_num
@ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N2 @ ( numeral_numeral_nat @ M6 ) ) ) ) ) ) ) ).
% take_bit_num_def
thf(fact_9837_and__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(7)
thf(fact_9838_and__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(3)
thf(fact_9839_and__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(4)
thf(fact_9840_and__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(8)
thf(fact_9841_and__not__num_Osimps_I1_J,axiom,
( ( bit_and_not_num @ one @ one )
= none_num ) ).
% and_not_num.simps(1)
thf(fact_9842_and__not__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one @ ( bit0 @ N ) )
= ( some_num @ one ) ) ).
% and_not_num.simps(2)
thf(fact_9843_and__not__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(4)
thf(fact_9844_and__not__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one @ ( bit1 @ N ) )
= none_num ) ).
% and_not_num.simps(3)
thf(fact_9845_and__not__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(7)
thf(fact_9846_and__not__num__eq__Some__iff,axiom,
! [M: num,N: num,Q3: num] :
( ( ( bit_and_not_num @ M @ N )
= ( some_num @ Q3 ) )
= ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ Q3 ) ) ) ).
% and_not_num_eq_Some_iff
thf(fact_9847_and__not__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
@ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(8)
thf(fact_9848_and__not__num__eq__None__iff,axiom,
! [M: num,N: num] :
( ( ( bit_and_not_num @ M @ N )
= none_num )
= ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= zero_zero_int ) ) ).
% and_not_num_eq_None_iff
thf(fact_9849_int__numeral__not__and__num,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N @ M ) ) ) ).
% int_numeral_not_and_num
thf(fact_9850_int__numeral__and__not__num,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N ) ) ) ).
% int_numeral_and_not_num
thf(fact_9851_Bit__Operations_Otake__bit__num__code,axiom,
( bit_take_bit_num
= ( ^ [N2: nat,M6: num] :
( produc478579273971653890on_num
@ ^ [A5: nat,X2: num] :
( case_nat_option_num @ none_num
@ ^ [O: nat] :
( case_num_option_num @ ( some_num @ one )
@ ^ [P5: num] :
( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ O @ P5 ) )
@ ^ [P5: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P5 ) ) )
@ X2 )
@ A5 )
@ ( product_Pair_nat_num @ N2 @ M6 ) ) ) ) ).
% Bit_Operations.take_bit_num_code
thf(fact_9852_and__not__num_Oelims,axiom,
! [X: num,Xa2: num,Y3: option_num] :
( ( ( bit_and_not_num @ X @ Xa2 )
= Y3 )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( Y3 != none_num ) ) )
=> ( ( ( X = one )
=> ( ? [N3: num] :
( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( some_num @ one ) ) ) )
=> ( ( ( X = one )
=> ( ? [N3: num] :
( Xa2
= ( bit1 @ N3 ) )
=> ( Y3 != none_num ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ( ( Xa2 = one )
=> ( Y3
!= ( some_num @ ( bit0 @ M5 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M5 @ N3 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M5 @ N3 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ( ( Xa2 = one )
=> ( Y3
!= ( some_num @ ( bit0 @ M5 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
@ ( bit_and_not_num @ M5 @ N3 ) ) ) ) )
=> ~ ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M5 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_not_num.elims
thf(fact_9853_and__not__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(5)
thf(fact_9854_and__not__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(9)
thf(fact_9855_and__not__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(6)
thf(fact_9856_and__not__num_Opelims,axiom,
! [X: num,Xa2: num,Y3: option_num] :
( ( ( bit_and_not_num @ X @ Xa2 )
= Y3 )
=> ( ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ X @ Xa2 ) )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( ( Y3 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N3 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ( ( Xa2 = one )
=> ( ( Y3
= ( some_num @ ( bit0 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ one ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit0 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit1 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ( ( Xa2 = one )
=> ( ( Y3
= ( some_num @ ( bit0 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ one ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
@ ( bit_and_not_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit0 @ N3 ) ) ) ) ) )
=> ~ ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit1 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_not_num.pelims
thf(fact_9857_and__num_Oelims,axiom,
! [X: num,Xa2: num,Y3: option_num] :
( ( ( bit_un7362597486090784418nd_num @ X @ Xa2 )
= Y3 )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( Y3
!= ( some_num @ one ) ) ) )
=> ( ( ( X = one )
=> ( ? [N3: num] :
( Xa2
= ( bit0 @ N3 ) )
=> ( Y3 != none_num ) ) )
=> ( ( ( X = one )
=> ( ? [N3: num] :
( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( some_num @ one ) ) ) )
=> ( ( ? [M5: num] :
( X
= ( bit0 @ M5 ) )
=> ( ( Xa2 = one )
=> ( Y3 != none_num ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) ) ) )
=> ( ( ? [M5: num] :
( X
= ( bit1 @ M5 ) )
=> ( ( Xa2 = one )
=> ( Y3
!= ( some_num @ one ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) ) ) )
=> ~ ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
@ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_num.elims
thf(fact_9858_xor__num_Oelims,axiom,
! [X: num,Xa2: num,Y3: option_num] :
( ( ( bit_un2480387367778600638or_num @ X @ Xa2 )
= Y3 )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( Y3 != none_num ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( some_num @ ( bit1 @ N3 ) ) ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( some_num @ ( bit0 @ N3 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ( ( Xa2 = one )
=> ( Y3
!= ( some_num @ ( bit1 @ M5 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ( ( Xa2 = one )
=> ( Y3
!= ( some_num @ ( bit0 @ M5 ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( Y3
!= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) ) ) ) )
=> ~ ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( Y3
!= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.elims
thf(fact_9859_and__num_Osimps_I1_J,axiom,
( ( bit_un7362597486090784418nd_num @ one @ one )
= ( some_num @ one ) ) ).
% and_num.simps(1)
thf(fact_9860_xor__num_Osimps_I1_J,axiom,
( ( bit_un2480387367778600638or_num @ one @ one )
= none_num ) ).
% xor_num.simps(1)
thf(fact_9861_xor__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).
% xor_num.simps(5)
thf(fact_9862_and__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(5)
thf(fact_9863_and__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_un7362597486090784418nd_num @ one @ ( bit1 @ N ) )
= ( some_num @ one ) ) ).
% and_num.simps(3)
thf(fact_9864_and__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ one )
= ( some_num @ one ) ) ).
% and_num.simps(7)
thf(fact_9865_and__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_un7362597486090784418nd_num @ one @ ( bit0 @ N ) )
= none_num ) ).
% and_num.simps(2)
thf(fact_9866_and__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ one )
= none_num ) ).
% and_num.simps(4)
thf(fact_9867_and__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(8)
thf(fact_9868_and__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(6)
thf(fact_9869_xor__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).
% xor_num.simps(9)
thf(fact_9870_xor__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_un2480387367778600638or_num @ one @ ( bit0 @ N ) )
= ( some_num @ ( bit1 @ N ) ) ) ).
% xor_num.simps(2)
thf(fact_9871_xor__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_un2480387367778600638or_num @ one @ ( bit1 @ N ) )
= ( some_num @ ( bit0 @ N ) ) ) ).
% xor_num.simps(3)
thf(fact_9872_xor__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ one )
= ( some_num @ ( bit1 @ M ) ) ) ).
% xor_num.simps(4)
thf(fact_9873_xor__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% xor_num.simps(7)
thf(fact_9874_and__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
@ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(9)
thf(fact_9875_xor__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).
% xor_num.simps(6)
thf(fact_9876_xor__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).
% xor_num.simps(8)
thf(fact_9877_and__num_Opelims,axiom,
! [X: num,Xa2: num,Y3: option_num] :
( ( ( bit_un7362597486090784418nd_num @ X @ Xa2 )
= Y3 )
=> ( ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ X @ Xa2 ) )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( ( Y3
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N3 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ( ( Xa2 = one )
=> ( ( Y3 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ one ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit0 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit1 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ( ( Xa2 = one )
=> ( ( Y3
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ one ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit0 @ N3 ) ) ) ) ) )
=> ~ ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
@ ( bit_un7362597486090784418nd_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit1 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_num.pelims
thf(fact_9878_xor__num_Opelims,axiom,
! [X: num,Xa2: num,Y3: option_num] :
( ( ( bit_un2480387367778600638or_num @ X @ Xa2 )
= Y3 )
=> ( ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ X @ Xa2 ) )
=> ( ( ( X = one )
=> ( ( Xa2 = one )
=> ( ( Y3 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( some_num @ ( bit1 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N3 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( some_num @ ( bit0 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ( ( Xa2 = one )
=> ( ( Y3
= ( some_num @ ( bit1 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ one ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit0 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit0 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M5 ) @ ( bit1 @ N3 ) ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ( ( Xa2 = one )
=> ( ( Y3
= ( some_num @ ( bit0 @ M5 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ one ) ) ) ) )
=> ( ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit0 @ N3 ) )
=> ( ( Y3
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit0 @ N3 ) ) ) ) ) )
=> ~ ! [M5: num] :
( ( X
= ( bit1 @ M5 ) )
=> ! [N3: num] :
( ( Xa2
= ( bit1 @ N3 ) )
=> ( ( Y3
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M5 @ N3 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M5 ) @ ( bit1 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.pelims
thf(fact_9879_and__num__rel__dict,axiom,
bit_un4731106466462545111um_rel = bit_un5425074673868309765um_rel ).
% and_num_rel_dict
thf(fact_9880_xor__num__rel__dict,axiom,
bit_un2901131394128224187um_rel = bit_un3595099601533988841um_rel ).
% xor_num_rel_dict
thf(fact_9881_xor__num__dict,axiom,
bit_un2480387367778600638or_num = bit_un6178654185764691216or_num ).
% xor_num_dict
thf(fact_9882_and__num__dict,axiom,
bit_un7362597486090784418nd_num = bit_un1837492267222099188nd_num ).
% and_num_dict
thf(fact_9883_Rats__eq__int__div__nat,axiom,
( field_5140801741446780682s_real
= ( collect_real
@ ^ [Uu: real] :
? [I3: int,N2: nat] :
( ( Uu
= ( divide_divide_real @ ( ring_1_of_int_real @ I3 ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
& ( N2 != zero_zero_nat ) ) ) ) ).
% Rats_eq_int_div_nat
thf(fact_9884_Rats__abs__iff,axiom,
! [X: real] :
( ( member_real @ ( abs_abs_real @ X ) @ field_5140801741446780682s_real )
= ( member_real @ X @ field_5140801741446780682s_real ) ) ).
% Rats_abs_iff
thf(fact_9885_Rats__no__bot__less,axiom,
! [X: real] :
? [X5: real] :
( ( member_real @ X5 @ field_5140801741446780682s_real )
& ( ord_less_real @ X5 @ X ) ) ).
% Rats_no_bot_less
thf(fact_9886_Rats__dense__in__real,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ? [X5: real] :
( ( member_real @ X5 @ field_5140801741446780682s_real )
& ( ord_less_real @ X @ X5 )
& ( ord_less_real @ X5 @ Y3 ) ) ) ).
