TPTP Problem File: ITP242^3.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP242^3 : TPTP v9.0.0. Released v8.1.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer problem VEBT_Succ 00204_010200
% Version  : [Des22] axioms.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source   : [Des22]
% Names    : 0070_VEBT_Succ_00204_010200 [Des22]

% Status   : Theorem
% Rating   : 1.00 v8.2.0, 0.92 v8.1.0
% Syntax   : Number of formulae    : 10774 (5512 unt; 950 typ;   0 def)
%            Number of atoms       : 27008 (11878 equ;   0 cnn)
%            Maximal formula atoms :   71 (   2 avg)
%            Number of connectives : 110275 (2512   ~; 481   |;1837   &;95347   @)
%                                         (   0 <=>;10098  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   39 (   6 avg)
%            Number of types       :   88 (  87 usr)
%            Number of type conns  : 3860 (3860   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  866 ( 863 usr;  56 con; 0-8 aty)
%            Number of variables   : 24577 (2026   ^;21757   !; 794   ?;24577   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            from the van Emde Boas Trees session in the Archive of Formal
%            proofs - 
%            www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
%            2022-02-18 00:02:53.227
%------------------------------------------------------------------------------
% Could-be-implicit typings (87)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5542196010084753463at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5491161045314408544at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
    produc1193250871479095198on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc8306885398267862888on_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc6121120109295599847at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
    produc7036089656553540234on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc2233624965454879586on_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J_J,type,
    set_fi4554929511873752355omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7413028617227757229T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc3447558737645232053on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4953844613479565601on_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J_J,type,
    set_fi7789364187291644575l_real: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    filter6041513312241820739omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
    list_P7037539587688870467BT_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    list_P4547456442757143711BT_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P5647936690300460905T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    produc8243902056947475879T_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    set_Pr5085853215250843933omplex: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc8923325533196201883nteger: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    list_P3126845725202233233VEBT_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7495141550334521929T_VEBT: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    filter2146258269922977983l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    list_P8526636022914148096eger_o: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    option4927543243414619207at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    set_Pr6218003697084177305l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    list_P3744719386663036955um_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    produc9072475918466114483BT_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    produc4894624898956917775BT_int: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    set_Pr958786334691620121nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    produc4411394909380815293omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
    list_P7333126701944960589_nat_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J_J,type,
    list_P6285523579766656935_o_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    list_P3795440434834930179_o_int: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
    set_list_VEBT_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    produc334124729049499915VEBT_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    produc2504756804600209347T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc6271795597528267376eger_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    produc2422161461964618553l_real: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    product_prod_num_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    product_prod_nat_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    product_prod_int_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    list_P4002435161011370285od_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Complex__Ocomplex_J_J,type,
    set_list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
    set_set_complex: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    list_list_nat: $tType ).

thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    list_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
    set_list_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
    product_prod_o_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    product_prod_o_int: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    list_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    list_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    set_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    set_set_int: $tType ).

thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    set_Code_integer: $tType ).

thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
    list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
    set_list_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    product_prod_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
    filter_real: $tType ).

thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
    option_num: $tType ).

thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
    option_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
    filter_nat: $tType ).

thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
    set_char: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Num__Onum_J,type,
    list_num: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__VEBT____Definitions__OVEBT,type,
    vEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
    set_rat: $tType ).

thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
    set_num: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Code____Numeral__Ointeger,type,
    code_integer: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__List__Olist_I_Eo_J,type,
    list_o: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Rat__Orat,type,
    rat: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (863)
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
    archim3151403230148437115or_rat: rat > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Real__Oreal,type,
    archim2898591450579166408c_real: real > real ).

thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
    archim7778729529865785530nd_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
    archim8280529875227126926d_real: real > int ).

thf(sy_c_Binomial_Obinomial,type,
    binomial: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
    gbinomial_complex: complex > nat > complex ).

thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
    gbinomial_rat: rat > nat > rat ).

thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
    gbinomial_real: real > nat > real ).

thf(sy_c_Bit__Operations_Oand__int__rel,type,
    bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Bit__Operations_Oand__not__num,type,
    bit_and_not_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Oconcat__bit,type,
    bit_concat_bit: nat > int > int > int ).

thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
    bit_or_not_num_neg: num > num > num ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
    bit_ri7919022796975470100ot_int: int > int ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
    bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
    bit_se725231765392027082nd_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
    bit_se727722235901077358nd_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
    bit_se8568078237143864401it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
    bit_se8570568707652914677it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1345352211410354436nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
    bit_se2159334234014336723it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
    bit_se2161824704523386999it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Code____Numeral__Ointeger,type,
    bit_se2119862282449309892nteger: nat > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
    bit_se1409905431419307370or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
    bit_se1412395901928357646or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
    bit_se545348938243370406it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
    bit_se547839408752420682it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se2793503036327961859nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
    bit_se7882103937844011126it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
    bit_se2923211474154528505it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
    bit_se2925701944663578781it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se8260200283734997820nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
    bit_se4203085406695923979it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
    bit_se4205575877204974255it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
    bit_se6526347334894502574or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
    bit_se6528837805403552850or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
    bit_se1146084159140164899it_int: int > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
    bit_se1148574629649215175it_nat: nat > nat > $o ).

thf(sy_c_Bit__Operations_Otake__bit__num,type,
    bit_take_bit_num: nat > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num,type,
    bit_un1837492267222099188nd_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num,type,
    bit_un6178654185764691216or_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num,type,
    bit_un7362597486090784418nd_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num,type,
    bit_un2480387367778600638or_num: num > num > option_num ).

thf(sy_c_Code__Numeral_Obit__cut__integer,type,
    code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).

thf(sy_c_Code__Numeral_Odivmod__abs,type,
    code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odivmod__integer,type,
    code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
    code_int_of_integer: code_integer > int ).

thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
    code_integer_of_int: int > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__num,type,
    code_integer_of_num: num > code_integer ).

thf(sy_c_Code__Numeral_Onat__of__integer,type,
    code_nat_of_integer: code_integer > nat ).

thf(sy_c_Code__Numeral_Onegative,type,
    code_negative: num > code_integer ).

thf(sy_c_Code__Numeral_Onum__of__integer,type,
    code_num_of_integer: code_integer > num ).

thf(sy_c_Code__Numeral_Opositive,type,
    code_positive: num > code_integer ).

thf(sy_c_Code__Target__Int_Onegative,type,
    code_Target_negative: num > int ).

thf(sy_c_Code__Target__Int_Opositive,type,
    code_Target_positive: num > int ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    comple8358262395181532106omplex: set_fi4554929511873752355omplex > filter6041513312241820739omplex ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    comple2936214249959783750l_real: set_fi7789364187291644575l_real > filter2146258269922977983l_real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Real__Oreal,type,
    comple4887499456419720421f_real: set_real > real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7806235888213564991et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
    comple1385675409528146559p_real: set_real > real ).

thf(sy_c_Complex_OArg,type,
    arg: complex > real ).

thf(sy_c_Complex_Ocis,type,
    cis: real > complex ).

thf(sy_c_Complex_Ocnj,type,
    cnj: complex > complex ).

thf(sy_c_Complex_Ocomplex_OComplex,type,
    complex2: real > real > complex ).

thf(sy_c_Complex_Ocomplex_OIm,type,
    im: complex > real ).

thf(sy_c_Complex_Ocomplex_ORe,type,
    re: complex > real ).

thf(sy_c_Complex_Ocsqrt,type,
    csqrt: complex > complex ).

thf(sy_c_Complex_Oimaginary__unit,type,
    imaginary_unit: complex ).

thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
    differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
    has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
    has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).

thf(sy_c_Divides_Oadjust__div,type,
    adjust_div: product_prod_int_int > int ).

thf(sy_c_Divides_Oadjust__mod,type,
    adjust_mod: int > int > int ).

thf(sy_c_Divides_Odivmod__nat,type,
    divmod_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Divides_Oeucl__rel__int,type,
    eucl_rel_int: int > int > product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Code____Numeral__Ointeger,type,
    unique5706413561485394159nteger: produc8923325533196201883nteger > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Int__Oint,type,
    unique6319869463603278526ux_int: product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Nat__Onat,type,
    unique6322359934112328802ux_nat: product_prod_nat_nat > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Code____Numeral__Ointeger,type,
    unique3479559517661332726nteger: num > num > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
    unique5052692396658037445od_int: num > num > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
    unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
    unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
    unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
    unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
    comm_s8582702949713902594nteger: code_integer > nat > code_integer ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
    comm_s2602460028002588243omplex: complex > nat > complex ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
    comm_s4660882817536571857er_int: int > nat > int ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
    comm_s4663373288045622133er_nat: nat > nat > nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
    comm_s4028243227959126397er_rat: rat > nat > rat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
    comm_s7457072308508201937r_real: real > nat > real ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Ointeger,type,
    semiri3624122377584611663nteger: nat > code_integer ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
    semiri5044797733671781792omplex: nat > complex ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
    semiri1406184849735516958ct_int: nat > int ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
    semiri773545260158071498ct_rat: nat > rat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
    semiri2265585572941072030t_real: nat > real ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
    invers8013647133539491842omplex: complex > complex ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
    inverse_inverse_rat: rat > rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
    at_bot_real: filter_real ).

thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
    at_top_nat: filter_nat ).

thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
    at_top_real: filter_real ).

thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
    eventually_nat: ( nat > $o ) > filter_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
    eventually_real: ( real > $o ) > filter_real > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
    filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
    filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
    filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    princi3496590319149328850omplex: set_Pr5085853215250843933omplex > filter6041513312241820739omplex ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    princi6114159922880469582l_real: set_Pr6218003697084177305l_real > filter2146258269922977983l_real ).

thf(sy_c_Finite__Set_Ocard_001_Eo,type,
    finite_card_o: set_o > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
    finite_card_complex: set_complex > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
    finite_card_int: set_int > nat ).

thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Nat__Onat_J,type,
    finite_card_list_nat: set_list_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
    finite_card_char: set_char > nat ).

thf(sy_c_Finite__Set_Ofinite_001_Eo,type,
    finite_finite_o: set_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
    finite3207457112153483333omplex: set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
    finite_finite_int: set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_I_Eo_J,type,
    finite_finite_list_o: set_list_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Complex__Ocomplex_J,type,
    finite8712137658972009173omplex: set_list_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Int__Oint_J,type,
    finite3922522038869484883st_int: set_list_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
    finite8100373058378681591st_nat: set_list_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    finite3004134309566078307T_VEBT: set_list_VEBT_VEBT > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
    finite_finite_num: set_num > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Rat__Orat,type,
    finite_finite_rat: set_rat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
    finite_finite_real: set_real > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    finite6551019134538273531omplex: set_set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Int__Oint_J,type,
    finite6197958912794628473et_int: set_set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
    finite1152437895449049373et_nat: set_set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__VEBT____Definitions__OVEBT,type,
    finite5795047828879050333T_VEBT: set_VEBT_VEBT > $o ).

thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
    bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).

thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    comp_C3531382070062128313er_num: ( code_integer > code_integer ) > ( num > code_integer ) > num > code_integer ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
    comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
    comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Real__Oreal_001t__Real__Oreal,type,
    comp_int_real_real: ( int > real ) > ( real > int ) > real > real ).

thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Real__Oreal_001t__Nat__Onat,type,
    comp_nat_real_nat: ( nat > real ) > ( nat > nat ) > nat > real ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Nat__Onat,type,
    inj_on_nat_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__String__Ochar,type,
    inj_on_nat_char: ( nat > char ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Real__Oreal_001t__Real__Oreal,type,
    inj_on_real_real: ( real > real ) > set_real > $o ).

thf(sy_c_Fun_Oinj__on_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
    inj_on_set_nat_nat: ( set_nat > nat ) > set_set_nat > $o ).

thf(sy_c_Fun_Ostrict__mono__on_001t__Nat__Onat_001t__Nat__Onat,type,
    strict1292158309912662752at_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
    the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
    gcd_Gcd_nat: set_nat > nat ).

thf(sy_c_GCD_Obezw,type,
    bezw: nat > nat > product_prod_int_int ).

thf(sy_c_GCD_Obezw__rel,type,
    bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Code____Numeral__Ointeger,type,
    gcd_gcd_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
    gcd_gcd_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
    gcd_gcd_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__nat__rel,type,
    gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
    abs_abs_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
    abs_abs_complex: complex > complex ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
    abs_abs_rat: rat > rat ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    minus_8727706125548526216plex_o: ( complex > $o ) > ( complex > $o ) > complex > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Int__Oint_M_Eo_J,type,
    minus_minus_int_o: ( int > $o ) > ( int > $o ) > int > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
    minus_1139252259498527702_nat_o: ( list_nat > $o ) > ( list_nat > $o ) > list_nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
    minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
    minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    minus_6910147592129066416_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > set_nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    minus_2794559001203777698VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > vEBT_VEBT > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
    minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
    minus_minus_complex: complex > complex > complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
    minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
    minus_minus_rat: rat > rat > rat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    minus_811609699411566653omplex: set_complex > set_complex > set_complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
    minus_minus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    minus_7954133019191499631st_nat: set_list_nat > set_list_nat > set_list_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    minus_5127226145743854075T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
    one_one_Code_integer: code_integer ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
    one_one_rat: rat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
    plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
    plus_plus_complex: complex > complex > complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
    plus_plus_rat: rat > rat > rat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
    sgn_sgn_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
    sgn_sgn_complex: complex > complex ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
    sgn_sgn_int: int > int ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
    sgn_sgn_rat: rat > rat ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
    sgn_sgn_real: real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
    times_3573771949741848930nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
    times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
    times_times_rat: rat > rat > rat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
    uminus1351360451143612070nteger: code_integer > code_integer ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
    uminus1482373934393186551omplex: complex > complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
    uminus_uminus_rat: rat > rat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
    uminus5710092332889474511et_nat: set_nat > set_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
    zero_z3403309356797280102nteger: code_integer ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
    zero_zero_rat: rat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Code____Numeral__Ointeger,type,
    groups6621422865394947399nteger: ( complex > code_integer ) > set_complex > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
    groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Rat__Orat,type,
    groups5058264527183730370ex_rat: ( complex > rat ) > set_complex > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    groups7873554091576472773nteger: ( int > code_integer ) > set_int > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
    groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
    groups4538972089207619220nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
    groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
    groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
    groups8778361861064173332t_real: ( int > real ) > set_int > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
    groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
    groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
    groups7713935264441627589nteger: ( real > code_integer ) > set_real > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
    groups1932886352136224148al_int: ( real > int ) > set_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
    groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Rat__Orat,type,
    groups1300246762558778688al_rat: ( real > rat ) > set_real > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
    groups8097168146408367636l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Code____Numeral__Ointeger,type,
    groups5748017345553531991nteger: ( vEBT_VEBT > code_integer ) > set_VEBT_VEBT > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Complex__Ocomplex,type,
    groups1794756597179926696omplex: ( vEBT_VEBT > complex ) > set_VEBT_VEBT > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    groups769130701875090982BT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    groups771621172384141258BT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
    groups136491112297645522BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
    groups2240296850493347238T_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Code____Numeral__Ointeger,type,
    groups8682486955453173170nteger: ( complex > code_integer ) > set_complex > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups3708469109370488835omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Int__Oint,type,
    groups858564598930262913ex_int: ( complex > int ) > set_complex > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    groups861055069439313189ex_nat: ( complex > nat ) > set_complex > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Rat__Orat,type,
    groups225925009352817453ex_rat: ( complex > rat ) > set_complex > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    groups766887009212190081x_real: ( complex > real ) > set_complex > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    groups3827104343326376752nteger: ( int > code_integer ) > set_int > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Complex__Ocomplex,type,
    groups7440179247065528705omplex: ( int > complex ) > set_int > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
    groups1705073143266064639nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Nat__Onat,type,
    groups1707563613775114915nt_nat: ( int > nat ) > set_int > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Rat__Orat,type,
    groups1072433553688619179nt_rat: ( int > rat ) > set_int > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Real__Oreal,type,
    groups2316167850115554303t_real: ( int > real ) > set_int > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    groups3455450783089532116nteger: ( nat > code_integer ) > set_nat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups6464643781859351333omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
    groups705719431365010083at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
    groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Rat__Orat,type,
    groups73079841787564623at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Real__Oreal,type,
    groups129246275422532515t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
    groups6225526099057966256nteger: ( real > code_integer ) > set_real > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    groups713298508707869441omplex: ( real > complex ) > set_real > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Int__Oint,type,
    groups4694064378042380927al_int: ( real > int ) > set_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Nat__Onat,type,
    groups4696554848551431203al_nat: ( real > nat ) > set_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Rat__Orat,type,
    groups4061424788464935467al_rat: ( real > rat ) > set_real > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Real__Oreal,type,
    groups1681761925125756287l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Code____Numeral__Ointeger,type,
    groups3770682396051356844nteger: ( vEBT_VEBT > code_integer ) > set_VEBT_VEBT > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Complex__Ocomplex,type,
    groups127312072573709053omplex: ( vEBT_VEBT > complex ) > set_VEBT_VEBT > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    groups6359315924273963643BT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    groups6361806394783013919BT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
    groups5726676334696518183BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
    groups2703838992350267259T_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > real ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
    groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
    groups4561878855575611511st_nat: list_nat > nat ).

thf(sy_c_HOL_OThe_001t__Int__Oint,type,
    the_int: ( int > $o ) > int ).

thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
    the_real: ( real > $o ) > real ).

thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
    if_Code_integer: $o > code_integer > code_integer > code_integer ).

thf(sy_c_If_001t__Complex__Ocomplex,type,
    if_complex: $o > complex > complex > complex ).

thf(sy_c_If_001t__Extended____Nat__Oenat,type,
    if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
    if_list_nat: $o > list_nat > list_nat > list_nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Num__Onum,type,
    if_num: $o > num > num > num ).

thf(sy_c_If_001t__Option__Ooption_It__Nat__Onat_J,type,
    if_option_nat: $o > option_nat > option_nat > option_nat ).

thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
    if_option_num: $o > option_num > option_num > option_num ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_If_001t__Rat__Orat,type,
    if_rat: $o > rat > rat > rat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
    if_set_int: $o > set_int > set_int > set_int ).

thf(sy_c_If_001t__Set__Oset_It__Nat__Onat_J,type,
    if_set_nat: $o > set_nat > set_nat > set_nat ).

thf(sy_c_If_001t__VEBT____Definitions__OVEBT,type,
    if_VEBT_VEBT: $o > vEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_Int_OAbs__Integ,type,
    abs_Integ: product_prod_nat_nat > int ).

thf(sy_c_Int_ORep__Integ,type,
    rep_Integ: int > product_prod_nat_nat ).

thf(sy_c_Int_Oint__ge__less__than,type,
    int_ge_less_than: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Oint__ge__less__than2,type,
    int_ge_less_than2: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Int_Opower__int_001t__Real__Oreal,type,
    power_int_real: real > int > real ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
    ring_1_Ints_real: set_real ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
    ring_18347121197199848620nteger: int > code_integer ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
    ring_17405671764205052669omplex: int > complex ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
    ring_1_of_int_int: int > int ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
    ring_1_of_int_rat: int > rat ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Extended____Nat__Oenat,type,
    inf_in1870772243966228564d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
    semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Extended____Nat__Oenat,type,
    sup_su3973961784419623482d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
    lattic8265883725875713057ax_nat: set_nat > nat ).

thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
    bfun_nat_real: ( nat > real ) > filter_nat > $o ).

thf(sy_c_List_Oappend_001t__Int__Oint,type,
    append_int: list_int > list_int > list_int ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Odistinct_001t__Int__Oint,type,
    distinct_int: list_int > $o ).

thf(sy_c_List_Odistinct_001t__Nat__Onat,type,
    distinct_nat: list_nat > $o ).

thf(sy_c_List_Odrop_001t__Nat__Onat,type,
    drop_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
    linord2614967742042102400et_nat: set_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
    nil_int: list_int ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_Ohd_001t__Nat__Onat,type,
    hd_nat: list_nat > nat ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
    map_nat_nat: ( nat > nat ) > list_nat > list_nat ).

thf(sy_c_List_Olist_Oset_001_Eo,type,
    set_o2: list_o > set_o ).

thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
    set_complex2: list_complex > set_complex ).

thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
    set_int2: list_int > set_int ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Nat__Onat_J,type,
    set_list_nat2: list_list_nat > set_list_nat ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
    set_real2: list_real > set_real ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
    set_set_nat2: list_set_nat > set_set_nat ).

thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
    set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
    size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).

thf(sy_c_List_Olist_Otl_001t__Nat__Onat,type,
    tl_nat: list_nat > list_nat ).

thf(sy_c_List_Olist__update_001_Eo,type,
    list_update_o: list_o > nat > $o > list_o ).

thf(sy_c_List_Olist__update_001t__Complex__Ocomplex,type,
    list_update_complex: list_complex > nat > complex > list_complex ).

thf(sy_c_List_Olist__update_001t__Int__Oint,type,
    list_update_int: list_int > nat > int > list_int ).

thf(sy_c_List_Olist__update_001t__Nat__Onat,type,
    list_update_nat: list_nat > nat > nat > list_nat ).

thf(sy_c_List_Olist__update_001t__Real__Oreal,type,
    list_update_real: list_real > nat > real > list_real ).

thf(sy_c_List_Olist__update_001t__VEBT____Definitions__OVEBT,type,
    list_u1324408373059187874T_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Onth_001_Eo,type,
    nth_o: list_o > nat > $o ).

thf(sy_c_List_Onth_001t__Code____Numeral__Ointeger,type,
    nth_Code_integer: list_Code_integer > nat > code_integer ).

thf(sy_c_List_Onth_001t__Complex__Ocomplex,type,
    nth_complex: list_complex > nat > complex ).

thf(sy_c_List_Onth_001t__Int__Oint,type,
    nth_int: list_int > nat > int ).

thf(sy_c_List_Onth_001t__List__Olist_It__Nat__Onat_J,type,
    nth_list_nat: list_list_nat > nat > list_nat ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001t__Num__Onum,type,
    nth_num: list_num > nat > num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    nth_Product_prod_o_o: list_P4002435161011370285od_o_o > nat > product_prod_o_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    nth_Pr1649062631805364268_o_int: list_P3795440434834930179_o_int > nat > product_prod_o_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
    nth_Pr5826913651314560976_o_nat: list_P6285523579766656935_o_nat > nat > product_prod_o_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr6777367263587873994T_VEBT: list_P7495141550334521929T_VEBT > nat > produc2504756804600209347T_VEBT ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    nth_Pr8522763379788166057eger_o: list_P8526636022914148096eger_o > nat > produc6271795597528267376eger_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    nth_Pr6456567536196504476um_num: list_P3744719386663036955um_num > nat > product_prod_num_num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    nth_Pr4606735188037164562VEBT_o: list_P3126845725202233233VEBT_o > nat > produc334124729049499915VEBT_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    nth_Pr6837108013167703752BT_int: list_P4547456442757143711BT_int > nat > produc4894624898956917775BT_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    nth_Pr1791586995822124652BT_nat: list_P7037539587688870467BT_nat > nat > produc9072475918466114483BT_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr4953567300277697838T_VEBT: list_P7413028617227757229T_VEBT > nat > produc8243902056947475879T_VEBT ).

thf(sy_c_List_Onth_001t__Real__Oreal,type,
    nth_real: list_real > nat > real ).

thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
    nth_set_nat: list_set_nat > nat > set_nat ).

thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
    nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_List_Oproduct_001_Eo_001_Eo,type,
    product_o_o: list_o > list_o > list_P4002435161011370285od_o_o ).

thf(sy_c_List_Oproduct_001_Eo_001t__Int__Oint,type,
    product_o_int: list_o > list_int > list_P3795440434834930179_o_int ).

thf(sy_c_List_Oproduct_001_Eo_001t__Nat__Onat,type,
    product_o_nat: list_o > list_nat > list_P6285523579766656935_o_nat ).

thf(sy_c_List_Oproduct_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    product_o_VEBT_VEBT: list_o > list_VEBT_VEBT > list_P7495141550334521929T_VEBT ).

thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc3607205314601156340eger_o: list_Code_integer > list_o > list_P8526636022914148096eger_o ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001_Eo,type,
    product_nat_o: list_nat > list_o > list_P7333126701944960589_nat_o ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
    produc7156399406898700509T_VEBT: list_nat > list_VEBT_VEBT > list_P5647936690300460905T_VEBT ).

thf(sy_c_List_Oproduct_001t__Num__Onum_001t__Num__Onum,type,
    product_num_num: list_num > list_num > list_P3744719386663036955um_num ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    product_VEBT_VEBT_o: list_VEBT_VEBT > list_o > list_P3126845725202233233VEBT_o ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc7292646706713671643BT_int: list_VEBT_VEBT > list_int > list_P4547456442757143711BT_int ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc7295137177222721919BT_nat: list_VEBT_VEBT > list_nat > list_P7037539587688870467BT_nat ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc4743750530478302277T_VEBT: list_VEBT_VEBT > list_VEBT_VEBT > list_P7413028617227757229T_VEBT ).

thf(sy_c_List_Oremdups_001t__Nat__Onat,type,
    remdups_nat: list_nat > list_nat ).

thf(sy_c_List_Oreplicate_001_Eo,type,
    replicate_o: nat > $o > list_o ).

thf(sy_c_List_Oreplicate_001t__Complex__Ocomplex,type,
    replicate_complex: nat > complex > list_complex ).

thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
    replicate_int: nat > int > list_int ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
    replicate_real: nat > real > list_real ).

thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
    replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Osorted__wrt_001t__Nat__Onat,type,
    sorted_wrt_nat: ( nat > nat > $o ) > list_nat > $o ).

thf(sy_c_List_Otake_001t__Nat__Onat,type,
    take_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Oupt,type,
    upt: nat > nat > list_nat ).

thf(sy_c_List_Oupto,type,
    upto: int > int > list_int ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_List_Oupto__rel,type,
    upto_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    compow_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
    case_nat_o: $o > ( nat > $o ) > nat > $o ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
    case_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
    case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).

thf(sy_c_Nat_Onat_Opred,type,
    pred: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
    semiri4939895301339042750nteger: nat > code_integer ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
    semiri8010041392384452111omplex: nat > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
    semiri4216267220026989637d_enat: nat > extended_enat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
    semiri681578069525770553at_rat: nat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Complex__Ocomplex,type,
    semiri2816024913162550771omplex: ( complex > complex ) > nat > complex > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
    semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
    semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Rat__Orat,type,
    semiri7787848453975740701ux_rat: ( rat > rat ) > nat > rat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Real__Oreal,type,
    semiri7260567687927622513x_real: ( real > real ) > nat > real > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
    size_size_list_o: list_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    size_s3445333598471063425nteger: list_Code_integer > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
    size_s3451745648224563538omplex: list_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    size_s3023201423986296836st_nat: list_list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Num__Onum_J,type,
    size_size_list_num: list_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    size_s1515746228057227161od_o_o: list_P4002435161011370285od_o_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    size_s2953683556165314199_o_int: list_P3795440434834930179_o_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J_J,type,
    size_s5443766701097040955_o_nat: list_P6285523579766656935_o_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s4313452262239582901T_VEBT: list_P7495141550334521929T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
    size_s6491369823275344609_nat_o: list_P7333126701944960589_nat_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s4762443039079500285T_VEBT: list_P5647936690300460905T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    size_s9168528473962070013VEBT_o: list_P3126845725202233233VEBT_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    size_s3661962791536183091BT_int: list_P4547456442757143711BT_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
    size_s6152045936467909847BT_nat: list_P7037539587688870467BT_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s7466405169056248089T_VEBT: list_P7413028617227757229T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    size_s3254054031482475050et_nat: list_set_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Nat__Onat_J,type,
    size_size_option_nat: option_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Num__Onum_J,type,
    size_size_option_num: option_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s170228958280169651at_nat: option4927543243414619207at_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
    size_size_VEBT_VEBT: vEBT_VEBT > nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
    nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
    nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Nat__Bijection_Oprod__encode,type,
    nat_prod_encode: product_prod_nat_nat > nat ).

thf(sy_c_Nat__Bijection_Oset__decode,type,
    nat_set_decode: nat > set_nat ).

thf(sy_c_Nat__Bijection_Oset__encode,type,
    nat_set_encode: set_nat > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_NthRoot_Oroot,type,
    root: nat > real > real ).

thf(sy_c_NthRoot_Osqrt,type,
    sqrt: real > real ).

thf(sy_c_Num_OBitM,type,
    bitM: num > num ).

thf(sy_c_Num_Oinc,type,
    inc: num > num ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
    neg_nu8804712462038260780nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
    neg_nu7009210354673126013omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
    neg_numeral_dbl_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
    neg_nu7757733837767384882nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
    neg_nu6511756317524482435omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
    neg_nu3179335615603231917ec_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
    neg_nu5831290666863070958nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
    neg_nu8557863876264182079omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
    neg_nu5219082963157363817nc_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
    neg_numeral_sub_int: num > num > int ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OBit1,type,
    bit1: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
    case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onum__of__nat,type,
    num_of_nat: nat > num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
    numera6620942414471956472nteger: num > code_integer ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
    numera6690914467698888265omplex: num > complex ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
    numeral_numeral_rat: num > rat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Num_Opred__numeral,type,
    pred_numeral: num > nat ).

thf(sy_c_Num_Osqr,type,
    sqr: num > num ).

thf(sy_c_Option_Ooption_ONone_001t__Nat__Onat,type,
    none_nat: option_nat ).

thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
    none_num: option_num ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    none_P5556105721700978146at_nat: option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Nat__Onat,type,
    some_nat: nat > option_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
    some_num: num > option_num ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
    case_option_int_num: int > ( num > int ) > option_num > int ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
    case_option_num_num: num > ( num > num ) > option_num > num ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
    case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Omap__option_001t__Num__Onum_001t__Num__Onum,type,
    map_option_num_num: ( num > num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Osize__option_001t__Nat__Onat,type,
    size_option_nat: ( nat > nat ) > option_nat > nat ).

thf(sy_c_Option_Ooption_Osize__option_001t__Num__Onum,type,
    size_option_num: ( num > nat ) > option_num > nat ).

thf(sy_c_Option_Ooption_Osize__option_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    size_o8335143837870341156at_nat: ( product_prod_nat_nat > nat ) > option4927543243414619207at_nat > nat ).

thf(sy_c_Option_Ooption_Othe_001t__Nat__Onat,type,
    the_nat: option_nat > nat ).

thf(sy_c_Option_Ooption_Othe_001t__Num__Onum,type,
    the_num: option_num > num ).

thf(sy_c_Option_Ooption_Othe_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    the_Pr8591224930841456533at_nat: option4927543243414619207at_nat > product_prod_nat_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
    bot_bo4199563552545308370d_enat: extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    bot_bot_set_complex: set_complex ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
    bot_bot_set_int: set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Num__Onum_J,type,
    bot_bot_set_num: set_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Rat__Orat_J,type,
    bot_bot_set_rat: set_rat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    bot_bo8194388402131092736T_VEBT: set_VEBT_VEBT ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    ord_less_complex_o: ( complex > $o ) > ( complex > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Int__Oint_M_Eo_J,type,
    ord_less_int_o: ( int > $o ) > ( int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    ord_less_VEBT_VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
    ord_le6747313008572928689nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
    ord_less_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le1307284697595431911nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_less_set_complex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    ord_le3480810397992357184T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
    ord_le3102999989581377725nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
    ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
    ord_less_eq_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
    ord_less_eq_set_o: set_o > set_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le7084787975880047091nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_le211207098394363844omplex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_eq_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_eq_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
    ord_max_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
    ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
    ord_max_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
    ord_max_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
    ord_max_num: num > num > num ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
    ord_max_rat: rat > rat > rat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
    ord_max_real: real > real > real ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_max_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Extended____Nat__Oenat,type,
    ord_mi8085742599997312461d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Nat__Onat,type,
    ord_min_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_Oantimono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_9091379641038594480t_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_mono_nat_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_mono_nat_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_5726023648592871131at_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Real__Oreal_001t__Real__Oreal,type,
    order_7092887310737990675l_real: ( real > real ) > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
    top_top_set_char: set_char ).

thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
    power_8256067586552552935nteger: code_integer > nat > code_integer ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
    power_power_rat: rat > nat > rat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4035269172776083154on_nat: ( nat > nat > $o ) > produc4953844613479565601on_nat > produc2233624965454879586on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc8929957630744042906on_nat: ( nat > nat > nat ) > produc4953844613479565601on_nat > produc8306885398267862888on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc3576312749637752826on_num: ( num > num > $o ) > produc3447558737645232053on_num > produc7036089656553540234on_num ).

thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc5778274026573060048on_num: ( num > num > num ) > produc3447558737645232053on_num > produc1193250871479095198on_num ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc3994169339658061776at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > produc6121120109295599847at_nat > produc5491161045314408544at_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc2899441246263362727at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > produc6121120109295599847at_nat > produc5542196010084753463at_nat ).

thf(sy_c_Product__Type_OPair_001_Eo_001_Eo,type,
    product_Pair_o_o: $o > $o > product_prod_o_o ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Int__Oint,type,
    product_Pair_o_int: $o > int > product_prod_o_int ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Nat__Onat,type,
    product_Pair_o_nat: $o > nat > product_prod_o_nat ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    produc2982872950893828659T_VEBT: $o > vEBT_VEBT > produc2504756804600209347T_VEBT ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
    product_Pair_int_int: int > int > product_prod_int_int ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
    product_Pair_nat_num: nat > num > product_prod_nat_num ).

thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
    product_Pair_num_num: num > num > product_prod_num_num ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Nat__Onat_J_001t__Option__Ooption_It__Nat__Onat_J,type,
    produc5098337634421038937on_nat: option_nat > option_nat > produc4953844613479565601on_nat ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Num__Onum_J_001t__Option__Ooption_It__Num__Onum_J,type,
    produc8585076106096196333on_num: option_num > option_num > produc3447558737645232053on_num ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc488173922507101015at_nat: option4927543243414619207at_nat > option4927543243414619207at_nat > produc6121120109295599847at_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    produc8721562602347293563VEBT_o: vEBT_VEBT > $o > produc334124729049499915VEBT_o ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc736041933913180425BT_int: vEBT_VEBT > int > produc4894624898956917775BT_int ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc537772716801021591T_VEBT: vEBT_VEBT > vEBT_VEBT > produc8243902056947475879T_VEBT ).

thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
    produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
    produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Complex__Ocomplex_001t__Complex__Ocomplex_001_Eo,type,
    produc6771430404735790350plex_o: ( complex > complex > $o ) > produc4411394909380815293omplex > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
    produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
    produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
    produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    produc1917071388513777916omplex: ( nat > nat > complex ) > product_prod_nat_nat > complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint,type,
    produc6840382203811409530at_int: ( nat > nat > int ) > product_prod_nat_nat > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Rat__Orat,type,
    produc6207742614233964070at_rat: ( nat > nat > rat ) > product_prod_nat_nat > rat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Real__Oreal,type,
    produc1703576794950452218t_real: ( nat > nat > real ) > product_prod_nat_nat > real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
    produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Real__Oreal_001t__Real__Oreal_001_Eo,type,
    produc5414030515140494994real_o: ( real > real > $o ) > produc2422161461964618553l_real > $o ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc8508995932063986495nteger: produc8923325533196201883nteger > code_integer ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
    product_fst_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
    product_fst_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6174133586879617921nteger: produc8923325533196201883nteger > code_integer ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
    product_snd_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
    product_snd_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Rat_OFract,type,
    fract: int > int > rat ).

thf(sy_c_Rat_OFrct,type,
    frct: product_prod_int_int > rat ).

thf(sy_c_Rat_ORep__Rat,type,
    rep_Rat: rat > product_prod_int_int ).

thf(sy_c_Rat_Ofield__char__0__class_ORats_001t__Real__Oreal,type,
    field_5140801741446780682s_real: set_real ).

thf(sy_c_Rat_Onormalize,type,
    normalize: product_prod_int_int > product_prod_int_int ).

thf(sy_c_Rat_Opositive,type,
    positive: rat > $o ).

thf(sy_c_Rat_Oquotient__of,type,
    quotient_of: rat > product_prod_int_int ).

thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
    real_V2521375963428798218omplex: set_complex ).

thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
    real_V5970128139526366754l_real: ( real > real ) > $o ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
    real_V3694042436643373181omplex: complex > complex > real ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
    real_V975177566351809787t_real: real > real > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
    real_V1022390504157884413omplex: complex > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
    real_V7735802525324610683m_real: real > real ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
    real_V4546457046886955230omplex: real > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
    real_V2046097035970521341omplex: real > complex > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
    real_V1485227260804924795R_real: real > real > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
    divide6298287555418463151nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
    divide1717551699836669952omplex: complex > complex > complex ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
    divide_divide_rat: rat > rat > rat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
    dvd_dvd_Code_integer: code_integer > code_integer > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
    dvd_dvd_complex: complex > complex > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
    dvd_dvd_rat: rat > rat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
    dvd_dvd_real: real > real > $o ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
    modulo364778990260209775nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
    modulo_modulo_int: int > int > int ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
    zero_n356916108424825756nteger: $o > code_integer ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
    zero_n1201886186963655149omplex: $o > complex ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
    zero_n2684676970156552555ol_int: $o > int ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
    zero_n2687167440665602831ol_nat: $o > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
    zero_n2052037380579107095ol_rat: $o > rat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
    zero_n3304061248610475627l_real: $o > real ).

thf(sy_c_Series_Osuminf_001t__Complex__Ocomplex,type,
    suminf_complex: ( nat > complex ) > complex ).

thf(sy_c_Series_Osuminf_001t__Int__Oint,type,
    suminf_int: ( nat > int ) > int ).

thf(sy_c_Series_Osuminf_001t__Nat__Onat,type,
    suminf_nat: ( nat > nat ) > nat ).

thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
    suminf_real: ( nat > real ) > real ).

thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
    summable_complex: ( nat > complex ) > $o ).

thf(sy_c_Series_Osummable_001t__Int__Oint,type,
    summable_int: ( nat > int ) > $o ).

thf(sy_c_Series_Osummable_001t__Nat__Onat,type,
    summable_nat: ( nat > nat ) > $o ).

thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
    summable_real: ( nat > real ) > $o ).

thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
    sums_complex: ( nat > complex ) > complex > $o ).

thf(sy_c_Series_Osums_001t__Int__Oint,type,
    sums_int: ( nat > int ) > int > $o ).

thf(sy_c_Series_Osums_001t__Nat__Onat,type,
    sums_nat: ( nat > nat ) > nat > $o ).

thf(sy_c_Series_Osums_001t__Real__Oreal,type,
    sums_real: ( nat > real ) > real > $o ).

thf(sy_c_Set_OCollect_001_Eo,type,
    collect_o: ( $o > $o ) > set_o ).

thf(sy_c_Set_OCollect_001t__Code____Numeral__Ointeger,type,
    collect_Code_integer: ( code_integer > $o ) > set_Code_integer ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_I_Eo_J,type,
    collect_list_o: ( list_o > $o ) > set_list_o ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Complex__Ocomplex_J,type,
    collect_list_complex: ( list_complex > $o ) > set_list_complex ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Int__Oint_J,type,
    collect_list_int: ( list_int > $o ) > set_list_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
    collect_list_nat: ( list_nat > $o ) > set_list_nat ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    collec5608196760682091941T_VEBT: ( list_VEBT_VEBT > $o ) > set_list_VEBT_VEBT ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Num__Onum,type,
    collect_num: ( num > $o ) > set_num ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    collec8663557070575231912omplex: ( produc4411394909380815293omplex > $o ) > set_Pr5085853215250843933omplex ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    collec3799799289383736868l_real: ( produc2422161461964618553l_real > $o ) > set_Pr6218003697084177305l_real ).

thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
    collect_rat: ( rat > $o ) > set_rat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    collect_set_complex: ( set_complex > $o ) > set_set_complex ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Int__Oint_J,type,
    collect_set_int: ( set_int > $o ) > set_set_int ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OCollect_001t__VEBT____Definitions__OVEBT,type,
    collect_VEBT_VEBT: ( vEBT_VEBT > $o ) > set_VEBT_VEBT ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
    image_int_int: ( int > int ) > set_int > set_int ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
    image_int_nat: ( int > nat ) > set_int > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Real__Oreal,type,
    image_nat_real: ( nat > real ) > set_nat > set_real ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
    image_nat_char: ( nat > char ) > set_nat > set_char ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    image_5971271580939081552omplex: ( real > filter6041513312241820739omplex ) > set_real > set_fi4554929511873752355omplex ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    image_2178119161166701260l_real: ( real > filter2146258269922977983l_real ) > set_real > set_fi7789364187291644575l_real ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
    image_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
    image_char_nat: ( char > nat ) > set_char > set_nat ).

thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
    insert_int: int > set_int > set_int ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Complex__Ocomplex,type,
    set_fo1517530859248394432omplex: ( nat > complex > complex ) > nat > nat > complex > complex ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Int__Oint,type,
    set_fo2581907887559384638at_int: ( nat > int > int ) > nat > nat > int > int ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
    set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Rat__Orat,type,
    set_fo1949268297981939178at_rat: ( nat > rat > rat ) > nat > nat > rat > rat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Real__Oreal,type,
    set_fo3111899725591712190t_real: ( nat > real > real ) > nat > nat > real > real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
    set_or7049704709247886629st_num: num > num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Rat__Orat,type,
    set_or633870826150836451st_rat: rat > rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
    set_or1222579329274155063t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4548717258645045905et_nat: set_nat > set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
    set_ord_atLeast_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
    set_ord_atMost_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Num__Onum,type,
    set_ord_atMost_num: num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Rat__Orat,type,
    set_ord_atMost_rat: rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
    set_ord_atMost_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4236626031148496127et_nat: set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
    set_or6656581121297822940st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
    set_or6659071591806873216st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
    set_or5832277885323065728an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
    set_or5834768355832116004an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
    set_or1633881224788618240n_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
    set_or1210151606488870762an_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
    set_or5849166863359141190n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
    set_ord_lessThan_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
    set_ord_lessThan_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Num__Onum,type,
    set_ord_lessThan_num: num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Rat__Orat,type,
    set_ord_lessThan_rat: rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
    set_or5984915006950818249n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or890127255671739683et_nat: set_nat > set_set_nat ).

thf(sy_c_String_Oascii__of,type,
    ascii_of: char > char ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
    comm_s629917340098488124ar_nat: char > nat ).

thf(sy_c_String_Ointeger__of__char,type,
    integer_of_char: char > code_integer ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
    unique3096191561947761185of_nat: nat > char ).

thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Int__Oint,type,
    topolo4899668324122417113eq_int: ( nat > int ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Nat__Onat,type,
    topolo4902158794631467389eq_nat: ( nat > nat ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Num__Onum,type,
    topolo1459490580787246023eq_num: ( nat > num ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Rat__Orat,type,
    topolo4267028734544971653eq_rat: ( nat > rat ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
    topolo6980174941875973593q_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Set__Oset_It__Nat__Onat_J,type,
    topolo7278393974255667507et_nat: ( nat > set_nat ) > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
    topolo2177554685111907308n_real: real > set_real > filter_real ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
    topolo2815343760600316023s_real: real > filter_real ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
    topolo4055970368930404560y_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Complex__Ocomplex,type,
    topolo896644834953643431omplex: filter6041513312241820739omplex ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Real__Oreal,type,
    topolo1511823702728130853y_real: filter2146258269922977983l_real ).

thf(sy_c_Transcendental_Oarccos,type,
    arccos: real > real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarcsin,type,
    arcsin: real > real ).

thf(sy_c_Transcendental_Oarctan,type,
    arctan: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
    cos_complex: complex > complex ).

thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
    cos_real: real > real ).

thf(sy_c_Transcendental_Ocos__coeff,type,
    cos_coeff: nat > real ).

thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
    cosh_real: real > real ).

thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
    cot_real: real > real ).

thf(sy_c_Transcendental_Odiffs_001t__Complex__Ocomplex,type,
    diffs_complex: ( nat > complex ) > nat > complex ).

thf(sy_c_Transcendental_Odiffs_001t__Int__Oint,type,
    diffs_int: ( nat > int ) > nat > int ).

thf(sy_c_Transcendental_Odiffs_001t__Rat__Orat,type,
    diffs_rat: ( nat > rat ) > nat > rat ).

thf(sy_c_Transcendental_Odiffs_001t__Real__Oreal,type,
    diffs_real: ( nat > real ) > nat > real ).

thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
    exp_complex: complex > complex ).

thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
    exp_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Olog,type,
    log: real > real > real ).

thf(sy_c_Transcendental_Opi,type,
    pi: real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
    sin_complex: complex > complex ).

thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
    sin_real: real > real ).

thf(sy_c_Transcendental_Osin__coeff,type,
    sin_coeff: nat > real ).

thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
    sinh_real: real > real ).

thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
    tan_complex: complex > complex ).

thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
    tan_real: real > real ).

thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
    tanh_complex: complex > complex ).

thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
    tanh_real: real > real ).

thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
    vEBT_Leaf: $o > $o > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
    vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
    vEBT_size_VEBT: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
    vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
    vEBT_VEBT_high: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
    vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
    vEBT_VEBT_low: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
    vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
    vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
    vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
    vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
    vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
    vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
    vEBT_invar_vebt: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_Oset__vebt,type,
    vEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
    vEBT_vebt_buildup: nat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
    vEBT_v4011308405150292612up_rel: nat > nat > $o ).

thf(sy_c_VEBT__Insert_Ovebt__insert,type,
    vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
    vEBT_vebt_insert_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
    vEBT_VEBT_bit_concat: nat > nat > nat > nat ).

thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
    vEBT_VEBT_minNull: vEBT_VEBT > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_OminNull__rel,type,
    vEBT_V6963167321098673237ll_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
    vEBT_VEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Member_Ovebt__member,type,
    vEBT_vebt_member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
    vEBT_vebt_member_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
    vEBT_VEBT_add: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
    vEBT_VEBT_greater: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
    vEBT_VEBT_less: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
    vEBT_VEBT_lesseq: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
    vEBT_VEBT_max_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
    vEBT_VEBT_min_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
    vEBT_VEBT_mul: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Nat__Onat,type,
    vEBT_V4262088993061758097ft_nat: ( nat > nat > nat ) > option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Num__Onum,type,
    vEBT_V819420779217536731ft_num: ( num > num > num ) > option_num > option_num > option_num ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    vEBT_V1502963449132264192at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > option4927543243414619207at_nat > option4927543243414619207at_nat > option4927543243414619207at_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
    vEBT_VEBT_power: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
    vEBT_vebt_maxt: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
    vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
    vEBT_vebt_mint: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
    vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
    vEBT_is_succ_in_set: set_nat > nat > nat > $o ).

thf(sy_c_VEBT__Succ_Ovebt__succ,type,
    vEBT_vebt_succ: vEBT_VEBT > nat > option_nat ).

thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
    vEBT_vebt_succ_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
    accp_nat: ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__VEBT____Definitions__OVEBT,type,
    accp_VEBT_VEBT: ( vEBT_VEBT > vEBT_VEBT > $o ) > vEBT_VEBT > $o ).

thf(sy_c_fChoice_001t__Real__Oreal,type,
    fChoice_real: ( real > $o ) > real ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__List__Olist_I_Eo_J,type,
    member_list_o: list_o > set_list_o > $o ).

thf(sy_c_member_001t__List__Olist_It__Int__Oint_J,type,
    member_list_int: list_int > set_list_int > $o ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    member2936631157270082147T_VEBT: list_VEBT_VEBT > set_list_VEBT_VEBT > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Num__Onum,type,
    member_num: num > set_num > $o ).

thf(sy_c_member_001t__Rat__Orat,type,
    member_rat: rat > set_rat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
    member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_v_deg____,type,
    deg: nat ).

thf(sy_v_m____,type,
    m: nat ).

thf(sy_v_ma____,type,
    ma: nat ).

thf(sy_v_maxl____,type,
    maxl: nat ).

thf(sy_v_mi____,type,
    mi: nat ).

thf(sy_v_na____,type,
    na: nat ).

thf(sy_v_succy____,type,
    succy: nat ).

thf(sy_v_summary____,type,
    summary: vEBT_VEBT ).

thf(sy_v_treeList____,type,
    treeList: list_VEBT_VEBT ).

thf(sy_v_xa____,type,
    xa: nat ).

% Relevant facts (9783)
thf(fact_0_False,axiom,
    ~ ( ord_less_nat @ xa @ mi ) ).

% False
thf(fact_1_pow__sum,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).

% pow_sum
thf(fact_2_high__def,axiom,
    ( vEBT_VEBT_high
    = ( ^ [X: nat,N: nat] : ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% high_def
thf(fact_3_high__bound__aux,axiom,
    ! [Ma: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
     => ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% high_bound_aux
thf(fact_4__C06_C,axiom,
    member_nat @ succy @ ( vEBT_VEBT_set_vebt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% "06"
thf(fact_5__C4_Ohyps_C_I10_J,axiom,
    ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).

% "4.hyps"(10)
thf(fact_6_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_7_div__exp__eq,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).

% div_exp_eq
thf(fact_8_div__exp__eq,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).

% div_exp_eq
thf(fact_9_field__less__half__sum,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ord_less_real @ X2 @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_10_field__less__half__sum,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ Y )
     => ( ord_less_rat @ X2 @ ( divide_divide_rat @ ( plus_plus_rat @ X2 @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_11_high__inv,axiom,
    ! [X2: nat,N2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ X2 ) @ N2 )
        = Y ) ) ).

% high_inv
thf(fact_12_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_less
thf(fact_13_less__exp,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% less_exp
thf(fact_14__092_060open_062deg_Adiv_A2_A_061_An_092_060close_062,axiom,
    ( ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = na ) ).

% \<open>deg div 2 = n\<close>
thf(fact_15_field__sum__of__halves,axiom,
    ! [X2: real] :
      ( ( plus_plus_real @ ( divide_divide_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = X2 ) ).

% field_sum_of_halves
thf(fact_16_field__sum__of__halves,axiom,
    ! [X2: rat] :
      ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = X2 ) ).

% field_sum_of_halves
thf(fact_17_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_18_semiring__norm_I83_J,axiom,
    ! [N2: num] :
      ( one
     != ( bit0 @ N2 ) ) ).

% semiring_norm(83)
thf(fact_19_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_20_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_21_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_22_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_23_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_24_add__numeral__left,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_25_add__numeral__left,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_26_add__numeral__left,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_27_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_28_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_29__C4_Ohyps_C_I5_J,axiom,
    m = na ).

% "4.hyps"(5)
thf(fact_30_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numera6690914467698888265omplex @ M )
        = ( numera6690914467698888265omplex @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_31_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_32_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_rat @ M )
        = ( numeral_numeral_rat @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_33_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_34_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_35_semiring__norm_I78_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(78)
thf(fact_36_semiring__norm_I87_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N2 ) )
      = ( M = N2 ) ) ).

% semiring_norm(87)
thf(fact_37_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_38__C4_Ohyps_C_I6_J,axiom,
    ( deg
    = ( plus_plus_nat @ na @ m ) ) ).

% "4.hyps"(6)
thf(fact_39_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_40_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_41_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_42_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_43_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_44_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_45_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_46_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_47_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_48_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_49_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_50_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_51_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_52_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_53_semiring__norm_I76_J,axiom,
    ! [N2: num] : ( ord_less_num @ one @ ( bit0 @ N2 ) ) ).

% semiring_norm(76)
thf(fact_54_semiring__norm_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( bit0 @ ( plus_plus_num @ M @ N2 ) ) ) ).

% semiring_norm(6)
thf(fact_55_bit__concat__def,axiom,
    ( vEBT_VEBT_bit_concat
    = ( ^ [H: nat,L: nat,D: nat] : ( plus_plus_nat @ ( times_times_nat @ H @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ D ) ) @ L ) ) ) ).

% bit_concat_def
thf(fact_56_distrib__right__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_57_distrib__right__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_58_distrib__right__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_59_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_60_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_61_distrib__left__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_62_distrib__left__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_63_distrib__left__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_64_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_65_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_66_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_67__C4_Ohyps_C_I9_J,axiom,
    ord_less_eq_nat @ mi @ ma ).

% "4.hyps"(9)
thf(fact_68_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_69_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_70_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_71_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_72_power__add__numeral2,axiom,
    ! [A: complex,M: num,N2: num,B: complex] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_73_power__add__numeral2,axiom,
    ! [A: real,M: num,N2: num,B: real] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_74_power__add__numeral2,axiom,
    ! [A: rat,M: num,N2: num,B: rat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_75_power__add__numeral2,axiom,
    ! [A: nat,M: num,N2: num,B: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_76_power__add__numeral2,axiom,
    ! [A: int,M: num,N2: num,B: int] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_77_power__add__numeral,axiom,
    ! [A: complex,M: num,N2: num] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_78_power__add__numeral,axiom,
    ! [A: real,M: num,N2: num] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_79_power__add__numeral,axiom,
    ! [A: rat,M: num,N2: num] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_80_power__add__numeral,axiom,
    ! [A: nat,M: num,N2: num] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_81_power__add__numeral,axiom,
    ! [A: int,M: num,N2: num] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_82_add__One__commute,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ N2 )
      = ( plus_plus_num @ N2 @ one ) ) ).

% add_One_commute
thf(fact_83_power__commuting__commutes,axiom,
    ! [X2: complex,Y: complex,N2: nat] :
      ( ( ( times_times_complex @ X2 @ Y )
        = ( times_times_complex @ Y @ X2 ) )
     => ( ( times_times_complex @ ( power_power_complex @ X2 @ N2 ) @ Y )
        = ( times_times_complex @ Y @ ( power_power_complex @ X2 @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_84_power__commuting__commutes,axiom,
    ! [X2: real,Y: real,N2: nat] :
      ( ( ( times_times_real @ X2 @ Y )
        = ( times_times_real @ Y @ X2 ) )
     => ( ( times_times_real @ ( power_power_real @ X2 @ N2 ) @ Y )
        = ( times_times_real @ Y @ ( power_power_real @ X2 @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_85_power__commuting__commutes,axiom,
    ! [X2: rat,Y: rat,N2: nat] :
      ( ( ( times_times_rat @ X2 @ Y )
        = ( times_times_rat @ Y @ X2 ) )
     => ( ( times_times_rat @ ( power_power_rat @ X2 @ N2 ) @ Y )
        = ( times_times_rat @ Y @ ( power_power_rat @ X2 @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_86_power__commuting__commutes,axiom,
    ! [X2: nat,Y: nat,N2: nat] :
      ( ( ( times_times_nat @ X2 @ Y )
        = ( times_times_nat @ Y @ X2 ) )
     => ( ( times_times_nat @ ( power_power_nat @ X2 @ N2 ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X2 @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_87_power__commuting__commutes,axiom,
    ! [X2: int,Y: int,N2: nat] :
      ( ( ( times_times_int @ X2 @ Y )
        = ( times_times_int @ Y @ X2 ) )
     => ( ( times_times_int @ ( power_power_int @ X2 @ N2 ) @ Y )
        = ( times_times_int @ Y @ ( power_power_int @ X2 @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_88_power__mult__distrib,axiom,
    ! [A: complex,B: complex,N2: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N2 )
      = ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ ( power_power_complex @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_89_power__mult__distrib,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N2 )
      = ( times_times_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_90_power__mult__distrib,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N2 )
      = ( times_times_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_91_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N2 )
      = ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_92_power__mult__distrib,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N2 )
      = ( times_times_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_93_power__commutes,axiom,
    ! [A: complex,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ A )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_94_power__commutes,axiom,
    ! [A: real,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N2 ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_95_power__commutes,axiom,
    ! [A: rat,N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ N2 ) @ A )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_96_power__commutes,axiom,
    ! [A: nat,N2: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_97_power__commutes,axiom,
    ! [A: int,N2: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N2 ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_98_power__mult,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_99_power__mult,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_100_power__mult,axiom,
    ! [A: complex,M: nat,N2: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_complex @ ( power_power_complex @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_101_power__mult,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_102_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_103_mem__Collect__eq,axiom,
    ! [A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( member_VEBT_VEBT @ A @ ( collect_VEBT_VEBT @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_104_mem__Collect__eq,axiom,
    ! [A: complex,P: complex > $o] :
      ( ( member_complex @ A @ ( collect_complex @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_105_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_106_mem__Collect__eq,axiom,
    ! [A: list_nat,P: list_nat > $o] :
      ( ( member_list_nat @ A @ ( collect_list_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_107_mem__Collect__eq,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_108_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_109_mem__Collect__eq,axiom,
    ! [A: int,P: int > $o] :
      ( ( member_int @ A @ ( collect_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_110_Collect__mem__eq,axiom,
    ! [A2: set_VEBT_VEBT] :
      ( ( collect_VEBT_VEBT
        @ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_111_Collect__mem__eq,axiom,
    ! [A2: set_complex] :
      ( ( collect_complex
        @ ^ [X: complex] : ( member_complex @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_112_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X: real] : ( member_real @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_113_Collect__mem__eq,axiom,
    ! [A2: set_list_nat] :
      ( ( collect_list_nat
        @ ^ [X: list_nat] : ( member_list_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_114_Collect__mem__eq,axiom,
    ! [A2: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X: set_nat] : ( member_set_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_115_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( member_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_116_Collect__mem__eq,axiom,
    ! [A2: set_int] :
      ( ( collect_int
        @ ^ [X: int] : ( member_int @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_117_Collect__cong,axiom,
    ! [P: real > $o,Q: real > $o] :
      ( ! [X3: real] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_real @ P )
        = ( collect_real @ Q ) ) ) ).

% Collect_cong
thf(fact_118_Collect__cong,axiom,
    ! [P: list_nat > $o,Q: list_nat > $o] :
      ( ! [X3: list_nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_list_nat @ P )
        = ( collect_list_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_119_Collect__cong,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ! [X3: set_nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_set_nat @ P )
        = ( collect_set_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_120_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_121_Collect__cong,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_int @ P )
        = ( collect_int @ Q ) ) ) ).

% Collect_cong
thf(fact_122_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% add_mult_distrib2
thf(fact_123_add__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N2 ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% add_mult_distrib
thf(fact_124_div__mult2__eq,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N2 @ Q2 ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N2 ) @ Q2 ) ) ).

% div_mult2_eq
thf(fact_125_mult__numeral__1__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_126_mult__numeral__1__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_127_mult__numeral__1__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_128_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_129_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_130_mult__numeral__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_131_mult__numeral__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_132_mult__numeral__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_133_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_134_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_135_power__add,axiom,
    ! [A: complex,M: nat,N2: nat] :
      ( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_add
thf(fact_136_power__add,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( power_power_real @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ).

% power_add
thf(fact_137_power__add,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_add
thf(fact_138_power__add,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ).

% power_add
thf(fact_139_power__add,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ).

% power_add
thf(fact_140_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N2 ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_141_left__add__twice,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_142_left__add__twice,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_143_left__add__twice,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_144_left__add__twice,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_145_left__add__twice,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_146_mult__2__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2_right
thf(fact_147_mult__2__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2_right
thf(fact_148_mult__2__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_149_mult__2__right,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_150_mult__2__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2_right
thf(fact_151_mult__2,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2
thf(fact_152_mult__2,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2
thf(fact_153_mult__2,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2
thf(fact_154_mult__2,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2
thf(fact_155_mult__2,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2
thf(fact_156_power2__eq__square,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_complex @ A @ A ) ) ).

% power2_eq_square
thf(fact_157_power2__eq__square,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ A @ A ) ) ).

% power2_eq_square
thf(fact_158_power2__eq__square,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_rat @ A @ A ) ) ).

% power2_eq_square
thf(fact_159_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_160_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_161_power4__eq__xxxx,axiom,
    ! [X2: complex] :
      ( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_162_power4__eq__xxxx,axiom,
    ! [X2: real] :
      ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( times_times_real @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_163_power4__eq__xxxx,axiom,
    ! [X2: rat] :
      ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_164_power4__eq__xxxx,axiom,
    ! [X2: nat] :
      ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_165_power4__eq__xxxx,axiom,
    ! [X2: int] :
      ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_166_power__even__eq,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_167_power__even__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_real @ ( power_power_real @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_168_power__even__eq,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_complex @ ( power_power_complex @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_169_power__even__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_int @ ( power_power_int @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_170_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_171_is__num__normalize_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_172_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_173_linorder__neqE__nat,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_nat @ X2 @ Y )
       => ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_174_infinite__descent,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N2 ) ) ).

% infinite_descent
thf(fact_175_nat__less__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% nat_less_induct
thf(fact_176_less__irrefl__nat,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_irrefl_nat
thf(fact_177_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_178_less__not__refl2,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ M )
     => ( M != N2 ) ) ).

% less_not_refl2
thf(fact_179_less__not__refl,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_not_refl
thf(fact_180_nat__neq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( M != N2 )
      = ( ( ord_less_nat @ M @ N2 )
        | ( ord_less_nat @ N2 @ M ) ) ) ).

% nat_neq_iff
thf(fact_181_power2__sum,axiom,
    ! [X2: complex,Y: complex] :
      ( ( power_power_complex @ ( plus_plus_complex @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_sum
thf(fact_182_power2__sum,axiom,
    ! [X2: real,Y: real] :
      ( ( power_power_real @ ( plus_plus_real @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_sum
thf(fact_183_power2__sum,axiom,
    ! [X2: rat,Y: rat] :
      ( ( power_power_rat @ ( plus_plus_rat @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_sum
thf(fact_184_power2__sum,axiom,
    ! [X2: nat,Y: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_sum
thf(fact_185_power2__sum,axiom,
    ! [X2: int,Y: int] :
      ( ( power_power_int @ ( plus_plus_int @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_sum
thf(fact_186_power__divide,axiom,
    ! [A: complex,B: complex,N2: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N2 )
      = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N2 ) @ ( power_power_complex @ B @ N2 ) ) ) ).

% power_divide
thf(fact_187_power__divide,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N2 )
      = ( divide_divide_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).

% power_divide
thf(fact_188_power__divide,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N2 )
      = ( divide_divide_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ).

% power_divide
thf(fact_189_less__add__eq__less,axiom,
    ! [K: nat,L2: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ K @ L2 )
     => ( ( ( plus_plus_nat @ M @ L2 )
          = ( plus_plus_nat @ K @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% less_add_eq_less
thf(fact_190_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_191_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_192_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_193_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_194_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_195_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L2 )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ) ).

% add_less_mono
thf(fact_196_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_197_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N2 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_198_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N2 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_199_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N2 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_200_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_201_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_202_divide__numeral__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_203_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_204_divide__numeral__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_205_numeral__Bit0__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N2 ) ) ).

% numeral_Bit0_div_2
thf(fact_206_numeral__Bit0__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% numeral_Bit0_div_2
thf(fact_207__C04_C,axiom,
    vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ succy ).

% "04"
thf(fact_208_afinite,axiom,
    finite_finite_nat @ ( vEBT_VEBT_set_vebt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% afinite
thf(fact_209__092_060open_062high_Ax_An_A_060_A2_A_094_An_A_092_060and_062_Alow_Ax_An_A_060_A2_A_094_An_092_060close_062,axiom,
    ( ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) )
    & ( ord_less_nat @ ( vEBT_VEBT_low @ xa @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) ) ).

% \<open>high x n < 2 ^ n \<and> low x n < 2 ^ n\<close>
thf(fact_210__092_060open_062length_AtreeList_A_061_A2_A_094_An_092_060close_062,axiom,
    ( ( size_s6755466524823107622T_VEBT @ treeList )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) ).

% \<open>length treeList = 2 ^ n\<close>
thf(fact_211_enat__ord__number_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% enat_ord_number(2)
thf(fact_212_times__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_213_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_214_times__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_215_divide__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_216_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_217_divide__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_218_divide__divide__eq__left,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_219_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_220_divide__divide__eq__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_221_times__divide__eq__left,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_222_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_223_times__divide__eq__left,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_224_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_225_add__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_226_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_227_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_228_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_229_add__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_230_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_231_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_232_low__inv,axiom,
    ! [X2: nat,N2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ X2 ) @ N2 )
        = X2 ) ) ).

% low_inv
thf(fact_233_min__in__set__def,axiom,
    ( vEBT_VEBT_min_in_set
    = ( ^ [Xs: set_nat,X: nat] :
          ( ( member_nat @ X @ Xs )
          & ! [Y2: nat] :
              ( ( member_nat @ Y2 @ Xs )
             => ( ord_less_eq_nat @ X @ Y2 ) ) ) ) ) ).

% min_in_set_def
thf(fact_234_max__in__set__def,axiom,
    ( vEBT_VEBT_max_in_set
    = ( ^ [Xs: set_nat,X: nat] :
          ( ( member_nat @ X @ Xs )
          & ! [Y2: nat] :
              ( ( member_nat @ Y2 @ Xs )
             => ( ord_less_eq_nat @ Y2 @ X ) ) ) ) ) ).

% max_in_set_def
thf(fact_235_succ__none__empty,axiom,
    ! [Xs2: set_nat,A: nat] :
      ( ~ ? [X_1: nat] : ( vEBT_is_succ_in_set @ Xs2 @ A @ X_1 )
     => ( ( finite_finite_nat @ Xs2 )
       => ~ ? [X4: nat] :
              ( ( member_nat @ X4 @ Xs2 )
              & ( ord_less_nat @ A @ X4 ) ) ) ) ).

% succ_none_empty
thf(fact_236_bit__split__inv,axiom,
    ! [X2: nat,D2: nat] :
      ( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X2 @ D2 ) @ ( vEBT_VEBT_low @ X2 @ D2 ) @ D2 )
      = X2 ) ).

% bit_split_inv
thf(fact_237_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_238_add__left__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_239_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_240_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_241_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_242_add__right__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_243_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_244_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_245__C4_Ohyps_C_I4_J,axiom,
    ( ( size_s6755466524823107622T_VEBT @ treeList )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).

% "4.hyps"(4)
thf(fact_246__092_060open_062mi_A_092_060le_062_Ax_092_060close_062,axiom,
    ord_less_eq_nat @ mi @ xa ).

% \<open>mi \<le> x\<close>
thf(fact_247__092_060open_0622_A_092_060le_062_Adeg_092_060close_062,axiom,
    ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ).

% \<open>2 \<le> deg\<close>
thf(fact_248_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_249_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_250_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_251_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_252_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_253_add__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_254_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_255_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_256_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_257_add__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_258_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_259_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_260_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_le
thf(fact_261_semiring__norm_I13_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N2 ) ) ) ) ).

% semiring_norm(13)
thf(fact_262_semiring__norm_I12_J,axiom,
    ! [N2: num] :
      ( ( times_times_num @ one @ N2 )
      = N2 ) ).

% semiring_norm(12)
thf(fact_263_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_264_obtain__set__succ,axiom,
    ! [X2: nat,Z: nat,A2: set_nat,B2: set_nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( ( vEBT_VEBT_max_in_set @ A2 @ Z )
       => ( ( finite_finite_nat @ B2 )
         => ( ( A2 = B2 )
           => ? [X_1: nat] : ( vEBT_is_succ_in_set @ A2 @ X2 @ X_1 ) ) ) ) ) ).

% obtain_set_succ
thf(fact_265_num__double,axiom,
    ! [N2: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N2 )
      = ( bit0 @ N2 ) ) ).

% num_double
thf(fact_266_power__mult__numeral,axiom,
    ! [A: nat,M: num,N2: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_267_power__mult__numeral,axiom,
    ! [A: real,M: num,N2: num] :
      ( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_268_power__mult__numeral,axiom,
    ! [A: complex,M: num,N2: num] :
      ( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_269_power__mult__numeral,axiom,
    ! [A: int,M: num,N2: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_270_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_271_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_272_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_273_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_274__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062succy_O_Ais__succ__in__set_A_Iset__vebt_H_A_ItreeList_A_B_Ahigh_Ax_A_Ideg_Adiv_A2_J_J_J_A_Ilow_Ax_A_Ideg_Adiv_A2_J_J_Asuccy_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [Succy: nat] :
        ~ ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ Succy ) ).

% \<open>\<And>thesis. (\<And>succy. is_succ_in_set (set_vebt' (treeList ! high x (deg div 2))) (low x (deg div 2)) succy \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_275__C4_Ohyps_C_I11_J,axiom,
    ( ( mi != ma )
   => ! [I2: nat] :
        ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
       => ( ( ( ( vEBT_VEBT_high @ ma @ na )
              = I2 )
           => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
          & ! [X4: nat] :
              ( ( ( ( vEBT_VEBT_high @ X4 @ na )
                  = I2 )
                & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ ( vEBT_VEBT_low @ X4 @ na ) ) )
             => ( ( ord_less_nat @ mi @ X4 )
                & ( ord_less_eq_nat @ X4 @ ma ) ) ) ) ) ) ).

% "4.hyps"(11)
thf(fact_276_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_277_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_278_eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( M = N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% eq_imp_le
thf(fact_279_le__antisym,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( M = N2 ) ) ) ).

% le_antisym
thf(fact_280_nat__le__linear,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
      | ( ord_less_eq_nat @ N2 @ M ) ) ).

% nat_le_linear
thf(fact_281_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y4: nat] :
                ( ( P @ Y4 )
               => ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_282_enat__less__induct,axiom,
    ! [P: extended_enat > $o,N2: extended_enat] :
      ( ! [N3: extended_enat] :
          ( ! [M2: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ M2 @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% enat_less_induct
thf(fact_283_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_284_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_285_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_286_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_287_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L2 ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_288_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( I = J )
        & ( ord_less_eq_rat @ K @ L2 ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_289_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L2 ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_290_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L2 ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_291_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L2 ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_292_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L2 ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_293_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L2 ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_294_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L2 ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_295_add__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_296_add__mono,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D2 )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_297_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_298_add__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_299_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_300_add__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_301_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_302_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_303_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( B
           != ( plus_plus_nat @ A @ C2 ) ) ) ).

% less_eqE
thf(fact_304_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_305_add__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_306_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_307_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_308_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
        ? [C3: nat] :
          ( B3
          = ( plus_plus_nat @ A3 @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_309_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_310_add__le__imp__le__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_311_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_312_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_313_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_314_add__le__imp__le__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_315_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_316_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_317_is__succ__in__set__def,axiom,
    ( vEBT_is_succ_in_set
    = ( ^ [Xs: set_nat,X: nat,Y2: nat] :
          ( ( member_nat @ Y2 @ Xs )
          & ( ord_less_nat @ X @ Y2 )
          & ! [Z2: nat] :
              ( ( member_nat @ Z2 @ Xs )
             => ( ( ord_less_nat @ X @ Z2 )
               => ( ord_less_eq_nat @ Y2 @ Z2 ) ) ) ) ) ) ).

% is_succ_in_set_def
thf(fact_318_size__neq__size__imp__neq,axiom,
    ! [X2: list_VEBT_VEBT,Y: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ X2 )
       != ( size_s6755466524823107622T_VEBT @ Y ) )
     => ( X2 != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_319_size__neq__size__imp__neq,axiom,
    ! [X2: list_o,Y: list_o] :
      ( ( ( size_size_list_o @ X2 )
       != ( size_size_list_o @ Y ) )
     => ( X2 != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_320_size__neq__size__imp__neq,axiom,
    ! [X2: list_nat,Y: list_nat] :
      ( ( ( size_size_list_nat @ X2 )
       != ( size_size_list_nat @ Y ) )
     => ( X2 != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_321_size__neq__size__imp__neq,axiom,
    ! [X2: list_int,Y: list_int] :
      ( ( ( size_size_list_int @ X2 )
       != ( size_size_list_int @ Y ) )
     => ( X2 != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_322_size__neq__size__imp__neq,axiom,
    ! [X2: num,Y: num] :
      ( ( ( size_size_num @ X2 )
       != ( size_size_num @ Y ) )
     => ( X2 != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_323_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N: nat] :
          ( ( ord_less_eq_nat @ M3 @ N )
          & ( M3 != N ) ) ) ) ).

% nat_less_le
thf(fact_324_less__imp__le__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_imp_le_nat
thf(fact_325_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N: nat] :
          ( ( ord_less_nat @ M3 @ N )
          | ( M3 = N ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_326_less__or__eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ord_less_nat @ M @ N2 )
        | ( M = N2 ) )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_or_eq_imp_le
thf(fact_327_le__neq__implies__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( M != N2 )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% le_neq_implies_less
thf(fact_328_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_329_add__leE,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ~ ( ( ord_less_eq_nat @ M @ N2 )
         => ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).

% add_leE
thf(fact_330_le__add1,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) ) ).

% le_add1
thf(fact_331_le__add2,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M @ N2 ) ) ).

% le_add2
thf(fact_332_add__leD1,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% add_leD1
thf(fact_333_add__leD2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ K @ N2 ) ) ).

% add_leD2
thf(fact_334_le__Suc__ex,axiom,
    ! [K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ K @ L2 )
     => ? [N3: nat] :
          ( L2
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_335_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ) ).

% add_le_mono
thf(fact_336_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_337_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_338_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_339_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N: nat] :
        ? [K2: nat] :
          ( N
          = ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_340_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_341_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_342_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L2 ) ) ) ) ).

% mult_le_mono
thf(fact_343_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_344_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_345_div__le__mono,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N2 @ K ) ) ) ).

% div_le_mono
thf(fact_346_div__le__dividend,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N2 ) @ M ) ).

% div_le_dividend
thf(fact_347_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_348_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_349_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_350_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_351_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_352_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_353_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_354_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_eq_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_355_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).

% add_le_less_mono
thf(fact_356_add__le__less__mono,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D2 )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).

% add_le_less_mono
thf(fact_357_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_le_less_mono
thf(fact_358_add__le__less__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).

% add_le_less_mono
thf(fact_359_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).

% add_less_le_mono
thf(fact_360_add__less__le__mono,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D2 )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).

% add_less_le_mono
thf(fact_361_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_less_le_mono
thf(fact_362_add__less__le__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).

% add_less_le_mono
thf(fact_363_div__mult2__numeral__eq,axiom,
    ! [A: nat,K: num,L2: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L2 ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L2 ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_364_div__mult2__numeral__eq,axiom,
    ! [A: int,K: num,L2: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L2 ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L2 ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_365_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_366_times__div__less__eq__dividend,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N2 @ ( divide_divide_nat @ M @ N2 ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_367_div__times__less__eq__dividend,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N2 ) @ N2 ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_368_linordered__field__no__lb,axiom,
    ! [X4: real] :
    ? [Y3: real] : ( ord_less_real @ Y3 @ X4 ) ).

% linordered_field_no_lb
thf(fact_369_linordered__field__no__lb,axiom,
    ! [X4: rat] :
    ? [Y3: rat] : ( ord_less_rat @ Y3 @ X4 ) ).

% linordered_field_no_lb
thf(fact_370_linordered__field__no__ub,axiom,
    ! [X4: real] :
    ? [X_1: real] : ( ord_less_real @ X4 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_371_linordered__field__no__ub,axiom,
    ! [X4: rat] :
    ? [X_1: rat] : ( ord_less_rat @ X4 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_372_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_373_mult_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_374_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_375_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_376_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A3: real,B3: real] : ( times_times_real @ B3 @ A3 ) ) ) ).

% mult.commute
thf(fact_377_mult_Ocommute,axiom,
    ( times_times_rat
    = ( ^ [A3: rat,B3: rat] : ( times_times_rat @ B3 @ A3 ) ) ) ).

% mult.commute
thf(fact_378_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).

% mult.commute
thf(fact_379_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A3: int,B3: int] : ( times_times_int @ B3 @ A3 ) ) ) ).

% mult.commute
thf(fact_380_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_381_mult_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_382_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_383_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_384_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_385_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_386_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_387_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_388_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_389_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_390_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_391_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_392_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( I = J )
        & ( K = L2 ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_393_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( I = J )
        & ( K = L2 ) )
     => ( ( plus_plus_rat @ I @ K )
        = ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_394_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( I = J )
        & ( K = L2 ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_395_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( I = J )
        & ( K = L2 ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_396_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_397_group__cancel_Oadd1,axiom,
    ! [A2: rat,K: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( plus_plus_rat @ A2 @ B )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_398_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_399_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_400_group__cancel_Oadd2,axiom,
    ! [B2: real,K: real,B: real,A: real] :
      ( ( B2
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B2 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_401_group__cancel_Oadd2,axiom,
    ! [B2: rat,K: rat,B: rat,A: rat] :
      ( ( B2
        = ( plus_plus_rat @ K @ B ) )
     => ( ( plus_plus_rat @ A @ B2 )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_402_group__cancel_Oadd2,axiom,
    ! [B2: nat,K: nat,B: nat,A: nat] :
      ( ( B2
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B2 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_403_group__cancel_Oadd2,axiom,
    ! [B2: int,K: int,B: int,A: int] :
      ( ( B2
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B2 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_404_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_405_add_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.assoc
thf(fact_406_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_407_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_408_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_409_add_Oleft__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_410_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_411_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_412_add_Oright__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_413_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_414_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B3: real] : ( plus_plus_real @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_415_add_Ocommute,axiom,
    ( plus_plus_rat
    = ( ^ [A3: rat,B3: rat] : ( plus_plus_rat @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_416_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_417_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B3: int] : ( plus_plus_int @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_418_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_419_add_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_420_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_421_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_422_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_423_add__left__imp__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_424_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_425_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_426_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_427_add__right__imp__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_428_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_429_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_430_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_431_power2__nat__le__eq__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% power2_nat_le_eq_le
thf(fact_432_power2__nat__le__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% power2_nat_le_imp_le
thf(fact_433_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_434_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_435_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_436_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_437_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_438_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( I = J )
        & ( ord_less_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_439_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_440_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_441_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_442_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_443_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_444_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_445_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).

% add_strict_mono
thf(fact_446_add__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D2 )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).

% add_strict_mono
thf(fact_447_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_strict_mono
thf(fact_448_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).

% add_strict_mono
thf(fact_449_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_450_add__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_451_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_452_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_453_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_454_add__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_455_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_456_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_457_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_458_add__less__imp__less__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_459_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_460_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_461_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_462_add__less__imp__less__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_463_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_464_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_465_times__divide__times__eq,axiom,
    ! [X2: complex,Y: complex,Z: complex,W: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ X2 @ Y ) @ ( divide1717551699836669952omplex @ Z @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_466_times__divide__times__eq,axiom,
    ! [X2: real,Y: real,Z: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_467_times__divide__times__eq,axiom,
    ! [X2: rat,Y: rat,Z: rat,W: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ X2 @ Y ) @ ( divide_divide_rat @ Z @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_468_divide__divide__times__eq,axiom,
    ! [X2: complex,Y: complex,Z: complex,W: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X2 @ Y ) @ ( divide1717551699836669952omplex @ Z @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X2 @ W ) @ ( times_times_complex @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_469_divide__divide__times__eq,axiom,
    ! [X2: real,Y: real,Z: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X2 @ W ) @ ( times_times_real @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_470_divide__divide__times__eq,axiom,
    ! [X2: rat,Y: rat,Z: rat,W: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ X2 @ Y ) @ ( divide_divide_rat @ Z @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X2 @ W ) @ ( times_times_rat @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_471_divide__divide__eq__left_H,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_472_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_473_divide__divide__eq__left_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_474_add__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
      = ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_475_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_476_add__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_477__C03_C,axiom,
    ? [Y3: nat] :
      ( ( ord_less_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ Y3 )
      & ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Y3 ) ) ).

% "03"
thf(fact_478_sum__squares__bound,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y ) @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_479_sum__squares__bound,axiom,
    ! [X2: rat,Y: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y ) @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_480_succ__member,axiom,
    ! [T: vEBT_VEBT,X2: nat,Y: nat] :
      ( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 @ Y )
      = ( ( vEBT_vebt_member @ T @ Y )
        & ( ord_less_nat @ X2 @ Y )
        & ! [Z2: nat] :
            ( ( ( vEBT_vebt_member @ T @ Z2 )
              & ( ord_less_nat @ X2 @ Z2 ) )
           => ( ord_less_eq_nat @ Y @ Z2 ) ) ) ) ).

% succ_member
thf(fact_481_power__minus__is__div,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ A @ B ) )
        = ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% power_minus_is_div
thf(fact_482__C02_C,axiom,
    vEBT_vebt_member @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ maxl ).

% "02"
thf(fact_483_low__def,axiom,
    ( vEBT_VEBT_low
    = ( ^ [X: nat,N: nat] : ( modulo_modulo_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% low_def
thf(fact_484__C05_C,axiom,
    ( ( some_nat @ succy )
    = ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% "05"
thf(fact_485__C00_C,axiom,
    ( ( ( some_nat @ maxl )
      = ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
    & ( ord_less_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ maxl ) ) ).

% "00"
thf(fact_486__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062maxl_O_ASome_Amaxl_A_061_Avebt__maxt_A_ItreeList_A_B_Ahigh_Ax_A_Ideg_Adiv_A2_J_J_A_092_060and_062_Alow_Ax_A_Ideg_Adiv_A2_J_A_060_Amaxl_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [Maxl: nat] :
        ~ ( ( ( some_nat @ Maxl )
            = ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
          & ( ord_less_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ Maxl ) ) ).