% Rats_dense_in_real
thf(fact_9887_Rats__no__top__le,axiom,
! [X: real] :
? [X5: real] :
( ( member_real @ X5 @ field_5140801741446780682s_real )
& ( ord_less_eq_real @ X @ X5 ) ) ).
% Rats_no_top_le
thf(fact_9888_Rats__eq__int__div__int,axiom,
( field_5140801741446780682s_real
= ( collect_real
@ ^ [Uu: real] :
? [I3: int,J3: int] :
( ( Uu
= ( divide_divide_real @ ( ring_1_of_int_real @ I3 ) @ ( ring_1_of_int_real @ J3 ) ) )
& ( J3 != zero_zero_int ) ) ) ) ).
% Rats_eq_int_div_int
thf(fact_9889_rat__floor__lemma,axiom,
! [A: int,B: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( divide_divide_int @ A @ B ) ) @ ( fract @ A @ B ) )
& ( ord_less_rat @ ( fract @ A @ B ) @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ) ).
% rat_floor_lemma
thf(fact_9890_mult__rat,axiom,
! [A: int,B: int,C: int,D: int] :
( ( times_times_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ).
% mult_rat
thf(fact_9891_divide__rat,axiom,
! [A: int,B: int,C: int,D: int] :
( ( divide_divide_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ).
% divide_rat
thf(fact_9892_less__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( ord_less_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% less_rat
thf(fact_9893_add__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( plus_plus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% add_rat
thf(fact_9894_le__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( ord_less_eq_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% le_rat
thf(fact_9895_diff__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( minus_minus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( minus_minus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% diff_rat
thf(fact_9896_sgn__rat,axiom,
! [A: int,B: int] :
( ( sgn_sgn_rat @ ( fract @ A @ B ) )
= ( ring_1_of_int_rat @ ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ) ).
% sgn_rat
thf(fact_9897_eq__rat_I1_J,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( ( fract @ A @ B )
= ( fract @ C @ D ) )
= ( ( times_times_int @ A @ D )
= ( times_times_int @ C @ B ) ) ) ) ) ).
% eq_rat(1)
thf(fact_9898_mult__rat__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( fract @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( fract @ A @ B ) ) ) ).
% mult_rat_cancel
thf(fact_9899_eq__rat_I2_J,axiom,
! [A: int] :
( ( fract @ A @ zero_zero_int )
= ( fract @ zero_zero_int @ one_one_int ) ) ).
% eq_rat(2)
thf(fact_9900_Fract__of__nat__eq,axiom,
! [K: nat] :
( ( fract @ ( semiri1314217659103216013at_int @ K ) @ one_one_int )
= ( semiri681578069525770553at_rat @ K ) ) ).
% Fract_of_nat_eq
thf(fact_9901_One__rat__def,axiom,
( one_one_rat
= ( fract @ one_one_int @ one_one_int ) ) ).
% One_rat_def
thf(fact_9902_Fract__of__int__eq,axiom,
! [K: int] :
( ( fract @ K @ one_one_int )
= ( ring_1_of_int_rat @ K ) ) ).
% Fract_of_int_eq
thf(fact_9903_Zero__rat__def,axiom,
( zero_zero_rat
= ( fract @ zero_zero_int @ one_one_int ) ) ).
% Zero_rat_def
thf(fact_9904_rat__number__collapse_I3_J,axiom,
! [W: num] :
( ( fract @ ( numeral_numeral_int @ W ) @ one_one_int )
= ( numeral_numeral_rat @ W ) ) ).
% rat_number_collapse(3)
thf(fact_9905_rat__number__expand_I3_J,axiom,
( numeral_numeral_rat
= ( ^ [K3: num] : ( fract @ ( numeral_numeral_int @ K3 ) @ one_one_int ) ) ) ).
% rat_number_expand(3)
thf(fact_9906_one__less__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ one_one_rat @ ( fract @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% one_less_Fract_iff
thf(fact_9907_Fract__less__one__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ one_one_rat )
= ( ord_less_int @ A @ B ) ) ) ).
% Fract_less_one_iff
thf(fact_9908_rat__number__collapse_I5_J,axiom,
( ( fract @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% rat_number_collapse(5)
thf(fact_9909_Fract__add__one,axiom,
! [N: int,M: int] :
( ( N != zero_zero_int )
=> ( ( fract @ ( plus_plus_int @ M @ N ) @ N )
= ( plus_plus_rat @ ( fract @ M @ N ) @ one_one_rat ) ) ) ).
% Fract_add_one
thf(fact_9910_zero__le__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( fract @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% zero_le_Fract_iff
thf(fact_9911_Fract__le__zero__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ zero_zero_rat )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% Fract_le_zero_iff
thf(fact_9912_one__le__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( fract @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% one_le_Fract_iff
thf(fact_9913_Fract__le__one__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ one_one_rat )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% Fract_le_one_iff
thf(fact_9914_rat__number__expand_I5_J,axiom,
! [K: num] :
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) )
= ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).
% rat_number_expand(5)
thf(fact_9915_rat__number__collapse_I4_J,axiom,
! [W: num] :
( ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ one_one_int )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ).
% rat_number_collapse(4)
thf(fact_9916_image__minus__const__atLeastLessThan__nat,axiom,
! [C: nat,Y3: nat,X: nat] :
( ( ( ord_less_nat @ C @ Y3 )
=> ( ( image_nat_nat
@ ^ [I3: nat] : ( minus_minus_nat @ I3 @ C )
@ ( set_or4665077453230672383an_nat @ X @ Y3 ) )
= ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X @ C ) @ ( minus_minus_nat @ Y3 @ C ) ) ) )
& ( ~ ( ord_less_nat @ C @ Y3 )
=> ( ( ( ord_less_nat @ X @ Y3 )
=> ( ( image_nat_nat
@ ^ [I3: nat] : ( minus_minus_nat @ I3 @ C )
@ ( set_or4665077453230672383an_nat @ X @ Y3 ) )
= ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
& ( ~ ( ord_less_nat @ X @ Y3 )
=> ( ( image_nat_nat
@ ^ [I3: nat] : ( minus_minus_nat @ I3 @ C )
@ ( set_or4665077453230672383an_nat @ X @ Y3 ) )
= bot_bot_set_nat ) ) ) ) ) ).
% image_minus_const_atLeastLessThan_nat
thf(fact_9917_of__nat__eq__id,axiom,
semiri1316708129612266289at_nat = id_nat ).
% of_nat_eq_id
thf(fact_9918_bij__betw__Suc,axiom,
! [M7: set_nat,N5: set_nat] :
( ( bij_betw_nat_nat @ suc @ M7 @ N5 )
= ( ( image_nat_nat @ suc @ M7 )
= N5 ) ) ).
% bij_betw_Suc
thf(fact_9919_image__Suc__atLeastAtMost,axiom,
! [I4: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ I4 @ J ) )
= ( set_or1269000886237332187st_nat @ ( suc @ I4 ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastAtMost
thf(fact_9920_image__Suc__atLeastLessThan,axiom,
! [I4: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ I4 @ J ) )
= ( set_or4665077453230672383an_nat @ ( suc @ I4 ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastLessThan
thf(fact_9921_less__int__def,axiom,
( ord_less_int
= ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
@ ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y2: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U3 @ Y2 ) ) ) ) ) ) ).
% less_int_def
thf(fact_9922_less__eq__int__def,axiom,
( ord_less_eq_int
= ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
@ ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y2: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U3 @ Y2 ) ) ) ) ) ) ).
% less_eq_int_def
thf(fact_9923_zero__notin__Suc__image,axiom,
! [A2: set_nat] :
~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).
% zero_notin_Suc_image
thf(fact_9924_nat__def,axiom,
( nat2
= ( map_fu2345160673673942751at_nat @ rep_Integ @ id_nat @ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ) ).
% nat_def
thf(fact_9925_image__Suc__lessThan,axiom,
! [N: nat] :
( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ).
% image_Suc_lessThan
thf(fact_9926_image__Suc__atMost,axiom,
! [N: nat] :
( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N ) ) ) ).
% image_Suc_atMost
thf(fact_9927_atLeast0__atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ) ).
% atLeast0_atMost_Suc_eq_insert_0
thf(fact_9928_atLeast0__lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ).
% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9929_lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_lessThan_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% lessThan_Suc_eq_insert_0
thf(fact_9930_atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_atMost_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) ) ) ) ).
% atMost_Suc_eq_insert_0
thf(fact_9931_Gcd__abs__eq,axiom,
! [K5: set_int] :
( ( gcd_Gcd_int @ ( image_int_int @ abs_abs_int @ K5 ) )
= ( gcd_Gcd_int @ K5 ) ) ).
% Gcd_abs_eq
thf(fact_9932_Gcd__int__eq,axiom,
! [N5: set_nat] :
( ( gcd_Gcd_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N5 ) )
= ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ N5 ) ) ) ).
% Gcd_int_eq
thf(fact_9933_Gcd__nat__abs__eq,axiom,
! [K5: set_int] :
( ( gcd_Gcd_nat
@ ( image_int_nat
@ ^ [K3: int] : ( nat2 @ ( abs_abs_int @ K3 ) )
@ K5 ) )
= ( nat2 @ ( gcd_Gcd_int @ K5 ) ) ) ).
% Gcd_nat_abs_eq
thf(fact_9934_Inf__real__def,axiom,
( comple4887499456419720421f_real
= ( ^ [X3: set_real] : ( uminus_uminus_real @ ( comple1385675409528146559p_real @ ( image_real_real @ uminus_uminus_real @ X3 ) ) ) ) ) ).
% Inf_real_def
thf(fact_9935_minus__integer__def,axiom,
( minus_8373710615458151222nteger
= ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ minus_minus_int ) ) ).
% minus_integer_def
thf(fact_9936_times__integer__def,axiom,
( times_3573771949741848930nteger
= ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ times_times_int ) ) ).
% times_integer_def
thf(fact_9937_plus__integer__def,axiom,
( plus_p5714425477246183910nteger
= ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ plus_plus_int ) ) ).
% plus_integer_def
thf(fact_9938_less__eq__integer__def,axiom,
( ord_le3102999989581377725nteger
= ( map_fu2496120808607739376eger_o @ code_int_of_integer @ ( map_fu6957801986076833569nt_o_o @ code_int_of_integer @ id_o ) @ ord_less_eq_int ) ) ).
% less_eq_integer_def
thf(fact_9939_finite__int__iff__bounded__le,axiom,
( finite_finite_int
= ( ^ [S5: set_int] :
? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_atMost_int @ K3 ) ) ) ) ).
% finite_int_iff_bounded_le
thf(fact_9940_finite__int__iff__bounded,axiom,
( finite_finite_int
= ( ^ [S5: set_int] :
? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_lessThan_int @ K3 ) ) ) ) ).
% finite_int_iff_bounded
thf(fact_9941_image__add__int__atLeastLessThan,axiom,
! [L: int,U2: int] :
( ( image_int_int
@ ^ [X2: int] : ( plus_plus_int @ X2 @ L )
@ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U2 @ L ) ) )
= ( set_or4662586982721622107an_int @ L @ U2 ) ) ).
% image_add_int_atLeastLessThan
thf(fact_9942_Gcd__int__def,axiom,
( gcd_Gcd_int
= ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).
% Gcd_int_def
thf(fact_9943_image__atLeastZeroLessThan__int,axiom,
! [U2: int] :
( ( ord_less_eq_int @ zero_zero_int @ U2 )
=> ( ( set_or4662586982721622107an_int @ zero_zero_int @ U2 )
= ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U2 ) ) ) ) ) ).
% image_atLeastZeroLessThan_int
thf(fact_9944_suminf__eq__SUP__real,axiom,
! [X8: nat > real] :
( ( summable_real @ X8 )
=> ( ! [I2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( X8 @ I2 ) )
=> ( ( suminf_real @ X8 )
= ( comple1385675409528146559p_real
@ ( image_nat_real
@ ^ [I3: nat] : ( groups6591440286371151544t_real @ X8 @ ( set_ord_lessThan_nat @ I3 ) )
@ top_top_set_nat ) ) ) ) ) ).
% suminf_eq_SUP_real
thf(fact_9945_UN__atMost__UNIV,axiom,
( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atMost_nat @ top_top_set_nat ) )
= top_top_set_nat ) ).
% UN_atMost_UNIV
thf(fact_9946_UN__lessThan__UNIV,axiom,
( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) )
= top_top_set_nat ) ).
% UN_lessThan_UNIV
thf(fact_9947_UNIV__nat__eq,axiom,
( top_top_set_nat
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).
% UNIV_nat_eq
thf(fact_9948_range__mod,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( image_nat_nat
@ ^ [M6: nat] : ( modulo_modulo_nat @ M6 @ N )
@ top_top_set_nat )
= ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).
% range_mod
thf(fact_9949_Code__Numeral_Odup__def,axiom,
( code_dup
= ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int
@ ^ [K3: int] : ( plus_plus_int @ K3 @ K3 ) ) ) ).
% Code_Numeral.dup_def
thf(fact_9950_card__UNIV__unit,axiom,
( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
= one_one_nat ) ).
% card_UNIV_unit
thf(fact_9951_card__UNIV__bool,axiom,
( ( finite_card_o @ top_top_set_o )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% card_UNIV_bool
thf(fact_9952_range__mult,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
& ( ( A != zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= top_top_set_real ) ) ) ).
% range_mult
thf(fact_9953_dup_Orep__eq,axiom,
! [X: code_integer] :
( ( code_int_of_integer @ ( code_dup @ X ) )
= ( plus_plus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ X ) ) ) ).
% dup.rep_eq
thf(fact_9954_dup_Oabs__eq,axiom,
! [X: int] :
( ( code_dup @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( plus_plus_int @ X @ X ) ) ) ).
% dup.abs_eq
thf(fact_9955_root__def,axiom,
( root
= ( ^ [N2: nat,X2: real] :
( if_real @ ( N2 = zero_zero_nat ) @ zero_zero_real
@ ( the_in5290026491893676941l_real @ top_top_set_real
@ ^ [Y2: real] : ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N2 ) )
@ X2 ) ) ) ) ).
% root_def
thf(fact_9956_card__UNIV__char,axiom,
( ( finite_card_char @ top_top_set_char )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% card_UNIV_char
thf(fact_9957_UNIV__char__of__nat,axiom,
( top_top_set_char
= ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% UNIV_char_of_nat
thf(fact_9958_nat__of__char__less__256,axiom,
! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% nat_of_char_less_256
thf(fact_9959_range__nat__of__char,axiom,
( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
= ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% range_nat_of_char
thf(fact_9960_integer__of__char__code,axiom,
! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).
% integer_of_char_code
thf(fact_9961_char__of__integer__code,axiom,
( char_of_integer
= ( ^ [K3: code_integer] :
( produc4188289175737317920o_char
@ ^ [Q0: code_integer,B02: $o] :
( produc4188289175737317920o_char
@ ^ [Q1: code_integer,B12: $o] :
( produc4188289175737317920o_char
@ ^ [Q22: code_integer,B23: $o] :
( produc4188289175737317920o_char
@ ^ [Q32: code_integer,B33: $o] :
( produc4188289175737317920o_char
@ ^ [Q42: code_integer,B43: $o] :
( produc4188289175737317920o_char
@ ^ [Q52: code_integer,B53: $o] :
( produc4188289175737317920o_char
@ ^ [Q62: code_integer,B63: $o] :
( produc4188289175737317920o_char
@ ^ [Uu: code_integer] : ( char2 @ B02 @ B12 @ B23 @ B33 @ B43 @ B53 @ B63 )
@ ( code_bit_cut_integer @ Q62 ) )
@ ( code_bit_cut_integer @ Q52 ) )
@ ( code_bit_cut_integer @ Q42 ) )
@ ( code_bit_cut_integer @ Q32 ) )
@ ( code_bit_cut_integer @ Q22 ) )
@ ( code_bit_cut_integer @ Q1 ) )
@ ( code_bit_cut_integer @ Q0 ) )
@ ( code_bit_cut_integer @ K3 ) ) ) ) ).
% char_of_integer_code
thf(fact_9962_String_Ochar__of__ascii__of,axiom,
! [C: char] :
( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
= ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).
% String.char_of_ascii_of
thf(fact_9963_sorted__list__of__set__lessThan__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K ) ) @ ( cons_nat @ K @ nil_nat ) ) ) ).
% sorted_list_of_set_lessThan_Suc
thf(fact_9964_sorted__list__of__set__atMost__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K ) ) @ ( cons_nat @ ( suc @ K ) @ nil_nat ) ) ) ).
% sorted_list_of_set_atMost_Suc
thf(fact_9965_sorted__list__of__set__greaterThanAtMost,axiom,
! [I4: nat,J: nat] :
( ( ord_less_eq_nat @ ( suc @ I4 ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I4 @ J ) )
= ( cons_nat @ ( suc @ I4 ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I4 ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanAtMost
thf(fact_9966_sorted__list__of__set__greaterThanLessThan,axiom,
! [I4: nat,J: nat] :
( ( ord_less_nat @ ( suc @ I4 ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I4 @ J ) )
= ( cons_nat @ ( suc @ I4 ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I4 ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanLessThan
thf(fact_9967_list__encode_Oelims,axiom,
! [X: list_nat,Y3: nat] :
( ( ( nat_list_encode @ X )
= Y3 )
=> ( ( ( X = nil_nat )
=> ( Y3 != zero_zero_nat ) )
=> ~ ! [X5: nat,Xs3: list_nat] :
( ( X
= ( cons_nat @ X5 @ Xs3 ) )
=> ( Y3
!= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X5 @ ( nat_list_encode @ Xs3 ) ) ) ) ) ) ) ) ).
% list_encode.elims
thf(fact_9968_sup__enat__def,axiom,
sup_su3973961784419623482d_enat = ord_ma741700101516333627d_enat ).
% sup_enat_def
thf(fact_9969_sup__nat__def,axiom,
sup_sup_nat = ord_max_nat ).
% sup_nat_def
thf(fact_9970_atLeastLessThan__add__Un,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I4 @ J )
=> ( ( set_or4665077453230672383an_nat @ I4 @ ( plus_plus_nat @ J @ K ) )
= ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I4 @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).
% atLeastLessThan_add_Un
thf(fact_9971_list__encode_Osimps_I2_J,axiom,
! [X: nat,Xs: list_nat] :
( ( nat_list_encode @ ( cons_nat @ X @ Xs ) )
= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X @ ( nat_list_encode @ Xs ) ) ) ) ) ).
% list_encode.simps(2)
thf(fact_9972_list__encode_Opelims,axiom,
! [X: list_nat,Y3: nat] :
( ( ( nat_list_encode @ X )
= Y3 )
=> ( ( accp_list_nat @ nat_list_encode_rel @ X )
=> ( ( ( X = nil_nat )
=> ( ( Y3 = zero_zero_nat )
=> ~ ( accp_list_nat @ nat_list_encode_rel @ nil_nat ) ) )
=> ~ ! [X5: nat,Xs3: list_nat] :
( ( X
= ( cons_nat @ X5 @ Xs3 ) )
=> ( ( Y3
= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X5 @ ( nat_list_encode @ Xs3 ) ) ) ) )
=> ~ ( accp_list_nat @ nat_list_encode_rel @ ( cons_nat @ X5 @ Xs3 ) ) ) ) ) ) ) ).
% list_encode.pelims
thf(fact_9973_upto__aux__rec,axiom,
( upto_aux
= ( ^ [I3: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I3 ) @ Js @ ( upto_aux @ I3 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).
% upto_aux_rec
thf(fact_9974_upto_Opelims,axiom,
! [X: int,Xa2: int,Y3: list_int] :
( ( ( upto @ X @ Xa2 )
= Y3 )
=> ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa2 ) )
=> ~ ( ( ( ( ord_less_eq_int @ X @ Xa2 )
=> ( Y3
= ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq_int @ X @ Xa2 )
=> ( Y3 = nil_int ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa2 ) ) ) ) ) ).
% upto.pelims
thf(fact_9975_upto_Opsimps,axiom,
! [I4: int,J: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I4 @ J ) )
=> ( ( ( ord_less_eq_int @ I4 @ J )
=> ( ( upto @ I4 @ J )
= ( cons_int @ I4 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J ) ) ) )
& ( ~ ( ord_less_eq_int @ I4 @ J )
=> ( ( upto @ I4 @ J )
= nil_int ) ) ) ) ).
% upto.psimps
thf(fact_9976_upto__empty,axiom,
! [J: int,I4: int] :
( ( ord_less_int @ J @ I4 )
=> ( ( upto @ I4 @ J )
= nil_int ) ) ).
% upto_empty
thf(fact_9977_upto__Nil2,axiom,
! [I4: int,J: int] :
( ( nil_int
= ( upto @ I4 @ J ) )
= ( ord_less_int @ J @ I4 ) ) ).
% upto_Nil2
thf(fact_9978_upto__Nil,axiom,
! [I4: int,J: int] :
( ( ( upto @ I4 @ J )
= nil_int )
= ( ord_less_int @ J @ I4 ) ) ).
% upto_Nil
thf(fact_9979_upto__single,axiom,
! [I4: int] :
( ( upto @ I4 @ I4 )
= ( cons_int @ I4 @ nil_int ) ) ).
% upto_single
thf(fact_9980_nth__upto,axiom,
! [I4: int,K: nat,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I4 @ ( semiri1314217659103216013at_int @ K ) ) @ J )
=> ( ( nth_int @ ( upto @ I4 @ J ) @ K )
= ( plus_plus_int @ I4 @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).
% nth_upto
thf(fact_9981_length__upto,axiom,
! [I4: int,J: int] :
( ( size_size_list_int @ ( upto @ I4 @ J ) )
= ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I4 ) @ one_one_int ) ) ) ).
% length_upto
thf(fact_9982_upto__rec__numeral_I1_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= nil_int ) ) ) ).