% \<open>\<And>thesis. (\<And>maxl. Some maxl = vebt_maxt (treeList ! high x (deg div 2)) \<and> low x (deg div 2) < maxl \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_487_nth__equalityI,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
        = ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( ( nth_VEBT_VEBT @ Xs2 @ I3 )
              = ( nth_VEBT_VEBT @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_488_nth__equalityI,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs2 )
        = ( size_size_list_o @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
           => ( ( nth_o @ Xs2 @ I3 )
              = ( nth_o @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_489_nth__equalityI,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
           => ( ( nth_nat @ Xs2 @ I3 )
              = ( nth_nat @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_490_nth__equalityI,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
           => ( ( nth_int @ Xs2 @ I3 )
              = ( nth_int @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_491_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > vEBT_VEBT > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X5: vEBT_VEBT] : ( P @ I4 @ X5 ) ) )
      = ( ? [Xs: list_VEBT_VEBT] :
            ( ( ( size_s6755466524823107622T_VEBT @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_VEBT_VEBT @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_492_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > $o > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X5: $o] : ( P @ I4 @ X5 ) ) )
      = ( ? [Xs: list_o] :
            ( ( ( size_size_list_o @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_o @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_493_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X5: nat] : ( P @ I4 @ X5 ) ) )
      = ( ? [Xs: list_nat] :
            ( ( ( size_size_list_nat @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_nat @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_494_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > int > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X5: int] : ( P @ I4 @ X5 ) ) )
      = ( ? [Xs: list_int] :
            ( ( ( size_size_list_int @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_int @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_495_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_VEBT_VEBT,Z3: list_VEBT_VEBT] : ( Y5 = Z3 ) )
    = ( ^ [Xs: list_VEBT_VEBT,Ys2: list_VEBT_VEBT] :
          ( ( ( size_s6755466524823107622T_VEBT @ Xs )
            = ( size_s6755466524823107622T_VEBT @ Ys2 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
             => ( ( nth_VEBT_VEBT @ Xs @ I4 )
                = ( nth_VEBT_VEBT @ Ys2 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_496_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_o,Z3: list_o] : ( Y5 = Z3 ) )
    = ( ^ [Xs: list_o,Ys2: list_o] :
          ( ( ( size_size_list_o @ Xs )
            = ( size_size_list_o @ Ys2 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) )
             => ( ( nth_o @ Xs @ I4 )
                = ( nth_o @ Ys2 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_497_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_nat,Z3: list_nat] : ( Y5 = Z3 ) )
    = ( ^ [Xs: list_nat,Ys2: list_nat] :
          ( ( ( size_size_list_nat @ Xs )
            = ( size_size_list_nat @ Ys2 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
             => ( ( nth_nat @ Xs @ I4 )
                = ( nth_nat @ Ys2 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_498_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_int,Z3: list_int] : ( Y5 = Z3 ) )
    = ( ^ [Xs: list_int,Ys2: list_int] :
          ( ( ( size_size_list_int @ Xs )
            = ( size_size_list_int @ Ys2 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) )
             => ( ( nth_int @ Xs @ I4 )
                = ( nth_int @ Ys2 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_499_maxbmo,axiom,
    ! [T: vEBT_VEBT,X2: nat] :
      ( ( ( vEBT_vebt_maxt @ T )
        = ( some_nat @ X2 ) )
     => ( vEBT_V8194947554948674370ptions @ T @ X2 ) ) ).

% maxbmo
thf(fact_500_power__shift,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ( power_power_nat @ X2 @ Y )
        = Z )
      = ( ( vEBT_VEBT_power @ ( some_nat @ X2 ) @ ( some_nat @ Y ) )
        = ( some_nat @ Z ) ) ) ).

% power_shift
thf(fact_501_mod__mod__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_502_mod__mod__trivial,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_503_mod__mod__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_504_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_505_add__diff__cancel__right_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_506_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_507_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_508_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_509_add__diff__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_510_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_511_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_512_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_513_add__diff__cancel__left_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_514_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_515_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_516_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_517_add__diff__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_518_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_519_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_520_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_521_diff__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_522_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_523_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_524_add__diff__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_525_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_526_mod__add__self2,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self2
thf(fact_527_mod__add__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self2
thf(fact_528_mod__add__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self2
thf(fact_529_mod__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self1
thf(fact_530_mod__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self1
thf(fact_531_mod__add__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self1
thf(fact_532_minus__mod__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mod_self2
thf(fact_533_minus__mod__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mod_self2
thf(fact_534_diff__diff__cancel,axiom,
    ! [I: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_535_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_536_mod__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ M @ N2 )
        = M ) ) ).

% mod_less
thf(fact_537_semiring__norm_I71_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(71)
thf(fact_538_semiring__norm_I68_J,axiom,
    ! [N2: num] : ( ord_less_eq_num @ one @ N2 ) ).

% semiring_norm(68)
thf(fact_539_left__diff__distrib__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_540_left__diff__distrib__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_541_left__diff__distrib__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_542_left__diff__distrib__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_543_right__diff__distrib__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_544_right__diff__distrib__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_545_right__diff__distrib__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_546_right__diff__distrib__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_547_mod__mult__self1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self1
thf(fact_548_mod__mult__self1,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self1
thf(fact_549_mod__mult__self1,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self1
thf(fact_550_mod__mult__self2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self2
thf(fact_551_mod__mult__self2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self2
thf(fact_552_mod__mult__self2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self2
thf(fact_553_mod__mult__self3,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self3
thf(fact_554_mod__mult__self3,axiom,
    ! [C: int,B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self3
thf(fact_555_mod__mult__self3,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self3
thf(fact_556_mod__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self4
thf(fact_557_mod__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self4
thf(fact_558_mod__mult__self4,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self4
thf(fact_559_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_560_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_561_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_562_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_563_enat__ord__number_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% enat_ord_number(1)
thf(fact_564_greater__shift,axiom,
    ( ord_less_nat
    = ( ^ [Y2: nat,X: nat] : ( vEBT_VEBT_greater @ ( some_nat @ X ) @ ( some_nat @ Y2 ) ) ) ) ).

% greater_shift
thf(fact_565_lesseq__shift,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y2: nat] : ( vEBT_VEBT_lesseq @ ( some_nat @ X ) @ ( some_nat @ Y2 ) ) ) ) ).

% lesseq_shift
thf(fact_566_diff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_567_diff__right__commute,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_568_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_569_diff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_570_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D2 ) )
     => ( ( A = B )
        = ( C = D2 ) ) ) ).

% diff_eq_diff_eq
thf(fact_571_diff__eq__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D2 ) )
     => ( ( A = B )
        = ( C = D2 ) ) ) ).

% diff_eq_diff_eq
thf(fact_572_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D2 ) )
     => ( ( A = B )
        = ( C = D2 ) ) ) ).

% diff_eq_diff_eq
thf(fact_573_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_574_mod__diff__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_575_mod__diff__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_576_mod__diff__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_577_mod__diff__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_578_mod__diff__cong,axiom,
    ! [A: int,C: int,A4: int,B: int,B4: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A4 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B4 @ C ) )
       => ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( minus_minus_int @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_579_mod__diff__cong,axiom,
    ! [A: code_integer,C: code_integer,A4: code_integer,B: code_integer,B4: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A4 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B4 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_580_mod__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_581_mod__diff__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_582_mod__if,axiom,
    ( modulo_modulo_nat
    = ( ^ [M3: nat,N: nat] : ( if_nat @ ( ord_less_nat @ M3 @ N ) @ M3 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M3 @ N ) @ N ) ) ) ) ).

% mod_if
thf(fact_583_le__mod__geq,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( modulo_modulo_nat @ M @ N2 )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ).

% le_mod_geq
thf(fact_584_modulo__nat__def,axiom,
    ( modulo_modulo_nat
    = ( ^ [M3: nat,N: nat] : ( minus_minus_nat @ M3 @ ( times_times_nat @ ( divide_divide_nat @ M3 @ N ) @ N ) ) ) ) ).

% modulo_nat_def
thf(fact_585_mod__mult__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_586_mod__mult__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_587_mod__mult__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_588_mod__mult__cong,axiom,
    ! [A: nat,C: nat,A4: nat,B: nat,B4: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A4 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B4 @ C ) )
       => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( times_times_nat @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_589_mod__mult__cong,axiom,
    ! [A: int,C: int,A4: int,B: int,B4: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A4 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B4 @ C ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( times_times_int @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_590_mod__mult__cong,axiom,
    ! [A: code_integer,C: code_integer,A4: code_integer,B: code_integer,B4: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A4 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B4 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_591_mod__mult__mult2,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
      = ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_592_mod__mult__mult2,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_593_mod__mult__mult2,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_594_mult__mod__right,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_595_mult__mod__right,axiom,
    ! [C: int,A: int,B: int] :
      ( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
      = ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_596_mult__mod__right,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_597_mod__mult__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_598_mod__mult__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_599_mod__mult__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_600_mod__mult__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_601_mod__mult__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_602_mod__mult__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_603_mod__add__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_604_mod__add__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_605_mod__add__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_606_mod__add__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_607_mod__add__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_608_mod__add__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_609_mod__add__cong,axiom,
    ! [A: nat,C: nat,A4: nat,B: nat,B4: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A4 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B4 @ C ) )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( plus_plus_nat @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_610_mod__add__cong,axiom,
    ! [A: int,C: int,A4: int,B: int,B4: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A4 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B4 @ C ) )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( plus_plus_int @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_611_mod__add__cong,axiom,
    ! [A: code_integer,C: code_integer,A4: code_integer,B: code_integer,B4: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A4 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B4 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A4 @ B4 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_612_mod__add__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_613_mod__add__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_614_mod__add__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_615_power__mod,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N2 ) @ B )
      = ( modulo_modulo_nat @ ( power_power_nat @ A @ N2 ) @ B ) ) ).

% power_mod
thf(fact_616_power__mod,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N2 ) @ B )
      = ( modulo_modulo_int @ ( power_power_int @ A @ N2 ) @ B ) ) ).

% power_mod
thf(fact_617_power__mod,axiom,
    ! [A: code_integer,B: code_integer,N2: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N2 ) @ B )
      = ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N2 ) @ B ) ) ).

% power_mod
thf(fact_618_diff__mono,axiom,
    ! [A: real,B: real,D2: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D2 @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D2 ) ) ) ) ).

% diff_mono
thf(fact_619_diff__mono,axiom,
    ! [A: rat,B: rat,D2: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ D2 @ C )
       => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D2 ) ) ) ) ).

% diff_mono
thf(fact_620_diff__mono,axiom,
    ! [A: int,B: int,D2: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D2 @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D2 ) ) ) ) ).

% diff_mono
thf(fact_621_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_622_diff__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_623_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_624_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_625_diff__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_626_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_627_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D2 ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D2 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_628_diff__eq__diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D2 ) )
     => ( ( ord_less_eq_rat @ A @ B )
        = ( ord_less_eq_rat @ C @ D2 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_629_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D2 ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D2 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_630_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_631_diff__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_632_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_633_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_634_diff__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_635_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_636_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D2 ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D2 ) ) ) ).

% diff_eq_diff_less
thf(fact_637_diff__eq__diff__less,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D2 ) )
     => ( ( ord_less_rat @ A @ B )
        = ( ord_less_rat @ C @ D2 ) ) ) ).

% diff_eq_diff_less
thf(fact_638_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D2 ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D2 ) ) ) ).

% diff_eq_diff_less
thf(fact_639_diff__strict__mono,axiom,
    ! [A: real,B: real,D2: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D2 @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D2 ) ) ) ) ).

% diff_strict_mono
thf(fact_640_diff__strict__mono,axiom,
    ! [A: rat,B: rat,D2: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ D2 @ C )
       => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D2 ) ) ) ) ).

% diff_strict_mono
thf(fact_641_diff__strict__mono,axiom,
    ! [A: int,B: int,D2: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D2 @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D2 ) ) ) ) ).

% diff_strict_mono
thf(fact_642_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D2: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D2 ) ) ) ).

% add_diff_add
thf(fact_643_add__diff__add,axiom,
    ! [A: rat,C: rat,B: rat,D2: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) )
      = ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D2 ) ) ) ).

% add_diff_add
thf(fact_644_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D2 ) ) ) ).

% add_diff_add
thf(fact_645_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_646_diff__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_647_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_648_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_649_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_650_add__implies__diff,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ( plus_plus_rat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_rat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_651_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_652_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_653_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_654_diff__add__eq__diff__diff__swap,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_655_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_656_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_657_diff__add__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_658_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_659_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_660_diff__diff__eq2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_661_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_662_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_663_add__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_664_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_665_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_666_eq__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( A
        = ( minus_minus_rat @ C @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_667_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_668_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_669_diff__eq__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = C )
      = ( A
        = ( plus_plus_rat @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_670_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_671_group__cancel_Osub1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_672_group__cancel_Osub1,axiom,
    ! [A2: rat,K: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( minus_minus_rat @ A2 @ B )
        = ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_673_group__cancel_Osub1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_674_mod__less__eq__dividend,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N2 ) @ M ) ).

% mod_less_eq_dividend
thf(fact_675_diff__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_676_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_677_diff__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_678_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).

% less_imp_diff_less
thf(fact_679_diff__less__mono2,axiom,
    ! [M: nat,N2: nat,L2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( ord_less_nat @ M @ L2 )
       => ( ord_less_nat @ ( minus_minus_nat @ L2 @ N2 ) @ ( minus_minus_nat @ L2 @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_680_le__num__One__iff,axiom,
    ! [X2: num] :
      ( ( ord_less_eq_num @ X2 @ one )
      = ( X2 = one ) ) ).

% le_num_One_iff
thf(fact_681_diff__le__mono2,axiom,
    ! [M: nat,N2: nat,L2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L2 @ N2 ) @ ( minus_minus_nat @ L2 @ M ) ) ) ).

% diff_le_mono2
thf(fact_682_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_683_diff__le__self,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ).

% diff_le_self
thf(fact_684_diff__le__mono,axiom,
    ! [M: nat,N2: nat,L2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L2 ) @ ( minus_minus_nat @ N2 @ L2 ) ) ) ).

% diff_le_mono
thf(fact_685_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_686_le__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_687_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_688_diff__add__inverse2,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ N2 )
      = M ) ).

% diff_add_inverse2
thf(fact_689_diff__add__inverse,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M ) @ N2 )
      = M ) ).

% diff_add_inverse
thf(fact_690_diff__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% diff_cancel2
thf(fact_691_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% Nat.diff_cancel
thf(fact_692_diff__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N2 ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% diff_mult_distrib
thf(fact_693_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% diff_mult_distrib2
thf(fact_694_mod__eqE,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
     => ~ ! [D3: int] :
            ( B
           != ( plus_plus_int @ A @ ( times_times_int @ C @ D3 ) ) ) ) ).

% mod_eqE
thf(fact_695_mod__eqE,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
     => ~ ! [D3: code_integer] :
            ( B
           != ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D3 ) ) ) ) ).

% mod_eqE
thf(fact_696_div__add1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_697_div__add1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_698_div__add1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_699_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_700_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_701_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_702_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_703_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_704_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_705_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_706_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_707_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_708_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_709_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_710_le__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_711_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_712_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_713_diff__le__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_714_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_715_less__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_716_less__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_717_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_718_diff__less__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_719_diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_720_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_721_mult__diff__mult,axiom,
    ! [X2: real,Y: real,A: real,B: real] :
      ( ( minus_minus_real @ ( times_times_real @ X2 @ Y ) @ ( times_times_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ X2 @ ( minus_minus_real @ Y @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X2 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_722_mult__diff__mult,axiom,
    ! [X2: rat,Y: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X2 @ Y ) @ ( times_times_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ X2 @ ( minus_minus_rat @ Y @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X2 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_723_mult__diff__mult,axiom,
    ! [X2: int,Y: int,A: int,B: int] :
      ( ( minus_minus_int @ ( times_times_int @ X2 @ Y ) @ ( times_times_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ X2 @ ( minus_minus_int @ Y @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X2 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_724_L2__set__mult__ineq__lemma,axiom,
    ! [A: real,C: real,B: real,D2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D2 ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% L2_set_mult_ineq_lemma
thf(fact_725_less__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_nat @ M @ N2 ) ) ) ) ).

% less_diff_iff
thf(fact_726_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_727_add__diff__inverse__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ~ ( ord_less_nat @ M @ N2 )
     => ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M @ N2 ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_728_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_729_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_730_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_731_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_732_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_733_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_734_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N2: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
        = ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_735_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N2: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
        = ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_736_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N2: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
        = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_737_div__mult1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_738_div__mult1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_739_div__mult1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_740_mod__mult2__eq,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( modulo_modulo_nat @ M @ ( times_times_nat @ N2 @ Q2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ N2 @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N2 ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N2 ) ) ) ).

% mod_mult2_eq
thf(fact_741_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_742_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
          = N2 ) ) ) ).

% nat_eq_add_iff1
thf(fact_743_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_744_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_le_add_iff1
thf(fact_745_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_le_add_iff2
thf(fact_746_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_diff_add_eq1
thf(fact_747_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_748_Ex__list__of__length,axiom,
    ! [N2: nat] :
    ? [Xs3: list_VEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ Xs3 )
      = N2 ) ).

% Ex_list_of_length
thf(fact_749_Ex__list__of__length,axiom,
    ! [N2: nat] :
    ? [Xs3: list_o] :
      ( ( size_size_list_o @ Xs3 )
      = N2 ) ).

% Ex_list_of_length
thf(fact_750_Ex__list__of__length,axiom,
    ! [N2: nat] :
    ? [Xs3: list_nat] :
      ( ( size_size_list_nat @ Xs3 )
      = N2 ) ).

% Ex_list_of_length
thf(fact_751_Ex__list__of__length,axiom,
    ! [N2: nat] :
    ? [Xs3: list_int] :
      ( ( size_size_list_int @ Xs3 )
      = N2 ) ).

% Ex_list_of_length
thf(fact_752_neq__if__length__neq,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
       != ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_753_neq__if__length__neq,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs2 )
       != ( size_size_list_o @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_754_neq__if__length__neq,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
       != ( size_size_list_nat @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_755_neq__if__length__neq,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
       != ( size_size_list_int @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_756_power2__commute,axiom,
    ! [X2: complex,Y: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ ( minus_minus_complex @ Y @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_757_power2__commute,axiom,
    ! [X2: real,Y: real] :
      ( ( power_power_real @ ( minus_minus_real @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ ( minus_minus_real @ Y @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_758_power2__commute,axiom,
    ! [X2: rat,Y: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ ( minus_minus_rat @ Y @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_759_power2__commute,axiom,
    ! [X2: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_760_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_less_add_iff2
thf(fact_761_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_less_add_iff1
thf(fact_762_diff__le__diff__pow,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N2 ) ) ) ) ).

% diff_le_diff_pow
thf(fact_763_div__exp__mod__exp__eq,axiom,
    ! [A: nat,N2: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_764_div__exp__mod__exp__eq,axiom,
    ! [A: int,N2: nat,M: nat] :
      ( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_765_div__exp__mod__exp__eq,axiom,
    ! [A: code_integer,N2: nat,M: nat] :
      ( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
      = ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_766_power2__diff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_diff
thf(fact_767_power2__diff,axiom,
    ! [X2: real,Y: real] :
      ( ( power_power_real @ ( minus_minus_real @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_diff
thf(fact_768_power2__diff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_diff
thf(fact_769_power2__diff,axiom,
    ! [X2: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X2 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 ) @ Y ) ) ) ).

% power2_diff
thf(fact_770_length__induct,axiom,
    ! [P: list_VEBT_VEBT > $o,Xs2: list_VEBT_VEBT] :
      ( ! [Xs3: list_VEBT_VEBT] :
          ( ! [Ys3: list_VEBT_VEBT] :
              ( ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ Ys3 ) @ ( size_s6755466524823107622T_VEBT @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_771_length__induct,axiom,
    ! [P: list_o > $o,Xs2: list_o] :
      ( ! [Xs3: list_o] :
          ( ! [Ys3: list_o] :
              ( ( ord_less_nat @ ( size_size_list_o @ Ys3 ) @ ( size_size_list_o @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_772_length__induct,axiom,
    ! [P: list_nat > $o,Xs2: list_nat] :
      ( ! [Xs3: list_nat] :
          ( ! [Ys3: list_nat] :
              ( ( ord_less_nat @ ( size_size_list_nat @ Ys3 ) @ ( size_size_list_nat @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_773_length__induct,axiom,
    ! [P: list_int > $o,Xs2: list_int] :
      ( ! [Xs3: list_int] :
          ( ! [Ys3: list_int] :
              ( ( ord_less_nat @ ( size_size_list_int @ Ys3 ) @ ( size_size_list_int @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_774_four__x__squared,axiom,
    ! [X2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% four_x_squared
thf(fact_775_in__children__def,axiom,
    ( vEBT_V5917875025757280293ildren
    = ( ^ [N: nat,TreeList: list_VEBT_VEBT,X: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ N ) ) @ ( vEBT_VEBT_low @ X @ N ) ) ) ) ).

% in_children_def
thf(fact_776_mul__shift,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ( times_times_nat @ X2 @ Y )
        = Z )
      = ( ( vEBT_VEBT_mul @ ( some_nat @ X2 ) @ ( some_nat @ Y ) )
        = ( some_nat @ Z ) ) ) ).

% mul_shift
thf(fact_777_add__shift,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y )
        = Z )
      = ( ( vEBT_VEBT_add @ ( some_nat @ X2 ) @ ( some_nat @ Y ) )
        = ( some_nat @ Z ) ) ) ).

% add_shift
thf(fact_778__C4_Ohyps_C_I3_J,axiom,
    ! [X2: nat,Sx: nat] :
      ( ( ( vEBT_vebt_succ @ summary @ X2 )
        = ( some_nat @ Sx ) )
      = ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ summary ) @ X2 @ Sx ) ) ).

% "4.hyps"(3)
thf(fact_779_True,axiom,
    ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
     != none_nat )
    & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% True
thf(fact_780_less__shift,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y2: nat] : ( vEBT_VEBT_less @ ( some_nat @ X ) @ ( some_nat @ Y2 ) ) ) ) ).

% less_shift
thf(fact_781_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_782_le__add__diff__inverse2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_783_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_784_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_785_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_786_le__add__diff__inverse,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_787_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_788_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_789__C4_Ohyps_C_I7_J,axiom,
    ! [I2: nat] :
      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
     => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ X5 ) )
        = ( vEBT_V8194947554948674370ptions @ summary @ I2 ) ) ) ).

% "4.hyps"(7)
thf(fact_790_div__mod__decomp,axiom,
    ! [A2: nat,N2: nat] :
      ( A2
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N2 ) @ N2 ) @ ( modulo_modulo_nat @ A2 @ N2 ) ) ) ).

% div_mod_decomp
thf(fact_791_mod__eq__nat1E,axiom,
    ! [M: nat,Q2: nat,N2: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N2 @ Q2 ) )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ~ ! [S2: nat] :
              ( M
             != ( plus_plus_nat @ N2 @ ( times_times_nat @ Q2 @ S2 ) ) ) ) ) ).

% mod_eq_nat1E
thf(fact_792_verit__eq__simplify_I8_J,axiom,
    ! [X22: num,Y22: num] :
      ( ( ( bit0 @ X22 )
        = ( bit0 @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% verit_eq_simplify(8)
thf(fact_793_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_794_real__divide__square__eq,axiom,
    ! [R: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
      = ( divide_divide_real @ A @ R ) ) ).

% real_divide_square_eq
thf(fact_795_zmod__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).

% zmod_numeral_Bit0
thf(fact_796_add__def,axiom,
    ( vEBT_VEBT_add
    = ( vEBT_V4262088993061758097ft_nat @ plus_plus_nat ) ) ).

% add_def
thf(fact_797_mul__def,axiom,
    ( vEBT_VEBT_mul
    = ( vEBT_V4262088993061758097ft_nat @ times_times_nat ) ) ).

% mul_def
thf(fact_798__C4_Ohyps_C_I2_J,axiom,
    vEBT_invar_vebt @ summary @ m ).

% "4.hyps"(2)
thf(fact_799__C4_Ohyps_C_I8_J,axiom,
    ( ( mi = ma )
   => ! [X4: vEBT_VEBT] :
        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ treeList ) )
       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) ) ).

% "4.hyps"(8)
thf(fact_800_local_Opower__def,axiom,
    ( vEBT_VEBT_power
    = ( vEBT_V4262088993061758097ft_nat @ power_power_nat ) ) ).

% local.power_def
thf(fact_801_complete__real,axiom,
    ! [S3: set_real] :
      ( ? [X4: real] : ( member_real @ X4 @ S3 )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( member_real @ X3 @ S3 )
           => ( ord_less_eq_real @ X3 @ Z4 ) )
       => ? [Y3: real] :
            ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ord_less_eq_real @ X4 @ Y3 ) )
            & ! [Z4: real] :
                ( ! [X3: real] :
                    ( ( member_real @ X3 @ S3 )
                   => ( ord_less_eq_real @ X3 @ Z4 ) )
               => ( ord_less_eq_real @ Y3 @ Z4 ) ) ) ) ) ).

% complete_real
thf(fact_802_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y2: real] :
          ( ( ord_less_real @ X @ Y2 )
          | ( X = Y2 ) ) ) ) ).

% less_eq_real_def
thf(fact_803_add__diff__assoc__enat,axiom,
    ! [Z: extended_enat,Y: extended_enat,X2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ Y )
     => ( ( plus_p3455044024723400733d_enat @ X2 @ ( minus_3235023915231533773d_enat @ Y @ Z ) )
        = ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X2 @ Y ) @ Z ) ) ) ).

% add_diff_assoc_enat
thf(fact_804_verit__la__disequality,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
      | ~ ( ord_less_eq_rat @ A @ B )
      | ~ ( ord_less_eq_rat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_805_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_806_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_807_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_808_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_809_verit__comp__simplify1_I2_J,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_810_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_811_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_812_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_813_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_814_verit__comp__simplify1_I1_J,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_815_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_816_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_817_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_818_linorder__neqE__linordered__idom,axiom,
    ! [X2: real,Y: real] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_real @ X2 @ Y )
       => ( ord_less_real @ Y @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_819_linorder__neqE__linordered__idom,axiom,
    ! [X2: rat,Y: rat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_rat @ X2 @ Y )
       => ( ord_less_rat @ Y @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_820_linorder__neqE__linordered__idom,axiom,
    ! [X2: int,Y: int] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_int @ X2 @ Y )
       => ( ord_less_int @ Y @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_821_verit__comp__simplify1_I3_J,axiom,
    ! [B4: real,A4: real] :
      ( ( ~ ( ord_less_eq_real @ B4 @ A4 ) )
      = ( ord_less_real @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_822_verit__comp__simplify1_I3_J,axiom,
    ! [B4: rat,A4: rat] :
      ( ( ~ ( ord_less_eq_rat @ B4 @ A4 ) )
      = ( ord_less_rat @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_823_verit__comp__simplify1_I3_J,axiom,
    ! [B4: num,A4: num] :
      ( ( ~ ( ord_less_eq_num @ B4 @ A4 ) )
      = ( ord_less_num @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_824_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A4: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A4 ) )
      = ( ord_less_nat @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_825_verit__comp__simplify1_I3_J,axiom,
    ! [B4: int,A4: int] :
      ( ( ~ ( ord_less_eq_int @ B4 @ A4 ) )
      = ( ord_less_int @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_826_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_827_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_828_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_829_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_830_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_831_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_832_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_833_comm__semiring__class_Odistrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_834_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_835_comm__semiring__class_Odistrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_836_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_837_distrib__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% distrib_left
thf(fact_838_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_839_distrib__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% distrib_left
thf(fact_840_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_841_distrib__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% distrib_right
thf(fact_842_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_843_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_844_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_845_combine__common__factor,axiom,
    ! [A: rat,E: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_846_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_847_combine__common__factor,axiom,
    ! [A: int,E: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_848_verit__eq__simplify_I10_J,axiom,
    ! [X22: num] :
      ( one
     != ( bit0 @ X22 ) ) ).

% verit_eq_simplify(10)
thf(fact_849_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_850_right__diff__distrib_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_851_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_852_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_853_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_854_left__diff__distrib_H,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
      = ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_855_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_856_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_857_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_858_right__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_859_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_860_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_861_left__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_862_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_863_add__le__imp__le__diff,axiom,
    ! [I: real,K: real,N2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N2 )
     => ( ord_less_eq_real @ I @ ( minus_minus_real @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_864_add__le__imp__le__diff,axiom,
    ! [I: rat,K: rat,N2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N2 )
     => ( ord_less_eq_rat @ I @ ( minus_minus_rat @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_865_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N2 )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_866_add__le__imp__le__diff,axiom,
    ! [I: int,K: int,N2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N2 )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_867_add__le__add__imp__diff__le,axiom,
    ! [I: real,K: real,N2: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N2 )
     => ( ( ord_less_eq_real @ N2 @ ( plus_plus_real @ J @ K ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N2 )
         => ( ( ord_less_eq_real @ N2 @ ( plus_plus_real @ J @ K ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_868_add__le__add__imp__diff__le,axiom,
    ! [I: rat,K: rat,N2: rat,J: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N2 )
     => ( ( ord_less_eq_rat @ N2 @ ( plus_plus_rat @ J @ K ) )
       => ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N2 )
         => ( ( ord_less_eq_rat @ N2 @ ( plus_plus_rat @ J @ K ) )
           => ( ord_less_eq_rat @ ( minus_minus_rat @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_869_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N2: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N2 )
         => ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_870_add__le__add__imp__diff__le,axiom,
    ! [I: int,K: int,N2: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N2 )
     => ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N2 )
         => ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_871_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_872_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ~ ( ord_less_rat @ A @ B )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_873_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_874_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_875_square__diff__square__factored,axiom,
    ! [X2: real,Y: real] :
      ( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) )
      = ( times_times_real @ ( plus_plus_real @ X2 @ Y ) @ ( minus_minus_real @ X2 @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_876_square__diff__square__factored,axiom,
    ! [X2: rat,Y: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y @ Y ) )
      = ( times_times_rat @ ( plus_plus_rat @ X2 @ Y ) @ ( minus_minus_rat @ X2 @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_877_square__diff__square__factored,axiom,
    ! [X2: int,Y: int] :
      ( ( minus_minus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y @ Y ) )
      = ( times_times_int @ ( plus_plus_int @ X2 @ Y ) @ ( minus_minus_int @ X2 @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_878_eq__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D2: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
      = ( C
        = ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D2 ) ) ) ).

% eq_add_iff2
thf(fact_879_eq__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
      = ( C
        = ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D2 ) ) ) ).

% eq_add_iff2
thf(fact_880_eq__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D2 ) ) ) ).

% eq_add_iff2
thf(fact_881_eq__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D2: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
      = ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
        = D2 ) ) ).

% eq_add_iff1
thf(fact_882_eq__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C )
        = D2 ) ) ).

% eq_add_iff1
thf(fact_883_eq__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
        = D2 ) ) ).

% eq_add_iff1
thf(fact_884_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_885_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_886_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_887_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
      = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_888_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
      = ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_889_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
      = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_890_mod__geq,axiom,
    ! [M: nat,N2: nat] :
      ( ~ ( ord_less_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ M @ N2 )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ).

% mod_geq
thf(fact_891_nat__mod__eq__iff,axiom,
    ! [X2: nat,N2: nat,Y: nat] :
      ( ( ( modulo_modulo_nat @ X2 @ N2 )
        = ( modulo_modulo_nat @ Y @ N2 ) )
      = ( ? [Q1: nat,Q22: nat] :
            ( ( plus_plus_nat @ X2 @ ( times_times_nat @ N2 @ Q1 ) )
            = ( plus_plus_nat @ Y @ ( times_times_nat @ N2 @ Q22 ) ) ) ) ) ).

% nat_mod_eq_iff
thf(fact_892_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D2 ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_893_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
      = ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D2 ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_894_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
      = ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D2 ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_895_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D2 ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_896_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D2 ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_897_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D2 ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_898_less__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
      = ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D2 ) ) ).

% less_add_iff1
thf(fact_899_less__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
      = ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D2 ) ) ).

% less_add_iff1
thf(fact_900_less__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D2 ) ) ).

% less_add_iff1
thf(fact_901_less__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
      = ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D2 ) ) ) ).

% less_add_iff2
thf(fact_902_less__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
      = ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D2 ) ) ) ).

% less_add_iff2
thf(fact_903_less__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D2 ) ) ) ).

% less_add_iff2
thf(fact_904_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_905_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_906_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_907_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_908_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_909_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_910_cancel__div__mod__rules_I2_J,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_911_cancel__div__mod__rules_I2_J,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_912_cancel__div__mod__rules_I2_J,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_913_cancel__div__mod__rules_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_914_cancel__div__mod__rules_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_915_cancel__div__mod__rules_I1_J,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_916_mod__div__decomp,axiom,
    ! [A: nat,B: nat] :
      ( A
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_917_mod__div__decomp,axiom,
    ! [A: int,B: int] :
      ( A
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_918_mod__div__decomp,axiom,
    ! [A: code_integer,B: code_integer] :
      ( A
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_919_div__mult__mod__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_920_div__mult__mod__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_921_div__mult__mod__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_922_mod__div__mult__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_923_mod__div__mult__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_924_mod__div__mult__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_925_mod__mult__div__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_926_mod__mult__div__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_927_mod__mult__div__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_928_mult__div__mod__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_929_mult__div__mod__eq,axiom,
    ! [B: int,A: int] :
      ( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_930_mult__div__mod__eq,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_931_minus__mult__div__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_932_minus__mult__div__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_933_minus__mult__div__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_934_minus__mod__eq__mult__div,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_935_minus__mod__eq__mult__div,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_936_minus__mod__eq__mult__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_937_minus__mod__eq__div__mult,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_938_minus__mod__eq__div__mult,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_939_minus__mod__eq__div__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_940_minus__div__mult__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_941_minus__div__mult__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_942_minus__div__mult__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_943_nat__mod__eq__lemma,axiom,
    ! [X2: nat,N2: nat,Y: nat] :
      ( ( ( modulo_modulo_nat @ X2 @ N2 )
        = ( modulo_modulo_nat @ Y @ N2 ) )
     => ( ( ord_less_eq_nat @ Y @ X2 )
       => ? [Q3: nat] :
            ( X2
            = ( plus_plus_nat @ Y @ ( times_times_nat @ N2 @ Q3 ) ) ) ) ) ).

% nat_mod_eq_lemma
thf(fact_944_mod__eq__nat2E,axiom,
    ! [M: nat,Q2: nat,N2: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N2 @ Q2 ) )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ~ ! [S2: nat] :
              ( N2
             != ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S2 ) ) ) ) ) ).

% mod_eq_nat2E
thf(fact_945_real__average__minus__second,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_second
thf(fact_946_real__average__minus__first,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_first
thf(fact_947_not__Some__eq,axiom,
    ! [X2: option_nat] :
      ( ( ! [Y2: nat] :
            ( X2
           != ( some_nat @ Y2 ) ) )
      = ( X2 = none_nat ) ) ).

% not_Some_eq
thf(fact_948_not__Some__eq,axiom,
    ! [X2: option4927543243414619207at_nat] :
      ( ( ! [Y2: product_prod_nat_nat] :
            ( X2
           != ( some_P7363390416028606310at_nat @ Y2 ) ) )
      = ( X2 = none_P5556105721700978146at_nat ) ) ).

% not_Some_eq
thf(fact_949_not__Some__eq,axiom,
    ! [X2: option_num] :
      ( ( ! [Y2: num] :
            ( X2
           != ( some_num @ Y2 ) ) )
      = ( X2 = none_num ) ) ).

% not_Some_eq
thf(fact_950_not__None__eq,axiom,
    ! [X2: option_nat] :
      ( ( X2 != none_nat )
      = ( ? [Y2: nat] :
            ( X2
            = ( some_nat @ Y2 ) ) ) ) ).

% not_None_eq
thf(fact_951_not__None__eq,axiom,
    ! [X2: option4927543243414619207at_nat] :
      ( ( X2 != none_P5556105721700978146at_nat )
      = ( ? [Y2: product_prod_nat_nat] :
            ( X2
            = ( some_P7363390416028606310at_nat @ Y2 ) ) ) ) ).

% not_None_eq
thf(fact_952_not__None__eq,axiom,
    ! [X2: option_num] :
      ( ( X2 != none_num )
      = ( ? [Y2: num] :
            ( X2
            = ( some_num @ Y2 ) ) ) ) ).

% not_None_eq
thf(fact_953_member__bound,axiom,
    ! [Tree: vEBT_VEBT,X2: nat,N2: nat] :
      ( ( vEBT_vebt_member @ Tree @ X2 )
     => ( ( vEBT_invar_vebt @ Tree @ N2 )
       => ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% member_bound
thf(fact_954_maxt__sound,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 )
       => ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X2 ) ) ) ) ).

% maxt_sound
thf(fact_955_maxt__corr,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X2 ) )
       => ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 ) ) ) ).

% maxt_corr
thf(fact_956_min__Null__member,axiom,
    ! [T: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_minNull @ T )
     => ~ ( vEBT_vebt_member @ T @ X2 ) ) ).

% min_Null_member
thf(fact_957_not__min__Null__member,axiom,
    ! [T: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ T )
     => ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_1 ) ) ).

% not_min_Null_member
thf(fact_958_maxt__corr__help,axiom,
    ! [T: vEBT_VEBT,N2: nat,Maxi: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( ( vEBT_vebt_member @ T @ X2 )
         => ( ord_less_eq_nat @ X2 @ Maxi ) ) ) ) ).

% maxt_corr_help
thf(fact_959_both__member__options__equiv__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X2 )
        = ( vEBT_vebt_member @ T @ X2 ) ) ) ).

% both_member_options_equiv_member
thf(fact_960_valid__member__both__member__options,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X2 )
       => ( vEBT_vebt_member @ T @ X2 ) ) ) ).

% valid_member_both_member_options
thf(fact_961_set__vebt__finite,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( finite_finite_nat @ ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_finite
thf(fact_962_inthall,axiom,
    ! [Xs2: list_real,P: real > $o,N2: nat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
         => ( P @ X3 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs2 ) )
       => ( P @ ( nth_real @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_963_inthall,axiom,
    ! [Xs2: list_complex,P: complex > $o,N2: nat] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ ( set_complex2 @ Xs2 ) )
         => ( P @ X3 ) )
     => ( ( ord_less_nat @ N2 @ ( size_s3451745648224563538omplex @ Xs2 ) )
       => ( P @ ( nth_complex @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_964_inthall,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,N2: nat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
         => ( P @ X3 ) )
     => ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_965_inthall,axiom,
    ! [Xs2: list_o,P: $o > $o,N2: nat] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
         => ( P @ X3 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
       => ( P @ ( nth_o @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_966_inthall,axiom,
    ! [Xs2: list_nat,P: nat > $o,N2: nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
         => ( P @ X3 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
       => ( P @ ( nth_nat @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_967_inthall,axiom,
    ! [Xs2: list_int,P: int > $o,N2: nat] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
         => ( P @ X3 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
       => ( P @ ( nth_int @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_968_maxt__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% maxt_member
thf(fact_969_option_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( some_nat @ X22 )
        = ( some_nat @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% option.inject
thf(fact_970_option_Oinject,axiom,
    ! [X22: product_prod_nat_nat,Y22: product_prod_nat_nat] :
      ( ( ( some_P7363390416028606310at_nat @ X22 )
        = ( some_P7363390416028606310at_nat @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% option.inject
thf(fact_971_option_Oinject,axiom,
    ! [X22: num,Y22: num] :
      ( ( ( some_num @ X22 )
        = ( some_num @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% option.inject
thf(fact_972_member__correct,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_vebt_member @ T @ X2 )
        = ( member_nat @ X2 @ ( vEBT_set_vebt @ T ) ) ) ) ).

% member_correct
thf(fact_973__C4_Ohyps_C_I1_J,axiom,
    ! [X4: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ treeList ) )
     => ( ( vEBT_invar_vebt @ X4 @ na )
        & ! [Xa: nat,Xb: nat] :
            ( ( ( vEBT_vebt_succ @ X4 @ Xa )
              = ( some_nat @ Xb ) )
            = ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ X4 ) @ Xa @ Xb ) ) ) ) ).

% "4.hyps"(1)
thf(fact_974_set__vebt__set__vebt_H__valid,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_set_vebt @ T )
        = ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_set_vebt'_valid
thf(fact_975_List_Ofinite__set,axiom,
    ! [Xs2: list_VEBT_VEBT] : ( finite5795047828879050333T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_976_List_Ofinite__set,axiom,
    ! [Xs2: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_977_List_Ofinite__set,axiom,
    ! [Xs2: list_int] : ( finite_finite_int @ ( set_int2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_978_List_Ofinite__set,axiom,
    ! [Xs2: list_complex] : ( finite3207457112153483333omplex @ ( set_complex2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_979__C01_C,axiom,
    ( ( vEBT_invar_vebt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ na )
    & ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( set_VEBT_VEBT2 @ treeList ) ) ) ).

% "01"
thf(fact_980_div__mod__decomp__int,axiom,
    ! [A2: int,N2: int] :
      ( A2
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N2 ) @ N2 ) @ ( modulo_modulo_int @ A2 @ N2 ) ) ) ).

% div_mod_decomp_int
thf(fact_981_subset__code_I1_J,axiom,
    ! [Xs2: list_real,B2: set_real] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs2 ) @ B2 )
      = ( ! [X: real] :
            ( ( member_real @ X @ ( set_real2 @ Xs2 ) )
           => ( member_real @ X @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_982_subset__code_I1_J,axiom,
    ! [Xs2: list_complex,B2: set_complex] :
      ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ B2 )
      = ( ! [X: complex] :
            ( ( member_complex @ X @ ( set_complex2 @ Xs2 ) )
           => ( member_complex @ X @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_983_subset__code_I1_J,axiom,
    ! [Xs2: list_VEBT_VEBT,B2: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ B2 )
      = ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( member_VEBT_VEBT @ X @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_984_subset__code_I1_J,axiom,
    ! [Xs2: list_int,B2: set_int] :
      ( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ B2 )
      = ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
           => ( member_int @ X @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_985_subset__code_I1_J,axiom,
    ! [Xs2: list_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ B2 )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
           => ( member_nat @ X @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_986_finite__list,axiom,
    ! [A2: set_VEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ? [Xs3: list_VEBT_VEBT] :
          ( ( set_VEBT_VEBT2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_987_finite__list,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ? [Xs3: list_nat] :
          ( ( set_nat2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_988_finite__list,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ? [Xs3: list_int] :
          ( ( set_int2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_989_finite__list,axiom,
    ! [A2: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ? [Xs3: list_complex] :
          ( ( set_complex2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_990_nth__mem,axiom,
    ! [N2: nat,Xs2: list_real] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ ( nth_real @ Xs2 @ N2 ) @ ( set_real2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_991_nth__mem,axiom,
    ! [N2: nat,Xs2: list_complex] :
      ( ( ord_less_nat @ N2 @ ( size_s3451745648224563538omplex @ Xs2 ) )
     => ( member_complex @ ( nth_complex @ Xs2 @ N2 ) @ ( set_complex2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_992_nth__mem,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ N2 ) @ ( set_VEBT_VEBT2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_993_nth__mem,axiom,
    ! [N2: nat,Xs2: list_o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ ( nth_o @ Xs2 @ N2 ) @ ( set_o2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_994_nth__mem,axiom,
    ! [N2: nat,Xs2: list_nat] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ ( nth_nat @ Xs2 @ N2 ) @ ( set_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_995_nth__mem,axiom,
    ! [N2: nat,Xs2: list_int] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ ( nth_int @ Xs2 @ N2 ) @ ( set_int2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_996_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X3 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_997_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_o,P: $o > $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
     => ( ! [X3: $o] :
            ( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
           => ( P @ X3 ) )
       => ( P @ ( nth_o @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_998_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_nat,P: nat > $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
           => ( P @ X3 ) )
       => ( P @ ( nth_nat @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_999_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_int,P: int > $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
           => ( P @ X3 ) )
       => ( P @ ( nth_int @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_1000_in__set__conv__nth,axiom,
    ! [X2: real,Xs2: list_real] :
      ( ( member_real @ X2 @ ( set_real2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_real @ Xs2 ) )
            & ( ( nth_real @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1001_in__set__conv__nth,axiom,
    ! [X2: complex,Xs2: list_complex] :
      ( ( member_complex @ X2 @ ( set_complex2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s3451745648224563538omplex @ Xs2 ) )
            & ( ( nth_complex @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1002_in__set__conv__nth,axiom,
    ! [X2: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
            & ( ( nth_VEBT_VEBT @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1003_in__set__conv__nth,axiom,
    ! [X2: $o,Xs2: list_o] :
      ( ( member_o @ X2 @ ( set_o2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs2 ) )
            & ( ( nth_o @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1004_in__set__conv__nth,axiom,
    ! [X2: nat,Xs2: list_nat] :
      ( ( member_nat @ X2 @ ( set_nat2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs2 ) )
            & ( ( nth_nat @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1005_in__set__conv__nth,axiom,
    ! [X2: int,Xs2: list_int] :
      ( ( member_int @ X2 @ ( set_int2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs2 ) )
            & ( ( nth_int @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1006_all__nth__imp__all__set,axiom,
    ! [Xs2: list_real,P: real > $o,X2: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs2 ) )
         => ( P @ ( nth_real @ Xs2 @ I3 ) ) )
     => ( ( member_real @ X2 @ ( set_real2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1007_all__nth__imp__all__set,axiom,
    ! [Xs2: list_complex,P: complex > $o,X2: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3451745648224563538omplex @ Xs2 ) )
         => ( P @ ( nth_complex @ Xs2 @ I3 ) ) )
     => ( ( member_complex @ X2 @ ( set_complex2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1008_all__nth__imp__all__set,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,X2: vEBT_VEBT] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
         => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I3 ) ) )
     => ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1009_all__nth__imp__all__set,axiom,
    ! [Xs2: list_o,P: $o > $o,X2: $o] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
         => ( P @ ( nth_o @ Xs2 @ I3 ) ) )
     => ( ( member_o @ X2 @ ( set_o2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1010_all__nth__imp__all__set,axiom,
    ! [Xs2: list_nat,P: nat > $o,X2: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
         => ( P @ ( nth_nat @ Xs2 @ I3 ) ) )
     => ( ( member_nat @ X2 @ ( set_nat2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1011_all__nth__imp__all__set,axiom,
    ! [Xs2: list_int,P: int > $o,X2: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
         => ( P @ ( nth_int @ Xs2 @ I3 ) ) )
     => ( ( member_int @ X2 @ ( set_int2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1012_all__set__conv__all__nth,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_1013_all__set__conv__all__nth,axiom,
    ! [Xs2: list_o,P: $o > $o] :
      ( ( ! [X: $o] :
            ( ( member_o @ X @ ( set_o2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs2 ) )
           => ( P @ ( nth_o @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_1014_all__set__conv__all__nth,axiom,
    ! [Xs2: list_nat,P: nat > $o] :
      ( ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs2 ) )
           => ( P @ ( nth_nat @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_1015_all__set__conv__all__nth,axiom,
    ! [Xs2: list_int,P: int > $o] :
      ( ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs2 ) )
           => ( P @ ( nth_int @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_1016_option_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( none_nat
     != ( some_nat @ X22 ) ) ).

% option.distinct(1)
thf(fact_1017_option_Odistinct_I1_J,axiom,
    ! [X22: product_prod_nat_nat] :
      ( none_P5556105721700978146at_nat
     != ( some_P7363390416028606310at_nat @ X22 ) ) ).

% option.distinct(1)
thf(fact_1018_option_Odistinct_I1_J,axiom,
    ! [X22: num] :
      ( none_num
     != ( some_num @ X22 ) ) ).

% option.distinct(1)
thf(fact_1019_option_OdiscI,axiom,
    ! [Option: option_nat,X22: nat] :
      ( ( Option
        = ( some_nat @ X22 ) )
     => ( Option != none_nat ) ) ).

% option.discI
thf(fact_1020_option_OdiscI,axiom,
    ! [Option: option4927543243414619207at_nat,X22: product_prod_nat_nat] :
      ( ( Option
        = ( some_P7363390416028606310at_nat @ X22 ) )
     => ( Option != none_P5556105721700978146at_nat ) ) ).

% option.discI
thf(fact_1021_option_OdiscI,axiom,
    ! [Option: option_num,X22: num] :
      ( ( Option
        = ( some_num @ X22 ) )
     => ( Option != none_num ) ) ).

% option.discI
thf(fact_1022_option_Oexhaust,axiom,
    ! [Y: option_nat] :
      ( ( Y != none_nat )
     => ~ ! [X23: nat] :
            ( Y
           != ( some_nat @ X23 ) ) ) ).

% option.exhaust
thf(fact_1023_option_Oexhaust,axiom,
    ! [Y: option4927543243414619207at_nat] :
      ( ( Y != none_P5556105721700978146at_nat )
     => ~ ! [X23: product_prod_nat_nat] :
            ( Y
           != ( some_P7363390416028606310at_nat @ X23 ) ) ) ).

% option.exhaust
thf(fact_1024_option_Oexhaust,axiom,
    ! [Y: option_num] :
      ( ( Y != none_num )
     => ~ ! [X23: num] :
            ( Y
           != ( some_num @ X23 ) ) ) ).

% option.exhaust
thf(fact_1025_split__option__ex,axiom,
    ( ( ^ [P2: option_nat > $o] :
        ? [X6: option_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option_nat > $o] :
          ( ( P3 @ none_nat )
          | ? [X: nat] : ( P3 @ ( some_nat @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_1026_split__option__ex,axiom,
    ( ( ^ [P2: option4927543243414619207at_nat > $o] :
        ? [X6: option4927543243414619207at_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option4927543243414619207at_nat > $o] :
          ( ( P3 @ none_P5556105721700978146at_nat )
          | ? [X: product_prod_nat_nat] : ( P3 @ ( some_P7363390416028606310at_nat @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_1027_split__option__ex,axiom,
    ( ( ^ [P2: option_num > $o] :
        ? [X6: option_num] : ( P2 @ X6 ) )
    = ( ^ [P3: option_num > $o] :
          ( ( P3 @ none_num )
          | ? [X: num] : ( P3 @ ( some_num @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_1028_split__option__all,axiom,
    ( ( ^ [P2: option_nat > $o] :
        ! [X6: option_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option_nat > $o] :
          ( ( P3 @ none_nat )
          & ! [X: nat] : ( P3 @ ( some_nat @ X ) ) ) ) ) ).

% split_option_all
thf(fact_1029_split__option__all,axiom,
    ( ( ^ [P2: option4927543243414619207at_nat > $o] :
        ! [X6: option4927543243414619207at_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option4927543243414619207at_nat > $o] :
          ( ( P3 @ none_P5556105721700978146at_nat )
          & ! [X: product_prod_nat_nat] : ( P3 @ ( some_P7363390416028606310at_nat @ X ) ) ) ) ) ).

% split_option_all
thf(fact_1030_split__option__all,axiom,
    ( ( ^ [P2: option_num > $o] :
        ! [X6: option_num] : ( P2 @ X6 ) )
    = ( ^ [P3: option_num > $o] :
          ( ( P3 @ none_num )
          & ! [X: num] : ( P3 @ ( some_num @ X ) ) ) ) ) ).

% split_option_all
thf(fact_1031_combine__options__cases,axiom,
    ! [X2: option_nat,P: option_nat > option_nat > $o,Y: option_nat] :
      ( ( ( X2 = none_nat )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_nat )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: nat,B5: nat] :
              ( ( X2
                = ( some_nat @ A5 ) )
             => ( ( Y
                  = ( some_nat @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1032_combine__options__cases,axiom,
    ! [X2: option_nat,P: option_nat > option4927543243414619207at_nat > $o,Y: option4927543243414619207at_nat] :
      ( ( ( X2 = none_nat )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_P5556105721700978146at_nat )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: nat,B5: product_prod_nat_nat] :
              ( ( X2
                = ( some_nat @ A5 ) )
             => ( ( Y
                  = ( some_P7363390416028606310at_nat @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1033_combine__options__cases,axiom,
    ! [X2: option_nat,P: option_nat > option_num > $o,Y: option_num] :
      ( ( ( X2 = none_nat )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_num )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: nat,B5: num] :
              ( ( X2
                = ( some_nat @ A5 ) )
             => ( ( Y
                  = ( some_num @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1034_combine__options__cases,axiom,
    ! [X2: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_nat > $o,Y: option_nat] :
      ( ( ( X2 = none_P5556105721700978146at_nat )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_nat )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: product_prod_nat_nat,B5: nat] :
              ( ( X2
                = ( some_P7363390416028606310at_nat @ A5 ) )
             => ( ( Y
                  = ( some_nat @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1035_combine__options__cases,axiom,
    ! [X2: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option4927543243414619207at_nat > $o,Y: option4927543243414619207at_nat] :
      ( ( ( X2 = none_P5556105721700978146at_nat )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_P5556105721700978146at_nat )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: product_prod_nat_nat,B5: product_prod_nat_nat] :
              ( ( X2
                = ( some_P7363390416028606310at_nat @ A5 ) )
             => ( ( Y
                  = ( some_P7363390416028606310at_nat @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1036_combine__options__cases,axiom,
    ! [X2: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_num > $o,Y: option_num] :
      ( ( ( X2 = none_P5556105721700978146at_nat )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_num )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: product_prod_nat_nat,B5: num] :
              ( ( X2
                = ( some_P7363390416028606310at_nat @ A5 ) )
             => ( ( Y
                  = ( some_num @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1037_combine__options__cases,axiom,
    ! [X2: option_num,P: option_num > option_nat > $o,Y: option_nat] :
      ( ( ( X2 = none_num )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_nat )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: num,B5: nat] :
              ( ( X2
                = ( some_num @ A5 ) )
             => ( ( Y
                  = ( some_nat @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1038_combine__options__cases,axiom,
    ! [X2: option_num,P: option_num > option4927543243414619207at_nat > $o,Y: option4927543243414619207at_nat] :
      ( ( ( X2 = none_num )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_P5556105721700978146at_nat )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: num,B5: product_prod_nat_nat] :
              ( ( X2
                = ( some_num @ A5 ) )
             => ( ( Y
                  = ( some_P7363390416028606310at_nat @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1039_combine__options__cases,axiom,
    ! [X2: option_num,P: option_num > option_num > $o,Y: option_num] :
      ( ( ( X2 = none_num )
       => ( P @ X2 @ Y ) )
     => ( ( ( Y = none_num )
         => ( P @ X2 @ Y ) )
       => ( ! [A5: num,B5: num] :
              ( ( X2
                = ( some_num @ A5 ) )
             => ( ( Y
                  = ( some_num @ B5 ) )
               => ( P @ X2 @ Y ) ) )
         => ( P @ X2 @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_1040_post__member__pre__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat,Y: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
         => ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T @ X2 ) @ Y )
           => ( ( vEBT_vebt_member @ T @ Y )
              | ( X2 = Y ) ) ) ) ) ) ).

% post_member_pre_member
thf(fact_1041_misiz,axiom,
    ! [T: vEBT_VEBT,N2: nat,M: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( some_nat @ M )
          = ( vEBT_vebt_mint @ T ) )
       => ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% misiz
thf(fact_1042_valid__insert__both__member__options__pres,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat,Y: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
         => ( ( vEBT_V8194947554948674370ptions @ T @ X2 )
           => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ Y ) @ X2 ) ) ) ) ) ).

% valid_insert_both_member_options_pres
thf(fact_1043_valid__insert__both__member__options__add,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
       => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ X2 ) @ X2 ) ) ) ).

% valid_insert_both_member_options_add
thf(fact_1044_mint__corr,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X2 ) )
       => ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 ) ) ) ).

% mint_corr
thf(fact_1045_mint__sound,axiom,
    ! [T: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 )
       => ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X2 ) ) ) ) ).

% mint_sound
thf(fact_1046_mint__corr__help,axiom,
    ! [T: vEBT_VEBT,N2: nat,Mini: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Mini ) )
       => ( ( vEBT_vebt_member @ T @ X2 )
         => ( ord_less_eq_nat @ Mini @ X2 ) ) ) ) ).

% mint_corr_help
thf(fact_1047_both__member__options__ding,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N2 )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ X2 ) ) ) ) ).

% both_member_options_ding
thf(fact_1048_set__n__deg__not__0,axiom,
    ! [TreeList2: list_VEBT_VEBT,N2: nat,M: nat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X3 @ N2 ) )
     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
       => ( ord_less_eq_nat @ one_one_nat @ N2 ) ) ) ).

% set_n_deg_not_0
thf(fact_1049_mint__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% mint_member
thf(fact_1050_minNullmin,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ T )
     => ( ( vEBT_vebt_mint @ T )
        = none_nat ) ) ).

% minNullmin
thf(fact_1051_deg__deg__n,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N2 )
     => ( Deg = N2 ) ) ).

% deg_deg_n
thf(fact_1052_minminNull,axiom,
    ! [T: vEBT_VEBT] :
      ( ( ( vEBT_vebt_mint @ T )
        = none_nat )
     => ( vEBT_VEBT_minNull @ T ) ) ).

% minminNull
thf(fact_1053__092_060open_0621_A_092_060le_062_An_092_060close_062,axiom,
    ord_less_eq_nat @ one_one_nat @ na ).

% \<open>1 \<le> n\<close>
thf(fact_1054_mult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% mult_1
thf(fact_1055_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_1056_mult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% mult_1
thf(fact_1057_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_1058_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_1059_mult_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.right_neutral
thf(fact_1060_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_1061_mult_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.right_neutral
thf(fact_1062_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_1063_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_1064_div__by__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ one_one_complex )
      = A ) ).

% div_by_1
thf(fact_1065_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_1066_div__by__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ one_one_rat )
      = A ) ).

% div_by_1
thf(fact_1067_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_1068_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_1069_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_1070_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_1071_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ one_one_rat @ N2 )
      = one_one_rat ) ).

% power_one
thf(fact_1072_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_nat @ one_one_nat @ N2 )
      = one_one_nat ) ).

% power_one
thf(fact_1073_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ one_one_real @ N2 )
      = one_one_real ) ).

% power_one
thf(fact_1074_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ one_one_complex @ N2 )
      = one_one_complex ) ).

% power_one
thf(fact_1075_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ one_one_int @ N2 )
      = one_one_int ) ).

% power_one
thf(fact_1076_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1077_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1078_power__one__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1079_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1080_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1081_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1082_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numera6690914467698888265omplex @ N2 )
        = one_one_complex )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_1083_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_real @ N2 )
        = one_one_real )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_1084_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_rat @ N2 )
        = one_one_rat )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_1085_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_nat @ N2 )
        = one_one_nat )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_1086_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_int @ N2 )
        = one_one_int )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_1087_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_complex
        = ( numera6690914467698888265omplex @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_1088_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_1089_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_rat
        = ( numeral_numeral_rat @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_1090_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_1091_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_1092_power__inject__exp,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_1093_power__inject__exp,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ( power_power_rat @ A @ M )
          = ( power_power_rat @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_1094_power__inject__exp,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_1095_power__inject__exp,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_1096_power__strict__increasing__iff,axiom,
    ! [B: real,X2: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X2 ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_nat @ X2 @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1097_power__strict__increasing__iff,axiom,
    ! [B: rat,X2: nat,Y: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_rat @ ( power_power_rat @ B @ X2 ) @ ( power_power_rat @ B @ Y ) )
        = ( ord_less_nat @ X2 @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1098_power__strict__increasing__iff,axiom,
    ! [B: nat,X2: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X2 ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X2 @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1099_power__strict__increasing__iff,axiom,
    ! [B: int,X2: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X2 ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X2 @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1100_one__add__one,axiom,
    ( ( plus_plus_complex @ one_one_complex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1101_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1102_one__add__one,axiom,
    ( ( plus_plus_rat @ one_one_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1103_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1104_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1105_power__increasing__iff,axiom,
    ! [B: real,X2: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X2 ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_eq_nat @ X2 @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1106_power__increasing__iff,axiom,
    ! [B: rat,X2: nat,Y: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X2 ) @ ( power_power_rat @ B @ Y ) )
        = ( ord_less_eq_nat @ X2 @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1107_power__increasing__iff,axiom,
    ! [B: nat,X2: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X2 ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_eq_nat @ X2 @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1108_power__increasing__iff,axiom,
    ! [B: int,X2: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X2 ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_eq_nat @ X2 @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1109_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% bits_one_mod_two_eq_one
thf(fact_1110_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_one_mod_two_eq_one
thf(fact_1111_bits__one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_one_mod_two_eq_one
thf(fact_1112_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_mod_two_eq_one
thf(fact_1113_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_mod_two_eq_one
thf(fact_1114_one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% one_mod_two_eq_one
thf(fact_1115_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ one_one_complex )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_1116_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_1117_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat )
      = ( numeral_numeral_rat @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_1118_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_1119_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_1120_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N2 ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_1121_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_1122_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_1123_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_1124_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_1125_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ one_one_real )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_1126_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_1127_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_1128_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ one_one_int )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_1129_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_1130_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_1131_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_1132_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_1133_one__reorient,axiom,
    ! [X2: complex] :
      ( ( one_one_complex = X2 )
      = ( X2 = one_one_complex ) ) ).

% one_reorient
thf(fact_1134_one__reorient,axiom,
    ! [X2: real] :
      ( ( one_one_real = X2 )
      = ( X2 = one_one_real ) ) ).

% one_reorient
thf(fact_1135_one__reorient,axiom,
    ! [X2: rat] :
      ( ( one_one_rat = X2 )
      = ( X2 = one_one_rat ) ) ).

% one_reorient
thf(fact_1136_one__reorient,axiom,
    ! [X2: nat] :
      ( ( one_one_nat = X2 )
      = ( X2 = one_one_nat ) ) ).

% one_reorient
thf(fact_1137_one__reorient,axiom,
    ! [X2: int] :
      ( ( one_one_int = X2 )
      = ( X2 = one_one_int ) ) ).

% one_reorient
thf(fact_1138_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_1139_le__numeral__extra_I4_J,axiom,
    ord_less_eq_rat @ one_one_rat @ one_one_rat ).

% le_numeral_extra(4)
thf(fact_1140_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_1141_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_1142_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_1143_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).

% less_numeral_extra(4)
thf(fact_1144_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_1145_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_1146_mult_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.comm_neutral
thf(fact_1147_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_1148_mult_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.comm_neutral
thf(fact_1149_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_1150_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_1151_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1152_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1153_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1154_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1155_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1156_nat__mult__1__right,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ N2 @ one_one_nat )
      = N2 ) ).

% nat_mult_1_right
thf(fact_1157_nat__mult__1,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ one_one_nat @ N2 )
      = N2 ) ).

% nat_mult_1
thf(fact_1158_finite__maxlen,axiom,
    ! [M5: set_list_VEBT_VEBT] :
      ( ( finite3004134309566078307T_VEBT @ M5 )
     => ? [N3: nat] :
        ! [X4: list_VEBT_VEBT] :
          ( ( member2936631157270082147T_VEBT @ X4 @ M5 )
         => ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ X4 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_1159_finite__maxlen,axiom,
    ! [M5: set_list_o] :
      ( ( finite_finite_list_o @ M5 )
     => ? [N3: nat] :
        ! [X4: list_o] :
          ( ( member_list_o @ X4 @ M5 )
         => ( ord_less_nat @ ( size_size_list_o @ X4 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_1160_finite__maxlen,axiom,
    ! [M5: set_list_nat] :
      ( ( finite8100373058378681591st_nat @ M5 )
     => ? [N3: nat] :
        ! [X4: list_nat] :
          ( ( member_list_nat @ X4 @ M5 )
         => ( ord_less_nat @ ( size_size_list_nat @ X4 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_1161_finite__maxlen,axiom,
    ! [M5: set_list_int] :
      ( ( finite3922522038869484883st_int @ M5 )
     => ? [N3: nat] :
        ! [X4: list_int] :
          ( ( member_list_int @ X4 @ M5 )
         => ( ord_less_nat @ ( size_size_list_int @ X4 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_1162_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N2 ) ) ).

% one_le_numeral
thf(fact_1163_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) ) ).

% one_le_numeral
thf(fact_1164_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) ) ).

% one_le_numeral
thf(fact_1165_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N2 ) ) ).

% one_le_numeral
thf(fact_1166_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_1167_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat ) ).

% not_numeral_less_one
thf(fact_1168_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_1169_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_1170_less__1__mult,axiom,
    ! [M: real,N2: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N2 )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_1171_less__1__mult,axiom,
    ! [M: rat,N2: rat] :
      ( ( ord_less_rat @ one_one_rat @ M )
     => ( ( ord_less_rat @ one_one_rat @ N2 )
       => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_1172_less__1__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N2 )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_1173_less__1__mult,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N2 )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_1174_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_1175_less__add__one,axiom,
    ! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).

% less_add_one
thf(fact_1176_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_1177_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_1178_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_1179_add__mono1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).

% add_mono1
thf(fact_1180_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_1181_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_1182_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X2 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X2 ) @ one_one_complex ) ) ).

% one_plus_numeral_commute
thf(fact_1183_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X2 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X2 ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_1184_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X2 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X2 ) @ one_one_rat ) ) ).

% one_plus_numeral_commute
thf(fact_1185_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X2 ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_1186_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X2 ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_1187_numeral__One,axiom,
    ( ( numera6690914467698888265omplex @ one )
    = one_one_complex ) ).

% numeral_One
thf(fact_1188_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_1189_numeral__One,axiom,
    ( ( numeral_numeral_rat @ one )
    = one_one_rat ) ).

% numeral_One
thf(fact_1190_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_1191_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_1192_one__le__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_1193_one__le__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_1194_one__le__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_1195_one__le__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_1196_left__right__inverse__power,axiom,
    ! [X2: complex,Y: complex,N2: nat] :
      ( ( ( times_times_complex @ X2 @ Y )
        = one_one_complex )
     => ( ( times_times_complex @ ( power_power_complex @ X2 @ N2 ) @ ( power_power_complex @ Y @ N2 ) )
        = one_one_complex ) ) ).

% left_right_inverse_power
thf(fact_1197_left__right__inverse__power,axiom,
    ! [X2: real,Y: real,N2: nat] :
      ( ( ( times_times_real @ X2 @ Y )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X2 @ N2 ) @ ( power_power_real @ Y @ N2 ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_1198_left__right__inverse__power,axiom,
    ! [X2: rat,Y: rat,N2: nat] :
      ( ( ( times_times_rat @ X2 @ Y )
        = one_one_rat )
     => ( ( times_times_rat @ ( power_power_rat @ X2 @ N2 ) @ ( power_power_rat @ Y @ N2 ) )
        = one_one_rat ) ) ).

% left_right_inverse_power
thf(fact_1199_left__right__inverse__power,axiom,
    ! [X2: nat,Y: nat,N2: nat] :
      ( ( ( times_times_nat @ X2 @ Y )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X2 @ N2 ) @ ( power_power_nat @ Y @ N2 ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_1200_left__right__inverse__power,axiom,
    ! [X2: int,Y: int,N2: nat] :
      ( ( ( times_times_int @ X2 @ Y )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X2 @ N2 ) @ ( power_power_int @ Y @ N2 ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_1201_power__one__over,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N2 )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_one_over
thf(fact_1202_power__one__over,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N2 )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ).

% power_one_over
thf(fact_1203_power__one__over,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N2 )
      = ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_one_over
thf(fact_1204_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_1205_vebt__succ_Osimps_I3_J,axiom,
    ! [Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,Va: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux @ Uy @ Uz ) @ Va )
      = none_nat ) ).

% vebt_succ.simps(3)
thf(fact_1206_discrete,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A3 @ one_one_nat ) ) ) ) ).

% discrete
thf(fact_1207_discrete,axiom,
    ( ord_less_int
    = ( ^ [A3: int] : ( ord_less_eq_int @ ( plus_plus_int @ A3 @ one_one_int ) ) ) ) ).

% discrete
thf(fact_1208_gt__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).

% gt_half_sum
thf(fact_1209_gt__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).

% gt_half_sum
thf(fact_1210_less__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).

% less_half_sum
thf(fact_1211_less__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).

% less_half_sum
thf(fact_1212_power__gt1__lemma,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_1213_power__gt1__lemma,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_1214_power__gt1__lemma,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_1215_power__gt1__lemma,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_1216_power__less__power__Suc,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_1217_power__less__power__Suc,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_1218_power__less__power__Suc,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_1219_power__less__power__Suc,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_1220_square__diff__one__factored,axiom,
    ! [X2: complex] :
      ( ( minus_minus_complex @ ( times_times_complex @ X2 @ X2 ) @ one_one_complex )
      = ( times_times_complex @ ( plus_plus_complex @ X2 @ one_one_complex ) @ ( minus_minus_complex @ X2 @ one_one_complex ) ) ) ).

% square_diff_one_factored
thf(fact_1221_square__diff__one__factored,axiom,
    ! [X2: real] :
      ( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ one_one_real )
      = ( times_times_real @ ( plus_plus_real @ X2 @ one_one_real ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ).

% square_diff_one_factored
thf(fact_1222_square__diff__one__factored,axiom,
    ! [X2: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X2 @ X2 ) @ one_one_rat )
      = ( times_times_rat @ ( plus_plus_rat @ X2 @ one_one_rat ) @ ( minus_minus_rat @ X2 @ one_one_rat ) ) ) ).

% square_diff_one_factored
thf(fact_1223_square__diff__one__factored,axiom,
    ! [X2: int] :
      ( ( minus_minus_int @ ( times_times_int @ X2 @ X2 ) @ one_one_int )
      = ( times_times_int @ ( plus_plus_int @ X2 @ one_one_int ) @ ( minus_minus_int @ X2 @ one_one_int ) ) ) ).

% square_diff_one_factored
thf(fact_1224_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_1225_power__less__imp__less__exp,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_1226_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_1227_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_1228_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1229_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_rat @ one_one_rat @ A )
       => ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1230_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1231_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1232_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1233_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_rat @ one_one_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1234_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1235_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1236_power__le__imp__le__exp,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_1237_power__le__imp__le__exp,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_1238_power__le__imp__le__exp,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_1239_power__le__imp__le__exp,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_1240_one__power2,axiom,
    ( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_rat ) ).

% one_power2
thf(fact_1241_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_1242_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_1243_one__power2,axiom,
    ( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_complex ) ).

% one_power2
thf(fact_1244_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_1245_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_1246_ex__power__ivl1,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K )
       => ? [N3: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_1247_ex__power__ivl2,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
       => ? [N3: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_1248__092_060open_062vebt__succ_A_INode_A_ISome_A_Imi_M_Ama_J_J_Adeg_AtreeList_Asummary_J_Ax_A_061_ASome_A_I2_A_094_A_Ideg_Adiv_A2_J_A_K_Ahigh_Ax_A_Ideg_Adiv_A2_J_A_L_Asuccy_J_092_060close_062,axiom,
    ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
    = ( some_nat @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ succy ) ) ) ).

% \<open>vebt_succ (Node (Some (mi, ma)) deg treeList summary) x = Some (2 ^ (deg div 2) * high x (deg div 2) + succy)\<close>
thf(fact_1249_invar__vebt_Ointros_I2_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X3 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N2 )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
               => ( ! [X3: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(2)
thf(fact_1250_both__member__options__from__chilf__to__complete__tree,axiom,
    ! [X2: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
     => ( ( ord_less_eq_nat @ one_one_nat @ Deg )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 ) ) ) ) ).

% both_member_options_from_chilf_to_complete_tree
thf(fact_1251_member__inv,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
        & ( ( X2 = Mi )
          | ( X2 = Ma )
          | ( ( ord_less_nat @ X2 @ Ma )
            & ( ord_less_nat @ Mi @ X2 )
            & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            & ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% member_inv
thf(fact_1252_mintlistlength,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
     => ( ( Mi != Ma )
       => ( ( ord_less_nat @ Mi @ Ma )
          & ? [M4: nat] :
              ( ( ( some_nat @ M4 )
                = ( vEBT_vebt_mint @ Summary ) )
              & ( ord_less_nat @ M4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% mintlistlength
thf(fact_1253_both__member__options__from__complete__tree__to__child,axiom,
    ! [Deg: nat,Mi: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ Deg )
     => ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          | ( X2 = Mi )
          | ( X2 = Ma ) ) ) ) ).

% both_member_options_from_complete_tree_to_child
thf(fact_1254_succ__list__to__short,axiom,
    ! [Deg: nat,Mi: nat,X2: nat,TreeList2: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X2 )
       => ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
            = none_nat ) ) ) ) ).

% succ_list_to_short
thf(fact_1255__C1_C,axiom,
    ( ( ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
         != none_nat )
        & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
     => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
        = ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
    & ( ~ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
           != none_nat )
          & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
     => ( ( ( ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
            = none_nat )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
            = none_nat ) )
        & ( ( ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
           != none_nat )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
            = ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ treeList @ ( the_nat @ ( vEBT_vebt_succ @ summary @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% "1"
thf(fact_1256_succ__min,axiom,
    ! [Deg: nat,X2: nat,Mi: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_nat @ X2 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
          = ( some_nat @ Mi ) ) ) ) ).

% succ_min
thf(fact_1257_mi__ma__2__deg,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
     => ( ( ord_less_eq_nat @ Mi @ Ma )
        & ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).

% mi_ma_2_deg
thf(fact_1258_insert__simp__mima,axiom,
    ! [X2: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X2 = Mi )
        | ( X2 = Ma ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).

% insert_simp_mima
thf(fact_1259_mi__eq__ma__no__ch,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg )
     => ( ( Mi = Ma )
       => ( ! [X4: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
             => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) )
          & ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 ) ) ) ) ).

% mi_eq_ma_no_ch
thf(fact_1260_summaxma,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg )
     => ( ( Mi != Ma )
       => ( ( the_nat @ ( vEBT_vebt_maxt @ Summary ) )
          = ( vEBT_VEBT_high @ Ma @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% summaxma
thf(fact_1261_option_Ocollapse,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( ( some_nat @ ( the_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_1262_option_Ocollapse,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_1263_option_Ocollapse,axiom,
    ! [Option: option_num] :
      ( ( Option != none_num )
     => ( ( some_num @ ( the_num @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_1264_option_Osel,axiom,
    ! [X22: nat] :
      ( ( the_nat @ ( some_nat @ X22 ) )
      = X22 ) ).

% option.sel
thf(fact_1265_option_Osel,axiom,
    ! [X22: product_prod_nat_nat] :
      ( ( the_Pr8591224930841456533at_nat @ ( some_P7363390416028606310at_nat @ X22 ) )
      = X22 ) ).

% option.sel
thf(fact_1266_option_Osel,axiom,
    ! [X22: num] :
      ( ( the_num @ ( some_num @ X22 ) )
      = X22 ) ).

% option.sel
thf(fact_1267_option_Oexpand,axiom,
    ! [Option: option_nat,Option2: option_nat] :
      ( ( ( Option = none_nat )
        = ( Option2 = none_nat ) )
     => ( ( ( Option != none_nat )
         => ( ( Option2 != none_nat )
           => ( ( the_nat @ Option )
              = ( the_nat @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_1268_option_Oexpand,axiom,
    ! [Option: option4927543243414619207at_nat,Option2: option4927543243414619207at_nat] :
      ( ( ( Option = none_P5556105721700978146at_nat )
        = ( Option2 = none_P5556105721700978146at_nat ) )
     => ( ( ( Option != none_P5556105721700978146at_nat )
         => ( ( Option2 != none_P5556105721700978146at_nat )
           => ( ( the_Pr8591224930841456533at_nat @ Option )
              = ( the_Pr8591224930841456533at_nat @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_1269_option_Oexpand,axiom,
    ! [Option: option_num,Option2: option_num] :
      ( ( ( Option = none_num )
        = ( Option2 = none_num ) )
     => ( ( ( Option != none_num )
         => ( ( Option2 != none_num )
           => ( ( the_num @ Option )
              = ( the_num @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_1270_real__arch__pow,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ? [N3: nat] : ( ord_less_real @ Y @ ( power_power_real @ X2 @ N3 ) ) ) ).

% real_arch_pow
thf(fact_1271_option_Oexhaust__sel,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( Option
        = ( some_nat @ ( the_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_1272_option_Oexhaust__sel,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( Option
        = ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_1273_option_Oexhaust__sel,axiom,
    ! [Option: option_num] :
      ( ( Option != none_num )
     => ( Option
        = ( some_num @ ( the_num @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_1274_two__realpow__ge__one,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ).

% two_realpow_ge_one
thf(fact_1275_invar__vebt_Ointros_I4_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X3 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N2 )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X5 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
                                & ! [X3: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X3 @ N2 )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ X3 @ N2 ) ) )
                                   => ( ( ord_less_nat @ Mi @ X3 )
                                      & ( ord_less_eq_nat @ X3 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(4)
thf(fact_1276_nested__mint,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat,Va: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
     => ( ( N2
          = ( suc @ ( suc @ Va ) ) )
       => ( ~ ( ord_less_nat @ Ma @ Mi )
         => ( ( Ma != Mi )
           => ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ).

% nested_mint
thf(fact_1277_divmod__step__eq,axiom,
    ! [L2: num,R: nat,Q2: nat] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R )
       => ( ( unique5026877609467782581ep_nat @ L2 @ ( product_Pair_nat_nat @ Q2 @ R ) )
          = ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ one_one_nat ) @ ( minus_minus_nat @ R @ ( numeral_numeral_nat @ L2 ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R )
       => ( ( unique5026877609467782581ep_nat @ L2 @ ( product_Pair_nat_nat @ Q2 @ R ) )
          = ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ R ) ) ) ) ).

% divmod_step_eq
thf(fact_1278_divmod__step__eq,axiom,
    ! [L2: num,R: int,Q2: int] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R )
       => ( ( unique5024387138958732305ep_int @ L2 @ ( product_Pair_int_int @ Q2 @ R ) )
          = ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ one_one_int ) @ ( minus_minus_int @ R @ ( numeral_numeral_int @ L2 ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R )
       => ( ( unique5024387138958732305ep_int @ L2 @ ( product_Pair_int_int @ Q2 @ R ) )
          = ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ R ) ) ) ) ).

% divmod_step_eq
thf(fact_1279_divmod__step__eq,axiom,
    ! [L2: num,R: code_integer,Q2: code_integer] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R )
       => ( ( unique4921790084139445826nteger @ L2 @ ( produc1086072967326762835nteger @ Q2 @ R ) )
          = ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R @ ( numera6620942414471956472nteger @ L2 ) ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R )
       => ( ( unique4921790084139445826nteger @ L2 @ ( produc1086072967326762835nteger @ Q2 @ R ) )
          = ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ R ) ) ) ) ).

% divmod_step_eq
thf(fact_1280_vebt__mint_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Mi ) ) ).

% vebt_mint.simps(3)
thf(fact_1281_vebt__maxt_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Ma ) ) ).

% vebt_maxt.simps(3)
thf(fact_1282_invar__vebt_Ointros_I5_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X3 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N2 ) )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X5 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
                                & ! [X3: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X3 @ N2 )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ X3 @ N2 ) ) )
                                   => ( ( ord_less_nat @ Mi @ X3 )
                                      & ( ord_less_eq_nat @ X3 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(5)
thf(fact_1283_vebt__mint_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
      = none_nat ) ).

% vebt_mint.simps(2)
thf(fact_1284_vebt__maxt_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
      = none_nat ) ).

% vebt_maxt.simps(2)
thf(fact_1285_succ__less__length__list,axiom,
    ! [Deg: nat,Mi: nat,X2: nat,TreeList2: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X2 )
       => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
            = ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% succ_less_length_list
thf(fact_1286_succ__greatereq__min,axiom,
    ! [Deg: nat,Mi: nat,X2: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X2 )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% succ_greatereq_min
thf(fact_1287_mint__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% mint_corr_help_empty
thf(fact_1288_even__odd__cases,axiom,
    ! [X2: nat] :
      ( ! [N3: nat] :
          ( X2
         != ( plus_plus_nat @ N3 @ N3 ) )
     => ~ ! [N3: nat] :
            ( X2
           != ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) ) ) ).

% even_odd_cases
thf(fact_1289_set__vebt_H__def,axiom,
    ( vEBT_VEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_vebt_member @ T2 ) ) ) ) ).

% set_vebt'_def
thf(fact_1290_deg__SUcn__Node,axiom,
    ! [Tree: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N2 ) ) )
     => ? [Info2: option4927543243414619207at_nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
          ( Tree
          = ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N2 ) ) @ TreeList3 @ S2 ) ) ) ).

% deg_SUcn_Node
thf(fact_1291_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_1292_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_1293_maxt__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% maxt_corr_help_empty
thf(fact_1294_lessI,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).

% lessI
thf(fact_1295_Suc__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).

% Suc_mono
thf(fact_1296_Suc__less__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_less_eq
thf(fact_1297_Suc__le__mono,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N2 @ M ) ) ).

% Suc_le_mono
thf(fact_1298_add__Suc__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N2 ) )
      = ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).

% add_Suc_right
thf(fact_1299_diff__Suc__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% diff_Suc_Suc
thf(fact_1300_Suc__diff__diff,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N2 ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1301_mult__Suc__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ M @ ( suc @ N2 ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N2 ) ) ) ).

% mult_Suc_right
thf(fact_1302_diff__Suc__1,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
      = N2 ) ).

% diff_Suc_1
thf(fact_1303_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1304_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1305_Suc__numeral,axiom,
    ! [N2: num] :
      ( ( suc @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).

% Suc_numeral
thf(fact_1306_Suc__mod__mult__self4,axiom,
    ! [N2: nat,K: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N2 @ K ) @ M ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self4
thf(fact_1307_Suc__mod__mult__self3,axiom,
    ! [K: nat,N2: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N2 ) @ M ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self3
thf(fact_1308_Suc__mod__mult__self2,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N2 @ K ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self2
thf(fact_1309_Suc__mod__mult__self1,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N2 ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self1
thf(fact_1310_add__2__eq__Suc,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
      = ( suc @ ( suc @ N2 ) ) ) ).

% add_2_eq_Suc
thf(fact_1311_add__2__eq__Suc_H,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N2 ) ) ) ).

% add_2_eq_Suc'
thf(fact_1312_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_1313_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_1314_mod2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% mod2_Suc_Suc
thf(fact_1315_Suc__times__numeral__mod__eq,axiom,
    ! [K: num,N2: nat] :
      ( ( ( numeral_numeral_nat @ K )
       != one_one_nat )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N2 ) ) @ ( numeral_numeral_nat @ K ) )
        = one_one_nat ) ) ).

% Suc_times_numeral_mod_eq
thf(fact_1316_mult__commute__abs,axiom,
    ! [C: real] :
      ( ( ^ [X: real] : ( times_times_real @ X @ C ) )
      = ( times_times_real @ C ) ) ).

% mult_commute_abs
thf(fact_1317_mult__commute__abs,axiom,
    ! [C: rat] :
      ( ( ^ [X: rat] : ( times_times_rat @ X @ C ) )
      = ( times_times_rat @ C ) ) ).

% mult_commute_abs
thf(fact_1318_mult__commute__abs,axiom,
    ! [C: nat] :
      ( ( ^ [X: nat] : ( times_times_nat @ X @ C ) )
      = ( times_times_nat @ C ) ) ).

% mult_commute_abs
thf(fact_1319_mult__commute__abs,axiom,
    ! [C: int] :
      ( ( ^ [X: int] : ( times_times_int @ X @ C ) )
      = ( times_times_int @ C ) ) ).

% mult_commute_abs
thf(fact_1320_Suc__inject,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y ) )
     => ( X2 = Y ) ) ).

% Suc_inject
thf(fact_1321_n__not__Suc__n,axiom,
    ! [N2: nat] :
      ( N2
     != ( suc @ N2 ) ) ).