% upto_rec_numeral(1)
thf(fact_9983_upto__rec__numeral_I4_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(4)
thf(fact_9984_upto__rec__numeral_I3_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= nil_int ) ) ) ).
% upto_rec_numeral(3)
thf(fact_9985_upto__rec__numeral_I2_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(2)
thf(fact_9986_upto__code,axiom,
( upto
= ( ^ [I3: int,J3: int] : ( upto_aux @ I3 @ J3 @ nil_int ) ) ) ).
% upto_code
thf(fact_9987_upto__aux__def,axiom,
( upto_aux
= ( ^ [I3: int,J3: int] : ( append_int @ ( upto @ I3 @ J3 ) ) ) ) ).
% upto_aux_def
thf(fact_9988_atLeastAtMost__upto,axiom,
( set_or1266510415728281911st_int
= ( ^ [I3: int,J3: int] : ( set_int2 @ ( upto @ I3 @ J3 ) ) ) ) ).
% atLeastAtMost_upto
thf(fact_9989_distinct__upto,axiom,
! [I4: int,J: int] : ( distinct_int @ ( upto @ I4 @ J ) ) ).
% distinct_upto
thf(fact_9990_upto__split2,axiom,
! [I4: int,J: int,K: int] :
( ( ord_less_eq_int @ I4 @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I4 @ K )
= ( append_int @ ( upto @ I4 @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).
% upto_split2
thf(fact_9991_upto__split1,axiom,
! [I4: int,J: int,K: int] :
( ( ord_less_eq_int @ I4 @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I4 @ K )
= ( append_int @ ( upto @ I4 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).
% upto_split1
thf(fact_9992_atLeastLessThan__upto,axiom,
( set_or4662586982721622107an_int
= ( ^ [I3: int,J3: int] : ( set_int2 @ ( upto @ I3 @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% atLeastLessThan_upto
thf(fact_9993_greaterThanAtMost__upto,axiom,
( set_or6656581121297822940st_int
= ( ^ [I3: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I3 @ one_one_int ) @ J3 ) ) ) ) ).
% greaterThanAtMost_upto
thf(fact_9994_upto__rec1,axiom,
! [I4: int,J: int] :
( ( ord_less_eq_int @ I4 @ J )
=> ( ( upto @ I4 @ J )
= ( cons_int @ I4 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J ) ) ) ) ).
% upto_rec1
thf(fact_9995_upto_Oelims,axiom,
! [X: int,Xa2: int,Y3: list_int] :
( ( ( upto @ X @ Xa2 )
= Y3 )
=> ( ( ( ord_less_eq_int @ X @ Xa2 )
=> ( Y3
= ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq_int @ X @ Xa2 )
=> ( Y3 = nil_int ) ) ) ) ).
% upto.elims
thf(fact_9996_upto_Osimps,axiom,
( upto
= ( ^ [I3: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I3 @ J3 ) @ ( cons_int @ I3 @ ( upto @ ( plus_plus_int @ I3 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).
% upto.simps
thf(fact_9997_upto__rec2,axiom,
! [I4: int,J: int] :
( ( ord_less_eq_int @ I4 @ J )
=> ( ( upto @ I4 @ J )
= ( append_int @ ( upto @ I4 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).
% upto_rec2
thf(fact_9998_greaterThanLessThan__upto,axiom,
( set_or5832277885323065728an_int
= ( ^ [I3: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I3 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% greaterThanLessThan_upto
thf(fact_9999_upto__split3,axiom,
! [I4: int,J: int,K: int] :
( ( ord_less_eq_int @ I4 @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I4 @ K )
= ( append_int @ ( upto @ I4 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).
% upto_split3
thf(fact_10000_Code__Numeral_Osub__code_I9_J,axiom,
! [M: num,N: num] :
( ( code_sub @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( minus_8373710615458151222nteger @ ( code_dup @ ( code_sub @ M @ N ) ) @ one_one_Code_integer ) ) ).
% Code_Numeral.sub_code(9)
thf(fact_10001_Code__Numeral_Osub__code_I1_J,axiom,
( ( code_sub @ one @ one )
= zero_z3403309356797280102nteger ) ).
% Code_Numeral.sub_code(1)
thf(fact_10002_Code__Numeral_Osub__code_I6_J,axiom,
! [M: num,N: num] :
( ( code_sub @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( code_dup @ ( code_sub @ M @ N ) ) ) ).
% Code_Numeral.sub_code(6)
thf(fact_10003_sub_Orep__eq,axiom,
! [X: num,Xa2: num] :
( ( code_int_of_integer @ ( code_sub @ X @ Xa2 ) )
= ( minus_minus_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Xa2 ) ) ) ).
% sub.rep_eq
thf(fact_10004_sub_Oabs__eq,axiom,
( code_sub
= ( ^ [Xa4: num,X2: num] : ( code_integer_of_int @ ( minus_minus_int @ ( numeral_numeral_int @ Xa4 ) @ ( numeral_numeral_int @ X2 ) ) ) ) ) ).
% sub.abs_eq
thf(fact_10005_Code__Numeral_Osub__def,axiom,
( code_sub
= ( map_fu6891787308814931657nteger @ id_num @ ( map_fu8638147718074629079nteger @ id_num @ code_integer_of_int )
@ ^ [M6: num,N2: num] : ( minus_minus_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N2 ) ) ) ) ).
% Code_Numeral.sub_def
thf(fact_10006_Code__Numeral_Osub__code_I8_J,axiom,
! [M: num,N: num] :
( ( code_sub @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( plus_p5714425477246183910nteger @ ( code_dup @ ( code_sub @ M @ N ) ) @ one_one_Code_integer ) ) ).
% Code_Numeral.sub_code(8)
thf(fact_10007_DERIV__real__root__generic,axiom,
! [N: nat,X: real,D4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( X != zero_zero_real )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( D4
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( D4
= ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
=> ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( D4
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ D4 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).
% DERIV_real_root_generic
thf(fact_10008_DERIV__even__real__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).
% DERIV_even_real_root
thf(fact_10009_DERIV__local__const,axiom,
! [F: real > real,L: real,X: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y4: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y4 ) ) @ D )
=> ( ( F @ X )
= ( F @ Y4 ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_const
thf(fact_10010_DERIV__mirror,axiom,
! [F: real > real,Y3: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ X ) @ top_top_set_real ) )
= ( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( F @ ( uminus_uminus_real @ X2 ) )
@ ( uminus_uminus_real @ Y3 )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_mirror
thf(fact_10011_DERIV__const__ratio__const2,axiom,
! [A: real,B: real,F: real > real,K: real] :
( ( A != B )
=> ( ! [X5: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
=> ( ( divide_divide_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( minus_minus_real @ B @ A ) )
= K ) ) ) ).
% DERIV_const_ratio_const2
thf(fact_10012_DERIV__pos__inc__right,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_pos_inc_right
thf(fact_10013_DERIV__neg__dec__right,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ).
% DERIV_neg_dec_right
thf(fact_10014_DERIV__pos__inc__left,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ).
% DERIV_pos_inc_left
thf(fact_10015_DERIV__neg__dec__left,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_neg_dec_left
thf(fact_10016_DERIV__const__ratio__const,axiom,
! [A: real,B: real,F: real > real,K: real] :
( ( A != B )
=> ( ! [X5: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
=> ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ K ) ) ) ) ).
% DERIV_const_ratio_const
thf(fact_10017_has__real__derivative__pos__inc__left,axiom,
! [F: real > real,L: real,X: real,S3: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S3 ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( minus_minus_real @ X @ H4 ) @ S3 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_left
thf(fact_10018_has__real__derivative__neg__dec__left,axiom,
! [F: real > real,L: real,X: real,S3: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S3 ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( minus_minus_real @ X @ H4 ) @ S3 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_left
thf(fact_10019_has__real__derivative__pos__inc__right,axiom,
! [F: real > real,L: real,X: real,S3: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S3 ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( plus_plus_real @ X @ H4 ) @ S3 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_right
thf(fact_10020_has__real__derivative__neg__dec__right,axiom,
! [F: real > real,L: real,X: real,S3: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S3 ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( plus_plus_real @ X @ H4 ) @ S3 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_right
thf(fact_10021_MVT2,axiom,
! [A: real,B: real,F: real > real,F4: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X5: real] :
( ( ord_less_eq_real @ A @ X5 )
=> ( ( ord_less_eq_real @ X5 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F4 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
=> ? [Z3: real] :
( ( ord_less_real @ A @ Z3 )
& ( ord_less_real @ Z3 @ B )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F4 @ Z3 ) ) ) ) ) ) ).
% MVT2
thf(fact_10022_deriv__nonneg__imp__mono,axiom,
! [A: real,B: real,G: real > real,G2: real > real] :
( ! [X5: real] :
( ( member_real @ X5 @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( has_fi5821293074295781190e_real @ G @ ( G2 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X5 ) ) )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).
% deriv_nonneg_imp_mono
thf(fact_10023_DERIV__nonneg__imp__nondecreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X5: real] :
( ( ord_less_eq_real @ A @ X5 )
=> ( ( ord_less_eq_real @ X5 @ B )
=> ? [Y5: real] :
( ( has_fi5821293074295781190e_real @ F @ Y5 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
& ( ord_less_eq_real @ zero_zero_real @ Y5 ) ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).
% DERIV_nonneg_imp_nondecreasing
thf(fact_10024_DERIV__nonpos__imp__nonincreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X5: real] :
( ( ord_less_eq_real @ A @ X5 )
=> ( ( ord_less_eq_real @ X5 @ B )
=> ? [Y5: real] :
( ( has_fi5821293074295781190e_real @ F @ Y5 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
& ( ord_less_eq_real @ Y5 @ zero_zero_real ) ) ) )
=> ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).
% DERIV_nonpos_imp_nonincreasing
thf(fact_10025_DERIV__neg__imp__decreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X5: real] :
( ( ord_less_eq_real @ A @ X5 )
=> ( ( ord_less_eq_real @ X5 @ B )
=> ? [Y5: real] :
( ( has_fi5821293074295781190e_real @ F @ Y5 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
& ( ord_less_real @ Y5 @ zero_zero_real ) ) ) )
=> ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).
% DERIV_neg_imp_decreasing
thf(fact_10026_DERIV__pos__imp__increasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X5: real] :
( ( ord_less_eq_real @ A @ X5 )
=> ( ( ord_less_eq_real @ X5 @ B )
=> ? [Y5: real] :
( ( has_fi5821293074295781190e_real @ F @ Y5 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y5 ) ) ) )
=> ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing
thf(fact_10027_DERIV__const__average,axiom,
! [A: real,B: real,V: real > real,K: real] :
( ( A != B )
=> ( ! [X5: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
=> ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% DERIV_const_average
thf(fact_10028_DERIV__local__max,axiom,
! [F: real > real,L: real,X: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y4: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y4 ) ) @ D )
=> ( ord_less_eq_real @ ( F @ Y4 ) @ ( F @ X ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_max
thf(fact_10029_DERIV__local__min,axiom,
! [F: real > real,L: real,X: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y4: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y4 ) ) @ D )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y4 ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_min
thf(fact_10030_DERIV__ln__divide,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_ln_divide
thf(fact_10031_DERIV__pow,axiom,
! [N: nat,X: real,S2: set_real] :
( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( power_power_real @ X2 @ N )
@ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ X @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
@ ( topolo2177554685111907308n_real @ X @ S2 ) ) ).
% DERIV_pow
thf(fact_10032_DERIV__fun__pow,axiom,
! [G: real > real,M: real,X: real,N: nat] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( power_power_real @ ( G @ X2 ) @ N )
@ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( G @ X ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ M )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_fun_pow
thf(fact_10033_has__real__derivative__powr,axiom,
! [Z4: real,R2: real] :
( ( ord_less_real @ zero_zero_real @ Z4 )
=> ( has_fi5821293074295781190e_real
@ ^ [Z2: real] : ( powr_real @ Z2 @ R2 )
@ ( times_times_real @ R2 @ ( powr_real @ Z4 @ ( minus_minus_real @ R2 @ one_one_real ) ) )
@ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) ) ) ).
% has_real_derivative_powr
thf(fact_10034_DERIV__log,axiom,
! [X: real,B: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_log
thf(fact_10035_DERIV__fun__powr,axiom,
! [G: real > real,M: real,X: real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( powr_real @ ( G @ X2 ) @ R2 )
@ ( times_times_real @ ( times_times_real @ R2 @ ( powr_real @ ( G @ X ) @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_fun_powr
thf(fact_10036_DERIV__powr,axiom,
! [G: real > real,M: real,X: real,F: real > real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
=> ( ( has_fi5821293074295781190e_real @ F @ R2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( powr_real @ ( G @ X2 ) @ ( F @ X2 ) )
@ ( times_times_real @ ( powr_real @ ( G @ X ) @ ( F @ X ) ) @ ( plus_plus_real @ ( times_times_real @ R2 @ ( ln_ln_real @ ( G @ X ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X ) ) @ ( G @ X ) ) ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).
% DERIV_powr
thf(fact_10037_DERIV__real__sqrt,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_real_sqrt
thf(fact_10038_DERIV__series_H,axiom,
! [F: real > nat > real,F4: real > nat > real,X0: real,A: real,B: real,L5: nat > real] :
( ! [N3: nat] :
( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( F @ X2 @ N3 )
@ ( F4 @ X0 @ N3 )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( summable_real @ ( F @ X5 ) ) )
=> ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( summable_real @ ( F4 @ X0 ) )
=> ( ( summable_real @ L5 )
=> ( ! [N3: nat,X5: real,Y4: real] :
( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( member_real @ Y4 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X5 @ N3 ) @ ( F @ Y4 @ N3 ) ) ) @ ( times_times_real @ ( L5 @ N3 ) @ ( abs_abs_real @ ( minus_minus_real @ X5 @ Y4 ) ) ) ) ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( suminf_real @ ( F @ X2 ) )
@ ( suminf_real @ ( F4 @ X0 ) )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).
% DERIV_series'
thf(fact_10039_DERIV__arctan,axiom,
! [X: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ).
% DERIV_arctan
thf(fact_10040_arsinh__real__has__field__derivative,axiom,
! [X: real,A2: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ).
% arsinh_real_has_field_derivative
thf(fact_10041_DERIV__real__sqrt__generic,axiom,
! [X: real,D4: real] :
( ( X != zero_zero_real )
=> ( ( ( ord_less_real @ zero_zero_real @ X )
=> ( D4
= ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ( ord_less_real @ X @ zero_zero_real )
=> ( D4
= ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ sqrt @ D4 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).
% DERIV_real_sqrt_generic
thf(fact_10042_arcosh__real__has__field__derivative,axiom,
! [X: real,A2: set_real] :
( ( ord_less_real @ one_one_real @ X )
=> ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).
% arcosh_real_has_field_derivative
thf(fact_10043_artanh__real__has__field__derivative,axiom,
! [X: real,A2: set_real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).
% artanh_real_has_field_derivative
thf(fact_10044_DERIV__power__series_H,axiom,
! [R: real,F: nat > real,X0: real] :
( ! [X5: real] :
( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( F @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ ( power_power_real @ X5 @ N2 ) ) ) )
=> ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( ( ord_less_real @ zero_zero_real @ R )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] :
( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ X2 @ ( suc @ N2 ) ) ) )
@ ( suminf_real
@ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( F @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ ( power_power_real @ X0 @ N2 ) ) )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).
% DERIV_power_series'
thf(fact_10045_DERIV__real__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_real_root
thf(fact_10046_DERIV__arccos,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_arccos
thf(fact_10047_DERIV__arcsin,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_arcsin
thf(fact_10048_Maclaurin__all__le__objl,axiom,
! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
( ( ( ( Diff @ zero_zero_nat )
= F )
& ! [M5: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).
% Maclaurin_all_le_objl
thf(fact_10049_Maclaurin__all__le,axiom,
! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
=> ? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_all_le
thf(fact_10050_DERIV__odd__real__root,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( X != zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_odd_real_root
thf(fact_10051_Maclaurin__minus,axiom,
! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ H2 @ zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ H2 @ T5 )
& ( ord_less_eq_real @ T5 @ zero_zero_real ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_real @ H2 @ T5 )
& ( ord_less_real @ T5 @ zero_zero_real )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_minus
thf(fact_10052_Maclaurin2,axiom,
! [H2: real,Diff: nat > real > real,F: real > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ).
% Maclaurin2
thf(fact_10053_Maclaurin,axiom,
! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_real @ T5 @ H2 )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin
thf(fact_10054_Maclaurin__all__lt,axiom,
! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( X != zero_zero_real )
=> ( ! [M5: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
& ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_all_lt
thf(fact_10055_Maclaurin__bi__le,axiom,
! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_bi_le
thf(fact_10056_Taylor__down,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ A @ T5 )
& ( ord_less_eq_real @ T5 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( ord_less_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ? [T5: real] :
( ( ord_less_real @ A @ T5 )
& ( ord_less_real @ T5 @ C )
& ( ( F @ A )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ C ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_down
thf(fact_10057_Taylor__up,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ A @ T5 )
& ( ord_less_eq_real @ T5 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_real @ C @ B )
=> ? [T5: real] :
( ( ord_less_real @ C @ T5 )
& ( ord_less_real @ T5 @ B )
& ( ( F @ B )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ C ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_up
thf(fact_10058_Taylor,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ A @ T5 )
& ( ord_less_eq_real @ T5 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ( ord_less_eq_real @ A @ X )
=> ( ( ord_less_eq_real @ X @ B )
=> ( ( X != C )
=> ? [T5: real] :
( ( ( ord_less_real @ X @ C )
=> ( ( ord_less_real @ X @ T5 )
& ( ord_less_real @ T5 @ C ) ) )
& ( ~ ( ord_less_real @ X @ C )
=> ( ( ord_less_real @ C @ T5 )
& ( ord_less_real @ T5 @ X ) ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ C ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ M6 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Taylor
thf(fact_10059_Maclaurin__lemma2,axiom,
! [N: nat,H2: real,Diff: nat > real > real,K: nat,B2: real] :
( ! [M5: nat,T5: real] :
( ( ( ord_less_nat @ M5 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( N
= ( suc @ K ) )
=> ! [M2: nat,T6: real] :
( ( ( ord_less_nat @ M2 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T6 )
& ( ord_less_eq_real @ T6 @ H2 ) )
=> ( has_fi5821293074295781190e_real
@ ^ [U3: real] :
( minus_minus_real @ ( Diff @ M2 @ U3 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M2 @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ U3 @ P5 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ M2 ) ) )
@ ( times_times_real @ B2 @ ( divide_divide_real @ ( power_power_real @ U3 @ ( minus_minus_nat @ N @ M2 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ M2 ) ) ) ) ) )
@ ( minus_minus_real @ ( Diff @ ( suc @ M2 ) @ T6 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M2 ) @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ T6 @ P5 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) )
@ ( times_times_real @ B2 @ ( divide_divide_real @ ( power_power_real @ T6 @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) ) ) ) ).
% Maclaurin_lemma2
thf(fact_10060_DERIV__arctan__series,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( has_fi5821293074295781190e_real
@ ^ [X9: real] :
( suminf_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X9 @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
@ ( suminf_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( power_power_real @ X @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_arctan_series
thf(fact_10061_isCont__Lb__Ub,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X5: real] :
( ( ( ord_less_eq_real @ A @ X5 )
& ( ord_less_eq_real @ X5 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ F ) )
=> ? [L6: real,M8: real] :
( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B ) )
=> ( ( ord_less_eq_real @ L6 @ ( F @ X4 ) )
& ( ord_less_eq_real @ ( F @ X4 ) @ M8 ) ) )
& ! [Y5: real] :
( ( ( ord_less_eq_real @ L6 @ Y5 )
& ( ord_less_eq_real @ Y5 @ M8 ) )
=> ? [X5: real] :
( ( ord_less_eq_real @ A @ X5 )
& ( ord_less_eq_real @ X5 @ B )
& ( ( F @ X5 )
= Y5 ) ) ) ) ) ) ).
% isCont_Lb_Ub
thf(fact_10062_LIM__fun__less__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [R4: real] :
( ( ord_less_real @ zero_zero_real @ R4 )
& ! [X4: real] :
( ( ( X4 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R4 ) )
=> ( ord_less_real @ ( F @ X4 ) @ zero_zero_real ) ) ) ) ) ).
% LIM_fun_less_zero
thf(fact_10063_LIM__fun__not__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( L != zero_zero_real )
=> ? [R4: real] :
( ( ord_less_real @ zero_zero_real @ R4 )
& ! [X4: real] :
( ( ( X4 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R4 ) )
=> ( ( F @ X4 )
!= zero_zero_real ) ) ) ) ) ).
% LIM_fun_not_zero
thf(fact_10064_LIM__fun__gt__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [R4: real] :
( ( ord_less_real @ zero_zero_real @ R4 )
& ! [X4: real] :
( ( ( X4 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R4 ) )
=> ( ord_less_real @ zero_zero_real @ ( F @ X4 ) ) ) ) ) ) ).
% LIM_fun_gt_zero
thf(fact_10065_isCont__real__sqrt,axiom,
! [X: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ sqrt ) ).
% isCont_real_sqrt
thf(fact_10066_isCont__real__root,axiom,
! [X: real,N: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ ( root @ N ) ) ).
% isCont_real_root
thf(fact_10067_isCont__inverse__function2,axiom,
! [A: real,X: real,B: real,G: real > real,F: real > real] :
( ( ord_less_real @ A @ X )
=> ( ( ord_less_real @ X @ B )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( ( G @ ( F @ Z3 ) )
= Z3 ) ) )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ) ).
% isCont_inverse_function2
thf(fact_10068_isCont__arcosh,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arcosh_real ) ) ).
% isCont_arcosh
thf(fact_10069_LIM__cos__div__sin,axiom,
( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( cos_real @ X2 ) @ ( sin_real @ X2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).