% n_not_Suc_n
thf(fact_1322_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X2: produc8306885398267862888on_nat] :
      ( ! [Uu2: nat > nat > nat,Uv2: option_nat] :
          ( X2
         != ( produc8929957630744042906on_nat @ Uu2 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
     => ( ! [Uw2: nat > nat > nat,V2: nat] :
            ( X2
           != ( produc8929957630744042906on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
       => ~ ! [F2: nat > nat > nat,A5: nat,B5: nat] :
              ( X2
             != ( produc8929957630744042906on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ A5 ) @ ( some_nat @ B5 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_1323_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X2: produc5542196010084753463at_nat] :
      ( ! [Uu2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv2: option4927543243414619207at_nat] :
          ( X2
         != ( produc2899441246263362727at_nat @ Uu2 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
     => ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V2: product_prod_nat_nat] :
            ( X2
           != ( produc2899441246263362727at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A5: product_prod_nat_nat,B5: product_prod_nat_nat] :
              ( X2
             != ( produc2899441246263362727at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A5 ) @ ( some_P7363390416028606310at_nat @ B5 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_1324_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X2: produc1193250871479095198on_num] :
      ( ! [Uu2: num > num > num,Uv2: option_num] :
          ( X2
         != ( produc5778274026573060048on_num @ Uu2 @ ( produc8585076106096196333on_num @ none_num @ Uv2 ) ) )
     => ( ! [Uw2: num > num > num,V2: num] :
            ( X2
           != ( produc5778274026573060048on_num @ Uw2 @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) )
       => ~ ! [F2: num > num > num,A5: num,B5: num] :
              ( X2
             != ( produc5778274026573060048on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ A5 ) @ ( some_num @ B5 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_1325_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X2: produc2233624965454879586on_nat] :
      ( ! [Uu2: nat > nat > $o,Uv2: option_nat] :
          ( X2
         != ( produc4035269172776083154on_nat @ Uu2 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
     => ( ! [Uw2: nat > nat > $o,V2: nat] :
            ( X2
           != ( produc4035269172776083154on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
       => ~ ! [F2: nat > nat > $o,X3: nat,Y3: nat] :
              ( X2
             != ( produc4035269172776083154on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ X3 ) @ ( some_nat @ Y3 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_1326_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X2: produc5491161045314408544at_nat] :
      ( ! [Uu2: product_prod_nat_nat > product_prod_nat_nat > $o,Uv2: option4927543243414619207at_nat] :
          ( X2
         != ( produc3994169339658061776at_nat @ Uu2 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
     => ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > $o,V2: product_prod_nat_nat] :
            ( X2
           != ( produc3994169339658061776at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > $o,X3: product_prod_nat_nat,Y3: product_prod_nat_nat] :
              ( X2
             != ( produc3994169339658061776at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ X3 ) @ ( some_P7363390416028606310at_nat @ Y3 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_1327_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X2: produc7036089656553540234on_num] :
      ( ! [Uu2: num > num > $o,Uv2: option_num] :
          ( X2
         != ( produc3576312749637752826on_num @ Uu2 @ ( produc8585076106096196333on_num @ none_num @ Uv2 ) ) )
     => ( ! [Uw2: num > num > $o,V2: num] :
            ( X2
           != ( produc3576312749637752826on_num @ Uw2 @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) )
       => ~ ! [F2: num > num > $o,X3: num,Y3: num] :
              ( X2
             != ( produc3576312749637752826on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ X3 ) @ ( some_num @ Y3 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_1328_lambda__one,axiom,
    ( ( ^ [X: complex] : X )
    = ( times_times_complex @ one_one_complex ) ) ).

% lambda_one
thf(fact_1329_lambda__one,axiom,
    ( ( ^ [X: real] : X )
    = ( times_times_real @ one_one_real ) ) ).

% lambda_one
thf(fact_1330_lambda__one,axiom,
    ( ( ^ [X: rat] : X )
    = ( times_times_rat @ one_one_rat ) ) ).

% lambda_one
thf(fact_1331_lambda__one,axiom,
    ( ( ^ [X: nat] : X )
    = ( times_times_nat @ one_one_nat ) ) ).

% lambda_one
thf(fact_1332_lambda__one,axiom,
    ( ( ^ [X: int] : X )
    = ( times_times_int @ one_one_int ) ) ).

% lambda_one
thf(fact_1333_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1334_Suc__lessD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_lessD
thf(fact_1335_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_1336_Suc__lessI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( ( suc @ M )
         != N2 )
       => ( ord_less_nat @ ( suc @ M ) @ N2 ) ) ) ).

% Suc_lessI
thf(fact_1337_less__SucE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
     => ( ~ ( ord_less_nat @ M @ N2 )
       => ( M = N2 ) ) ) ).

% less_SucE
thf(fact_1338_less__SucI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).

% less_SucI
thf(fact_1339_Ex__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N2 )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1340_less__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ( ord_less_nat @ M @ N2 )
        | ( M = N2 ) ) ) ).

% less_Suc_eq
thf(fact_1341_not__less__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ~ ( ord_less_nat @ M @ N2 ) )
      = ( ord_less_nat @ N2 @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_1342_All__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N2 )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_1343_Suc__less__eq2,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ M )
      = ( ? [M6: nat] :
            ( ( M
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N2 @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1344_less__antisym,axiom,
    ! [N2: nat,M: nat] :
      ( ~ ( ord_less_nat @ N2 @ M )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
       => ( M = N2 ) ) ) ).

% less_antisym
thf(fact_1345_Suc__less__SucD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_less_SucD
thf(fact_1346_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1347_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K3: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K3 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K3 )
                   => ( P @ I3 @ K3 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1348_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_1349_not__less__less__Suc__eq,axiom,
    ! [N2: nat,M: nat] :
      ( ~ ( ord_less_nat @ N2 @ M )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
        = ( N2 = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1350_Suc__leD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% Suc_leD
thf(fact_1351_le__SucE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( M
          = ( suc @ N2 ) ) ) ) ).

% le_SucE
thf(fact_1352_le__SucI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ M @ ( suc @ N2 ) ) ) ).

% le_SucI
thf(fact_1353_Suc__le__D,axiom,
    ! [N2: nat,M7: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ M7 )
     => ? [M4: nat] :
          ( M7
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_1354_le__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
      = ( ( ord_less_eq_nat @ M @ N2 )
        | ( M
          = ( suc @ N2 ) ) ) ) ).

% le_Suc_eq
thf(fact_1355_Suc__n__not__le__n,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).

% Suc_n_not_le_n
thf(fact_1356_not__less__eq__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N2 ) )
      = ( ord_less_eq_nat @ ( suc @ N2 ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1357_full__nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% full_nat_induct
thf(fact_1358_nat__induct__at__least,axiom,
    ! [M: nat,N2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( P @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_at_least
thf(fact_1359_transitive__stepwise__le,axiom,
    ! [M: nat,N2: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ! [X3: nat] : ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z5: nat] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z5 )
               => ( R2 @ X3 @ Z5 ) ) )
         => ( ! [N3: nat] : ( R2 @ N3 @ ( suc @ N3 ) )
           => ( R2 @ M @ N2 ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1360_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1361_add__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N2 )
      = ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).

% add_Suc
thf(fact_1362_add__Suc__shift,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N2 )
      = ( plus_plus_nat @ M @ ( suc @ N2 ) ) ) ).

% add_Suc_shift
thf(fact_1363_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_1364_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( M = N2 ) ) ).

% Suc_mult_cancel1
thf(fact_1365_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N2 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_1366_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N2 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_1367_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N2 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_1368_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_1369_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_1370_mod__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N2 ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% mod_Suc_eq
thf(fact_1371_mod__Suc__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N2 ) ) ).

% mod_Suc_Suc_eq
thf(fact_1372_set__vebt__def,axiom,
    ( vEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).

% set_vebt_def
thf(fact_1373_power__numeral__even,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_complex @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_1374_power__numeral__even,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_real @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_1375_power__numeral__even,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_rat @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_1376_power__numeral__even,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_1377_power__numeral__even,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_1378_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_real @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1379_lift__Suc__mono__less,axiom,
    ! [F: nat > rat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_rat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1380_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_num @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1381_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_nat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1382_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_int @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1383_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N2: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_real @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1384_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > rat,N2: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_rat @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1385_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N2: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_num @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1386_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N2: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1387_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N2: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_int @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1388_power__Suc2,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( suc @ N2 ) )
      = ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_1389_power__Suc2,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ ( power_power_real @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_1390_power__Suc2,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ ( power_power_rat @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_1391_power__Suc2,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_1392_power__Suc2,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ ( power_power_int @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_1393_power__Suc,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( suc @ N2 ) )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_1394_power__Suc,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_1395_power__Suc,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_1396_power__Suc,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_1397_power__Suc,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_1398_lift__Suc__mono__le,axiom,
    ! [F: nat > set_nat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1399_lift__Suc__mono__le,axiom,
    ! [F: nat > rat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_rat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1400_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1401_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1402_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1403_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_nat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_set_nat @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1404_lift__Suc__antimono__le,axiom,
    ! [F: nat > rat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_rat @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1405_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_num @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1406_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1407_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N2: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_int @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1408_le__imp__less__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).

% le_imp_less_Suc
thf(fact_1409_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N: nat] : ( ord_less_eq_nat @ ( suc @ N ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1410_less__Suc__eq__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_Suc_eq_le
thf(fact_1411_le__less__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
        = ( N2 = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1412_Suc__le__lessD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_le_lessD
thf(fact_1413_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_1414_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_1415_Suc__le__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_le_eq
thf(fact_1416_Suc__leI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_leI
thf(fact_1417_less__natE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ~ ! [Q3: nat] :
            ( N2
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_1418_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_1419_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_1420_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N: nat] :
        ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M3 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1421_less__imp__Suc__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ? [K3: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1422_diff__less__Suc,axiom,
    ! [M: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_1423_Suc__diff__Suc,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N2 ) ) )
        = ( minus_minus_nat @ M @ N2 ) ) ) ).

% Suc_diff_Suc
thf(fact_1424_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_mult_less_cancel1
thf(fact_1425_Suc__diff__le,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
        = ( suc @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Suc_diff_le
thf(fact_1426_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% Suc_mult_le_cancel1
thf(fact_1427_Suc__div__le__mono,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N2 ) @ ( divide_divide_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_div_le_mono
thf(fact_1428_mult__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N2 )
      = ( plus_plus_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ).

% mult_Suc
thf(fact_1429_infinite__growing,axiom,
    ! [X7: set_real] :
      ( ( X7 != bot_bot_set_real )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ X7 )
           => ? [Xa: real] :
                ( ( member_real @ Xa @ X7 )
                & ( ord_less_real @ X3 @ Xa ) ) )
       => ~ ( finite_finite_real @ X7 ) ) ) ).

% infinite_growing
thf(fact_1430_infinite__growing,axiom,
    ! [X7: set_rat] :
      ( ( X7 != bot_bot_set_rat )
     => ( ! [X3: rat] :
            ( ( member_rat @ X3 @ X7 )
           => ? [Xa: rat] :
                ( ( member_rat @ Xa @ X7 )
                & ( ord_less_rat @ X3 @ Xa ) ) )
       => ~ ( finite_finite_rat @ X7 ) ) ) ).

% infinite_growing
thf(fact_1431_infinite__growing,axiom,
    ! [X7: set_num] :
      ( ( X7 != bot_bot_set_num )
     => ( ! [X3: num] :
            ( ( member_num @ X3 @ X7 )
           => ? [Xa: num] :
                ( ( member_num @ Xa @ X7 )
                & ( ord_less_num @ X3 @ Xa ) ) )
       => ~ ( finite_finite_num @ X7 ) ) ) ).

% infinite_growing
thf(fact_1432_infinite__growing,axiom,
    ! [X7: set_nat] :
      ( ( X7 != bot_bot_set_nat )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ X7 )
           => ? [Xa: nat] :
                ( ( member_nat @ Xa @ X7 )
                & ( ord_less_nat @ X3 @ Xa ) ) )
       => ~ ( finite_finite_nat @ X7 ) ) ) ).

% infinite_growing
thf(fact_1433_infinite__growing,axiom,
    ! [X7: set_int] :
      ( ( X7 != bot_bot_set_int )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ X7 )
           => ? [Xa: int] :
                ( ( member_int @ Xa @ X7 )
                & ( ord_less_int @ X3 @ Xa ) ) )
       => ~ ( finite_finite_int @ X7 ) ) ) ).

% infinite_growing
thf(fact_1434_ex__min__if__finite,axiom,
    ! [S3: set_real] :
      ( ( finite_finite_real @ S3 )
     => ( ( S3 != bot_bot_set_real )
       => ? [X3: real] :
            ( ( member_real @ X3 @ S3 )
            & ~ ? [Xa: real] :
                  ( ( member_real @ Xa @ S3 )
                  & ( ord_less_real @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1435_ex__min__if__finite,axiom,
    ! [S3: set_rat] :
      ( ( finite_finite_rat @ S3 )
     => ( ( S3 != bot_bot_set_rat )
       => ? [X3: rat] :
            ( ( member_rat @ X3 @ S3 )
            & ~ ? [Xa: rat] :
                  ( ( member_rat @ Xa @ S3 )
                  & ( ord_less_rat @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1436_ex__min__if__finite,axiom,
    ! [S3: set_num] :
      ( ( finite_finite_num @ S3 )
     => ( ( S3 != bot_bot_set_num )
       => ? [X3: num] :
            ( ( member_num @ X3 @ S3 )
            & ~ ? [Xa: num] :
                  ( ( member_num @ Xa @ S3 )
                  & ( ord_less_num @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1437_ex__min__if__finite,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( S3 != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ S3 )
            & ~ ? [Xa: nat] :
                  ( ( member_nat @ Xa @ S3 )
                  & ( ord_less_nat @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1438_ex__min__if__finite,axiom,
    ! [S3: set_int] :
      ( ( finite_finite_int @ S3 )
     => ( ( S3 != bot_bot_set_int )
       => ? [X3: int] :
            ( ( member_int @ X3 @ S3 )
            & ~ ? [Xa: int] :
                  ( ( member_int @ Xa @ S3 )
                  & ( ord_less_int @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1439_set__conv__nth,axiom,
    ( set_real2
    = ( ^ [Xs: list_real] :
          ( collect_real
          @ ^ [Uu3: real] :
            ? [I4: nat] :
              ( ( Uu3
                = ( nth_real @ Xs @ I4 ) )
              & ( ord_less_nat @ I4 @ ( size_size_list_real @ Xs ) ) ) ) ) ) ).

% set_conv_nth
thf(fact_1440_set__conv__nth,axiom,
    ( set_list_nat2
    = ( ^ [Xs: list_list_nat] :
          ( collect_list_nat
          @ ^ [Uu3: list_nat] :
            ? [I4: nat] :
              ( ( Uu3
                = ( nth_list_nat @ Xs @ I4 ) )
              & ( ord_less_nat @ I4 @ ( size_s3023201423986296836st_nat @ Xs ) ) ) ) ) ) ).

% set_conv_nth
thf(fact_1441_set__conv__nth,axiom,
    ( set_set_nat2
    = ( ^ [Xs: list_set_nat] :
          ( collect_set_nat
          @ ^ [Uu3: set_nat] :
            ? [I4: nat] :
              ( ( Uu3
                = ( nth_set_nat @ Xs @ I4 ) )
              & ( ord_less_nat @ I4 @ ( size_s3254054031482475050et_nat @ Xs ) ) ) ) ) ) ).

% set_conv_nth
thf(fact_1442_set__conv__nth,axiom,
    ( set_VEBT_VEBT2
    = ( ^ [Xs: list_VEBT_VEBT] :
          ( collect_VEBT_VEBT
          @ ^ [Uu3: vEBT_VEBT] :
            ? [I4: nat] :
              ( ( Uu3
                = ( nth_VEBT_VEBT @ Xs @ I4 ) )
              & ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ) ) ) ).

% set_conv_nth
thf(fact_1443_set__conv__nth,axiom,
    ( set_o2
    = ( ^ [Xs: list_o] :
          ( collect_o
          @ ^ [Uu3: $o] :
            ? [I4: nat] :
              ( ( Uu3
                = ( nth_o @ Xs @ I4 ) )
              & ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) ) ) ) ) ) ).

% set_conv_nth
thf(fact_1444_set__conv__nth,axiom,
    ( set_nat2
    = ( ^ [Xs: list_nat] :
          ( collect_nat
          @ ^ [Uu3: nat] :
            ? [I4: nat] :
              ( ( Uu3
                = ( nth_nat @ Xs @ I4 ) )
              & ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) ) ) ) ) ) ).

% set_conv_nth
thf(fact_1445_set__conv__nth,axiom,
    ( set_int2
    = ( ^ [Xs: list_int] :
          ( collect_int
          @ ^ [Uu3: int] :
            ? [I4: nat] :
              ( ( Uu3
                = ( nth_int @ Xs @ I4 ) )
              & ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) ) ) ) ) ) ).

% set_conv_nth
thf(fact_1446_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1447_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1448_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N: nat] : ( plus_plus_nat @ N @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1449_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N2 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1450_mod__induct,axiom,
    ! [P: nat > $o,N2: nat,P4: nat,M: nat] :
      ( ( P @ N2 )
     => ( ( ord_less_nat @ N2 @ P4 )
       => ( ( ord_less_nat @ M @ P4 )
         => ( ! [N3: nat] :
                ( ( ord_less_nat @ N3 @ P4 )
               => ( ( P @ N3 )
                 => ( P @ ( modulo_modulo_nat @ ( suc @ N3 ) @ P4 ) ) ) )
           => ( P @ M ) ) ) ) ) ).

% mod_induct
thf(fact_1451_mod__Suc__le__divisor,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N2 ) ) @ N2 ) ).

% mod_Suc_le_divisor
thf(fact_1452_finite__lists__length__eq,axiom,
    ! [A2: set_complex,N2: nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite8712137658972009173omplex
        @ ( collect_list_complex
          @ ^ [Xs: list_complex] :
              ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
              & ( ( size_s3451745648224563538omplex @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1453_finite__lists__length__eq,axiom,
    ! [A2: set_VEBT_VEBT,N2: nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( finite3004134309566078307T_VEBT
        @ ( collec5608196760682091941T_VEBT
          @ ^ [Xs: list_VEBT_VEBT] :
              ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
              & ( ( size_s6755466524823107622T_VEBT @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1454_finite__lists__length__eq,axiom,
    ! [A2: set_o,N2: nat] :
      ( ( finite_finite_o @ A2 )
     => ( finite_finite_list_o
        @ ( collect_list_o
          @ ^ [Xs: list_o] :
              ( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
              & ( ( size_size_list_o @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1455_finite__lists__length__eq,axiom,
    ! [A2: set_int,N2: nat] :
      ( ( finite_finite_int @ A2 )
     => ( finite3922522038869484883st_int
        @ ( collect_list_int
          @ ^ [Xs: list_int] :
              ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
              & ( ( size_size_list_int @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1456_finite__lists__length__eq,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [Xs: list_nat] :
              ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
              & ( ( size_size_list_nat @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1457_finite__lists__length__le,axiom,
    ! [A2: set_complex,N2: nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite8712137658972009173omplex
        @ ( collect_list_complex
          @ ^ [Xs: list_complex] :
              ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_s3451745648224563538omplex @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1458_finite__lists__length__le,axiom,
    ! [A2: set_VEBT_VEBT,N2: nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( finite3004134309566078307T_VEBT
        @ ( collec5608196760682091941T_VEBT
          @ ^ [Xs: list_VEBT_VEBT] :
              ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1459_finite__lists__length__le,axiom,
    ! [A2: set_o,N2: nat] :
      ( ( finite_finite_o @ A2 )
     => ( finite_finite_list_o
        @ ( collect_list_o
          @ ^ [Xs: list_o] :
              ( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1460_finite__lists__length__le,axiom,
    ! [A2: set_int,N2: nat] :
      ( ( finite_finite_int @ A2 )
     => ( finite3922522038869484883st_int
        @ ( collect_list_int
          @ ^ [Xs: list_int] :
              ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1461_finite__lists__length__le,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [Xs: list_nat] :
              ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1462_power__gt1,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_1463_power__gt1,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_1464_power__gt1,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_1465_power__gt1,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_1466_div__nat__eqI,axiom,
    ! [N2: nat,Q2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ N2 @ Q2 ) @ M )
     => ( ( ord_less_nat @ M @ ( times_times_nat @ N2 @ ( suc @ Q2 ) ) )
       => ( ( divide_divide_nat @ M @ N2 )
          = Q2 ) ) ) ).

% div_nat_eqI
thf(fact_1467_Suc__nat__number__of__add,axiom,
    ! [V: num,N2: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N2 ) ) ).

% Suc_nat_number_of_add
thf(fact_1468_power__odd__eq,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1469_power__odd__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1470_power__odd__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1471_power__odd__eq,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1472_power__odd__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1473_vebt__succ_Osimps_I6_J,axiom,
    ! [X2: nat,Mi: nat,Ma: nat,Va: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ X2 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) @ X2 )
          = ( some_nat @ Mi ) ) )
      & ( ~ ( ord_less_nat @ X2 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) @ X2 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% vebt_succ.simps(6)
thf(fact_1474_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A: product_prod_nat_nat,B: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ F @ ( some_P7363390416028606310at_nat @ A ) @ ( some_P7363390416028606310at_nat @ B ) )
      = ( some_P7363390416028606310at_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_1475_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: num > num > num,A: num,B: num] :
      ( ( vEBT_V819420779217536731ft_num @ F @ ( some_num @ A ) @ ( some_num @ B ) )
      = ( some_num @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_1476_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: nat > nat > nat,A: nat,B: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ F @ ( some_nat @ A ) @ ( some_nat @ B ) )
      = ( some_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_1477_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv: option4927543243414619207at_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ Uu @ none_P5556105721700978146at_nat @ Uv )
      = none_P5556105721700978146at_nat ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_1478_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu: num > num > num,Uv: option_num] :
      ( ( vEBT_V819420779217536731ft_num @ Uu @ none_num @ Uv )
      = none_num ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_1479_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu: nat > nat > nat,Uv: option_nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ Uu @ none_nat @ Uv )
      = none_nat ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_1480_invar__vebt_Ointros_I3_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X3 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N2 ) )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
               => ( ! [X3: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(3)
thf(fact_1481_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ Uw @ ( some_P7363390416028606310at_nat @ V ) @ none_P5556105721700978146at_nat )
      = none_P5556105721700978146at_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_1482_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: num > num > num,V: num] :
      ( ( vEBT_V819420779217536731ft_num @ Uw @ ( some_num @ V ) @ none_num )
      = none_num ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_1483_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: nat > nat > nat,V: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ Uw @ ( some_nat @ V ) @ none_nat )
      = none_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_1484_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa2: option4927543243414619207at_nat,Xb2: option4927543243414619207at_nat,Y: option4927543243414619207at_nat] :
      ( ( ( vEBT_V1502963449132264192at_nat @ X2 @ Xa2 @ Xb2 )
        = Y )
     => ( ( ( Xa2 = none_P5556105721700978146at_nat )
         => ( Y != none_P5556105721700978146at_nat ) )
       => ( ( ? [V2: product_prod_nat_nat] :
                ( Xa2
                = ( some_P7363390416028606310at_nat @ V2 ) )
           => ( ( Xb2 = none_P5556105721700978146at_nat )
             => ( Y != none_P5556105721700978146at_nat ) ) )
         => ~ ! [A5: product_prod_nat_nat] :
                ( ( Xa2
                  = ( some_P7363390416028606310at_nat @ A5 ) )
               => ! [B5: product_prod_nat_nat] :
                    ( ( Xb2
                      = ( some_P7363390416028606310at_nat @ B5 ) )
                   => ( Y
                     != ( some_P7363390416028606310at_nat @ ( X2 @ A5 @ B5 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_1485_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X2: num > num > num,Xa2: option_num,Xb2: option_num,Y: option_num] :
      ( ( ( vEBT_V819420779217536731ft_num @ X2 @ Xa2 @ Xb2 )
        = Y )
     => ( ( ( Xa2 = none_num )
         => ( Y != none_num ) )
       => ( ( ? [V2: num] :
                ( Xa2
                = ( some_num @ V2 ) )
           => ( ( Xb2 = none_num )
             => ( Y != none_num ) ) )
         => ~ ! [A5: num] :
                ( ( Xa2
                  = ( some_num @ A5 ) )
               => ! [B5: num] :
                    ( ( Xb2
                      = ( some_num @ B5 ) )
                   => ( Y
                     != ( some_num @ ( X2 @ A5 @ B5 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_1486_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X2: nat > nat > nat,Xa2: option_nat,Xb2: option_nat,Y: option_nat] :
      ( ( ( vEBT_V4262088993061758097ft_nat @ X2 @ Xa2 @ Xb2 )
        = Y )
     => ( ( ( Xa2 = none_nat )
         => ( Y != none_nat ) )
       => ( ( ? [V2: nat] :
                ( Xa2
                = ( some_nat @ V2 ) )
           => ( ( Xb2 = none_nat )
             => ( Y != none_nat ) ) )
         => ~ ! [A5: nat] :
                ( ( Xa2
                  = ( some_nat @ A5 ) )
               => ! [B5: nat] :
                    ( ( Xb2
                      = ( some_nat @ B5 ) )
                   => ( Y
                     != ( some_nat @ ( X2 @ A5 @ B5 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_1487_vebt__member_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) @ X2 )
      = ( ( X2 != Mi )
       => ( ( X2 != Ma )
         => ( ~ ( ord_less_nat @ X2 @ Mi )
            & ( ~ ( ord_less_nat @ X2 @ Mi )
             => ( ~ ( ord_less_nat @ Ma @ X2 )
                & ( ~ ( ord_less_nat @ Ma @ X2 )
                 => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                     => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.simps(5)
thf(fact_1488_zle__add1__eq__le,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% zle_add1_eq_le
thf(fact_1489_vebt__insert_Osimps_I4_J,axiom,
    ! [V: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList2 @ Summary ) @ X2 )
      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X2 @ X2 ) ) @ ( suc @ ( suc @ V ) ) @ TreeList2 @ Summary ) ) ).

% vebt_insert.simps(4)
thf(fact_1490_finite__Collect__le__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N: nat] : ( ord_less_eq_nat @ N @ K ) ) ) ).

% finite_Collect_le_nat
thf(fact_1491_finite__Collect__less__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N: nat] : ( ord_less_nat @ N @ K ) ) ) ).

% finite_Collect_less_nat
thf(fact_1492_buildup__gives__empty,axiom,
    ! [N2: nat] :
      ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N2 ) )
      = bot_bot_set_nat ) ).

% buildup_gives_empty
thf(fact_1493_finite__Collect__subsets,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( finite6197958912794628473et_int
        @ ( collect_set_int
          @ ^ [B6: set_int] : ( ord_less_eq_set_int @ B6 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_1494_finite__Collect__subsets,axiom,
    ! [A2: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite6551019134538273531omplex
        @ ( collect_set_complex
          @ ^ [B6: set_complex] : ( ord_le211207098394363844omplex @ B6 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_1495_finite__Collect__subsets,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [B6: set_nat] : ( ord_less_eq_set_nat @ B6 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_1496_finite__Collect__bounded__ex,axiom,
    ! [P: real > $o,Q: real > real > $o] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [X: real] :
              ? [Y2: real] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: real] :
              ( ( P @ Y2 )
             => ( finite_finite_real
                @ ( collect_real
                  @ ^ [X: real] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1497_finite__Collect__bounded__ex,axiom,
    ! [P: real > $o,Q: nat > real > $o] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [X: nat] :
              ? [Y2: real] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: real] :
              ( ( P @ Y2 )
             => ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [X: nat] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1498_finite__Collect__bounded__ex,axiom,
    ! [P: real > $o,Q: int > real > $o] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [X: int] :
              ? [Y2: real] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: real] :
              ( ( P @ Y2 )
             => ( finite_finite_int
                @ ( collect_int
                  @ ^ [X: int] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1499_finite__Collect__bounded__ex,axiom,
    ! [P: real > $o,Q: complex > real > $o] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [X: complex] :
              ? [Y2: real] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: real] :
              ( ( P @ Y2 )
             => ( finite3207457112153483333omplex
                @ ( collect_complex
                  @ ^ [X: complex] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1500_finite__Collect__bounded__ex,axiom,
    ! [P: nat > $o,Q: real > nat > $o] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [X: real] :
              ? [Y2: nat] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: nat] :
              ( ( P @ Y2 )
             => ( finite_finite_real
                @ ( collect_real
                  @ ^ [X: real] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1501_finite__Collect__bounded__ex,axiom,
    ! [P: nat > $o,Q: nat > nat > $o] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [X: nat] :
              ? [Y2: nat] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: nat] :
              ( ( P @ Y2 )
             => ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [X: nat] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1502_finite__Collect__bounded__ex,axiom,
    ! [P: nat > $o,Q: int > nat > $o] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [X: int] :
              ? [Y2: nat] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: nat] :
              ( ( P @ Y2 )
             => ( finite_finite_int
                @ ( collect_int
                  @ ^ [X: int] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1503_finite__Collect__bounded__ex,axiom,
    ! [P: nat > $o,Q: complex > nat > $o] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [X: complex] :
              ? [Y2: nat] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: nat] :
              ( ( P @ Y2 )
             => ( finite3207457112153483333omplex
                @ ( collect_complex
                  @ ^ [X: complex] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1504_finite__Collect__bounded__ex,axiom,
    ! [P: int > $o,Q: real > int > $o] :
      ( ( finite_finite_int @ ( collect_int @ P ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [X: real] :
              ? [Y2: int] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: int] :
              ( ( P @ Y2 )
             => ( finite_finite_real
                @ ( collect_real
                  @ ^ [X: real] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1505_finite__Collect__bounded__ex,axiom,
    ! [P: int > $o,Q: nat > int > $o] :
      ( ( finite_finite_int @ ( collect_int @ P ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [X: nat] :
              ? [Y2: int] :
                ( ( P @ Y2 )
                & ( Q @ X @ Y2 ) ) ) )
        = ( ! [Y2: int] :
              ( ( P @ Y2 )
             => ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [X: nat] : ( Q @ X @ Y2 ) ) ) ) ) ) ) ).

% finite_Collect_bounded_ex
thf(fact_1506_finite__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [Z2: real] :
              ( ( power_power_real @ Z2 @ N2 )
              = one_one_real ) ) ) ) ).

% finite_roots_unity
thf(fact_1507_finite__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z2: complex] :
              ( ( power_power_complex @ Z2 @ N2 )
              = one_one_complex ) ) ) ) ).

% finite_roots_unity
thf(fact_1508_zle__diff1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W @ Z ) ) ).

% zle_diff1_eq
thf(fact_1509_finite__Diff,axiom,
    ! [A2: set_int,B2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_1510_finite__Diff,axiom,
    ! [A2: set_complex,B2: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_1511_finite__Diff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_1512_finite__Diff2,axiom,
    ! [B2: set_int,A2: set_int] :
      ( ( finite_finite_int @ B2 )
     => ( ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B2 ) )
        = ( finite_finite_int @ A2 ) ) ) ).

% finite_Diff2
thf(fact_1513_finite__Diff2,axiom,
    ! [B2: set_complex,A2: set_complex] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
        = ( finite3207457112153483333omplex @ A2 ) ) ) ).

% finite_Diff2
thf(fact_1514_finite__Diff2,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
        = ( finite_finite_nat @ A2 ) ) ) ).

% finite_Diff2
thf(fact_1515_finite__Collect__disjI,axiom,
    ! [P: real > $o,Q: real > $o] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [X: real] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite_finite_real @ ( collect_real @ P ) )
        & ( finite_finite_real @ ( collect_real @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1516_finite__Collect__disjI,axiom,
    ! [P: list_nat > $o,Q: list_nat > $o] :
      ( ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [X: list_nat] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite8100373058378681591st_nat @ ( collect_list_nat @ P ) )
        & ( finite8100373058378681591st_nat @ ( collect_list_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1517_finite__Collect__disjI,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [X: set_nat] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
        & ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1518_finite__Collect__disjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X: nat] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite_finite_nat @ ( collect_nat @ P ) )
        & ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1519_finite__Collect__disjI,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [X: int] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite_finite_int @ ( collect_int @ P ) )
        & ( finite_finite_int @ ( collect_int @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1520_finite__Collect__disjI,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
        & ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1521_finite__Collect__conjI,axiom,
    ! [P: real > $o,Q: real > $o] :
      ( ( ( finite_finite_real @ ( collect_real @ P ) )
        | ( finite_finite_real @ ( collect_real @ Q ) ) )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [X: real] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1522_finite__Collect__conjI,axiom,
    ! [P: list_nat > $o,Q: list_nat > $o] :
      ( ( ( finite8100373058378681591st_nat @ ( collect_list_nat @ P ) )
        | ( finite8100373058378681591st_nat @ ( collect_list_nat @ Q ) ) )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [X: list_nat] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1523_finite__Collect__conjI,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
        | ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [X: set_nat] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1524_finite__Collect__conjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ( finite_finite_nat @ ( collect_nat @ P ) )
        | ( finite_finite_nat @ ( collect_nat @ Q ) ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X: nat] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1525_finite__Collect__conjI,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( ( finite_finite_int @ ( collect_int @ P ) )
        | ( finite_finite_int @ ( collect_int @ Q ) ) )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [X: int] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1526_finite__Collect__conjI,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
        | ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1527_finite__interval__int4,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int4
thf(fact_1528_finite__interval__int3,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_eq_int @ I4 @ B ) ) ) ) ).

% finite_interval_int3
thf(fact_1529_finite__interval__int2,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_eq_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int2
thf(fact_1530_finite__psubset__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [A6: set_nat] :
            ( ( finite_finite_nat @ A6 )
           => ( ! [B7: set_nat] :
                  ( ( ord_less_set_nat @ B7 @ A6 )
                 => ( P @ B7 ) )
             => ( P @ A6 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_1531_finite__psubset__induct,axiom,
    ! [A2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ! [A6: set_int] :
            ( ( finite_finite_int @ A6 )
           => ( ! [B7: set_int] :
                  ( ( ord_less_set_int @ B7 @ A6 )
                 => ( P @ B7 ) )
             => ( P @ A6 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_1532_finite__psubset__induct,axiom,
    ! [A2: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [A6: set_complex] :
            ( ( finite3207457112153483333omplex @ A6 )
           => ( ! [B7: set_complex] :
                  ( ( ord_less_set_complex @ B7 @ A6 )
                 => ( P @ B7 ) )
             => ( P @ A6 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_1533_Diff__infinite__finite,axiom,
    ! [T3: set_int,S3: set_int] :
      ( ( finite_finite_int @ T3 )
     => ( ~ ( finite_finite_int @ S3 )
       => ~ ( finite_finite_int @ ( minus_minus_set_int @ S3 @ T3 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_1534_Diff__infinite__finite,axiom,
    ! [T3: set_complex,S3: set_complex] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ~ ( finite3207457112153483333omplex @ S3 )
       => ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ S3 @ T3 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_1535_Diff__infinite__finite,axiom,
    ! [T3: set_nat,S3: set_nat] :
      ( ( finite_finite_nat @ T3 )
     => ( ~ ( finite_finite_nat @ S3 )
       => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S3 @ T3 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_1536_int__less__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_less_induct
thf(fact_1537_int__distrib_I4_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
      = ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(4)
thf(fact_1538_int__distrib_I3_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(3)
thf(fact_1539_pigeonhole__infinite__rel,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_nat,R2: vEBT_VEBT > nat > $o] :
      ( ~ ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: nat] :
              ( ( member_nat @ X3 @ B2 )
              & ~ ( finite5795047828879050333T_VEBT
                  @ ( collect_VEBT_VEBT
                    @ ^ [A3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1540_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B2: set_nat,R2: real > nat > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: nat] :
              ( ( member_nat @ X3 @ B2 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A3: real] :
                        ( ( member_real @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1541_pigeonhole__infinite__rel,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_int,R2: vEBT_VEBT > int > $o] :
      ( ~ ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: int] :
              ( ( member_int @ X3 @ B2 )
              & ~ ( finite5795047828879050333T_VEBT
                  @ ( collect_VEBT_VEBT
                    @ ^ [A3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1542_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B2: set_int,R2: real > int > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: int] :
              ( ( member_int @ X3 @ B2 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A3: real] :
                        ( ( member_real @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1543_pigeonhole__infinite__rel,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_complex,R2: vEBT_VEBT > complex > $o] :
      ( ~ ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: complex] :
              ( ( member_complex @ X3 @ B2 )
              & ~ ( finite5795047828879050333T_VEBT
                  @ ( collect_VEBT_VEBT
                    @ ^ [A3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1544_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B2: set_complex,R2: real > complex > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: complex] :
              ( ( member_complex @ X3 @ B2 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A3: real] :
                        ( ( member_real @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1545_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B2: set_nat,R2: nat > nat > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: nat] :
              ( ( member_nat @ X3 @ B2 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1546_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B2: set_int,R2: nat > int > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: int] :
              ( ( member_int @ X3 @ B2 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1547_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B2: set_complex,R2: nat > complex > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: complex] :
              ( ( member_complex @ X3 @ B2 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1548_pigeonhole__infinite__rel,axiom,
    ! [A2: set_int,B2: set_nat,R2: int > nat > $o] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B2 )
                  & ( R2 @ X3 @ Xa ) ) )
         => ? [X3: nat] :
              ( ( member_nat @ X3 @ B2 )
              & ~ ( finite_finite_int
                  @ ( collect_int
                    @ ^ [A3: int] :
                        ( ( member_int @ A3 @ A2 )
                        & ( R2 @ A3 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1549_not__finite__existsD,axiom,
    ! [P: real > $o] :
      ( ~ ( finite_finite_real @ ( collect_real @ P ) )
     => ? [X_1: real] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1550_not__finite__existsD,axiom,
    ! [P: list_nat > $o] :
      ( ~ ( finite8100373058378681591st_nat @ ( collect_list_nat @ P ) )
     => ? [X_1: list_nat] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1551_not__finite__existsD,axiom,
    ! [P: set_nat > $o] :
      ( ~ ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
     => ? [X_1: set_nat] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1552_not__finite__existsD,axiom,
    ! [P: nat > $o] :
      ( ~ ( finite_finite_nat @ ( collect_nat @ P ) )
     => ? [X_1: nat] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1553_not__finite__existsD,axiom,
    ! [P: int > $o] :
      ( ~ ( finite_finite_int @ ( collect_int @ P ) )
     => ? [X_1: int] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1554_not__finite__existsD,axiom,
    ! [P: complex > $o] :
      ( ~ ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
     => ? [X_1: complex] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1555_finite__has__maximal2,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ? [X3: real] :
            ( ( member_real @ X3 @ A2 )
            & ( ord_less_eq_real @ A @ X3 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_1556_finite__has__maximal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X3: set_nat] :
            ( ( member_set_nat @ X3 @ A2 )
            & ( ord_less_eq_set_nat @ A @ X3 )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_1557_finite__has__maximal2,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ A @ A2 )
       => ? [X3: rat] :
            ( ( member_rat @ X3 @ A2 )
            & ( ord_less_eq_rat @ A @ X3 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_1558_finite__has__maximal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ( ord_less_eq_num @ A @ X3 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_1559_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( ord_less_eq_nat @ A @ X3 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_1560_finite__has__maximal2,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ? [X3: int] :
            ( ( member_int @ X3 @ A2 )
            & ( ord_less_eq_int @ A @ X3 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_1561_finite__has__minimal2,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ? [X3: real] :
            ( ( member_real @ X3 @ A2 )
            & ( ord_less_eq_real @ X3 @ A )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_1562_finite__has__minimal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X3: set_nat] :
            ( ( member_set_nat @ X3 @ A2 )
            & ( ord_less_eq_set_nat @ X3 @ A )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_1563_finite__has__minimal2,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ A @ A2 )
       => ? [X3: rat] :
            ( ( member_rat @ X3 @ A2 )
            & ( ord_less_eq_rat @ X3 @ A )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_1564_finite__has__minimal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ( ord_less_eq_num @ X3 @ A )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_1565_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( ord_less_eq_nat @ X3 @ A )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_1566_finite__has__minimal2,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ? [X3: int] :
            ( ( member_int @ X3 @ A2 )
            & ( ord_less_eq_int @ X3 @ A )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_1567_finite_OemptyI,axiom,
    finite3207457112153483333omplex @ bot_bot_set_complex ).

% finite.emptyI
thf(fact_1568_finite_OemptyI,axiom,
    finite_finite_nat @ bot_bot_set_nat ).

% finite.emptyI
thf(fact_1569_finite_OemptyI,axiom,
    finite_finite_int @ bot_bot_set_int ).

% finite.emptyI
thf(fact_1570_finite_OemptyI,axiom,
    finite_finite_real @ bot_bot_set_real ).

% finite.emptyI
thf(fact_1571_infinite__imp__nonempty,axiom,
    ! [S3: set_complex] :
      ( ~ ( finite3207457112153483333omplex @ S3 )
     => ( S3 != bot_bot_set_complex ) ) ).

% infinite_imp_nonempty
thf(fact_1572_infinite__imp__nonempty,axiom,
    ! [S3: set_nat] :
      ( ~ ( finite_finite_nat @ S3 )
     => ( S3 != bot_bot_set_nat ) ) ).

% infinite_imp_nonempty
thf(fact_1573_infinite__imp__nonempty,axiom,
    ! [S3: set_int] :
      ( ~ ( finite_finite_int @ S3 )
     => ( S3 != bot_bot_set_int ) ) ).

% infinite_imp_nonempty
thf(fact_1574_infinite__imp__nonempty,axiom,
    ! [S3: set_real] :
      ( ~ ( finite_finite_real @ S3 )
     => ( S3 != bot_bot_set_real ) ) ).

% infinite_imp_nonempty
thf(fact_1575_finite__subset,axiom,
    ! [A2: set_int,B2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B2 )
     => ( ( finite_finite_int @ B2 )
       => ( finite_finite_int @ A2 ) ) ) ).

% finite_subset
thf(fact_1576_finite__subset,axiom,
    ! [A2: set_complex,B2: set_complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( finite3207457112153483333omplex @ A2 ) ) ) ).

% finite_subset
thf(fact_1577_finite__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( finite_finite_nat @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_1578_infinite__super,axiom,
    ! [S3: set_int,T3: set_int] :
      ( ( ord_less_eq_set_int @ S3 @ T3 )
     => ( ~ ( finite_finite_int @ S3 )
       => ~ ( finite_finite_int @ T3 ) ) ) ).

% infinite_super
thf(fact_1579_infinite__super,axiom,
    ! [S3: set_complex,T3: set_complex] :
      ( ( ord_le211207098394363844omplex @ S3 @ T3 )
     => ( ~ ( finite3207457112153483333omplex @ S3 )
       => ~ ( finite3207457112153483333omplex @ T3 ) ) ) ).

% infinite_super
thf(fact_1580_infinite__super,axiom,
    ! [S3: set_nat,T3: set_nat] :
      ( ( ord_less_eq_set_nat @ S3 @ T3 )
     => ( ~ ( finite_finite_nat @ S3 )
       => ~ ( finite_finite_nat @ T3 ) ) ) ).

% infinite_super
thf(fact_1581_rev__finite__subset,axiom,
    ! [B2: set_int,A2: set_int] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( finite_finite_int @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_1582_rev__finite__subset,axiom,
    ! [B2: set_complex,A2: set_complex] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( finite3207457112153483333omplex @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_1583_rev__finite__subset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_1584_int__le__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_le_induct
thf(fact_1585_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_1586_zless__add1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z )
        | ( W = Z ) ) ) ).

% zless_add1_eq
thf(fact_1587_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(1)
thf(fact_1588_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_1589_finite__image__set2,axiom,
    ! [P: real > $o,Q: real > $o,F: real > real > real] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_real @ ( collect_real @ Q ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [Uu3: real] :
              ? [X: real,Y2: real] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1590_finite__image__set2,axiom,
    ! [P: real > $o,Q: real > $o,F: real > real > nat] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_real @ ( collect_real @ Q ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [Uu3: nat] :
              ? [X: real,Y2: real] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1591_finite__image__set2,axiom,
    ! [P: real > $o,Q: real > $o,F: real > real > int] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_real @ ( collect_real @ Q ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [Uu3: int] :
              ? [X: real,Y2: real] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1592_finite__image__set2,axiom,
    ! [P: real > $o,Q: real > $o,F: real > real > complex] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_real @ ( collect_real @ Q ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [Uu3: complex] :
              ? [X: real,Y2: real] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1593_finite__image__set2,axiom,
    ! [P: real > $o,Q: nat > $o,F: real > nat > real] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_nat @ ( collect_nat @ Q ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [Uu3: real] :
              ? [X: real,Y2: nat] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1594_finite__image__set2,axiom,
    ! [P: real > $o,Q: nat > $o,F: real > nat > nat] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_nat @ ( collect_nat @ Q ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [Uu3: nat] :
              ? [X: real,Y2: nat] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1595_finite__image__set2,axiom,
    ! [P: real > $o,Q: nat > $o,F: real > nat > int] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_nat @ ( collect_nat @ Q ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [Uu3: int] :
              ? [X: real,Y2: nat] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1596_finite__image__set2,axiom,
    ! [P: real > $o,Q: nat > $o,F: real > nat > complex] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_nat @ ( collect_nat @ Q ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [Uu3: complex] :
              ? [X: real,Y2: nat] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1597_finite__image__set2,axiom,
    ! [P: real > $o,Q: int > $o,F: real > int > real] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_int @ ( collect_int @ Q ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [Uu3: real] :
              ? [X: real,Y2: int] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1598_finite__image__set2,axiom,
    ! [P: real > $o,Q: int > $o,F: real > int > nat] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( ( finite_finite_int @ ( collect_int @ Q ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [Uu3: nat] :
              ? [X: real,Y2: int] :
                ( ( Uu3
                  = ( F @ X @ Y2 ) )
                & ( P @ X )
                & ( Q @ Y2 ) ) ) ) ) ) ).

% finite_image_set2
thf(fact_1599_finite__image__set,axiom,
    ! [P: real > $o,F: real > real] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [Uu3: real] :
            ? [X: real] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1600_finite__image__set,axiom,
    ! [P: real > $o,F: real > nat] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [Uu3: nat] :
            ? [X: real] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1601_finite__image__set,axiom,
    ! [P: real > $o,F: real > int] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [Uu3: int] :
            ? [X: real] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1602_finite__image__set,axiom,
    ! [P: real > $o,F: real > complex] :
      ( ( finite_finite_real @ ( collect_real @ P ) )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Uu3: complex] :
            ? [X: real] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1603_finite__image__set,axiom,
    ! [P: nat > $o,F: nat > real] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [Uu3: real] :
            ? [X: nat] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1604_finite__image__set,axiom,
    ! [P: nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [Uu3: nat] :
            ? [X: nat] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1605_finite__image__set,axiom,
    ! [P: nat > $o,F: nat > int] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [Uu3: int] :
            ? [X: nat] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1606_finite__image__set,axiom,
    ! [P: nat > $o,F: nat > complex] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Uu3: complex] :
            ? [X: nat] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1607_finite__image__set,axiom,
    ! [P: int > $o,F: int > real] :
      ( ( finite_finite_int @ ( collect_int @ P ) )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [Uu3: real] :
            ? [X: int] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1608_finite__image__set,axiom,
    ! [P: int > $o,F: int > nat] :
      ( ( finite_finite_int @ ( collect_int @ P ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [Uu3: nat] :
            ? [X: int] :
              ( ( Uu3
                = ( F @ X ) )
              & ( P @ X ) ) ) ) ) ).

% finite_image_set
thf(fact_1609_finite__has__maximal,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ? [X3: real] :
            ( ( member_real @ X3 @ A2 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_1610_finite__has__maximal,axiom,
    ! [A2: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( A2 != bot_bot_set_set_nat )
       => ? [X3: set_nat] :
            ( ( member_set_nat @ X3 @ A2 )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_1611_finite__has__maximal,axiom,
    ! [A2: set_rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ? [X3: rat] :
            ( ( member_rat @ X3 @ A2 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_1612_finite__has__maximal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_1613_finite__has__maximal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_1614_finite__has__maximal,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ? [X3: int] :
            ( ( member_int @ X3 @ A2 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_1615_finite__has__minimal,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ? [X3: real] :
            ( ( member_real @ X3 @ A2 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_1616_finite__has__minimal,axiom,
    ! [A2: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( A2 != bot_bot_set_set_nat )
       => ? [X3: set_nat] :
            ( ( member_set_nat @ X3 @ A2 )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_1617_finite__has__minimal,axiom,
    ! [A2: set_rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ? [X3: rat] :
            ( ( member_rat @ X3 @ A2 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_1618_finite__has__minimal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_1619_finite__has__minimal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_1620_finite__has__minimal,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ? [X3: int] :
            ( ( member_int @ X3 @ A2 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_1621_zless__imp__add1__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_1622_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_1623_add1__zle__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
      = ( ord_less_int @ W @ Z ) ) ).

% add1_zle_eq
thf(fact_1624_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_1625_vebt__member_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X2: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X2 ) ).

% vebt_member.simps(2)
thf(fact_1626_VEBT__internal_OminNull_Osimps_I5_J,axiom,
    ! [Uz: product_prod_nat_nat,Va: nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz ) @ Va @ Vb @ Vc ) ) ).

% VEBT_internal.minNull.simps(5)
thf(fact_1627_VEBT__internal_OminNull_Osimps_I4_J,axiom,
    ! [Uw: nat,Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw @ Ux @ Uy ) ) ).

% VEBT_internal.minNull.simps(4)
thf(fact_1628_Diff__eq__empty__iff,axiom,
    ! [A2: set_int,B2: set_int] :
      ( ( ( minus_minus_set_int @ A2 @ B2 )
        = bot_bot_set_int )
      = ( ord_less_eq_set_int @ A2 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_1629_Diff__eq__empty__iff,axiom,
    ! [A2: set_real,B2: set_real] :
      ( ( ( minus_minus_set_real @ A2 @ B2 )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ A2 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_1630_Diff__eq__empty__iff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ( minus_minus_set_nat @ A2 @ B2 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_1631_double__not__eq__Suc__double,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% double_not_eq_Suc_double
thf(fact_1632_Suc__double__not__eq__double,axiom,
    ! [M: nat,N2: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% Suc_double_not_eq_double
thf(fact_1633_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
    ! [Mi: nat,Ma: nat,V: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList2 @ Vc ) @ X2 )
      = ( ( X2 = Mi )
        | ( X2 = Ma )
        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ).

% VEBT_internal.membermima.simps(4)
thf(fact_1634_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
    ! [Uy: option4927543243414619207at_nat,V: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT,X2: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList2 @ S ) @ X2 )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).

% VEBT_internal.naive_member.simps(3)
thf(fact_1635_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
    ! [V: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList2 @ Vd ) @ X2 )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).

% VEBT_internal.membermima.simps(5)
thf(fact_1636_buildup__nothing__in__leaf,axiom,
    ! [N2: nat,X2: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N2 ) @ X2 ) ).

% buildup_nothing_in_leaf
thf(fact_1637_unset__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_se8260200283734997820nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_1638_unset__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_se4203085406695923979it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_1639_unset__bit__Suc,axiom,
    ! [N2: nat,A: nat] :
      ( ( bit_se4205575877204974255it_nat @ ( suc @ N2 ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_1640_flip__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_1641_flip__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_se2159334234014336723it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_1642_flip__bit__Suc,axiom,
    ! [N2: nat,A: nat] :
      ( ( bit_se2161824704523386999it_nat @ ( suc @ N2 ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_1643_set__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_se2793503036327961859nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_1644_set__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_se7879613467334960850it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_1645_set__bit__Suc,axiom,
    ! [N2: nat,A: nat] :
      ( ( bit_se7882103937844011126it_nat @ ( suc @ N2 ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_1646_buildup__nothing__in__min__max,axiom,
    ! [N2: nat,X2: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N2 ) @ X2 ) ).

% buildup_nothing_in_min_max
thf(fact_1647_both__member__options__def,axiom,
    ( vEBT_V8194947554948674370ptions
    = ( ^ [T2: vEBT_VEBT,X: nat] :
          ( ( vEBT_V5719532721284313246member @ T2 @ X )
          | ( vEBT_VEBT_membermima @ T2 @ X ) ) ) ) ).

% both_member_options_def
thf(fact_1648_Diff__idemp,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ B2 )
      = ( minus_minus_set_nat @ A2 @ B2 ) ) ).

% Diff_idemp
thf(fact_1649_Diff__iff,axiom,
    ! [C: real,A2: set_real,B2: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
      = ( ( member_real @ C @ A2 )
        & ~ ( member_real @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_1650_Diff__iff,axiom,
    ! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
      = ( ( member_VEBT_VEBT @ C @ A2 )
        & ~ ( member_VEBT_VEBT @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_1651_Diff__iff,axiom,
    ! [C: int,A2: set_int,B2: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
      = ( ( member_int @ C @ A2 )
        & ~ ( member_int @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_1652_Diff__iff,axiom,
    ! [C: complex,A2: set_complex,B2: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
      = ( ( member_complex @ C @ A2 )
        & ~ ( member_complex @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_1653_Diff__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        & ~ ( member_nat @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_1654_DiffI,axiom,
    ! [C: real,A2: set_real,B2: set_real] :
      ( ( member_real @ C @ A2 )
     => ( ~ ( member_real @ C @ B2 )
       => ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_1655_DiffI,axiom,
    ! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ C @ A2 )
     => ( ~ ( member_VEBT_VEBT @ C @ B2 )
       => ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_1656_DiffI,axiom,
    ! [C: int,A2: set_int,B2: set_int] :
      ( ( member_int @ C @ A2 )
     => ( ~ ( member_int @ C @ B2 )
       => ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_1657_DiffI,axiom,
    ! [C: complex,A2: set_complex,B2: set_complex] :
      ( ( member_complex @ C @ A2 )
     => ( ~ ( member_complex @ C @ B2 )
       => ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_1658_DiffI,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_1659_member__valid__both__member__options,axiom,
    ! [Tree: vEBT_VEBT,N2: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ Tree @ N2 )
     => ( ( vEBT_vebt_member @ Tree @ X2 )
       => ( ( vEBT_V5719532721284313246member @ Tree @ X2 )
          | ( vEBT_VEBT_membermima @ Tree @ X2 ) ) ) ) ).

% member_valid_both_member_options
thf(fact_1660_Diff__empty,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ A2 @ bot_bot_set_int )
      = A2 ) ).

% Diff_empty
thf(fact_1661_Diff__empty,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ A2 @ bot_bot_set_real )
      = A2 ) ).

% Diff_empty
thf(fact_1662_Diff__empty,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ bot_bot_set_nat )
      = A2 ) ).

% Diff_empty
thf(fact_1663_empty__Diff,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ bot_bot_set_int @ A2 )
      = bot_bot_set_int ) ).

% empty_Diff
thf(fact_1664_empty__Diff,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ bot_bot_set_real @ A2 )
      = bot_bot_set_real ) ).

% empty_Diff
thf(fact_1665_empty__Diff,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A2 )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_1666_Diff__cancel,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ A2 @ A2 )
      = bot_bot_set_int ) ).

% Diff_cancel
thf(fact_1667_Diff__cancel,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ A2 @ A2 )
      = bot_bot_set_real ) ).

% Diff_cancel
thf(fact_1668_Diff__cancel,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ A2 )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_1669_psubsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_set_nat @ A2 @ B2 ) ) ) ).

% psubsetI
thf(fact_1670_set__diff__eq,axiom,
    ( minus_5127226145743854075T_VEBT
    = ( ^ [A7: set_VEBT_VEBT,B6: set_VEBT_VEBT] :
          ( collect_VEBT_VEBT
          @ ^ [X: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X @ A7 )
              & ~ ( member_VEBT_VEBT @ X @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1671_set__diff__eq,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A7: set_complex,B6: set_complex] :
          ( collect_complex
          @ ^ [X: complex] :
              ( ( member_complex @ X @ A7 )
              & ~ ( member_complex @ X @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1672_set__diff__eq,axiom,
    ( minus_minus_set_real
    = ( ^ [A7: set_real,B6: set_real] :
          ( collect_real
          @ ^ [X: real] :
              ( ( member_real @ X @ A7 )
              & ~ ( member_real @ X @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1673_set__diff__eq,axiom,
    ( minus_7954133019191499631st_nat
    = ( ^ [A7: set_list_nat,B6: set_list_nat] :
          ( collect_list_nat
          @ ^ [X: list_nat] :
              ( ( member_list_nat @ X @ A7 )
              & ~ ( member_list_nat @ X @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1674_set__diff__eq,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A7: set_set_nat,B6: set_set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] :
              ( ( member_set_nat @ X @ A7 )
              & ~ ( member_set_nat @ X @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1675_set__diff__eq,axiom,
    ( minus_minus_set_int
    = ( ^ [A7: set_int,B6: set_int] :
          ( collect_int
          @ ^ [X: int] :
              ( ( member_int @ X @ A7 )
              & ~ ( member_int @ X @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1676_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
          ( collect_nat
          @ ^ [X: nat] :
              ( ( member_nat @ X @ A7 )
              & ~ ( member_nat @ X @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1677_minus__set__def,axiom,
    ( minus_5127226145743854075T_VEBT
    = ( ^ [A7: set_VEBT_VEBT,B6: set_VEBT_VEBT] :
          ( collect_VEBT_VEBT
          @ ( minus_2794559001203777698VEBT_o
            @ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A7 )
            @ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1678_minus__set__def,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A7: set_complex,B6: set_complex] :
          ( collect_complex
          @ ( minus_8727706125548526216plex_o
            @ ^ [X: complex] : ( member_complex @ X @ A7 )
            @ ^ [X: complex] : ( member_complex @ X @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1679_minus__set__def,axiom,
    ( minus_minus_set_real
    = ( ^ [A7: set_real,B6: set_real] :
          ( collect_real
          @ ( minus_minus_real_o
            @ ^ [X: real] : ( member_real @ X @ A7 )
            @ ^ [X: real] : ( member_real @ X @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1680_minus__set__def,axiom,
    ( minus_7954133019191499631st_nat
    = ( ^ [A7: set_list_nat,B6: set_list_nat] :
          ( collect_list_nat
          @ ( minus_1139252259498527702_nat_o
            @ ^ [X: list_nat] : ( member_list_nat @ X @ A7 )
            @ ^ [X: list_nat] : ( member_list_nat @ X @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1681_minus__set__def,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A7: set_set_nat,B6: set_set_nat] :
          ( collect_set_nat
          @ ( minus_6910147592129066416_nat_o
            @ ^ [X: set_nat] : ( member_set_nat @ X @ A7 )
            @ ^ [X: set_nat] : ( member_set_nat @ X @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1682_minus__set__def,axiom,
    ( minus_minus_set_int
    = ( ^ [A7: set_int,B6: set_int] :
          ( collect_int
          @ ( minus_minus_int_o
            @ ^ [X: int] : ( member_int @ X @ A7 )
            @ ^ [X: int] : ( member_int @ X @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1683_minus__set__def,axiom,
    ( minus_minus_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
          ( collect_nat
          @ ( minus_minus_nat_o
            @ ^ [X: nat] : ( member_nat @ X @ A7 )
            @ ^ [X: nat] : ( member_nat @ X @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1684_less__set__def,axiom,
    ( ord_less_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
          ( ord_less_nat_o
          @ ^ [X: nat] : ( member_nat @ X @ A7 )
          @ ^ [X: nat] : ( member_nat @ X @ B6 ) ) ) ) ).

% less_set_def
thf(fact_1685_less__set__def,axiom,
    ( ord_less_set_real
    = ( ^ [A7: set_real,B6: set_real] :
          ( ord_less_real_o
          @ ^ [X: real] : ( member_real @ X @ A7 )
          @ ^ [X: real] : ( member_real @ X @ B6 ) ) ) ) ).

% less_set_def
thf(fact_1686_less__set__def,axiom,
    ( ord_le3480810397992357184T_VEBT
    = ( ^ [A7: set_VEBT_VEBT,B6: set_VEBT_VEBT] :
          ( ord_less_VEBT_VEBT_o
          @ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A7 )
          @ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ B6 ) ) ) ) ).

% less_set_def
thf(fact_1687_less__set__def,axiom,
    ( ord_less_set_int
    = ( ^ [A7: set_int,B6: set_int] :
          ( ord_less_int_o
          @ ^ [X: int] : ( member_int @ X @ A7 )
          @ ^ [X: int] : ( member_int @ X @ B6 ) ) ) ) ).

% less_set_def
thf(fact_1688_less__set__def,axiom,
    ( ord_less_set_complex
    = ( ^ [A7: set_complex,B6: set_complex] :
          ( ord_less_complex_o
          @ ^ [X: complex] : ( member_complex @ X @ A7 )
          @ ^ [X: complex] : ( member_complex @ X @ B6 ) ) ) ) ).

% less_set_def
thf(fact_1689_psubsetD,axiom,
    ! [A2: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1690_psubsetD,axiom,
    ! [A2: set_real,B2: set_real,C: real] :
      ( ( ord_less_set_real @ A2 @ B2 )
     => ( ( member_real @ C @ A2 )
       => ( member_real @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1691_psubsetD,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,C: vEBT_VEBT] :
      ( ( ord_le3480810397992357184T_VEBT @ A2 @ B2 )
     => ( ( member_VEBT_VEBT @ C @ A2 )
       => ( member_VEBT_VEBT @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1692_psubsetD,axiom,
    ! [A2: set_int,B2: set_int,C: int] :
      ( ( ord_less_set_int @ A2 @ B2 )
     => ( ( member_int @ C @ A2 )
       => ( member_int @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1693_psubsetD,axiom,
    ! [A2: set_complex,B2: set_complex,C: complex] :
      ( ( ord_less_set_complex @ A2 @ B2 )
     => ( ( member_complex @ C @ A2 )
       => ( member_complex @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1694_DiffD2,axiom,
    ! [C: real,A2: set_real,B2: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
     => ~ ( member_real @ C @ B2 ) ) ).

% DiffD2
thf(fact_1695_DiffD2,axiom,
    ! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
     => ~ ( member_VEBT_VEBT @ C @ B2 ) ) ).

% DiffD2
thf(fact_1696_DiffD2,axiom,
    ! [C: int,A2: set_int,B2: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
     => ~ ( member_int @ C @ B2 ) ) ).

% DiffD2
thf(fact_1697_DiffD2,axiom,
    ! [C: complex,A2: set_complex,B2: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
     => ~ ( member_complex @ C @ B2 ) ) ).

% DiffD2
thf(fact_1698_DiffD2,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ~ ( member_nat @ C @ B2 ) ) ).

% DiffD2
thf(fact_1699_DiffD1,axiom,
    ! [C: real,A2: set_real,B2: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
     => ( member_real @ C @ A2 ) ) ).

% DiffD1
thf(fact_1700_DiffD1,axiom,
    ! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
     => ( member_VEBT_VEBT @ C @ A2 ) ) ).

% DiffD1
thf(fact_1701_DiffD1,axiom,
    ! [C: int,A2: set_int,B2: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
     => ( member_int @ C @ A2 ) ) ).

% DiffD1
thf(fact_1702_DiffD1,axiom,
    ! [C: complex,A2: set_complex,B2: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
     => ( member_complex @ C @ A2 ) ) ).

% DiffD1
thf(fact_1703_DiffD1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ( member_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_1704_DiffE,axiom,
    ! [C: real,A2: set_real,B2: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
     => ~ ( ( member_real @ C @ A2 )
         => ( member_real @ C @ B2 ) ) ) ).

% DiffE
thf(fact_1705_DiffE,axiom,
    ! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
     => ~ ( ( member_VEBT_VEBT @ C @ A2 )
         => ( member_VEBT_VEBT @ C @ B2 ) ) ) ).

% DiffE
thf(fact_1706_DiffE,axiom,
    ! [C: int,A2: set_int,B2: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
     => ~ ( ( member_int @ C @ A2 )
         => ( member_int @ C @ B2 ) ) ) ).

% DiffE
thf(fact_1707_DiffE,axiom,
    ! [C: complex,A2: set_complex,B2: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
     => ~ ( ( member_complex @ C @ A2 )
         => ( member_complex @ C @ B2 ) ) ) ).

% DiffE
thf(fact_1708_DiffE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ( member_nat @ C @ B2 ) ) ) ).

% DiffE
thf(fact_1709_psubset__imp__ex__mem,axiom,
    ! [A2: set_real,B2: set_real] :
      ( ( ord_less_set_real @ A2 @ B2 )
     => ? [B5: real] : ( member_real @ B5 @ ( minus_minus_set_real @ B2 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1710_psubset__imp__ex__mem,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
      ( ( ord_le3480810397992357184T_VEBT @ A2 @ B2 )
     => ? [B5: vEBT_VEBT] : ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1711_psubset__imp__ex__mem,axiom,
    ! [A2: set_int,B2: set_int] :
      ( ( ord_less_set_int @ A2 @ B2 )
     => ? [B5: int] : ( member_int @ B5 @ ( minus_minus_set_int @ B2 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1712_psubset__imp__ex__mem,axiom,
    ! [A2: set_complex,B2: set_complex] :
      ( ( ord_less_set_complex @ A2 @ B2 )
     => ? [B5: complex] : ( member_complex @ B5 @ ( minus_811609699411566653omplex @ B2 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1713_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ? [B5: nat] : ( member_nat @ B5 @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1714_unset__bit__less__eq,axiom,
    ! [N2: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) @ K ) ).

% unset_bit_less_eq
thf(fact_1715_set__bit__greater__eq,axiom,
    ! [K: int,N2: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N2 @ K ) ) ).

% set_bit_greater_eq
thf(fact_1716_not__psubset__empty,axiom,
    ! [A2: set_nat] :
      ~ ( ord_less_set_nat @ A2 @ bot_bot_set_nat ) ).

% not_psubset_empty
thf(fact_1717_not__psubset__empty,axiom,
    ! [A2: set_int] :
      ~ ( ord_less_set_int @ A2 @ bot_bot_set_int ) ).

% not_psubset_empty
thf(fact_1718_not__psubset__empty,axiom,
    ! [A2: set_real] :
      ~ ( ord_less_set_real @ A2 @ bot_bot_set_real ) ).

% not_psubset_empty
thf(fact_1719_psubsetE,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ~ ( ( ord_less_eq_set_nat @ A2 @ B2 )
         => ( ord_less_eq_set_nat @ B2 @ A2 ) ) ) ).

% psubsetE
thf(fact_1720_psubset__eq,axiom,
    ( ord_less_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
          ( ( ord_less_eq_set_nat @ A7 @ B6 )
          & ( A7 != B6 ) ) ) ) ).

% psubset_eq
thf(fact_1721_psubset__imp__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% psubset_imp_subset
thf(fact_1722_psubset__subset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C4 )
       => ( ord_less_set_nat @ A2 @ C4 ) ) ) ).

% psubset_subset_trans
thf(fact_1723_subset__not__subset__eq,axiom,
    ( ord_less_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
          ( ( ord_less_eq_set_nat @ A7 @ B6 )
          & ~ ( ord_less_eq_set_nat @ B6 @ A7 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_1724_subset__psubset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_set_nat @ B2 @ C4 )
       => ( ord_less_set_nat @ A2 @ C4 ) ) ) ).

% subset_psubset_trans
thf(fact_1725_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
          ( ( ord_less_set_nat @ A7 @ B6 )
          | ( A7 = B6 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_1726_double__diff,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C4 )
       => ( ( minus_minus_set_nat @ B2 @ ( minus_minus_set_nat @ C4 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_1727_Diff__subset,axiom,
    ! [A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ A2 ) ).

% Diff_subset
thf(fact_1728_Diff__mono,axiom,
    ! [A2: set_nat,C4: set_nat,D4: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ C4 )
     => ( ( ord_less_eq_set_nat @ D4 @ B2 )
       => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ ( minus_minus_set_nat @ C4 @ D4 ) ) ) ) ).

% Diff_mono
thf(fact_1729_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ! [Mi2: nat,Ma2: nat] :
            ( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
           => ~ ( ( Xa2 = Mi2 )
                | ( Xa2 = Ma2 ) ) )
       => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [Vc2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
             => ~ ( ( Xa2 = Mi2 )
                  | ( Xa2 = Ma2 )
                  | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
         => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [Vd2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
               => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(2)
thf(fact_1730_vebt__succ_Oelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: option_nat] :
      ( ( ( vEBT_vebt_succ @ X2 @ Xa2 )
        = Y )
     => ( ! [Uu2: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ Uu2 @ B5 ) )
           => ( ( Xa2 = zero_zero_nat )
             => ~ ( ( B5
                   => ( Y
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B5
                   => ( Y = none_nat ) ) ) ) )
       => ( ( ? [Uv2: $o,Uw2: $o] :
                ( X2
                = ( vEBT_Leaf @ Uv2 @ Uw2 ) )
           => ( ? [N3: nat] :
                  ( Xa2
                  = ( suc @ N3 ) )
             => ( Y != none_nat ) ) )
         => ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
             => ( Y != none_nat ) )
           => ( ( ? [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
               => ( Y != none_nat ) )
             => ( ( ? [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) )
                 => ( Y != none_nat ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ~ ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( Y
                              = ( some_nat @ Mi2 ) ) )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( Y
                              = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                @ ( if_option_nat
                                  @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                     != none_nat )
                                    & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                  @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  @ ( if_option_nat
                                    @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                      = none_nat )
                                    @ none_nat
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                @ none_nat ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.elims
thf(fact_1731_product__nth,axiom,
    ! [N2: nat,Xs2: list_num,Ys: list_num] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_num @ Xs2 ) @ ( size_size_list_num @ Ys ) ) )
     => ( ( nth_Pr6456567536196504476um_num @ ( product_num_num @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_num_num @ ( nth_num @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1732_product__nth,axiom,
    ! [N2: nat,Xs2: list_Code_integer,Ys: list_o] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr8522763379788166057eger_o @ ( produc3607205314601156340eger_o @ Xs2 @ Ys ) @ N2 )
        = ( produc6677183202524767010eger_o @ ( nth_Code_integer @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1733_product__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr4953567300277697838T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs2 @ Ys ) @ N2 )
        = ( produc537772716801021591T_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1734_product__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,Ys: list_o] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr4606735188037164562VEBT_o @ ( product_VEBT_VEBT_o @ Xs2 @ Ys ) @ N2 )
        = ( produc8721562602347293563VEBT_o @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1735_product__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,Ys: list_nat] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr1791586995822124652BT_nat @ ( produc7295137177222721919BT_nat @ Xs2 @ Ys ) @ N2 )
        = ( produc738532404422230701BT_nat @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1736_product__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,Ys: list_int] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr6837108013167703752BT_int @ ( produc7292646706713671643BT_int @ Xs2 @ Ys ) @ N2 )
        = ( produc736041933913180425BT_int @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1737_product__nth,axiom,
    ! [N2: nat,Xs2: list_o,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr6777367263587873994T_VEBT @ ( product_o_VEBT_VEBT @ Xs2 @ Ys ) @ N2 )
        = ( produc2982872950893828659T_VEBT @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1738_product__nth,axiom,
    ! [N2: nat,Xs2: list_o,Ys: list_o] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Product_prod_o_o @ ( product_o_o @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_o_o @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1739_product__nth,axiom,
    ! [N2: nat,Xs2: list_o,Ys: list_nat] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr5826913651314560976_o_nat @ ( product_o_nat @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_o_nat @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1740_product__nth,axiom,
    ! [N2: nat,Xs2: list_o,Ys: list_int] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr1649062631805364268_o_int @ ( product_o_int @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_o_int @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_1741_buildup__gives__valid,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N2 ) @ N2 ) ) ).

% buildup_gives_valid
thf(fact_1742_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > complex,Y: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT
        @ ( collect_VEBT_VEBT
          @ ^ [I4: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1743_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > complex,Y: real > complex] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1744_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > complex,Y: nat > complex] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1745_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > complex,Y: int > complex] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1746_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > complex,Y: complex > complex] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1747_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > real,Y: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT
        @ ( collect_VEBT_VEBT
          @ ^ [I4: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_real ) ) ) )
       => ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1748_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > real,Y: real > real] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_real ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1749_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > real,Y: nat > real] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_real ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1750_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > real,Y: int > real] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_real ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1751_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > real,Y: complex > real] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != one_one_real ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_1752_insert__simp__excp,axiom,
    ! [Mi: nat,Deg: nat,TreeList2: list_VEBT_VEBT,X2: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
     => ( ( ord_less_nat @ X2 @ Mi )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X2 != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X2 @ ( ord_max_nat @ Mi @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_excp
thf(fact_1753_insert__simp__norm,axiom,
    ! [X2: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
     => ( ( ord_less_nat @ Mi @ X2 )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X2 != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X2 )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( ord_max_nat @ X2 @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_norm
thf(fact_1754_set__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_1755_set__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_1756_valid__0__not,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_0_not
thf(fact_1757_valid__tree__deg__neq__0,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_tree_deg_neq_0
thf(fact_1758_deg__not__0,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% deg_not_0
thf(fact_1759_Leaf__0__not,axiom,
    ! [A: $o,B: $o] :
      ~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat ) ).

% Leaf_0_not
thf(fact_1760_deg1Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
      = ( ? [A3: $o,B3: $o] :
            ( T
            = ( vEBT_Leaf @ A3 @ B3 ) ) ) ) ).

% deg1Leaf
thf(fact_1761_deg__1__Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
     => ? [A5: $o,B5: $o] :
          ( T
          = ( vEBT_Leaf @ A5 @ B5 ) ) ) ).

% deg_1_Leaf
thf(fact_1762_deg__1__Leafy,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( N2 = one_one_nat )
       => ? [A5: $o,B5: $o] :
            ( T
            = ( vEBT_Leaf @ A5 @ B5 ) ) ) ) ).

% deg_1_Leafy
thf(fact_1763_list__update__overwrite,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat,X2: vEBT_VEBT,Y: vEBT_VEBT] :
      ( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ I @ Y )
      = ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ Y ) ) ).

% list_update_overwrite
thf(fact_1764_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_1765_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_1766_mult__zero__left,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% mult_zero_left
thf(fact_1767_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_1768_mult__zero__left,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% mult_zero_left
thf(fact_1769_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_1770_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_1771_mult__zero__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% mult_zero_right
thf(fact_1772_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_1773_mult__zero__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% mult_zero_right
thf(fact_1774_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_1775_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_1776_mult__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% mult_eq_0_iff
thf(fact_1777_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_1778_mult__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% mult_eq_0_iff
thf(fact_1779_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_1780_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_1781_mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( times_times_complex @ C @ A )
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1782_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1783_mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( times_times_rat @ C @ A )
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1784_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1785_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1786_mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( times_times_complex @ A @ C )
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1787_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1788_mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( times_times_rat @ A @ C )
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1789_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1790_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1791_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_1792_double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( plus_plus_rat @ A @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% double_eq_0_iff
thf(fact_1793_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_1794_add__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add_0
thf(fact_1795_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_1796_add__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add_0
thf(fact_1797_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_1798_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_1799_zero__eq__add__iff__both__eq__0,axiom,
    ! [X2: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X2 @ Y ) )
      = ( ( X2 = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_1800_add__eq__0__iff__both__eq__0,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y )
        = zero_zero_nat )
      = ( ( X2 = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_1801_add__cancel__right__right,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ A @ B ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_right
thf(fact_1802_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_1803_add__cancel__right__right,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ A @ B ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_right
thf(fact_1804_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_1805_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_1806_add__cancel__right__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ B @ A ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_left
thf(fact_1807_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_1808_add__cancel__right__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ B @ A ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_left
thf(fact_1809_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_1810_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_1811_add__cancel__left__right,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_right
thf(fact_1812_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_1813_add__cancel__left__right,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_right
thf(fact_1814_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_1815_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_1816_add__cancel__left__left,axiom,
    ! [B: complex,A: complex] :
      ( ( ( plus_plus_complex @ B @ A )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_left
thf(fact_1817_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_1818_add__cancel__left__left,axiom,
    ! [B: rat,A: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_left
thf(fact_1819_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_1820_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_1821_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_1822_double__zero__sym,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( plus_plus_rat @ A @ A ) )
      = ( A = zero_zero_rat ) ) ).

% double_zero_sym
thf(fact_1823_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_1824_add_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.right_neutral
thf(fact_1825_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_1826_add_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.right_neutral
thf(fact_1827_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_1828_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_1829_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ A )
      = zero_zero_complex ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1830_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1831_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1832_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1833_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1834_diff__zero,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ zero_zero_complex )
      = A ) ).

% diff_zero
thf(fact_1835_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_1836_diff__zero,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_zero
thf(fact_1837_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_1838_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_1839_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_1840_diff__0__right,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ zero_zero_complex )
      = A ) ).

% diff_0_right
thf(fact_1841_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_1842_diff__0__right,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_0_right
thf(fact_1843_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_1844_diff__self,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ A )
      = zero_zero_complex ) ).

% diff_self
thf(fact_1845_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_1846_diff__self,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% diff_self
thf(fact_1847_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_1848_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_1849_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_1850_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_1851_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_1852_division__ring__divide__zero,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% division_ring_divide_zero
thf(fact_1853_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_1854_division__ring__divide__zero,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% division_ring_divide_zero
thf(fact_1855_divide__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_1856_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_1857_divide__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_1858_divide__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ C @ A )
        = ( divide1717551699836669952omplex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_1859_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_1860_divide__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( divide_divide_rat @ C @ A )
        = ( divide_divide_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_1861_divide__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divide_eq_0_iff
thf(fact_1862_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_1863_divide__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_eq_0_iff
thf(fact_1864_div__by__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% div_by_0
thf(fact_1865_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_1866_div__by__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% div_by_0
thf(fact_1867_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_1868_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_1869_div__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% div_0
thf(fact_1870_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_1871_div__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% div_0
thf(fact_1872_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_1873_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_1874_bits__mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_1875_bits__mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_mod_0
thf(fact_1876_bits__mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_0
thf(fact_1877_mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mod_0
thf(fact_1878_mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mod_0
thf(fact_1879_mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_0
thf(fact_1880_mod__by__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ zero_zero_nat )
      = A ) ).

% mod_by_0
thf(fact_1881_mod__by__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ zero_zero_int )
      = A ) ).

% mod_by_0
thf(fact_1882_mod__by__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
      = A ) ).

% mod_by_0
thf(fact_1883_mod__self,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ A )
      = zero_zero_nat ) ).

% mod_self
thf(fact_1884_mod__self,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ A )
      = zero_zero_int ) ).

% mod_self
thf(fact_1885_mod__self,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_self
thf(fact_1886_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1887_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_1888_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1889_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_1890_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1891_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_1892_add__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N2 = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1893_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1894_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1895_mult__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N2 = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1896_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1897_mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1898_mult__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N2 @ K ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1899_length__list__update,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat,X2: vEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) )
      = ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ).

% length_list_update
thf(fact_1900_length__list__update,axiom,
    ! [Xs2: list_o,I: nat,X2: $o] :
      ( ( size_size_list_o @ ( list_update_o @ Xs2 @ I @ X2 ) )
      = ( size_size_list_o @ Xs2 ) ) ).

% length_list_update
thf(fact_1901_length__list__update,axiom,
    ! [Xs2: list_nat,I: nat,X2: nat] :
      ( ( size_size_list_nat @ ( list_update_nat @ Xs2 @ I @ X2 ) )
      = ( size_size_list_nat @ Xs2 ) ) ).

% length_list_update
thf(fact_1902_length__list__update,axiom,
    ! [Xs2: list_int,I: nat,X2: int] :
      ( ( size_size_list_int @ ( list_update_int @ Xs2 @ I @ X2 ) )
      = ( size_size_list_int @ Xs2 ) ) ).

% length_list_update
thf(fact_1903_max__Suc__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( suc @ ( ord_max_nat @ M @ N2 ) ) ) ).

% max_Suc_Suc
thf(fact_1904_max__0R,axiom,
    ! [N2: nat] :
      ( ( ord_max_nat @ N2 @ zero_zero_nat )
      = N2 ) ).

% max_0R
thf(fact_1905_max__0L,axiom,
    ! [N2: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ N2 )
      = N2 ) ).

% max_0L
thf(fact_1906_max__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ zero_zero_nat )
      = A ) ).

% max_nat.right_neutral
thf(fact_1907_max__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( ord_max_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.neutr_eq_iff
thf(fact_1908_max__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ A )
      = A ) ).

% max_nat.left_neutral
thf(fact_1909_max__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_max_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.eq_neutr_iff
thf(fact_1910_list__update__id,axiom,
    ! [Xs2: list_nat,I: nat] :
      ( ( list_update_nat @ Xs2 @ I @ ( nth_nat @ Xs2 @ I ) )
      = Xs2 ) ).

% list_update_id
thf(fact_1911_list__update__id,axiom,
    ! [Xs2: list_int,I: nat] :
      ( ( list_update_int @ Xs2 @ I @ ( nth_int @ Xs2 @ I ) )
      = Xs2 ) ).

% list_update_id
thf(fact_1912_list__update__id,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat] :
      ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ ( nth_VEBT_VEBT @ Xs2 @ I ) )
      = Xs2 ) ).

% list_update_id
thf(fact_1913_nth__list__update__neq,axiom,
    ! [I: nat,J: nat,Xs2: list_nat,X2: nat] :
      ( ( I != J )
     => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X2 ) @ J )
        = ( nth_nat @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_1914_nth__list__update__neq,axiom,
    ! [I: nat,J: nat,Xs2: list_int,X2: int] :
      ( ( I != J )
     => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ J )
        = ( nth_int @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_1915_nth__list__update__neq,axiom,
    ! [I: nat,J: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( I != J )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ J )
        = ( nth_VEBT_VEBT @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_1916_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1917_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1918_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1919_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1920_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1921_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1922_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_1923_le__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1924_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1925_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_1926_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_1927_le__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1928_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1929_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_1930_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_1931_add__le__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel2
thf(fact_1932_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_1933_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_1934_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_1935_add__le__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel1
thf(fact_1936_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_1937_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_1938_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1939_diff__ge__0__iff__ge,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1940_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1941_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1942_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1943_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1944_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1945_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1946_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1947_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_1948_less__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1949_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1950_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_1951_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_1952_less__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1953_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1954_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_1955_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_1956_add__less__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel2
thf(fact_1957_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_1958_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_1959_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_1960_add__less__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel1
thf(fact_1961_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_1962_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_1963_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1964_diff__gt__0__iff__gt,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_rat @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1965_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1966_mult__cancel__left1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_left1
thf(fact_1967_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_1968_mult__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_left1
thf(fact_1969_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_1970_mult__cancel__left2,axiom,
    ! [C: complex,A: complex] :
      ( ( ( times_times_complex @ C @ A )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_left2
thf(fact_1971_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_1972_mult__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ( times_times_rat @ C @ A )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_left2
thf(fact_1973_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_1974_mult__cancel__right1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_right1
thf(fact_1975_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_1976_mult__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_right1
thf(fact_1977_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_1978_mult__cancel__right2,axiom,
    ! [A: complex,C: complex] :
      ( ( ( times_times_complex @ A @ C )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_right2
thf(fact_1979_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_1980_mult__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ( times_times_rat @ A @ C )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_right2
thf(fact_1981_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_1982_sum__squares__eq__zero__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) )
        = zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1983_sum__squares__eq__zero__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y @ Y ) )
        = zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1984_sum__squares__eq__zero__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y @ Y ) )
        = zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1985_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_1986_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_1987_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_1988_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_1989_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_1990_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_1991_mult__divide__mult__cancel__left__if,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( C = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = zero_zero_complex ) )
      & ( ( C != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_1992_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_1993_mult__divide__mult__cancel__left__if,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( C = zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = zero_zero_rat ) )
      & ( ( C != zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = ( divide_divide_rat @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_1994_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_1995_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_1996_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_1997_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_1998_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_1999_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_2000_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_2001_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_2002_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_2003_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_2004_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_2005_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_2006_nonzero__mult__div__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2007_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2008_nonzero__mult__div__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2009_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2010_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2011_nonzero__mult__div__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2012_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2013_nonzero__mult__div__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2014_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2015_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2016_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ one_one_complex )
    = zero_zero_complex ) ).

% diff_numeral_special(9)
thf(fact_2017_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_2018_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ one_one_rat )
    = zero_zero_rat ) ).

% diff_numeral_special(9)
thf(fact_2019_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_2020_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_2021_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_2022_zero__eq__1__divide__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( divide_divide_rat @ one_one_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_1_divide_iff
thf(fact_2023_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_2024_one__divide__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( divide_divide_rat @ one_one_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% one_divide_eq_0_iff
thf(fact_2025_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_2026_eq__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ B @ A ) )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_2027_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_2028_divide__eq__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ A )
        = one_one_rat )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_2029_divide__self__if,axiom,
    ! [A: complex] :
      ( ( ( A = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = zero_zero_complex ) )
      & ( ( A != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = one_one_complex ) ) ) ).

% divide_self_if
thf(fact_2030_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_2031_divide__self__if,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = one_one_rat ) ) ) ).

% divide_self_if
thf(fact_2032_divide__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% divide_self
thf(fact_2033_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_2034_divide__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% divide_self
thf(fact_2035_one__eq__divide__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( one_one_complex
        = ( divide1717551699836669952omplex @ A @ B ) )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2036_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2037_one__eq__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ A @ B ) )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2038_divide__eq__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = one_one_complex )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2039_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2040_divide__eq__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = one_one_rat )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2041_div__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% div_self
thf(fact_2042_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_2043_div__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% div_self
thf(fact_2044_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_2045_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_2046_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ zero_zero_rat @ ( suc @ N2 ) )
      = zero_zero_rat ) ).

% power_0_Suc
thf(fact_2047_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N2 ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_2048_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N2 ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_2049_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ zero_zero_complex @ ( suc @ N2 ) )
      = zero_zero_complex ) ).

% power_0_Suc
thf(fact_2050_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N2 ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_2051_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_rat ) ).

% power_zero_numeral
thf(fact_2052_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_2053_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_2054_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
      = zero_zero_complex ) ).

% power_zero_numeral
thf(fact_2055_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_2056_mod__mult__self1__is__0,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self1_is_0
thf(fact_2057_mod__mult__self1__is__0,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
      = zero_zero_int ) ).

% mod_mult_self1_is_0
thf(fact_2058_mod__mult__self1__is__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self1_is_0
thf(fact_2059_mod__mult__self2__is__0,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self2_is_0
thf(fact_2060_mod__mult__self2__is__0,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_mult_self2_is_0
thf(fact_2061_mod__mult__self2__is__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self2_is_0
thf(fact_2062_bits__mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_2063_bits__mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% bits_mod_by_1
thf(fact_2064_bits__mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_by_1
thf(fact_2065_mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_2066_mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% mod_by_1
thf(fact_2067_mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% mod_by_1
thf(fact_2068_bits__mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_2069_bits__mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% bits_mod_div_trivial
thf(fact_2070_bits__mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_div_trivial
thf(fact_2071_mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_2072_mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_div_trivial
thf(fact_2073_mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_div_trivial
thf(fact_2074_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2075_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2076_power__Suc0__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2077_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2078_less__Suc0,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_2079_zero__less__Suc,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).

% zero_less_Suc
thf(fact_2080_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ V ) ) )
      & ( ~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_2081_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_2082_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_2083_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ V ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_2084_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_2085_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X2 ) @ zero_z5237406670263579293d_enat )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(4)
thf(fact_2086_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X2 ) @ zero_zero_real )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(4)
thf(fact_2087_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X2 ) @ zero_zero_rat )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(4)
thf(fact_2088_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X2 ) @ zero_zero_nat )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(4)
thf(fact_2089_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X2 ) @ zero_zero_int )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(4)
thf(fact_2090_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ X2 ) )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(3)
thf(fact_2091_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X2 ) )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(3)
thf(fact_2092_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X2 ) )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(3)
thf(fact_2093_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X2 ) )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(3)
thf(fact_2094_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X2 ) )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(3)
thf(fact_2095_max__0__1_I1_J,axiom,
    ( ( ord_max_real @ zero_zero_real @ one_one_real )
    = one_one_real ) ).

% max_0_1(1)
thf(fact_2096_max__0__1_I1_J,axiom,
    ( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
    = one_one_rat ) ).

% max_0_1(1)
thf(fact_2097_max__0__1_I1_J,axiom,
    ( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
    = one_one_nat ) ).

% max_0_1(1)
thf(fact_2098_max__0__1_I1_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(1)
thf(fact_2099_max__0__1_I1_J,axiom,
    ( ( ord_max_int @ zero_zero_int @ one_one_int )
    = one_one_int ) ).

% max_0_1(1)
thf(fact_2100_max__0__1_I2_J,axiom,
    ( ( ord_max_real @ one_one_real @ zero_zero_real )
    = one_one_real ) ).

% max_0_1(2)
thf(fact_2101_max__0__1_I2_J,axiom,
    ( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
    = one_one_rat ) ).

% max_0_1(2)
thf(fact_2102_max__0__1_I2_J,axiom,
    ( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
    = one_one_nat ) ).

% max_0_1(2)
thf(fact_2103_max__0__1_I2_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(2)
thf(fact_2104_max__0__1_I2_J,axiom,
    ( ( ord_max_int @ one_one_int @ zero_zero_int )
    = one_one_int ) ).

% max_0_1(2)
thf(fact_2105_add__gr__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% add_gr_0
thf(fact_2106_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X2 ) @ one_on7984719198319812577d_enat )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(6)
thf(fact_2107_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X2 ) @ one_one_real )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(6)
thf(fact_2108_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X2 ) @ one_one_rat )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(6)
thf(fact_2109_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X2 ) @ one_one_nat )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(6)
thf(fact_2110_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X2 ) @ one_one_int )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(6)
thf(fact_2111_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X2 ) )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(5)
thf(fact_2112_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X2 ) )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(5)
thf(fact_2113_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X2 ) )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(5)
thf(fact_2114_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X2 ) )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(5)
thf(fact_2115_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X2 ) )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(5)
thf(fact_2116_mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_2117_one__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_2118_zero__less__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% zero_less_diff
thf(fact_2119_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_2120_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% mult_less_cancel2
thf(fact_2121_nat__0__less__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% nat_0_less_mult_iff
thf(fact_2122_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_2123_diff__is__0__eq_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_2124_diff__is__0__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% diff_is_0_eq
thf(fact_2125_div__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( divide_divide_nat @ M @ N2 )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_2126_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_2127_power__Suc__0,axiom,
    ! [N2: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_2128_nat__power__eq__Suc__0__iff,axiom,
    ! [X2: nat,M: nat] :
      ( ( ( power_power_nat @ X2 @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_2129_nat__zero__less__power__iff,axiom,
    ! [X2: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X2 @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_2130_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
          = ( divide_divide_nat @ M @ N2 ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_2131_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_2132_list__update__beyond,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat,X2: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ I )
     => ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_2133_list__update__beyond,axiom,
    ! [Xs2: list_o,I: nat,X2: $o] :
      ( ( ord_less_eq_nat @ ( size_size_list_o @ Xs2 ) @ I )
     => ( ( list_update_o @ Xs2 @ I @ X2 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_2134_list__update__beyond,axiom,
    ! [Xs2: list_nat,I: nat,X2: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs2 ) @ I )
     => ( ( list_update_nat @ Xs2 @ I @ X2 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_2135_list__update__beyond,axiom,
    ! [Xs2: list_int,I: nat,X2: int] :
      ( ( ord_less_eq_nat @ ( size_size_list_int @ Xs2 ) @ I )
     => ( ( list_update_int @ Xs2 @ I @ X2 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_2136_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( size_s7466405169056248089T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_2137_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_o] :
      ( ( size_s9168528473962070013VEBT_o @ ( product_VEBT_VEBT_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_2138_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_nat] :
      ( ( size_s6152045936467909847BT_nat @ ( produc7295137177222721919BT_nat @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) ) ).

% length_product
thf(fact_2139_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_int] :
      ( ( size_s3661962791536183091BT_int @ ( produc7292646706713671643BT_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_2140_length__product,axiom,
    ! [Xs2: list_o,Ys: list_VEBT_VEBT] :
      ( ( size_s4313452262239582901T_VEBT @ ( product_o_VEBT_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_2141_length__product,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( size_s1515746228057227161od_o_o @ ( product_o_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_2142_length__product,axiom,
    ! [Xs2: list_o,Ys: list_nat] :
      ( ( size_s5443766701097040955_o_nat @ ( product_o_nat @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) ) ).

% length_product
thf(fact_2143_length__product,axiom,
    ! [Xs2: list_o,Ys: list_int] :
      ( ( size_s2953683556165314199_o_int @ ( product_o_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_2144_length__product,axiom,
    ! [Xs2: list_nat,Ys: list_VEBT_VEBT] :
      ( ( size_s4762443039079500285T_VEBT @ ( produc7156399406898700509T_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_2145_length__product,axiom,
    ! [Xs2: list_nat,Ys: list_o] :
      ( ( size_s6491369823275344609_nat_o @ ( product_nat_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_2146_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_2147_zero__le__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_2148_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_2149_divide__le__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% divide_le_0_1_iff
thf(fact_2150_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_2151_zero__less__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_2152_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_2153_less__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_2154_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_2155_less__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_2156_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_2157_divide__less__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_2158_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_2159_divide__less__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_2160_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_2161_divide__less__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% divide_less_0_1_iff
thf(fact_2162_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
            = B ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_2163_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_2164_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_2165_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
        = A )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_2166_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_2167_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_2168_nonzero__divide__mult__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_2169_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_2170_nonzero__divide__mult__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_2171_nonzero__divide__mult__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_2172_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_2173_nonzero__divide__mult__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_2174_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_2175_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_2176_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_2177_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_2178_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_2179_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_2180_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_2181_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_2182_power__eq__0__iff,axiom,
    ! [A: rat,N2: nat] :
      ( ( ( power_power_rat @ A @ N2 )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2183_power__eq__0__iff,axiom,
    ! [A: nat,N2: nat] :
      ( ( ( power_power_nat @ A @ N2 )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2184_power__eq__0__iff,axiom,
    ! [A: real,N2: nat] :
      ( ( ( power_power_real @ A @ N2 )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2185_power__eq__0__iff,axiom,
    ! [A: complex,N2: nat] :
      ( ( ( power_power_complex @ A @ N2 )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2186_power__eq__0__iff,axiom,
    ! [A: int,N2: nat] :
      ( ( ( power_power_int @ A @ N2 )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2187_Suc__pred,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
        = N2 ) ) ).

% Suc_pred
thf(fact_2188_one__le__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) ) ).

% one_le_mult_iff
thf(fact_2189_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% mult_le_cancel2
thf(fact_2190_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_2191_div__mult__self1__is__m,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( divide_divide_nat @ ( times_times_nat @ N2 @ M ) @ N2 )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_2192_div__mult__self__is__m,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N2 ) @ N2 )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_2193_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_2194_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_o,X2: $o] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_2195_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_nat,X2: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_2196_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_int,X2: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_2197_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_2198_le__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_2199_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_2200_le__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_2201_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_2202_divide__le__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_2203_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_2204_divide__le__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_2205_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2206_power__strict__decreasing__iff,axiom,
    ! [B: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2207_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2208_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2209_zero__eq__power2,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_power2
thf(fact_2210_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_2211_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_2212_zero__eq__power2,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% zero_eq_power2
thf(fact_2213_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_2214_power__mono__iff,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2215_power__mono__iff,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) )
            = ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2216_power__mono__iff,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2217_power__mono__iff,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2218_Suc__diff__1,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
        = N2 ) ) ).

% Suc_diff_1
thf(fact_2219_set__swap,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,J: nat] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ ( nth_VEBT_VEBT @ Xs2 @ J ) ) @ J @ ( nth_VEBT_VEBT @ Xs2 @ I ) ) )
          = ( set_VEBT_VEBT2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_2220_set__swap,axiom,
    ! [I: nat,Xs2: list_o,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_o @ Xs2 ) )
       => ( ( set_o2 @ ( list_update_o @ ( list_update_o @ Xs2 @ I @ ( nth_o @ Xs2 @ J ) ) @ J @ ( nth_o @ Xs2 @ I ) ) )
          = ( set_o2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_2221_set__swap,axiom,
    ! [I: nat,Xs2: list_nat,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
       => ( ( set_nat2 @ ( list_update_nat @ ( list_update_nat @ Xs2 @ I @ ( nth_nat @ Xs2 @ J ) ) @ J @ ( nth_nat @ Xs2 @ I ) ) )
          = ( set_nat2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_2222_set__swap,axiom,
    ! [I: nat,Xs2: list_int,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_int @ Xs2 ) )
       => ( ( set_int2 @ ( list_update_int @ ( list_update_int @ Xs2 @ I @ ( nth_int @ Xs2 @ J ) ) @ J @ ( nth_int @ Xs2 @ I ) ) )
          = ( set_int2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_2223_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_2224_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_2225_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_2226_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_2227_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2228_power__decreasing__iff,axiom,
    ! [B: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2229_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2230_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2231_power2__eq__iff__nonneg,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2232_power2__eq__iff__nonneg,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2233_power2__eq__iff__nonneg,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2234_power2__eq__iff__nonneg,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2235_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_2236_power2__less__eq__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% power2_less_eq_zero_iff
thf(fact_2237_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_2238_zero__less__power2,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_power2
thf(fact_2239_zero__less__power2,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_power2
thf(fact_2240_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_2241_sum__power2__eq__zero__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2242_sum__power2__eq__zero__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2243_sum__power2__eq__zero__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2244_not__mod__2__eq__1__eq__0,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != one_one_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2245_not__mod__2__eq__1__eq__0,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != one_one_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2246_not__mod__2__eq__1__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != one_one_Code_integer )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2247_not__mod__2__eq__0__eq__1,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != zero_zero_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2248_not__mod__2__eq__0__eq__1,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != zero_zero_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2249_not__mod__2__eq__0__eq__1,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2250_not__mod2__eq__Suc__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != ( suc @ zero_zero_nat ) )
      = ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod2_eq_Suc_0_eq_0
thf(fact_2251_add__self__mod__2,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% add_self_mod_2
thf(fact_2252_mod2__gr__0,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% mod2_gr_0
thf(fact_2253_unset__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_2254_unset__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_2255_zero__reorient,axiom,
    ! [X2: complex] :
      ( ( zero_zero_complex = X2 )
      = ( X2 = zero_zero_complex ) ) ).

% zero_reorient
thf(fact_2256_zero__reorient,axiom,
    ! [X2: real] :
      ( ( zero_zero_real = X2 )
      = ( X2 = zero_zero_real ) ) ).

% zero_reorient
thf(fact_2257_zero__reorient,axiom,
    ! [X2: rat] :
      ( ( zero_zero_rat = X2 )
      = ( X2 = zero_zero_rat ) ) ).

% zero_reorient
thf(fact_2258_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_2259_zero__reorient,axiom,
    ! [X2: int] :
      ( ( zero_zero_int = X2 )
      = ( X2 = zero_zero_int ) ) ).

% zero_reorient
thf(fact_2260_list__update__swap,axiom,
    ! [I: nat,I6: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT,X8: vEBT_VEBT] :
      ( ( I != I6 )
     => ( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ I6 @ X8 )
        = ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I6 @ X8 ) @ I @ X2 ) ) ) ).

% list_update_swap
thf(fact_2261_invar__vebt_Ointros_I1_J,axiom,
    ! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).

% invar_vebt.intros(1)
thf(fact_2262_max__add__distrib__right,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( plus_plus_real @ X2 @ ( ord_max_real @ Y @ Z ) )
      = ( ord_max_real @ ( plus_plus_real @ X2 @ Y ) @ ( plus_plus_real @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2263_max__add__distrib__right,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( plus_plus_rat @ X2 @ ( ord_max_rat @ Y @ Z ) )
      = ( ord_max_rat @ ( plus_plus_rat @ X2 @ Y ) @ ( plus_plus_rat @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2264_max__add__distrib__right,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( plus_plus_nat @ X2 @ ( ord_max_nat @ Y @ Z ) )
      = ( ord_max_nat @ ( plus_plus_nat @ X2 @ Y ) @ ( plus_plus_nat @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2265_max__add__distrib__right,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( plus_plus_int @ X2 @ ( ord_max_int @ Y @ Z ) )
      = ( ord_max_int @ ( plus_plus_int @ X2 @ Y ) @ ( plus_plus_int @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2266_max__add__distrib__left,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( plus_plus_real @ ( ord_max_real @ X2 @ Y ) @ Z )
      = ( ord_max_real @ ( plus_plus_real @ X2 @ Z ) @ ( plus_plus_real @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2267_max__add__distrib__left,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( plus_plus_rat @ ( ord_max_rat @ X2 @ Y ) @ Z )
      = ( ord_max_rat @ ( plus_plus_rat @ X2 @ Z ) @ ( plus_plus_rat @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2268_max__add__distrib__left,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ X2 @ Y ) @ Z )
      = ( ord_max_nat @ ( plus_plus_nat @ X2 @ Z ) @ ( plus_plus_nat @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2269_max__add__distrib__left,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( plus_plus_int @ ( ord_max_int @ X2 @ Y ) @ Z )
      = ( ord_max_int @ ( plus_plus_int @ X2 @ Z ) @ ( plus_plus_int @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2270_max__diff__distrib__left,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( minus_minus_real @ ( ord_max_real @ X2 @ Y ) @ Z )
      = ( ord_max_real @ ( minus_minus_real @ X2 @ Z ) @ ( minus_minus_real @ Y @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_2271_max__diff__distrib__left,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( minus_minus_rat @ ( ord_max_rat @ X2 @ Y ) @ Z )
      = ( ord_max_rat @ ( minus_minus_rat @ X2 @ Z ) @ ( minus_minus_rat @ Y @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_2272_max__diff__distrib__left,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( minus_minus_int @ ( ord_max_int @ X2 @ Y ) @ Z )
      = ( ord_max_int @ ( minus_minus_int @ X2 @ Z ) @ ( minus_minus_int @ Y @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_2273_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N2 )
          = one_one_rat ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N2 )
          = zero_zero_rat ) ) ) ).

% power_0_left
thf(fact_2274_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N2 )
          = one_one_nat ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N2 )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_2275_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N2 )
          = one_one_real ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N2 )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_2276_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N2 )
          = one_one_complex ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N2 )
          = zero_zero_complex ) ) ) ).

% power_0_left
thf(fact_2277_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N2 )
          = one_one_int ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N2 )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_2278_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_rat @ zero_zero_rat @ N2 )
        = zero_zero_rat ) ) ).

% zero_power
thf(fact_2279_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_nat @ zero_zero_nat @ N2 )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_2280_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_real @ zero_zero_real @ N2 )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_2281_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_complex @ zero_zero_complex @ N2 )
        = zero_zero_complex ) ) ).

% zero_power
thf(fact_2282_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_int @ zero_zero_int @ N2 )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_2283_nat__add__max__right,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( plus_plus_nat @ M @ ( ord_max_nat @ N2 @ Q2 ) )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ N2 ) @ ( plus_plus_nat @ M @ Q2 ) ) ) ).

% nat_add_max_right
thf(fact_2284_nat__add__max__left,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ M @ N2 ) @ Q2 )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ Q2 ) @ ( plus_plus_nat @ N2 @ Q2 ) ) ) ).

% nat_add_max_left
thf(fact_2285_vebt__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X2: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Leaf @ A @ B ) @ X2 )
      = ( ( ( X2 = zero_zero_nat )
         => A )
        & ( ( X2 != zero_zero_nat )
         => ( ( ( X2 = one_one_nat )
             => B )
            & ( X2 = one_one_nat ) ) ) ) ) ).

% vebt_member.simps(1)
thf(fact_2286_nat__mult__max__left,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( times_times_nat @ ( ord_max_nat @ M @ N2 ) @ Q2 )
      = ( ord_max_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N2 @ Q2 ) ) ) ).

% nat_mult_max_left
thf(fact_2287_nat__mult__max__right,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( times_times_nat @ M @ ( ord_max_nat @ N2 @ Q2 ) )
      = ( ord_max_nat @ ( times_times_nat @ M @ N2 ) @ ( times_times_nat @ M @ Q2 ) ) ) ).

% nat_mult_max_right
thf(fact_2288_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_2289_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_2290_le__numeral__extra_I3_J,axiom,
    ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).

% le_numeral_extra(3)
thf(fact_2291_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_2292_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_2293_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_2294_field__lbound__gt__zero,axiom,
    ! [D1: rat,D22: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D1 )
     => ( ( ord_less_rat @ zero_zero_rat @ D22 )
       => ? [E2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ E2 )
            & ( ord_less_rat @ E2 @ D1 )
            & ( ord_less_rat @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_2295_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_2296_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).

% less_numeral_extra(3)
thf(fact_2297_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_2298_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_2299_zero__less__iff__neq__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( N2 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_2300_gr__implies__not__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_2301_not__less__zero,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_2302_gr__zeroI,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr_zeroI
thf(fact_2303_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_complex
     != ( numera6690914467698888265omplex @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2304_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2305_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_rat
     != ( numeral_numeral_rat @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2306_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2307_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2308_mult__not__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
       != zero_zero_complex )
     => ( ( A != zero_zero_complex )
        & ( B != zero_zero_complex ) ) ) ).

% mult_not_zero
thf(fact_2309_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_2310_mult__not__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
       != zero_zero_rat )
     => ( ( A != zero_zero_rat )
        & ( B != zero_zero_rat ) ) ) ).

% mult_not_zero
thf(fact_2311_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_2312_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_2313_divisors__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
     => ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divisors_zero
thf(fact_2314_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_2315_divisors__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
     => ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divisors_zero
thf(fact_2316_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_2317_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_2318_no__zero__divisors,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( times_times_complex @ A @ B )
         != zero_zero_complex ) ) ) ).

% no_zero_divisors
thf(fact_2319_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_2320_no__zero__divisors,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( times_times_rat @ A @ B )
         != zero_zero_rat ) ) ) ).

% no_zero_divisors
thf(fact_2321_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_2322_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_2323_mult__left__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ C @ A )
          = ( times_times_complex @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2324_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2325_mult__left__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ C @ A )
          = ( times_times_rat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2326_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2327_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2328_mult__right__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = ( times_times_complex @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2329_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2330_mult__right__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = ( times_times_rat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2331_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2332_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2333_zero__neq__one,axiom,
    zero_zero_complex != one_one_complex ).

% zero_neq_one
thf(fact_2334_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_2335_zero__neq__one,axiom,
    zero_zero_rat != one_one_rat ).

% zero_neq_one
thf(fact_2336_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_2337_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_2338_add_Ogroup__left__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2339_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2340_add_Ogroup__left__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2341_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2342_add_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.comm_neutral
thf(fact_2343_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_2344_add_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.comm_neutral
thf(fact_2345_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_2346_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_2347_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2348_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2349_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2350_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2351_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2352_verit__sum__simplify,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% verit_sum_simplify
thf(fact_2353_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_2354_verit__sum__simplify,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% verit_sum_simplify
thf(fact_2355_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_2356_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_2357_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: complex,Z3: complex] : ( Y5 = Z3 ) )
    = ( ^ [A3: complex,B3: complex] :
          ( ( minus_minus_complex @ A3 @ B3 )
          = zero_zero_complex ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2358_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: real,Z3: real] : ( Y5 = Z3 ) )
    = ( ^ [A3: real,B3: real] :
          ( ( minus_minus_real @ A3 @ B3 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2359_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: rat,Z3: rat] : ( Y5 = Z3 ) )
    = ( ^ [A3: rat,B3: rat] :
          ( ( minus_minus_rat @ A3 @ B3 )
          = zero_zero_rat ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2360_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
    = ( ^ [A3: int,B3: int] :
          ( ( minus_minus_int @ A3 @ B3 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2361_power__not__zero,axiom,
    ! [A: rat,N2: nat] :
      ( ( A != zero_zero_rat )
     => ( ( power_power_rat @ A @ N2 )
       != zero_zero_rat ) ) ).

% power_not_zero
thf(fact_2362_power__not__zero,axiom,
    ! [A: nat,N2: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N2 )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_2363_power__not__zero,axiom,
    ! [A: real,N2: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N2 )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_2364_power__not__zero,axiom,
    ! [A: complex,N2: nat] :
      ( ( A != zero_zero_complex )
     => ( ( power_power_complex @ A @ N2 )
       != zero_zero_complex ) ) ).

% power_not_zero
thf(fact_2365_power__not__zero,axiom,
    ! [A: int,N2: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N2 )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_2366_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_2367_not0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ? [M4: nat] :
          ( N2
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_2368_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_2369_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_2370_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_2371_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_2372_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N2: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P @ X3 @ Y3 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N2 ) ) ) ) ).

% diff_induct
thf(fact_2373_nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N2 ) ) ) ).

% nat_induct
thf(fact_2374_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_2375_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_2376_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_2377_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_2378_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_2379_infinite__descent0,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N3 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N2 ) ) ) ).

% infinite_descent0
thf(fact_2380_gr__implies__not0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_2381_less__zeroE,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_2382_not__less0,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less0
thf(fact_2383_not__gr0,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_2384_gr0I,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr0I
thf(fact_2385_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_2386_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_2387_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_2388_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_2389_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_2390_add__eq__self__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = M )
     => ( N2 = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_2391_plus__nat_Oadd__0,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N2 )
      = N2 ) ).

% plus_nat.add_0
thf(fact_2392_VEBT__internal_OminNull_Osimps_I3_J,axiom,
    ! [Uu: $o] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ Uu @ $true ) ) ).

% VEBT_internal.minNull.simps(3)
thf(fact_2393_VEBT__internal_OminNull_Osimps_I2_J,axiom,
    ! [Uv: $o] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ $true @ Uv ) ) ).

% VEBT_internal.minNull.simps(2)
thf(fact_2394_VEBT__internal_OminNull_Osimps_I1_J,axiom,
    vEBT_VEBT_minNull @ ( vEBT_Leaf @ $false @ $false ) ).

% VEBT_internal.minNull.simps(1)
thf(fact_2395_diffs0__imp__equal,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M )
          = zero_zero_nat )
       => ( M = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_2396_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_2397_mult__0,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% mult_0
thf(fact_2398_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( K = zero_zero_nat )
        | ( M = N2 ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_2399_max__def__raw,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A3: extended_enat,B3: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).

% max_def_raw
thf(fact_2400_max__def__raw,axiom,
    ( ord_max_set_nat
    = ( ^ [A3: set_nat,B3: set_nat] : ( if_set_nat @ ( ord_less_eq_set_nat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).

% max_def_raw
thf(fact_2401_max__def__raw,axiom,
    ( ord_max_rat
    = ( ^ [A3: rat,B3: rat] : ( if_rat @ ( ord_less_eq_rat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).

% max_def_raw
thf(fact_2402_max__def__raw,axiom,
    ( ord_max_num
    = ( ^ [A3: num,B3: num] : ( if_num @ ( ord_less_eq_num @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).

% max_def_raw
thf(fact_2403_max__def__raw,axiom,
    ( ord_max_nat
    = ( ^ [A3: nat,B3: nat] : ( if_nat @ ( ord_less_eq_nat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).

% max_def_raw
thf(fact_2404_max__def__raw,axiom,
    ( ord_max_int
    = ( ^ [A3: int,B3: int] : ( if_int @ ( ord_less_eq_int @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).

% max_def_raw
thf(fact_2405_power__eq__imp__eq__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ( power_power_real @ A @ N2 )
        = ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2406_power__eq__imp__eq__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ( power_power_rat @ A @ N2 )
        = ( power_power_rat @ B @ N2 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2407_power__eq__imp__eq__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ( power_power_nat @ A @ N2 )
        = ( power_power_nat @ B @ N2 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2408_power__eq__imp__eq__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ( power_power_int @ A @ N2 )
        = ( power_power_int @ B @ N2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2409_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ( power_power_real @ A @ N2 )
              = ( power_power_real @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2410_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: rat,B: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ( power_power_rat @ A @ N2 )
              = ( power_power_rat @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2411_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A @ N2 )
              = ( power_power_nat @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2412_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A @ N2 )
              = ( power_power_int @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2413_lambda__zero,axiom,
    ( ( ^ [H: complex] : zero_zero_complex )
    = ( times_times_complex @ zero_zero_complex ) ) ).

% lambda_zero
thf(fact_2414_lambda__zero,axiom,
    ( ( ^ [H: real] : zero_zero_real )
    = ( times_times_real @ zero_zero_real ) ) ).

% lambda_zero
thf(fact_2415_lambda__zero,axiom,
    ( ( ^ [H: rat] : zero_zero_rat )
    = ( times_times_rat @ zero_zero_rat ) ) ).

% lambda_zero
thf(fact_2416_lambda__zero,axiom,
    ( ( ^ [H: nat] : zero_zero_nat )
    = ( times_times_nat @ zero_zero_nat ) ) ).

% lambda_zero
thf(fact_2417_lambda__zero,axiom,
    ( ( ^ [H: int] : zero_zero_int )
    = ( times_times_int @ zero_zero_int ) ) ).

% lambda_zero
thf(fact_2418_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > complex,Y: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT
        @ ( collect_VEBT_VEBT
          @ ^ [I4: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2419_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > complex,Y: real > complex] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2420_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > complex,Y: nat > complex] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2421_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > complex,Y: int > complex] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2422_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > complex,Y: complex > complex] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2423_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > real,Y: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT
        @ ( collect_VEBT_VEBT
          @ ^ [I4: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite5795047828879050333T_VEBT
          @ ( collect_VEBT_VEBT
            @ ^ [I4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2424_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > real,Y: real > real] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2425_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > real,Y: nat > real] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2426_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > real,Y: int > real] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2427_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > real,Y: complex > real] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_2428_nat__minus__add__max,axiom,
    ! [N2: nat,M: nat] :
      ( ( plus_plus_nat @ ( minus_minus_nat @ N2 @ M ) @ M )
      = ( ord_max_nat @ N2 @ M ) ) ).

% nat_minus_add_max
thf(fact_2429_power__strict__mono,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_2430_power__strict__mono,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_2431_power__strict__mono,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_2432_power__strict__mono,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_2433_set__update__subsetI,axiom,
    ! [Xs2: list_real,A2: set_real,X2: real,I: nat] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs2 ) @ A2 )
     => ( ( member_real @ X2 @ A2 )
       => ( ord_less_eq_set_real @ ( set_real2 @ ( list_update_real @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_2434_set__update__subsetI,axiom,
    ! [Xs2: list_complex,A2: set_complex,X2: complex,I: nat] :
      ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ A2 )
     => ( ( member_complex @ X2 @ A2 )
       => ( ord_le211207098394363844omplex @ ( set_complex2 @ ( list_update_complex @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_2435_set__update__subsetI,axiom,
    ! [Xs2: list_int,A2: set_int,X2: int,I: nat] :
      ( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ A2 )
     => ( ( member_int @ X2 @ A2 )
       => ( ord_less_eq_set_int @ ( set_int2 @ ( list_update_int @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_2436_set__update__subsetI,axiom,
    ! [Xs2: list_VEBT_VEBT,A2: set_VEBT_VEBT,X2: vEBT_VEBT,I: nat] :
      ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ A2 )
     => ( ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_2437_set__update__subsetI,axiom,
    ! [Xs2: list_nat,A2: set_nat,X2: nat,I: nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ A2 )
     => ( ( member_nat @ X2 @ A2 )
       => ( ord_less_eq_set_nat @ ( set_nat2 @ ( list_update_nat @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_2438_vebt__succ_Osimps_I1_J,axiom,
    ! [B: $o,Uu: $o] :
      ( ( B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
          = none_nat ) ) ) ).

% vebt_succ.simps(1)
thf(fact_2439_vebt__maxt_Osimps_I1_J,axiom,
    ! [B: $o,A: $o] :
      ( ( B
       => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ zero_zero_nat ) ) )
          & ( ~ A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_maxt.simps(1)
thf(fact_2440_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N2 ) ) ).

% zero_le_numeral
thf(fact_2441_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N2 ) ) ).

% zero_le_numeral
thf(fact_2442_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N2 ) ) ).

% zero_le_numeral
thf(fact_2443_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N2 ) ) ).

% zero_le_numeral
thf(fact_2444_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ zero_zero_real ) ).

% not_numeral_le_zero
thf(fact_2445_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ zero_zero_rat ) ).

% not_numeral_le_zero
thf(fact_2446_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_2447_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_2448_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2449_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2450_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2451_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2452_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_2453_zero__le__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_mult_iff
thf(fact_2454_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_2455_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2456_mult__nonneg__nonpos2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2457_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2458_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2459_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2460_mult__nonpos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2461_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2462_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2463_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2464_mult__nonneg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2465_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2466_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2467_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2468_mult__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2469_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2470_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2471_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_2472_split__mult__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
     => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).

% split_mult_neg_le
thf(fact_2473_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_2474_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_2475_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_2476_mult__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_2477_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_2478_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2479_mult__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2480_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2481_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2482_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_2483_mult__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_2484_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_2485_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2486_mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2487_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2488_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2489_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_2490_mult__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_2491_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_2492_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_2493_mult__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_2494_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_2495_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_2496_split__mult__pos__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_2497_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_2498_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_2499_zero__le__square,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).

% zero_le_square
thf(fact_2500_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_2501_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2502_mult__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2503_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2504_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2505_mult__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_2506_mult__mono,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_2507_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_2508_mult__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_2509_vebt__mint_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( A
       => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ zero_zero_nat ) ) )
      & ( ~ A
       => ( ( B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ one_one_nat ) ) )
          & ( ~ B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_mint.simps(1)
thf(fact_2510_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ zero_zero_real ) ).

% not_numeral_less_zero
thf(fact_2511_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ zero_zero_rat ) ).

% not_numeral_less_zero
thf(fact_2512_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N2 ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_2513_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_2514_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N2 ) ) ).

% zero_less_numeral
thf(fact_2515_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N2 ) ) ).

% zero_less_numeral
thf(fact_2516_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N2 ) ) ).

% zero_less_numeral
thf(fact_2517_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N2 ) ) ).

% zero_less_numeral
thf(fact_2518_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_2519_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one_class.zero_le_one
thf(fact_2520_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_2521_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_2522_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2523_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2524_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2525_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2526_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_2527_not__one__le__zero,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_le_zero
thf(fact_2528_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_2529_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_2530_add__nonpos__eq__0__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X2 @ Y )
            = zero_zero_real )
          = ( ( X2 = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2531_add__nonpos__eq__0__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ( ( plus_plus_rat @ X2 @ Y )
            = zero_zero_rat )
          = ( ( X2 = zero_zero_rat )
            & ( Y = zero_zero_rat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2532_add__nonpos__eq__0__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X2 @ Y )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2533_add__nonpos__eq__0__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ X2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X2 @ Y )
            = zero_zero_int )
          = ( ( X2 = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2534_add__nonneg__eq__0__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X2 @ Y )
            = zero_zero_real )
          = ( ( X2 = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2535_add__nonneg__eq__0__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ( plus_plus_rat @ X2 @ Y )
            = zero_zero_rat )
          = ( ( X2 = zero_zero_rat )
            & ( Y = zero_zero_rat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2536_add__nonneg__eq__0__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X2 @ Y )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2537_add__nonneg__eq__0__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X2 @ Y )
            = zero_zero_int )
          = ( ( X2 = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2538_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_2539_add__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_nonpos
thf(fact_2540_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_2541_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_2542_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2543_add__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2544_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2545_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2546_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2547_add__increasing2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2548_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2549_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2550_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2551_add__decreasing2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2552_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2553_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2554_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2555_add__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2556_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2557_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2558_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2559_add__decreasing,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2560_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2561_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2562_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_2563_mult__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_2564_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_2565_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_2566_not__square__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).

% not_square_less_zero
thf(fact_2567_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_2568_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_2569_mult__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_2570_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_2571_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_2572_mult__neg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_neg_pos
thf(fact_2573_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_2574_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_2575_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_2576_mult__pos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg
thf(fact_2577_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_2578_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_2579_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2580_mult__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2581_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2582_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2583_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_2584_mult__pos__neg2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg2
thf(fact_2585_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_2586_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_2587_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_2588_zero__less__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_mult_iff
thf(fact_2589_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_2590_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2591_zero__less__mult__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2592_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2593_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2594_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2595_zero__less__mult__pos2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2596_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2597_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2598_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_2599_mult__less__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_2600_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_2601_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_2602_mult__less__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_2603_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_2604_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_2605_mult__strict__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_2606_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_2607_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2608_mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2609_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2610_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2611_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_2612_mult__less__cancel__left__disj,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_2613_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_2614_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_2615_mult__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_2616_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_2617_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2618_mult__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2619_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2620_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2621_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_2622_mult__less__cancel__right__disj,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_2623_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_2624_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2625_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2626_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2627_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2628_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B3: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B3 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_2629_le__iff__diff__le__0,axiom,
    ( ord_less_eq_rat
    = ( ^ [A3: rat,B3: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A3 @ B3 ) @ zero_zero_rat ) ) ) ).

% le_iff_diff_le_0
thf(fact_2630_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B3: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_2631_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_2632_less__numeral__extra_I1_J,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% less_numeral_extra(1)
thf(fact_2633_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_2634_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_2635_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_2636_zero__less__one,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one
thf(fact_2637_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_2638_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_2639_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_2640_not__one__less__zero,axiom,
    ~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_less_zero
thf(fact_2641_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_2642_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_2643_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2644_pos__add__strict,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2645_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2646_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2647_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_2648_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2649_add__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2650_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2651_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2652_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_2653_add__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_neg
thf(fact_2654_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_2655_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_2656_add__less__zeroD,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X2 @ Y ) @ zero_zero_real )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
        | ( ord_less_real @ Y @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_2657_add__less__zeroD,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ X2 @ Y ) @ zero_zero_rat )
     => ( ( ord_less_rat @ X2 @ zero_zero_rat )
        | ( ord_less_rat @ Y @ zero_zero_rat ) ) ) ).

% add_less_zeroD
thf(fact_2658_add__less__zeroD,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X2 @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X2 @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_2659_divide__right__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2660_divide__right__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2661_divide__nonpos__nonpos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2662_divide__nonpos__nonpos,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2663_divide__nonpos__nonneg,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2664_divide__nonpos__nonneg,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2665_divide__nonneg__nonpos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2666_divide__nonneg__nonpos,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2667_divide__nonneg__nonneg,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2668_divide__nonneg__nonneg,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2669_zero__le__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2670_zero__le__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2671_divide__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2672_divide__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2673_divide__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2674_divide__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2675_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B3: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B3 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_2676_less__iff__diff__less__0,axiom,
    ( ord_less_rat
    = ( ^ [A3: rat,B3: rat] : ( ord_less_rat @ ( minus_minus_rat @ A3 @ B3 ) @ zero_zero_rat ) ) ) ).

% less_iff_diff_less_0
thf(fact_2677_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B3: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_2678_divide__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2679_divide__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2680_divide__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2681_divide__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2682_zero__less__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2683_zero__less__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2684_divide__less__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_2685_divide__less__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) )
        & ( C != zero_zero_rat ) ) ) ).

% divide_less_cancel
thf(fact_2686_divide__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2687_divide__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2688_divide__pos__pos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_2689_divide__pos__pos,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_2690_divide__pos__neg,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_2691_divide__pos__neg,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y ) @ zero_zero_rat ) ) ) ).

% divide_pos_neg
thf(fact_2692_divide__neg__pos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_2693_divide__neg__pos,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y ) @ zero_zero_rat ) ) ) ).

% divide_neg_pos
thf(fact_2694_divide__neg__neg,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_2695_divide__neg__neg,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_2696_power__mono,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_2697_power__mono,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_2698_power__mono,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_2699_power__mono,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_2700_zero__le__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_2701_zero__le__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_2702_zero__le__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_2703_zero__le__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_2704_zero__less__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_2705_zero__less__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_2706_zero__less__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_2707_zero__less__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_2708_frac__eq__eq,axiom,
    ! [Y: complex,Z: complex,X2: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( ( divide1717551699836669952omplex @ X2 @ Y )
            = ( divide1717551699836669952omplex @ W @ Z ) )
          = ( ( times_times_complex @ X2 @ Z )
            = ( times_times_complex @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_2709_frac__eq__eq,axiom,
    ! [Y: real,Z: real,X2: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ( divide_divide_real @ X2 @ Y )
            = ( divide_divide_real @ W @ Z ) )
          = ( ( times_times_real @ X2 @ Z )
            = ( times_times_real @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_2710_frac__eq__eq,axiom,
    ! [Y: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ( divide_divide_rat @ X2 @ Y )
            = ( divide_divide_rat @ W @ Z ) )
          = ( ( times_times_rat @ X2 @ Z )
            = ( times_times_rat @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_2711_divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq
thf(fact_2712_divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( divide_divide_real @ B @ C )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq
thf(fact_2713_divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ C )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq
thf(fact_2714_eq__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq
thf(fact_2715_eq__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq
thf(fact_2716_eq__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq
thf(fact_2717_divide__eq__imp,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( B
          = ( times_times_complex @ A @ C ) )
       => ( ( divide1717551699836669952omplex @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_2718_divide__eq__imp,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( B
          = ( times_times_real @ A @ C ) )
       => ( ( divide_divide_real @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_2719_divide__eq__imp,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( B
          = ( times_times_rat @ A @ C ) )
       => ( ( divide_divide_rat @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_2720_eq__divide__imp,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = B )
       => ( A
          = ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_2721_eq__divide__imp,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = B )
       => ( A
          = ( divide_divide_real @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_2722_eq__divide__imp,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = B )
       => ( A
          = ( divide_divide_rat @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_2723_nonzero__divide__eq__eq,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ B @ C )
          = A )
        = ( B
          = ( times_times_complex @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_2724_nonzero__divide__eq__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( ( divide_divide_real @ B @ C )
          = A )
        = ( B
          = ( times_times_real @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_2725_nonzero__divide__eq__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( divide_divide_rat @ B @ C )
          = A )
        = ( B
          = ( times_times_rat @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_2726_nonzero__eq__divide__eq,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( A
          = ( divide1717551699836669952omplex @ B @ C ) )
        = ( ( times_times_complex @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_2727_nonzero__eq__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( A
          = ( divide_divide_real @ B @ C ) )
        = ( ( times_times_real @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_2728_nonzero__eq__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( A
          = ( divide_divide_rat @ B @ C ) )
        = ( ( times_times_rat @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_2729_right__inverse__eq,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = one_one_complex )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2730_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2731_right__inverse__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( divide_divide_rat @ A @ B )
          = one_one_rat )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2732_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2733_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2734_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2735_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2736_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2737_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2738_power__0,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% power_0
thf(fact_2739_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_2740_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_2741_power__0,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% power_0
thf(fact_2742_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_2743_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = A )
      = ( ( divide_divide_nat @ A @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2744_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = A )
      = ( ( divide_divide_int @ A @ B )
        = zero_zero_int ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2745_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = A )
      = ( ( divide6298287555418463151nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2746_Ex__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_2747_gr0__conv__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( ? [M3: nat] :
            ( N2
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_2748_All__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_2749_gr0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ? [M4: nat] :
          ( N2
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_2750_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N2 ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_2751_add__is__1,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_2752_one__is__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N2 ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_2753_ex__least__nat__le,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N2 )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_2754_option_Osize_I4_J,axiom,
    ! [X22: nat] :
      ( ( size_size_option_nat @ ( some_nat @ X22 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_2755_option_Osize_I4_J,axiom,
    ! [X22: product_prod_nat_nat] :
      ( ( size_s170228958280169651at_nat @ ( some_P7363390416028606310at_nat @ X22 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_2756_option_Osize_I4_J,axiom,
    ! [X22: num] :
      ( ( size_size_option_num @ ( some_num @ X22 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_2757_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_2758_option_Osize_I3_J,axiom,
    ( ( size_size_option_nat @ none_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_2759_option_Osize_I3_J,axiom,
    ( ( size_s170228958280169651at_nat @ none_P5556105721700978146at_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_2760_option_Osize_I3_J,axiom,
    ( ( size_size_option_num @ none_num )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_2761_diff__less,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ) ) ).

% diff_less
thf(fact_2762_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_2763_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_2764_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N2 ) )
        = ( M = N2 ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_2765_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel1
thf(fact_2766_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_2767_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( divide_divide_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_2768_diff__add__0,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_2769_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_power_less_imp_less
thf(fact_2770_mult__eq__self__implies__10,axiom,
    ! [M: nat,N2: nat] :
      ( ( M
        = ( times_times_nat @ M @ N2 ) )
     => ( ( N2 = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_2771_mod__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N2 ) )
          = N2 )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N2 )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N2 ) )
         != N2 )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N2 )
          = ( suc @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ) ).

% mod_Suc
thf(fact_2772_mod__less__divisor,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N2 ) @ N2 ) ) ).

% mod_less_divisor
thf(fact_2773_mod__eq__0D,axiom,
    ! [M: nat,D2: nat] :
      ( ( ( modulo_modulo_nat @ M @ D2 )
        = zero_zero_nat )
     => ? [Q3: nat] :
          ( M
          = ( times_times_nat @ D2 @ Q3 ) ) ) ).

% mod_eq_0D
thf(fact_2774_vebt__insert_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [A5: $o,B5: $o,X3: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ X3 ) )
     => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT,X3: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) @ X3 ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT,X3: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) @ X3 ) )
         => ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) @ X3 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ X3 ) ) ) ) ) ) ).

% vebt_insert.cases
thf(fact_2775_vebt__member_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [A5: $o,B5: $o,X3: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ X3 ) )
     => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,X3: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ X3 ) )
       => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,X3: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ X3 ) )
         => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT,X3: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ X3 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ X3 ) ) ) ) ) ) ).

% vebt_member.cases
thf(fact_2776_vebt__succ_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,B5: $o] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B5 ) @ zero_zero_nat ) )
     => ( ! [Uv2: $o,Uw2: $o,N3: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N3 ) ) )
       => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,Va2: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Va2 ) )
         => ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT,Ve: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Ve ) )
           => ( ! [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
                    ( X2
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ X3 ) ) ) ) ) ) ) ).

% vebt_succ.cases
thf(fact_2777_VEBT__internal_Omembermima_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
     => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
       => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT,X3: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ X3 ) )
         => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT,X3: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ X3 ) )
           => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT,X3: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ X3 ) ) ) ) ) ) ).

% VEBT_internal.membermima.cases
thf(fact_2778_VEBT__internal_OminNull_Ocases,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( X2
       != ( vEBT_Leaf @ $false @ $false ) )
     => ( ! [Uv2: $o] :
            ( X2
           != ( vEBT_Leaf @ $true @ Uv2 ) )
       => ( ! [Uu2: $o] :
              ( X2
             != ( vEBT_Leaf @ Uu2 @ $true ) )
         => ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X2
               != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
           => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( X2
                 != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ).

% VEBT_internal.minNull.cases
thf(fact_2779_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_real,X2: real] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ X2 @ ( set_real2 @ ( list_update_real @ Xs2 @ N2 @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_2780_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_complex,X2: complex] :
      ( ( ord_less_nat @ N2 @ ( size_s3451745648224563538omplex @ Xs2 ) )
     => ( member_complex @ X2 @ ( set_complex2 @ ( list_update_complex @ Xs2 @ N2 @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_2781_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ N2 @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_2782_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_o,X2: $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ X2 @ ( set_o2 @ ( list_update_o @ Xs2 @ N2 @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_2783_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_nat,X2: nat] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ X2 @ ( set_nat2 @ ( list_update_nat @ Xs2 @ N2 @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_2784_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_int,X2: int] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ X2 @ ( set_int2 @ ( list_update_int @ Xs2 @ N2 @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_2785_nth__list__update,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,J: nat,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ J )
            = X2 ) )
        & ( ( I != J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ J )
            = ( nth_VEBT_VEBT @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_2786_nth__list__update,axiom,
    ! [I: nat,Xs2: list_o,X2: $o,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I @ X2 ) @ J )
        = ( ( ( I = J )
           => X2 )
          & ( ( I != J )
           => ( nth_o @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_2787_nth__list__update,axiom,
    ! [I: nat,Xs2: list_nat,J: nat,X2: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X2 ) @ J )
            = X2 ) )
        & ( ( I != J )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X2 ) @ J )
            = ( nth_nat @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_2788_nth__list__update,axiom,
    ! [I: nat,Xs2: list_int,J: nat,X2: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ J )
            = X2 ) )
        & ( ( I != J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ J )
            = ( nth_int @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_2789_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 )
          = Xs2 )
        = ( ( nth_VEBT_VEBT @ Xs2 @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_2790_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_o,X2: $o] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( ( list_update_o @ Xs2 @ I @ X2 )
          = Xs2 )
        = ( ( nth_o @ Xs2 @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_2791_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_nat,X2: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( list_update_nat @ Xs2 @ I @ X2 )
          = Xs2 )
        = ( ( nth_nat @ Xs2 @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_2792_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_int,X2: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( list_update_int @ Xs2 @ I @ X2 )
          = Xs2 )
        = ( ( nth_int @ Xs2 @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_2793_vebt__succ_Osimps_I2_J,axiom,
    ! [Uv: $o,Uw: $o,N2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N2 ) )
      = none_nat ) ).

% vebt_succ.simps(2)
thf(fact_2794_VEBT__internal_OminNull_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ X2 )
     => ( ! [Uv2: $o] :
            ( X2
           != ( vEBT_Leaf @ $true @ Uv2 ) )
       => ( ! [Uu2: $o] :
              ( X2
             != ( vEBT_Leaf @ Uu2 @ $true ) )
         => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( X2
               != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ).

% VEBT_internal.minNull.elims(3)
thf(fact_2795_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2796_mult__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2797_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2798_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2799_mult__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2800_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2801_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2802_mult__left__less__imp__less,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2803_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2804_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2805_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2806_mult__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D2 )
       => ( ( ord_less_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2807_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2808_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2809_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2810_mult__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2811_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2812_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2813_mult__right__less__imp__less,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2814_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2815_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2816_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2817_mult__strict__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2818_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2819_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2820_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2821_mult__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2822_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2823_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2824_mult__le__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2825_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2826_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2827_mult__le__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2828_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2829_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2830_mult__left__le__imp__le,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2831_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2832_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2833_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2834_mult__right__le__imp__le,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2835_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2836_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2837_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2838_mult__le__less__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D2 )
       => ( ( ord_less_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2839_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2840_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2841_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2842_mult__less__le__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2843_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2844_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2845_add__strict__increasing2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2846_add__strict__increasing2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2847_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2848_add__strict__increasing2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2849_add__strict__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2850_add__strict__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2851_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2852_add__strict__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2853_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2854_add__pos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2855_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2856_add__pos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2857_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_2858_add__nonpos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_neg
thf(fact_2859_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_2860_add__nonpos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_2861_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2862_add__nonneg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2863_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2864_add__nonneg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2865_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_2866_add__neg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_nonpos
thf(fact_2867_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_2868_add__neg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_2869_field__le__epsilon,axiom,
    ! [X2: real,Y: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ X2 @ ( plus_plus_real @ Y @ E2 ) ) )
     => ( ord_less_eq_real @ X2 @ Y ) ) ).

% field_le_epsilon
thf(fact_2870_field__le__epsilon,axiom,
    ! [X2: rat,Y: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ X2 @ ( plus_plus_rat @ Y @ E2 ) ) )
     => ( ord_less_eq_rat @ X2 @ Y ) ) ).

% field_le_epsilon
thf(fact_2871_divide__nonpos__pos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_pos
thf(fact_2872_divide__nonpos__pos,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_pos
thf(fact_2873_divide__nonpos__neg,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2874_divide__nonpos__neg,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2875_divide__nonneg__pos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2876_divide__nonneg__pos,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2877_divide__nonneg__neg,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_neg
thf(fact_2878_divide__nonneg__neg,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_neg
thf(fact_2879_divide__le__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2880_divide__le__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2881_frac__less2,axiom,
    ! [X2: real,Y: real,W: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2882_frac__less2,axiom,
    ! [X2: rat,Y: rat,W: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ X2 @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2883_frac__less,axiom,
    ! [X2: real,Y: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2884_frac__less,axiom,
    ! [X2: rat,Y: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ X2 @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2885_frac__le,axiom,
    ! [Y: real,X2: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ X2 @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2886_frac__le,axiom,
    ! [Y: rat,X2: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ X2 @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2887_div__positive,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2888_div__positive,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2889_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2890_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( divide_divide_int @ A @ B )
          = zero_zero_int ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2891_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2892_mult__left__le,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2893_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2894_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2895_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_2896_mult__le__one,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ B @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).

% mult_le_one
thf(fact_2897_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_2898_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_2899_mult__right__le__one__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X2 @ Y ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_2900_mult__right__le__one__le,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ X2 @ Y ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_2901_mult__right__le__one__le,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X2 @ Y ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_2902_mult__left__le__one__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_2903_mult__left__le__one__le,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ Y @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_2904_mult__left__le__one__le,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_2905_sum__squares__le__zero__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_2906_sum__squares__le__zero__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_2907_sum__squares__le__zero__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_2908_sum__squares__ge__zero,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_2909_sum__squares__ge__zero,axiom,
    ! [X2: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_2910_sum__squares__ge__zero,axiom,
    ! [X2: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_2911_power__less__imp__less__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2912_power__less__imp__less__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2913_power__less__imp__less__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2914_power__less__imp__less__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2915_sum__squares__gt__zero__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) ) )
      = ( ( X2 != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_2916_sum__squares__gt__zero__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y @ Y ) ) )
      = ( ( X2 != zero_zero_rat )
        | ( Y != zero_zero_rat ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_2917_sum__squares__gt__zero__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y @ Y ) ) )
      = ( ( X2 != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_2918_not__sum__squares__lt__zero,axiom,
    ! [X2: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_2919_not__sum__squares__lt__zero,axiom,
    ! [X2: rat,Y: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat ) ).

% not_sum_squares_lt_zero
thf(fact_2920_not__sum__squares__lt__zero,axiom,
    ! [X2: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int ) ).

% not_sum_squares_lt_zero
thf(fact_2921_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_2922_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_2923_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_2924_zero__less__two,axiom,
    ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).

% zero_less_two
thf(fact_2925_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_2926_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_2927_divide__strict__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_2928_divide__strict__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_2929_divide__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_2930_divide__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_2931_mult__imp__less__div__pos,axiom,
    ! [Y: real,Z: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ ( times_times_real @ Z @ Y ) @ X2 )
       => ( ord_less_real @ Z @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_2932_mult__imp__less__div__pos,axiom,
    ! [Y: rat,Z: rat,X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_rat @ ( times_times_rat @ Z @ Y ) @ X2 )
       => ( ord_less_rat @ Z @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_2933_mult__imp__div__pos__less,axiom,
    ! [Y: real,X2: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X2 @ ( times_times_real @ Z @ Y ) )
       => ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_2934_mult__imp__div__pos__less,axiom,
    ! [Y: rat,X2: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_rat @ X2 @ ( times_times_rat @ Z @ Y ) )
       => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_2935_pos__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_2936_pos__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_2937_pos__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_2938_pos__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_2939_neg__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_2940_neg__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_2941_neg__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_2942_neg__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_2943_less__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_2944_less__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_2945_divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_2946_divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_2947_less__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_2948_less__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_2949_divide__less__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_2950_divide__less__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_less_eq_1
thf(fact_2951_VEBT__internal_OminNull_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ X2 )
     => ( ( X2
         != ( vEBT_Leaf @ $false @ $false ) )
       => ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).

% VEBT_internal.minNull.elims(2)
thf(fact_2952_power__le__one,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_2953_power__le__one,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ one_one_rat ) ) ) ).

% power_le_one
thf(fact_2954_power__le__one,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_2955_power__le__one,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_2956_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( numera6690914467698888265omplex @ W )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_2957_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( numeral_numeral_real @ W )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_2958_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( numeral_numeral_rat @ W )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_2959_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_2960_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( numeral_numeral_real @ W ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_2961_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( numeral_numeral_rat @ W ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_2962_divide__add__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Z ) @ Y )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_2963_divide__add__eq__iff,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Z ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_2964_divide__add__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Z ) @ Y )
        = ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_2965_add__divide__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ X2 @ ( divide1717551699836669952omplex @ Y @ Z ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X2 @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_2966_add__divide__eq__iff,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ X2 @ ( divide_divide_real @ Y @ Z ) )
        = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X2 @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_2967_add__divide__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ X2 @ ( divide_divide_rat @ Y @ Z ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_2968_add__num__frac,axiom,
    ! [Y: complex,Z: complex,X2: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ X2 @ Y ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_2969_add__num__frac,axiom,
    ! [Y: real,Z: real,X2: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ Z @ ( divide_divide_real @ X2 @ Y ) )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_2970_add__num__frac,axiom,
    ! [Y: rat,Z: rat,X2: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( plus_plus_rat @ Z @ ( divide_divide_rat @ X2 @ Y ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_2971_add__frac__num,axiom,
    ! [Y: complex,X2: complex,Z: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Y ) @ Z )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_2972_add__frac__num,axiom,
    ! [Y: real,X2: real,Z: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Y ) @ Z )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_2973_add__frac__num,axiom,
    ! [Y: rat,X2: rat,Z: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Y ) @ Z )
        = ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_2974_add__frac__eq,axiom,
    ! [Y: complex,Z: complex,X2: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Y ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_2975_add__frac__eq,axiom,
    ! [Y: real,Z: real,X2: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_2976_add__frac__eq,axiom,
    ! [Y: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_2977_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_2978_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_2979_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_2980_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_2981_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_2982_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_2983_power__le__imp__le__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ ( power_power_real @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_2984_power__le__imp__le__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ ( power_power_rat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_2985_power__le__imp__le__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ ( power_power_nat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_2986_power__le__imp__le__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ ( power_power_int @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_2987_power__inject__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N2 ) )
        = ( power_power_real @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_2988_power__inject__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ( power_power_rat @ A @ ( suc @ N2 ) )
        = ( power_power_rat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_2989_power__inject__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N2 ) )
        = ( power_power_nat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_2990_power__inject__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N2 ) )
        = ( power_power_int @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_2991_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_2992_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_2993_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_2994_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_2995_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_2996_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_2997_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_2998_diff__frac__eq,axiom,
    ! [Y: complex,Z: complex,X2: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X2 @ Y ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_2999_diff__frac__eq,axiom,
    ! [Y: real,Z: real,X2: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3000_diff__frac__eq,axiom,
    ! [Y: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ X2 @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3001_diff__divide__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ X2 @ ( divide1717551699836669952omplex @ Y @ Z ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X2 @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3002_diff__divide__eq__iff,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ X2 @ ( divide_divide_real @ Y @ Z ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3003_diff__divide__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ X2 @ ( divide_divide_rat @ Y @ Z ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3004_divide__diff__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X2 @ Z ) @ Y )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ X2 @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3005_divide__diff__eq__iff,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Z ) @ Y )
        = ( divide_divide_real @ ( minus_minus_real @ X2 @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3006_divide__diff__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ X2 @ Z ) @ Y )
        = ( divide_divide_rat @ ( minus_minus_rat @ X2 @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3007_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3008_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3009_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3010_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ A @ B )
       => ( ( modulo364778990260209775nteger @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3011_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( modulo_modulo_nat @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3012_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( modulo_modulo_int @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3013_cong__exp__iff__simps_I2_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = zero_zero_nat )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(2)
thf(fact_3014_cong__exp__iff__simps_I2_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = zero_zero_int )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(2)
thf(fact_3015_cong__exp__iff__simps_I2_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(2)
thf(fact_3016_cong__exp__iff__simps_I1_J,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ one ) )
      = zero_zero_nat ) ).

% cong_exp_iff_simps(1)
thf(fact_3017_cong__exp__iff__simps_I1_J,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ one ) )
      = zero_zero_int ) ).

% cong_exp_iff_simps(1)
thf(fact_3018_cong__exp__iff__simps_I1_J,axiom,
    ! [N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ one ) )
      = zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(1)
thf(fact_3019_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_3020_num_Osize_I5_J,axiom,
    ! [X22: num] :
      ( ( size_size_num @ ( bit0 @ X22 ) )
      = ( plus_plus_nat @ ( size_size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_3021_ex__least__nat__less,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N2 )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_3022_diff__Suc__less,axiom,
    ! [N2: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I ) ) @ N2 ) ) ).

% diff_Suc_less
thf(fact_3023_one__less__mult,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% one_less_mult
thf(fact_3024_n__less__m__mult__n,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% n_less_m_mult_n
thf(fact_3025_n__less__n__mult__m,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N2 @ ( times_times_nat @ N2 @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_3026_length__pos__if__in__set,axiom,
    ! [X2: real,Xs2: list_real] :
      ( ( member_real @ X2 @ ( set_real2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3027_length__pos__if__in__set,axiom,
    ! [X2: complex,Xs2: list_complex] :
      ( ( member_complex @ X2 @ ( set_complex2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3028_length__pos__if__in__set,axiom,
    ! [X2: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3029_length__pos__if__in__set,axiom,
    ! [X2: $o,Xs2: list_o] :
      ( ( member_o @ X2 @ ( set_o2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3030_length__pos__if__in__set,axiom,
    ! [X2: nat,Xs2: list_nat] :
      ( ( member_nat @ X2 @ ( set_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3031_length__pos__if__in__set,axiom,
    ! [X2: int,Xs2: list_int] :
      ( ( member_int @ X2 @ ( set_int2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3032_nat__induct__non__zero,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_non_zero
thf(fact_3033_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel1
thf(fact_3034_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D ) )
                & ~ ( P @ D ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_3035_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D ) )
           => ( P @ D ) ) ) ) ).

% nat_diff_split
thf(fact_3036_power__gt__expt,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ord_less_nat @ K @ ( power_power_nat @ N2 @ K ) ) ) ).

% power_gt_expt
thf(fact_3037_div__greater__zero__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N2 ) )
      = ( ( ord_less_eq_nat @ N2 @ M )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% div_greater_zero_iff
thf(fact_3038_div__le__mono2,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N2 ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_3039_nat__one__le__power,axiom,
    ! [I: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N2 ) ) ) ).

% nat_one_le_power
thf(fact_3040_div__less__iff__less__mult,axiom,
    ! [Q2: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N2 )
        = ( ord_less_nat @ M @ ( times_times_nat @ N2 @ Q2 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_3041_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( divide_divide_nat @ M @ N2 ) ) ) ).

% nat_mult_div_cancel1
thf(fact_3042_div__eq__dividend__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N2 )
          = M )
        = ( N2 = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_3043_div__less__dividend,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ M ) ) ) ).

% div_less_dividend
thf(fact_3044_mod__le__divisor,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N2 ) @ N2 ) ) ).

% mod_le_divisor
thf(fact_3045_div__less__mono,axiom,
    ! [A2: nat,B2: nat,N2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ( modulo_modulo_nat @ A2 @ N2 )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B2 @ N2 )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A2 @ N2 ) @ ( divide_divide_nat @ B2 @ N2 ) ) ) ) ) ) ).

% div_less_mono
thf(fact_3046_vebt__member_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X2: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X2 ) ).

% vebt_member.simps(3)
thf(fact_3047_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
    ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).

% VEBT_internal.membermima.simps(2)
thf(fact_3048_vebt__mint_Ocases,axiom,
    ! [X2: vEBT_VEBT] :
      ( ! [A5: $o,B5: $o] :
          ( X2
         != ( vEBT_Leaf @ A5 @ B5 ) )
     => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
            ( X2
           != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
       => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ).

% vebt_mint.cases
thf(fact_3049_VEBT__internal_OminNull_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Y: $o] :
      ( ( ( vEBT_VEBT_minNull @ X2 )
        = Y )
     => ( ( ( X2
            = ( vEBT_Leaf @ $false @ $false ) )
         => ~ Y )
       => ( ( ? [Uv2: $o] :
                ( X2
                = ( vEBT_Leaf @ $true @ Uv2 ) )
           => Y )
         => ( ( ? [Uu2: $o] :
                  ( X2
                  = ( vEBT_Leaf @ Uu2 @ $true ) )
             => Y )
           => ( ( ? [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
               => ~ Y )
             => ~ ( ? [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
                 => Y ) ) ) ) ) ) ).

% VEBT_internal.minNull.elims(1)
thf(fact_3050_field__le__mult__one__interval,axiom,
    ! [X2: real,Y: real] :
      ( ! [Z5: real] :
          ( ( ord_less_real @ zero_zero_real @ Z5 )
         => ( ( ord_less_real @ Z5 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z5 @ X2 ) @ Y ) ) )
     => ( ord_less_eq_real @ X2 @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_3051_field__le__mult__one__interval,axiom,
    ! [X2: rat,Y: rat] :
      ( ! [Z5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ Z5 )
         => ( ( ord_less_rat @ Z5 @ one_one_rat )
           => ( ord_less_eq_rat @ ( times_times_rat @ Z5 @ X2 ) @ Y ) ) )
     => ( ord_less_eq_rat @ X2 @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_3052_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3053_mult__le__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3054_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3055_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3056_mult__le__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3057_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3058_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_3059_mult__le__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_3060_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_3061_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_3062_mult__le__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_3063_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_3064_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_3065_mult__less__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_3066_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_3067_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_3068_mult__less__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_3069_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_3070_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_3071_mult__less__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_3072_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_3073_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_3074_mult__less__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_3075_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_3076_divide__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_3077_divide__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_3078_mult__imp__le__div__pos,axiom,
    ! [Y: real,Z: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ Y ) @ X2 )
       => ( ord_less_eq_real @ Z @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_3079_mult__imp__le__div__pos,axiom,
    ! [Y: rat,Z: rat,X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ Y ) @ X2 )
       => ( ord_less_eq_rat @ Z @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_3080_mult__imp__div__pos__le,axiom,
    ! [Y: real,X2: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ X2 @ ( times_times_real @ Z @ Y ) )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_3081_mult__imp__div__pos__le,axiom,
    ! [Y: rat,X2: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ X2 @ ( times_times_rat @ Z @ Y ) )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_3082_pos__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_3083_pos__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_3084_pos__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_3085_pos__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_3086_neg__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_3087_neg__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_3088_neg__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_3089_neg__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_3090_divide__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_3091_divide__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_3092_le__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_3093_le__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_3094_divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_3095_divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_3096_le__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_3097_le__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_3098_divide__le__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_le_eq_1
thf(fact_3099_divide__le__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_le_eq_1
thf(fact_3100_convex__bound__le,axiom,
    ! [X2: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_eq_real @ X2 @ A )
     => ( ( ord_less_eq_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X2 ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3101_convex__bound__le,axiom,
    ! [X2: rat,A: rat,Y: rat,U: rat,V: rat] :
      ( ( ord_less_eq_rat @ X2 @ A )
     => ( ( ord_less_eq_rat @ Y @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X2 ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3102_convex__bound__le,axiom,
    ! [X2: int,A: int,Y: int,U: int,V: int] :
      ( ( ord_less_eq_int @ X2 @ A )
     => ( ( ord_less_eq_int @ Y @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X2 ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3103_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_3104_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_3105_divide__less__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_3106_divide__less__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_3107_frac__le__eq,axiom,
    ! [Y: real,Z: real,X2: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_le_eq
thf(fact_3108_frac__le__eq,axiom,
    ! [Y: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_le_eq
thf(fact_3109_frac__less__eq,axiom,
    ! [Y: real,Z: real,X2: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_less_eq
thf(fact_3110_frac__less__eq,axiom,
    ! [Y: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_less_eq
thf(fact_3111_power__Suc__less,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3112_power__Suc__less,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3113_power__Suc__less,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3114_power__Suc__less,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3115_power__Suc__le__self,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3116_power__Suc__le__self,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3117_power__Suc__le__self,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3118_power__Suc__le__self,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3119_power__Suc__less__one,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ one_one_real ) ) ) ).

% power_Suc_less_one
thf(fact_3120_power__Suc__less__one,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ one_one_rat ) ) ) ).

% power_Suc_less_one
thf(fact_3121_power__Suc__less__one,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_3122_power__Suc__less__one,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_3123_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3124_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ( ord_less_rat @ A @ one_one_rat )
         => ( ord_less_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3125_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3126_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3127_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3128_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ A @ one_one_rat )
         => ( ord_less_eq_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3129_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3130_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3131_zero__power2,axiom,
    ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_rat ) ).

% zero_power2
thf(fact_3132_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_3133_zero__power2,axiom,
    ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_real ) ).

% zero_power2
thf(fact_3134_zero__power2,axiom,
    ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_complex ) ).

% zero_power2
thf(fact_3135_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_3136_vebt__maxt_Oelims,axiom,
    ! [X2: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X2 )
        = Y )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ~ ( ( B5
                 => ( Y
                    = ( some_nat @ one_one_nat ) ) )
                & ( ~ B5
                 => ( ( A5
                     => ( Y
                        = ( some_nat @ zero_zero_nat ) ) )
                    & ( ~ A5
                     => ( Y = none_nat ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y != none_nat ) )
         => ~ ! [Mi2: nat,Ma2: nat] :
                ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y
                 != ( some_nat @ Ma2 ) ) ) ) ) ) ).

% vebt_maxt.elims
thf(fact_3137_vebt__mint_Oelims,axiom,
    ! [X2: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_mint @ X2 )
        = Y )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ~ ( ( A5
                 => ( Y
                    = ( some_nat @ zero_zero_nat ) ) )
                & ( ~ A5
                 => ( ( B5
                     => ( Y
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B5
                     => ( Y = none_nat ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y != none_nat ) )
         => ~ ! [Mi2: nat] :
                ( ? [Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y
                 != ( some_nat @ Mi2 ) ) ) ) ) ) ).

% vebt_mint.elims
thf(fact_3138_vebt__insert_Oelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X2 @ Xa2 )
        = Y )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => ( Y
                    = ( vEBT_Leaf @ $true @ B5 ) ) )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => ( Y
                        = ( vEBT_Leaf @ A5 @ $true ) ) )
                    & ( ( Xa2 != one_one_nat )
                     => ( Y
                        = ( vEBT_Leaf @ A5 @ B5 ) ) ) ) ) ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) )
             => ( Y
               != ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) )
               => ( Y
                 != ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) ) )
           => ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
                 => ( Y
                   != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y
                     != ( if_VEBT_VEBT
                        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                          & ~ ( ( Xa2 = Mi2 )
                              | ( Xa2 = Ma2 ) ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va3 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) ) ) ) ) ) ) ) ) ).

% vebt_insert.elims
thf(fact_3139_self__le__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3140_self__le__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3141_self__le__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3142_self__le__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3143_one__less__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3144_one__less__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3145_one__less__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3146_one__less__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3147_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_3148_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_3149_power__diff,axiom,
    ! [A: complex,N2: nat,M: nat] :
      ( ( A != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3150_power__diff,axiom,
    ! [A: real,N2: nat,M: nat] :
      ( ( A != zero_zero_real )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3151_power__diff,axiom,
    ! [A: rat,N2: nat,M: nat] :
      ( ( A != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3152_power__diff,axiom,
    ! [A: nat,N2: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3153_power__diff,axiom,
    ! [A: int,N2: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3154_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M3 @ N )
            | ( N = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M3 @ N ) @ N ) ) ) ) ) ).

% div_if
thf(fact_3155_div__geq,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ~ ( ord_less_nat @ M @ N2 )
       => ( ( divide_divide_nat @ M @ N2 )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).

% div_geq
thf(fact_3156_Suc__pred_H,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( N2
        = ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_3157_Suc__diff__eq__diff__pred,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_3158_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N ) ) ) ) ) ).

% add_eq_if
thf(fact_3159_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q2: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N2 @ Q2 ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N2 ) ) ) ).

% less_eq_div_iff_mult_less_eq
thf(fact_3160_dividend__less__times__div,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ N2 @ ( divide_divide_nat @ M @ N2 ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_3161_dividend__less__div__times,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( divide_divide_nat @ M @ N2 ) @ N2 ) ) ) ) ).

% dividend_less_div_times
thf(fact_3162_split__div,axiom,
    ! [P: nat > $o,M: nat,N2: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N2 ) )
      = ( ( ( N2 = zero_zero_nat )
         => ( P @ zero_zero_nat ) )
        & ( ( N2 != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N2 )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N2 @ I4 ) @ J3 ) )
               => ( P @ I4 ) ) ) ) ) ) ).

% split_div
thf(fact_3163_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N ) ) ) ) ) ).

% mult_eq_if
thf(fact_3164_split__mod,axiom,
    ! [P: nat > $o,M: nat,N2: nat] :
      ( ( P @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( ( ( N2 = zero_zero_nat )
         => ( P @ M ) )
        & ( ( N2 != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N2 )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N2 @ I4 ) @ J3 ) )
               => ( P @ J3 ) ) ) ) ) ) ).

% split_mod
thf(fact_3165_vebt__member_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT,X2: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc ) @ X2 ) ).

% vebt_member.simps(4)
thf(fact_3166_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Va: list_VEBT_VEBT,Vb: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va @ Vb ) @ X2 )
      = ( ( X2 = Mi )
        | ( X2 = Ma ) ) ) ).

% VEBT_internal.membermima.simps(3)
thf(fact_3167_vebt__succ_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc @ Vd ) @ Ve2 )
      = none_nat ) ).

% vebt_succ.simps(4)
thf(fact_3168_convex__bound__lt,axiom,
    ! [X2: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_real @ X2 @ A )
     => ( ( ord_less_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X2 ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_3169_convex__bound__lt,axiom,
    ! [X2: rat,A: rat,Y: rat,U: rat,V: rat] :
      ( ( ord_less_rat @ X2 @ A )
     => ( ( ord_less_rat @ Y @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X2 ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_3170_convex__bound__lt,axiom,
    ! [X2: int,A: int,Y: int,U: int,V: int] :
      ( ( ord_less_int @ X2 @ A )
     => ( ( ord_less_int @ Y @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X2 ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_3171_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_3172_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_3173_divide__le__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_3174_divide__le__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_3175_half__gt__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% half_gt_zero_iff
thf(fact_3176_half__gt__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% half_gt_zero_iff
thf(fact_3177_half__gt__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_3178_half__gt__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_3179_scaling__mono,axiom,
    ! [U: real,V: real,R: real,S: real] :
      ( ( ord_less_eq_real @ U @ V )
     => ( ( ord_less_eq_real @ zero_zero_real @ R )
       => ( ( ord_less_eq_real @ R @ S )
         => ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R @ ( minus_minus_real @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_3180_scaling__mono,axiom,
    ! [U: rat,V: rat,R: rat,S: rat] :
      ( ( ord_less_eq_rat @ U @ V )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ R )
       => ( ( ord_less_eq_rat @ R @ S )
         => ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R @ ( minus_minus_rat @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_3181_power2__le__imp__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ X2 @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3182_power2__le__imp__le,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ X2 @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3183_power2__le__imp__le,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_eq_nat @ X2 @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3184_power2__le__imp__le,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ X2 @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3185_power2__eq__imp__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( X2 = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3186_power2__eq__imp__eq,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
         => ( X2 = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3187_power2__eq__imp__eq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
         => ( X2 = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3188_power2__eq__imp__eq,axiom,
    ! [X2: int,Y: int] :
      ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( X2 = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3189_zero__le__power2,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3190_zero__le__power2,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3191_zero__le__power2,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3192_power2__less__0,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).

% power2_less_0
thf(fact_3193_power2__less__0,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).

% power2_less_0
thf(fact_3194_power2__less__0,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_3195_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
     => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3196_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3197_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3198_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_3199_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_3200_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_3201_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_3202_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N2: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_3203_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N2: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_3204_power__diff__power__eq,axiom,
    ! [A: nat,N2: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
            = ( power_power_nat @ A @ ( minus_minus_nat @ M @ N2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
            = ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_3205_power__diff__power__eq,axiom,
    ! [A: int,N2: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
            = ( power_power_int @ A @ ( minus_minus_nat @ M @ N2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
            = ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_3206_less__2__cases__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N2 = zero_zero_nat )
        | ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_3207_less__2__cases,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N2 = zero_zero_nat )
        | ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_3208_nat__induct2,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( P @ N3 )
             => ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct2
thf(fact_3209_power__eq__if,axiom,
    ( power_power_complex
    = ( ^ [P5: complex,M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P5 @ ( power_power_complex @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3210_power__eq__if,axiom,
    ( power_power_real
    = ( ^ [P5: real,M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P5 @ ( power_power_real @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3211_power__eq__if,axiom,
    ( power_power_rat
    = ( ^ [P5: rat,M3: nat] : ( if_rat @ ( M3 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P5 @ ( power_power_rat @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3212_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P5: nat,M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P5 @ ( power_power_nat @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3213_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P5: int,M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P5 @ ( power_power_int @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3214_power__minus__mult,axiom,
    ! [N2: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_complex @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3215_power__minus__mult,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_real @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3216_power__minus__mult,axiom,
    ! [N2: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_rat @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3217_power__minus__mult,axiom,
    ! [N2: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3218_power__minus__mult,axiom,
    ! [N2: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3219_le__div__geq,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( divide_divide_nat @ M @ N2 )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).

% le_div_geq
thf(fact_3220_split__div_H,axiom,
    ! [P: nat > $o,M: nat,N2: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N2 ) )
      = ( ( ( N2 = zero_zero_nat )
          & ( P @ zero_zero_nat ) )
        | ? [Q4: nat] :
            ( ( ord_less_eq_nat @ ( times_times_nat @ N2 @ Q4 ) @ M )
            & ( ord_less_nat @ M @ ( times_times_nat @ N2 @ ( suc @ Q4 ) ) )
            & ( P @ Q4 ) ) ) ) ).

% split_div'
thf(fact_3221_Suc__times__mod__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N2 ) ) @ M )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_3222_vebt__succ_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Vi2 )
      = none_nat ) ).

% vebt_succ.simps(5)
thf(fact_3223_power2__less__imp__less,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_real @ X2 @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3224_power2__less__imp__less,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ X2 @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3225_power2__less__imp__less,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_nat @ X2 @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3226_power2__less__imp__less,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_int @ X2 @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3227_sum__power2__le__zero__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3228_sum__power2__le__zero__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3229_sum__power2__le__zero__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3230_sum__power2__ge__zero,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3231_sum__power2__ge__zero,axiom,
    ! [X2: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3232_sum__power2__ge__zero,axiom,
    ! [X2: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3233_sum__power2__gt__zero__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X2 != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3234_sum__power2__gt__zero__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X2 != zero_zero_rat )
        | ( Y != zero_zero_rat ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3235_sum__power2__gt__zero__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X2 != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3236_not__sum__power2__lt__zero,axiom,
    ! [X2: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).

% not_sum_power2_lt_zero
thf(fact_3237_not__sum__power2__lt__zero,axiom,
    ! [X2: rat,Y: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).

% not_sum_power2_lt_zero
thf(fact_3238_not__sum__power2__lt__zero,axiom,
    ! [X2: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_3239_divmod__digit__0_I2_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3240_divmod__digit__0_I2_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_int @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3241_divmod__digit__0_I2_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
          = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3242_bits__stable__imp__add__self,axiom,
    ! [A: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_nat ) ) ).

% bits_stable_imp_add_self
thf(fact_3243_bits__stable__imp__add__self,axiom,
    ! [A: int] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = zero_zero_int ) ) ).

% bits_stable_imp_add_self
thf(fact_3244_bits__stable__imp__add__self,axiom,
    ! [A: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% bits_stable_imp_add_self
thf(fact_3245_zero__le__even__power_H,axiom,
    ! [A: real,N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% zero_le_even_power'
thf(fact_3246_zero__le__even__power_H,axiom,
    ! [A: rat,N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% zero_le_even_power'
thf(fact_3247_zero__le__even__power_H,axiom,
    ! [A: int,N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% zero_le_even_power'
thf(fact_3248_nat__bit__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
       => ( ! [N3: nat] :
              ( ( P @ N3 )
             => ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_bit_induct
thf(fact_3249_Suc__n__div__2__gt__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_3250_div__2__gt__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_3251_verit__le__mono__div,axiom,
    ! [A2: nat,B2: nat,N2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N2 )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B2 @ N2 )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B2 @ N2 ) ) ) ) ).

% verit_le_mono_div
thf(fact_3252_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
        = Y )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ( Y
              = ( ~ ( ( ( Xa2 = zero_zero_nat )
                     => A5 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B5 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
           => Y )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
               => ( Y
                  = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(1)
thf(fact_3253_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => A5 )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => B5 )
                    & ( Xa2 = one_one_nat ) ) ) ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [S2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
             => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(2)
thf(fact_3254_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ( ( ( Xa2 = zero_zero_nat )
               => A5 )
              & ( ( Xa2 != zero_zero_nat )
               => ( ( ( Xa2 = one_one_nat )
                   => B5 )
                  & ( Xa2 = one_one_nat ) ) ) ) )
       => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(3)
thf(fact_3255_divmod__digit__0_I1_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3256_divmod__digit__0_I1_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3257_divmod__digit__0_I1_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3258_odd__0__le__power__imp__0__le,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3259_odd__0__le__power__imp__0__le,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3260_odd__0__le__power__imp__0__le,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3261_odd__power__less__zero,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_real ) ) ).