% LIM_cos_div_sin
thf(fact_10070_isCont__arccos,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arccos ) ) ) ).
% isCont_arccos
thf(fact_10071_isCont__arcsin,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arcsin ) ) ) ).
% isCont_arcsin
thf(fact_10072_LIM__less__bound,axiom,
! [B: real,X: real,F: real > real] :
( ( ord_less_real @ B @ X )
=> ( ! [X5: real] :
( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ B @ X ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
=> ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ F )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X ) ) ) ) ) ).
% LIM_less_bound
thf(fact_10073_isCont__artanh,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ artanh_real ) ) ) ).
% isCont_artanh
thf(fact_10074_isCont__inverse__function,axiom,
! [D: real,X: real,G: real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X ) ) @ D )
=> ( ( G @ ( F @ Z3 ) )
= Z3 ) )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X ) ) @ D )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ).
% isCont_inverse_function
thf(fact_10075_GMVT_H,axiom,
! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F4: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ G ) ) )
=> ( ! [Z3: real] :
( ( ord_less_real @ A @ Z3 )
=> ( ( ord_less_real @ Z3 @ B )
=> ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
=> ( ! [Z3: real] :
( ( ord_less_real @ A @ Z3 )
=> ( ( ord_less_real @ Z3 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F4 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
=> ? [C2: real] :
( ( ord_less_real @ A @ C2 )
& ( ord_less_real @ C2 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C2 ) )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F4 @ C2 ) ) ) ) ) ) ) ) ) ).
% GMVT'
thf(fact_10076_summable__Leibniz_I3_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
=> ! [N9: nat] :
( member_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) @ one_one_nat ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) ) ) ) ) ) ) ) ).
% summable_Leibniz(3)
thf(fact_10077_summable__Leibniz_I2_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
=> ! [N9: nat] :
( member_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) @ one_one_nat ) ) ) ) ) ) ) ) ).
% summable_Leibniz(2)
thf(fact_10078_filterlim__Suc,axiom,
filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).
% filterlim_Suc
thf(fact_10079_mult__nat__left__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).
% mult_nat_left_at_top
thf(fact_10080_mult__nat__right__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat
@ ^ [X2: nat] : ( times_times_nat @ X2 @ C )
@ at_top_nat
@ at_top_nat ) ) ).
% mult_nat_right_at_top
thf(fact_10081_monoseq__convergent,axiom,
! [X8: nat > real,B2: real] :
( ( topolo6980174941875973593q_real @ X8 )
=> ( ! [I2: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X8 @ I2 ) ) @ B2 )
=> ~ ! [L6: real] :
~ ( filterlim_nat_real @ X8 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat ) ) ) ).
% monoseq_convergent
thf(fact_10082_LIMSEQ__root,axiom,
( filterlim_nat_real
@ ^ [N2: nat] : ( root @ N2 @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ).
% LIMSEQ_root
thf(fact_10083_nested__sequence__unique,axiom,
! [F: nat > real,G: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N3 ) ) @ ( G @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( filterlim_nat_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat )
=> ? [L4: real] :
( ! [N9: nat] : ( ord_less_eq_real @ ( F @ N9 ) @ L4 )
& ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat )
& ! [N9: nat] : ( ord_less_eq_real @ L4 @ ( G @ N9 ) )
& ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat ) ) ) ) ) ) ).
% nested_sequence_unique
thf(fact_10084_LIMSEQ__inverse__zero,axiom,
! [X8: nat > real] :
( ! [R4: real] :
? [N7: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N7 @ N3 )
=> ( ord_less_real @ R4 @ ( X8 @ N3 ) ) )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( inverse_inverse_real @ ( X8 @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_zero
thf(fact_10085_lim__inverse__n_H,axiom,
( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% lim_inverse_n'
thf(fact_10086_LIMSEQ__root__const,axiom,
! [C: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( root @ N2 @ C )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ) ).
% LIMSEQ_root_const
thf(fact_10087_LIMSEQ__inverse__real__of__nat,axiom,
( filterlim_nat_real
@ ^ [N2: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat
thf(fact_10088_LIMSEQ__inverse__real__of__nat__add,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N2: nat] : ( plus_plus_real @ R2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add
thf(fact_10089_increasing__LIMSEQ,axiom,
! [F: nat > real,L: real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ L )
=> ( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ? [N9: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F @ N9 ) @ E2 ) ) )
=> ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).
% increasing_LIMSEQ
thf(fact_10090_LIMSEQ__realpow__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ X ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).
% LIMSEQ_realpow_zero
thf(fact_10091_LIMSEQ__divide__realpow__zero,axiom,
! [X: real,A: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ A @ ( power_power_real @ X @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_divide_realpow_zero
thf(fact_10092_LIMSEQ__abs__realpow__zero,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero
thf(fact_10093_LIMSEQ__abs__realpow__zero2,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero2
thf(fact_10094_LIMSEQ__inverse__realpow__zero,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( inverse_inverse_real @ ( power_power_real @ X @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_realpow_zero
thf(fact_10095_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N2: nat] : ( plus_plus_real @ R2 @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_10096_tendsto__exp__limit__sequentially,axiom,
! [X: real] :
( filterlim_nat_real
@ ^ [N2: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
@ at_top_nat ) ).
% tendsto_exp_limit_sequentially
thf(fact_10097_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N2: nat] : ( times_times_real @ R2 @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_10098_summable__Leibniz_I1_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( A @ N2 ) ) ) ) ) ).
% summable_Leibniz(1)
thf(fact_10099_summable,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( summable_real
@ ^ [N2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( A @ N2 ) ) ) ) ) ) ).
% summable
thf(fact_10100_cos__diff__limit__1,axiom,
! [Theta: nat > real,Theta2: real] :
( ( filterlim_nat_real
@ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat )
=> ~ ! [K2: nat > int] :
~ ( filterlim_nat_real
@ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
@ ( topolo2815343760600316023s_real @ Theta2 )
@ at_top_nat ) ) ).
% cos_diff_limit_1
thf(fact_10101_cos__limit__1,axiom,
! [Theta: nat > real] :
( ( filterlim_nat_real
@ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat )
=> ? [K2: nat > int] :
( filterlim_nat_real
@ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% cos_limit_1
thf(fact_10102_summable__Leibniz_I4_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( filterlim_nat_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ).
% summable_Leibniz(4)
thf(fact_10103_zeroseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% zeroseq_arctan_series
thf(fact_10104_summable__Leibniz_H_I2_J,axiom,
! [A: nat > real,N: nat] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( ord_less_eq_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) ) ) ) ) ).
% summable_Leibniz'(2)
thf(fact_10105_summable__Leibniz_H_I3_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( filterlim_nat_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ) ).
% summable_Leibniz'(3)
thf(fact_10106_sums__alternating__upper__lower,axiom,
! [A: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ? [L4: real] :
( ! [N9: nat] :
( ord_less_eq_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) ) )
@ L4 )
& ( filterlim_nat_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( topolo2815343760600316023s_real @ L4 )
@ at_top_nat )
& ! [N9: nat] :
( ord_less_eq_real @ L4
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) @ one_one_nat ) ) ) )
& ( filterlim_nat_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ L4 )
@ at_top_nat ) ) ) ) ) ).
% sums_alternating_upper_lower
thf(fact_10107_summable__Leibniz_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( filterlim_nat_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ).
% summable_Leibniz(5)
thf(fact_10108_summable__Leibniz_H_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( filterlim_nat_real
@ ^ [N2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ) ).
% summable_Leibniz'(5)
thf(fact_10109_summable__Leibniz_H_I4_J,axiom,
! [A: nat > real,N: nat] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( ord_less_eq_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ) ) ).
% summable_Leibniz'(4)
thf(fact_10110_eventually__sequentially__Suc,axiom,
! [P: nat > $o] :
( ( eventually_nat
@ ^ [I3: nat] : ( P @ ( suc @ I3 ) )
@ at_top_nat )
= ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentially_Suc
thf(fact_10111_eventually__sequentially__seg,axiom,
! [P: nat > $o,K: nat] :
( ( eventually_nat
@ ^ [N2: nat] : ( P @ ( plus_plus_nat @ N2 @ K ) )
@ at_top_nat )
= ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentially_seg
thf(fact_10112_le__sequentially,axiom,
! [F5: filter_nat] :
( ( ord_le2510731241096832064er_nat @ F5 @ at_top_nat )
= ( ! [N6: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N6 ) @ F5 ) ) ) ).
% le_sequentially
thf(fact_10113_eventually__sequentiallyI,axiom,
! [C: nat,P: nat > $o] :
( ! [X5: nat] :
( ( ord_less_eq_nat @ C @ X5 )
=> ( P @ X5 ) )
=> ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentiallyI
thf(fact_10114_eventually__sequentially,axiom,
! [P: nat > $o] :
( ( eventually_nat @ P @ at_top_nat )
= ( ? [N6: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N6 @ N2 )
=> ( P @ N2 ) ) ) ) ).
% eventually_sequentially
thf(fact_10115_sequentially__offset,axiom,
! [P: nat > $o,K: nat] :
( ( eventually_nat @ P @ at_top_nat )
=> ( eventually_nat
@ ^ [I3: nat] : ( P @ ( plus_plus_nat @ I3 @ K ) )
@ at_top_nat ) ) ).
% sequentially_offset
thf(fact_10116_eventually__False__sequentially,axiom,
~ ( eventually_nat
@ ^ [N2: nat] : $false
@ at_top_nat ) ).
% eventually_False_sequentially
thf(fact_10117_real__bounded__linear,axiom,
( real_V5970128139526366754l_real
= ( ^ [F3: real > real] :
? [C3: real] :
( F3
= ( ^ [X2: real] : ( times_times_real @ X2 @ C3 ) ) ) ) ) ).
% real_bounded_linear
thf(fact_10118_lhopital__left__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top_at_top
thf(fact_10119_lhopital__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top_at_top
thf(fact_10120_exp__at__top,axiom,
filterlim_real_real @ exp_real @ at_top_real @ at_top_real ).
% exp_at_top
thf(fact_10121_sqrt__at__top,axiom,
filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).
% sqrt_at_top
thf(fact_10122_ln__at__top,axiom,
filterlim_real_real @ ln_ln_real @ at_top_real @ at_top_real ).
% ln_at_top
thf(fact_10123_eventually__at__left__real,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( eventually_real
@ ^ [X2: real] : ( member_real @ X2 @ ( set_or1633881224788618240n_real @ B @ A ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).
% eventually_at_left_real
thf(fact_10124_lhopital__left__at__top,axiom,
! [G: real > real,X: real,G2: real > real,F: real > real,F4: real > real,Y3: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ ( topolo2815343760600316023s_real @ Y3 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ ( topolo2815343760600316023s_real @ Y3 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top
thf(fact_10125_lhospital__at__top__at__top,axiom,
! [G: real > real,G2: real > real,F: real > real,F4: real > real,X: real] :
( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ at_top_real )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ at_top_real )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ at_top_real )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ ( topolo2815343760600316023s_real @ X )
@ at_top_real )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ ( topolo2815343760600316023s_real @ X )
@ at_top_real ) ) ) ) ) ) ).