% odd_power_less_zero
thf(fact_3262_odd__power__less__zero,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_rat ) ) ).

% odd_power_less_zero
thf(fact_3263_odd__power__less__zero,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_int ) ) ).

% odd_power_less_zero
thf(fact_3264_vebt__insert_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) @ X2 )
      = ( if_VEBT_VEBT
        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
          & ~ ( ( X2 = Mi )
              | ( X2 = Ma ) ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ X2 @ Mi ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ Ma ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) ) ) ).

% vebt_insert.simps(5)
thf(fact_3265_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
    ! [X2: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(1)
thf(fact_3266_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
    ! [X2: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_low @ X2 @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(2)
thf(fact_3267_vebt__member_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => A5 )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => B5 )
                    & ( Xa2 = one_one_nat ) ) ) ) )
       => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [Summary2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
             => ~ ( ( Xa2 != Mi2 )
                 => ( ( Xa2 != Ma2 )
                   => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                      & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                       => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                          & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                           => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                               => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                              & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(2)
thf(fact_3268_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ! [Uu2: $o,Uv2: $o] :
            ( X2
           != ( vEBT_Leaf @ Uu2 @ Uv2 ) )
       => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
               => ( ( Xa2 = Mi2 )
                  | ( Xa2 = Ma2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                 => ( ( Xa2 = Mi2 )
                    | ( Xa2 = Ma2 )
                    | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
             => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(3)
thf(fact_3269_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
        = Y )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X2
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => Y )
       => ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
           => Y )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
               => ( Y
                  = ( ~ ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 ) ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                 => ( Y
                    = ( ~ ( ( Xa2 = Mi2 )
                          | ( Xa2 = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) )
             => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                   => ( Y
                      = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(1)
thf(fact_3270_mod__double__modulus,axiom,
    ! [M: code_integer,X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
     => ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
       => ( ( ( modulo364778990260209775nteger @ X2 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( modulo364778990260209775nteger @ X2 @ M ) )
          | ( ( modulo364778990260209775nteger @ X2 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X2 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3271_mod__double__modulus,axiom,
    ! [M: nat,X2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
       => ( ( ( modulo_modulo_nat @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_nat @ X2 @ M ) )
          | ( ( modulo_modulo_nat @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_nat @ ( modulo_modulo_nat @ X2 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3272_mod__double__modulus,axiom,
    ! [M: int,X2: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ X2 )
       => ( ( ( modulo_modulo_int @ X2 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_int @ X2 @ M ) )
          | ( ( modulo_modulo_int @ X2 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_int @ ( modulo_modulo_int @ X2 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3273_divmod__digit__1_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3274_divmod__digit__1_I2_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3275_divmod__digit__1_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3276_vebt__member_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_vebt_member @ X2 @ Xa2 )
        = Y )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ( Y
              = ( ~ ( ( ( Xa2 = zero_zero_nat )
                     => A5 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B5 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => Y )
         => ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => Y )
           => ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
               => Y )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y
                      = ( ~ ( ( Xa2 != Mi2 )
                           => ( ( Xa2 != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(1)
thf(fact_3277_vebt__member_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ! [A5: $o,B5: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A5 @ B5 ) )
           => ( ( ( Xa2 = zero_zero_nat )
               => A5 )
              & ( ( Xa2 != zero_zero_nat )
               => ( ( ( Xa2 = one_one_nat )
                   => B5 )
                  & ( Xa2 = one_one_nat ) ) ) ) )
       => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
         => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                ( X2
               != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
           => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( X2
                 != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Xa2 != Mi2 )
                     => ( ( Xa2 != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(3)
thf(fact_3278_arith__geo__mean,axiom,
    ! [U: real,X2: real,Y: real] :
      ( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_real @ X2 @ Y ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_3279_arith__geo__mean,axiom,
    ! [U: rat,X2: rat,Y: rat] :
      ( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_rat @ X2 @ Y ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
         => ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X2 @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_3280_invar__vebt_Ocases,axiom,
    ! [A1: vEBT_VEBT,A22: nat] :
      ( ( vEBT_invar_vebt @ A1 @ A22 )
     => ( ( ? [A5: $o,B5: $o] :
              ( A1
              = ( vEBT_Leaf @ A5 @ B5 ) )
         => ( A22
           != ( suc @ zero_zero_nat ) ) )
       => ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( ( A22 = Deg2 )
               => ( ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                     => ( vEBT_invar_vebt @ X4 @ N3 ) )
                 => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                   => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                     => ( ( M4 = N3 )
                       => ( ( Deg2
                            = ( plus_plus_nat @ N3 @ M4 ) )
                         => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
                           => ~ ! [X4: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                 => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) ) ) ) ) ) ) ) )
         => ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
                ( ( A1
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( A22 = Deg2 )
                 => ( ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ( vEBT_invar_vebt @ X4 @ N3 ) )
                   => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                       => ( ( M4
                            = ( suc @ N3 ) )
                         => ( ( Deg2
                              = ( plus_plus_nat @ N3 @ M4 ) )
                           => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
                             => ~ ! [X4: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) ) ) ) ) ) ) ) )
           => ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                  ( ( A1
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
                 => ( ( A22 = Deg2 )
                   => ( ! [X4: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_invar_vebt @ X4 @ N3 ) )
                     => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                         => ( ( M4 = N3 )
                           => ( ( Deg2
                                = ( plus_plus_nat @ N3 @ M4 ) )
                             => ( ! [I2: nat] :
                                    ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                   => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X5 ) )
                                      = ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
                               => ( ( ( Mi2 = Ma2 )
                                   => ! [X4: vEBT_VEBT] :
                                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
                                 => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                   => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ~ ( ( Mi2 != Ma2 )
                                         => ! [I2: nat] :
                                              ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                             => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
                                                    = I2 )
                                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
                                                & ! [X4: nat] :
                                                    ( ( ( ( vEBT_VEBT_high @ X4 @ N3 )
                                                        = I2 )
                                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X4 @ N3 ) ) )
                                                   => ( ( ord_less_nat @ Mi2 @ X4 )
                                                      & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
             => ~ ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                    ( ( A1
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
                   => ( ( A22 = Deg2 )
                     => ( ! [X4: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                           => ( vEBT_invar_vebt @ X4 @ N3 ) )
                       => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                         => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                              = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                           => ( ( M4
                                = ( suc @ N3 ) )
                             => ( ( Deg2
                                  = ( plus_plus_nat @ N3 @ M4 ) )
                               => ( ! [I2: nat] :
                                      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                     => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X5 ) )
                                        = ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
                                 => ( ( ( Mi2 = Ma2 )
                                     => ! [X4: vEBT_VEBT] :
                                          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                         => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
                                   => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                     => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                       => ~ ( ( Mi2 != Ma2 )
                                           => ! [I2: nat] :
                                                ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                               => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
                                                      = I2 )
                                                   => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
                                                  & ! [X4: nat] :
                                                      ( ( ( ( vEBT_VEBT_high @ X4 @ N3 )
                                                          = I2 )
                                                        & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X4 @ N3 ) ) )
                                                     => ( ( ord_less_nat @ Mi2 @ X4 )
                                                        & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.cases
thf(fact_3281_invar__vebt_Osimps,axiom,
    ( vEBT_invar_vebt
    = ( ^ [A12: vEBT_VEBT,A23: nat] :
          ( ( ? [A3: $o,B3: $o] :
                ( A12
                = ( vEBT_Leaf @ A3 @ B3 ) )
            & ( A23
              = ( suc @ zero_zero_nat ) ) )
          | ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N ) )
              & ( vEBT_invar_vebt @ Summary3 @ N )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
              & ( A23
                = ( plus_plus_nat @ N @ N ) )
              & ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X5 )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
          | ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
              & ( A23
                = ( plus_plus_nat @ N @ ( suc @ N ) ) )
              & ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X5 )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
          | ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N ) )
              & ( vEBT_invar_vebt @ Summary3 @ N )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
              & ( A23
                = ( plus_plus_nat @ N @ N ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
                 => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ X5 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                   => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N ) ) )
                      & ! [X: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X @ N )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X @ N ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) )
          | ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
              & ( A23
                = ( plus_plus_nat @ N @ ( suc @ N ) ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
                 => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ X5 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                   => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N ) ) )
                      & ! [X: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X @ N )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X @ N ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.simps
thf(fact_3282_divmod__digit__1_I1_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
            = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3283_divmod__digit__1_I1_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
            = ( divide_divide_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3284_divmod__digit__1_I1_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
            = ( divide_divide_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3285_inrange,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ord_less_eq_set_nat @ ( vEBT_VEBT_set_vebt @ T ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% inrange
thf(fact_3286_finite__nth__roots,axiom,
    ! [N2: nat,C: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z2: complex] :
              ( ( power_power_complex @ Z2 @ N2 )
              = C ) ) ) ) ).

% finite_nth_roots
thf(fact_3287_vebt__succ_Opelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: option_nat] :
      ( ( ( vEBT_vebt_succ @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ B5 ) )
             => ( ( Xa2 = zero_zero_nat )
               => ( ( ( B5
                     => ( Y
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B5
                     => ( Y = none_nat ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B5 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [Uv2: $o,Uw2: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ Uv2 @ Uw2 ) )
               => ! [N3: nat] :
                    ( ( Xa2
                      = ( suc @ N3 ) )
                   => ( ( Y = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N3 ) ) ) ) ) )
           => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y = none_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
                   => ( ( Y = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Xa2 ) ) ) )
               => ( ! [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) )
                     => ( ( Y = none_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Xa2 ) ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X2
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                       => ( ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                             => ( Y
                                = ( some_nat @ Mi2 ) ) )
                            & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                             => ( Y
                                = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( if_option_nat
                                    @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( if_option_nat
                                      @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                        = none_nat )
                                      @ none_nat
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                  @ none_nat ) ) ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.pelims
thf(fact_3288_max__less__iff__conj,axiom,
    ! [X2: extended_enat,Y: extended_enat,Z: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ X2 @ Y ) @ Z )
      = ( ( ord_le72135733267957522d_enat @ X2 @ Z )
        & ( ord_le72135733267957522d_enat @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_3289_max__less__iff__conj,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( ord_less_real @ ( ord_max_real @ X2 @ Y ) @ Z )
      = ( ( ord_less_real @ X2 @ Z )
        & ( ord_less_real @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_3290_max__less__iff__conj,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ X2 @ Y ) @ Z )
      = ( ( ord_less_rat @ X2 @ Z )
        & ( ord_less_rat @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_3291_max__less__iff__conj,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_num @ ( ord_max_num @ X2 @ Y ) @ Z )
      = ( ( ord_less_num @ X2 @ Z )
        & ( ord_less_num @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_3292_max__less__iff__conj,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ X2 @ Y ) @ Z )
      = ( ( ord_less_nat @ X2 @ Z )
        & ( ord_less_nat @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_3293_max__less__iff__conj,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( ord_less_int @ ( ord_max_int @ X2 @ Y ) @ Z )
      = ( ( ord_less_int @ X2 @ Z )
        & ( ord_less_int @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_3294_max_Oabsorb4,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_3295_max_Oabsorb4,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_max_real @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_3296_max_Oabsorb4,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_3297_max_Oabsorb4,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_3298_max_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_3299_max_Oabsorb4,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_3300_max_Oabsorb3,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_3301_max_Oabsorb3,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_max_real @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_3302_max_Oabsorb3,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_3303_max_Oabsorb3,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_3304_max_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_3305_max_Oabsorb3,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_3306_max_Oabsorb1,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_3307_max_Oabsorb1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_3308_max_Oabsorb1,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_3309_max_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_3310_max_Oabsorb1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_3311_max_Oabsorb2,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_3312_max_Oabsorb2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_3313_max_Oabsorb2,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_3314_max_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_3315_max_Oabsorb2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_3316_max_Obounded__iff,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
      = ( ( ord_le2932123472753598470d_enat @ B @ A )
        & ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_3317_max_Obounded__iff,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_3318_max_Obounded__iff,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
      = ( ( ord_less_eq_num @ B @ A )
        & ( ord_less_eq_num @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_3319_max_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_3320_max_Obounded__iff,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
      = ( ( ord_less_eq_int @ B @ A )
        & ( ord_less_eq_int @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_3321_flip__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% flip_bit_nonnegative_int_iff
thf(fact_3322_flip__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% flip_bit_negative_int_iff
thf(fact_3323_i0__less,axiom,
    ! [N2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N2 )
      = ( N2 != zero_z5237406670263579293d_enat ) ) ).

% i0_less
thf(fact_3324_idiff__0,axiom,
    ! [N2: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N2 )
      = zero_z5237406670263579293d_enat ) ).

% idiff_0
thf(fact_3325_idiff__0__right,axiom,
    ! [N2: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N2 @ zero_z5237406670263579293d_enat )
      = N2 ) ).

% idiff_0_right
thf(fact_3326_not__real__square__gt__zero,axiom,
    ! [X2: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X2 @ X2 ) ) )
      = ( X2 = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_3327_unset__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% unset_bit_nonnegative_int_iff
thf(fact_3328_unset__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% unset_bit_negative_int_iff
thf(fact_3329_set__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_3330_set__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% set_bit_negative_int_iff
thf(fact_3331_div__pos__pos__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L2 )
       => ( ( divide_divide_int @ K @ L2 )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_3332_div__neg__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L2 @ K )
       => ( ( divide_divide_int @ K @ L2 )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_3333_mod__pos__pos__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L2 )
       => ( ( modulo_modulo_int @ K @ L2 )
          = K ) ) ) ).

% mod_pos_pos_trivial
thf(fact_3334_mod__neg__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L2 @ K )
       => ( ( modulo_modulo_int @ K @ L2 )
          = K ) ) ) ).

% mod_neg_neg_trivial
thf(fact_3335_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_3336_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_3337_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_3338_times__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( times_times_int @ zero_zero_int @ L2 )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_3339_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_3340_plus__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( plus_plus_int @ zero_zero_int @ L2 )
      = L2 ) ).

% plus_int_code(2)
thf(fact_3341_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_3342_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_3343_not__iless0,axiom,
    ! [N2: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ N2 @ zero_z5237406670263579293d_enat ) ).

% not_iless0
thf(fact_3344_enat__0__less__mult__iff,axiom,
    ! [M: extended_enat,N2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N2 ) )
      = ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
        & ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N2 ) ) ) ).

% enat_0_less_mult_iff
thf(fact_3345_iadd__is__0,axiom,
    ! [M: extended_enat,N2: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N2 )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N2 = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_3346_ile0__eq,axiom,
    ! [N2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N2 @ zero_z5237406670263579293d_enat )
      = ( N2 = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_3347_i0__lb,axiom,
    ! [N2: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N2 ) ).

% i0_lb
thf(fact_3348_all__nat__less,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N2 )
           => ( P @ M3 ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
           => ( P @ X ) ) ) ) ).

% all_nat_less
thf(fact_3349_ex__nat__less,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N2 )
            & ( P @ M3 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
            & ( P @ X ) ) ) ) ).

% ex_nat_less
thf(fact_3350_zmult__zless__mono2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_3351_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_3352_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_3353_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_3354_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_3355_zmod__le__nonneg__dividend,axiom,
    ! [M: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).

% zmod_le_nonneg_dividend
thf(fact_3356_Euclidean__Division_Opos__mod__bound,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ord_less_int @ ( modulo_modulo_int @ K @ L2 ) @ L2 ) ) ).

% Euclidean_Division.pos_mod_bound
thf(fact_3357_neg__mod__bound,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ L2 @ zero_zero_int )
     => ( ord_less_int @ L2 @ ( modulo_modulo_int @ K @ L2 ) ) ) ).

% neg_mod_bound
thf(fact_3358_zmod__eq__0__iff,axiom,
    ! [M: int,D2: int] :
      ( ( ( modulo_modulo_int @ M @ D2 )
        = zero_zero_int )
      = ( ? [Q4: int] :
            ( M
            = ( times_times_int @ D2 @ Q4 ) ) ) ) ).

% zmod_eq_0_iff
thf(fact_3359_zmod__eq__0D,axiom,
    ! [M: int,D2: int] :
      ( ( ( modulo_modulo_int @ M @ D2 )
        = zero_zero_int )
     => ? [Q3: int] :
          ( M
          = ( times_times_int @ D2 @ Q3 ) ) ) ).

% zmod_eq_0D
thf(fact_3360_realpow__pos__nth2,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R3: real] :
          ( ( ord_less_real @ zero_zero_real @ R3 )
          & ( ( power_power_real @ R3 @ ( suc @ N2 ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_3361_real__arch__pow__inv,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X2 @ N3 ) @ Y ) ) ) ).

% real_arch_pow_inv
thf(fact_3362_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_3363_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N2 )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N2 = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_3364_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_3365_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_3366_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_3367_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_3368_pos__imp__zdiv__pos__iff,axiom,
    ! [K: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
        = ( ord_less_eq_int @ K @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_3369_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_3370_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_3371_div__positive__int,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_eq_int @ L2 @ K )
     => ( ( ord_less_int @ zero_zero_int @ L2 )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L2 ) ) ) ) ).

% div_positive_int
thf(fact_3372_div__int__pos__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L2 ) )
      = ( ( K = zero_zero_int )
        | ( L2 = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K )
          & ( ord_less_eq_int @ zero_zero_int @ L2 ) )
        | ( ( ord_less_int @ K @ zero_zero_int )
          & ( ord_less_int @ L2 @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_3373_zdiv__mono2__neg,axiom,
    ! [A: int,B4: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B4 )
       => ( ( ord_less_eq_int @ B4 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B4 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_3374_zdiv__mono1__neg,axiom,
    ! [A: int,A4: int,B: int] :
      ( ( ord_less_eq_int @ A @ A4 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A4 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_3375_zdiv__eq__0__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( divide_divide_int @ I @ K )
        = zero_zero_int )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_3376_zdiv__mono2,axiom,
    ! [A: int,B4: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B4 )
       => ( ( ord_less_eq_int @ B4 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B4 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_3377_zdiv__mono1,axiom,
    ! [A: int,A4: int,B: int] :
      ( ( ord_less_eq_int @ A @ A4 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A4 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_3378_int__div__less__self,axiom,
    ! [X2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X2 )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X2 @ K ) @ X2 ) ) ) ).

% int_div_less_self
thf(fact_3379_zdiv__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% zdiv_zmult2_eq
thf(fact_3380_Euclidean__Division_Opos__mod__sign,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L2 ) ) ) ).

% Euclidean_Division.pos_mod_sign
thf(fact_3381_neg__mod__sign,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ L2 @ zero_zero_int )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L2 ) @ zero_zero_int ) ) ).

% neg_mod_sign
thf(fact_3382_zmod__trivial__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( modulo_modulo_int @ I @ K )
        = I )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zmod_trivial_iff
thf(fact_3383_pos__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
        & ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).

% pos_mod_conj
thf(fact_3384_neg__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
        & ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% neg_mod_conj
thf(fact_3385_zdiv__mono__strict,axiom,
    ! [A2: int,B2: int,N2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ N2 )
       => ( ( ( modulo_modulo_int @ A2 @ N2 )
            = zero_zero_int )
         => ( ( ( modulo_modulo_int @ B2 @ N2 )
              = zero_zero_int )
           => ( ord_less_int @ ( divide_divide_int @ A2 @ N2 ) @ ( divide_divide_int @ B2 @ N2 ) ) ) ) ) ) ).

% zdiv_mono_strict
thf(fact_3386_not__exp__less__eq__0__int,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_3387_realpow__pos__nth__unique,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X3: real] :
            ( ( ord_less_real @ zero_zero_real @ X3 )
            & ( ( power_power_real @ X3 @ N2 )
              = A )
            & ! [Y4: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y4 )
                  & ( ( power_power_real @ Y4 @ N2 )
                    = A ) )
               => ( Y4 = X3 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_3388_realpow__pos__nth,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ( ( power_power_real @ R3 @ N2 )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_3389_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_3390_unique__quotient__lemma__neg,axiom,
    ! [B: int,Q5: int,R4: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( ord_less_int @ B @ R4 )
           => ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ).

% unique_quotient_lemma_neg
thf(fact_3391_unique__quotient__lemma,axiom,
    ! [B: int,Q5: int,R4: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
       => ( ( ord_less_int @ R4 @ B )
         => ( ( ord_less_int @ R @ B )
           => ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ).

% unique_quotient_lemma
thf(fact_3392_zdiv__mono2__neg__lemma,axiom,
    ! [B: int,Q2: int,R: int,B4: int,Q5: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R )
        = ( plus_plus_int @ ( times_times_int @ B4 @ Q5 ) @ R4 ) )
     => ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B4 @ Q5 ) @ R4 ) @ zero_zero_int )
       => ( ( ord_less_int @ R @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
           => ( ( ord_less_int @ zero_zero_int @ B4 )
             => ( ( ord_less_eq_int @ B4 @ B )
               => ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ) ) ).

% zdiv_mono2_neg_lemma
thf(fact_3393_zdiv__mono2__lemma,axiom,
    ! [B: int,Q2: int,R: int,B4: int,Q5: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R )
        = ( plus_plus_int @ ( times_times_int @ B4 @ Q5 ) @ R4 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B4 @ Q5 ) @ R4 ) )
       => ( ( ord_less_int @ R4 @ B4 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R )
           => ( ( ord_less_int @ zero_zero_int @ B4 )
             => ( ( ord_less_eq_int @ B4 @ B )
               => ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ) ) ).

% zdiv_mono2_lemma
thf(fact_3394_q__pos__lemma,axiom,
    ! [B4: int,Q5: int,R4: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B4 @ Q5 ) @ R4 ) )
     => ( ( ord_less_int @ R4 @ B4 )
       => ( ( ord_less_int @ zero_zero_int @ B4 )
         => ( ord_less_eq_int @ zero_zero_int @ Q5 ) ) ) ) ).

% q_pos_lemma
thf(fact_3395_mod__pos__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L2 ) @ zero_zero_int )
       => ( ( modulo_modulo_int @ K @ L2 )
          = ( plus_plus_int @ K @ L2 ) ) ) ) ).

% mod_pos_neg_trivial
thf(fact_3396_mod__pos__geq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ( ord_less_eq_int @ L2 @ K )
       => ( ( modulo_modulo_int @ K @ L2 )
          = ( modulo_modulo_int @ ( minus_minus_int @ K @ L2 ) @ L2 ) ) ) ) ).

% mod_pos_geq
thf(fact_3397_int__div__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R )
       => ( ( ord_less_int @ R @ B )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_pos_eq
thf(fact_3398_int__div__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_neg_eq
thf(fact_3399_split__zdiv,axiom,
    ! [P: int > $o,N2: int,K: int] :
      ( ( P @ ( divide_divide_int @ N2 @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ zero_zero_int ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) ) ) ) ).

% split_zdiv
thf(fact_3400_int__mod__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R )
       => ( ( ord_less_int @ R @ B )
         => ( ( modulo_modulo_int @ A @ B )
            = R ) ) ) ) ).

% int_mod_pos_eq
thf(fact_3401_int__mod__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( modulo_modulo_int @ A @ B )
            = R ) ) ) ) ).

% int_mod_neg_eq
thf(fact_3402_split__zmod,axiom,
    ! [P: int > $o,N2: int,K: int] :
      ( ( P @ ( modulo_modulo_int @ N2 @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ N2 ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) ) ) ) ).

% split_zmod
thf(fact_3403_zmod__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% zmod_zmult2_eq
thf(fact_3404_int__power__div__base,axiom,
    ! [M: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_3405_div__pos__geq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ( ord_less_eq_int @ L2 @ K )
       => ( ( divide_divide_int @ K @ L2 )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L2 ) @ L2 ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_3406_max_Omono,axiom,
    ! [C: extended_enat,A: extended_enat,D2: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ( ord_le2932123472753598470d_enat @ D2 @ B )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ C @ D2 ) @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_3407_max_Omono,axiom,
    ! [C: rat,A: rat,D2: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ( ord_less_eq_rat @ D2 @ B )
       => ( ord_less_eq_rat @ ( ord_max_rat @ C @ D2 ) @ ( ord_max_rat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_3408_max_Omono,axiom,
    ! [C: num,A: num,D2: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ( ord_less_eq_num @ D2 @ B )
       => ( ord_less_eq_num @ ( ord_max_num @ C @ D2 ) @ ( ord_max_num @ A @ B ) ) ) ) ).

% max.mono
thf(fact_3409_max_Omono,axiom,
    ! [C: nat,A: nat,D2: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D2 @ B )
       => ( ord_less_eq_nat @ ( ord_max_nat @ C @ D2 ) @ ( ord_max_nat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_3410_max_Omono,axiom,
    ! [C: int,A: int,D2: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ( ord_less_eq_int @ D2 @ B )
       => ( ord_less_eq_int @ ( ord_max_int @ C @ D2 ) @ ( ord_max_int @ A @ B ) ) ) ) ).

% max.mono
thf(fact_3411_max_OorderE,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.orderE
thf(fact_3412_max_OorderE,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( A
        = ( ord_max_rat @ A @ B ) ) ) ).

% max.orderE
thf(fact_3413_max_OorderE,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( A
        = ( ord_max_num @ A @ B ) ) ) ).

% max.orderE
thf(fact_3414_max_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( ord_max_nat @ A @ B ) ) ) ).

% max.orderE
thf(fact_3415_max_OorderE,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( A
        = ( ord_max_int @ A @ B ) ) ) ).

% max.orderE
thf(fact_3416_max_OorderI,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) )
     => ( ord_le2932123472753598470d_enat @ B @ A ) ) ).

% max.orderI
thf(fact_3417_max_OorderI,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( ord_max_rat @ A @ B ) )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% max.orderI
thf(fact_3418_max_OorderI,axiom,
    ! [A: num,B: num] :
      ( ( A
        = ( ord_max_num @ A @ B ) )
     => ( ord_less_eq_num @ B @ A ) ) ).

% max.orderI
thf(fact_3419_max_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( ord_max_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% max.orderI
thf(fact_3420_max_OorderI,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( ord_max_int @ A @ B ) )
     => ( ord_less_eq_int @ B @ A ) ) ).

% max.orderI
thf(fact_3421_max_OboundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le2932123472753598470d_enat @ B @ A )
         => ~ ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_3422_max_OboundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_rat @ B @ A )
         => ~ ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_3423_max_OboundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_num @ B @ A )
         => ~ ( ord_less_eq_num @ C @ A ) ) ) ).

% max.boundedE
thf(fact_3424_max_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_3425_max_OboundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_int @ B @ A )
         => ~ ( ord_less_eq_int @ C @ A ) ) ) ).

% max.boundedE
thf(fact_3426_max_OboundedI,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_le2932123472753598470d_enat @ C @ A )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_3427_max_OboundedI,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ A )
       => ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_3428_max_OboundedI,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ A )
       => ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_3429_max_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_3430_max_OboundedI,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ A )
       => ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_3431_max_Oorder__iff,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B3: extended_enat,A3: extended_enat] :
          ( A3
          = ( ord_ma741700101516333627d_enat @ A3 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_3432_max_Oorder__iff,axiom,
    ( ord_less_eq_rat
    = ( ^ [B3: rat,A3: rat] :
          ( A3
          = ( ord_max_rat @ A3 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_3433_max_Oorder__iff,axiom,
    ( ord_less_eq_num
    = ( ^ [B3: num,A3: num] :
          ( A3
          = ( ord_max_num @ A3 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_3434_max_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( A3
          = ( ord_max_nat @ A3 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_3435_max_Oorder__iff,axiom,
    ( ord_less_eq_int
    = ( ^ [B3: int,A3: int] :
          ( A3
          = ( ord_max_int @ A3 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_3436_max_Ocobounded1,axiom,
    ! [A: extended_enat,B: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded1
thf(fact_3437_max_Ocobounded1,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ A @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded1
thf(fact_3438_max_Ocobounded1,axiom,
    ! [A: num,B: num] : ( ord_less_eq_num @ A @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded1
thf(fact_3439_max_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded1
thf(fact_3440_max_Ocobounded1,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ A @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded1
thf(fact_3441_max_Ocobounded2,axiom,
    ! [B: extended_enat,A: extended_enat] : ( ord_le2932123472753598470d_enat @ B @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded2
thf(fact_3442_max_Ocobounded2,axiom,
    ! [B: rat,A: rat] : ( ord_less_eq_rat @ B @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded2
thf(fact_3443_max_Ocobounded2,axiom,
    ! [B: num,A: num] : ( ord_less_eq_num @ B @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded2
thf(fact_3444_max_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded2
thf(fact_3445_max_Ocobounded2,axiom,
    ! [B: int,A: int] : ( ord_less_eq_int @ B @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded2
thf(fact_3446_le__max__iff__disj,axiom,
    ! [Z: extended_enat,X2: extended_enat,Y: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X2 @ Y ) )
      = ( ( ord_le2932123472753598470d_enat @ Z @ X2 )
        | ( ord_le2932123472753598470d_enat @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_3447_le__max__iff__disj,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ Z @ ( ord_max_rat @ X2 @ Y ) )
      = ( ( ord_less_eq_rat @ Z @ X2 )
        | ( ord_less_eq_rat @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_3448_le__max__iff__disj,axiom,
    ! [Z: num,X2: num,Y: num] :
      ( ( ord_less_eq_num @ Z @ ( ord_max_num @ X2 @ Y ) )
      = ( ( ord_less_eq_num @ Z @ X2 )
        | ( ord_less_eq_num @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_3449_le__max__iff__disj,axiom,
    ! [Z: nat,X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ Z @ ( ord_max_nat @ X2 @ Y ) )
      = ( ( ord_less_eq_nat @ Z @ X2 )
        | ( ord_less_eq_nat @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_3450_le__max__iff__disj,axiom,
    ! [Z: int,X2: int,Y: int] :
      ( ( ord_less_eq_int @ Z @ ( ord_max_int @ X2 @ Y ) )
      = ( ( ord_less_eq_int @ Z @ X2 )
        | ( ord_less_eq_int @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_3451_max_Oabsorb__iff1,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B3: extended_enat,A3: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A3 @ B3 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_3452_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_rat
    = ( ^ [B3: rat,A3: rat] :
          ( ( ord_max_rat @ A3 @ B3 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_3453_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_num
    = ( ^ [B3: num,A3: num] :
          ( ( ord_max_num @ A3 @ B3 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_3454_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_max_nat @ A3 @ B3 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_3455_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_int
    = ( ^ [B3: int,A3: int] :
          ( ( ord_max_int @ A3 @ B3 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_3456_max_Oabsorb__iff2,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [A3: extended_enat,B3: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A3 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_3457_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_rat
    = ( ^ [A3: rat,B3: rat] :
          ( ( ord_max_rat @ A3 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_3458_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_num
    = ( ^ [A3: num,B3: num] :
          ( ( ord_max_num @ A3 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_3459_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_max_nat @ A3 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_3460_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B3: int] :
          ( ( ord_max_int @ A3 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_3461_max_OcoboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_3462_max_OcoboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_3463_max_OcoboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_3464_max_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_3465_max_OcoboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_3466_max_OcoboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ B )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_3467_max_OcoboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ B )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_3468_max_OcoboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_eq_num @ C @ B )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_3469_max_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_3470_max_OcoboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ C @ B )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_3471_verit__le__mono__div__int,axiom,
    ! [A2: int,B2: int,N2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ N2 )
       => ( ord_less_eq_int
          @ ( plus_plus_int @ ( divide_divide_int @ A2 @ N2 )
            @ ( if_int
              @ ( ( modulo_modulo_int @ B2 @ N2 )
                = zero_zero_int )
              @ one_one_int
              @ zero_zero_int ) )
          @ ( divide_divide_int @ B2 @ N2 ) ) ) ) ).

% verit_le_mono_div_int
thf(fact_3472_less__max__iff__disj,axiom,
    ! [Z: extended_enat,X2: extended_enat,Y: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X2 @ Y ) )
      = ( ( ord_le72135733267957522d_enat @ Z @ X2 )
        | ( ord_le72135733267957522d_enat @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_3473_less__max__iff__disj,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( ord_less_real @ Z @ ( ord_max_real @ X2 @ Y ) )
      = ( ( ord_less_real @ Z @ X2 )
        | ( ord_less_real @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_3474_less__max__iff__disj,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( ord_less_rat @ Z @ ( ord_max_rat @ X2 @ Y ) )
      = ( ( ord_less_rat @ Z @ X2 )
        | ( ord_less_rat @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_3475_less__max__iff__disj,axiom,
    ! [Z: num,X2: num,Y: num] :
      ( ( ord_less_num @ Z @ ( ord_max_num @ X2 @ Y ) )
      = ( ( ord_less_num @ Z @ X2 )
        | ( ord_less_num @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_3476_less__max__iff__disj,axiom,
    ! [Z: nat,X2: nat,Y: nat] :
      ( ( ord_less_nat @ Z @ ( ord_max_nat @ X2 @ Y ) )
      = ( ( ord_less_nat @ Z @ X2 )
        | ( ord_less_nat @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_3477_less__max__iff__disj,axiom,
    ! [Z: int,X2: int,Y: int] :
      ( ( ord_less_int @ Z @ ( ord_max_int @ X2 @ Y ) )
      = ( ( ord_less_int @ Z @ X2 )
        | ( ord_less_int @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_3478_max_Ostrict__boundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le72135733267957522d_enat @ B @ A )
         => ~ ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_3479_max_Ostrict__boundedE,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( ord_max_real @ B @ C ) @ A )
     => ~ ( ( ord_less_real @ B @ A )
         => ~ ( ord_less_real @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_3480_max_Ostrict__boundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_rat @ B @ A )
         => ~ ( ord_less_rat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_3481_max_Ostrict__boundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_num @ B @ A )
         => ~ ( ord_less_num @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_3482_max_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_3483_max_Ostrict__boundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_int @ B @ A )
         => ~ ( ord_less_int @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_3484_max_Ostrict__order__iff,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [B3: extended_enat,A3: extended_enat] :
          ( ( A3
            = ( ord_ma741700101516333627d_enat @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_3485_max_Ostrict__order__iff,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A3: real] :
          ( ( A3
            = ( ord_max_real @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_3486_max_Ostrict__order__iff,axiom,
    ( ord_less_rat
    = ( ^ [B3: rat,A3: rat] :
          ( ( A3
            = ( ord_max_rat @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_3487_max_Ostrict__order__iff,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A3: num] :
          ( ( A3
            = ( ord_max_num @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_3488_max_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( A3
            = ( ord_max_nat @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_3489_max_Ostrict__order__iff,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A3: int] :
          ( ( A3
            = ( ord_max_int @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_3490_max_Ostrict__coboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ A )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_3491_max_Ostrict__coboundedI1,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ A )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_3492_max_Ostrict__coboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ A )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_3493_max_Ostrict__coboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_num @ C @ A )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_3494_max_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_3495_max_Ostrict__coboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ A )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_3496_max_Ostrict__coboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ B )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_3497_max_Ostrict__coboundedI2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ B )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_3498_max_Ostrict__coboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ B )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_3499_max_Ostrict__coboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_num @ C @ B )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_3500_max_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_3501_max_Ostrict__coboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_int @ C @ B )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_3502_split__pos__lemma,axiom,
    ! [K: int,P: int > int > $o,N2: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( P @ ( divide_divide_int @ N2 @ K ) @ ( modulo_modulo_int @ N2 @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_pos_lemma
thf(fact_3503_split__neg__lemma,axiom,
    ! [K: int,P: int > int > $o,N2: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ( P @ ( divide_divide_int @ N2 @ K ) @ ( modulo_modulo_int @ N2 @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_neg_lemma
thf(fact_3504_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_3505_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2
thf(fact_3506_pos__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).

% pos_zmod_mult_2
thf(fact_3507_neg__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).

% neg_zmod_mult_2
thf(fact_3508_vebt__insert_Opelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( ( ( Xa2 = zero_zero_nat )
                   => ( Y
                      = ( vEBT_Leaf @ $true @ B5 ) ) )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => ( Y
                          = ( vEBT_Leaf @ A5 @ $true ) ) )
                      & ( ( Xa2 != one_one_nat )
                       => ( Y
                          = ( vEBT_Leaf @ A5 @ B5 ) ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) )
               => ( ( Y
                    = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) @ Xa2 ) ) ) )
           => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) )
                 => ( ( Y
                      = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) @ Xa2 ) ) ) )
             => ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Y
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y
                          = ( if_VEBT_VEBT
                            @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                              & ~ ( ( Xa2 = Mi2 )
                                  | ( Xa2 = Ma2 ) ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va3 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_insert.pelims
thf(fact_3509_vebt__member_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
               => ( ( ( Xa2 = zero_zero_nat )
                   => A5 )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => B5 )
                      & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) )
                       => ( ( Xa2 != Mi2 )
                         => ( ( Xa2 != Ma2 )
                           => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                              & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                               => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                  & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                       => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(3)
thf(fact_3510_vebt__member_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_vebt_member @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( Y
                  = ( ( ( Xa2 = zero_zero_nat )
                     => A5 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B5 )
                        & ( Xa2 = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ~ Y
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ( ~ Y
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y
                          = ( ( Xa2 != Mi2 )
                           => ( ( Xa2 != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(1)
thf(fact_3511_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
               => ( ( ( Xa2 = zero_zero_nat )
                   => A5 )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => B5 )
                      & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) @ Xa2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(3)
thf(fact_3512_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
               => ~ ( ( ( Xa2 = zero_zero_nat )
                     => A5 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B5 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) @ Xa2 ) )
                 => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(2)
thf(fact_3513_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( Y
                  = ( ( ( Xa2 = zero_zero_nat )
                     => A5 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B5 )
                        & ( Xa2 = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
                 => ( ( Y
                      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) @ Xa2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(1)
thf(fact_3514_vebt__member_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
               => ~ ( ( ( Xa2 = zero_zero_nat )
                     => A5 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B5 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) )
                 => ~ ( ( Xa2 != Mi2 )
                     => ( ( Xa2 != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(2)
thf(fact_3515_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) )
                   => ( ( Xa2 = Mi2 )
                      | ( Xa2 = Ma2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                   => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) )
                     => ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 )
                        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
               => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ Xa2 ) )
                       => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(3)
thf(fact_3516_max__enat__simps_I2_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ Q2 @ zero_z5237406670263579293d_enat )
      = Q2 ) ).

% max_enat_simps(2)
thf(fact_3517_max__enat__simps_I3_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q2 )
      = Q2 ) ).

% max_enat_simps(3)
thf(fact_3518_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_3519_imult__is__0,axiom,
    ! [M: extended_enat,N2: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ M @ N2 )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        | ( N2 = zero_z5237406670263579293d_enat ) ) ) ).

% imult_is_0
thf(fact_3520_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) )
               => ~ ( ( Xa2 = Mi2 )
                    | ( Xa2 = Ma2 ) ) ) )
         => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) )
                 => ~ ( ( Xa2 = Mi2 )
                      | ( Xa2 = Ma2 )
                      | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
           => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ Xa2 ) )
                   => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(2)
thf(fact_3521_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ~ Y
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
                 => ( ( Y
                      = ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                   => ( ( Y
                        = ( ( Xa2 = Mi2 )
                          | ( Xa2 = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                     => ( ( Y
                          = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(1)
thf(fact_3522_infinite__Icc__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) )
      = ( ord_less_rat @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_3523_infinite__Icc__iff,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) )
      = ( ord_less_real @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_3524_atLeastatMost__empty,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat ) ) ).

% atLeastatMost_empty
thf(fact_3525_atLeastatMost__empty,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num ) ) ).

% atLeastatMost_empty
thf(fact_3526_atLeastatMost__empty,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat ) ) ).

% atLeastatMost_empty
thf(fact_3527_atLeastatMost__empty,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int ) ) ).

% atLeastatMost_empty
thf(fact_3528_atLeastatMost__empty,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real ) ) ).

% atLeastatMost_empty
thf(fact_3529_atLeastatMost__subset__iff,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat,D2: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_or4548717258645045905et_nat @ A @ B ) @ ( set_or4548717258645045905et_nat @ C @ D2 ) )
      = ( ~ ( ord_less_eq_set_nat @ A @ B )
        | ( ( ord_less_eq_set_nat @ C @ A )
          & ( ord_less_eq_set_nat @ B @ D2 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_3530_atLeastatMost__subset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D2 ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( ( ord_less_eq_rat @ C @ A )
          & ( ord_less_eq_rat @ B @ D2 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_3531_atLeastatMost__subset__iff,axiom,
    ! [A: num,B: num,C: num,D2: num] :
      ( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D2 ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( ( ord_less_eq_num @ C @ A )
          & ( ord_less_eq_num @ B @ D2 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_3532_atLeastatMost__subset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D2 ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( ( ord_less_eq_nat @ C @ A )
          & ( ord_less_eq_nat @ B @ D2 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_3533_atLeastatMost__subset__iff,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D2 ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( ( ord_less_eq_int @ C @ A )
          & ( ord_less_eq_int @ B @ D2 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_3534_atLeastatMost__subset__iff,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D2 ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( ( ord_less_eq_real @ C @ A )
          & ( ord_less_eq_real @ B @ D2 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_3535_atLeastatMost__empty__iff,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ( set_or4548717258645045905et_nat @ A @ B )
        = bot_bot_set_set_nat )
      = ( ~ ( ord_less_eq_set_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_3536_atLeastatMost__empty__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_3537_atLeastatMost__empty__iff,axiom,
    ! [A: num,B: num] :
      ( ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_3538_atLeastatMost__empty__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_3539_atLeastatMost__empty__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_3540_atLeastatMost__empty__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_3541_atLeastatMost__empty__iff2,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( bot_bot_set_set_nat
        = ( set_or4548717258645045905et_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_set_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_3542_atLeastatMost__empty__iff2,axiom,
    ! [A: rat,B: rat] :
      ( ( bot_bot_set_rat
        = ( set_or633870826150836451st_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_3543_atLeastatMost__empty__iff2,axiom,
    ! [A: num,B: num] :
      ( ( bot_bot_set_num
        = ( set_or7049704709247886629st_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_3544_atLeastatMost__empty__iff2,axiom,
    ! [A: nat,B: nat] :
      ( ( bot_bot_set_nat
        = ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_3545_atLeastatMost__empty__iff2,axiom,
    ! [A: int,B: int] :
      ( ( bot_bot_set_int
        = ( set_or1266510415728281911st_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_3546_atLeastatMost__empty__iff2,axiom,
    ! [A: real,B: real] :
      ( ( bot_bot_set_real
        = ( set_or1222579329274155063t_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_3547_finite__atLeastAtMost,axiom,
    ! [L2: nat,U: nat] : ( finite_finite_nat @ ( set_or1269000886237332187st_nat @ L2 @ U ) ) ).

% finite_atLeastAtMost
thf(fact_3548_decr__mult__lemma,axiom,
    ! [D2: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X3: int] :
            ( ( P @ X3 )
           => ( P @ ( minus_minus_int @ X3 @ D2 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X4: int] :
              ( ( P @ X4 )
             => ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K @ D2 ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_3549_incr__mult__lemma,axiom,
    ! [D2: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X3: int] :
            ( ( P @ X3 )
           => ( P @ ( plus_plus_int @ X3 @ D2 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X4: int] :
              ( ( P @ X4 )
             => ( P @ ( plus_plus_int @ X4 @ ( times_times_int @ K @ D2 ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_3550_atLeastAtMost__iff,axiom,
    ! [I: set_nat,L2: set_nat,U: set_nat] :
      ( ( member_set_nat @ I @ ( set_or4548717258645045905et_nat @ L2 @ U ) )
      = ( ( ord_less_eq_set_nat @ L2 @ I )
        & ( ord_less_eq_set_nat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_3551_atLeastAtMost__iff,axiom,
    ! [I: rat,L2: rat,U: rat] :
      ( ( member_rat @ I @ ( set_or633870826150836451st_rat @ L2 @ U ) )
      = ( ( ord_less_eq_rat @ L2 @ I )
        & ( ord_less_eq_rat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_3552_atLeastAtMost__iff,axiom,
    ! [I: num,L2: num,U: num] :
      ( ( member_num @ I @ ( set_or7049704709247886629st_num @ L2 @ U ) )
      = ( ( ord_less_eq_num @ L2 @ I )
        & ( ord_less_eq_num @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_3553_atLeastAtMost__iff,axiom,
    ! [I: nat,L2: nat,U: nat] :
      ( ( member_nat @ I @ ( set_or1269000886237332187st_nat @ L2 @ U ) )
      = ( ( ord_less_eq_nat @ L2 @ I )
        & ( ord_less_eq_nat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_3554_atLeastAtMost__iff,axiom,
    ! [I: int,L2: int,U: int] :
      ( ( member_int @ I @ ( set_or1266510415728281911st_int @ L2 @ U ) )
      = ( ( ord_less_eq_int @ L2 @ I )
        & ( ord_less_eq_int @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_3555_atLeastAtMost__iff,axiom,
    ! [I: real,L2: real,U: real] :
      ( ( member_real @ I @ ( set_or1222579329274155063t_real @ L2 @ U ) )
      = ( ( ord_less_eq_real @ L2 @ I )
        & ( ord_less_eq_real @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_3556_Icc__eq__Icc,axiom,
    ! [L2: set_nat,H2: set_nat,L3: set_nat,H3: set_nat] :
      ( ( ( set_or4548717258645045905et_nat @ L2 @ H2 )
        = ( set_or4548717258645045905et_nat @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_set_nat @ L2 @ H2 )
          & ~ ( ord_less_eq_set_nat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_3557_Icc__eq__Icc,axiom,
    ! [L2: rat,H2: rat,L3: rat,H3: rat] :
      ( ( ( set_or633870826150836451st_rat @ L2 @ H2 )
        = ( set_or633870826150836451st_rat @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_rat @ L2 @ H2 )
          & ~ ( ord_less_eq_rat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_3558_Icc__eq__Icc,axiom,
    ! [L2: num,H2: num,L3: num,H3: num] :
      ( ( ( set_or7049704709247886629st_num @ L2 @ H2 )
        = ( set_or7049704709247886629st_num @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_num @ L2 @ H2 )
          & ~ ( ord_less_eq_num @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_3559_Icc__eq__Icc,axiom,
    ! [L2: nat,H2: nat,L3: nat,H3: nat] :
      ( ( ( set_or1269000886237332187st_nat @ L2 @ H2 )
        = ( set_or1269000886237332187st_nat @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_nat @ L2 @ H2 )
          & ~ ( ord_less_eq_nat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_3560_Icc__eq__Icc,axiom,
    ! [L2: int,H2: int,L3: int,H3: int] :
      ( ( ( set_or1266510415728281911st_int @ L2 @ H2 )
        = ( set_or1266510415728281911st_int @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_int @ L2 @ H2 )
          & ~ ( ord_less_eq_int @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_3561_Icc__eq__Icc,axiom,
    ! [L2: real,H2: real,L3: real,H3: real] :
      ( ( ( set_or1222579329274155063t_real @ L2 @ H2 )
        = ( set_or1222579329274155063t_real @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_real @ L2 @ H2 )
          & ~ ( ord_less_eq_real @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_3562_aset_I2_J,axiom,
    ! [D4: int,A2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ A2 )
                 => ( X3
                   != ( minus_minus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( plus_plus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( plus_plus_int @ X3 @ D4 ) ) ) )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
             => ( ( P @ ( plus_plus_int @ X4 @ D4 ) )
                | ( Q @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_3563_aset_I1_J,axiom,
    ! [D4: int,A2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ A2 )
                 => ( X3
                   != ( minus_minus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( plus_plus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( plus_plus_int @ X3 @ D4 ) ) ) )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
             => ( ( P @ ( plus_plus_int @ X4 @ D4 ) )
                & ( Q @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_3564_bset_I2_J,axiom,
    ! [D4: int,B2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ B2 )
                 => ( X3
                   != ( plus_plus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( minus_minus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B2 )
                   => ( X3
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( minus_minus_int @ X3 @ D4 ) ) ) )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B2 )
                   => ( X4
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
             => ( ( P @ ( minus_minus_int @ X4 @ D4 ) )
                | ( Q @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_3565_bset_I1_J,axiom,
    ! [D4: int,B2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ B2 )
                 => ( X3
                   != ( plus_plus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( minus_minus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B2 )
                   => ( X3
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( minus_minus_int @ X3 @ D4 ) ) ) )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B2 )
                   => ( X4
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
             => ( ( P @ ( minus_minus_int @ X4 @ D4 ) )
                & ( Q @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_3566_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ~ ( ord_less_real @ T @ X4 ) ) ).

% minf(7)
thf(fact_3567_minf_I7_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ~ ( ord_less_rat @ T @ X4 ) ) ).

% minf(7)
thf(fact_3568_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z5 )
     => ~ ( ord_less_num @ T @ X4 ) ) ).

% minf(7)
thf(fact_3569_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ~ ( ord_less_nat @ T @ X4 ) ) ).

% minf(7)
thf(fact_3570_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ~ ( ord_less_int @ T @ X4 ) ) ).

% minf(7)
thf(fact_3571_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ( ord_less_real @ X4 @ T ) ) ).

% minf(5)
thf(fact_3572_minf_I5_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ( ord_less_rat @ X4 @ T ) ) ).

% minf(5)
thf(fact_3573_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z5 )
     => ( ord_less_num @ X4 @ T ) ) ).

% minf(5)
thf(fact_3574_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ( ord_less_nat @ X4 @ T ) ) ).

% minf(5)
thf(fact_3575_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ( ord_less_int @ X4 @ T ) ) ).

% minf(5)
thf(fact_3576_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_3577_minf_I4_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_3578_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_3579_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_3580_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_3581_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_3582_minf_I3_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_3583_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_3584_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_3585_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_3586_minf_I2_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_3587_minf_I2_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X3: rat] :
          ( ( ord_less_rat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_3588_minf_I2_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_3589_minf_I2_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_3590_minf_I2_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_3591_minf_I1_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_3592_minf_I1_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X3: rat] :
          ( ( ord_less_rat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_3593_minf_I1_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_3594_minf_I1_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_3595_minf_I1_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z5 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_3596_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ( ord_less_real @ T @ X4 ) ) ).

% pinf(7)
thf(fact_3597_pinf_I7_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ( ord_less_rat @ T @ X4 ) ) ).

% pinf(7)
thf(fact_3598_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z5 @ X4 )
     => ( ord_less_num @ T @ X4 ) ) ).

% pinf(7)
thf(fact_3599_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ( ord_less_nat @ T @ X4 ) ) ).

% pinf(7)
thf(fact_3600_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ( ord_less_int @ T @ X4 ) ) ).

% pinf(7)
thf(fact_3601_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ~ ( ord_less_real @ X4 @ T ) ) ).

% pinf(5)
thf(fact_3602_pinf_I5_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ~ ( ord_less_rat @ X4 @ T ) ) ).

% pinf(5)
thf(fact_3603_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z5 @ X4 )
     => ~ ( ord_less_num @ X4 @ T ) ) ).

% pinf(5)
thf(fact_3604_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ~ ( ord_less_nat @ X4 @ T ) ) ).

% pinf(5)
thf(fact_3605_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ~ ( ord_less_int @ X4 @ T ) ) ).

% pinf(5)
thf(fact_3606_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_3607_pinf_I4_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_3608_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_3609_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_3610_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_3611_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_3612_pinf_I3_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_3613_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_3614_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_3615_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_3616_pinf_I2_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_3617_pinf_I2_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X3: rat] :
          ( ( ord_less_rat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_3618_pinf_I2_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_3619_pinf_I2_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_3620_pinf_I2_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                | ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_3621_pinf_I1_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_3622_pinf_I1_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X3: rat] :
          ( ( ord_less_rat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_3623_pinf_I1_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_3624_pinf_I1_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_3625_pinf_I1_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P6 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q6 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z5 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q @ X4 ) )
              = ( ( P6 @ X4 )
                & ( Q6 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_3626_bounded__Max__nat,axiom,
    ! [P: nat > $o,X2: nat,M5: nat] :
      ( ( P @ X2 )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M5 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X4: nat] :
                    ( ( P @ X4 )
                   => ( ord_less_eq_nat @ X4 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_3627_periodic__finite__ex,axiom,
    ! [D2: int,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X3: int,K3: int] :
            ( ( P @ X3 )
            = ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
       => ( ( ? [X5: int] : ( P @ X5 ) )
          = ( ? [X: int] :
                ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D2 ) )
                & ( P @ X ) ) ) ) ) ) ).

% periodic_finite_ex
thf(fact_3628_aset_I7_J,axiom,
    ! [D4: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X4
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ T @ X4 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ).

% aset(7)
thf(fact_3629_aset_I5_J,axiom,
    ! [D4: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ A2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ X4 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_3630_aset_I4_J,axiom,
    ! [D4: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ A2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X4 != T )
             => ( ( plus_plus_int @ X4 @ D4 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_3631_aset_I3_J,axiom,
    ! [D4: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X4 = T )
             => ( ( plus_plus_int @ X4 @ D4 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_3632_bset_I7_J,axiom,
    ! [D4: int,T: int,B2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ B2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B2 )
                   => ( X4
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ T @ X4 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ).

% bset(7)
thf(fact_3633_bset_I5_J,axiom,
    ! [D4: int,B2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B2 )
                 => ( X4
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ X4 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_3634_bset_I4_J,axiom,
    ! [D4: int,T: int,B2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ B2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B2 )
                   => ( X4
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X4 != T )
             => ( ( minus_minus_int @ X4 @ D4 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_3635_bset_I3_J,axiom,
    ! [D4: int,T: int,B2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B2 )
                   => ( X4
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X4 = T )
             => ( ( minus_minus_int @ X4 @ D4 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_3636_aset_I8_J,axiom,
    ! [D4: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X4
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ T @ X4 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ).

% aset(8)
thf(fact_3637_aset_I6_J,axiom,
    ! [D4: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ X4 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_3638_bset_I8_J,axiom,
    ! [D4: int,T: int,B2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B2 )
       => ! [X4: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B2 )
                   => ( X4
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ T @ X4 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ).

% bset(8)
thf(fact_3639_bset_I6_J,axiom,
    ! [D4: int,B2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B2 )
                 => ( X4
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ X4 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_3640_cppi,axiom,
    ! [D4: int,P: int > $o,P6: int > $o,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z4 @ X3 )
           => ( ( P @ X3 )
              = ( P6 @ X3 ) ) )
       => ( ! [X3: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                 => ! [Xb: int] :
                      ( ( member_int @ Xb @ A2 )
                     => ( X3
                       != ( minus_minus_int @ Xb @ Xa ) ) ) )
             => ( ( P @ X3 )
               => ( P @ ( plus_plus_int @ X3 @ D4 ) ) ) )
         => ( ! [X3: int,K3: int] :
                ( ( P6 @ X3 )
                = ( P6 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
           => ( ( ? [X5: int] : ( P @ X5 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ( P6 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ? [Y2: int] :
                        ( ( member_int @ Y2 @ A2 )
                        & ( P @ ( minus_minus_int @ Y2 @ X ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_3641_cpmi,axiom,
    ! [D4: int,P: int > $o,P6: int > $o,B2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z4 )
           => ( ( P @ X3 )
              = ( P6 @ X3 ) ) )
       => ( ! [X3: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                 => ! [Xb: int] :
                      ( ( member_int @ Xb @ B2 )
                     => ( X3
                       != ( plus_plus_int @ Xb @ Xa ) ) ) )
             => ( ( P @ X3 )
               => ( P @ ( minus_minus_int @ X3 @ D4 ) ) ) )
         => ( ! [X3: int,K3: int] :
                ( ( P6 @ X3 )
                = ( P6 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
           => ( ( ? [X5: int] : ( P @ X5 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ( P6 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ? [Y2: int] :
                        ( ( member_int @ Y2 @ B2 )
                        & ( P @ ( plus_plus_int @ Y2 @ X ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_3642_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ~ ( ord_less_eq_real @ T @ X4 ) ) ).

% minf(8)
thf(fact_3643_minf_I8_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ~ ( ord_less_eq_rat @ T @ X4 ) ) ).

% minf(8)
thf(fact_3644_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z5 )
     => ~ ( ord_less_eq_num @ T @ X4 ) ) ).

% minf(8)
thf(fact_3645_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ~ ( ord_less_eq_nat @ T @ X4 ) ) ).

% minf(8)
thf(fact_3646_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ~ ( ord_less_eq_int @ T @ X4 ) ) ).

% minf(8)
thf(fact_3647_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ( ord_less_eq_real @ X4 @ T ) ) ).

% minf(6)
thf(fact_3648_minf_I6_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ( ord_less_eq_rat @ X4 @ T ) ) ).

% minf(6)
thf(fact_3649_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z5 )
     => ( ord_less_eq_num @ X4 @ T ) ) ).

% minf(6)
thf(fact_3650_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ( ord_less_eq_nat @ X4 @ T ) ) ).

% minf(6)
thf(fact_3651_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ( ord_less_eq_int @ X4 @ T ) ) ).

% minf(6)
thf(fact_3652_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ( ord_less_eq_real @ T @ X4 ) ) ).

% pinf(8)
thf(fact_3653_pinf_I8_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ( ord_less_eq_rat @ T @ X4 ) ) ).

% pinf(8)
thf(fact_3654_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z5 @ X4 )
     => ( ord_less_eq_num @ T @ X4 ) ) ).

% pinf(8)
thf(fact_3655_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ( ord_less_eq_nat @ T @ X4 ) ) ).

% pinf(8)
thf(fact_3656_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ( ord_less_eq_int @ T @ X4 ) ) ).

% pinf(8)
thf(fact_3657_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ~ ( ord_less_eq_real @ X4 @ T ) ) ).

% pinf(6)
thf(fact_3658_pinf_I6_J,axiom,
    ! [T: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ~ ( ord_less_eq_rat @ X4 @ T ) ) ).

% pinf(6)
thf(fact_3659_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z5: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z5 @ X4 )
     => ~ ( ord_less_eq_num @ X4 @ T ) ) ).

% pinf(6)
thf(fact_3660_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ~ ( ord_less_eq_nat @ X4 @ T ) ) ).

% pinf(6)
thf(fact_3661_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ~ ( ord_less_eq_int @ X4 @ T ) ) ).

% pinf(6)
thf(fact_3662_inf__period_I1_J,axiom,
    ! [P: real > $o,D4: real,Q: real > $o] :
      ( ! [X3: real,K3: real] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
     => ( ! [X3: real,K3: real] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
       => ! [X4: real,K4: real] :
            ( ( ( P @ X4 )
              & ( Q @ X4 ) )
            = ( ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) )
              & ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_3663_inf__period_I1_J,axiom,
    ! [P: rat > $o,D4: rat,Q: rat > $o] :
      ( ! [X3: rat,K3: rat] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
     => ( ! [X3: rat,K3: rat] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
       => ! [X4: rat,K4: rat] :
            ( ( ( P @ X4 )
              & ( Q @ X4 ) )
            = ( ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) )
              & ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_3664_inf__period_I1_J,axiom,
    ! [P: int > $o,D4: int,Q: int > $o] :
      ( ! [X3: int,K3: int] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
     => ( ! [X3: int,K3: int] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
       => ! [X4: int,K4: int] :
            ( ( ( P @ X4 )
              & ( Q @ X4 ) )
            = ( ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) )
              & ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_3665_inf__period_I2_J,axiom,
    ! [P: real > $o,D4: real,Q: real > $o] :
      ( ! [X3: real,K3: real] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
     => ( ! [X3: real,K3: real] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
       => ! [X4: real,K4: real] :
            ( ( ( P @ X4 )
              | ( Q @ X4 ) )
            = ( ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) )
              | ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_3666_inf__period_I2_J,axiom,
    ! [P: rat > $o,D4: rat,Q: rat > $o] :
      ( ! [X3: rat,K3: rat] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
     => ( ! [X3: rat,K3: rat] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
       => ! [X4: rat,K4: rat] :
            ( ( ( P @ X4 )
              | ( Q @ X4 ) )
            = ( ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) )
              | ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_3667_inf__period_I2_J,axiom,
    ! [P: int > $o,D4: int,Q: int > $o] :
      ( ! [X3: int,K3: int] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
     => ( ! [X3: int,K3: int] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
       => ! [X4: int,K4: int] :
            ( ( ( P @ X4 )
              | ( Q @ X4 ) )
            = ( ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) )
              | ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_3668_bounded__nat__set__is__finite,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ N4 )
         => ( ord_less_nat @ X3 @ N2 ) )
     => ( finite_finite_nat @ N4 ) ) ).

% bounded_nat_set_is_finite
thf(fact_3669_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N6: set_nat] :
        ? [M3: nat] :
        ! [X: nat] :
          ( ( member_nat @ X @ N6 )
         => ( ord_less_nat @ X @ M3 ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_3670_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N6: set_nat] :
        ? [M3: nat] :
        ! [X: nat] :
          ( ( member_nat @ X @ N6 )
         => ( ord_less_eq_nat @ X @ M3 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_3671_finite__M__bounded__by__nat,axiom,
    ! [P: nat > $o,I: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [K2: nat] :
            ( ( P @ K2 )
            & ( ord_less_nat @ K2 @ I ) ) ) ) ).

% finite_M_bounded_by_nat
thf(fact_3672_finite__less__ub,axiom,
    ! [F: nat > nat,U: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ N3 @ ( F @ N3 ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_3673_infinite__Icc,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_3674_infinite__Icc,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_3675_atLeastatMost__psubset__iff,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat,D2: set_nat] :
      ( ( ord_less_set_set_nat @ ( set_or4548717258645045905et_nat @ A @ B ) @ ( set_or4548717258645045905et_nat @ C @ D2 ) )
      = ( ( ~ ( ord_less_eq_set_nat @ A @ B )
          | ( ( ord_less_eq_set_nat @ C @ A )
            & ( ord_less_eq_set_nat @ B @ D2 )
            & ( ( ord_less_set_nat @ C @ A )
              | ( ord_less_set_nat @ B @ D2 ) ) ) )
        & ( ord_less_eq_set_nat @ C @ D2 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_3676_atLeastatMost__psubset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ord_less_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D2 ) )
      = ( ( ~ ( ord_less_eq_rat @ A @ B )
          | ( ( ord_less_eq_rat @ C @ A )
            & ( ord_less_eq_rat @ B @ D2 )
            & ( ( ord_less_rat @ C @ A )
              | ( ord_less_rat @ B @ D2 ) ) ) )
        & ( ord_less_eq_rat @ C @ D2 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_3677_atLeastatMost__psubset__iff,axiom,
    ! [A: num,B: num,C: num,D2: num] :
      ( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D2 ) )
      = ( ( ~ ( ord_less_eq_num @ A @ B )
          | ( ( ord_less_eq_num @ C @ A )
            & ( ord_less_eq_num @ B @ D2 )
            & ( ( ord_less_num @ C @ A )
              | ( ord_less_num @ B @ D2 ) ) ) )
        & ( ord_less_eq_num @ C @ D2 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_3678_atLeastatMost__psubset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D2 ) )
      = ( ( ~ ( ord_less_eq_nat @ A @ B )
          | ( ( ord_less_eq_nat @ C @ A )
            & ( ord_less_eq_nat @ B @ D2 )
            & ( ( ord_less_nat @ C @ A )
              | ( ord_less_nat @ B @ D2 ) ) ) )
        & ( ord_less_eq_nat @ C @ D2 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_3679_atLeastatMost__psubset__iff,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D2 ) )
      = ( ( ~ ( ord_less_eq_int @ A @ B )
          | ( ( ord_less_eq_int @ C @ A )
            & ( ord_less_eq_int @ B @ D2 )
            & ( ( ord_less_int @ C @ A )
              | ( ord_less_int @ B @ D2 ) ) ) )
        & ( ord_less_eq_int @ C @ D2 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_3680_atLeastatMost__psubset__iff,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D2 ) )
      = ( ( ~ ( ord_less_eq_real @ A @ B )
          | ( ( ord_less_eq_real @ C @ A )
            & ( ord_less_eq_real @ B @ D2 )
            & ( ( ord_less_real @ C @ A )
              | ( ord_less_real @ B @ D2 ) ) ) )
        & ( ord_less_eq_real @ C @ D2 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_3681_minusinfinity,axiom,
    ! [D2: int,P1: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X3: int,K3: int] :
            ( ( P1 @ X3 )
            = ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
       => ( ? [Z4: int] :
            ! [X3: int] :
              ( ( ord_less_int @ X3 @ Z4 )
             => ( ( P @ X3 )
                = ( P1 @ X3 ) ) )
         => ( ? [X_12: int] : ( P1 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% minusinfinity
thf(fact_3682_plusinfinity,axiom,
    ! [D2: int,P6: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X3: int,K3: int] :
            ( ( P6 @ X3 )
            = ( P6 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
       => ( ? [Z4: int] :
            ! [X3: int] :
              ( ( ord_less_int @ Z4 @ X3 )
             => ( ( P @ X3 )
                = ( P6 @ X3 ) ) )
         => ( ? [X_12: int] : ( P6 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% plusinfinity
thf(fact_3683_subset__eq__atLeast0__atMost__finite,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_atMost_finite
thf(fact_3684_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A5: real,B5: real,C2: real] :
            ( ( P @ A5 @ B5 )
           => ( ( P @ B5 @ C2 )
             => ( ( ord_less_eq_real @ A5 @ B5 )
               => ( ( ord_less_eq_real @ B5 @ C2 )
                 => ( P @ A5 @ C2 ) ) ) ) )
       => ( ! [X3: real] :
              ( ( ord_less_eq_real @ A @ X3 )
             => ( ( ord_less_eq_real @ X3 @ B )
               => ? [D5: real] :
                    ( ( ord_less_real @ zero_zero_real @ D5 )
                    & ! [A5: real,B5: real] :
                        ( ( ( ord_less_eq_real @ A5 @ X3 )
                          & ( ord_less_eq_real @ X3 @ B5 )
                          & ( ord_less_real @ ( minus_minus_real @ B5 @ A5 ) @ D5 ) )
                       => ( P @ A5 @ B5 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_3685_mult__le__cancel__iff2,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ X2 ) @ ( times_times_real @ Z @ Y ) )
        = ( ord_less_eq_real @ X2 @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_3686_mult__le__cancel__iff2,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ X2 ) @ ( times_times_rat @ Z @ Y ) )
        = ( ord_less_eq_rat @ X2 @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_3687_mult__le__cancel__iff2,axiom,
    ! [Z: int,X2: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z @ X2 ) @ ( times_times_int @ Z @ Y ) )
        = ( ord_less_eq_int @ X2 @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_3688_mult__le__cancel__iff1,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y @ Z ) )
        = ( ord_less_eq_real @ X2 @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_3689_mult__le__cancel__iff1,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y @ Z ) )
        = ( ord_less_eq_rat @ X2 @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_3690_mult__le__cancel__iff1,axiom,
    ! [Z: int,X2: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ X2 @ Z ) @ ( times_times_int @ Y @ Z ) )
        = ( ord_less_eq_int @ X2 @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_3691_divides__aux__eq,axiom,
    ! [Q2: nat,R: nat] :
      ( ( unique6322359934112328802ux_nat @ ( product_Pair_nat_nat @ Q2 @ R ) )
      = ( R = zero_zero_nat ) ) ).

% divides_aux_eq
thf(fact_3692_divides__aux__eq,axiom,
    ! [Q2: int,R: int] :
      ( ( unique6319869463603278526ux_int @ ( product_Pair_int_int @ Q2 @ R ) )
      = ( R = zero_zero_int ) ) ).

% divides_aux_eq
thf(fact_3693_neg__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ B @ zero_zero_int )
     => ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q2 @ R ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R ) @ one_one_int ) ) ) ) ) ).

% neg_eucl_rel_int_mult_2
thf(fact_3694_pos__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R ) ) ) ) ) ) ).

% pos_eucl_rel_int_mult_2
thf(fact_3695_unique__remainder,axiom,
    ! [A: int,B: int,Q2: int,R: int,Q5: int,R4: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
       => ( R = R4 ) ) ) ).

% unique_remainder
thf(fact_3696_unique__quotient,axiom,
    ! [A: int,B: int,Q2: int,R: int,Q5: int,R4: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
       => ( Q2 = Q5 ) ) ) ).

% unique_quotient
thf(fact_3697_eucl__rel__int__by0,axiom,
    ! [K: int] : ( eucl_rel_int @ K @ zero_zero_int @ ( product_Pair_int_int @ zero_zero_int @ K ) ) ).

% eucl_rel_int_by0
thf(fact_3698_div__int__unique,axiom,
    ! [K: int,L2: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( divide_divide_int @ K @ L2 )
        = Q2 ) ) ).

% div_int_unique
thf(fact_3699_mod__int__unique,axiom,
    ! [K: int,L2: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( modulo_modulo_int @ K @ L2 )
        = R ) ) ).

% mod_int_unique
thf(fact_3700_eucl__rel__int__dividesI,axiom,
    ! [L2: int,K: int,Q2: int] :
      ( ( L2 != zero_zero_int )
     => ( ( K
          = ( times_times_int @ Q2 @ L2 ) )
       => ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ zero_zero_int ) ) ) ) ).

% eucl_rel_int_dividesI
thf(fact_3701_eucl__rel__int,axiom,
    ! [K: int,L2: int] : ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ ( divide_divide_int @ K @ L2 ) @ ( modulo_modulo_int @ K @ L2 ) ) ) ).

% eucl_rel_int
thf(fact_3702_eucl__rel__int__iff,axiom,
    ! [K: int,L2: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R ) )
      = ( ( K
          = ( plus_plus_int @ ( times_times_int @ L2 @ Q2 ) @ R ) )
        & ( ( ord_less_int @ zero_zero_int @ L2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R )
            & ( ord_less_int @ R @ L2 ) ) )
        & ( ~ ( ord_less_int @ zero_zero_int @ L2 )
         => ( ( ( ord_less_int @ L2 @ zero_zero_int )
             => ( ( ord_less_int @ L2 @ R )
                & ( ord_less_eq_int @ R @ zero_zero_int ) ) )
            & ( ~ ( ord_less_int @ L2 @ zero_zero_int )
             => ( Q2 = zero_zero_int ) ) ) ) ) ) ).

% eucl_rel_int_iff
thf(fact_3703_mult__less__iff1,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y @ Z ) )
        = ( ord_less_real @ X2 @ Y ) ) ) ).

% mult_less_iff1
thf(fact_3704_mult__less__iff1,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y @ Z ) )
        = ( ord_less_rat @ X2 @ Y ) ) ) ).

% mult_less_iff1
thf(fact_3705_mult__less__iff1,axiom,
    ! [Z: int,X2: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_int @ ( times_times_int @ X2 @ Z ) @ ( times_times_int @ Y @ Z ) )
        = ( ord_less_int @ X2 @ Y ) ) ) ).

% mult_less_iff1
thf(fact_3706_gcd__nat__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N2: nat] :
      ( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
     => ( ! [M4: nat,N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ( P @ N3 @ ( modulo_modulo_nat @ M4 @ N3 ) )
             => ( P @ M4 @ N3 ) ) )
       => ( P @ M @ N2 ) ) ) ).

% gcd_nat_induct
thf(fact_3707_concat__bit__Suc,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_concat_bit @ ( suc @ N2 ) @ K @ L2 )
      = ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N2 @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L2 ) ) ) ) ).

% concat_bit_Suc
thf(fact_3708_dbl__simps_I3_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_3709_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_3710_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_3711_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_3712_even__succ__mod__exp,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
          = ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3713_even__succ__mod__exp,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
          = ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3714_even__succ__mod__exp,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
          = ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3715_option_Osize__gen_I2_J,axiom,
    ! [X2: nat > nat,X22: nat] :
      ( ( size_option_nat @ X2 @ ( some_nat @ X22 ) )
      = ( plus_plus_nat @ ( X2 @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_3716_option_Osize__gen_I2_J,axiom,
    ! [X2: product_prod_nat_nat > nat,X22: product_prod_nat_nat] :
      ( ( size_o8335143837870341156at_nat @ X2 @ ( some_P7363390416028606310at_nat @ X22 ) )
      = ( plus_plus_nat @ ( X2 @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_3717_option_Osize__gen_I2_J,axiom,
    ! [X2: num > nat,X22: num] :
      ( ( size_option_num @ X2 @ ( some_num @ X22 ) )
      = ( plus_plus_nat @ ( X2 @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_3718_even__succ__div__exp,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
          = ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_3719_even__succ__div__exp,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_3720_even__succ__div__exp,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_3721_signed__take__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_3722_signed__take__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_3723_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_3724_dvd__0__right,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ zero_z3403309356797280102nteger ) ).

% dvd_0_right
thf(fact_3725_dvd__0__right,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ A @ zero_zero_complex ) ).

% dvd_0_right
thf(fact_3726_dvd__0__right,axiom,
    ! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).

% dvd_0_right
thf(fact_3727_dvd__0__right,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).

% dvd_0_right
thf(fact_3728_dvd__0__right,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_3729_dvd__0__right,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).

% dvd_0_right
thf(fact_3730_dvd__0__left__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left_iff
thf(fact_3731_dvd__0__left__iff,axiom,
    ! [A: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A )
      = ( A = zero_zero_complex ) ) ).

% dvd_0_left_iff
thf(fact_3732_dvd__0__left__iff,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
      = ( A = zero_zero_real ) ) ).

% dvd_0_left_iff
thf(fact_3733_dvd__0__left__iff,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
      = ( A = zero_zero_rat ) ) ).

% dvd_0_left_iff
thf(fact_3734_dvd__0__left__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_3735_dvd__0__left__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
      = ( A = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_3736_dvd__add__triv__left__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3737_dvd__add__triv__left__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3738_dvd__add__triv__left__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3739_dvd__add__triv__left__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3740_dvd__add__triv__left__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3741_dvd__add__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ A ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3742_dvd__add__triv__right__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3743_dvd__add__triv__right__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3744_dvd__add__triv__right__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3745_dvd__add__triv__right__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3746_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_3747_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_3748_div__dvd__div,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ B @ A ) @ ( divide6298287555418463151nteger @ C @ A ) )
          = ( dvd_dvd_Code_integer @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_3749_div__dvd__div,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
          = ( dvd_dvd_nat @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_3750_div__dvd__div,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
          = ( dvd_dvd_int @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_3751_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_3752_signed__take__bit__of__0,axiom,
    ! [N2: nat] :
      ( ( bit_ri631733984087533419it_int @ N2 @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_3753_concat__bit__0,axiom,
    ! [K: int,L2: int] :
      ( ( bit_concat_bit @ zero_zero_nat @ K @ L2 )
      = L2 ) ).

% concat_bit_0
thf(fact_3754_dbl__simps_I2_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% dbl_simps(2)
thf(fact_3755_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_3756_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% dbl_simps(2)
thf(fact_3757_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_3758_dvd__times__right__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3759_dvd__times__right__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3760_dvd__times__right__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3761_dvd__times__left__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3762_dvd__times__left__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3763_dvd__times__left__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3764_dvd__mult__cancel__right,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3765_dvd__mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3766_dvd__mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3767_dvd__mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3768_dvd__mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3769_dvd__mult__cancel__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3770_dvd__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3771_dvd__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3772_dvd__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3773_dvd__mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3774_unit__prod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_prod
thf(fact_3775_unit__prod,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_prod
thf(fact_3776_unit__prod,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_prod
thf(fact_3777_dvd__add__times__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ ( times_3573771949741848930nteger @ C @ A ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3778_dvd__add__times__triv__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3779_dvd__add__times__triv__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3780_dvd__add__times__triv__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3781_dvd__add__times__triv__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3782_dvd__add__times__triv__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ A ) @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3783_dvd__add__times__triv__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3784_dvd__add__times__triv__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3785_dvd__add__times__triv__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3786_dvd__add__times__triv__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3787_dvd__mult__div__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_3788_dvd__mult__div__cancel,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_3789_dvd__mult__div__cancel,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_3790_dvd__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_3791_dvd__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_3792_dvd__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_3793_unit__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_div
thf(fact_3794_unit__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_3795_unit__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_3796_unit__div__1__unit,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) @ one_one_Code_integer ) ) ).

% unit_div_1_unit
thf(fact_3797_unit__div__1__unit,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_3798_unit__div__1__unit,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_3799_unit__div__1__div__1,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_3800_unit__div__1__div__1,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_3801_unit__div__1__div__1,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_3802_div__add,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_3803_div__add,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_3804_div__add,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_3805_div__diff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( minus_8373710615458151222nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_3806_div__diff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_3807_dvd__imp__mod__0,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( modulo_modulo_nat @ B @ A )
        = zero_zero_nat ) ) ).

% dvd_imp_mod_0
thf(fact_3808_dvd__imp__mod__0,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( modulo_modulo_int @ B @ A )
        = zero_zero_int ) ) ).

% dvd_imp_mod_0
thf(fact_3809_dvd__imp__mod__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( modulo364778990260209775nteger @ B @ A )
        = zero_z3403309356797280102nteger ) ) ).

% dvd_imp_mod_0
thf(fact_3810_signed__take__bit__Suc__1,axiom,
    ! [N2: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_3811_signed__take__bit__numeral__of__1,axiom,
    ! [K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_3812_concat__bit__nonnegative__iff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N2 @ K @ L2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ).

% concat_bit_nonnegative_iff
thf(fact_3813_concat__bit__negative__iff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( ord_less_int @ ( bit_concat_bit @ N2 @ K @ L2 ) @ zero_zero_int )
      = ( ord_less_int @ L2 @ zero_zero_int ) ) ).

% concat_bit_negative_iff
thf(fact_3814_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_3815_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_3816_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_3817_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_3818_unit__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_3819_unit__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_3820_unit__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_3821_unit__mult__div__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = ( divide6298287555418463151nteger @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_3822_unit__mult__div__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
        = ( divide_divide_nat @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_3823_unit__mult__div__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_3824_even__Suc,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% even_Suc
thf(fact_3825_even__Suc__Suc__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N2 ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_Suc_Suc_iff
thf(fact_3826_pow__divides__pow__iff,axiom,
    ! [N2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_3827_pow__divides__pow__iff,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_3828_even__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3829_even__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3830_even__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3831_odd__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_3832_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_3833_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_3834_even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_3835_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_3836_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_3837_even__mod__2__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3838_even__mod__2__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3839_even__mod__2__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3840_odd__Suc__div__two,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_3841_even__Suc__div__two,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_3842_signed__take__bit__Suc__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_bit0
thf(fact_3843_zero__le__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_3844_zero__le__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_3845_zero__le__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_3846_power__less__zero__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ ( power_power_real @ A @ N2 ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq
thf(fact_3847_power__less__zero__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq
thf(fact_3848_power__less__zero__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_3849_power__less__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_3850_power__less__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_3851_power__less__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_3852_even__plus__one__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_3853_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_3854_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_3855_even__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).

% even_diff
thf(fact_3856_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_3857_odd__Suc__minus__one,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
        = N2 ) ) ).

% odd_Suc_minus_one
thf(fact_3858_even__diff__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ M @ N2 )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).

% even_diff_nat
thf(fact_3859_zero__less__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_3860_zero__less__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_3861_zero__less__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_3862_odd__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% odd_succ_div_two
thf(fact_3863_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_3864_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_3865_even__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_3866_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_3867_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_3868_even__succ__div__2,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_3869_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_3870_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_3871_even__power,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N2 ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% even_power
thf(fact_3872_even__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% even_power
thf(fact_3873_even__power,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N2 ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% even_power
thf(fact_3874_odd__two__times__div__two__nat,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ).

% odd_two_times_div_two_nat
thf(fact_3875_odd__two__times__div__two__succ,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3876_odd__two__times__div__two__succ,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3877_odd__two__times__div__two__succ,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3878_power__le__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_3879_power__le__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_3880_power__le__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_3881_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) @ one_one_Code_integer ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_3882_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_3883_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_3884_division__decomp,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
     => ? [B8: nat,C5: nat] :
          ( ( A
            = ( times_times_nat @ B8 @ C5 ) )
          & ( dvd_dvd_nat @ B8 @ B )
          & ( dvd_dvd_nat @ C5 @ C ) ) ) ).

% division_decomp
thf(fact_3885_division__decomp,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
     => ? [B8: int,C5: int] :
          ( ( A
            = ( times_times_int @ B8 @ C5 ) )
          & ( dvd_dvd_int @ B8 @ B )
          & ( dvd_dvd_int @ C5 @ C ) ) ) ).

% division_decomp
thf(fact_3886_dvd__productE,axiom,
    ! [P4: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ P4 @ ( times_times_nat @ A @ B ) )
     => ~ ! [X3: nat,Y3: nat] :
            ( ( P4
              = ( times_times_nat @ X3 @ Y3 ) )
           => ( ( dvd_dvd_nat @ X3 @ A )
             => ~ ( dvd_dvd_nat @ Y3 @ B ) ) ) ) ).

% dvd_productE
thf(fact_3887_dvd__productE,axiom,
    ! [P4: int,A: int,B: int] :
      ( ( dvd_dvd_int @ P4 @ ( times_times_int @ A @ B ) )
     => ~ ! [X3: int,Y3: int] :
            ( ( P4
              = ( times_times_int @ X3 @ Y3 ) )
           => ( ( dvd_dvd_int @ X3 @ A )
             => ~ ( dvd_dvd_int @ Y3 @ B ) ) ) ) ).

% dvd_productE
thf(fact_3888_dvd__refl,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).

% dvd_refl
thf(fact_3889_dvd__refl,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ A ) ).

% dvd_refl
thf(fact_3890_dvd__refl,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ A ) ).

% dvd_refl
thf(fact_3891_dvd__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_trans
thf(fact_3892_dvd__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ C )
       => ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_trans
thf(fact_3893_dvd__trans,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ C )
       => ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_trans
thf(fact_3894_dvd__field__iff,axiom,
    ( dvd_dvd_complex
    = ( ^ [A3: complex,B3: complex] :
          ( ( A3 = zero_zero_complex )
         => ( B3 = zero_zero_complex ) ) ) ) ).

% dvd_field_iff
thf(fact_3895_dvd__field__iff,axiom,
    ( dvd_dvd_real
    = ( ^ [A3: real,B3: real] :
          ( ( A3 = zero_zero_real )
         => ( B3 = zero_zero_real ) ) ) ) ).

% dvd_field_iff
thf(fact_3896_dvd__field__iff,axiom,
    ( dvd_dvd_rat
    = ( ^ [A3: rat,B3: rat] :
          ( ( A3 = zero_zero_rat )
         => ( B3 = zero_zero_rat ) ) ) ) ).

% dvd_field_iff
thf(fact_3897_dvd__0__left,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
     => ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left
thf(fact_3898_dvd__0__left,axiom,
    ! [A: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A )
     => ( A = zero_zero_complex ) ) ).

% dvd_0_left
thf(fact_3899_dvd__0__left,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
     => ( A = zero_zero_real ) ) ).

% dvd_0_left
thf(fact_3900_dvd__0__left,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
     => ( A = zero_zero_rat ) ) ).

% dvd_0_left
thf(fact_3901_dvd__0__left,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_3902_dvd__0__left,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
     => ( A = zero_zero_int ) ) ).

% dvd_0_left
thf(fact_3903_dvd__triv__right,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3904_dvd__triv__right,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3905_dvd__triv__right,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3906_dvd__triv__right,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3907_dvd__triv__right,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3908_dvd__mult__right,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3909_dvd__mult__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3910_dvd__mult__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3911_dvd__mult__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3912_dvd__mult__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3913_mult__dvd__mono,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D2: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ C @ D2 )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D2 ) ) ) ) ).

% mult_dvd_mono
thf(fact_3914_mult__dvd__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ C @ D2 )
       => ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ).

% mult_dvd_mono
thf(fact_3915_mult__dvd__mono,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ C @ D2 )
       => ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ).

% mult_dvd_mono
thf(fact_3916_mult__dvd__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ C @ D2 )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ).

% mult_dvd_mono
thf(fact_3917_mult__dvd__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ C @ D2 )
       => ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ).

% mult_dvd_mono
thf(fact_3918_dvd__triv__left,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3919_dvd__triv__left,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3920_dvd__triv__left,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3921_dvd__triv__left,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3922_dvd__triv__left,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3923_dvd__mult__left,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3924_dvd__mult__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3925_dvd__mult__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3926_dvd__mult__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3927_dvd__mult__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3928_dvd__mult2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3929_dvd__mult2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3930_dvd__mult2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3931_dvd__mult2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3932_dvd__mult2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3933_dvd__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3934_dvd__mult,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3935_dvd__mult,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3936_dvd__mult,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3937_dvd__mult,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3938_dvd__def,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [B3: code_integer,A3: code_integer] :
        ? [K2: code_integer] :
          ( A3
          = ( times_3573771949741848930nteger @ B3 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_3939_dvd__def,axiom,
    ( dvd_dvd_real
    = ( ^ [B3: real,A3: real] :
        ? [K2: real] :
          ( A3
          = ( times_times_real @ B3 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_3940_dvd__def,axiom,
    ( dvd_dvd_rat
    = ( ^ [B3: rat,A3: rat] :
        ? [K2: rat] :
          ( A3
          = ( times_times_rat @ B3 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_3941_dvd__def,axiom,
    ( dvd_dvd_nat
    = ( ^ [B3: nat,A3: nat] :
        ? [K2: nat] :
          ( A3
          = ( times_times_nat @ B3 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_3942_dvd__def,axiom,
    ( dvd_dvd_int
    = ( ^ [B3: int,A3: int] :
        ? [K2: int] :
          ( A3
          = ( times_times_int @ B3 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_3943_dvdI,axiom,
    ! [A: code_integer,B: code_integer,K: code_integer] :
      ( ( A
        = ( times_3573771949741848930nteger @ B @ K ) )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% dvdI
thf(fact_3944_dvdI,axiom,
    ! [A: real,B: real,K: real] :
      ( ( A
        = ( times_times_real @ B @ K ) )
     => ( dvd_dvd_real @ B @ A ) ) ).

% dvdI
thf(fact_3945_dvdI,axiom,
    ! [A: rat,B: rat,K: rat] :
      ( ( A
        = ( times_times_rat @ B @ K ) )
     => ( dvd_dvd_rat @ B @ A ) ) ).

% dvdI
thf(fact_3946_dvdI,axiom,
    ! [A: nat,B: nat,K: nat] :
      ( ( A
        = ( times_times_nat @ B @ K ) )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% dvdI
thf(fact_3947_dvdI,axiom,
    ! [A: int,B: int,K: int] :
      ( ( A
        = ( times_times_int @ B @ K ) )
     => ( dvd_dvd_int @ B @ A ) ) ).

% dvdI
thf(fact_3948_dvdE,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ~ ! [K3: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ B @ K3 ) ) ) ).

% dvdE
thf(fact_3949_dvdE,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ~ ! [K3: real] :
            ( A
           != ( times_times_real @ B @ K3 ) ) ) ).

% dvdE
thf(fact_3950_dvdE,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ~ ! [K3: rat] :
            ( A
           != ( times_times_rat @ B @ K3 ) ) ) ).

% dvdE
thf(fact_3951_dvdE,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ~ ! [K3: nat] :
            ( A
           != ( times_times_nat @ B @ K3 ) ) ) ).

% dvdE
thf(fact_3952_dvdE,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ~ ! [K3: int] :
            ( A
           != ( times_times_int @ B @ K3 ) ) ) ).

% dvdE
thf(fact_3953_one__dvd,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ one_one_Code_integer @ A ) ).

% one_dvd
thf(fact_3954_one__dvd,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).

% one_dvd
thf(fact_3955_one__dvd,axiom,
    ! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).

% one_dvd
thf(fact_3956_one__dvd,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).

% one_dvd
thf(fact_3957_one__dvd,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).

% one_dvd
thf(fact_3958_one__dvd,axiom,
    ! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).

% one_dvd
thf(fact_3959_unit__imp__dvd,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_3960_unit__imp__dvd,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_3961_unit__imp__dvd,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_3962_dvd__unit__imp__unit,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ A @ one_one_Code_integer ) ) ) ).

% dvd_unit_imp_unit
thf(fact_3963_dvd__unit__imp__unit,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_3964_dvd__unit__imp__unit,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ A @ one_one_int ) ) ) ).

% dvd_unit_imp_unit
thf(fact_3965_dvd__add,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3966_dvd__add,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ C )
       => ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3967_dvd__add,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ C )
       => ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3968_dvd__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3969_dvd__add,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3970_dvd__add__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3971_dvd__add__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3972_dvd__add__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3973_dvd__add__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3974_dvd__add__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3975_dvd__add__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3976_dvd__add__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3977_dvd__add__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3978_dvd__add__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3979_dvd__add__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3980_dvd__diff,axiom,
    ! [X2: code_integer,Y: code_integer,Z: code_integer] :
      ( ( dvd_dvd_Code_integer @ X2 @ Y )
     => ( ( dvd_dvd_Code_integer @ X2 @ Z )
       => ( dvd_dvd_Code_integer @ X2 @ ( minus_8373710615458151222nteger @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_3981_dvd__diff,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( dvd_dvd_real @ X2 @ Y )
     => ( ( dvd_dvd_real @ X2 @ Z )
       => ( dvd_dvd_real @ X2 @ ( minus_minus_real @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_3982_dvd__diff,axiom,
    ! [X2: rat,Y: rat,Z: rat] :
      ( ( dvd_dvd_rat @ X2 @ Y )
     => ( ( dvd_dvd_rat @ X2 @ Z )
       => ( dvd_dvd_rat @ X2 @ ( minus_minus_rat @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_3983_dvd__diff,axiom,
    ! [X2: int,Y: int,Z: int] :
      ( ( dvd_dvd_int @ X2 @ Y )
     => ( ( dvd_dvd_int @ X2 @ Z )
       => ( dvd_dvd_int @ X2 @ ( minus_minus_int @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_3984_dvd__diff__commute,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ C @ B ) )
      = ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_3985_dvd__diff__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_3986_dvd__div__eq__iff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( ( divide6298287555418463151nteger @ A @ C )
            = ( divide6298287555418463151nteger @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3987_dvd__div__eq__iff,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ C @ A )
     => ( ( dvd_dvd_complex @ C @ B )
       => ( ( ( divide1717551699836669952omplex @ A @ C )
            = ( divide1717551699836669952omplex @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3988_dvd__div__eq__iff,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ C @ A )
     => ( ( dvd_dvd_real @ C @ B )
       => ( ( ( divide_divide_real @ A @ C )
            = ( divide_divide_real @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3989_dvd__div__eq__iff,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ C @ A )
     => ( ( dvd_dvd_rat @ C @ B )
       => ( ( ( divide_divide_rat @ A @ C )
            = ( divide_divide_rat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3990_dvd__div__eq__iff,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( ( divide_divide_nat @ A @ C )
            = ( divide_divide_nat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3991_dvd__div__eq__iff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( ( divide_divide_int @ A @ C )
            = ( divide_divide_int @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3992_dvd__div__eq__cancel,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ C )
        = ( divide6298287555418463151nteger @ B @ C ) )
     => ( ( dvd_dvd_Code_integer @ C @ A )
       => ( ( dvd_dvd_Code_integer @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3993_dvd__div__eq__cancel,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
     => ( ( dvd_dvd_complex @ C @ A )
       => ( ( dvd_dvd_complex @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3994_dvd__div__eq__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
     => ( ( dvd_dvd_real @ C @ A )
       => ( ( dvd_dvd_real @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3995_dvd__div__eq__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
     => ( ( dvd_dvd_rat @ C @ A )
       => ( ( dvd_dvd_rat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3996_dvd__div__eq__cancel,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( divide_divide_nat @ A @ C )
        = ( divide_divide_nat @ B @ C ) )
     => ( ( dvd_dvd_nat @ C @ A )
       => ( ( dvd_dvd_nat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3997_dvd__div__eq__cancel,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( divide_divide_int @ A @ C )
        = ( divide_divide_int @ B @ C ) )
     => ( ( dvd_dvd_int @ C @ A )
       => ( ( dvd_dvd_int @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3998_div__div__div__same,axiom,
    ! [D2: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ D2 @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ D2 ) @ ( divide6298287555418463151nteger @ B @ D2 ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_3999_div__div__div__same,axiom,
    ! [D2: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ D2 @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D2 ) @ ( divide_divide_nat @ B @ D2 ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_4000_div__div__div__same,axiom,
    ! [D2: int,B: int,A: int] :
      ( ( dvd_dvd_int @ D2 @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ ( divide_divide_int @ A @ D2 ) @ ( divide_divide_int @ B @ D2 ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_4001_dvd__power__same,axiom,
    ! [X2: code_integer,Y: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ X2 @ Y )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N2 ) @ ( power_8256067586552552935nteger @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4002_dvd__power__same,axiom,
    ! [X2: nat,Y: nat,N2: nat] :
      ( ( dvd_dvd_nat @ X2 @ Y )
     => ( dvd_dvd_nat @ ( power_power_nat @ X2 @ N2 ) @ ( power_power_nat @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4003_dvd__power__same,axiom,
    ! [X2: real,Y: real,N2: nat] :
      ( ( dvd_dvd_real @ X2 @ Y )
     => ( dvd_dvd_real @ ( power_power_real @ X2 @ N2 ) @ ( power_power_real @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4004_dvd__power__same,axiom,
    ! [X2: complex,Y: complex,N2: nat] :
      ( ( dvd_dvd_complex @ X2 @ Y )
     => ( dvd_dvd_complex @ ( power_power_complex @ X2 @ N2 ) @ ( power_power_complex @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4005_dvd__power__same,axiom,
    ! [X2: int,Y: int,N2: nat] :
      ( ( dvd_dvd_int @ X2 @ Y )
     => ( dvd_dvd_int @ ( power_power_int @ X2 @ N2 ) @ ( power_power_int @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4006_dvd__mod__imp__dvd,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_4007_dvd__mod__imp__dvd,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
     => ( ( dvd_dvd_int @ C @ B )
       => ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_4008_dvd__mod__imp__dvd,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_4009_dvd__mod__iff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
        = ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_4010_dvd__mod__iff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
        = ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_4011_dvd__mod__iff,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
        = ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_4012_dvd__mod,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N2 )
       => ( dvd_dvd_nat @ K @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ).

% dvd_mod
thf(fact_4013_dvd__mod,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( dvd_dvd_int @ K @ M )
     => ( ( dvd_dvd_int @ K @ N2 )
       => ( dvd_dvd_int @ K @ ( modulo_modulo_int @ M @ N2 ) ) ) ) ).

% dvd_mod
thf(fact_4014_dvd__mod,axiom,
    ! [K: code_integer,M: code_integer,N2: code_integer] :
      ( ( dvd_dvd_Code_integer @ K @ M )
     => ( ( dvd_dvd_Code_integer @ K @ N2 )
       => ( dvd_dvd_Code_integer @ K @ ( modulo364778990260209775nteger @ M @ N2 ) ) ) ) ).

% dvd_mod
thf(fact_4015_mod__mod__cancel,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
        = ( modulo_modulo_nat @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_4016_mod__mod__cancel,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
        = ( modulo_modulo_int @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_4017_mod__mod__cancel,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
        = ( modulo364778990260209775nteger @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_4018_signed__take__bit__mult,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( bit_ri631733984087533419it_int @ N2 @ L2 ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( times_times_int @ K @ L2 ) ) ) ).

% signed_take_bit_mult
thf(fact_4019_signed__take__bit__add,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( bit_ri631733984087533419it_int @ N2 @ L2 ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( plus_plus_int @ K @ L2 ) ) ) ).

% signed_take_bit_add
thf(fact_4020_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N2 )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% dvd_diff_nat
thf(fact_4021_signed__take__bit__diff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( bit_ri631733984087533419it_int @ N2 @ L2 ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( minus_minus_int @ K @ L2 ) ) ) ).

% signed_take_bit_diff
thf(fact_4022_zdvd__zdiffD,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( dvd_dvd_int @ K @ ( minus_minus_int @ M @ N2 ) )
     => ( ( dvd_dvd_int @ K @ N2 )
       => ( dvd_dvd_int @ K @ M ) ) ) ).

% zdvd_zdiffD
thf(fact_4023_dvd__pos__nat,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_nat @ M @ N2 )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_4024_bezout__lemma__nat,axiom,
    ! [D2: nat,A: nat,B: nat,X2: nat,Y: nat] :
      ( ( dvd_dvd_nat @ D2 @ A )
     => ( ( dvd_dvd_nat @ D2 @ B )
       => ( ( ( ( times_times_nat @ A @ X2 )
              = ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D2 ) )
            | ( ( times_times_nat @ B @ X2 )
              = ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D2 ) ) )
         => ? [X3: nat,Y3: nat] :
              ( ( dvd_dvd_nat @ D2 @ A )
              & ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ A @ B ) )
              & ( ( ( times_times_nat @ A @ X3 )
                  = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y3 ) @ D2 ) )
                | ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X3 )
                  = ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D2 ) ) ) ) ) ) ) ).

% bezout_lemma_nat
thf(fact_4025_bezout__add__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D3: nat,X3: nat,Y3: nat] :
      ( ( dvd_dvd_nat @ D3 @ A )
      & ( dvd_dvd_nat @ D3 @ B )
      & ( ( ( times_times_nat @ A @ X3 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D3 ) )
        | ( ( times_times_nat @ B @ X3 )
          = ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D3 ) ) ) ) ).

% bezout_add_nat
thf(fact_4026_bezout1__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D3: nat,X3: nat,Y3: nat] :
      ( ( dvd_dvd_nat @ D3 @ A )
      & ( dvd_dvd_nat @ D3 @ B )
      & ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X3 ) @ ( times_times_nat @ B @ Y3 ) )
          = D3 )
        | ( ( minus_minus_nat @ ( times_times_nat @ B @ X3 ) @ ( times_times_nat @ A @ Y3 ) )
          = D3 ) ) ) ).

% bezout1_nat
thf(fact_4027_subset__divisors__dvd,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_set_real
        @ ( collect_real
          @ ^ [C3: real] : ( dvd_dvd_real @ C3 @ A ) )
        @ ( collect_real
          @ ^ [C3: real] : ( dvd_dvd_real @ C3 @ B ) ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4028_subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_set_int
        @ ( collect_int
          @ ^ [C3: int] : ( dvd_dvd_int @ C3 @ A ) )
        @ ( collect_int
          @ ^ [C3: int] : ( dvd_dvd_int @ C3 @ B ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4029_subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le7084787975880047091nteger
        @ ( collect_Code_integer
          @ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ B ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4030_subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat
        @ ( collect_nat
          @ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ A ) )
        @ ( collect_nat
          @ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ B ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4031_concat__bit__assoc,axiom,
    ! [N2: nat,K: int,M: nat,L2: int,R: int] :
      ( ( bit_concat_bit @ N2 @ K @ ( bit_concat_bit @ M @ L2 @ R ) )
      = ( bit_concat_bit @ ( plus_plus_nat @ M @ N2 ) @ ( bit_concat_bit @ N2 @ K @ L2 ) @ R ) ) ).

% concat_bit_assoc
thf(fact_4032_strict__subset__divisors__dvd,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_set_real
        @ ( collect_real
          @ ^ [C3: real] : ( dvd_dvd_real @ C3 @ A ) )
        @ ( collect_real
          @ ^ [C3: real] : ( dvd_dvd_real @ C3 @ B ) ) )
      = ( ( dvd_dvd_real @ A @ B )
        & ~ ( dvd_dvd_real @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4033_strict__subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_set_nat
        @ ( collect_nat
          @ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ A ) )
        @ ( collect_nat
          @ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ B ) ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ~ ( dvd_dvd_nat @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4034_strict__subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_set_int
        @ ( collect_int
          @ ^ [C3: int] : ( dvd_dvd_int @ C3 @ A ) )
        @ ( collect_int
          @ ^ [C3: int] : ( dvd_dvd_int @ C3 @ B ) ) )
      = ( ( dvd_dvd_int @ A @ B )
        & ~ ( dvd_dvd_int @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4035_strict__subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le1307284697595431911nteger
        @ ( collect_Code_integer
          @ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C3: code_integer] : ( dvd_dvd_Code_integer @ C3 @ B ) ) )
      = ( ( dvd_dvd_Code_integer @ A @ B )
        & ~ ( dvd_dvd_Code_integer @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4036_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_4037_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_4038_not__is__unit__0,axiom,
    ~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).

% not_is_unit_0
thf(fact_4039_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_4040_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_4041_minf_I10_J,axiom,
    ! [D2: code_integer,S: code_integer] :
    ? [Z5: code_integer] :
    ! [X4: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X4 @ Z5 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_4042_minf_I10_J,axiom,
    ! [D2: real,S: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ( ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_4043_minf_I10_J,axiom,
    ! [D2: rat,S: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ( ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_4044_minf_I10_J,axiom,
    ! [D2: nat,S: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ( ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_4045_minf_I10_J,axiom,
    ! [D2: int,S: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ( ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_4046_minf_I9_J,axiom,
    ! [D2: code_integer,S: code_integer] :
    ? [Z5: code_integer] :
    ! [X4: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X4 @ Z5 )
     => ( ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) )
        = ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) ) ) ) ).

% minf(9)
thf(fact_4047_minf_I9_J,axiom,
    ! [D2: real,S: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ X4 @ Z5 )
     => ( ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) )
        = ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) ) ) ) ).

% minf(9)
thf(fact_4048_minf_I9_J,axiom,
    ! [D2: rat,S: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ X4 @ Z5 )
     => ( ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) )
        = ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) ) ) ) ).

% minf(9)
thf(fact_4049_minf_I9_J,axiom,
    ! [D2: nat,S: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z5 )
     => ( ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) )
        = ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) ) ) ) ).

% minf(9)
thf(fact_4050_minf_I9_J,axiom,
    ! [D2: int,S: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z5 )
     => ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) )
        = ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) ) ) ) ).

% minf(9)
thf(fact_4051_pinf_I10_J,axiom,
    ! [D2: code_integer,S: code_integer] :
    ? [Z5: code_integer] :
    ! [X4: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z5 @ X4 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_4052_pinf_I10_J,axiom,
    ! [D2: real,S: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ( ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_4053_pinf_I10_J,axiom,
    ! [D2: rat,S: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ( ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_4054_pinf_I10_J,axiom,
    ! [D2: nat,S: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ( ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_4055_pinf_I10_J,axiom,
    ! [D2: int,S: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ( ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_4056_pinf_I9_J,axiom,
    ! [D2: code_integer,S: code_integer] :
    ? [Z5: code_integer] :
    ! [X4: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z5 @ X4 )
     => ( ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) )
        = ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ S ) ) ) ) ).

% pinf(9)
thf(fact_4057_pinf_I9_J,axiom,
    ! [D2: real,S: real] :
    ? [Z5: real] :
    ! [X4: real] :
      ( ( ord_less_real @ Z5 @ X4 )
     => ( ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) )
        = ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S ) ) ) ) ).

% pinf(9)
thf(fact_4058_pinf_I9_J,axiom,
    ! [D2: rat,S: rat] :
    ? [Z5: rat] :
    ! [X4: rat] :
      ( ( ord_less_rat @ Z5 @ X4 )
     => ( ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) )
        = ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S ) ) ) ) ).

% pinf(9)
thf(fact_4059_pinf_I9_J,axiom,
    ! [D2: nat,S: nat] :
    ? [Z5: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z5 @ X4 )
     => ( ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) )
        = ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S ) ) ) ) ).

% pinf(9)
thf(fact_4060_pinf_I9_J,axiom,
    ! [D2: int,S: int] :
    ? [Z5: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z5 @ X4 )
     => ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) )
        = ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S ) ) ) ) ).

% pinf(9)
thf(fact_4061_dvd__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4062_dvd__div__eq__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4063_dvd__div__eq__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( ( divide_divide_real @ A @ B )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4064_dvd__div__eq__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( ( divide_divide_rat @ A @ B )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4065_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4066_dvd__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4067_unit__mult__right__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ B @ A )
          = ( times_3573771949741848930nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_4068_unit__mult__right__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ B @ A )
          = ( times_times_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_4069_unit__mult__right__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ B @ A )
          = ( times_times_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_4070_unit__mult__left__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ A @ B )
          = ( times_3573771949741848930nteger @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_4071_unit__mult__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ A @ B )
          = ( times_times_nat @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_4072_unit__mult__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ A @ B )
          = ( times_times_int @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_4073_mult__unit__dvd__iff_H,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_4074_mult__unit__dvd__iff_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_4075_mult__unit__dvd__iff_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_4076_dvd__mult__unit__iff_H,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_4077_dvd__mult__unit__iff_H,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_4078_dvd__mult__unit__iff_H,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_4079_mult__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_4080_mult__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_4081_mult__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_4082_dvd__mult__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_4083_dvd__mult__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_4084_dvd__mult__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_4085_is__unit__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        & ( dvd_dvd_Code_integer @ B @ one_one_Code_integer ) ) ) ).

% is_unit_mult_iff
thf(fact_4086_is__unit__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        & ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).

% is_unit_mult_iff
thf(fact_4087_is__unit__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        & ( dvd_dvd_int @ B @ one_one_int ) ) ) ).

% is_unit_mult_iff
thf(fact_4088_div__mult__div__if__dvd,axiom,
    ! [B: code_integer,A: code_integer,D2: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( dvd_dvd_Code_integer @ D2 @ C )
       => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ ( divide6298287555418463151nteger @ C @ D2 ) )
          = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D2 ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_4089_div__mult__div__if__dvd,axiom,
    ! [B: nat,A: nat,D2: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( dvd_dvd_nat @ D2 @ C )
       => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D2 ) )
          = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_4090_div__mult__div__if__dvd,axiom,
    ! [B: int,A: int,D2: int,C: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( dvd_dvd_int @ D2 @ C )
       => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D2 ) )
          = ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_4091_dvd__mult__imp__div,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B )
     => ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_4092_dvd__mult__imp__div,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
     => ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_4093_dvd__mult__imp__div,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
     => ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_4094_dvd__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ C ) @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_4095_dvd__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_4096_dvd__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_4097_div__div__eq__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_4098_div__div__eq__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_4099_div__div__eq__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_4100_div__mult__swap,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_4101_div__mult__swap,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_4102_div__mult__swap,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_4103_dvd__div__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ C ) @ A )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_4104_dvd__div__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
        = ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_4105_dvd__div__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
        = ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_4106_unit__div__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ B @ A )
          = ( divide6298287555418463151nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_4107_unit__div__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( divide_divide_nat @ B @ A )
          = ( divide_divide_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_4108_unit__div__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( divide_divide_int @ B @ A )
          = ( divide_divide_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_4109_div__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_4110_div__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_4111_div__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_4112_dvd__div__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_4113_dvd__div__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_4114_dvd__div__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_4115_div__plus__div__distrib__dvd__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_4116_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_4117_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_4118_div__plus__div__distrib__dvd__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_4119_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_4120_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_4121_div__power,axiom,
    ! [B: code_integer,A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N2 )
        = ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N2 ) @ ( power_8256067586552552935nteger @ B @ N2 ) ) ) ) ).

% div_power
thf(fact_4122_div__power,axiom,
    ! [B: nat,A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N2 )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ).

% div_power
thf(fact_4123_div__power,axiom,
    ! [B: int,A: int,N2: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N2 )
        = ( divide_divide_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% div_power
thf(fact_4124_mod__eq__0__iff__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_4125_mod__eq__0__iff__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
      = ( dvd_dvd_int @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_4126_mod__eq__0__iff__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_4127_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( modulo_modulo_nat @ B3 @ A3 )
          = zero_zero_nat ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_4128_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_int
    = ( ^ [A3: int,B3: int] :
          ( ( modulo_modulo_int @ B3 @ A3 )
          = zero_zero_int ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_4129_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [A3: code_integer,B3: code_integer] :
          ( ( modulo364778990260209775nteger @ B3 @ A3 )
          = zero_z3403309356797280102nteger ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_4130_mod__0__imp__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_4131_mod__0__imp__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_4132_mod__0__imp__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_4133_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4134_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4135_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4136_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: complex] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4137_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4138_power__le__dvd,axiom,
    ! [A: code_integer,N2: nat,B: code_integer,M: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4139_power__le__dvd,axiom,
    ! [A: nat,N2: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4140_power__le__dvd,axiom,
    ! [A: real,N2: nat,B: real,M: nat] :
      ( ( dvd_dvd_real @ ( power_power_real @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4141_power__le__dvd,axiom,
    ! [A: complex,N2: nat,B: complex,M: nat] :
      ( ( dvd_dvd_complex @ ( power_power_complex @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4142_power__le__dvd,axiom,
    ! [A: int,N2: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4143_dvd__power__le,axiom,
    ! [X2: code_integer,Y: code_integer,N2: nat,M: nat] :
      ( ( dvd_dvd_Code_integer @ X2 @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N2 ) @ ( power_8256067586552552935nteger @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4144_dvd__power__le,axiom,
    ! [X2: nat,Y: nat,N2: nat,M: nat] :
      ( ( dvd_dvd_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X2 @ N2 ) @ ( power_power_nat @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4145_dvd__power__le,axiom,
    ! [X2: real,Y: real,N2: nat,M: nat] :
      ( ( dvd_dvd_real @ X2 @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_real @ ( power_power_real @ X2 @ N2 ) @ ( power_power_real @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4146_dvd__power__le,axiom,
    ! [X2: complex,Y: complex,N2: nat,M: nat] :
      ( ( dvd_dvd_complex @ X2 @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_complex @ ( power_power_complex @ X2 @ N2 ) @ ( power_power_complex @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4147_dvd__power__le,axiom,
    ! [X2: int,Y: int,N2: nat,M: nat] :
      ( ( dvd_dvd_int @ X2 @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X2 @ N2 ) @ ( power_power_int @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4148_dvd__minus__mod,axiom,
    ! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4149_dvd__minus__mod,axiom,
    ! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4150_dvd__minus__mod,axiom,
    ! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4151_mod__eq__dvd__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
      = ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_4152_mod__eq__dvd__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
      = ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_4153_nat__dvd__not__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_4154_bezout__add__strong__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [D3: nat,X3: nat,Y3: nat] :
          ( ( dvd_dvd_nat @ D3 @ A )
          & ( dvd_dvd_nat @ D3 @ B )
          & ( ( times_times_nat @ A @ X3 )
            = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D3 ) ) ) ) ).

% bezout_add_strong_nat
thf(fact_4155_dvd__minus__self,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ M ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% dvd_minus_self
thf(fact_4156_dvd__diffD,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
     => ( ( dvd_dvd_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ N2 @ M )
         => ( dvd_dvd_nat @ K @ M ) ) ) ) ).

% dvd_diffD
thf(fact_4157_dvd__diffD1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
     => ( ( dvd_dvd_nat @ K @ M )
       => ( ( ord_less_eq_nat @ N2 @ M )
         => ( dvd_dvd_nat @ K @ N2 ) ) ) ) ).

% dvd_diffD1
thf(fact_4158_less__eq__dvd__minus,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( dvd_dvd_nat @ M @ N2 )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_4159_zdvd__not__zless,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_int @ M @ N2 )
       => ~ ( dvd_dvd_int @ N2 @ M ) ) ) ).

% zdvd_not_zless
thf(fact_4160_zdvd__mono,axiom,
    ! [K: int,M: int,T: int] :
      ( ( K != zero_zero_int )
     => ( ( dvd_dvd_int @ M @ T )
        = ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).

% zdvd_mono
thf(fact_4161_zdvd__mult__cancel,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N2 ) )
     => ( ( K != zero_zero_int )
       => ( dvd_dvd_int @ M @ N2 ) ) ) ).

% zdvd_mult_cancel
thf(fact_4162_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X: real] : ( plus_plus_real @ X @ X ) ) ) ).

% dbl_def
thf(fact_4163_dbl__def,axiom,
    ( neg_numeral_dbl_rat
    = ( ^ [X: rat] : ( plus_plus_rat @ X @ X ) ) ) ).

% dbl_def
thf(fact_4164_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X: int] : ( plus_plus_int @ X @ X ) ) ) ).

% dbl_def
thf(fact_4165_zdvd__period,axiom,
    ! [A: int,D2: int,X2: int,T: int,C: int] :
      ( ( dvd_dvd_int @ A @ D2 )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X2 @ T ) )
        = ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X2 @ ( times_times_int @ C @ D2 ) ) @ T ) ) ) ) ).

% zdvd_period
thf(fact_4166_zdvd__reduce,axiom,
    ! [K: int,N2: int,M: int] :
      ( ( dvd_dvd_int @ K @ ( plus_plus_int @ N2 @ ( times_times_int @ K @ M ) ) )
      = ( dvd_dvd_int @ K @ N2 ) ) ).

% zdvd_reduce
thf(fact_4167_finite__divisors__nat,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [D: nat] : ( dvd_dvd_nat @ D @ M ) ) ) ) ).

% finite_divisors_nat
thf(fact_4168_div2__even__ext__nat,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 )
          = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y ) )
       => ( X2 = Y ) ) ) ).

% div2_even_ext_nat
thf(fact_4169_unit__dvdE,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [C2: code_integer] :
              ( B
             != ( times_3573771949741848930nteger @ A @ C2 ) ) ) ) ).

% unit_dvdE
thf(fact_4170_unit__dvdE,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [C2: nat] :
              ( B
             != ( times_times_nat @ A @ C2 ) ) ) ) ).

% unit_dvdE
thf(fact_4171_unit__dvdE,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [C2: int] :
              ( B
             != ( times_times_int @ A @ C2 ) ) ) ) ).

% unit_dvdE
thf(fact_4172_unity__coeff__ex,axiom,
    ! [P: code_integer > $o,L2: code_integer] :
      ( ( ? [X: code_integer] : ( P @ ( times_3573771949741848930nteger @ L2 @ X ) ) )
      = ( ? [X: code_integer] :
            ( ( dvd_dvd_Code_integer @ L2 @ ( plus_p5714425477246183910nteger @ X @ zero_z3403309356797280102nteger ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_4173_unity__coeff__ex,axiom,
    ! [P: complex > $o,L2: complex] :
      ( ( ? [X: complex] : ( P @ ( times_times_complex @ L2 @ X ) ) )
      = ( ? [X: complex] :
            ( ( dvd_dvd_complex @ L2 @ ( plus_plus_complex @ X @ zero_zero_complex ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_4174_unity__coeff__ex,axiom,
    ! [P: real > $o,L2: real] :
      ( ( ? [X: real] : ( P @ ( times_times_real @ L2 @ X ) ) )
      = ( ? [X: real] :
            ( ( dvd_dvd_real @ L2 @ ( plus_plus_real @ X @ zero_zero_real ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_4175_unity__coeff__ex,axiom,
    ! [P: rat > $o,L2: rat] :
      ( ( ? [X: rat] : ( P @ ( times_times_rat @ L2 @ X ) ) )
      = ( ? [X: rat] :
            ( ( dvd_dvd_rat @ L2 @ ( plus_plus_rat @ X @ zero_zero_rat ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_4176_unity__coeff__ex,axiom,
    ! [P: nat > $o,L2: nat] :
      ( ( ? [X: nat] : ( P @ ( times_times_nat @ L2 @ X ) ) )
      = ( ? [X: nat] :
            ( ( dvd_dvd_nat @ L2 @ ( plus_plus_nat @ X @ zero_zero_nat ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_4177_unity__coeff__ex,axiom,
    ! [P: int > $o,L2: int] :
      ( ( ? [X: int] : ( P @ ( times_times_int @ L2 @ X ) ) )
      = ( ? [X: int] :
            ( ( dvd_dvd_int @ L2 @ ( plus_plus_int @ X @ zero_zero_int ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_4178_dvd__div__div__eq__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D2: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( C != zero_z3403309356797280102nteger )
       => ( ( dvd_dvd_Code_integer @ A @ B )
         => ( ( dvd_dvd_Code_integer @ C @ D2 )
           => ( ( ( divide6298287555418463151nteger @ B @ A )
                = ( divide6298287555418463151nteger @ D2 @ C ) )
              = ( ( times_3573771949741848930nteger @ B @ C )
                = ( times_3573771949741848930nteger @ A @ D2 ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_4179_dvd__div__div__eq__mult,axiom,
    ! [A: nat,C: nat,B: nat,D2: nat] :
      ( ( A != zero_zero_nat )
     => ( ( C != zero_zero_nat )
       => ( ( dvd_dvd_nat @ A @ B )
         => ( ( dvd_dvd_nat @ C @ D2 )
           => ( ( ( divide_divide_nat @ B @ A )
                = ( divide_divide_nat @ D2 @ C ) )
              = ( ( times_times_nat @ B @ C )
                = ( times_times_nat @ A @ D2 ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_4180_dvd__div__div__eq__mult,axiom,
    ! [A: int,C: int,B: int,D2: int] :
      ( ( A != zero_zero_int )
     => ( ( C != zero_zero_int )
       => ( ( dvd_dvd_int @ A @ B )
         => ( ( dvd_dvd_int @ C @ D2 )
           => ( ( ( divide_divide_int @ B @ A )
                = ( divide_divide_int @ D2 @ C ) )
              = ( ( times_times_int @ B @ C )
                = ( times_times_int @ A @ D2 ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_4181_dvd__div__iff__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( C != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_4182_dvd__div__iff__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( C != zero_zero_nat )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_4183_dvd__div__iff__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( C != zero_zero_int )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_4184_div__dvd__iff__mult,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( B != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
          = ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_4185_div__dvd__iff__mult,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
          = ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_4186_div__dvd__iff__mult,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
          = ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_4187_dvd__div__eq__mult,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ A @ B )
       => ( ( ( divide6298287555418463151nteger @ B @ A )
            = C )
          = ( B
            = ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_4188_dvd__div__eq__mult,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( ( divide_divide_nat @ B @ A )
            = C )
          = ( B
            = ( times_times_nat @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_4189_dvd__div__eq__mult,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ A @ B )
       => ( ( ( divide_divide_int @ B @ A )
            = C )
          = ( B
            = ( times_times_int @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_4190_unit__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% unit_div_eq_0_iff
thf(fact_4191_unit__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_4192_unit__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_4193_even__numeral,axiom,
    ! [N2: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) ) ).

% even_numeral
thf(fact_4194_even__numeral,axiom,
    ! [N2: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) ) ).

% even_numeral
thf(fact_4195_even__numeral,axiom,
    ! [N2: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) ).

% even_numeral
thf(fact_4196_inf__period_I3_J,axiom,
    ! [D2: code_integer,D4: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D2 @ D4 )
     => ! [X4: code_integer,K4: code_integer] :
          ( ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ T ) )
          = ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X4 @ ( times_3573771949741848930nteger @ K4 @ D4 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4197_inf__period_I3_J,axiom,
    ! [D2: real,D4: real,T: real] :
      ( ( dvd_dvd_real @ D2 @ D4 )
     => ! [X4: real,K4: real] :
          ( ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ T ) )
          = ( dvd_dvd_real @ D2 @ ( plus_plus_real @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4198_inf__period_I3_J,axiom,
    ! [D2: rat,D4: rat,T: rat] :
      ( ( dvd_dvd_rat @ D2 @ D4 )
     => ! [X4: rat,K4: rat] :
          ( ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ T ) )
          = ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4199_inf__period_I3_J,axiom,
    ! [D2: int,D4: int,T: int] :
      ( ( dvd_dvd_int @ D2 @ D4 )
     => ! [X4: int,K4: int] :
          ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T ) )
          = ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4200_inf__period_I4_J,axiom,
    ! [D2: code_integer,D4: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D2 @ D4 )
     => ! [X4: code_integer,K4: code_integer] :
          ( ( ~ ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ X4 @ T ) ) )
          = ( ~ ( dvd_dvd_Code_integer @ D2 @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X4 @ ( times_3573771949741848930nteger @ K4 @ D4 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4201_inf__period_I4_J,axiom,
    ! [D2: real,D4: real,T: real] :
      ( ( dvd_dvd_real @ D2 @ D4 )
     => ! [X4: real,K4: real] :
          ( ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ T ) ) )
          = ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ ( minus_minus_real @ X4 @ ( times_times_real @ K4 @ D4 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4202_inf__period_I4_J,axiom,
    ! [D2: rat,D4: rat,T: rat] :
      ( ( dvd_dvd_rat @ D2 @ D4 )
     => ! [X4: rat,K4: rat] :
          ( ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ T ) ) )
          = ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K4 @ D4 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4203_inf__period_I4_J,axiom,
    ! [D2: int,D4: int,T: int] :
      ( ( dvd_dvd_int @ D2 @ D4 )
     => ! [X4: int,K4: int] :
          ( ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T ) ) )
          = ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ ( times_times_int @ K4 @ D4 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4204_is__unit__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_4205_is__unit__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ C @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_4206_is__unit__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ C @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_4207_unit__div__mult__swap,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_4208_unit__div__mult__swap,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_4209_unit__div__mult__swap,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_4210_unit__div__commute,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_4211_unit__div__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_4212_unit__div__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_4213_div__mult__unit2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_4214_div__mult__unit2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_4215_div__mult__unit2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_4216_unit__eq__div2,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( A
          = ( divide6298287555418463151nteger @ C @ B ) )
        = ( ( times_3573771949741848930nteger @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_4217_unit__eq__div2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( A
          = ( divide_divide_nat @ C @ B ) )
        = ( ( times_times_nat @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_4218_unit__eq__div2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( A
          = ( divide_divide_int @ C @ B ) )
        = ( ( times_times_int @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_4219_unit__eq__div1,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = C )
        = ( A
          = ( times_3573771949741848930nteger @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_4220_unit__eq__div1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = C )
        = ( A
          = ( times_times_nat @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_4221_unit__eq__div1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = C )
        = ( A
          = ( times_times_int @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_4222_unit__imp__mod__eq__0,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat ) ) ).

% unit_imp_mod_eq_0
thf(fact_4223_unit__imp__mod__eq__0,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int ) ) ).

% unit_imp_mod_eq_0
thf(fact_4224_unit__imp__mod__eq__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% unit_imp_mod_eq_0
thf(fact_4225_is__unit__power__iff,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        | ( N2 = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_4226_is__unit__power__iff,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N2 = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_4227_is__unit__power__iff,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N2 = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_4228_dvd__imp__le,axiom,
    ! [K: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_nat @ K @ N2 ) ) ) ).

% dvd_imp_le
thf(fact_4229_nat__mult__dvd__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_4230_dvd__mult__cancel,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% dvd_mult_cancel
thf(fact_4231_zdvd__imp__le,axiom,
    ! [Z: int,N2: int] :
      ( ( dvd_dvd_int @ Z @ N2 )
     => ( ( ord_less_int @ zero_zero_int @ N2 )
       => ( ord_less_eq_int @ Z @ N2 ) ) ) ).

% zdvd_imp_le
thf(fact_4232_mod__greater__zero__iff__not__dvd,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ).

% mod_greater_zero_iff_not_dvd
thf(fact_4233_mod__eq__dvd__iff__nat,axiom,
    ! [N2: nat,M: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( ( modulo_modulo_nat @ M @ Q2 )
          = ( modulo_modulo_nat @ N2 @ Q2 ) )
        = ( dvd_dvd_nat @ Q2 @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% mod_eq_dvd_iff_nat
thf(fact_4234_even__zero,axiom,
    dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).

% even_zero
thf(fact_4235_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_4236_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_4237_is__unit__div__mult__cancel__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4238_is__unit__div__mult__cancel__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4239_is__unit__div__mult__cancel__right,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4240_is__unit__div__mult__cancel__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4241_is__unit__div__mult__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4242_is__unit__div__mult__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4243_is__unitE,axiom,
    ! [A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [B5: code_integer] :
              ( ( B5 != zero_z3403309356797280102nteger )
             => ( ( dvd_dvd_Code_integer @ B5 @ one_one_Code_integer )
               => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
                    = B5 )
                 => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B5 )
                      = A )
                   => ( ( ( times_3573771949741848930nteger @ A @ B5 )
                        = one_one_Code_integer )
                     => ( ( divide6298287555418463151nteger @ C @ A )
                       != ( times_3573771949741848930nteger @ C @ B5 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4244_is__unitE,axiom,
    ! [A: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [B5: nat] :
              ( ( B5 != zero_zero_nat )
             => ( ( dvd_dvd_nat @ B5 @ one_one_nat )
               => ( ( ( divide_divide_nat @ one_one_nat @ A )
                    = B5 )
                 => ( ( ( divide_divide_nat @ one_one_nat @ B5 )
                      = A )
                   => ( ( ( times_times_nat @ A @ B5 )
                        = one_one_nat )
                     => ( ( divide_divide_nat @ C @ A )
                       != ( times_times_nat @ C @ B5 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4245_is__unitE,axiom,
    ! [A: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [B5: int] :
              ( ( B5 != zero_zero_int )
             => ( ( dvd_dvd_int @ B5 @ one_one_int )
               => ( ( ( divide_divide_int @ one_one_int @ A )
                    = B5 )
                 => ( ( ( divide_divide_int @ one_one_int @ B5 )
                      = A )
                   => ( ( ( times_times_int @ A @ B5 )
                        = one_one_int )
                     => ( ( divide_divide_int @ C @ A )
                       != ( times_times_int @ C @ B5 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4246_evenE,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B5: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B5 ) ) ) ).

% evenE
thf(fact_4247_evenE,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B5: nat] :
            ( A
           != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B5 ) ) ) ).

% evenE
thf(fact_4248_evenE,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B5: int] :
            ( A
           != ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B5 ) ) ) ).

% evenE
thf(fact_4249_odd__one,axiom,
    ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).

% odd_one
thf(fact_4250_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_4251_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_4252_odd__even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_4253_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_4254_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_4255_bit__eq__rec,axiom,
    ( ( ^ [Y5: code_integer,Z3: code_integer] : ( Y5 = Z3 ) )
    = ( ^ [A3: code_integer,B3: code_integer] :
          ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = ( divide6298287555418463151nteger @ B3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_4256_bit__eq__rec,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_4257_bit__eq__rec,axiom,
    ( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
    = ( ^ [A3: int,B3: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_4258_dvd__power__iff,axiom,
    ! [X2: code_integer,M: nat,N2: nat] :
      ( ( X2 != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ M ) @ ( power_8256067586552552935nteger @ X2 @ N2 ) )
        = ( ( dvd_dvd_Code_integer @ X2 @ one_one_Code_integer )
          | ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% dvd_power_iff
thf(fact_4259_dvd__power__iff,axiom,
    ! [X2: nat,M: nat,N2: nat] :
      ( ( X2 != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X2 @ M ) @ ( power_power_nat @ X2 @ N2 ) )
        = ( ( dvd_dvd_nat @ X2 @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% dvd_power_iff
thf(fact_4260_dvd__power__iff,axiom,
    ! [X2: int,M: nat,N2: nat] :
      ( ( X2 != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X2 @ M ) @ ( power_power_int @ X2 @ N2 ) )
        = ( ( dvd_dvd_int @ X2 @ one_one_int )
          | ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% dvd_power_iff
thf(fact_4261_dvd__power,axiom,
    ! [N2: nat,X2: code_integer] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X2 = one_one_Code_integer ) )
     => ( dvd_dvd_Code_integer @ X2 @ ( power_8256067586552552935nteger @ X2 @ N2 ) ) ) ).

% dvd_power
thf(fact_4262_dvd__power,axiom,
    ! [N2: nat,X2: rat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X2 = one_one_rat ) )
     => ( dvd_dvd_rat @ X2 @ ( power_power_rat @ X2 @ N2 ) ) ) ).

% dvd_power
thf(fact_4263_dvd__power,axiom,
    ! [N2: nat,X2: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X2 = one_one_nat ) )
     => ( dvd_dvd_nat @ X2 @ ( power_power_nat @ X2 @ N2 ) ) ) ).

% dvd_power
thf(fact_4264_dvd__power,axiom,
    ! [N2: nat,X2: real] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X2 = one_one_real ) )
     => ( dvd_dvd_real @ X2 @ ( power_power_real @ X2 @ N2 ) ) ) ).

% dvd_power
thf(fact_4265_dvd__power,axiom,
    ! [N2: nat,X2: complex] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X2 = one_one_complex ) )
     => ( dvd_dvd_complex @ X2 @ ( power_power_complex @ X2 @ N2 ) ) ) ).

% dvd_power
thf(fact_4266_dvd__power,axiom,
    ! [N2: nat,X2: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X2 = one_one_int ) )
     => ( dvd_dvd_int @ X2 @ ( power_power_int @ X2 @ N2 ) ) ) ).

% dvd_power
thf(fact_4267_even__even__mod__4__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% even_even_mod_4_iff
thf(fact_4268_dvd__mult__cancel2,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N2 @ M ) @ M )
        = ( N2 = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_4269_dvd__mult__cancel1,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N2 ) @ M )
        = ( N2 = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_4270_dvd__minus__add,axiom,
    ! [Q2: nat,N2: nat,R: nat,M: nat] :
      ( ( ord_less_eq_nat @ Q2 @ N2 )
     => ( ( ord_less_eq_nat @ Q2 @ ( times_times_nat @ R @ M ) )
       => ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ Q2 ) )
          = ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N2 @ ( minus_minus_nat @ ( times_times_nat @ R @ M ) @ Q2 ) ) ) ) ) ) ).

% dvd_minus_add
thf(fact_4271_power__dvd__imp__le,axiom,
    ! [I: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N2 ) )
     => ( ( ord_less_nat @ one_one_nat @ I )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_dvd_imp_le
thf(fact_4272_mod__nat__eqI,axiom,
    ! [R: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ R @ N2 )
     => ( ( ord_less_eq_nat @ R @ M )
       => ( ( dvd_dvd_nat @ N2 @ ( minus_minus_nat @ M @ R ) )
         => ( ( modulo_modulo_nat @ M @ N2 )
            = R ) ) ) ) ).

% mod_nat_eqI
thf(fact_4273_mod__int__pos__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L2 ) )
      = ( ( dvd_dvd_int @ L2 @ K )
        | ( ( L2 = zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ K ) )
        | ( ord_less_int @ zero_zero_int @ L2 ) ) ) ).

% mod_int_pos_iff
thf(fact_4274_bset_I9_J,axiom,
    ! [D2: int,D4: int,B2: set_int,T: int] :
      ( ( dvd_dvd_int @ D2 @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B2 )
                 => ( X4
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T ) )
           => ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).

% bset(9)
thf(fact_4275_bset_I10_J,axiom,
    ! [D2: int,D4: int,B2: set_int,T: int] :
      ( ( dvd_dvd_int @ D2 @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B2 )
                 => ( X4
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T ) )
           => ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).

% bset(10)
thf(fact_4276_aset_I9_J,axiom,
    ! [D2: int,D4: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D2 @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X4
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T ) )
           => ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).

% aset(9)
thf(fact_4277_aset_I10_J,axiom,
    ! [D2: int,D4: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D2 @ D4 )
     => ! [X4: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X4
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T ) )
           => ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( plus_plus_int @ X4 @ D4 ) @ T ) ) ) ) ) ).

% aset(10)
thf(fact_4278_even__two__times__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_4279_even__two__times__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_4280_even__two__times__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_4281_even__iff__mod__2__eq__zero,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_4282_even__iff__mod__2__eq__zero,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_4283_even__iff__mod__2__eq__zero,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_4284_odd__iff__mod__2__eq__one,axiom,
    ! [A: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_4285_odd__iff__mod__2__eq__one,axiom,
    ! [A: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_4286_odd__iff__mod__2__eq__one,axiom,
    ! [A: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_4287_power__mono__odd,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).

% power_mono_odd
thf(fact_4288_power__mono__odd,axiom,
    ! [N2: nat,A: rat,B: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).

% power_mono_odd
thf(fact_4289_power__mono__odd,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% power_mono_odd
thf(fact_4290_odd__pos,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% odd_pos
thf(fact_4291_dvd__power__iff__le,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N2 ) )
        = ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% dvd_power_iff_le
thf(fact_4292_signed__take__bit__int__less__exp,axiom,
    ! [N2: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).

% signed_take_bit_int_less_exp
thf(fact_4293_even__unset__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_4294_even__unset__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_4295_even__unset__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_4296_even__set__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_4297_even__set__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_4298_even__set__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_4299_even__flip__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_4300_even__flip__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_4301_even__flip__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_4302_even__diff__iff,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).

% even_diff_iff
thf(fact_4303_oddE,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B5: code_integer] :
            ( A
           != ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B5 ) @ one_one_Code_integer ) ) ) ).

% oddE
thf(fact_4304_oddE,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B5: nat] :
            ( A
           != ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B5 ) @ one_one_nat ) ) ) ).

% oddE
thf(fact_4305_oddE,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B5: int] :
            ( A
           != ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B5 ) @ one_one_int ) ) ) ).

% oddE
thf(fact_4306_mod2__eq__if,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = zero_zero_nat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = one_one_nat ) ) ) ).

% mod2_eq_if
thf(fact_4307_mod2__eq__if,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = zero_zero_int ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = one_one_int ) ) ) ).

% mod2_eq_if
thf(fact_4308_mod2__eq__if,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = zero_z3403309356797280102nteger ) )
      & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = one_one_Code_integer ) ) ) ).

% mod2_eq_if
thf(fact_4309_parity__cases,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
         != zero_zero_nat ) )
     => ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
           != one_one_nat ) ) ) ).

% parity_cases
thf(fact_4310_parity__cases,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
         != zero_zero_int ) )
     => ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
           != one_one_int ) ) ) ).

% parity_cases
thf(fact_4311_parity__cases,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
         != zero_z3403309356797280102nteger ) )
     => ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
           != one_one_Code_integer ) ) ) ).

% parity_cases
thf(fact_4312_zero__le__power__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_4313_zero__le__power__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_4314_zero__le__power__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_4315_zero__le__odd__power,axiom,
    ! [N2: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
        = ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).

% zero_le_odd_power
thf(fact_4316_zero__le__odd__power,axiom,
    ! [N2: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
        = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).

% zero_le_odd_power
thf(fact_4317_zero__le__odd__power,axiom,
    ! [N2: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_odd_power
thf(fact_4318_zero__le__even__power,axiom,
    ! [N2: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).

% zero_le_even_power
thf(fact_4319_zero__le__even__power,axiom,
    ! [N2: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% zero_le_even_power
thf(fact_4320_zero__le__even__power,axiom,
    ! [N2: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).

% zero_le_even_power
thf(fact_4321_signed__take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% signed_take_bit_int_greater_eq_self_iff
thf(fact_4322_signed__take__bit__int__less__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ).

% signed_take_bit_int_less_self_iff
thf(fact_4323_zero__less__power__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
      = ( ( N2 = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_4324_zero__less__power__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
      = ( ( N2 = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_4325_zero__less__power__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
      = ( ( N2 = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_4326_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( P @ A5 @ B5 )
          = ( P @ B5 @ A5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B5: nat] :
              ( ( P @ A5 @ B5 )
             => ( P @ A5 @ ( plus_plus_nat @ A5 @ B5 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_4327_signed__take__bit__int__less__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K )
     => ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) ) ) ) ).

% signed_take_bit_int_less_eq
thf(fact_4328_even__mask__div__iff_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% even_mask_div_iff'
thf(fact_4329_even__mask__div__iff_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% even_mask_div_iff'
thf(fact_4330_even__mask__div__iff_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% even_mask_div_iff'
thf(fact_4331_power__le__zero__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ N2 )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_4332_power__le__zero__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ N2 )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_4333_power__le__zero__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ N2 )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_4334_option_Osize__gen_I1_J,axiom,
    ! [X2: nat > nat] :
      ( ( size_option_nat @ X2 @ none_nat )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_4335_option_Osize__gen_I1_J,axiom,
    ! [X2: product_prod_nat_nat > nat] :
      ( ( size_o8335143837870341156at_nat @ X2 @ none_P5556105721700978146at_nat )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_4336_option_Osize__gen_I1_J,axiom,
    ! [X2: num > nat] :
      ( ( size_option_num @ X2 @ none_num )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_4337_even__mod__4__div__2,axiom,
    ! [N2: nat] :
      ( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( suc @ zero_zero_nat ) )
     => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_mod_4_div_2
thf(fact_4338_even__mask__div__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
          = zero_z3403309356797280102nteger )
        | ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% even_mask_div_iff
thf(fact_4339_even__mask__div__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_nat )
        | ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% even_mask_div_iff
thf(fact_4340_even__mask__div__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_int )
        | ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% even_mask_div_iff
thf(fact_4341_even__mult__exp__div__exp__iff,axiom,
    ! [A: code_integer,M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
          = zero_z3403309356797280102nteger )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4342_even__mult__exp__div__exp__iff,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_nat )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4343_even__mult__exp__div__exp__iff,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_int )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4344_triangle__def,axiom,
    ( nat_triangle
    = ( ^ [N: nat] : ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% triangle_def
thf(fact_4345_vebt__buildup_Oelims,axiom,
    ! [X2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X2 )
        = Y )
     => ( ( ( X2 = zero_zero_nat )
         => ( Y
           != ( vEBT_Leaf @ $false @ $false ) ) )
       => ( ( ( X2
              = ( suc @ zero_zero_nat ) )
           => ( Y
             != ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Va3: nat] :
                ( ( X2
                  = ( suc @ ( suc @ Va3 ) ) )
               => ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                     => ( Y
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                    & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                     => ( Y
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.elims
thf(fact_4346_signed__take__bit__rec,axiom,
    ( bit_ri6519982836138164636nteger
    = ( ^ [N: nat,A3: code_integer] : ( if_Code_integer @ ( N = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_4347_signed__take__bit__rec,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N: nat,A3: int] : ( if_int @ ( N = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_4348_flip__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
      = ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_4349_flip__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_4350_flip__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_4351_set__decode__Suc,axiom,
    ! [N2: nat,X2: nat] :
      ( ( member_nat @ ( suc @ N2 ) @ ( nat_set_decode @ X2 ) )
      = ( member_nat @ N2 @ ( nat_set_decode @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_decode_Suc
thf(fact_4352_diff__shunt__var,axiom,
    ! [X2: set_int,Y: set_int] :
      ( ( ( minus_minus_set_int @ X2 @ Y )
        = bot_bot_set_int )
      = ( ord_less_eq_set_int @ X2 @ Y ) ) ).

% diff_shunt_var
thf(fact_4353_diff__shunt__var,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( ( minus_minus_set_real @ X2 @ Y )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ X2 @ Y ) ) ).

% diff_shunt_var
thf(fact_4354_diff__shunt__var,axiom,
    ! [X2: set_nat,Y: set_nat] :
      ( ( ( minus_minus_set_nat @ X2 @ Y )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ X2 @ Y ) ) ).

% diff_shunt_var
thf(fact_4355_add__scale__eq__noteq,axiom,
    ! [R: complex,A: complex,B: complex,C: complex,D2: complex] :
      ( ( R != zero_zero_complex )
     => ( ( ( A = B )
          & ( C != D2 ) )
       => ( ( plus_plus_complex @ A @ ( times_times_complex @ R @ C ) )
         != ( plus_plus_complex @ B @ ( times_times_complex @ R @ D2 ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_4356_add__scale__eq__noteq,axiom,
    ! [R: real,A: real,B: real,C: real,D2: real] :
      ( ( R != zero_zero_real )
     => ( ( ( A = B )
          & ( C != D2 ) )
       => ( ( plus_plus_real @ A @ ( times_times_real @ R @ C ) )
         != ( plus_plus_real @ B @ ( times_times_real @ R @ D2 ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_4357_add__scale__eq__noteq,axiom,
    ! [R: rat,A: rat,B: rat,C: rat,D2: rat] :
      ( ( R != zero_zero_rat )
     => ( ( ( A = B )
          & ( C != D2 ) )
       => ( ( plus_plus_rat @ A @ ( times_times_rat @ R @ C ) )
         != ( plus_plus_rat @ B @ ( times_times_rat @ R @ D2 ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_4358_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D2: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D2 ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D2 ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_4359_add__scale__eq__noteq,axiom,
    ! [R: int,A: int,B: int,C: int,D2: int] :
      ( ( R != zero_zero_int )
     => ( ( ( A = B )
          & ( C != D2 ) )
       => ( ( plus_plus_int @ A @ ( times_times_int @ R @ C ) )
         != ( plus_plus_int @ B @ ( times_times_int @ R @ D2 ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_4360_artanh__def,axiom,
    ( artanh_real
    = ( ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X ) @ ( minus_minus_real @ one_one_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% artanh_def
thf(fact_4361_intind,axiom,
    ! [I: nat,N2: nat,P: nat > $o,X2: nat] :
      ( ( ord_less_nat @ I @ N2 )
     => ( ( P @ X2 )
       => ( P @ ( nth_nat @ ( replicate_nat @ N2 @ X2 ) @ I ) ) ) ) ).

% intind
thf(fact_4362_intind,axiom,
    ! [I: nat,N2: nat,P: int > $o,X2: int] :
      ( ( ord_less_nat @ I @ N2 )
     => ( ( P @ X2 )
       => ( P @ ( nth_int @ ( replicate_int @ N2 @ X2 ) @ I ) ) ) ) ).

% intind
thf(fact_4363_intind,axiom,
    ! [I: nat,N2: nat,P: vEBT_VEBT > $o,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ N2 )
     => ( ( P @ X2 )
       => ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X2 ) @ I ) ) ) ) ).

% intind
thf(fact_4364_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4365_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4366_verit__minus__simplify_I4_J,axiom,
    ! [B: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4367_verit__minus__simplify_I4_J,axiom,
    ! [B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4368_verit__minus__simplify_I4_J,axiom,
    ! [B: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4369_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4370_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4371_neg__equal__iff__equal,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = ( uminus1482373934393186551omplex @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4372_neg__equal__iff__equal,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4373_neg__equal__iff__equal,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4374_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4375_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4376_add_Oinverse__inverse,axiom,
    ! [A: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4377_add_Oinverse__inverse,axiom,
    ! [A: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4378_add_Oinverse__inverse,axiom,
    ! [A: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4379_compl__le__compl__iff,axiom,
    ! [X2: set_nat,Y: set_nat] :
      ( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X2 ) @ ( uminus5710092332889474511et_nat @ Y ) )
      = ( ord_less_eq_set_nat @ Y @ X2 ) ) ).

% compl_le_compl_iff
thf(fact_4380_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4381_neg__le__iff__le,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4382_neg__le__iff__le,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4383_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4384_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_4385_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_4386_neg__equal__zero,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_zero
thf(fact_4387_neg__equal__zero,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = A )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_zero
thf(fact_4388_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_4389_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_4390_equal__neg__zero,axiom,
    ! [A: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% equal_neg_zero
thf(fact_4391_equal__neg__zero,axiom,
    ! [A: rat] :
      ( ( A
        = ( uminus_uminus_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% equal_neg_zero
thf(fact_4392_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_4393_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_4394_neg__equal__0__iff__equal,axiom,
    ! [A: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% neg_equal_0_iff_equal
thf(fact_4395_neg__equal__0__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_0_iff_equal
thf(fact_4396_neg__equal__0__iff__equal,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_0_iff_equal
thf(fact_4397_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4398_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4399_neg__0__equal__iff__equal,axiom,
    ! [A: complex] :
      ( ( zero_zero_complex
        = ( uminus1482373934393186551omplex @ A ) )
      = ( zero_zero_complex = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4400_neg__0__equal__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( uminus1351360451143612070nteger @ A ) )
      = ( zero_z3403309356797280102nteger = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4401_neg__0__equal__iff__equal,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( uminus_uminus_rat @ A ) )
      = ( zero_zero_rat = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4402_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_4403_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_4404_add_Oinverse__neutral,axiom,
    ( ( uminus1482373934393186551omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% add.inverse_neutral
thf(fact_4405_add_Oinverse__neutral,axiom,
    ( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% add.inverse_neutral
thf(fact_4406_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% add.inverse_neutral
thf(fact_4407_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4408_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4409_neg__less__iff__less,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4410_neg__less__iff__less,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4411_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_4412_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_4413_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_4414_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_4415_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_4416_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4417_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4418_mult__minus__left,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4419_mult__minus__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4420_mult__minus__left,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4421_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4422_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4423_minus__mult__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( times_times_complex @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4424_minus__mult__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( times_3573771949741848930nteger @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4425_minus__mult__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( times_times_rat @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4426_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4427_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4428_mult__minus__right,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4429_mult__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4430_mult__minus__right,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4431_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_4432_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_4433_minus__add__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_add_distrib
thf(fact_4434_minus__add__distrib,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_add_distrib
thf(fact_4435_minus__add__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_add_distrib
thf(fact_4436_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4437_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4438_minus__add__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4439_minus__add__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4440_minus__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4441_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4442_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4443_add__minus__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4444_add__minus__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4445_add__minus__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4446_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4447_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4448_minus__diff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
      = ( minus_minus_complex @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4449_minus__diff__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4450_minus__diff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
      = ( minus_minus_rat @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4451_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_4452_div__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ A @ B ) ) ).

% div_minus_minus
thf(fact_4453_minus__dvd__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( dvd_dvd_real @ ( uminus_uminus_real @ X2 ) @ Y )
      = ( dvd_dvd_real @ X2 @ Y ) ) ).

% minus_dvd_iff
thf(fact_4454_minus__dvd__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( dvd_dvd_int @ ( uminus_uminus_int @ X2 ) @ Y )
      = ( dvd_dvd_int @ X2 @ Y ) ) ).

% minus_dvd_iff
thf(fact_4455_minus__dvd__iff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( dvd_dvd_complex @ ( uminus1482373934393186551omplex @ X2 ) @ Y )
      = ( dvd_dvd_complex @ X2 @ Y ) ) ).

% minus_dvd_iff
thf(fact_4456_minus__dvd__iff,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X2 ) @ Y )
      = ( dvd_dvd_Code_integer @ X2 @ Y ) ) ).

% minus_dvd_iff
thf(fact_4457_minus__dvd__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X2 ) @ Y )
      = ( dvd_dvd_rat @ X2 @ Y ) ) ).

% minus_dvd_iff
thf(fact_4458_dvd__minus__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( dvd_dvd_real @ X2 @ ( uminus_uminus_real @ Y ) )
      = ( dvd_dvd_real @ X2 @ Y ) ) ).

% dvd_minus_iff
thf(fact_4459_dvd__minus__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( dvd_dvd_int @ X2 @ ( uminus_uminus_int @ Y ) )
      = ( dvd_dvd_int @ X2 @ Y ) ) ).

% dvd_minus_iff
thf(fact_4460_dvd__minus__iff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( dvd_dvd_complex @ X2 @ ( uminus1482373934393186551omplex @ Y ) )
      = ( dvd_dvd_complex @ X2 @ Y ) ) ).

% dvd_minus_iff
thf(fact_4461_dvd__minus__iff,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( dvd_dvd_Code_integer @ X2 @ ( uminus1351360451143612070nteger @ Y ) )
      = ( dvd_dvd_Code_integer @ X2 @ Y ) ) ).

% dvd_minus_iff
thf(fact_4462_dvd__minus__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( dvd_dvd_rat @ X2 @ ( uminus_uminus_rat @ Y ) )
      = ( dvd_dvd_rat @ X2 @ Y ) ) ).

% dvd_minus_iff
thf(fact_4463_ln__less__cancel__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_real @ X2 @ Y ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_4464_ln__inj__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ( ln_ln_real @ X2 )
            = ( ln_ln_real @ Y ) )
          = ( X2 = Y ) ) ) ) ).

% ln_inj_iff
thf(fact_4465_mod__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_4466_mod__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_4467_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_4468_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_4469_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_4470_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_4471_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P )
        = zero_zero_complex )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_4472_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = zero_zero_real )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_4473_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = zero_zero_rat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_4474_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = zero_zero_nat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_4475_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = zero_zero_int )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_4476_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = zero_z3403309356797280102nteger )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_4477_of__bool__eq_I1_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $false )
    = zero_zero_complex ) ).

% of_bool_eq(1)
thf(fact_4478_of__bool__eq_I1_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $false )
    = zero_zero_real ) ).

% of_bool_eq(1)
thf(fact_4479_of__bool__eq_I1_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $false )
    = zero_zero_rat ) ).

% of_bool_eq(1)
thf(fact_4480_of__bool__eq_I1_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $false )
    = zero_zero_nat ) ).

% of_bool_eq(1)
thf(fact_4481_of__bool__eq_I1_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $false )
    = zero_zero_int ) ).

% of_bool_eq(1)
thf(fact_4482_of__bool__eq_I1_J,axiom,
    ( ( zero_n356916108424825756nteger @ $false )
    = zero_z3403309356797280102nteger ) ).

% of_bool_eq(1)
thf(fact_4483_real__add__minus__iff,axiom,
    ! [X2: real,A: real] :
      ( ( ( plus_plus_real @ X2 @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X2 = A ) ) ).

% real_add_minus_iff
thf(fact_4484_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_4485_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_4486_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_4487_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_4488_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_4489_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P )
        = one_one_complex )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_4490_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = one_one_real )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_4491_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = one_one_rat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_4492_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = one_one_nat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_4493_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = one_one_int )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_4494_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = one_one_Code_integer )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_4495_of__bool__eq_I2_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $true )
    = one_one_complex ) ).

% of_bool_eq(2)
thf(fact_4496_of__bool__eq_I2_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $true )
    = one_one_real ) ).

% of_bool_eq(2)
thf(fact_4497_of__bool__eq_I2_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $true )
    = one_one_rat ) ).

% of_bool_eq(2)
thf(fact_4498_of__bool__eq_I2_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $true )
    = one_one_nat ) ).

% of_bool_eq(2)
thf(fact_4499_of__bool__eq_I2_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $true )
    = one_one_int ) ).

% of_bool_eq(2)
thf(fact_4500_of__bool__eq_I2_J,axiom,
    ( ( zero_n356916108424825756nteger @ $true )
    = one_one_Code_integer ) ).

% of_bool_eq(2)
thf(fact_4501_replicate__eq__replicate,axiom,
    ! [M: nat,X2: vEBT_VEBT,N2: nat,Y: vEBT_VEBT] :
      ( ( ( replicate_VEBT_VEBT @ M @ X2 )
        = ( replicate_VEBT_VEBT @ N2 @ Y ) )
      = ( ( M = N2 )
        & ( ( M != zero_zero_nat )
         => ( X2 = Y ) ) ) ) ).

% replicate_eq_replicate
thf(fact_4502_length__replicate,axiom,
    ! [N2: nat,X2: vEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X2 ) )
      = N2 ) ).

% length_replicate
thf(fact_4503_length__replicate,axiom,
    ! [N2: nat,X2: $o] :
      ( ( size_size_list_o @ ( replicate_o @ N2 @ X2 ) )
      = N2 ) ).

% length_replicate
thf(fact_4504_length__replicate,axiom,
    ! [N2: nat,X2: nat] :
      ( ( size_size_list_nat @ ( replicate_nat @ N2 @ X2 ) )
      = N2 ) ).

% length_replicate
thf(fact_4505_length__replicate,axiom,
    ! [N2: nat,X2: int] :
      ( ( size_size_list_int @ ( replicate_int @ N2 @ X2 ) )
      = N2 ) ).

% length_replicate
thf(fact_4506_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          | Q ) )
      = ( ord_max_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_4507_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          | Q ) )
      = ( ord_max_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_4508_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          | Q ) )
      = ( ord_max_Code_integer @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_4509_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_4510_neg__0__le__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_le_iff_le
thf(fact_4511_neg__0__le__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% neg_0_le_iff_le
thf(fact_4512_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_4513_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4514_neg__le__0__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4515_neg__le__0__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4516_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4517_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_4518_less__eq__neg__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_eq_neg_nonpos
thf(fact_4519_less__eq__neg__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% less_eq_neg_nonpos
thf(fact_4520_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_4521_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4522_neg__less__eq__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4523_neg__less__eq__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4524_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4525_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4526_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4527_neg__less__0__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4528_neg__less__0__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4529_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_4530_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_4531_neg__0__less__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_less_iff_less
thf(fact_4532_neg__0__less__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% neg_0_less_iff_less
thf(fact_4533_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_4534_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_4535_neg__less__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_pos
thf(fact_4536_neg__less__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_pos
thf(fact_4537_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_4538_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_4539_less__neg__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_neg_neg
thf(fact_4540_less__neg__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% less_neg_neg
thf(fact_4541_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_4542_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_4543_ab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_left_minus
thf(fact_4544_ab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_left_minus
thf(fact_4545_ab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_left_minus
thf(fact_4546_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_4547_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_4548_add_Oright__inverse,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
      = zero_zero_complex ) ).

% add.right_inverse
thf(fact_4549_add_Oright__inverse,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = zero_z3403309356797280102nteger ) ).

% add.right_inverse
thf(fact_4550_add_Oright__inverse,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
      = zero_zero_rat ) ).

% add.right_inverse
thf(fact_4551_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_4552_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_4553_diff__0,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ A )
      = ( uminus1482373934393186551omplex @ A ) ) ).

% diff_0
thf(fact_4554_diff__0,axiom,
    ! [A: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% diff_0
thf(fact_4555_diff__0,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ A )
      = ( uminus_uminus_rat @ A ) ) ).

% diff_0
thf(fact_4556_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4557_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4558_verit__minus__simplify_I3_J,axiom,
    ! [B: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4559_verit__minus__simplify_I3_J,axiom,
    ! [B: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4560_verit__minus__simplify_I3_J,axiom,
    ! [B: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4561_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4562_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4563_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4564_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4565_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4566_mult__minus1,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1
thf(fact_4567_mult__minus1,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1
thf(fact_4568_mult__minus1,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1
thf(fact_4569_mult__minus1,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1
thf(fact_4570_mult__minus1,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1
thf(fact_4571_mult__minus1__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1_right
thf(fact_4572_mult__minus1__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1_right
thf(fact_4573_mult__minus1__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1_right
thf(fact_4574_mult__minus1__right,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ Z @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1_right
thf(fact_4575_mult__minus1__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1_right
thf(fact_4576_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4577_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4578_uminus__add__conv__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( minus_minus_complex @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4579_uminus__add__conv__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4580_uminus__add__conv__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( minus_minus_rat @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4581_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4582_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4583_diff__minus__eq__add,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( plus_plus_complex @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4584_diff__minus__eq__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( plus_p5714425477246183910nteger @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4585_diff__minus__eq__add,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( plus_plus_rat @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4586_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_4587_div__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% div_minus1_right
thf(fact_4588_divide__minus1,axiom,
    ! [X2: real] :
      ( ( divide_divide_real @ X2 @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ X2 ) ) ).

% divide_minus1
thf(fact_4589_divide__minus1,axiom,
    ! [X2: complex] :
      ( ( divide1717551699836669952omplex @ X2 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ X2 ) ) ).

% divide_minus1
thf(fact_4590_divide__minus1,axiom,
    ! [X2: rat] :
      ( ( divide_divide_rat @ X2 @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ X2 ) ) ).

% divide_minus1
thf(fact_4591_minus__mod__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_4592_minus__mod__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_4593_ln__le__cancel__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_eq_real @ X2 @ Y ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_4594_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_4595_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_4596_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_4597_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_4598_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_4599_ln__less__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ ( ln_ln_real @ X2 ) @ zero_zero_real )
        = ( ord_less_real @ X2 @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_4600_ln__gt__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
        = ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% ln_gt_zero_iff
thf(fact_4601_ln__eq__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ln_ln_real @ X2 )
          = zero_zero_real )
        = ( X2 = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_4602_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_4603_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_4604_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_4605_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_4606_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_4607_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n1201886186963655149omplex @ ~ P )
      = ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P ) ) ) ).

% of_bool_not_iff
thf(fact_4608_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n3304061248610475627l_real @ ~ P )
      = ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P ) ) ) ).

% of_bool_not_iff
thf(fact_4609_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2052037380579107095ol_rat @ ~ P )
      = ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ) ).

% of_bool_not_iff
thf(fact_4610_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2684676970156552555ol_int @ ~ P )
      = ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P ) ) ) ).

% of_bool_not_iff
thf(fact_4611_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n356916108424825756nteger @ ~ P )
      = ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( zero_n356916108424825756nteger @ P ) ) ) ).

% of_bool_not_iff
thf(fact_4612_Suc__0__mod__eq,axiom,
    ! [N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( zero_n2687167440665602831ol_nat
        @ ( N2
         != ( suc @ zero_zero_nat ) ) ) ) ).

% Suc_0_mod_eq
thf(fact_4613_signed__take__bit__of__minus__1,axiom,
    ! [N2: nat] :
      ( ( bit_ri6519982836138164636nteger @ N2 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% signed_take_bit_of_minus_1
thf(fact_4614_signed__take__bit__of__minus__1,axiom,
    ! [N2: nat] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_4615_Ball__set__replicate,axiom,
    ! [N2: nat,A: int,P: int > $o] :
      ( ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N2 @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N2 = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_4616_Ball__set__replicate,axiom,
    ! [N2: nat,A: nat,P: nat > $o] :
      ( ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N2 @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N2 = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_4617_Ball__set__replicate,axiom,
    ! [N2: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N2 = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_4618_Bex__set__replicate,axiom,
    ! [N2: nat,A: int,P: int > $o] :
      ( ( ? [X: int] :
            ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N2 @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N2 != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_4619_Bex__set__replicate,axiom,
    ! [N2: nat,A: nat,P: nat > $o] :
      ( ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N2 @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N2 != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_4620_Bex__set__replicate,axiom,
    ! [N2: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ? [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N2 != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_4621_in__set__replicate,axiom,
    ! [X2: real,N2: nat,Y: real] :
      ( ( member_real @ X2 @ ( set_real2 @ ( replicate_real @ N2 @ Y ) ) )
      = ( ( X2 = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4622_in__set__replicate,axiom,
    ! [X2: complex,N2: nat,Y: complex] :
      ( ( member_complex @ X2 @ ( set_complex2 @ ( replicate_complex @ N2 @ Y ) ) )
      = ( ( X2 = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4623_in__set__replicate,axiom,
    ! [X2: int,N2: nat,Y: int] :
      ( ( member_int @ X2 @ ( set_int2 @ ( replicate_int @ N2 @ Y ) ) )
      = ( ( X2 = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4624_in__set__replicate,axiom,
    ! [X2: nat,N2: nat,Y: nat] :
      ( ( member_nat @ X2 @ ( set_nat2 @ ( replicate_nat @ N2 @ Y ) ) )
      = ( ( X2 = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4625_in__set__replicate,axiom,
    ! [X2: vEBT_VEBT,N2: nat,Y: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ Y ) ) )
      = ( ( X2 = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4626_nth__replicate,axiom,
    ! [I: nat,N2: nat,X2: nat] :
      ( ( ord_less_nat @ I @ N2 )
     => ( ( nth_nat @ ( replicate_nat @ N2 @ X2 ) @ I )
        = X2 ) ) ).

% nth_replicate
thf(fact_4627_nth__replicate,axiom,
    ! [I: nat,N2: nat,X2: int] :
      ( ( ord_less_nat @ I @ N2 )
     => ( ( nth_int @ ( replicate_int @ N2 @ X2 ) @ I )
        = X2 ) ) ).

% nth_replicate
thf(fact_4628_nth__replicate,axiom,
    ! [I: nat,N2: nat,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ N2 )
     => ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X2 ) @ I )
        = X2 ) ) ).

% nth_replicate
thf(fact_4629_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4630_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4631_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4632_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4633_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4634_triangle__Suc,axiom,
    ! [N2: nat] :
      ( ( nat_triangle @ ( suc @ N2 ) )
      = ( plus_plus_nat @ ( nat_triangle @ N2 ) @ ( suc @ N2 ) ) ) ).

% triangle_Suc
thf(fact_4635_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_4636_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_4637_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% add_neg_numeral_special(7)
thf(fact_4638_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(7)
thf(fact_4639_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% add_neg_numeral_special(7)
thf(fact_4640_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_4641_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_4642_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = zero_zero_complex ) ).

% add_neg_numeral_special(8)
thf(fact_4643_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(8)
thf(fact_4644_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = zero_zero_rat ) ).

% add_neg_numeral_special(8)
thf(fact_4645_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_4646_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_4647_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% diff_numeral_special(12)
thf(fact_4648_diff__numeral__special_I12_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% diff_numeral_special(12)
thf(fact_4649_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% diff_numeral_special(12)
thf(fact_4650_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4651_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4652_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4653_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4654_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4655_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4656_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4657_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1482373934393186551omplex @ one_one_complex )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4658_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4659_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_rat @ one_one_rat )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4660_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_4661_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_4662_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) )
      = one_one_complex ) ).

% minus_one_mult_self
thf(fact_4663_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) )
      = one_one_Code_integer ) ).

% minus_one_mult_self
thf(fact_4664_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) )
      = one_one_rat ) ).

% minus_one_mult_self
thf(fact_4665_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4666_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4667_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: complex] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4668_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4669_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: rat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4670_mod__minus1__right,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = zero_zero_int ) ).

% mod_minus1_right
thf(fact_4671_mod__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = zero_z3403309356797280102nteger ) ).

% mod_minus1_right
thf(fact_4672_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_4673_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( numera6620942414471956472nteger @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_4674_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_4675_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_4676_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_4677_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ V ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_4678_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_4679_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_4680_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_4681_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_4682_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_4683_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_4684_ln__ge__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
        = ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).

% ln_ge_zero_iff
thf(fact_4685_ln__le__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ zero_zero_real )
        = ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_4686_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4687_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4688_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4689_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4690_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4691_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4692_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4693_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4694_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4695_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4696_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4697_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4698_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4699_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4700_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4701_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4702_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4703_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4704_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4705_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4706_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4707_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4708_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4709_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4710_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4711_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4712_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4713_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4714_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4715_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4716_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4717_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4718_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4719_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4720_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4721_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4722_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4723_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4724_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4725_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4726_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4727_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4728_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4729_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4730_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4731_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4732_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4733_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4734_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4735_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4736_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4737_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4738_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4739_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4740_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4741_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4742_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4743_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4744_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4745_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4746_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4747_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4748_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
            = B ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4749_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4750_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4751_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
        = A )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4752_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4753_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4754_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4755_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4756_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4757_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4758_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4759_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4760_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4761_power2__minus,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4762_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4763_power2__minus,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4764_power2__minus,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4765_power2__minus,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4766_odd__of__bool__self,axiom,
    ! [P4: $o] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( zero_n2687167440665602831ol_nat @ P4 ) ) )
      = P4 ) ).

% odd_of_bool_self
thf(fact_4767_odd__of__bool__self,axiom,
    ! [P4: $o] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( zero_n2684676970156552555ol_int @ P4 ) ) )
      = P4 ) ).

% odd_of_bool_self
thf(fact_4768_odd__of__bool__self,axiom,
    ! [P4: $o] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( zero_n356916108424825756nteger @ P4 ) ) )
      = P4 ) ).

% odd_of_bool_self
thf(fact_4769_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4770_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4771_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4772_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4773_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4774_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4775_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4776_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4777_diff__numeral__special_I10_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4778_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4779_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4780_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4781_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4782_diff__numeral__special_I11_J,axiom,
    ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4783_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4784_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_4785_minus__1__div__2__eq,axiom,
    ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% minus_1_div_2_eq
thf(fact_4786_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_minus_1_mod_2_eq
thf(fact_4787_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_minus_1_mod_2_eq
thf(fact_4788_minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% minus_1_mod_2_eq
thf(fact_4789_minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% minus_1_mod_2_eq
thf(fact_4790_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4791_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4792_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4793_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4794_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4795_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% of_bool_half_eq_0
thf(fact_4796_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = zero_zero_int ) ).

% of_bool_half_eq_0
thf(fact_4797_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = zero_z3403309356797280102nteger ) ).

% of_bool_half_eq_0
thf(fact_4798_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
        = ( power_power_real @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4799_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
        = ( power_power_int @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4800_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: complex] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
        = ( power_power_complex @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4801_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
        = ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4802_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
        = ( power_power_rat @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4803_power__minus__odd,axiom,
    ! [N2: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
        = ( uminus_uminus_real @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_4804_power__minus__odd,axiom,
    ! [N2: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
        = ( uminus_uminus_int @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_4805_power__minus__odd,axiom,
    ! [N2: nat,A: complex] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
        = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_4806_power__minus__odd,axiom,
    ! [N2: nat,A: code_integer] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
        = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_4807_power__minus__odd,axiom,
    ! [N2: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
        = ( uminus_uminus_rat @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_4808_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4809_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4810_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4811_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4812_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4813_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_4814_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_4815_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_4816_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_4817_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_4818_signed__take__bit__Suc__minus__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_minus_bit0
thf(fact_4819_set__decode__0,axiom,
    ! [X2: nat] :
      ( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X2 ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 ) ) ) ).