% lhospital_at_top_at_top
thf(fact_10126_lhopital__at__top,axiom,
! [G: real > real,X: real,G2: real > real,F: real > real,F4: real > real,Y3: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ ( topolo2815343760600316023s_real @ Y3 )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ ( topolo2815343760600316023s_real @ Y3 )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top
thf(fact_10127_filterlim__real__sequentially,axiom,
filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).
% filterlim_real_sequentially
thf(fact_10128_tanh__real__at__top,axiom,
filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ one_one_real ) @ at_top_real ).
% tanh_real_at_top
thf(fact_10129_artanh__real__at__left__1,axiom,
filterlim_real_real @ artanh_real @ at_top_real @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5984915006950818249n_real @ one_one_real ) ) ).
% artanh_real_at_left_1
thf(fact_10130_ln__x__over__x__tendsto__0,axiom,
( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( ln_ln_real @ X2 ) @ X2 )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_real ) ).
% ln_x_over_x_tendsto_0
thf(fact_10131_tendsto__power__div__exp__0,axiom,
! [K: nat] :
( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( power_power_real @ X2 @ K ) @ ( exp_real @ X2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_real ) ).
% tendsto_power_div_exp_0
thf(fact_10132_lhopital,axiom,
! [F: real > real,X: real,G: real > real,G2: real > real,F4: real > real,F5: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ) ) ).
% lhopital
thf(fact_10133_lhopital__left,axiom,
! [F: real > real,X: real,G: real > real,G2: real > real,F4: real > real,F5: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_left
thf(fact_10134_tendsto__exp__limit__at__top,axiom,
! [X: real] :
( filterlim_real_real
@ ^ [Y2: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ Y2 ) ) @ Y2 )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
@ at_top_real ) ).
% tendsto_exp_limit_at_top
thf(fact_10135_filterlim__tan__at__left,axiom,
filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% filterlim_tan_at_left
thf(fact_10136_DERIV__neg__imp__decreasing__at__top,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X5: real] :
( ( ord_less_eq_real @ B @ X5 )
=> ? [Y5: real] :
( ( has_fi5821293074295781190e_real @ F @ Y5 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
& ( ord_less_real @ Y5 @ zero_zero_real ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_neg_imp_decreasing_at_top
thf(fact_10137_tendsto__arctan__at__top,axiom,
filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).
% tendsto_arctan_at_top
thf(fact_10138_at__top__le__at__infinity,axiom,
ord_le4104064031414453916r_real @ at_top_real @ at_infinity_real ).
% at_top_le_at_infinity
thf(fact_10139_dist__real__def,axiom,
( real_V975177566351809787t_real
= ( ^ [X2: real,Y2: real] : ( abs_abs_real @ ( minus_minus_real @ X2 @ Y2 ) ) ) ) ).
% dist_real_def
thf(fact_10140_dist__complex__def,axiom,
( real_V3694042436643373181omplex
= ( ^ [X2: complex,Y2: complex] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y2 ) ) ) ) ).
% dist_complex_def
thf(fact_10141_filterlim__pow__at__bot__even,axiom,
! [N: nat,F: real > real,F5: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F5 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( filterlim_real_real
@ ^ [X2: real] : ( power_power_real @ ( F @ X2 ) @ N )
@ at_top_real
@ F5 ) ) ) ) ).
% filterlim_pow_at_bot_even
thf(fact_10142_at__bot__le__at__infinity,axiom,
ord_le4104064031414453916r_real @ at_bot_real @ at_infinity_real ).
% at_bot_le_at_infinity
thf(fact_10143_filterlim__uminus__at__top__at__bot,axiom,
filterlim_real_real @ uminus_uminus_real @ at_top_real @ at_bot_real ).
% filterlim_uminus_at_top_at_bot
thf(fact_10144_filterlim__uminus__at__bot__at__top,axiom,
filterlim_real_real @ uminus_uminus_real @ at_bot_real @ at_top_real ).
% filterlim_uminus_at_bot_at_top
thf(fact_10145_tanh__real__at__bot,axiom,
filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ one_one_real ) ) @ at_bot_real ).
% tanh_real_at_bot
thf(fact_10146_filterlim__inverse__at__bot__neg,axiom,
filterlim_real_real @ inverse_inverse_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5984915006950818249n_real @ zero_zero_real ) ) ).
% filterlim_inverse_at_bot_neg
thf(fact_10147_lhopital__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top_at_bot
thf(fact_10148_DERIV__pos__imp__increasing__at__bot,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X5: real] :
( ( ord_less_eq_real @ X5 @ B )
=> ? [Y5: real] :
( ( has_fi5821293074295781190e_real @ F @ Y5 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y5 ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing_at_bot
thf(fact_10149_filterlim__pow__at__bot__odd,axiom,
! [N: nat,F: real > real,F5: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F5 )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( filterlim_real_real
@ ^ [X2: real] : ( power_power_real @ ( F @ X2 ) @ N )
@ at_bot_real
@ F5 ) ) ) ) ).
% filterlim_pow_at_bot_odd
thf(fact_10150_lhopital__left__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top_at_bot
thf(fact_10151_tendsto__arctan__at__bot,axiom,
filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).
% tendsto_arctan_at_bot
thf(fact_10152_Bseq__eq__bounded,axiom,
! [F: nat > real,A: real,B: real] :
( ( ord_less_eq_set_real @ ( image_nat_real @ F @ top_top_set_nat ) @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( bfun_nat_real @ F @ at_top_nat ) ) ).
% Bseq_eq_bounded
thf(fact_10153_Bseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( bfun_nat_real @ ( power_power_real @ X ) @ at_top_nat ) ) ) ).
% Bseq_realpow
thf(fact_10154_tendsto__exp__limit__at__right,axiom,
! [X: real] :
( filterlim_real_real
@ ^ [Y2: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X @ Y2 ) ) @ ( divide_divide_real @ one_one_real @ Y2 ) )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).
% tendsto_exp_limit_at_right
thf(fact_10155_filterlim__tan__at__right,axiom,
filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% filterlim_tan_at_right
thf(fact_10156_eventually__at__right__to__0,axiom,
! [P: real > $o,A: real] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
= ( eventually_real
@ ^ [X2: real] : ( P @ ( plus_plus_real @ X2 @ A ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% eventually_at_right_to_0
thf(fact_10157_eventually__at__left__to__right,axiom,
! [P: real > $o,A: real] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
= ( eventually_real
@ ^ [X2: real] : ( P @ ( uminus_uminus_real @ X2 ) )
@ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ A ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ A ) ) ) ) ) ).
% eventually_at_left_to_right
thf(fact_10158_eventually__at__right__real,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( eventually_real
@ ^ [X2: real] : ( member_real @ X2 @ ( set_or1633881224788618240n_real @ A @ B ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).
% eventually_at_right_real
thf(fact_10159_filterlim__inverse__at__top__right,axiom,
filterlim_real_real @ inverse_inverse_real @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).
% filterlim_inverse_at_top_right
thf(fact_10160_filterlim__inverse__at__right__top,axiom,
filterlim_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) @ at_top_real ).
% filterlim_inverse_at_right_top
thf(fact_10161_eventually__at__right__to__top,axiom,
! [P: real > $o] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
= ( eventually_real
@ ^ [X2: real] : ( P @ ( inverse_inverse_real @ X2 ) )
@ at_top_real ) ) ).
% eventually_at_right_to_top
thf(fact_10162_eventually__at__top__to__right,axiom,
! [P: real > $o] :
( ( eventually_real @ P @ at_top_real )
= ( eventually_real
@ ^ [X2: real] : ( P @ ( inverse_inverse_real @ X2 ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% eventually_at_top_to_right
thf(fact_10163_ln__at__0,axiom,
filterlim_real_real @ ln_ln_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).
% ln_at_0
thf(fact_10164_tendsto__arcosh__at__left__1,axiom,
filterlim_real_real @ arcosh_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5849166863359141190n_real @ one_one_real ) ) ).
% tendsto_arcosh_at_left_1
thf(fact_10165_artanh__real__at__right__1,axiom,
filterlim_real_real @ artanh_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ one_one_real ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ one_one_real ) ) ) ).
% artanh_real_at_right_1
thf(fact_10166_lhopital__right__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top_at_top
thf(fact_10167_lhopital__right__0,axiom,
! [F0: real > real,G0: real > real,G2: real > real,F4: real > real,F5: filter_real] :
( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G0 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F0 @ X2 ) @ ( G0 @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right_0
thf(fact_10168_lhopital__right,axiom,
! [F: real > real,X: real,G: real > real,G2: real > real,F4: real > real,F5: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ F5
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right
thf(fact_10169_lhopital__right__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top_at_bot
thf(fact_10170_lhopital__right__0__at__top,axiom,
! [G: real > real,G2: real > real,F: real > real,F4: real > real,X: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ ( topolo2815343760600316023s_real @ X )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ ( topolo2815343760600316023s_real @ X )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).
% lhopital_right_0_at_top
thf(fact_10171_lhopital__right__at__top,axiom,
! [G: real > real,X: real,G2: real > real,F: real > real,F4: real > real,Y3: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] :
( ( G2 @ X2 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X2: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F4 @ X2 ) @ ( G2 @ X2 ) )
@ ( topolo2815343760600316023s_real @ Y3 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X2: real] : ( divide_divide_real @ ( F @ X2 ) @ ( G @ X2 ) )
@ ( topolo2815343760600316023s_real @ Y3 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top
thf(fact_10172_atLeast__Suc__greaterThan,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( set_or1210151606488870762an_nat @ K ) ) ).
% atLeast_Suc_greaterThan
thf(fact_10173_INT__greaterThan__UNIV,axiom,
( ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) )
= bot_bot_set_nat ) ).
% INT_greaterThan_UNIV
thf(fact_10174_greaterThan__0,axiom,
( ( set_or1210151606488870762an_nat @ zero_zero_nat )
= ( image_nat_nat @ suc @ top_top_set_nat ) ) ).
% greaterThan_0
thf(fact_10175_greaterThan__Suc,axiom,
! [K: nat] :
( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).
% greaterThan_Suc
thf(fact_10176_UN__atLeast__UNIV,axiom,
( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atLeast_nat @ top_top_set_nat ) )
= top_top_set_nat ) ).
% UN_atLeast_UNIV
thf(fact_10177_atLeast__Suc,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).
% atLeast_Suc
thf(fact_10178_decseq__bounded,axiom,
! [X8: nat > real,B2: real] :
( ( order_9091379641038594480t_real @ X8 )
=> ( ! [I2: nat] : ( ord_less_eq_real @ B2 @ ( X8 @ I2 ) )
=> ( bfun_nat_real @ X8 @ at_top_nat ) ) ) ).