% set_decode_0
thf(fact_4820_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4821_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4822_dbl__simps_I4_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4823_dbl__simps_I4_J,axiom,
    ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4824_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4825_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_real ) ).

% power_minus1_even
thf(fact_4826_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_4827_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_complex ) ).

% power_minus1_even
thf(fact_4828_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_Code_integer ) ).

% power_minus1_even
thf(fact_4829_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_rat ) ).

% power_minus1_even
thf(fact_4830_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
        = one_one_real ) ) ).

% neg_one_even_power
thf(fact_4831_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_4832_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
        = one_one_complex ) ) ).

% neg_one_even_power
thf(fact_4833_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
        = one_one_Code_integer ) ) ).

% neg_one_even_power
thf(fact_4834_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
        = one_one_rat ) ) ).

% neg_one_even_power
thf(fact_4835_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% neg_one_odd_power
thf(fact_4836_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_4837_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% neg_one_odd_power
thf(fact_4838_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% neg_one_odd_power
thf(fact_4839_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% neg_one_odd_power
thf(fact_4840_signed__take__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_4841_signed__take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_4842_one__div__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_4843_one__div__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2684676970156552555ol_int @ ( N2 = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_4844_one__div__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n356916108424825756nteger @ ( N2 = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_4845_bits__1__div__exp,axiom,
    ! [N2: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_4846_bits__1__div__exp,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2684676970156552555ol_int @ ( N2 = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_4847_bits__1__div__exp,axiom,
    ! [N2: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n356916108424825756nteger @ ( N2 = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_4848_one__mod__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% one_mod_2_pow_eq
thf(fact_4849_one__mod__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% one_mod_2_pow_eq
thf(fact_4850_one__mod__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% one_mod_2_pow_eq
thf(fact_4851_dvd__antisym,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ M @ N2 )
     => ( ( dvd_dvd_nat @ N2 @ M )
       => ( M = N2 ) ) ) ).

% dvd_antisym
thf(fact_4852_signed__take__bit__minus,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ K ) ) ) ).

% signed_take_bit_minus
thf(fact_4853_compl__le__swap2,axiom,
    ! [Y: set_nat,X2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y ) @ X2 )
     => ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X2 ) @ Y ) ) ).

% compl_le_swap2
thf(fact_4854_compl__le__swap1,axiom,
    ! [Y: set_nat,X2: set_nat] :
      ( ( ord_less_eq_set_nat @ Y @ ( uminus5710092332889474511et_nat @ X2 ) )
     => ( ord_less_eq_set_nat @ X2 @ ( uminus5710092332889474511et_nat @ Y ) ) ) ).

% compl_le_swap1
thf(fact_4855_compl__mono,axiom,
    ! [X2: set_nat,Y: set_nat] :
      ( ( ord_less_eq_set_nat @ X2 @ Y )
     => ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y ) @ ( uminus5710092332889474511et_nat @ X2 ) ) ) ).

% compl_mono
thf(fact_4856_of__bool__eq__iff,axiom,
    ! [P4: $o,Q2: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P4 )
        = ( zero_n2687167440665602831ol_nat @ Q2 ) )
      = ( P4 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_4857_of__bool__eq__iff,axiom,
    ! [P4: $o,Q2: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P4 )
        = ( zero_n2684676970156552555ol_int @ Q2 ) )
      = ( P4 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_4858_of__bool__eq__iff,axiom,
    ! [P4: $o,Q2: $o] :
      ( ( ( zero_n356916108424825756nteger @ P4 )
        = ( zero_n356916108424825756nteger @ Q2 ) )
      = ( P4 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_4859_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4860_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4861_verit__negate__coefficient_I3_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A = B )
     => ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4862_verit__negate__coefficient_I3_J,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
     => ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4863_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4864_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4865_minus__equation__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( uminus1482373934393186551omplex @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4866_minus__equation__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( uminus1351360451143612070nteger @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4867_minus__equation__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( uminus_uminus_rat @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4868_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_4869_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_4870_equation__minus__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% equation_minus_iff
thf(fact_4871_equation__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% equation_minus_iff
thf(fact_4872_equation__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% equation_minus_iff
thf(fact_4873_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n3304061248610475627l_real
        @ ( P
          & Q ) )
      = ( times_times_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) ) ) ).

% of_bool_conj
thf(fact_4874_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2052037380579107095ol_rat
        @ ( P
          & Q ) )
      = ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) ) ) ).

% of_bool_conj
thf(fact_4875_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          & Q ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_conj
thf(fact_4876_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          & Q ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_conj
thf(fact_4877_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          & Q ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_conj
thf(fact_4878_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_4879_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_4880_le__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_minus_iff
thf(fact_4881_le__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% le_minus_iff
thf(fact_4882_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_4883_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4884_minus__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4885_minus__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4886_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4887_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4888_le__imp__neg__le,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4889_le__imp__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4890_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4891_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4892_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4893_minus__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4894_minus__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4895_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_4896_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_4897_less__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% less_minus_iff
thf(fact_4898_less__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% less_minus_iff
thf(fact_4899_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4900_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4901_verit__negate__coefficient_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4902_verit__negate__coefficient_I2_J,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4903_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4904_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4905_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numera6690914467698888265omplex @ M )
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4906_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numera6620942414471956472nteger @ M )
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4907_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_rat @ M )
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4908_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_4909_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_4910_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
     != ( numera6690914467698888265omplex @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_4911_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
     != ( numera6620942414471956472nteger @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_4912_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
     != ( numeral_numeral_rat @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_4913_square__eq__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ A )
        = ( times_times_real @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4914_square__eq__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ A )
        = ( times_times_int @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_int @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4915_square__eq__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ A )
        = ( times_times_complex @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4916_square__eq__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( times_3573771949741848930nteger @ A @ A )
        = ( times_3573771949741848930nteger @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1351360451143612070nteger @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4917_square__eq__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ A )
        = ( times_times_rat @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4918_minus__mult__commute,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_mult_commute
thf(fact_4919_minus__mult__commute,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).

% minus_mult_commute
thf(fact_4920_minus__mult__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_mult_commute
thf(fact_4921_minus__mult__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_mult_commute
thf(fact_4922_minus__mult__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_mult_commute
thf(fact_4923_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_4924_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_4925_one__neq__neg__one,axiom,
    ( one_one_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% one_neq_neg_one
thf(fact_4926_one__neq__neg__one,axiom,
    ( one_one_Code_integer
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% one_neq_neg_one
thf(fact_4927_one__neq__neg__one,axiom,
    ( one_one_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% one_neq_neg_one
thf(fact_4928_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4929_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4930_is__num__normalize_I8_J,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4931_is__num__normalize_I8_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4932_is__num__normalize_I8_J,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4933_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4934_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4935_add_Oinverse__distrib__swap,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4936_add_Oinverse__distrib__swap,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4937_add_Oinverse__distrib__swap,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4938_group__cancel_Oneg1,axiom,
    ! [A2: real,K: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4939_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4940_group__cancel_Oneg1,axiom,
    ! [A2: complex,K: complex,A: complex] :
      ( ( A2
        = ( plus_plus_complex @ K @ A ) )
     => ( ( uminus1482373934393186551omplex @ A2 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4941_group__cancel_Oneg1,axiom,
    ! [A2: code_integer,K: code_integer,A: code_integer] :
      ( ( A2
        = ( plus_p5714425477246183910nteger @ K @ A ) )
     => ( ( uminus1351360451143612070nteger @ A2 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4942_group__cancel_Oneg1,axiom,
    ! [A2: rat,K: rat,A: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( uminus_uminus_rat @ A2 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4943_minus__diff__commute,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
      = ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4944_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4945_minus__diff__commute,axiom,
    ! [B: complex,A: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
      = ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4946_minus__diff__commute,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
      = ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4947_minus__diff__commute,axiom,
    ! [B: rat,A: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
      = ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4948_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4949_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4950_minus__diff__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4951_minus__diff__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4952_minus__diff__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4953_div__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% div_minus_right
thf(fact_4954_div__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% div_minus_right
thf(fact_4955_minus__divide__left,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_4956_minus__divide__left,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_4957_minus__divide__left,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_4958_minus__divide__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( divide_divide_real @ A @ B ) ) ).

% minus_divide_divide
thf(fact_4959_minus__divide__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( divide1717551699836669952omplex @ A @ B ) ) ).

% minus_divide_divide
thf(fact_4960_minus__divide__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( divide_divide_rat @ A @ B ) ) ).

% minus_divide_divide
thf(fact_4961_minus__divide__right,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_divide_right
thf(fact_4962_minus__divide__right,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_divide_right
thf(fact_4963_minus__divide__right,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_divide_right
thf(fact_4964_mod__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_4965_mod__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_4966_mod__minus__cong,axiom,
    ! [A: int,B: int,A4: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = ( modulo_modulo_int @ A4 @ B ) )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
        = ( modulo_modulo_int @ ( uminus_uminus_int @ A4 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_4967_mod__minus__cong,axiom,
    ! [A: code_integer,B: code_integer,A4: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = ( modulo364778990260209775nteger @ A4 @ B ) )
     => ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A4 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_4968_mod__minus__eq,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_4969_mod__minus__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_4970_bot__enat__def,axiom,
    bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).

% bot_enat_def
thf(fact_4971_ln__add__one__self__le__self2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) ).

% ln_add_one_self_le_self2
thf(fact_4972_ln__less__self,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ).

% ln_less_self
thf(fact_4973_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_4974_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_4975_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_4976_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_4977_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_4978_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real ) ).

% of_bool_less_eq_one
thf(fact_4979_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat ) ).

% of_bool_less_eq_one
thf(fact_4980_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat ) ).

% of_bool_less_eq_one
thf(fact_4981_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int ) ).

% of_bool_less_eq_one
thf(fact_4982_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer ) ).

% of_bool_less_eq_one
thf(fact_4983_of__bool__def,axiom,
    ( zero_n1201886186963655149omplex
    = ( ^ [P5: $o] : ( if_complex @ P5 @ one_one_complex @ zero_zero_complex ) ) ) ).

% of_bool_def
thf(fact_4984_of__bool__def,axiom,
    ( zero_n3304061248610475627l_real
    = ( ^ [P5: $o] : ( if_real @ P5 @ one_one_real @ zero_zero_real ) ) ) ).

% of_bool_def
thf(fact_4985_of__bool__def,axiom,
    ( zero_n2052037380579107095ol_rat
    = ( ^ [P5: $o] : ( if_rat @ P5 @ one_one_rat @ zero_zero_rat ) ) ) ).

% of_bool_def
thf(fact_4986_of__bool__def,axiom,
    ( zero_n2687167440665602831ol_nat
    = ( ^ [P5: $o] : ( if_nat @ P5 @ one_one_nat @ zero_zero_nat ) ) ) ).

% of_bool_def
thf(fact_4987_of__bool__def,axiom,
    ( zero_n2684676970156552555ol_int
    = ( ^ [P5: $o] : ( if_int @ P5 @ one_one_int @ zero_zero_int ) ) ) ).

% of_bool_def
thf(fact_4988_of__bool__def,axiom,
    ( zero_n356916108424825756nteger
    = ( ^ [P5: $o] : ( if_Code_integer @ P5 @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) ) ).

% of_bool_def
thf(fact_4989_split__of__bool,axiom,
    ! [P: complex > $o,P4: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P4 ) )
      = ( ( P4
         => ( P @ one_one_complex ) )
        & ( ~ P4
         => ( P @ zero_zero_complex ) ) ) ) ).

% split_of_bool
thf(fact_4990_split__of__bool,axiom,
    ! [P: real > $o,P4: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P4 ) )
      = ( ( P4
         => ( P @ one_one_real ) )
        & ( ~ P4
         => ( P @ zero_zero_real ) ) ) ) ).

% split_of_bool
thf(fact_4991_split__of__bool,axiom,
    ! [P: rat > $o,P4: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P4 ) )
      = ( ( P4
         => ( P @ one_one_rat ) )
        & ( ~ P4
         => ( P @ zero_zero_rat ) ) ) ) ).

% split_of_bool
thf(fact_4992_split__of__bool,axiom,
    ! [P: nat > $o,P4: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P4 ) )
      = ( ( P4
         => ( P @ one_one_nat ) )
        & ( ~ P4
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_of_bool
thf(fact_4993_split__of__bool,axiom,
    ! [P: int > $o,P4: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P4 ) )
      = ( ( P4
         => ( P @ one_one_int ) )
        & ( ~ P4
         => ( P @ zero_zero_int ) ) ) ) ).

% split_of_bool
thf(fact_4994_split__of__bool,axiom,
    ! [P: code_integer > $o,P4: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P4 ) )
      = ( ( P4
         => ( P @ one_one_Code_integer ) )
        & ( ~ P4
         => ( P @ zero_z3403309356797280102nteger ) ) ) ) ).

% split_of_bool
thf(fact_4995_split__of__bool__asm,axiom,
    ! [P: complex > $o,P4: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_complex ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_complex ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4996_split__of__bool__asm,axiom,
    ! [P: real > $o,P4: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_real ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_real ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4997_split__of__bool__asm,axiom,
    ! [P: rat > $o,P4: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_rat ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_rat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4998_split__of__bool__asm,axiom,
    ! [P: nat > $o,P4: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_nat ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_nat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4999_split__of__bool__asm,axiom,
    ! [P: int > $o,P4: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_int ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_int ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5000_split__of__bool__asm,axiom,
    ! [P: code_integer > $o,P4: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_Code_integer ) )
            | ( ~ P4
              & ~ ( P @ zero_z3403309356797280102nteger ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5001_finite__set__decode,axiom,
    ! [N2: nat] : ( finite_finite_nat @ ( nat_set_decode @ N2 ) ) ).

% finite_set_decode
thf(fact_5002_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5003_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5004_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5005_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5006_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5007_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5008_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5009_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5010_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5011_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5012_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5013_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_z3403309356797280102nteger
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5014_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5015_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5016_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5017_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5018_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5019_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5020_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5021_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5022_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5023_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_5024_le__minus__one__simps_I2_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% le_minus_one_simps(2)
thf(fact_5025_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% le_minus_one_simps(2)
thf(fact_5026_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_5027_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_5028_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(4)
thf(fact_5029_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(4)
thf(fact_5030_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_5031_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_5032_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_5033_zero__neq__neg__one,axiom,
    ( zero_zero_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% zero_neq_neg_one
thf(fact_5034_zero__neq__neg__one,axiom,
    ( zero_z3403309356797280102nteger
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% zero_neq_neg_one
thf(fact_5035_zero__neq__neg__one,axiom,
    ( zero_zero_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% zero_neq_neg_one
thf(fact_5036_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5037_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5038_add__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5039_add__eq__0__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5040_add__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5041_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5042_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5043_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5044_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5045_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5046_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5047_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5048_add_Oinverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5049_add_Oinverse__unique,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( ( uminus1351360451143612070nteger @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5050_add_Oinverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
     => ( ( uminus_uminus_rat @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5051_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5052_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5053_eq__neg__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5054_eq__neg__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5055_eq__neg__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5056_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5057_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5058_neg__eq__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5059_neg__eq__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5060_neg__eq__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5061_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_5062_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_5063_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(4)
thf(fact_5064_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(4)
thf(fact_5065_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_5066_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_5067_less__minus__one__simps_I2_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% less_minus_one_simps(2)
thf(fact_5068_less__minus__one__simps_I2_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% less_minus_one_simps(2)
thf(fact_5069_numeral__times__minus__swap,axiom,
    ! [W: num,X2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X2 ) )
      = ( times_times_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5070_numeral__times__minus__swap,axiom,
    ! [W: num,X2: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X2 ) )
      = ( times_times_int @ X2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5071_numeral__times__minus__swap,axiom,
    ! [W: num,X2: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X2 ) )
      = ( times_times_complex @ X2 @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5072_numeral__times__minus__swap,axiom,
    ! [W: num,X2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X2 ) )
      = ( times_3573771949741848930nteger @ X2 @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5073_numeral__times__minus__swap,axiom,
    ! [W: num,X2: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X2 ) )
      = ( times_times_rat @ X2 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5074_nonzero__minus__divide__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5075_nonzero__minus__divide__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5076_nonzero__minus__divide__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5077_nonzero__minus__divide__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5078_nonzero__minus__divide__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5079_nonzero__minus__divide__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5080_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ N2 )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_5081_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ N2 )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_5082_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ N2 )
     != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% numeral_neq_neg_one
thf(fact_5083_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numera6620942414471956472nteger @ N2 )
     != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% numeral_neq_neg_one
thf(fact_5084_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ N2 )
     != ( uminus_uminus_rat @ one_one_rat ) ) ).

% numeral_neq_neg_one
thf(fact_5085_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5086_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5087_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5088_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_Code_integer
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5089_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5090_square__eq__1__iff,axiom,
    ! [X2: real] :
      ( ( ( times_times_real @ X2 @ X2 )
        = one_one_real )
      = ( ( X2 = one_one_real )
        | ( X2
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% square_eq_1_iff
thf(fact_5091_square__eq__1__iff,axiom,
    ! [X2: int] :
      ( ( ( times_times_int @ X2 @ X2 )
        = one_one_int )
      = ( ( X2 = one_one_int )
        | ( X2
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% square_eq_1_iff
thf(fact_5092_square__eq__1__iff,axiom,
    ! [X2: complex] :
      ( ( ( times_times_complex @ X2 @ X2 )
        = one_one_complex )
      = ( ( X2 = one_one_complex )
        | ( X2
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% square_eq_1_iff
thf(fact_5093_square__eq__1__iff,axiom,
    ! [X2: code_integer] :
      ( ( ( times_3573771949741848930nteger @ X2 @ X2 )
        = one_one_Code_integer )
      = ( ( X2 = one_one_Code_integer )
        | ( X2
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% square_eq_1_iff
thf(fact_5094_square__eq__1__iff,axiom,
    ! [X2: rat] :
      ( ( ( times_times_rat @ X2 @ X2 )
        = one_one_rat )
      = ( ( X2 = one_one_rat )
        | ( X2
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% square_eq_1_iff
thf(fact_5095_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A3: real,B3: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5096_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5097_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A3: complex,B3: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5098_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A3: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5099_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A3: rat,B3: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5100_diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A3: real,B3: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5101_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5102_diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A3: complex,B3: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5103_diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A3: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5104_diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A3: rat,B3: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5105_group__cancel_Osub2,axiom,
    ! [B2: real,K: real,B: real,A: real] :
      ( ( B2
        = ( plus_plus_real @ K @ B ) )
     => ( ( minus_minus_real @ A @ B2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5106_group__cancel_Osub2,axiom,
    ! [B2: int,K: int,B: int,A: int] :
      ( ( B2
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5107_group__cancel_Osub2,axiom,
    ! [B2: complex,K: complex,B: complex,A: complex] :
      ( ( B2
        = ( plus_plus_complex @ K @ B ) )
     => ( ( minus_minus_complex @ A @ B2 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5108_group__cancel_Osub2,axiom,
    ! [B2: code_integer,K: code_integer,B: code_integer,A: code_integer] :
      ( ( B2
        = ( plus_p5714425477246183910nteger @ K @ B ) )
     => ( ( minus_8373710615458151222nteger @ A @ B2 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5109_group__cancel_Osub2,axiom,
    ! [B2: rat,K: rat,B: rat,A: rat] :
      ( ( B2
        = ( plus_plus_rat @ K @ B ) )
     => ( ( minus_minus_rat @ A @ B2 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5110_replicate__length__same,axiom,
    ! [Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
         => ( X3 = X2 ) )
     => ( ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ X2 )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_5111_replicate__length__same,axiom,
    ! [Xs2: list_o,X2: $o] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
         => ( X3 = X2 ) )
     => ( ( replicate_o @ ( size_size_list_o @ Xs2 ) @ X2 )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_5112_replicate__length__same,axiom,
    ! [Xs2: list_nat,X2: nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
         => ( X3 = X2 ) )
     => ( ( replicate_nat @ ( size_size_list_nat @ Xs2 ) @ X2 )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_5113_replicate__length__same,axiom,
    ! [Xs2: list_int,X2: int] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
         => ( X3 = X2 ) )
     => ( ( replicate_int @ ( size_size_list_int @ Xs2 ) @ X2 )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_5114_replicate__eqI,axiom,
    ! [Xs2: list_real,N2: nat,X2: real] :
      ( ( ( size_size_list_real @ Xs2 )
        = N2 )
     => ( ! [Y3: real] :
            ( ( member_real @ Y3 @ ( set_real2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_real @ N2 @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_5115_replicate__eqI,axiom,
    ! [Xs2: list_complex,N2: nat,X2: complex] :
      ( ( ( size_s3451745648224563538omplex @ Xs2 )
        = N2 )
     => ( ! [Y3: complex] :
            ( ( member_complex @ Y3 @ ( set_complex2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_complex @ N2 @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_5116_replicate__eqI,axiom,
    ! [Xs2: list_VEBT_VEBT,N2: nat,X2: vEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
        = N2 )
     => ( ! [Y3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ Y3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_VEBT_VEBT @ N2 @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_5117_replicate__eqI,axiom,
    ! [Xs2: list_o,N2: nat,X2: $o] :
      ( ( ( size_size_list_o @ Xs2 )
        = N2 )
     => ( ! [Y3: $o] :
            ( ( member_o @ Y3 @ ( set_o2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_o @ N2 @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_5118_replicate__eqI,axiom,
    ! [Xs2: list_nat,N2: nat,X2: nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = N2 )
     => ( ! [Y3: nat] :
            ( ( member_nat @ Y3 @ ( set_nat2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_nat @ N2 @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_5119_replicate__eqI,axiom,
    ! [Xs2: list_int,N2: nat,X2: int] :
      ( ( ( size_size_list_int @ Xs2 )
        = N2 )
     => ( ! [Y3: int] :
            ( ( member_int @ Y3 @ ( set_int2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_int @ N2 @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_5120_dvd__div__neg,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5121_dvd__div__neg,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5122_dvd__div__neg,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5123_dvd__div__neg,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5124_dvd__div__neg,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5125_dvd__neg__div,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5126_dvd__neg__div,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5127_dvd__neg__div,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5128_dvd__neg__div,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5129_dvd__neg__div,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5130_real__minus__mult__self__le,axiom,
    ! [U: real,X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X2 @ X2 ) ) ).

% real_minus_mult_self_le
thf(fact_5131_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N2: int] :
      ( ( ( times_times_int @ M @ N2 )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_5132_zmult__eq__1__iff,axiom,
    ! [M: int,N2: int] :
      ( ( ( times_times_int @ M @ N2 )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N2 = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N2
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_5133_minus__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( minus_minus_int @ zero_zero_int @ L2 )
      = ( uminus_uminus_int @ L2 ) ) ).

% minus_int_code(2)
thf(fact_5134_zmod__zminus1__not__zero,axiom,
    ! [K: int,L2: int] :
      ( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L2 )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L2 )
       != zero_zero_int ) ) ).

% zmod_zminus1_not_zero
thf(fact_5135_zmod__zminus2__not__zero,axiom,
    ! [K: int,L2: int] :
      ( ( ( modulo_modulo_int @ K @ ( uminus_uminus_int @ L2 ) )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L2 )
       != zero_zero_int ) ) ).

% zmod_zminus2_not_zero
thf(fact_5136_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X: real,Y2: real] : ( plus_plus_real @ X @ ( uminus_uminus_real @ Y2 ) ) ) ) ).

% minus_real_def
thf(fact_5137_ln__one__minus__pos__upper__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X2 ) ) @ ( uminus_uminus_real @ X2 ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_5138_ln__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ).

% ln_bound
thf(fact_5139_ln__gt__zero__imp__gt__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_5140_ln__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X2 ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_5141_ln__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) ) ) ).

% ln_gt_zero
thf(fact_5142_ln__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) ) ) ).

% ln_ge_zero
thf(fact_5143_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5144_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5145_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5146_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5147_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) @ zero_zero_real ) ).

% neg_numeral_le_zero
thf(fact_5148_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_le_zero
thf(fact_5149_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) @ zero_zero_rat ) ).

% neg_numeral_le_zero
thf(fact_5150_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_5151_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5152_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5153_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5154_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5155_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) @ zero_zero_real ) ).

% neg_numeral_less_zero
thf(fact_5156_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_5157_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_less_zero
thf(fact_5158_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) @ zero_zero_rat ) ).

% neg_numeral_less_zero
thf(fact_5159_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_5160_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(3)
thf(fact_5161_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(3)
thf(fact_5162_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_5163_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_5164_le__minus__one__simps_I1_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% le_minus_one_simps(1)
thf(fact_5165_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% le_minus_one_simps(1)
thf(fact_5166_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_5167_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_5168_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_5169_less__minus__one__simps_I1_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% less_minus_one_simps(1)
thf(fact_5170_less__minus__one__simps_I1_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% less_minus_one_simps(1)
thf(fact_5171_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_5172_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_5173_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(3)
thf(fact_5174_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(3)
thf(fact_5175_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5176_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5177_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5178_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5179_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_le_neg_one
thf(fact_5180_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_le_neg_one
thf(fact_5181_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_le_neg_one
thf(fact_5182_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_5183_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% neg_numeral_le_neg_one
thf(fact_5184_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% neg_numeral_le_neg_one
thf(fact_5185_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% neg_numeral_le_neg_one
thf(fact_5186_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_5187_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_le_numeral
thf(fact_5188_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_le_numeral
thf(fact_5189_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_le_numeral
thf(fact_5190_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_5191_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_le_one
thf(fact_5192_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_le_one
thf(fact_5193_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_le_one
thf(fact_5194_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_5195_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5196_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5197_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5198_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5199_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5200_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5201_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5202_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5203_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_5204_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_5205_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_less_neg_one
thf(fact_5206_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_less_neg_one
thf(fact_5207_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_5208_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_5209_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_less_numeral
thf(fact_5210_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_less_numeral
thf(fact_5211_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_5212_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_5213_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_less_one
thf(fact_5214_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_less_one
thf(fact_5215_eq__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = ( uminus_uminus_real @ B ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5216_eq__minus__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = ( uminus1482373934393186551omplex @ B ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5217_eq__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = ( uminus_uminus_rat @ B ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5218_minus__divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( ( uminus_uminus_real @ B )
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5219_minus__divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ B )
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5220_minus__divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( ( uminus_uminus_rat @ B )
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5221_nonzero__neg__divide__eq__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( B != zero_zero_real )
     => ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
          = C )
        = ( ( uminus_uminus_real @ A )
          = ( times_times_real @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5222_nonzero__neg__divide__eq__eq,axiom,
    ! [B: complex,A: complex,C: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
          = C )
        = ( ( uminus1482373934393186551omplex @ A )
          = ( times_times_complex @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5223_nonzero__neg__divide__eq__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
          = C )
        = ( ( uminus_uminus_rat @ A )
          = ( times_times_rat @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5224_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: real,C: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( C
          = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
        = ( ( times_times_real @ C @ B )
          = ( uminus_uminus_real @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5225_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( C
          = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ( times_times_complex @ C @ B )
          = ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5226_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( C
          = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
        = ( ( times_times_rat @ C @ B )
          = ( uminus_uminus_rat @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5227_mult__1s__ring__1_I1_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5228_mult__1s__ring__1_I1_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5229_mult__1s__ring__1_I1_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5230_mult__1s__ring__1_I1_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5231_mult__1s__ring__1_I1_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5232_mult__1s__ring__1_I2_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5233_mult__1s__ring__1_I2_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5234_mult__1s__ring__1_I2_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5235_mult__1s__ring__1_I2_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5236_mult__1s__ring__1_I2_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5237_divide__eq__minus__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B != zero_zero_real )
        & ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5238_divide__eq__minus__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( B != zero_zero_complex )
        & ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5239_divide__eq__minus__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ( B != zero_zero_rat )
        & ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5240_uminus__numeral__One,axiom,
    ( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% uminus_numeral_One
thf(fact_5241_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_5242_uminus__numeral__One,axiom,
    ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% uminus_numeral_One
thf(fact_5243_uminus__numeral__One,axiom,
    ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% uminus_numeral_One
thf(fact_5244_uminus__numeral__One,axiom,
    ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% uminus_numeral_One
thf(fact_5245_power__minus,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( power_power_real @ A @ N2 ) ) ) ).

% power_minus
thf(fact_5246_power__minus,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( power_power_int @ A @ N2 ) ) ) ).

% power_minus
thf(fact_5247_power__minus,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_minus
thf(fact_5248_power__minus,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% power_minus
thf(fact_5249_power__minus,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_minus
thf(fact_5250_power__minus__Bit0,axiom,
    ! [X2: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5251_power__minus__Bit0,axiom,
    ! [X2: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5252_power__minus__Bit0,axiom,
    ! [X2: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5253_power__minus__Bit0,axiom,
    ! [X2: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5254_power__minus__Bit0,axiom,
    ! [X2: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5255_real__0__less__add__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X2 @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X2 ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_5256_real__add__less__0__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X2 @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X2 ) ) ) ).

% real_add_less_0_iff
thf(fact_5257_real__add__le__0__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X2 @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X2 ) ) ) ).

% real_add_le_0_iff
thf(fact_5258_real__0__le__add__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X2 @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X2 ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_5259_zmod__zminus1__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% zmod_zminus1_eq_if
thf(fact_5260_zmod__zminus2__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).

% zmod_zminus2_eq_if
thf(fact_5261_ln__ge__zero__imp__ge__one,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_5262_ln__add__one__self__le__self,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) ).

% ln_add_one_self_le_self
thf(fact_5263_ln__mult,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( times_times_real @ X2 @ Y ) )
          = ( plus_plus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_mult
thf(fact_5264_ln__eq__minus__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ln_ln_real @ X2 )
          = ( minus_minus_real @ X2 @ one_one_real ) )
       => ( X2 = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_5265_ln__div,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( divide_divide_real @ X2 @ Y ) )
          = ( minus_minus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_div
thf(fact_5266_pos__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5267_pos__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5268_pos__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5269_pos__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5270_neg__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5271_neg__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5272_neg__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5273_neg__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5274_minus__divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5275_minus__divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5276_less__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5277_less__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5278_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5279_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5280_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5281_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5282_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5283_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5284_subset__decode__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N2 ) )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% subset_decode_imp_le
thf(fact_5285_minus__divide__add__eq__iff,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X2 @ Z ) ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5286_minus__divide__add__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X2 @ Z ) ) @ Y )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5287_minus__divide__add__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X2 @ Z ) ) @ Y )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X2 ) @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5288_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5289_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5290_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5291_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5292_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5293_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5294_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5295_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5296_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5297_minus__divide__diff__eq__iff,axiom,
    ! [Z: real,X2: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X2 @ Z ) ) @ Y )
        = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5298_minus__divide__diff__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X2 @ Z ) ) @ Y )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5299_minus__divide__diff__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X2 @ Z ) ) @ Y )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X2 ) @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5300_even__minus,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5301_even__minus,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5302_power2__eq__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus_uminus_real @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5303_power2__eq__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5304_power2__eq__iff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus1482373934393186551omplex @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5305_power2__eq__iff,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus1351360451143612070nteger @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5306_power2__eq__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus_uminus_rat @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5307_uminus__power__if,axiom,
    ! [N2: nat,A: real] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
          = ( power_power_real @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
          = ( uminus_uminus_real @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_5308_uminus__power__if,axiom,
    ! [N2: nat,A: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
          = ( power_power_int @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
          = ( uminus_uminus_int @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_5309_uminus__power__if,axiom,
    ! [N2: nat,A: complex] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
          = ( power_power_complex @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
          = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_5310_uminus__power__if,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
          = ( power_8256067586552552935nteger @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
          = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_5311_uminus__power__if,axiom,
    ! [N2: nat,A: rat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
          = ( power_power_rat @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
          = ( uminus_uminus_rat @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_5312_verit__less__mono__div__int2,axiom,
    ! [A2: int,B2: int,N2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N2 ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B2 @ N2 ) @ ( divide_divide_int @ A2 @ N2 ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_5313_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_5314_ln__le__minus__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_5315_ln__diff__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y ) ) @ ( divide_divide_real @ ( minus_minus_real @ X2 @ Y ) @ Y ) ) ) ) ).

% ln_diff_le
thf(fact_5316_of__bool__odd__eq__mod__2,axiom,
    ! [A: nat] :
      ( ( zero_n2687167440665602831ol_nat
        @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_5317_of__bool__odd__eq__mod__2,axiom,
    ! [A: int] :
      ( ( zero_n2684676970156552555ol_int
        @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_5318_of__bool__odd__eq__mod__2,axiom,
    ! [A: code_integer] :
      ( ( zero_n356916108424825756nteger
        @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_5319_le__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5320_le__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5321_minus__divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5322_minus__divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5323_neg__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5324_neg__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5325_neg__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5326_neg__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5327_pos__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5328_pos__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5329_pos__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5330_pos__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5331_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5332_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5333_divide__less__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5334_divide__less__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5335_power2__eq__1__iff,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( A = one_one_real )
        | ( A
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5336_power2__eq__1__iff,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A = one_one_int )
        | ( A
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5337_power2__eq__1__iff,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
      = ( ( A = one_one_complex )
        | ( A
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5338_power2__eq__1__iff,axiom,
    ! [A: code_integer] :
      ( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( A = one_one_Code_integer )
        | ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5339_power2__eq__1__iff,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( A = one_one_rat )
        | ( A
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5340_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% minus_one_power_iff
thf(fact_5341_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_5342_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
          = one_one_complex ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% minus_one_power_iff
thf(fact_5343_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
          = one_one_Code_integer ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% minus_one_power_iff
thf(fact_5344_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
          = one_one_rat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% minus_one_power_iff
thf(fact_5345_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5346_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5347_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5348_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5349_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5350_realpow__square__minus__le,axiom,
    ! [U: real,X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_5351_ln__one__minus__pos__lower__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).

% ln_one_minus_pos_lower_bound
thf(fact_5352_signed__take__bit__int__less__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K ) ) ).

% signed_take_bit_int_less_eq_self_iff
thf(fact_5353_signed__take__bit__int__greater__eq__minus__exp,axiom,
    ! [N2: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( bit_ri631733984087533419it_int @ N2 @ K ) ) ).

% signed_take_bit_int_greater_eq_minus_exp
thf(fact_5354_signed__take__bit__int__greater__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% signed_take_bit_int_greater_self_iff
thf(fact_5355_minus__mod__int__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L2 )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L2 )
        = ( minus_minus_int @ ( minus_minus_int @ L2 @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L2 ) ) ) ) ).

% minus_mod_int_eq
thf(fact_5356_zmod__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( minus_minus_int @ B @ one_one_int ) ) ) ).

% zmod_minus1
thf(fact_5357_zdiv__zminus2__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus2_eq_if
thf(fact_5358_zdiv__zminus1__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus1_eq_if
thf(fact_5359_zminus1__lemma,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( B != zero_zero_int )
       => ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R = zero_zero_int ) @ ( uminus_uminus_int @ Q2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q2 ) @ one_one_int ) ) @ ( if_int @ ( R = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R ) ) ) ) ) ) ).

% zminus1_lemma
thf(fact_5360_bits__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [A5: nat] :
          ( ( ( divide_divide_nat @ A5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = A5 )
         => ( P @ A5 ) )
     => ( ! [A5: nat,B5: $o] :
            ( ( P @ A5 )
           => ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B5 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A5 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                = A5 )
             => ( P @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B5 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A5 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_5361_bits__induct,axiom,
    ! [P: int > $o,A: int] :
      ( ! [A5: int] :
          ( ( ( divide_divide_int @ A5 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = A5 )
         => ( P @ A5 ) )
     => ( ! [A5: int,B5: $o] :
            ( ( P @ A5 )
           => ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B5 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A5 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = A5 )
             => ( P @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B5 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A5 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_5362_bits__induct,axiom,
    ! [P: code_integer > $o,A: code_integer] :
      ( ! [A5: code_integer] :
          ( ( ( divide6298287555418463151nteger @ A5 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = A5 )
         => ( P @ A5 ) )
     => ( ! [A5: code_integer,B5: $o] :
            ( ( P @ A5 )
           => ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B5 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A5 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
                = A5 )
             => ( P @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B5 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A5 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_5363_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5364_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5365_divide__le__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5366_divide__le__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5367_square__le__1,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).

% square_le_1
thf(fact_5368_square__le__1,axiom,
    ! [X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X2 )
     => ( ( ord_le3102999989581377725nteger @ X2 @ one_one_Code_integer )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% square_le_1
thf(fact_5369_square__le__1,axiom,
    ! [X2: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X2 )
     => ( ( ord_less_eq_rat @ X2 @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).

% square_le_1
thf(fact_5370_square__le__1,axiom,
    ! [X2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X2 )
     => ( ( ord_less_eq_int @ X2 @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% square_le_1
thf(fact_5371_minus__power__mult__self,axiom,
    ! [A: real,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_5372_minus__power__mult__self,axiom,
    ! [A: int,N2: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_5373_minus__power__mult__self,axiom,
    ! [A: complex,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_5374_minus__power__mult__self,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_5375_minus__power__mult__self,axiom,
    ! [A: rat,N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_5376_signed__take__bit__int__eq__self,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( bit_ri631733984087533419it_int @ N2 @ K )
          = K ) ) ) ).

% signed_take_bit_int_eq_self
thf(fact_5377_signed__take__bit__int__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_ri631733984087533419it_int @ N2 @ K )
        = K )
      = ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% signed_take_bit_int_eq_self_iff
thf(fact_5378_minus__1__div__exp__eq__int,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_5379_div__pos__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L2 ) @ zero_zero_int )
       => ( ( divide_divide_int @ K @ L2 )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_5380_add__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( B
        = ( plus_plus_complex @ B @ A ) )
      = ( A = zero_zero_complex ) ) ).

% add_0_iff
thf(fact_5381_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_5382_add__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( B
        = ( plus_plus_rat @ B @ A ) )
      = ( A = zero_zero_rat ) ) ).

% add_0_iff
thf(fact_5383_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_5384_add__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( B
        = ( plus_plus_int @ B @ A ) )
      = ( A = zero_zero_int ) ) ).

% add_0_iff
thf(fact_5385_exp__mod__exp,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_5386_exp__mod__exp,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_5387_exp__mod__exp,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N2 ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_5388_crossproduct__noteq,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ( A != B )
        & ( C != D2 ) )
      = ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) )
       != ( plus_plus_real @ ( times_times_real @ A @ D2 ) @ ( times_times_real @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_5389_crossproduct__noteq,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] :
      ( ( ( A != B )
        & ( C != D2 ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) )
       != ( plus_plus_rat @ ( times_times_rat @ A @ D2 ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_5390_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ( A != B )
        & ( C != D2 ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D2 ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_5391_crossproduct__noteq,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ( A != B )
        & ( C != D2 ) )
      = ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) )
       != ( plus_plus_int @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_5392_crossproduct__eq,axiom,
    ! [W: real,Y: real,X2: real,Z: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ W @ Y ) @ ( times_times_real @ X2 @ Z ) )
        = ( plus_plus_real @ ( times_times_real @ W @ Z ) @ ( times_times_real @ X2 @ Y ) ) )
      = ( ( W = X2 )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_5393_crossproduct__eq,axiom,
    ! [W: rat,Y: rat,X2: rat,Z: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ W @ Y ) @ ( times_times_rat @ X2 @ Z ) )
        = ( plus_plus_rat @ ( times_times_rat @ W @ Z ) @ ( times_times_rat @ X2 @ Y ) ) )
      = ( ( W = X2 )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_5394_crossproduct__eq,axiom,
    ! [W: nat,Y: nat,X2: nat,Z: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y ) @ ( times_times_nat @ X2 @ Z ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X2 @ Y ) ) )
      = ( ( W = X2 )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_5395_crossproduct__eq,axiom,
    ! [W: int,Y: int,X2: int,Z: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ W @ Y ) @ ( times_times_int @ X2 @ Z ) )
        = ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X2 @ Y ) ) )
      = ( ( W = X2 )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_5396_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus_uminus_real @ one_one_real ) ) ).

% power_minus1_odd
thf(fact_5397_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% power_minus1_odd
thf(fact_5398_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power_minus1_odd
thf(fact_5399_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% power_minus1_odd
thf(fact_5400_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus_uminus_rat @ one_one_rat ) ) ).

% power_minus1_odd
thf(fact_5401_int__bit__induct,axiom,
    ! [P: int > $o,K: int] :
      ( ( P @ zero_zero_int )
     => ( ( P @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K3: int] :
              ( ( P @ K3 )
             => ( ( K3 != zero_zero_int )
               => ( P @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K3: int] :
                ( ( P @ K3 )
               => ( ( K3
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P @ K ) ) ) ) ) ).

% int_bit_induct
thf(fact_5402_ln__one__plus__pos__lower__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( minus_minus_real @ X2 @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) ) ) ) ).

% ln_one_plus_pos_lower_bound
thf(fact_5403_signed__take__bit__int__greater__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) ) @ ( bit_ri631733984087533419it_int @ N2 @ K ) ) ) ).

% signed_take_bit_int_greater_eq
thf(fact_5404_set__decode__def,axiom,
    ( nat_set_decode
    = ( ^ [X: nat] :
          ( collect_nat
          @ ^ [N: nat] :
              ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% set_decode_def
thf(fact_5405_exp__div__exp__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_nat
        @ ( zero_n2687167440665602831ol_nat
          @ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
             != zero_zero_nat )
            & ( ord_less_eq_nat @ N2 @ M ) ) )
        @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% exp_div_exp_eq
thf(fact_5406_exp__div__exp__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_int
        @ ( zero_n2684676970156552555ol_int
          @ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
             != zero_zero_int )
            & ( ord_less_eq_nat @ N2 @ M ) ) )
        @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% exp_div_exp_eq
thf(fact_5407_exp__div__exp__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_3573771949741848930nteger
        @ ( zero_n356916108424825756nteger
          @ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
             != zero_z3403309356797280102nteger )
            & ( ord_less_eq_nat @ N2 @ M ) ) )
        @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% exp_div_exp_eq
thf(fact_5408_vebt__buildup_Osimps_I3_J,axiom,
    ! [Va: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.simps(3)
thf(fact_5409_ln__2__less__1,axiom,
    ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).

% ln_2_less_1
thf(fact_5410_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_5411_tanh__ln__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( tanh_real @ ( ln_ln_real @ X2 ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% tanh_ln_real
thf(fact_5412_Divides_Oadjust__div__eq,axiom,
    ! [Q2: int,R: int] :
      ( ( adjust_div @ ( product_Pair_int_int @ Q2 @ R ) )
      = ( plus_plus_int @ Q2 @ ( zero_n2684676970156552555ol_int @ ( R != zero_zero_int ) ) ) ) ).

% Divides.adjust_div_eq
thf(fact_5413_signed__take__bit__Suc__minus__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_minus_bit1
thf(fact_5414_abs__ln__one__plus__x__minus__x__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound
thf(fact_5415_vebt__buildup_Opelims,axiom,
    ! [X2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X2 )
        = Y )
     => ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X2 )
       => ( ( ( X2 = zero_zero_nat )
           => ( ( Y
                = ( vEBT_Leaf @ $false @ $false ) )
             => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
         => ( ( ( X2
                = ( suc @ zero_zero_nat ) )
             => ( ( Y
                  = ( vEBT_Leaf @ $false @ $false ) )
               => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
           => ~ ! [Va3: nat] :
                  ( ( X2
                    = ( suc @ ( suc @ Va3 ) ) )
                 => ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                       => ( Y
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                       => ( Y
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                   => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va3 ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.pelims
thf(fact_5416_semiring__norm_I90_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( bit1 @ M )
        = ( bit1 @ N2 ) )
      = ( M = N2 ) ) ).

% semiring_norm(90)
thf(fact_5417_verit__eq__simplify_I9_J,axiom,
    ! [X32: num,Y32: num] :
      ( ( ( bit1 @ X32 )
        = ( bit1 @ Y32 ) )
      = ( X32 = Y32 ) ) ).

% verit_eq_simplify(9)
thf(fact_5418_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_5419_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_5420_abs__idempotent,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_idempotent
thf(fact_5421_abs__idempotent,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_idempotent
thf(fact_5422_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_5423_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_5424_abs__abs,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_abs
thf(fact_5425_abs__abs,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_abs
thf(fact_5426_abs__0__eq,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( abs_abs_Code_integer @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_0_eq
thf(fact_5427_abs__0__eq,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( abs_abs_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% abs_0_eq
thf(fact_5428_abs__0__eq,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( abs_abs_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% abs_0_eq
thf(fact_5429_abs__0__eq,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_5430_abs__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0
thf(fact_5431_abs__eq__0,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0
thf(fact_5432_abs__eq__0,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0
thf(fact_5433_abs__eq__0,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_5434_abs__zero,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_zero
thf(fact_5435_abs__zero,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_zero
thf(fact_5436_abs__zero,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_zero
thf(fact_5437_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_5438_abs__0,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_0
thf(fact_5439_abs__0,axiom,
    ( ( abs_abs_complex @ zero_zero_complex )
    = zero_zero_complex ) ).

% abs_0
thf(fact_5440_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_5441_abs__0,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_0
thf(fact_5442_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_5443_semiring__norm_I89_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit1 @ M )
     != ( bit0 @ N2 ) ) ).

% semiring_norm(89)
thf(fact_5444_semiring__norm_I88_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit0 @ M )
     != ( bit1 @ N2 ) ) ).

% semiring_norm(88)
thf(fact_5445_semiring__norm_I86_J,axiom,
    ! [M: num] :
      ( ( bit1 @ M )
     != one ) ).

% semiring_norm(86)
thf(fact_5446_semiring__norm_I84_J,axiom,
    ! [N2: num] :
      ( one
     != ( bit1 @ N2 ) ) ).

% semiring_norm(84)
thf(fact_5447_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N2 ) )
      = ( numera6620942414471956472nteger @ N2 ) ) ).

% abs_numeral
thf(fact_5448_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ N2 ) ) ).

% abs_numeral
thf(fact_5449_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_rat @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ N2 ) ) ).

% abs_numeral
thf(fact_5450_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% abs_numeral
thf(fact_5451_abs__mult__self__eq,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
      = ( times_3573771949741848930nteger @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5452_abs__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
      = ( times_times_real @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5453_abs__mult__self__eq,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
      = ( times_times_rat @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5454_abs__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
      = ( times_times_int @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5455_abs__1,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_1
thf(fact_5456_abs__1,axiom,
    ( ( abs_abs_complex @ one_one_complex )
    = one_one_complex ) ).

% abs_1
thf(fact_5457_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_5458_abs__1,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_1
thf(fact_5459_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_5460_abs__add__abs,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
      = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_add_abs
thf(fact_5461_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_5462_abs__add__abs,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
      = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_add_abs
thf(fact_5463_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_5464_abs__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).

% abs_divide
thf(fact_5465_abs__divide,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_divide
thf(fact_5466_abs__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_divide
thf(fact_5467_abs__minus__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus_cancel
thf(fact_5468_abs__minus__cancel,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus_cancel
thf(fact_5469_abs__minus__cancel,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus_cancel
thf(fact_5470_abs__minus__cancel,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus_cancel
thf(fact_5471_abs__minus,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus
thf(fact_5472_abs__minus,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus
thf(fact_5473_abs__minus,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( uminus1482373934393186551omplex @ A ) )
      = ( abs_abs_complex @ A ) ) ).

% abs_minus
thf(fact_5474_abs__minus,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus
thf(fact_5475_abs__minus,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus
thf(fact_5476_abs__dvd__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
      = ( dvd_dvd_real @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5477_abs__dvd__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
      = ( dvd_dvd_int @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5478_abs__dvd__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5479_abs__dvd__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5480_dvd__abs__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
      = ( dvd_dvd_real @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5481_dvd__abs__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
      = ( dvd_dvd_int @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5482_dvd__abs__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5483_dvd__abs__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5484_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_real @ ( zero_n3304061248610475627l_real @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% abs_bool_eq
thf(fact_5485_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = ( zero_n2052037380579107095ol_rat @ P ) ) ).

% abs_bool_eq
thf(fact_5486_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% abs_bool_eq
thf(fact_5487_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_Code_integer @ ( zero_n356916108424825756nteger @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% abs_bool_eq
thf(fact_5488_tanh__real__less__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( tanh_real @ X2 ) @ ( tanh_real @ Y ) )
      = ( ord_less_real @ X2 @ Y ) ) ).

% tanh_real_less_iff
thf(fact_5489_tanh__real__le__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X2 ) @ ( tanh_real @ Y ) )
      = ( ord_less_eq_real @ X2 @ Y ) ) ).

% tanh_real_le_iff
thf(fact_5490_semiring__norm_I80_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(80)
thf(fact_5491_semiring__norm_I73_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(73)
thf(fact_5492_abs__le__zero__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_le_zero_iff
thf(fact_5493_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_5494_abs__le__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_le_zero_iff
thf(fact_5495_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_5496_abs__le__self__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% abs_le_self_iff
thf(fact_5497_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_5498_abs__le__self__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% abs_le_self_iff
thf(fact_5499_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_5500_abs__of__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5501_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5502_abs__of__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5503_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5504_zero__less__abs__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
      = ( A != zero_z3403309356797280102nteger ) ) ).

% zero_less_abs_iff
thf(fact_5505_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_5506_zero__less__abs__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_abs_iff
thf(fact_5507_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_5508_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ N2 ) ) ).

% abs_neg_numeral
thf(fact_5509_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% abs_neg_numeral
thf(fact_5510_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ N2 ) ) ).

% abs_neg_numeral
thf(fact_5511_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ N2 ) ) ).

% abs_neg_numeral
thf(fact_5512_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_5513_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_5514_abs__neg__one,axiom,
    ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = one_one_Code_integer ) ).

% abs_neg_one
thf(fact_5515_abs__neg__one,axiom,
    ( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = one_one_rat ) ).

% abs_neg_one
thf(fact_5516_abs__power__minus,axiom,
    ! [A: real,N2: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_5517_abs__power__minus,axiom,
    ! [A: int,N2: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_5518_abs__power__minus,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 ) )
      = ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_5519_abs__power__minus,axiom,
    ! [A: rat,N2: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 ) )
      = ( abs_abs_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_5520_semiring__norm_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( bit1 @ ( plus_plus_num @ M @ N2 ) ) ) ).

% semiring_norm(7)
thf(fact_5521_semiring__norm_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( bit1 @ ( plus_plus_num @ M @ N2 ) ) ) ).

% semiring_norm(9)
thf(fact_5522_semiring__norm_I14_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( bit0 @ ( times_times_num @ M @ ( bit1 @ N2 ) ) ) ) ).

% semiring_norm(14)
thf(fact_5523_semiring__norm_I15_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N2 ) ) ) ).

% semiring_norm(15)
thf(fact_5524_semiring__norm_I81_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(81)
thf(fact_5525_semiring__norm_I72_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(72)
thf(fact_5526_semiring__norm_I77_J,axiom,
    ! [N2: num] : ( ord_less_num @ one @ ( bit1 @ N2 ) ) ).

% semiring_norm(77)
thf(fact_5527_semiring__norm_I70_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).

% semiring_norm(70)
thf(fact_5528_tanh__real__neg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( tanh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% tanh_real_neg_iff
thf(fact_5529_tanh__real__pos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( tanh_real @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% tanh_real_pos_iff
thf(fact_5530_tanh__real__nonneg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% tanh_real_nonneg_iff
thf(fact_5531_tanh__real__nonpos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% tanh_real_nonpos_iff
thf(fact_5532_divide__le__0__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
      = ( ( ord_less_eq_real @ A @ zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_le_0_abs_iff
thf(fact_5533_divide__le__0__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
      = ( ( ord_less_eq_rat @ A @ zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_le_0_abs_iff
thf(fact_5534_zero__le__divide__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        | ( B = zero_zero_real ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_5535_zero__le__divide__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        | ( B = zero_zero_rat ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_5536_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5537_abs__of__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5538_abs__of__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5539_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5540_zdiv__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit1
thf(fact_5541_semiring__norm_I10_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N2 ) @ one ) ) ) ).

% semiring_norm(10)
thf(fact_5542_semiring__norm_I8_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ one )
      = ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).

% semiring_norm(8)
thf(fact_5543_semiring__norm_I5_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% semiring_norm(5)
thf(fact_5544_semiring__norm_I4_J,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ ( bit1 @ N2 ) )
      = ( bit0 @ ( plus_plus_num @ N2 @ one ) ) ) ).

% semiring_norm(4)
thf(fact_5545_semiring__norm_I3_J,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ ( bit0 @ N2 ) )
      = ( bit1 @ N2 ) ) ).

% semiring_norm(3)
thf(fact_5546_artanh__minus__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( artanh_real @ ( uminus_uminus_real @ X2 ) )
        = ( uminus_uminus_real @ ( artanh_real @ X2 ) ) ) ) ).

% artanh_minus_real
thf(fact_5547_semiring__norm_I16_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N2 ) @ ( bit0 @ ( times_times_num @ M @ N2 ) ) ) ) ) ).

% semiring_norm(16)
thf(fact_5548_semiring__norm_I74_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(74)
thf(fact_5549_semiring__norm_I79_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(79)
thf(fact_5550_zero__less__power__abs__iff,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) )
      = ( ( A != zero_z3403309356797280102nteger )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5551_zero__less__power__abs__iff,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) )
      = ( ( A != zero_zero_real )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5552_zero__less__power__abs__iff,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) )
      = ( ( A != zero_zero_rat )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5553_zero__less__power__abs__iff,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) )
      = ( ( A != zero_zero_int )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5554_abs__power2,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5555_abs__power2,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5556_abs__power2,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5557_abs__power2,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5558_power2__abs,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5559_power2__abs,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5560_power2__abs,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5561_power2__abs,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5562_power__even__abs__numeral,axiom,
    ! [W: num,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5563_power__even__abs__numeral,axiom,
    ! [W: num,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5564_power__even__abs__numeral,axiom,
    ! [W: num,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5565_power__even__abs__numeral,axiom,
    ! [W: num,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5566_div__Suc__eq__div__add3,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
      = ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ) ).

% div_Suc_eq_div_add3
thf(fact_5567_Suc__div__eq__add3__div__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_div_eq_add3_div_numeral
thf(fact_5568_mod__Suc__eq__mod__add3,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
      = ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ) ).

% mod_Suc_eq_mod_add3
thf(fact_5569_Suc__mod__eq__add3__mod__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_mod_eq_add3_mod_numeral
thf(fact_5570_zmod__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).

% zmod_numeral_Bit1
thf(fact_5571_signed__take__bit__Suc__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_bit1
thf(fact_5572_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_5573_abs__ge__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_self
thf(fact_5574_abs__ge__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).

% abs_ge_self
thf(fact_5575_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_5576_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_5577_abs__le__D1,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% abs_le_D1
thf(fact_5578_abs__le__D1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% abs_le_D1
thf(fact_5579_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_5580_abs__eq__0__iff,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0_iff
thf(fact_5581_abs__eq__0__iff,axiom,
    ! [A: complex] :
      ( ( ( abs_abs_complex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% abs_eq_0_iff
thf(fact_5582_abs__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0_iff
thf(fact_5583_abs__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0_iff
thf(fact_5584_abs__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_5585_abs__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_mult
thf(fact_5586_abs__mult,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_mult
thf(fact_5587_abs__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_mult
thf(fact_5588_abs__mult,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_mult
thf(fact_5589_abs__one,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_one
thf(fact_5590_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_5591_abs__one,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_one
thf(fact_5592_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_5593_abs__minus__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5594_abs__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
      = ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5595_abs__minus__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
      = ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5596_abs__minus__commute,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
      = ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5597_abs__eq__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ( abs_abs_real @ X2 )
        = ( abs_abs_real @ Y ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus_uminus_real @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5598_abs__eq__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ( abs_abs_int @ X2 )
        = ( abs_abs_int @ Y ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5599_abs__eq__iff,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( ( abs_abs_Code_integer @ X2 )
        = ( abs_abs_Code_integer @ Y ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus1351360451143612070nteger @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5600_abs__eq__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ( abs_abs_rat @ X2 )
        = ( abs_abs_rat @ Y ) )
      = ( ( X2 = Y )
        | ( X2
          = ( uminus_uminus_rat @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5601_power__abs,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) )
      = ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) ) ).

% power_abs
thf(fact_5602_power__abs,axiom,
    ! [A: rat,N2: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ N2 ) )
      = ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) ) ).

% power_abs
thf(fact_5603_power__abs,axiom,
    ! [A: real,N2: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N2 ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) ) ).

% power_abs
thf(fact_5604_power__abs,axiom,
    ! [A: int,N2: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N2 ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) ) ).

% power_abs
thf(fact_5605_dvd__if__abs__eq,axiom,
    ! [L2: real,K: real] :
      ( ( ( abs_abs_real @ L2 )
        = ( abs_abs_real @ K ) )
     => ( dvd_dvd_real @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5606_dvd__if__abs__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ( abs_abs_int @ L2 )
        = ( abs_abs_int @ K ) )
     => ( dvd_dvd_int @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5607_dvd__if__abs__eq,axiom,
    ! [L2: code_integer,K: code_integer] :
      ( ( ( abs_abs_Code_integer @ L2 )
        = ( abs_abs_Code_integer @ K ) )
     => ( dvd_dvd_Code_integer @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5608_dvd__if__abs__eq,axiom,
    ! [L2: rat,K: rat] :
      ( ( ( abs_abs_rat @ L2 )
        = ( abs_abs_rat @ K ) )
     => ( dvd_dvd_rat @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5609_verit__eq__simplify_I14_J,axiom,
    ! [X22: num,X32: num] :
      ( ( bit0 @ X22 )
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(14)
thf(fact_5610_verit__eq__simplify_I12_J,axiom,
    ! [X32: num] :
      ( one
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(12)
thf(fact_5611_abs__ge__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_zero
thf(fact_5612_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_5613_abs__ge__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).

% abs_ge_zero
thf(fact_5614_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_5615_abs__not__less__zero,axiom,
    ! [A: code_integer] :
      ~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).

% abs_not_less_zero
thf(fact_5616_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_5617_abs__not__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).

% abs_not_less_zero
thf(fact_5618_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_5619_abs__of__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5620_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5621_abs__of__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5622_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5623_abs__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5624_abs__triangle__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5625_abs__triangle__ineq,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5626_abs__triangle__ineq,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5627_abs__mult__less,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D2 )
       => ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D2 ) ) ) ) ).

% abs_mult_less
thf(fact_5628_abs__mult__less,axiom,
    ! [A: real,C: real,B: real,D2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ D2 )
       => ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D2 ) ) ) ) ).

% abs_mult_less
thf(fact_5629_abs__mult__less,axiom,
    ! [A: rat,C: rat,B: rat,D2: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
     => ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D2 )
       => ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D2 ) ) ) ) ).

% abs_mult_less
thf(fact_5630_abs__mult__less,axiom,
    ! [A: int,C: int,B: int,D2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B ) @ D2 )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D2 ) ) ) ) ).

% abs_mult_less
thf(fact_5631_abs__triangle__ineq2__sym,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5632_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5633_abs__triangle__ineq2__sym,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5634_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5635_abs__triangle__ineq3,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5636_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5637_abs__triangle__ineq3,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5638_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5639_abs__triangle__ineq2,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5640_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5641_abs__triangle__ineq2,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5642_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5643_nonzero__abs__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_5644_nonzero__abs__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_5645_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_5646_abs__ge__minus__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_minus_self
thf(fact_5647_abs__ge__minus__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).

% abs_ge_minus_self
thf(fact_5648_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_5649_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5650_abs__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le3102999989581377725nteger @ A @ B )
        & ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5651_abs__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_eq_rat @ A @ B )
        & ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5652_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5653_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5654_abs__le__D2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5655_abs__le__D2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5656_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5657_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5658_abs__leI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
       => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5659_abs__leI,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
       => ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5660_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5661_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5662_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5663_abs__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le6747313008572928689nteger @ A @ B )
        & ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5664_abs__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_rat @ A @ B )
        & ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5665_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_real_def
thf(fact_5666_xor__num_Ocases,axiom,
    ! [X2: product_prod_num_num] :
      ( ( X2
       != ( product_Pair_num_num @ one @ one ) )
     => ( ! [N3: num] :
            ( X2
           != ( product_Pair_num_num @ one @ ( bit0 @ N3 ) ) )
       => ( ! [N3: num] :
              ( X2
             != ( product_Pair_num_num @ one @ ( bit1 @ N3 ) ) )
         => ( ! [M4: num] :
                ( X2
               != ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) )
           => ( ! [M4: num,N3: num] :
                  ( X2
                 != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N3 ) ) )
             => ( ! [M4: num,N3: num] :
                    ( X2
                   != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N3 ) ) )
               => ( ! [M4: num] :
                      ( X2
                     != ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) )
                 => ( ! [M4: num,N3: num] :
                        ( X2
                       != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N3 ) ) )
                   => ~ ! [M4: num,N3: num] :
                          ( X2
                         != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N3 ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.cases
thf(fact_5667_num_Oexhaust,axiom,
    ! [Y: num] :
      ( ( Y != one )
     => ( ! [X23: num] :
            ( Y
           != ( bit0 @ X23 ) )
       => ~ ! [X33: num] :
              ( Y
             != ( bit1 @ X33 ) ) ) ) ).

% num.exhaust
thf(fact_5668_sin__bound__lemma,axiom,
    ! [X2: real,Y: real,U: real,V: real] :
      ( ( X2 = Y )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X2 @ U ) @ Y ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_5669_tanh__real__lt__1,axiom,
    ! [X2: real] : ( ord_less_real @ ( tanh_real @ X2 ) @ one_one_real ) ).

% tanh_real_lt_1
thf(fact_5670_tanh__real__gt__neg1,axiom,
    ! [X2: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X2 ) ) ).

% tanh_real_gt_neg1
thf(fact_5671_dense__eq0__I,axiom,
    ! [X2: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ E2 ) )
     => ( X2 = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_5672_dense__eq0__I,axiom,
    ! [X2: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ E2 ) )
     => ( X2 = zero_zero_rat ) ) ).

% dense_eq0_I
thf(fact_5673_abs__mult__pos,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
     => ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y ) @ X2 )
        = ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_5674_abs__mult__pos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( times_times_real @ ( abs_abs_real @ Y ) @ X2 )
        = ( abs_abs_real @ ( times_times_real @ Y @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_5675_abs__mult__pos,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( times_times_rat @ ( abs_abs_rat @ Y ) @ X2 )
        = ( abs_abs_rat @ ( times_times_rat @ Y @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_5676_abs__mult__pos,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( times_times_int @ ( abs_abs_int @ Y ) @ X2 )
        = ( abs_abs_int @ ( times_times_int @ Y @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_5677_abs__eq__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
          | ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
        & ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
          | ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
     => ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
        = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5678_abs__eq__mult,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          | ( ord_less_eq_real @ A @ zero_zero_real ) )
        & ( ( ord_less_eq_real @ zero_zero_real @ B )
          | ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
        = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5679_abs__eq__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          | ( ord_less_eq_rat @ A @ zero_zero_rat ) )
        & ( ( ord_less_eq_rat @ zero_zero_rat @ B )
          | ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
        = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5680_abs__eq__mult,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          | ( ord_less_eq_int @ A @ zero_zero_int ) )
        & ( ( ord_less_eq_int @ zero_zero_int @ B )
          | ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
        = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5681_abs__eq__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( ( abs_abs_real @ A )
        = B )
      = ( ( ord_less_eq_real @ zero_zero_real @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_real @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5682_abs__eq__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = B )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
        & ( ( A = B )
          | ( A
            = ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5683_abs__eq__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ( abs_abs_rat @ A )
        = B )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_rat @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5684_abs__eq__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( ( abs_abs_int @ A )
        = B )
      = ( ( ord_less_eq_int @ zero_zero_int @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_int @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5685_eq__abs__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( abs_abs_real @ B ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_real @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5686_eq__abs__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( abs_abs_Code_integer @ B ) )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
        & ( ( B = A )
          | ( B
            = ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5687_eq__abs__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( abs_abs_rat @ B ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_rat @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5688_eq__abs__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( abs_abs_int @ B ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_int @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5689_abs__minus__le__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).

% abs_minus_le_zero
thf(fact_5690_abs__minus__le__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).

% abs_minus_le_zero
thf(fact_5691_abs__minus__le__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).

% abs_minus_le_zero
thf(fact_5692_abs__minus__le__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).

% abs_minus_le_zero
thf(fact_5693_abs__div__pos,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( divide_divide_real @ ( abs_abs_real @ X2 ) @ Y )
        = ( abs_abs_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).

% abs_div_pos
thf(fact_5694_abs__div__pos,axiom,
    ! [Y: rat,X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( divide_divide_rat @ ( abs_abs_rat @ X2 ) @ Y )
        = ( abs_abs_rat @ ( divide_divide_rat @ X2 @ Y ) ) ) ) ).

% abs_div_pos
thf(fact_5695_zero__le__power__abs,axiom,
    ! [A: code_integer,N2: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_5696_zero__le__power__abs,axiom,
    ! [A: real,N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_5697_zero__le__power__abs,axiom,
    ! [A: rat,N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_5698_zero__le__power__abs,axiom,
    ! [A: int,N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_5699_abs__if__raw,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_5700_abs__if__raw,axiom,
    ( abs_abs_int
    = ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_5701_abs__if__raw,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_5702_abs__if__raw,axiom,
    ( abs_abs_rat
    = ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_5703_abs__if,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_5704_abs__if,axiom,
    ( abs_abs_int
    = ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_5705_abs__if,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_5706_abs__if,axiom,
    ( abs_abs_rat
    = ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_5707_abs__of__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_neg
thf(fact_5708_abs__of__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_neg
thf(fact_5709_abs__of__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_neg
thf(fact_5710_abs__of__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_neg
thf(fact_5711_abs__diff__le__iff,axiom,
    ! [X2: code_integer,A: code_integer,R: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X2 @ A ) ) @ R )
      = ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R ) @ X2 )
        & ( ord_le3102999989581377725nteger @ X2 @ ( plus_p5714425477246183910nteger @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5712_abs__diff__le__iff,axiom,
    ! [X2: real,A: real,R: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ A ) ) @ R )
      = ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R ) @ X2 )
        & ( ord_less_eq_real @ X2 @ ( plus_plus_real @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5713_abs__diff__le__iff,axiom,
    ! [X2: rat,A: rat,R: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ A ) ) @ R )
      = ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R ) @ X2 )
        & ( ord_less_eq_rat @ X2 @ ( plus_plus_rat @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5714_abs__diff__le__iff,axiom,
    ! [X2: int,A: int,R: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A ) ) @ R )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R ) @ X2 )
        & ( ord_less_eq_int @ X2 @ ( plus_plus_int @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5715_abs__triangle__ineq4,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5716_abs__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5717_abs__triangle__ineq4,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5718_abs__triangle__ineq4,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5719_abs__diff__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D2: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D2 ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D2 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5720_abs__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D2 ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D2 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5721_abs__diff__triangle__ineq,axiom,
    ! [A: rat,B: rat,C: rat,D2: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D2 ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D2 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5722_abs__diff__triangle__ineq,axiom,
    ! [A: int,B: int,C: int,D2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D2 ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D2 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5723_abs__diff__less__iff,axiom,
    ! [X2: code_integer,A: code_integer,R: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X2 @ A ) ) @ R )
      = ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R ) @ X2 )
        & ( ord_le6747313008572928689nteger @ X2 @ ( plus_p5714425477246183910nteger @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5724_abs__diff__less__iff,axiom,
    ! [X2: real,A: real,R: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ A ) ) @ R )
      = ( ( ord_less_real @ ( minus_minus_real @ A @ R ) @ X2 )
        & ( ord_less_real @ X2 @ ( plus_plus_real @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5725_abs__diff__less__iff,axiom,
    ! [X2: rat,A: rat,R: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ A ) ) @ R )
      = ( ( ord_less_rat @ ( minus_minus_rat @ A @ R ) @ X2 )
        & ( ord_less_rat @ X2 @ ( plus_plus_rat @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5726_abs__diff__less__iff,axiom,
    ! [X2: int,A: int,R: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A ) ) @ R )
      = ( ( ord_less_int @ ( minus_minus_int @ A @ R ) @ X2 )
        & ( ord_less_int @ X2 @ ( plus_plus_int @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5727_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N2 ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) @ one_one_complex ) ) ).

% numeral_Bit1
thf(fact_5728_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N2 ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) @ one_one_real ) ) ).

% numeral_Bit1
thf(fact_5729_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N2 ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) @ one_one_rat ) ) ).

% numeral_Bit1
thf(fact_5730_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) @ one_one_nat ) ) ).

% numeral_Bit1
thf(fact_5731_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N2 ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) @ one_one_int ) ) ).

% numeral_Bit1
thf(fact_5732_eval__nat__numeral_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
      = ( suc @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) ) ) ).

% eval_nat_numeral(3)
thf(fact_5733_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5734_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5735_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5736_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5737_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5738_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5739_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5740_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5741_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5742_power__minus__Bit1,axiom,
    ! [X2: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5743_power__minus__Bit1,axiom,
    ! [X2: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5744_power__minus__Bit1,axiom,
    ! [X2: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5745_power__minus__Bit1,axiom,
    ! [X2: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5746_power__minus__Bit1,axiom,
    ! [X2: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5747_lemma__interval__lt,axiom,
    ! [A: real,X2: real,B: real] :
      ( ( ord_less_real @ A @ X2 )
     => ( ( ord_less_real @ X2 @ B )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [Y4: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y4 ) ) @ D3 )
               => ( ( ord_less_real @ A @ Y4 )
                  & ( ord_less_real @ Y4 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_5748_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N2 ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) @ one_one_complex ) ) ).

% numeral_code(3)
thf(fact_5749_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N2 ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) @ one_one_real ) ) ).

% numeral_code(3)
thf(fact_5750_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N2 ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) @ one_one_rat ) ) ).

% numeral_code(3)
thf(fact_5751_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) @ one_one_nat ) ) ).

% numeral_code(3)
thf(fact_5752_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N2 ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) @ one_one_int ) ) ).

% numeral_code(3)
thf(fact_5753_power__numeral__odd,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_complex @ ( times_times_complex @ Z @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5754_power__numeral__odd,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_real @ ( times_times_real @ Z @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5755_power__numeral__odd,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_rat @ ( times_times_rat @ Z @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5756_power__numeral__odd,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_nat @ ( times_times_nat @ Z @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5757_power__numeral__odd,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_int @ ( times_times_int @ Z @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5758_abs__add__one__gt__zero,axiom,
    ! [X2: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5759_abs__add__one__gt__zero,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5760_abs__add__one__gt__zero,axiom,
    ! [X2: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5761_abs__add__one__gt__zero,axiom,
    ! [X2: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5762_numeral__Bit1__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N2 ) ) ).

% numeral_Bit1_div_2
thf(fact_5763_numeral__Bit1__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% numeral_Bit1_div_2
thf(fact_5764_odd__numeral,axiom,
    ! [N2: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) ) ).

% odd_numeral
thf(fact_5765_odd__numeral,axiom,
    ! [N2: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) ) ).

% odd_numeral
thf(fact_5766_odd__numeral,axiom,
    ! [N2: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) ).

% odd_numeral
thf(fact_5767_cong__exp__iff__simps_I3_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != zero_zero_nat ) ).

% cong_exp_iff_simps(3)
thf(fact_5768_cong__exp__iff__simps_I3_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != zero_zero_int ) ).

% cong_exp_iff_simps(3)
thf(fact_5769_cong__exp__iff__simps_I3_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(3)
thf(fact_5770_power3__eq__cube,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5771_power3__eq__cube,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5772_power3__eq__cube,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5773_power3__eq__cube,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5774_power3__eq__cube,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5775_numeral__3__eq__3,axiom,
    ( ( numeral_numeral_nat @ ( bit1 @ one ) )
    = ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).

% numeral_3_eq_3
thf(fact_5776_lemma__interval,axiom,
    ! [A: real,X2: real,B: real] :
      ( ( ord_less_real @ A @ X2 )
     => ( ( ord_less_real @ X2 @ B )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [Y4: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y4 ) ) @ D3 )
               => ( ( ord_less_eq_real @ A @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_5777_Suc3__eq__add__3,axiom,
    ! [N2: nat] :
      ( ( suc @ ( suc @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ).

% Suc3_eq_add_3
thf(fact_5778_mod__exhaust__less__4,axiom,
    ! [M: nat] :
      ( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = zero_zero_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = one_one_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).

% mod_exhaust_less_4
thf(fact_5779_abs__le__square__iff,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ ( abs_abs_Code_integer @ Y ) )
      = ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5780_abs__le__square__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ Y ) )
      = ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5781_abs__le__square__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ ( abs_abs_rat @ Y ) )
      = ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5782_abs__le__square__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ ( abs_abs_int @ Y ) )
      = ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5783_abs__square__eq__1,axiom,
    ! [X2: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( abs_abs_Code_integer @ X2 )
        = one_one_Code_integer ) ) ).

% abs_square_eq_1
thf(fact_5784_abs__square__eq__1,axiom,
    ! [X2: rat] :
      ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( abs_abs_rat @ X2 )
        = one_one_rat ) ) ).

% abs_square_eq_1
thf(fact_5785_abs__square__eq__1,axiom,
    ! [X2: real] :
      ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( abs_abs_real @ X2 )
        = one_one_real ) ) ).

% abs_square_eq_1
thf(fact_5786_abs__square__eq__1,axiom,
    ! [X2: int] :
      ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( abs_abs_int @ X2 )
        = one_one_int ) ) ).

% abs_square_eq_1
thf(fact_5787_num_Osize_I6_J,axiom,
    ! [X32: num] :
      ( ( size_size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(6)
thf(fact_5788_power__even__abs,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 )
        = ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_5789_power__even__abs,axiom,
    ! [N2: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 )
        = ( power_power_rat @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_5790_power__even__abs,axiom,
    ! [N2: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ N2 )
        = ( power_power_real @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_5791_power__even__abs,axiom,
    ! [N2: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ N2 )
        = ( power_power_int @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_5792_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(11)
thf(fact_5793_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(11)
thf(fact_5794_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(11)
thf(fact_5795_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(7)
thf(fact_5796_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(7)
thf(fact_5797_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(7)
thf(fact_5798_Suc__div__eq__add3__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N2 ) ) ).

% Suc_div_eq_add3_div
thf(fact_5799_Suc__mod__eq__add3__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N2 ) ) ).

% Suc_mod_eq_add3_mod
thf(fact_5800_abs__sqrt__wlog,axiom,
    ! [P: code_integer > code_integer > $o,X2: code_integer] :
      ( ! [X3: code_integer] :
          ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X3 )
         => ( P @ X3 @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_Code_integer @ X2 ) @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5801_abs__sqrt__wlog,axiom,
    ! [P: real > real > $o,X2: real] :
      ( ! [X3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X3 )
         => ( P @ X3 @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_real @ X2 ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5802_abs__sqrt__wlog,axiom,
    ! [P: rat > rat > $o,X2: rat] :
      ( ! [X3: rat] :
          ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
         => ( P @ X3 @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_rat @ X2 ) @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5803_abs__sqrt__wlog,axiom,
    ! [P: int > int > $o,X2: int] :
      ( ! [X3: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X3 )
         => ( P @ X3 @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_int @ X2 ) @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5804_power2__le__iff__abs__le,axiom,
    ! [Y: code_integer,X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y )
     => ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5805_power2__le__iff__abs__le,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5806_power2__le__iff__abs__le,axiom,
    ! [Y: rat,X2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5807_power2__le__iff__abs__le,axiom,
    ! [Y: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5808_abs__square__le__1,axiom,
    ! [X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ one_one_Code_integer ) ) ).

% abs_square_le_1
thf(fact_5809_abs__square__le__1,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real ) ) ).

% abs_square_le_1
thf(fact_5810_abs__square__le__1,axiom,
    ! [X2: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ one_one_rat ) ) ).

% abs_square_le_1
thf(fact_5811_abs__square__le__1,axiom,
    ! [X2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ one_one_int ) ) ).

% abs_square_le_1
thf(fact_5812_abs__square__less__1,axiom,
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X2 ) @ one_one_Code_integer ) ) ).

% abs_square_less_1
thf(fact_5813_abs__square__less__1,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real ) ) ).

% abs_square_less_1
thf(fact_5814_abs__square__less__1,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_rat @ ( abs_abs_rat @ X2 ) @ one_one_rat ) ) ).

% abs_square_less_1
thf(fact_5815_abs__square__less__1,axiom,
    ! [X2: int] :
      ( ( ord_less_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_int @ ( abs_abs_int @ X2 ) @ one_one_int ) ) ).

% abs_square_less_1
thf(fact_5816_power__mono__even,axiom,
    ! [N2: nat,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N2 ) @ ( power_8256067586552552935nteger @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_5817_power__mono__even,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_5818_power__mono__even,axiom,
    ! [N2: nat,A: rat,B: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_5819_power__mono__even,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_5820_eq__diff__eq_H,axiom,
    ! [X2: real,Y: real,Z: real] :
      ( ( X2
        = ( minus_minus_real @ Y @ Z ) )
      = ( Y
        = ( plus_plus_real @ X2 @ Z ) ) ) ).

% eq_diff_eq'
thf(fact_5821_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_5822_odd__mod__4__div__2,axiom,
    ! [N2: nat] :
      ( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) )
     => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% odd_mod_4_div_2
thf(fact_5823_signed__take__bit__numeral__minus__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_minus_bit1
thf(fact_5824_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5825_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5826_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5827_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5828_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5829_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N2 ) @ ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5830_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N2 ) @ ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5831_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N2 ) @ ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5832_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N2 ) @ ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5833_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N2 ) @ ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5834_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N2 ) @ ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5835_signed__take__bit__numeral__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_bit1
thf(fact_5836_arctan__double,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X2 ) )
        = ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% arctan_double
thf(fact_5837_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5838_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5839_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5840_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5841_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ one_one_complex )
    = one_one_complex ) ).

% dbl_dec_simps(3)
thf(fact_5842_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_5843_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
    = one_one_rat ) ).

% dbl_dec_simps(3)
thf(fact_5844_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_5845_zabs__less__one__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
      = ( Z = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_5846_pred__numeral__simps_I1_J,axiom,
    ( ( pred_numeral @ one )
    = zero_zero_nat ) ).

% pred_numeral_simps(1)
thf(fact_5847_Suc__eq__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ( suc @ N2 )
        = ( numeral_numeral_nat @ K ) )
      = ( N2
        = ( pred_numeral @ K ) ) ) ).

% Suc_eq_numeral
thf(fact_5848_eq__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ( numeral_numeral_nat @ K )
        = ( suc @ N2 ) )
      = ( ( pred_numeral @ K )
        = N2 ) ) ).

% eq_numeral_Suc
thf(fact_5849_zero__less__arctan__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( arctan @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% zero_less_arctan_iff
thf(fact_5850_arctan__less__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( arctan @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% arctan_less_zero_iff
thf(fact_5851_zero__le__arctan__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% zero_le_arctan_iff
thf(fact_5852_arctan__le__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( arctan @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% arctan_le_zero_iff
thf(fact_5853_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
    = one_one_complex ) ).

% dbl_inc_simps(2)
thf(fact_5854_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_5855_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
    = one_one_rat ) ).

% dbl_inc_simps(2)
thf(fact_5856_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_5857_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_5858_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_5859_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_inc_simps(4)
thf(fact_5860_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_inc_simps(4)
thf(fact_5861_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_inc_simps(4)
thf(fact_5862_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5863_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5864_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5865_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5866_less__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ ( pred_numeral @ K ) @ N2 ) ) ).

% less_numeral_Suc
thf(fact_5867_less__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_nat @ N2 @ ( pred_numeral @ K ) ) ) ).

% less_Suc_numeral
thf(fact_5868_pred__numeral__simps_I3_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit1 @ K ) )
      = ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).

% pred_numeral_simps(3)
thf(fact_5869_le__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N2 ) ) ).

% le_numeral_Suc
thf(fact_5870_le__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_eq_nat @ N2 @ ( pred_numeral @ K ) ) ) ).

% le_Suc_numeral
thf(fact_5871_diff__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( minus_minus_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( minus_minus_nat @ N2 @ ( pred_numeral @ K ) ) ) ).

% diff_Suc_numeral
thf(fact_5872_diff__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( minus_minus_nat @ ( pred_numeral @ K ) @ N2 ) ) ).

% diff_numeral_Suc
thf(fact_5873_max__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ord_max_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_max_nat @ N2 @ ( pred_numeral @ K ) ) ) ) ).

% max_Suc_numeral
thf(fact_5874_max__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N2 ) ) ) ).

% max_numeral_Suc
thf(fact_5875_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_5876_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_5877_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_dec_simps(2)
thf(fact_5878_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_dec_simps(2)
thf(fact_5879_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_dec_simps(2)
thf(fact_5880_numeral__div__minus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ).

% numeral_div_minus_numeral
thf(fact_5881_minus__numeral__div__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ).

% minus_numeral_div_numeral
thf(fact_5882_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5883_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5884_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5885_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5886_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5887_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5888_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5889_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5890_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5891_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5892_dvd__numeral__simp,axiom,
    ! [M: num,N2: num] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( unique6319869463603278526ux_int @ ( unique5052692396658037445od_int @ N2 @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5893_dvd__numeral__simp,axiom,
    ! [M: num,N2: num] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( unique6322359934112328802ux_nat @ ( unique5055182867167087721od_nat @ N2 @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5894_dvd__numeral__simp,axiom,
    ! [M: num,N2: num] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) )
      = ( unique5706413561485394159nteger @ ( unique3479559517661332726nteger @ N2 @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5895_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ M @ one )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).

% divmod_algorithm_code(2)
thf(fact_5896_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5055182867167087721od_nat @ M @ one )
      = ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).

% divmod_algorithm_code(2)
thf(fact_5897_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique3479559517661332726nteger @ M @ one )
      = ( produc1086072967326762835nteger @ ( numera6620942414471956472nteger @ M ) @ zero_z3403309356797280102nteger ) ) ).

% divmod_algorithm_code(2)
thf(fact_5898_divmod__algorithm__code_I3_J,axiom,
    ! [N2: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit0 @ N2 ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5899_divmod__algorithm__code_I3_J,axiom,
    ! [N2: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit0 @ N2 ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5900_divmod__algorithm__code_I3_J,axiom,
    ! [N2: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit0 @ N2 ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5901_divmod__algorithm__code_I4_J,axiom,
    ! [N2: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit1 @ N2 ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5902_divmod__algorithm__code_I4_J,axiom,
    ! [N2: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit1 @ N2 ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5903_divmod__algorithm__code_I4_J,axiom,
    ! [N2: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit1 @ N2 ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5904_one__div__minus__numeral,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ).