% decseq_bounded
thf(fact_10179_decseq__convergent,axiom,
! [X8: nat > real,B2: real] :
( ( order_9091379641038594480t_real @ X8 )
=> ( ! [I2: nat] : ( ord_less_eq_real @ B2 @ ( X8 @ I2 ) )
=> ~ ! [L6: real] :
( ( filterlim_nat_real @ X8 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
=> ~ ! [I: nat] : ( ord_less_eq_real @ L6 @ ( X8 @ I ) ) ) ) ) ).
% decseq_convergent
thf(fact_10180_Gcd__eq__Max,axiom,
! [M7: set_nat] :
( ( finite_finite_nat @ M7 )
=> ( ( M7 != bot_bot_set_nat )
=> ( ~ ( member_nat @ zero_zero_nat @ M7 )
=> ( ( gcd_Gcd_nat @ M7 )
= ( lattic8265883725875713057ax_nat
@ ( comple7806235888213564991et_nat
@ ( image_nat_set_nat
@ ^ [M6: nat] :
( collect_nat
@ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ M6 ) )
@ M7 ) ) ) ) ) ) ) ).
% Gcd_eq_Max
thf(fact_10181_Max__divisors__self__nat,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ N ) ) )
= N ) ) ).
% Max_divisors_self_nat
thf(fact_10182_open__bool__def,axiom,
( topolo9180104560040979295open_o
= ( topolo4667128019001906403logy_o @ ( sup_sup_set_set_o @ ( image_o_set_o @ set_ord_lessThan_o @ top_top_set_o ) @ ( image_o_set_o @ set_or6416164934427428222Than_o @ top_top_set_o ) ) ) ) ).
% open_bool_def
thf(fact_10183_open__int__def,axiom,
( topolo4325760605701065253en_int
= ( topolo1611008123915946401gy_int @ ( sup_sup_set_set_int @ ( image_int_set_int @ set_ord_lessThan_int @ top_top_set_int ) @ ( image_int_set_int @ set_or1207661135979820486an_int @ top_top_set_int ) ) ) ) ).
% open_int_def
thf(fact_10184_card__le__Suc__Max,axiom,
! [S3: set_nat] :
( ( finite_finite_nat @ S3 )
=> ( ord_less_eq_nat @ ( finite_card_nat @ S3 ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S3 ) ) ) ) ).
% card_le_Suc_Max
thf(fact_10185_divide__nat__def,axiom,
( divide_divide_nat
= ( ^ [M6: nat,N2: nat] :
( if_nat @ ( N2 = zero_zero_nat ) @ zero_zero_nat
@ ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [K3: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K3 @ N2 ) @ M6 ) ) ) ) ) ) ).
% divide_nat_def
thf(fact_10186_gcd__is__Max__divisors__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( gcd_gcd_nat @ M @ N )
= ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [D2: nat] :
( ( dvd_dvd_nat @ D2 @ M )
& ( dvd_dvd_nat @ D2 @ N ) ) ) ) ) ) ).
% gcd_is_Max_divisors_nat
thf(fact_10187_open__nat__def,axiom,
( topolo4328251076210115529en_nat
= ( topolo1613498594424996677gy_nat @ ( sup_sup_set_set_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) ) ) ) ).
% open_nat_def
thf(fact_10188_GMVT,axiom,
! [A: real,B: real,F: real > real,G: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X5: real] :
( ( ( ord_less_eq_real @ A @ X5 )
& ( ord_less_eq_real @ X5 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ F ) )
=> ( ! [X5: real] :
( ( ( ord_less_real @ A @ X5 )
& ( ord_less_real @ X5 @ B ) )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
=> ( ! [X5: real] :
( ( ( ord_less_eq_real @ A @ X5 )
& ( ord_less_eq_real @ X5 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ G ) )
=> ( ! [X5: real] :
( ( ( ord_less_real @ A @ X5 )
& ( ord_less_real @ X5 @ B ) )
=> ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
=> ? [G_c: real,F_c: real,C2: real] :
( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C2 @ top_top_set_real ) )
& ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C2 @ top_top_set_real ) )
& ( ord_less_real @ A @ C2 )
& ( ord_less_real @ C2 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).
% GMVT
thf(fact_10189_Max__divisors__self__int,axiom,
! [N: int] :
( ( N != zero_zero_int )
=> ( ( lattic8263393255366662781ax_int
@ ( collect_int
@ ^ [D2: int] : ( dvd_dvd_int @ D2 @ N ) ) )
= ( abs_abs_int @ N ) ) ) ).
% Max_divisors_self_int
thf(fact_10190_gcd__is__Max__divisors__int,axiom,
! [N: int,M: int] :
( ( N != zero_zero_int )
=> ( ( gcd_gcd_int @ M @ N )
= ( lattic8263393255366662781ax_int
@ ( collect_int
@ ^ [D2: int] :
( ( dvd_dvd_int @ D2 @ M )
& ( dvd_dvd_int @ D2 @ N ) ) ) ) ) ) ).
% gcd_is_Max_divisors_int
thf(fact_10191_MVT,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X5: real] :
( ( ord_less_real @ A @ X5 )
=> ( ( ord_less_real @ X5 @ B )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
=> ? [L4: real,Z3: real] :
( ( ord_less_real @ A @ Z3 )
& ( ord_less_real @ Z3 @ B )
& ( has_fi5821293074295781190e_real @ F @ L4 @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ L4 ) ) ) ) ) ) ).
% MVT
thf(fact_10192_continuous__on__arcosh_H,axiom,
! [A2: set_real,F: real > real] :
( ( topolo5044208981011980120l_real @ A2 @ F )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X5 ) ) )
=> ( topolo5044208981011980120l_real @ A2
@ ^ [X2: real] : ( arcosh_real @ ( F @ X2 ) ) ) ) ) ).
% continuous_on_arcosh'
thf(fact_10193_continuous__on__arsinh_H,axiom,
! [A2: set_real,F: real > real] :
( ( topolo5044208981011980120l_real @ A2 @ F )
=> ( topolo5044208981011980120l_real @ A2
@ ^ [X2: real] : ( arsinh_real @ ( F @ X2 ) ) ) ) ).
% continuous_on_arsinh'
thf(fact_10194_continuous__image__closed__interval,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ? [C2: real,D3: real] :
( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
= ( set_or1222579329274155063t_real @ C2 @ D3 ) )
& ( ord_less_eq_real @ C2 @ D3 ) ) ) ) ).
% continuous_image_closed_interval
thf(fact_10195_continuous__on__arcosh,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( set_ord_atLeast_real @ one_one_real ) )
=> ( topolo5044208981011980120l_real @ A2 @ arcosh_real ) ) ).
% continuous_on_arcosh
thf(fact_10196_continuous__on__arccos_H,axiom,
topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arccos ).
% continuous_on_arccos'
thf(fact_10197_continuous__on__arcsin_H,axiom,
topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arcsin ).
% continuous_on_arcsin'
thf(fact_10198_continuous__on__artanh_H,axiom,
! [A2: set_real,F: real > real] :
( ( topolo5044208981011980120l_real @ A2 @ F )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A2 )
=> ( member_real @ ( F @ X5 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) )
=> ( topolo5044208981011980120l_real @ A2
@ ^ [X2: real] : ( artanh_real @ ( F @ X2 ) ) ) ) ) ).
% continuous_on_artanh'
thf(fact_10199_mvt,axiom,
! [A: real,B: real,F: real > real,F4: real > real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X5: real] :
( ( ord_less_real @ A @ X5 )
=> ( ( ord_less_real @ X5 @ B )
=> ( has_de1759254742604945161l_real @ F @ ( F4 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
=> ~ ! [Xi: real] :
( ( ord_less_real @ A @ Xi )
=> ( ( ord_less_real @ Xi @ B )
=> ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
!= ( F4 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).
% mvt
thf(fact_10200_continuous__on__artanh,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) )
=> ( topolo5044208981011980120l_real @ A2 @ artanh_real ) ) ).
% continuous_on_artanh
thf(fact_10201_DERIV__isconst2,axiom,
! [A: real,B: real,F: real > real,X: real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X5: real] :
( ( ord_less_real @ A @ X5 )
=> ( ( ord_less_real @ X5 @ B )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
=> ( ( ord_less_eq_real @ A @ X )
=> ( ( ord_less_eq_real @ X @ B )
=> ( ( F @ X )
= ( F @ A ) ) ) ) ) ) ) ).
% DERIV_isconst2
% Helper facts (36)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y3: int] :
( ( if_int @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y3: int] :
( ( if_int @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y3: nat] :
( ( if_nat @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y3: nat] :
( ( if_nat @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
! [X: num,Y3: num] :
( ( if_num @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
! [X: num,Y3: num] :
( ( if_num @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
! [X: rat,Y3: rat] :
( ( if_rat @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
! [X: rat,Y3: rat] :
( ( if_rat @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y3: real] :
( ( if_real @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y3: real] :
( ( if_real @ $true @ X @ Y3 )
= X ) ).
thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
! [P: real > $o] :
( ( P @ ( fChoice_real @ P ) )
= ( ? [X3: real] : ( P @ X3 ) ) ) ).
thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
! [X: complex,Y3: complex] :
( ( if_complex @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
! [X: complex,Y3: complex] :
( ( if_complex @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X: extended_enat,Y3: extended_enat] :
( ( if_Extended_enat @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X: extended_enat,Y3: extended_enat] :
( ( if_Extended_enat @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X: code_integer,Y3: code_integer] :
( ( if_Code_integer @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X: code_integer,Y3: code_integer] :
( ( if_Code_integer @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
! [X: set_int,Y3: set_int] :
( ( if_set_int @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
! [X: set_int,Y3: set_int] :
( ( if_set_int @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
! [X: vEBT_VEBT,Y3: vEBT_VEBT] :
( ( if_VEBT_VEBT @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
! [X: vEBT_VEBT,Y3: vEBT_VEBT] :
( ( if_VEBT_VEBT @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X: list_int,Y3: list_int] :
( ( if_list_int @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X: list_int,Y3: list_int] :
( ( if_list_int @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
! [X: option_nat,Y3: option_nat] :
( ( if_option_nat @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
! [X: option_nat,Y3: option_nat] :
( ( if_option_nat @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X: option_num,Y3: option_num] :
( ( if_option_num @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X: option_num,Y3: option_num] :
( ( if_option_num @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X: product_prod_int_int,Y3: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X: product_prod_int_int,Y3: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X: product_prod_nat_nat,Y3: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X: product_prod_nat_nat,Y3: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
! [X: produc6271795597528267376eger_o,Y3: produc6271795597528267376eger_o] :
( ( if_Pro5737122678794959658eger_o @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
! [X: produc6271795597528267376eger_o,Y3: produc6271795597528267376eger_o] :
( ( if_Pro5737122678794959658eger_o @ $true @ X @ Y3 )
= X ) ).
thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X: produc8923325533196201883nteger,Y3: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X: produc8923325533196201883nteger,Y3: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $true @ X @ Y3 )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( ia = mi )
| ( ia = ma )
| ( ( ord_less_nat @ ( vEBT_VEBT_high @ ia @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) )
& ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ia @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ia @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------