% one_div_minus_numeral
thf(fact_5905_minus__one__div__numeral,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ).

% minus_one_div_numeral
thf(fact_5906_signed__take__bit__numeral__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_bit0
thf(fact_5907_signed__take__bit__numeral__minus__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_minus_bit0
thf(fact_5908_arctan__less__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( arctan @ X2 ) @ ( arctan @ Y ) )
      = ( ord_less_real @ X2 @ Y ) ) ).

% arctan_less_iff
thf(fact_5909_arctan__monotone,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ord_less_real @ ( arctan @ X2 ) @ ( arctan @ Y ) ) ) ).

% arctan_monotone
thf(fact_5910_arctan__le__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( arctan @ X2 ) @ ( arctan @ Y ) )
      = ( ord_less_eq_real @ X2 @ Y ) ) ).

% arctan_le_iff
thf(fact_5911_arctan__monotone_H,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ord_less_eq_real @ ( arctan @ X2 ) @ ( arctan @ Y ) ) ) ).

% arctan_monotone'
thf(fact_5912_abs__zmult__eq__1,axiom,
    ! [M: int,N2: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N2 ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_5913_abs__div,axiom,
    ! [Y: int,X2: int] :
      ( ( dvd_dvd_int @ Y @ X2 )
     => ( ( abs_abs_int @ ( divide_divide_int @ X2 @ Y ) )
        = ( divide_divide_int @ ( abs_abs_int @ X2 ) @ ( abs_abs_int @ Y ) ) ) ) ).

% abs_div
thf(fact_5914_numeral__eq__Suc,axiom,
    ( numeral_numeral_nat
    = ( ^ [K2: num] : ( suc @ ( pred_numeral @ K2 ) ) ) ) ).

% numeral_eq_Suc
thf(fact_5915_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).

% zabs_def
thf(fact_5916_abs__mod__less,axiom,
    ! [L2: int,K: int] :
      ( ( L2 != zero_zero_int )
     => ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L2 ) ) @ ( abs_abs_int @ L2 ) ) ) ).

% abs_mod_less
thf(fact_5917_pred__numeral__def,axiom,
    ( pred_numeral
    = ( ^ [K2: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K2 ) @ one_one_nat ) ) ) ).

% pred_numeral_def
thf(fact_5918_zdvd__mult__cancel1,axiom,
    ! [M: int,N2: int] :
      ( ( M != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ M @ N2 ) @ M )
        = ( ( abs_abs_int @ N2 )
          = one_one_int ) ) ) ).

% zdvd_mult_cancel1
thf(fact_5919_dbl__inc__def,axiom,
    ( neg_nu8557863876264182079omplex
    = ( ^ [X: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).

% dbl_inc_def
thf(fact_5920_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X: real] : ( plus_plus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_5921_dbl__inc__def,axiom,
    ( neg_nu5219082963157363817nc_rat
    = ( ^ [X: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).

% dbl_inc_def
thf(fact_5922_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X: int] : ( plus_plus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_5923_even__abs__add__iff,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).

% even_abs_add_iff
thf(fact_5924_even__add__abs__iff,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L2 ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).

% even_add_abs_iff
thf(fact_5925_divmod__int__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% divmod_int_def
thf(fact_5926_divmod__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% divmod_def
thf(fact_5927_divmod__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N ) ) ) ) ) ).

% divmod_def
thf(fact_5928_divmod__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ) ).

% divmod_def
thf(fact_5929_divmod_H__nat__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N ) ) ) ) ) ).

% divmod'_nat_def
thf(fact_5930_nat__intermed__int__val,axiom,
    ! [M: nat,N2: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ( ord_less_eq_nat @ M @ I3 )
            & ( ord_less_nat @ I3 @ N2 ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
           => ? [I3: nat] :
                ( ( ord_less_eq_nat @ M @ I3 )
                & ( ord_less_eq_nat @ I3 @ N2 )
                & ( ( F @ I3 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_5931_dbl__dec__def,axiom,
    ( neg_nu6511756317524482435omplex
    = ( ^ [X: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).

% dbl_dec_def
thf(fact_5932_dbl__dec__def,axiom,
    ( neg_nu6075765906172075777c_real
    = ( ^ [X: real] : ( minus_minus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).

% dbl_dec_def
thf(fact_5933_dbl__dec__def,axiom,
    ( neg_nu3179335615603231917ec_rat
    = ( ^ [X: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).

% dbl_dec_def
thf(fact_5934_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X: int] : ( minus_minus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_5935_decr__lemma,axiom,
    ! [D2: int,X2: int,Z: int] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ord_less_int @ ( minus_minus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D2 ) ) @ Z ) ) ).

% decr_lemma
thf(fact_5936_incr__lemma,axiom,
    ! [D2: int,Z: int,X2: int] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ord_less_int @ Z @ ( plus_plus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D2 ) ) ) ) ).

% incr_lemma
thf(fact_5937_nat__ivt__aux,axiom,
    ! [N2: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N2 )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_5938_nat0__intermed__int__val,axiom,
    ! [N2: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N2 )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_5939_arctan__add,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( plus_plus_real @ ( arctan @ X2 ) @ ( arctan @ Y ) )
          = ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X2 @ Y ) ) ) ) ) ) ) ).

% arctan_add
thf(fact_5940_divmod__divmod__step,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N: num] : ( if_Pro6206227464963214023at_nat @ ( ord_less_num @ M3 @ N ) @ ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ M3 ) ) @ ( unique5026877609467782581ep_nat @ N @ ( unique5055182867167087721od_nat @ M3 @ ( bit0 @ N ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5941_divmod__divmod__step,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N: num] : ( if_Pro3027730157355071871nt_int @ ( ord_less_num @ M3 @ N ) @ ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ M3 ) ) @ ( unique5024387138958732305ep_int @ N @ ( unique5052692396658037445od_int @ M3 @ ( bit0 @ N ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5942_divmod__divmod__step,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N: num] : ( if_Pro6119634080678213985nteger @ ( ord_less_num @ M3 @ N ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ M3 ) ) @ ( unique4921790084139445826nteger @ N @ ( unique3479559517661332726nteger @ M3 @ ( bit0 @ N ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5943_of__int__code__if,axiom,
    ( ring_1_of_int_real
    = ( ^ [K2: int] :
          ( if_real @ ( K2 = zero_zero_int ) @ zero_zero_real
          @ ( if_real @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_real @ ( ring_1_of_int_real @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_real
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_real ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5944_of__int__code__if,axiom,
    ( ring_1_of_int_int
    = ( ^ [K2: int] :
          ( if_int @ ( K2 = zero_zero_int ) @ zero_zero_int
          @ ( if_int @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_int @ ( ring_1_of_int_int @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_int
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_int ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5945_of__int__code__if,axiom,
    ( ring_17405671764205052669omplex
    = ( ^ [K2: int] :
          ( if_complex @ ( K2 = zero_zero_int ) @ zero_zero_complex
          @ ( if_complex @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_complex
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_complex ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5946_of__int__code__if,axiom,
    ( ring_18347121197199848620nteger
    = ( ^ [K2: int] :
          ( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
          @ ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5947_of__int__code__if,axiom,
    ( ring_1_of_int_rat
    = ( ^ [K2: int] :
          ( if_rat @ ( K2 = zero_zero_int ) @ zero_zero_rat
          @ ( if_rat @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_rat
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_rat ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5948_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) @ one_one_int ) )
        @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5949_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) @ one_one_nat ) )
        @ ( unique5055182867167087721od_nat @ M @ N2 ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5950_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) @ one_one_Code_integer ) )
        @ ( unique3479559517661332726nteger @ M @ N2 ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5951_Sum__Icc__int,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_eq_int @ M @ N2 )
     => ( ( groups4538972089207619220nt_int
          @ ^ [X: int] : X
          @ ( set_or1266510415728281911st_int @ M @ N2 ) )
        = ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N2 @ ( plus_plus_int @ N2 @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% Sum_Icc_int
thf(fact_5952_divmod__step__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_5953_divmod__step__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_5954_divmod__step__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_5955_even__set__encode__iff,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
        = ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).

% even_set_encode_iff
thf(fact_5956_sum_Oinfinite,axiom,
    ! [A2: set_nat,G: nat > complex] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( groups2073611262835488442omplex @ G @ A2 )
        = zero_zero_complex ) ) ).

% sum.infinite
thf(fact_5957_sum_Oinfinite,axiom,
    ! [A2: set_int,G: int > complex] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups3049146728041665814omplex @ G @ A2 )
        = zero_zero_complex ) ) ).

% sum.infinite
thf(fact_5958_sum_Oinfinite,axiom,
    ! [A2: set_int,G: int > real] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups8778361861064173332t_real @ G @ A2 )
        = zero_zero_real ) ) ).

% sum.infinite
thf(fact_5959_sum_Oinfinite,axiom,
    ! [A2: set_complex,G: complex > real] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G @ A2 )
        = zero_zero_real ) ) ).

% sum.infinite
thf(fact_5960_sum_Oinfinite,axiom,
    ! [A2: set_nat,G: nat > rat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( groups2906978787729119204at_rat @ G @ A2 )
        = zero_zero_rat ) ) ).

% sum.infinite
thf(fact_5961_sum_Oinfinite,axiom,
    ! [A2: set_int,G: int > rat] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups3906332499630173760nt_rat @ G @ A2 )
        = zero_zero_rat ) ) ).

% sum.infinite
thf(fact_5962_sum_Oinfinite,axiom,
    ! [A2: set_complex,G: complex > rat] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5058264527183730370ex_rat @ G @ A2 )
        = zero_zero_rat ) ) ).

% sum.infinite
thf(fact_5963_sum_Oinfinite,axiom,
    ! [A2: set_int,G: int > nat] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups4541462559716669496nt_nat @ G @ A2 )
        = zero_zero_nat ) ) ).

% sum.infinite
thf(fact_5964_sum_Oinfinite,axiom,
    ! [A2: set_complex,G: complex > nat] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5693394587270226106ex_nat @ G @ A2 )
        = zero_zero_nat ) ) ).

% sum.infinite
thf(fact_5965_sum_Oinfinite,axiom,
    ! [A2: set_nat,G: nat > int] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( groups3539618377306564664at_int @ G @ A2 )
        = zero_zero_int ) ) ).

% sum.infinite
thf(fact_5966_sum__eq__0__iff,axiom,
    ! [F3: set_int,F: int > nat] :
      ( ( finite_finite_int @ F3 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ F3 )
          = zero_zero_nat )
        = ( ! [X: int] :
              ( ( member_int @ X @ F3 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_5967_sum__eq__0__iff,axiom,
    ! [F3: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ F3 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ F3 )
          = zero_zero_nat )
        = ( ! [X: complex] :
              ( ( member_complex @ X @ F3 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_5968_sum__eq__0__iff,axiom,
    ! [F3: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ F3 )
     => ( ( ( groups3542108847815614940at_nat @ F @ F3 )
          = zero_zero_nat )
        = ( ! [X: nat] :
              ( ( member_nat @ X @ F3 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_5969_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_5970_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_5971_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_5972_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( numeral_numeral_int @ K ) )
      = ( numera6690914467698888265omplex @ K ) ) ).

% of_int_numeral
thf(fact_5973_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_real @ K ) ) ).

% of_int_numeral
thf(fact_5974_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_rat @ K ) ) ).

% of_int_numeral
thf(fact_5975_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% of_int_numeral
thf(fact_5976_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ( ring_17405671764205052669omplex @ Z )
        = ( numera6690914467698888265omplex @ N2 ) )
      = ( Z
        = ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5977_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ( ring_1_of_int_real @ Z )
        = ( numeral_numeral_real @ N2 ) )
      = ( Z
        = ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5978_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ( ring_1_of_int_rat @ Z )
        = ( numeral_numeral_rat @ N2 ) )
      = ( Z
        = ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5979_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ( ring_1_of_int_int @ Z )
        = ( numeral_numeral_int @ N2 ) )
      = ( Z
        = ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5980_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_5981_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_5982_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_5983_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( times_times_int @ W @ Z ) )
      = ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_mult
thf(fact_5984_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( times_times_int @ W @ Z ) )
      = ( times_times_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_mult
thf(fact_5985_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( times_times_int @ W @ Z ) )
      = ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_mult
thf(fact_5986_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_add
thf(fact_5987_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_add
thf(fact_5988_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_add
thf(fact_5989_of__int__diff,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( minus_minus_int @ W @ Z ) )
      = ( minus_minus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_diff
thf(fact_5990_of__int__diff,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( minus_minus_int @ W @ Z ) )
      = ( minus_minus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_diff
thf(fact_5991_of__int__diff,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( minus_minus_int @ W @ Z ) )
      = ( minus_minus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_diff
thf(fact_5992_of__int__power,axiom,
    ! [Z: int,N2: nat] :
      ( ( ring_1_of_int_rat @ ( power_power_int @ Z @ N2 ) )
      = ( power_power_rat @ ( ring_1_of_int_rat @ Z ) @ N2 ) ) ).

% of_int_power
thf(fact_5993_of__int__power,axiom,
    ! [Z: int,N2: nat] :
      ( ( ring_1_of_int_real @ ( power_power_int @ Z @ N2 ) )
      = ( power_power_real @ ( ring_1_of_int_real @ Z ) @ N2 ) ) ).

% of_int_power
thf(fact_5994_of__int__power,axiom,
    ! [Z: int,N2: nat] :
      ( ( ring_17405671764205052669omplex @ ( power_power_int @ Z @ N2 ) )
      = ( power_power_complex @ ( ring_17405671764205052669omplex @ Z ) @ N2 ) ) ).

% of_int_power
thf(fact_5995_of__int__power,axiom,
    ! [Z: int,N2: nat] :
      ( ( ring_1_of_int_int @ ( power_power_int @ Z @ N2 ) )
      = ( power_power_int @ ( ring_1_of_int_int @ Z ) @ N2 ) ) ).

% of_int_power
thf(fact_5996_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W )
        = ( ring_1_of_int_rat @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_5997_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W )
        = ( ring_1_of_int_real @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_5998_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W )
        = ( ring_17405671764205052669omplex @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_5999_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W )
        = ( ring_1_of_int_int @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_6000_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_rat @ X2 )
        = ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6001_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_real @ X2 )
        = ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6002_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_17405671764205052669omplex @ X2 )
        = ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6003_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_int @ X2 )
        = ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6004_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_6005_sum_Odelta_H,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups1794756597179926696omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups1794756597179926696omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_6006_sum_Odelta_H,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_6007_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_6008_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_6009_sum_Odelta_H,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2240296850493347238T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2240296850493347238T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_6010_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_6011_sum_Odelta_H,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_6012_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_6013_sum_Odelta_H,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups136491112297645522BT_rat
              @ ^ [K2: vEBT_VEBT] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups136491112297645522BT_rat
              @ ^ [K2: vEBT_VEBT] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_6014_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_6015_sum_Odelta,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups1794756597179926696omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups1794756597179926696omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_6016_sum_Odelta,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_6017_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_6018_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_6019_sum_Odelta,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2240296850493347238T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2240296850493347238T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_6020_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_6021_sum_Odelta,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_6022_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_6023_sum_Odelta,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups136491112297645522BT_rat
              @ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups136491112297645522BT_rat
              @ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_6024_sum__abs,axiom,
    ! [F: int > int,A2: set_int] :
      ( ord_less_eq_int @ ( abs_abs_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      @ ( groups4538972089207619220nt_int
        @ ^ [I4: int] : ( abs_abs_int @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs
thf(fact_6025_sum__abs,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ ( abs_abs_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( abs_abs_real @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs
thf(fact_6026_set__encode__inverse,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( nat_set_decode @ ( nat_set_encode @ A2 ) )
        = A2 ) ) ).

% set_encode_inverse
thf(fact_6027_sum__abs__ge__zero,axiom,
    ! [F: int > int,A2: set_int] :
      ( ord_less_eq_int @ zero_zero_int
      @ ( groups4538972089207619220nt_int
        @ ^ [I4: int] : ( abs_abs_int @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs_ge_zero
thf(fact_6028_sum__abs__ge__zero,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ zero_zero_real
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( abs_abs_real @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs_ge_zero
thf(fact_6029_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_6030_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_6031_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_6032_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_6033_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_6034_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_6035_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_6036_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_6037_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_6038_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_6039_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_6040_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_6041_of__int__le__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_le_numeral_iff
thf(fact_6042_of__int__le__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_le_numeral_iff
thf(fact_6043_of__int__le__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_le_numeral_iff
thf(fact_6044_of__int__numeral__le__iff,axiom,
    ! [N2: num,Z: int] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_6045_of__int__numeral__le__iff,axiom,
    ! [N2: num,Z: int] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_6046_of__int__numeral__le__iff,axiom,
    ! [N2: num,Z: int] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_6047_of__int__less__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_less_numeral_iff
thf(fact_6048_of__int__less__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_less_numeral_iff
thf(fact_6049_of__int__less__numeral__iff,axiom,
    ! [Z: int,N2: num] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N2 ) ) ) ).

% of_int_less_numeral_iff
thf(fact_6050_of__int__numeral__less__iff,axiom,
    ! [N2: num,Z: int] :
      ( ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_6051_of__int__numeral__less__iff,axiom,
    ! [N2: num,Z: int] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_6052_of__int__numeral__less__iff,axiom,
    ! [N2: num,Z: int] :
      ( ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_6053_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_6054_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_6055_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_6056_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_6057_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_6058_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_6059_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_6060_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_6061_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_6062_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_6063_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_6064_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_6065_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_6066_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_6067_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_6068_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X2 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_6069_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X2 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_6070_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ X2 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_6071_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N2 )
        = ( ring_17405671764205052669omplex @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6072_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 )
        = ( ring_1_of_int_real @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6073_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 )
        = ( ring_1_of_int_rat @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6074_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 )
        = ( ring_1_of_int_int @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6075_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6076_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_1_of_int_real @ Y )
        = ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6077_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_1_of_int_rat @ Y )
        = ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6078_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_1_of_int_int @ Y )
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6079_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X2 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_6080_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X2 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_6081_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X2 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_6082_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ X2 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_6083_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ X2 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_6084_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ X2 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_6085_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_6086_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_6087_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_6088_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_6089_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_6090_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_6091_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_6092_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_6093_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_6094_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_6095_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_6096_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_6097_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_1_of_int_real @ Y )
        = ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6098_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_1_of_int_int @ Y )
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6099_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X2 ) ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6100_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_18347121197199848620nteger @ Y )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6101_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( ring_1_of_int_rat @ Y )
        = ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6102_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N2 )
        = ( ring_1_of_int_real @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6103_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 )
        = ( ring_1_of_int_int @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6104_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X2 ) ) @ N2 )
        = ( ring_17405671764205052669omplex @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6105_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N2 )
        = ( ring_18347121197199848620nteger @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6106_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N2 )
        = ( ring_1_of_int_rat @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6107_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_6108_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5055182867167087721od_nat @ M @ N2 ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_6109_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique3479559517661332726nteger @ M @ N2 ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_6110_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6111_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N2 ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6112_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6113_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6114_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6115_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6116_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6117_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6118_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6119_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6120_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N2 ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6121_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6122_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6123_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6124_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6125_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N2 ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6126_mult__of__int__commute,axiom,
    ! [X2: int,Y: real] :
      ( ( times_times_real @ ( ring_1_of_int_real @ X2 ) @ Y )
      = ( times_times_real @ Y @ ( ring_1_of_int_real @ X2 ) ) ) ).

% mult_of_int_commute
thf(fact_6127_mult__of__int__commute,axiom,
    ! [X2: int,Y: rat] :
      ( ( times_times_rat @ ( ring_1_of_int_rat @ X2 ) @ Y )
      = ( times_times_rat @ Y @ ( ring_1_of_int_rat @ X2 ) ) ) ).

% mult_of_int_commute
thf(fact_6128_mult__of__int__commute,axiom,
    ! [X2: int,Y: int] :
      ( ( times_times_int @ ( ring_1_of_int_int @ X2 ) @ Y )
      = ( times_times_int @ Y @ ( ring_1_of_int_int @ X2 ) ) ) ).

% mult_of_int_commute
thf(fact_6129_sum__mono,axiom,
    ! [K5: set_nat,F: nat > rat,G: nat > rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ K5 ) @ ( groups2906978787729119204at_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6130_sum__mono,axiom,
    ! [K5: set_real,F: real > rat,G: real > rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ K5 ) @ ( groups1300246762558778688al_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6131_sum__mono,axiom,
    ! [K5: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
      ( ! [I3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ K5 ) @ ( groups136491112297645522BT_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6132_sum__mono,axiom,
    ! [K5: set_int,F: int > rat,G: int > rat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ K5 ) @ ( groups3906332499630173760nt_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6133_sum__mono,axiom,
    ! [K5: set_complex,F: complex > rat,G: complex > rat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ K5 ) @ ( groups5058264527183730370ex_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6134_sum__mono,axiom,
    ! [K5: set_real,F: real > nat,G: real > nat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K5 ) @ ( groups1935376822645274424al_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6135_sum__mono,axiom,
    ! [K5: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
      ( ! [I3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups771621172384141258BT_nat @ F @ K5 ) @ ( groups771621172384141258BT_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6136_sum__mono,axiom,
    ! [K5: set_int,F: int > nat,G: int > nat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ K5 ) @ ( groups4541462559716669496nt_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6137_sum__mono,axiom,
    ! [K5: set_complex,F: complex > nat,G: complex > nat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ K5 ) @ ( groups5693394587270226106ex_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6138_sum__mono,axiom,
    ! [K5: set_nat,F: nat > int,G: nat > int] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ K5 ) @ ( groups3539618377306564664at_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_6139_sum__product,axiom,
    ! [F: int > int,A2: set_int,G: int > int,B2: set_int] :
      ( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ B2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [I4: int] :
            ( groups4538972089207619220nt_int
            @ ^ [J3: int] : ( times_times_int @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B2 )
        @ A2 ) ) ).

% sum_product
thf(fact_6140_sum__product,axiom,
    ! [F: complex > complex,A2: set_complex,G: complex > complex,B2: set_complex] :
      ( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ B2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [I4: complex] :
            ( groups7754918857620584856omplex
            @ ^ [J3: complex] : ( times_times_complex @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B2 )
        @ A2 ) ) ).

% sum_product
thf(fact_6141_sum__product,axiom,
    ! [F: nat > nat,A2: set_nat,G: nat > nat,B2: set_nat] :
      ( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ B2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I4: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( times_times_nat @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B2 )
        @ A2 ) ) ).

% sum_product
thf(fact_6142_sum__product,axiom,
    ! [F: nat > real,A2: set_nat,G: nat > real,B2: set_nat] :
      ( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ B2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] :
            ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( times_times_real @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B2 )
        @ A2 ) ) ).

% sum_product
thf(fact_6143_sum__distrib__right,axiom,
    ! [F: int > int,A2: set_int,R: int] :
      ( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ R )
      = ( groups4538972089207619220nt_int
        @ ^ [N: int] : ( times_times_int @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_6144_sum__distrib__right,axiom,
    ! [F: complex > complex,A2: set_complex,R: complex] :
      ( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R )
      = ( groups7754918857620584856omplex
        @ ^ [N: complex] : ( times_times_complex @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_6145_sum__distrib__right,axiom,
    ! [F: nat > nat,A2: set_nat,R: nat] :
      ( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ R )
      = ( groups3542108847815614940at_nat
        @ ^ [N: nat] : ( times_times_nat @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_6146_sum__distrib__right,axiom,
    ! [F: nat > real,A2: set_nat,R: real] :
      ( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R )
      = ( groups6591440286371151544t_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_6147_sum__distrib__left,axiom,
    ! [R: int,F: int > int,A2: set_int] :
      ( ( times_times_int @ R @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [N: int] : ( times_times_int @ R @ ( F @ N ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_6148_sum__distrib__left,axiom,
    ! [R: complex,F: complex > complex,A2: set_complex] :
      ( ( times_times_complex @ R @ ( groups7754918857620584856omplex @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [N: complex] : ( times_times_complex @ R @ ( F @ N ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_6149_sum__distrib__left,axiom,
    ! [R: nat,F: nat > nat,A2: set_nat] :
      ( ( times_times_nat @ R @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [N: nat] : ( times_times_nat @ R @ ( F @ N ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_6150_sum__distrib__left,axiom,
    ! [R: real,F: nat > real,A2: set_nat] :
      ( ( times_times_real @ R @ ( groups6591440286371151544t_real @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [N: nat] : ( times_times_real @ R @ ( F @ N ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_6151_sum_Odistrib,axiom,
    ! [G: int > int,H2: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( plus_plus_int @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ A2 ) @ ( groups4538972089207619220nt_int @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_6152_sum_Odistrib,axiom,
    ! [G: complex > complex,H2: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( plus_plus_complex @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_complex @ ( groups7754918857620584856omplex @ G @ A2 ) @ ( groups7754918857620584856omplex @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_6153_sum_Odistrib,axiom,
    ! [G: nat > nat,H2: nat > nat,A2: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : ( plus_plus_nat @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ A2 ) @ ( groups3542108847815614940at_nat @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_6154_sum_Odistrib,axiom,
    ! [G: nat > real,H2: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( plus_plus_real @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ A2 ) @ ( groups6591440286371151544t_real @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_6155_sum__subtractf,axiom,
    ! [F: int > int,G: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( minus_minus_int @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_6156_sum__subtractf,axiom,
    ! [F: complex > complex,G: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( minus_minus_complex @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_6157_sum__subtractf,axiom,
    ! [F: nat > real,G: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( minus_minus_real @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_6158_sum__divide__distrib,axiom,
    ! [F: complex > complex,A2: set_complex,R: complex] :
      ( ( divide1717551699836669952omplex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R )
      = ( groups7754918857620584856omplex
        @ ^ [N: complex] : ( divide1717551699836669952omplex @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_divide_distrib
thf(fact_6159_sum__divide__distrib,axiom,
    ! [F: nat > real,A2: set_nat,R: real] :
      ( ( divide_divide_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R )
      = ( groups6591440286371151544t_real
        @ ^ [N: nat] : ( divide_divide_real @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_divide_distrib
thf(fact_6160_sum_Oswap__restrict,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_int,G: vEBT_VEBT > int > int,R2: vEBT_VEBT > int > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ( groups769130701875090982BT_int
            @ ^ [X: vEBT_VEBT] :
                ( groups4538972089207619220nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y2: int] :
                      ( ( member_int @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y2: int] :
                ( groups769130701875090982BT_int
                @ ^ [X: vEBT_VEBT] : ( G @ X @ Y2 )
                @ ( collect_VEBT_VEBT
                  @ ^ [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6161_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B2: set_int,G: real > int > int,R2: real > int > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ( groups1932886352136224148al_int
            @ ^ [X: real] :
                ( groups4538972089207619220nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y2: int] :
                      ( ( member_int @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y2: int] :
                ( groups1932886352136224148al_int
                @ ^ [X: real] : ( G @ X @ Y2 )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6162_sum_Oswap__restrict,axiom,
    ! [A2: set_nat,B2: set_int,G: nat > int > int,R2: nat > int > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ( groups3539618377306564664at_int
            @ ^ [X: nat] :
                ( groups4538972089207619220nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y2: int] :
                      ( ( member_int @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y2: int] :
                ( groups3539618377306564664at_int
                @ ^ [X: nat] : ( G @ X @ Y2 )
                @ ( collect_nat
                  @ ^ [X: nat] :
                      ( ( member_nat @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6163_sum_Oswap__restrict,axiom,
    ! [A2: set_complex,B2: set_int,G: complex > int > int,R2: complex > int > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ( groups5690904116761175830ex_int
            @ ^ [X: complex] :
                ( groups4538972089207619220nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y2: int] :
                      ( ( member_int @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y2: int] :
                ( groups5690904116761175830ex_int
                @ ^ [X: complex] : ( G @ X @ Y2 )
                @ ( collect_complex
                  @ ^ [X: complex] :
                      ( ( member_complex @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6164_sum_Oswap__restrict,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_complex,G: vEBT_VEBT > complex > complex,R2: vEBT_VEBT > complex > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( ( groups1794756597179926696omplex
            @ ^ [X: vEBT_VEBT] :
                ( groups7754918857620584856omplex @ ( G @ X )
                @ ( collect_complex
                  @ ^ [Y2: complex] :
                      ( ( member_complex @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y2: complex] :
                ( groups1794756597179926696omplex
                @ ^ [X: vEBT_VEBT] : ( G @ X @ Y2 )
                @ ( collect_VEBT_VEBT
                  @ ^ [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6165_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B2: set_complex,G: real > complex > complex,R2: real > complex > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( ( groups5754745047067104278omplex
            @ ^ [X: real] :
                ( groups7754918857620584856omplex @ ( G @ X )
                @ ( collect_complex
                  @ ^ [Y2: complex] :
                      ( ( member_complex @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y2: complex] :
                ( groups5754745047067104278omplex
                @ ^ [X: real] : ( G @ X @ Y2 )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6166_sum_Oswap__restrict,axiom,
    ! [A2: set_nat,B2: set_complex,G: nat > complex > complex,R2: nat > complex > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( ( groups2073611262835488442omplex
            @ ^ [X: nat] :
                ( groups7754918857620584856omplex @ ( G @ X )
                @ ( collect_complex
                  @ ^ [Y2: complex] :
                      ( ( member_complex @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y2: complex] :
                ( groups2073611262835488442omplex
                @ ^ [X: nat] : ( G @ X @ Y2 )
                @ ( collect_nat
                  @ ^ [X: nat] :
                      ( ( member_nat @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6167_sum_Oswap__restrict,axiom,
    ! [A2: set_int,B2: set_complex,G: int > complex > complex,R2: int > complex > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( finite3207457112153483333omplex @ B2 )
       => ( ( groups3049146728041665814omplex
            @ ^ [X: int] :
                ( groups7754918857620584856omplex @ ( G @ X )
                @ ( collect_complex
                  @ ^ [Y2: complex] :
                      ( ( member_complex @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y2: complex] :
                ( groups3049146728041665814omplex
                @ ^ [X: int] : ( G @ X @ Y2 )
                @ ( collect_int
                  @ ^ [X: int] :
                      ( ( member_int @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6168_sum_Oswap__restrict,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_nat,G: vEBT_VEBT > nat > nat,R2: vEBT_VEBT > nat > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups771621172384141258BT_nat
            @ ^ [X: vEBT_VEBT] :
                ( groups3542108847815614940at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y2: nat] :
                ( groups771621172384141258BT_nat
                @ ^ [X: vEBT_VEBT] : ( G @ X @ Y2 )
                @ ( collect_VEBT_VEBT
                  @ ^ [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6169_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B2: set_nat,G: real > nat > nat,R2: real > nat > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups1935376822645274424al_nat
            @ ^ [X: real] :
                ( groups3542108847815614940at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y2: nat] :
                ( groups1935376822645274424al_nat
                @ ^ [X: real] : ( G @ X @ Y2 )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_6170_mod__sum__eq,axiom,
    ! [F: int > int,A: int,A2: set_int] :
      ( ( modulo_modulo_int
        @ ( groups4538972089207619220nt_int
          @ ^ [I4: int] : ( modulo_modulo_int @ ( F @ I4 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_6171_mod__sum__eq,axiom,
    ! [F: nat > nat,A: nat,A2: set_nat] :
      ( ( modulo_modulo_nat
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( modulo_modulo_nat @ ( F @ I4 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_6172_sum__nonneg,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6173_sum__nonneg,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6174_sum__nonneg,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6175_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6176_sum__nonneg,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6177_sum__nonneg,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6178_sum__nonneg,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6179_sum__nonneg,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6180_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6181_sum__nonneg,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_6182_sum__nonpos,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_6183_sum__nonpos,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_6184_sum__nonpos,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_6185_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_6186_sum__nonpos,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_6187_sum__nonpos,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_6188_sum__nonpos,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_6189_sum__nonpos,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_6190_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_6191_sum__nonpos,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_nat @ ( F @ X3 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_6192_sum__mono__inv,axiom,
    ! [F: real > rat,I5: set_real,G: real > rat,I: real] :
      ( ( ( groups1300246762558778688al_rat @ F @ I5 )
        = ( groups1300246762558778688al_rat @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6193_sum__mono__inv,axiom,
    ! [F: vEBT_VEBT > rat,I5: set_VEBT_VEBT,G: vEBT_VEBT > rat,I: vEBT_VEBT] :
      ( ( ( groups136491112297645522BT_rat @ F @ I5 )
        = ( groups136491112297645522BT_rat @ G @ I5 ) )
     => ( ! [I3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_VEBT_VEBT @ I @ I5 )
         => ( ( finite5795047828879050333T_VEBT @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6194_sum__mono__inv,axiom,
    ! [F: nat > rat,I5: set_nat,G: nat > rat,I: nat] :
      ( ( ( groups2906978787729119204at_rat @ F @ I5 )
        = ( groups2906978787729119204at_rat @ G @ I5 ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_nat @ I @ I5 )
         => ( ( finite_finite_nat @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6195_sum__mono__inv,axiom,
    ! [F: int > rat,I5: set_int,G: int > rat,I: int] :
      ( ( ( groups3906332499630173760nt_rat @ F @ I5 )
        = ( groups3906332499630173760nt_rat @ G @ I5 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I @ I5 )
         => ( ( finite_finite_int @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6196_sum__mono__inv,axiom,
    ! [F: complex > rat,I5: set_complex,G: complex > rat,I: complex] :
      ( ( ( groups5058264527183730370ex_rat @ F @ I5 )
        = ( groups5058264527183730370ex_rat @ G @ I5 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I @ I5 )
         => ( ( finite3207457112153483333omplex @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6197_sum__mono__inv,axiom,
    ! [F: real > nat,I5: set_real,G: real > nat,I: real] :
      ( ( ( groups1935376822645274424al_nat @ F @ I5 )
        = ( groups1935376822645274424al_nat @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6198_sum__mono__inv,axiom,
    ! [F: vEBT_VEBT > nat,I5: set_VEBT_VEBT,G: vEBT_VEBT > nat,I: vEBT_VEBT] :
      ( ( ( groups771621172384141258BT_nat @ F @ I5 )
        = ( groups771621172384141258BT_nat @ G @ I5 ) )
     => ( ! [I3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_VEBT_VEBT @ I @ I5 )
         => ( ( finite5795047828879050333T_VEBT @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6199_sum__mono__inv,axiom,
    ! [F: int > nat,I5: set_int,G: int > nat,I: int] :
      ( ( ( groups4541462559716669496nt_nat @ F @ I5 )
        = ( groups4541462559716669496nt_nat @ G @ I5 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I @ I5 )
         => ( ( finite_finite_int @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6200_sum__mono__inv,axiom,
    ! [F: complex > nat,I5: set_complex,G: complex > nat,I: complex] :
      ( ( ( groups5693394587270226106ex_nat @ F @ I5 )
        = ( groups5693394587270226106ex_nat @ G @ I5 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I @ I5 )
         => ( ( finite3207457112153483333omplex @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6201_sum__mono__inv,axiom,
    ! [F: real > int,I5: set_real,G: real > int,I: real] :
      ( ( ( groups1932886352136224148al_int @ F @ I5 )
        = ( groups1932886352136224148al_int @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_6202_set__encode__eq,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( ( nat_set_encode @ A2 )
            = ( nat_set_encode @ B2 ) )
          = ( A2 = B2 ) ) ) ) ).

% set_encode_eq
thf(fact_6203_sum_Ointer__filter,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > complex,P: vEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups1794756597179926696omplex @ G
          @ ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups1794756597179926696omplex
          @ ^ [X: vEBT_VEBT] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6204_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > complex,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups5754745047067104278omplex @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups5754745047067104278omplex
          @ ^ [X: real] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6205_sum_Ointer__filter,axiom,
    ! [A2: set_nat,G: nat > complex,P: nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2073611262835488442omplex @ G
          @ ( collect_nat
            @ ^ [X: nat] :
                ( ( member_nat @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups2073611262835488442omplex
          @ ^ [X: nat] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6206_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > complex,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3049146728041665814omplex @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups3049146728041665814omplex
          @ ^ [X: int] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6207_sum_Ointer__filter,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > real,P: vEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups2240296850493347238T_real @ G
          @ ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups2240296850493347238T_real
          @ ^ [X: vEBT_VEBT] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6208_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > real,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups8097168146408367636l_real @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups8097168146408367636l_real
          @ ^ [X: real] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6209_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > real,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups8778361861064173332t_real
          @ ^ [X: int] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6210_sum_Ointer__filter,axiom,
    ! [A2: set_complex,G: complex > real,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( collect_complex
            @ ^ [X: complex] :
                ( ( member_complex @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups5808333547571424918x_real
          @ ^ [X: complex] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6211_sum_Ointer__filter,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > rat,P: vEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups136491112297645522BT_rat @ G
          @ ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups136491112297645522BT_rat
          @ ^ [X: vEBT_VEBT] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6212_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > rat,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1300246762558778688al_rat @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups1300246762558778688al_rat
          @ ^ [X: real] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6213_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6214_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
       => ( ( ( groups2240296850493347238T_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6215_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6216_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X3: complex] :
            ( ( member_complex @ X3 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X: complex] :
                ( ( member_complex @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6217_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6218_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
       => ( ( ( groups136491112297645522BT_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6219_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: nat] :
                ( ( member_nat @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6220_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6221_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X3: complex] :
            ( ( member_complex @ X3 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: complex] :
                ( ( member_complex @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6222_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ A2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ A2 )
            = zero_zero_nat )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6223_sum__le__included,axiom,
    ! [S: set_int,T: set_int,G: int > real,I: int > int,F: int > real] :
      ( ( finite_finite_int @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6224_sum__le__included,axiom,
    ! [S: set_int,T: set_complex,G: complex > real,I: complex > int,F: int > real] :
      ( ( finite_finite_int @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6225_sum__le__included,axiom,
    ! [S: set_complex,T: set_int,G: int > real,I: int > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6226_sum__le__included,axiom,
    ! [S: set_complex,T: set_complex,G: complex > real,I: complex > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6227_sum__le__included,axiom,
    ! [S: set_nat,T: set_nat,G: nat > rat,I: nat > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S )
     => ( ( finite_finite_nat @ T )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X3 ) ) )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S )
               => ? [Xa: nat] :
                    ( ( member_nat @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6228_sum__le__included,axiom,
    ! [S: set_nat,T: set_int,G: int > rat,I: int > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X3 ) ) )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6229_sum__le__included,axiom,
    ! [S: set_nat,T: set_complex,G: complex > rat,I: complex > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X3 ) ) )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6230_sum__le__included,axiom,
    ! [S: set_int,T: set_nat,G: nat > rat,I: nat > int,F: int > rat] :
      ( ( finite_finite_int @ S )
     => ( ( finite_finite_nat @ T )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X3 ) ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S )
               => ? [Xa: nat] :
                    ( ( member_nat @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6231_sum__le__included,axiom,
    ! [S: set_int,T: set_int,G: int > rat,I: int > int,F: int > rat] :
      ( ( finite_finite_int @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X3 ) ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6232_sum__le__included,axiom,
    ! [S: set_int,T: set_complex,G: complex > rat,I: complex > int,F: int > rat] :
      ( ( finite_finite_int @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X3 ) ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X3 )
                    & ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6233_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ A2 )
           => ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: int] :
              ( ( member_int @ X4 @ A2 )
              & ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6234_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X3: complex] :
            ( ( member_complex @ X3 @ A2 )
           => ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
              & ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6235_sum__strict__mono__ex1,axiom,
    ! [A2: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: nat] :
              ( ( member_nat @ X4 @ A2 )
              & ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6236_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: int] :
              ( ( member_int @ X4 @ A2 )
              & ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6237_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X3: complex] :
            ( ( member_complex @ X3 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
              & ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6238_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > nat,G: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ A2 )
           => ( ord_less_eq_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: int] :
              ( ( member_int @ X4 @ A2 )
              & ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6239_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X3: complex] :
            ( ( member_complex @ X3 @ A2 )
           => ( ord_less_eq_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
              & ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6240_sum__strict__mono__ex1,axiom,
    ! [A2: set_nat,F: nat > int,G: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ord_less_eq_int @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: nat] :
              ( ( member_nat @ X4 @ A2 )
              & ( ord_less_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6241_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > int,G: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X3: complex] :
            ( ( member_complex @ X3 @ A2 )
           => ( ord_less_eq_int @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
              & ( ord_less_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6242_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > int,G: int > int] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X3: int] :
            ( ( member_int @ X3 @ A2 )
           => ( ord_less_eq_int @ ( F @ X3 ) @ ( G @ X3 ) ) )
       => ( ? [X4: int] :
              ( ( member_int @ X4 @ A2 )
              & ( ord_less_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6243_sum_Orelated,axiom,
    ! [R2: complex > complex > $o,S3: set_nat,H2: nat > complex,G: nat > complex] :
      ( ( R2 @ zero_zero_complex @ zero_zero_complex )
     => ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_complex @ X1 @ Y1 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups2073611262835488442omplex @ H2 @ S3 ) @ ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6244_sum_Orelated,axiom,
    ! [R2: complex > complex > $o,S3: set_int,H2: int > complex,G: int > complex] :
      ( ( R2 @ zero_zero_complex @ zero_zero_complex )
     => ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_complex @ X1 @ Y1 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups3049146728041665814omplex @ H2 @ S3 ) @ ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6245_sum_Orelated,axiom,
    ! [R2: real > real > $o,S3: set_int,H2: int > real,G: int > real] :
      ( ( R2 @ zero_zero_real @ zero_zero_real )
     => ( ! [X1: real,Y1: real,X23: real,Y23: real] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups8778361861064173332t_real @ H2 @ S3 ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6246_sum_Orelated,axiom,
    ! [R2: real > real > $o,S3: set_complex,H2: complex > real,G: complex > real] :
      ( ( R2 @ zero_zero_real @ zero_zero_real )
     => ( ! [X1: real,Y1: real,X23: real,Y23: real] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups5808333547571424918x_real @ H2 @ S3 ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6247_sum_Orelated,axiom,
    ! [R2: rat > rat > $o,S3: set_nat,H2: nat > rat,G: nat > rat] :
      ( ( R2 @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups2906978787729119204at_rat @ H2 @ S3 ) @ ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6248_sum_Orelated,axiom,
    ! [R2: rat > rat > $o,S3: set_int,H2: int > rat,G: int > rat] :
      ( ( R2 @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups3906332499630173760nt_rat @ H2 @ S3 ) @ ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6249_sum_Orelated,axiom,
    ! [R2: rat > rat > $o,S3: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( R2 @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups5058264527183730370ex_rat @ H2 @ S3 ) @ ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6250_sum_Orelated,axiom,
    ! [R2: nat > nat > $o,S3: set_int,H2: int > nat,G: int > nat] :
      ( ( R2 @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X1: nat,Y1: nat,X23: nat,Y23: nat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_nat @ X1 @ Y1 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups4541462559716669496nt_nat @ H2 @ S3 ) @ ( groups4541462559716669496nt_nat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6251_sum_Orelated,axiom,
    ! [R2: nat > nat > $o,S3: set_complex,H2: complex > nat,G: complex > nat] :
      ( ( R2 @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X1: nat,Y1: nat,X23: nat,Y23: nat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_nat @ X1 @ Y1 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups5693394587270226106ex_nat @ H2 @ S3 ) @ ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6252_sum_Orelated,axiom,
    ! [R2: int > int > $o,S3: set_nat,H2: nat > int,G: nat > int] :
      ( ( R2 @ zero_zero_int @ zero_zero_int )
     => ( ! [X1: int,Y1: int,X23: int,Y23: int] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( plus_plus_int @ X1 @ Y1 ) @ ( plus_plus_int @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups3539618377306564664at_int @ H2 @ S3 ) @ ( groups3539618377306564664at_int @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6253_sum__strict__mono,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real,G: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( A2 != bot_bo8194388402131092736T_VEBT )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ A2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6254_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6255_sum__strict__mono,axiom,
    ! [A2: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ A2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6256_sum__strict__mono,axiom,
    ! [A2: set_real,F: real > real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ A2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6257_sum__strict__mono,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( A2 != bot_bo8194388402131092736T_VEBT )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ A2 )
             => ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6258_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
             => ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6259_sum__strict__mono,axiom,
    ! [A2: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
             => ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6260_sum__strict__mono,axiom,
    ! [A2: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ A2 )
             => ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6261_sum__strict__mono,axiom,
    ! [A2: set_real,F: real > rat,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ A2 )
             => ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6262_sum__strict__mono,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( A2 != bot_bo8194388402131092736T_VEBT )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ A2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6263_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_real,S3: set_real,I: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: real] :
                    ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: real] :
                        ( ( member_real @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups5754745047067104278omplex @ G @ S3 )
                        = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6264_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_VEBT_VEBT,S3: set_real,I: vEBT_VEBT > real,J: real > vEBT_VEBT,T3: set_VEBT_VEBT,G: real > complex,H2: vEBT_VEBT > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite5795047828879050333T_VEBT @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_VEBT_VEBT @ ( J @ A5 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups5754745047067104278omplex @ G @ S3 )
                        = ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6265_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_VEBT_VEBT,T4: set_real,S3: set_VEBT_VEBT,I: real > vEBT_VEBT,J: vEBT_VEBT > real,T3: set_real,G: vEBT_VEBT > complex,H2: real > complex] :
      ( ( finite5795047828879050333T_VEBT @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: real] :
                    ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_VEBT_VEBT @ ( I @ B5 ) @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) ) )
               => ( ! [A5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: real] :
                        ( ( member_real @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups1794756597179926696omplex @ G @ S3 )
                        = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6266_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_VEBT_VEBT,T4: set_VEBT_VEBT,S3: set_VEBT_VEBT,I: vEBT_VEBT > vEBT_VEBT,J: vEBT_VEBT > vEBT_VEBT,T3: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ S4 )
     => ( ( finite5795047828879050333T_VEBT @ T4 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
               => ( member_VEBT_VEBT @ ( J @ A5 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                   => ( member_VEBT_VEBT @ ( I @ B5 ) @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) ) )
               => ( ! [A5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups1794756597179926696omplex @ G @ S3 )
                        = ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6267_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_int,S3: set_real,I: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: int] :
                    ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: int] :
                        ( ( member_int @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups5754745047067104278omplex @ G @ S3 )
                        = ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6268_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_VEBT_VEBT,T4: set_int,S3: set_VEBT_VEBT,I: int > vEBT_VEBT,J: vEBT_VEBT > int,T3: set_int,G: vEBT_VEBT > complex,H2: int > complex] :
      ( ( finite5795047828879050333T_VEBT @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: int] :
                    ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_VEBT_VEBT @ ( I @ B5 ) @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) ) )
               => ( ! [A5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: int] :
                        ( ( member_int @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups1794756597179926696omplex @ G @ S3 )
                        = ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6269_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_real,S3: set_int,I: real > int,J: int > real,T3: set_real,G: int > complex,H2: real > complex] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: real] :
                    ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_int @ ( I @ B5 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: real] :
                        ( ( member_real @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups3049146728041665814omplex @ G @ S3 )
                        = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6270_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_VEBT_VEBT,S3: set_int,I: vEBT_VEBT > int,J: int > vEBT_VEBT,T3: set_VEBT_VEBT,G: int > complex,H2: vEBT_VEBT > complex] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite5795047828879050333T_VEBT @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_VEBT_VEBT @ ( J @ A5 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                   => ( member_int @ ( I @ B5 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups3049146728041665814omplex @ G @ S3 )
                        = ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6271_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_int,S3: set_int,I: int > int,J: int > int,T3: set_int,G: int > complex,H2: int > complex] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: int] :
                    ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_int @ ( I @ B5 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_complex ) )
                 => ( ! [B5: int] :
                        ( ( member_int @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_complex ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups3049146728041665814omplex @ G @ S3 )
                        = ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6272_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_real,S3: set_real,I: real > real,J: real > real,T3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: real] :
                    ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B5: real] :
                        ( ( member_real @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = zero_zero_real ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S3 )
                        = ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6273_real__of__int__div4,axiom,
    ! [N2: int,X2: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N2 @ X2 ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N2 ) @ ( ring_1_of_int_real @ X2 ) ) ) ).

% real_of_int_div4
thf(fact_6274_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > real,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S )
            = zero_zero_real )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6275_sum__nonneg__0,axiom,
    ! [S: set_VEBT_VEBT,F: vEBT_VEBT > real,I: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ S )
     => ( ! [I3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups2240296850493347238T_real @ F @ S )
            = zero_zero_real )
         => ( ( member_VEBT_VEBT @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6276_sum__nonneg__0,axiom,
    ! [S: set_int,F: int > real,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S )
            = zero_zero_real )
         => ( ( member_int @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6277_sum__nonneg__0,axiom,
    ! [S: set_complex,F: complex > real,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S )
            = zero_zero_real )
         => ( ( member_complex @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6278_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > rat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6279_sum__nonneg__0,axiom,
    ! [S: set_VEBT_VEBT,F: vEBT_VEBT > rat,I: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ S )
     => ( ! [I3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups136491112297645522BT_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_VEBT_VEBT @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6280_sum__nonneg__0,axiom,
    ! [S: set_nat,F: nat > rat,I: nat] :
      ( ( finite_finite_nat @ S )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_nat @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6281_sum__nonneg__0,axiom,
    ! [S: set_int,F: int > rat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_int @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6282_sum__nonneg__0,axiom,
    ! [S: set_complex,F: complex > rat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_complex @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6283_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > nat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S )
            = zero_zero_nat )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6284_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > real,B2: real,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S )
            = B2 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6285_sum__nonneg__leq__bound,axiom,
    ! [S: set_VEBT_VEBT,F: vEBT_VEBT > real,B2: real,I: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ S )
     => ( ! [I3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups2240296850493347238T_real @ F @ S )
            = B2 )
         => ( ( member_VEBT_VEBT @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6286_sum__nonneg__leq__bound,axiom,
    ! [S: set_int,F: int > real,B2: real,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S )
            = B2 )
         => ( ( member_int @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6287_sum__nonneg__leq__bound,axiom,
    ! [S: set_complex,F: complex > real,B2: real,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S )
            = B2 )
         => ( ( member_complex @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6288_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > rat,B2: rat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S )
            = B2 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6289_sum__nonneg__leq__bound,axiom,
    ! [S: set_VEBT_VEBT,F: vEBT_VEBT > rat,B2: rat,I: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ S )
     => ( ! [I3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups136491112297645522BT_rat @ F @ S )
            = B2 )
         => ( ( member_VEBT_VEBT @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6290_sum__nonneg__leq__bound,axiom,
    ! [S: set_nat,F: nat > rat,B2: rat,I: nat] :
      ( ( finite_finite_nat @ S )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S )
            = B2 )
         => ( ( member_nat @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6291_sum__nonneg__leq__bound,axiom,
    ! [S: set_int,F: int > rat,B2: rat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S )
            = B2 )
         => ( ( member_int @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6292_sum__nonneg__leq__bound,axiom,
    ! [S: set_complex,F: complex > rat,B2: rat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S )
            = B2 )
         => ( ( member_complex @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6293_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > nat,B2: nat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S )
            = B2 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_nat @ ( F @ I ) @ B2 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6294_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > complex] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups5754745047067104278omplex @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = zero_zero_complex ) ) ) )
        = ( groups5754745047067104278omplex @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6295_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > complex] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3049146728041665814omplex @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_complex ) ) ) )
        = ( groups3049146728041665814omplex @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6296_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups8097168146408367636l_real @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups8097168146408367636l_real @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6297_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups8778361861064173332t_real @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6298_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups5808333547571424918x_real @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6299_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1300246762558778688al_rat @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6300_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3906332499630173760nt_rat @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6301_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5058264527183730370ex_rat @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6302_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1935376822645274424al_nat @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = zero_zero_nat ) ) ) )
        = ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6303_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups4541462559716669496nt_nat @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_nat ) ) ) )
        = ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6304_real__of__int__div,axiom,
    ! [D2: int,N2: int] :
      ( ( dvd_dvd_int @ D2 @ N2 )
     => ( ( ring_1_of_int_real @ ( divide_divide_int @ N2 @ D2 ) )
        = ( divide_divide_real @ ( ring_1_of_int_real @ N2 ) @ ( ring_1_of_int_real @ D2 ) ) ) ) ).

% real_of_int_div
thf(fact_6305_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6306_sum__pos2,axiom,
    ! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( member_VEBT_VEBT @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6307_sum__pos2,axiom,
    ! [I5: set_int,I: int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6308_sum__pos2,axiom,
    ! [I5: set_complex,I: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6309_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6310_sum__pos2,axiom,
    ! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( member_VEBT_VEBT @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6311_sum__pos2,axiom,
    ! [I5: set_nat,I: nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( member_nat @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6312_sum__pos2,axiom,
    ! [I5: set_int,I: int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6313_sum__pos2,axiom,
    ! [I5: set_complex,I: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6314_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > nat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6315_sum__pos,axiom,
    ! [I5: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( I5 != bot_bo8194388402131092736T_VEBT )
       => ( ! [I3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6316_sum__pos,axiom,
    ! [I5: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6317_sum__pos,axiom,
    ! [I5: set_int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6318_sum__pos,axiom,
    ! [I5: set_real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6319_sum__pos,axiom,
    ! [I5: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( I5 != bot_bo8194388402131092736T_VEBT )
       => ( ! [I3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6320_sum__pos,axiom,
    ! [I5: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6321_sum__pos,axiom,
    ! [I5: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( I5 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6322_sum__pos,axiom,
    ! [I5: set_int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6323_sum__pos,axiom,
    ! [I5: set_real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6324_sum__pos,axiom,
    ! [I5: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( I5 != bot_bo8194388402131092736T_VEBT )
       => ( ! [I3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I3 @ I5 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) )
         => ( ord_less_nat @ zero_zero_nat @ ( groups771621172384141258BT_nat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_6325_set__encode__inf,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( nat_set_encode @ A2 )
        = zero_zero_nat ) ) ).

% set_encode_inf
thf(fact_6326_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_complex ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups5754745047067104278omplex @ G @ T3 )
              = ( groups5754745047067104278omplex @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6327_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_VEBT_VEBT,S3: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ T3 )
     => ( ( ord_le4337996190870823476T_VEBT @ S3 @ T3 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_complex ) )
         => ( ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups1794756597179926696omplex @ G @ T3 )
              = ( groups1794756597179926696omplex @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6328_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > complex,H2: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_complex ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups3049146728041665814omplex @ G @ T3 )
              = ( groups3049146728041665814omplex @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6329_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ T3 )
              = ( groups8097168146408367636l_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6330_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_VEBT_VEBT,S3: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ T3 )
     => ( ( ord_le4337996190870823476T_VEBT @ S3 @ T3 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups2240296850493347238T_real @ G @ T3 )
              = ( groups2240296850493347238T_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6331_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups8778361861064173332t_real @ G @ T3 )
              = ( groups8778361861064173332t_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6332_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ T3 )
              = ( groups5808333547571424918x_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6333_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ T3 )
              = ( groups1300246762558778688al_rat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6334_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_VEBT_VEBT,S3: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ T3 )
     => ( ( ord_le4337996190870823476T_VEBT @ S3 @ T3 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups136491112297645522BT_rat @ G @ T3 )
              = ( groups136491112297645522BT_rat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6335_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > rat,H2: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups3906332499630173760nt_rat @ G @ T3 )
              = ( groups3906332499630173760nt_rat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6336_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > complex,G: real > complex] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_complex ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups5754745047067104278omplex @ G @ S3 )
              = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6337_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_VEBT_VEBT,S3: set_VEBT_VEBT,H2: vEBT_VEBT > complex,G: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ T3 )
     => ( ( ord_le4337996190870823476T_VEBT @ S3 @ T3 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_complex ) )
         => ( ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups1794756597179926696omplex @ G @ S3 )
              = ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6338_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_int,S3: set_int,H2: int > complex,G: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_complex ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups3049146728041665814omplex @ G @ S3 )
              = ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6339_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > real,G: real > real] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ S3 )
              = ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6340_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_VEBT_VEBT,S3: set_VEBT_VEBT,H2: vEBT_VEBT > real,G: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ T3 )
     => ( ( ord_le4337996190870823476T_VEBT @ S3 @ T3 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups2240296850493347238T_real @ G @ S3 )
              = ( groups2240296850493347238T_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6341_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_int,S3: set_int,H2: int > real,G: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups8778361861064173332t_real @ G @ S3 )
              = ( groups8778361861064173332t_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6342_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_real ) )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ S3 )
              = ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6343_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > rat,G: real > rat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_rat ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ S3 )
              = ( groups1300246762558778688al_rat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6344_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_VEBT_VEBT,S3: set_VEBT_VEBT,H2: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ T3 )
     => ( ( ord_le4337996190870823476T_VEBT @ S3 @ T3 )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_rat ) )
         => ( ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups136491112297645522BT_rat @ G @ S3 )
              = ( groups136491112297645522BT_rat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6345_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_int,S3: set_int,H2: int > rat,G: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( H2 @ X3 )
                = zero_zero_rat ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( ( G @ X3 )
                  = ( H2 @ X3 ) ) )
           => ( ( groups3906332499630173760nt_rat @ G @ S3 )
              = ( groups3906332499630173760nt_rat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6346_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_complex ) )
         => ( ( groups3049146728041665814omplex @ G @ T3 )
            = ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6347_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ T3 )
            = ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6348_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ T3 )
            = ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6349_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ T3 )
            = ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6350_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ T3 )
            = ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6351_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > nat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_nat ) )
         => ( ( groups4541462559716669496nt_nat @ G @ T3 )
            = ( groups4541462559716669496nt_nat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6352_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ T3 )
            = ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6353_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ T3 )
            = ( groups5690904116761175830ex_int @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6354_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_complex ) )
         => ( ( groups2073611262835488442omplex @ G @ T3 )
            = ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6355_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ( groups2906978787729119204at_rat @ G @ T3 )
            = ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6356_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_complex ) )
         => ( ( groups3049146728041665814omplex @ G @ S3 )
            = ( groups3049146728041665814omplex @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6357_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ S3 )
            = ( groups8778361861064173332t_real @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6358_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ S3 )
            = ( groups5808333547571424918x_real @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6359_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ S3 )
            = ( groups3906332499630173760nt_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6360_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ S3 )
            = ( groups5058264527183730370ex_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6361_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > nat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X3: int] :
              ( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_nat ) )
         => ( ( groups4541462559716669496nt_nat @ G @ S3 )
            = ( groups4541462559716669496nt_nat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6362_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ S3 )
            = ( groups5693394587270226106ex_nat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6363_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X3: complex] :
              ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ S3 )
            = ( groups5690904116761175830ex_int @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6364_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_complex ) )
         => ( ( groups2073611262835488442omplex @ G @ S3 )
            = ( groups2073611262835488442omplex @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6365_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X3 )
                = zero_zero_rat ) )
         => ( ( groups2906978787729119204at_rat @ G @ S3 )
            = ( groups2906978787729119204at_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6366_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_complex ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_complex ) )
             => ( ( ( groups5754745047067104278omplex @ G @ C4 )
                  = ( groups5754745047067104278omplex @ H2 @ C4 ) )
               => ( ( groups5754745047067104278omplex @ G @ A2 )
                  = ( groups5754745047067104278omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6367_sum_Osame__carrierI,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_complex ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_complex ) )
             => ( ( ( groups1794756597179926696omplex @ G @ C4 )
                  = ( groups1794756597179926696omplex @ H2 @ C4 ) )
               => ( ( groups1794756597179926696omplex @ G @ A2 )
                  = ( groups1794756597179926696omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6368_sum_Osame__carrierI,axiom,
    ! [C4: set_int,A2: set_int,B2: set_int,G: int > complex,H2: int > complex] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A2 @ C4 )
       => ( ( ord_less_eq_set_int @ B2 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_complex ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_complex ) )
             => ( ( ( groups3049146728041665814omplex @ G @ C4 )
                  = ( groups3049146728041665814omplex @ H2 @ C4 ) )
               => ( ( groups3049146728041665814omplex @ G @ A2 )
                  = ( groups3049146728041665814omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6369_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ C4 )
                  = ( groups8097168146408367636l_real @ H2 @ C4 ) )
               => ( ( groups8097168146408367636l_real @ G @ A2 )
                  = ( groups8097168146408367636l_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6370_sum_Osame__carrierI,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups2240296850493347238T_real @ G @ C4 )
                  = ( groups2240296850493347238T_real @ H2 @ C4 ) )
               => ( ( groups2240296850493347238T_real @ G @ A2 )
                  = ( groups2240296850493347238T_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6371_sum_Osame__carrierI,axiom,
    ! [C4: set_int,A2: set_int,B2: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A2 @ C4 )
       => ( ( ord_less_eq_set_int @ B2 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups8778361861064173332t_real @ G @ C4 )
                  = ( groups8778361861064173332t_real @ H2 @ C4 ) )
               => ( ( groups8778361861064173332t_real @ G @ A2 )
                  = ( groups8778361861064173332t_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6372_sum_Osame__carrierI,axiom,
    ! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B2 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: complex] :
                  ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ C4 )
                  = ( groups5808333547571424918x_real @ H2 @ C4 ) )
               => ( ( groups5808333547571424918x_real @ G @ A2 )
                  = ( groups5808333547571424918x_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6373_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ C4 )
                  = ( groups1300246762558778688al_rat @ H2 @ C4 ) )
               => ( ( groups1300246762558778688al_rat @ G @ A2 )
                  = ( groups1300246762558778688al_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6374_sum_Osame__carrierI,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_rat ) )
             => ( ( ( groups136491112297645522BT_rat @ G @ C4 )
                  = ( groups136491112297645522BT_rat @ H2 @ C4 ) )
               => ( ( groups136491112297645522BT_rat @ G @ A2 )
                  = ( groups136491112297645522BT_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6375_sum_Osame__carrierI,axiom,
    ! [C4: set_int,A2: set_int,B2: set_int,G: int > rat,H2: int > rat] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A2 @ C4 )
       => ( ( ord_less_eq_set_int @ B2 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_rat ) )
             => ( ( ( groups3906332499630173760nt_rat @ G @ C4 )
                  = ( groups3906332499630173760nt_rat @ H2 @ C4 ) )
               => ( ( groups3906332499630173760nt_rat @ G @ A2 )
                  = ( groups3906332499630173760nt_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6376_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_complex ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_complex ) )
             => ( ( ( groups5754745047067104278omplex @ G @ A2 )
                  = ( groups5754745047067104278omplex @ H2 @ B2 ) )
                = ( ( groups5754745047067104278omplex @ G @ C4 )
                  = ( groups5754745047067104278omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6377_sum_Osame__carrier,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_complex ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_complex ) )
             => ( ( ( groups1794756597179926696omplex @ G @ A2 )
                  = ( groups1794756597179926696omplex @ H2 @ B2 ) )
                = ( ( groups1794756597179926696omplex @ G @ C4 )
                  = ( groups1794756597179926696omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6378_sum_Osame__carrier,axiom,
    ! [C4: set_int,A2: set_int,B2: set_int,G: int > complex,H2: int > complex] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A2 @ C4 )
       => ( ( ord_less_eq_set_int @ B2 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_complex ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_complex ) )
             => ( ( ( groups3049146728041665814omplex @ G @ A2 )
                  = ( groups3049146728041665814omplex @ H2 @ B2 ) )
                = ( ( groups3049146728041665814omplex @ G @ C4 )
                  = ( groups3049146728041665814omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6379_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ A2 )
                  = ( groups8097168146408367636l_real @ H2 @ B2 ) )
                = ( ( groups8097168146408367636l_real @ G @ C4 )
                  = ( groups8097168146408367636l_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6380_sum_Osame__carrier,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups2240296850493347238T_real @ G @ A2 )
                  = ( groups2240296850493347238T_real @ H2 @ B2 ) )
                = ( ( groups2240296850493347238T_real @ G @ C4 )
                  = ( groups2240296850493347238T_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6381_sum_Osame__carrier,axiom,
    ! [C4: set_int,A2: set_int,B2: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A2 @ C4 )
       => ( ( ord_less_eq_set_int @ B2 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups8778361861064173332t_real @ G @ A2 )
                  = ( groups8778361861064173332t_real @ H2 @ B2 ) )
                = ( ( groups8778361861064173332t_real @ G @ C4 )
                  = ( groups8778361861064173332t_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6382_sum_Osame__carrier,axiom,
    ! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B2 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B5: complex] :
                  ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ A2 )
                  = ( groups5808333547571424918x_real @ H2 @ B2 ) )
                = ( ( groups5808333547571424918x_real @ G @ C4 )
                  = ( groups5808333547571424918x_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6383_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ A2 )
                  = ( groups1300246762558778688al_rat @ H2 @ B2 ) )
                = ( ( groups1300246762558778688al_rat @ G @ C4 )
                  = ( groups1300246762558778688al_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6384_sum_Osame__carrier,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_rat ) )
             => ( ( ( groups136491112297645522BT_rat @ G @ A2 )
                  = ( groups136491112297645522BT_rat @ H2 @ B2 ) )
                = ( ( groups136491112297645522BT_rat @ G @ C4 )
                  = ( groups136491112297645522BT_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6385_sum_Osame__carrier,axiom,
    ! [C4: set_int,A2: set_int,B2: set_int,G: int > rat,H2: int > rat] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A2 @ C4 )
       => ( ( ord_less_eq_set_int @ B2 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = zero_zero_rat ) )
             => ( ( ( groups3906332499630173760nt_rat @ G @ A2 )
                  = ( groups3906332499630173760nt_rat @ H2 @ B2 ) )
                = ( ( groups3906332499630173760nt_rat @ G @ C4 )
                  = ( groups3906332499630173760nt_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6386_sum_Osubset__diff,axiom,
    ! [B2: set_int,A2: set_int,G: int > real] :
      ( ( ord_less_eq_set_int @ B2 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups8778361861064173332t_real @ G @ A2 )
          = ( plus_plus_real @ ( groups8778361861064173332t_real @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups8778361861064173332t_real @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6387_sum_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > real] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5808333547571424918x_real @ G @ A2 )
          = ( plus_plus_real @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5808333547571424918x_real @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6388_sum_Osubset__diff,axiom,
    ! [B2: set_int,A2: set_int,G: int > rat] :
      ( ( ord_less_eq_set_int @ B2 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups3906332499630173760nt_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups3906332499630173760nt_rat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups3906332499630173760nt_rat @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6389_sum_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > rat] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5058264527183730370ex_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5058264527183730370ex_rat @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6390_sum_Osubset__diff,axiom,
    ! [B2: set_int,A2: set_int,G: int > nat] :
      ( ( ord_less_eq_set_int @ B2 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups4541462559716669496nt_nat @ G @ A2 )
          = ( plus_plus_nat @ ( groups4541462559716669496nt_nat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups4541462559716669496nt_nat @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6391_sum_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > nat] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5693394587270226106ex_nat @ G @ A2 )
          = ( plus_plus_nat @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5693394587270226106ex_nat @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6392_sum_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > int] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5690904116761175830ex_int @ G @ A2 )
          = ( plus_plus_int @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5690904116761175830ex_int @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6393_sum_Osubset__diff,axiom,
    ! [B2: set_nat,A2: set_nat,G: nat > rat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups2906978787729119204at_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups2906978787729119204at_rat @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6394_sum_Osubset__diff,axiom,
    ! [B2: set_nat,A2: set_nat,G: nat > int] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups3539618377306564664at_int @ G @ A2 )
          = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups3539618377306564664at_int @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6395_sum_Osubset__diff,axiom,
    ! [B2: set_int,A2: set_int,G: int > int] :
      ( ( ord_less_eq_set_int @ B2 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups4538972089207619220nt_int @ G @ A2 )
          = ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups4538972089207619220nt_int @ G @ B2 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6396_sum__diff,axiom,
    ! [A2: set_int,B2: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B2 @ A2 )
       => ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
          = ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6397_sum__diff,axiom,
    ! [A2: set_complex,B2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B2 @ A2 )
       => ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
          = ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6398_sum__diff,axiom,
    ! [A2: set_int,B2: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B2 @ A2 )
       => ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
          = ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6399_sum__diff,axiom,
    ! [A2: set_complex,B2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B2 @ A2 )
       => ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
          = ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6400_sum__diff,axiom,
    ! [A2: set_complex,B2: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B2 @ A2 )
       => ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
          = ( minus_minus_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6401_sum__diff,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( ( groups2906978787729119204at_rat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
          = ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6402_sum__diff,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( ( groups3539618377306564664at_int @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
          = ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6403_sum__diff,axiom,
    ! [A2: set_int,B2: set_int,F: int > int] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B2 @ A2 )
       => ( ( groups4538972089207619220nt_int @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
          = ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6404_sum__diff,axiom,
    ! [A2: set_complex,B2: set_complex,F: complex > complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B2 @ A2 )
       => ( ( groups7754918857620584856omplex @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
          = ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6405_sum__diff,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( ( groups6591440286371151544t_real @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
          = ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ F @ B2 ) ) ) ) ) ).

% sum_diff
thf(fact_6406_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_nonneg
thf(fact_6407_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_nonneg
thf(fact_6408_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_nonneg
thf(fact_6409_of__int__leD,axiom,
    ! [N2: int,X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X2 ) ) ) ).

% of_int_leD
thf(fact_6410_of__int__leD,axiom,
    ! [N2: int,X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).

% of_int_leD
thf(fact_6411_of__int__leD,axiom,
    ! [N2: int,X2: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_less_eq_rat @ one_one_rat @ X2 ) ) ) ).

% of_int_leD
thf(fact_6412_of__int__leD,axiom,
    ! [N2: int,X2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_less_eq_int @ one_one_int @ X2 ) ) ) ).

% of_int_leD
thf(fact_6413_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_pos
thf(fact_6414_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_pos
thf(fact_6415_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_pos
thf(fact_6416_of__int__lessD,axiom,
    ! [N2: int,X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X2 ) ) ) ).

% of_int_lessD
thf(fact_6417_of__int__lessD,axiom,
    ! [N2: int,X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% of_int_lessD
thf(fact_6418_of__int__lessD,axiom,
    ! [N2: int,X2: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_less_rat @ one_one_rat @ X2 ) ) ) ).

% of_int_lessD
thf(fact_6419_of__int__lessD,axiom,
    ! [N2: int,X2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N2 ) ) @ X2 )
     => ( ( N2 = zero_zero_int )
        | ( ord_less_int @ one_one_int @ X2 ) ) ) ).

% of_int_lessD
thf(fact_6420_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6421_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6422_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6423_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6424_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6425_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N: int,M3: int] : ( ord_less_real @ ( ring_1_of_int_real @ N ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M3 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_6426_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N: int,M3: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) @ ( ring_1_of_int_real @ M3 ) ) ) ) ).

% int_less_real_le
thf(fact_6427_real__of__int__div__aux,axiom,
    ! [X2: int,D2: int] :
      ( ( divide_divide_real @ ( ring_1_of_int_real @ X2 ) @ ( ring_1_of_int_real @ D2 ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X2 @ D2 ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X2 @ D2 ) ) @ ( ring_1_of_int_real @ D2 ) ) ) ) ).

% real_of_int_div_aux
thf(fact_6428_sum__mono2,axiom,
    ! [B2: set_real,A2: set_real,F: real > real] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ! [B5: real] :
              ( ( member_real @ B5 @ ( minus_minus_set_real @ B2 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B5 ) ) )
         => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6429_sum__mono2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ! [B5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B5 ) ) )
         => ( ord_less_eq_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6430_sum__mono2,axiom,
    ! [B2: set_int,A2: set_int,F: int > real] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( ! [B5: int] :
              ( ( member_int @ B5 @ ( minus_minus_set_int @ B2 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B5 ) ) )
         => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6431_sum__mono2,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( ! [B5: complex] :
              ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B5 ) ) )
         => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6432_sum__mono2,axiom,
    ! [B2: set_real,A2: set_real,F: real > rat] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ! [B5: real] :
              ( ( member_real @ B5 @ ( minus_minus_set_real @ B2 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B5 ) ) )
         => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6433_sum__mono2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ! [B5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B5 ) ) )
         => ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6434_sum__mono2,axiom,
    ! [B2: set_int,A2: set_int,F: int > rat] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( ! [B5: int] :
              ( ( member_int @ B5 @ ( minus_minus_set_int @ B2 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B5 ) ) )
         => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6435_sum__mono2,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( ! [B5: complex] :
              ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B5 ) ) )
         => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6436_sum__mono2,axiom,
    ! [B2: set_real,A2: set_real,F: real > nat] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ! [B5: real] :
              ( ( member_real @ B5 @ ( minus_minus_set_real @ B2 @ A2 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B5 ) ) )
         => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6437_sum__mono2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ! [B5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B5 ) ) )
         => ( ord_less_eq_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ F @ B2 ) ) ) ) ) ).

% sum_mono2
thf(fact_6438_real__of__int__div2,axiom,
    ! [N2: int,X2: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N2 ) @ ( ring_1_of_int_real @ X2 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N2 @ X2 ) ) ) ) ).

% real_of_int_div2
thf(fact_6439_real__of__int__div3,axiom,
    ! [N2: int,X2: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N2 ) @ ( ring_1_of_int_real @ X2 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N2 @ X2 ) ) ) @ one_one_real ) ).

% real_of_int_div3
thf(fact_6440_sum__strict__mono2,axiom,
    ! [B2: set_real,A2: set_real,B: real,F: real > real] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X3: real] :
                  ( ( member_real @ X3 @ B2 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
             => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6441_sum__strict__mono2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ B2 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
             => ( ord_less_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6442_sum__strict__mono2,axiom,
    ! [B2: set_int,A2: set_int,B: int,F: int > real] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( ( member_int @ B @ ( minus_minus_set_int @ B2 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X3: int] :
                  ( ( member_int @ X3 @ B2 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
             => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6443_sum__strict__mono2,axiom,
    ! [B2: set_complex,A2: set_complex,B: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X3: complex] :
                  ( ( member_complex @ X3 @ B2 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
             => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6444_sum__strict__mono2,axiom,
    ! [B2: set_real,A2: set_real,B: real,F: real > rat] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X3: real] :
                  ( ( member_real @ X3 @ B2 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
             => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6445_sum__strict__mono2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ B2 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
             => ( ord_less_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6446_sum__strict__mono2,axiom,
    ! [B2: set_int,A2: set_int,B: int,F: int > rat] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( ( member_int @ B @ ( minus_minus_set_int @ B2 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X3: int] :
                  ( ( member_int @ X3 @ B2 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
             => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6447_sum__strict__mono2,axiom,
    ! [B2: set_complex,A2: set_complex,B: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X3: complex] :
                  ( ( member_complex @ X3 @ B2 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
             => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6448_sum__strict__mono2,axiom,
    ! [B2: set_real,A2: set_real,B: real,F: real > nat] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X3: real] :
                  ( ( member_real @ X3 @ B2 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
             => ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6449_sum__strict__mono2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ B2 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
             => ( ord_less_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ F @ B2 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6450_convex__sum__bound__le,axiom,
    ! [I5: set_nat,X2: nat > code_integer,A: nat > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups7501900531339628137nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7501900531339628137nteger
                  @ ^ [I4: nat] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6451_convex__sum__bound__le,axiom,
    ! [I5: set_real,X2: real > code_integer,A: real > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups7713935264441627589nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7713935264441627589nteger
                  @ ^ [I4: real] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6452_convex__sum__bound__le,axiom,
    ! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > code_integer,A: vEBT_VEBT > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups5748017345553531991nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups5748017345553531991nteger
                  @ ^ [I4: vEBT_VEBT] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6453_convex__sum__bound__le,axiom,
    ! [I5: set_int,X2: int > code_integer,A: int > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups7873554091576472773nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7873554091576472773nteger
                  @ ^ [I4: int] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6454_convex__sum__bound__le,axiom,
    ! [I5: set_complex,X2: complex > code_integer,A: complex > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups6621422865394947399nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups6621422865394947399nteger
                  @ ^ [I4: complex] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6455_convex__sum__bound__le,axiom,
    ! [I5: set_real,X2: real > real,A: real > real,B: real,Delta: real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I3 ) ) )
     => ( ( ( groups8097168146408367636l_real @ X2 @ I5 )
          = one_one_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8097168146408367636l_real
                  @ ^ [I4: real] : ( times_times_real @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6456_convex__sum__bound__le,axiom,
    ! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > real,A: vEBT_VEBT > real,B: real,Delta: real] :
      ( ! [I3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I3 ) ) )
     => ( ( ( groups2240296850493347238T_real @ X2 @ I5 )
          = one_one_real )
       => ( ! [I3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups2240296850493347238T_real
                  @ ^ [I4: vEBT_VEBT] : ( times_times_real @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6457_convex__sum__bound__le,axiom,
    ! [I5: set_int,X2: int > real,A: int > real,B: real,Delta: real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I3 ) ) )
     => ( ( ( groups8778361861064173332t_real @ X2 @ I5 )
          = one_one_real )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8778361861064173332t_real
                  @ ^ [I4: int] : ( times_times_real @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6458_convex__sum__bound__le,axiom,
    ! [I5: set_complex,X2: complex > real,A: complex > real,B: real,Delta: real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I3 ) ) )
     => ( ( ( groups5808333547571424918x_real @ X2 @ I5 )
          = one_one_real )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups5808333547571424918x_real
                  @ ^ [I4: complex] : ( times_times_real @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6459_convex__sum__bound__le,axiom,
    ! [I5: set_nat,X2: nat > rat,A: nat > rat,B: rat,Delta: rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X2 @ I3 ) ) )
     => ( ( ( groups2906978787729119204at_rat @ X2 @ I5 )
          = one_one_rat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_6460_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_6461_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_6462_divmod__step__nat__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_nat_def
thf(fact_6463_divmod__step__int__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_int_def
thf(fact_6464_floor__exists,axiom,
    ! [X2: real] :
    ? [Z5: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z5 ) @ X2 )
      & ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_6465_floor__exists,axiom,
    ! [X2: rat] :
    ? [Z5: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z5 ) @ X2 )
      & ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_6466_floor__exists1,axiom,
    ! [X2: real] :
    ? [X3: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X3 ) @ X2 )
      & ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ X3 @ one_one_int ) ) )
      & ! [Y4: int] :
          ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y4 ) @ X2 )
            & ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Y4 @ one_one_int ) ) ) )
         => ( Y4 = X3 ) ) ) ).

% floor_exists1
thf(fact_6467_floor__exists1,axiom,
    ! [X2: rat] :
    ? [X3: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X3 ) @ X2 )
      & ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ X3 @ one_one_int ) ) )
      & ! [Y4: int] :
          ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y4 ) @ X2 )
            & ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y4 @ one_one_int ) ) ) )
         => ( Y4 = X3 ) ) ) ).

% floor_exists1
thf(fact_6468_infinite__int__iff__unbounded,axiom,
    ! [S3: set_int] :
      ( ( ~ ( finite_finite_int @ S3 ) )
      = ( ! [M3: int] :
          ? [N: int] :
            ( ( ord_less_int @ M3 @ ( abs_abs_int @ N ) )
            & ( member_int @ N @ S3 ) ) ) ) ).

% infinite_int_iff_unbounded
thf(fact_6469_divmod__nat__if,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N: nat] :
          ( if_Pro6206227464963214023at_nat
          @ ( ( N = zero_zero_nat )
            | ( ord_less_nat @ M3 @ N ) )
          @ ( product_Pair_nat_nat @ zero_zero_nat @ M3 )
          @ ( produc2626176000494625587at_nat
            @ ^ [Q4: nat] : ( product_Pair_nat_nat @ ( suc @ Q4 ) )
            @ ( divmod_nat @ ( minus_minus_nat @ M3 @ N ) @ N ) ) ) ) ) ).

% divmod_nat_if
thf(fact_6470_divmod__BitM__2__eq,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
      = ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).

% divmod_BitM_2_eq
thf(fact_6471_mask__numeral,axiom,
    ! [N2: num] :
      ( ( bit_se2002935070580805687sk_nat @ ( numeral_numeral_nat @ N2 ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ ( pred_numeral @ N2 ) ) ) ) ) ).

% mask_numeral
thf(fact_6472_mask__numeral,axiom,
    ! [N2: num] :
      ( ( bit_se2000444600071755411sk_int @ ( numeral_numeral_nat @ N2 ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ ( pred_numeral @ N2 ) ) ) ) ) ).

% mask_numeral
thf(fact_6473_mask__nat__positive__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% mask_nat_positive_iff
thf(fact_6474_mask__eq__0__iff,axiom,
    ! [N2: nat] :
      ( ( ( bit_se2002935070580805687sk_nat @ N2 )
        = zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_6475_mask__eq__0__iff,axiom,
    ! [N2: nat] :
      ( ( ( bit_se2000444600071755411sk_int @ N2 )
        = zero_zero_int )
      = ( N2 = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_6476_mask__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% mask_0
thf(fact_6477_mask__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ zero_zero_nat )
    = zero_zero_int ) ).

% mask_0
thf(fact_6478_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_6479_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_6480_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_6481_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_6482_mask__Suc__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% mask_Suc_0
thf(fact_6483_mask__Suc__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% mask_Suc_0
thf(fact_6484_pred__numeral__simps_I2_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit0 @ K ) )
      = ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).

% pred_numeral_simps(2)
thf(fact_6485_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > complex] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_complex ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_complex @ ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6486_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > rat] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_rat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6487_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > int] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6488_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > nat] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_nat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6489_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > real] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6490_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > complex] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) )
            @ A2 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power
thf(fact_6491_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > rat] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) )
            @ A2 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power
thf(fact_6492_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > real] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) )
            @ A2 )
          = zero_zero_real ) ) ) ).

% sum_zero_power
thf(fact_6493_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > complex,D2: nat > complex] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) ) @ ( D2 @ I4 ) )
            @ A2 )
          = ( divide1717551699836669952omplex @ ( C @ zero_zero_nat ) @ ( D2 @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) ) @ ( D2 @ I4 ) )
            @ A2 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power'
thf(fact_6494_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > rat,D2: nat > rat] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) ) @ ( D2 @ I4 ) )
            @ A2 )
          = ( divide_divide_rat @ ( C @ zero_zero_nat ) @ ( D2 @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) ) @ ( D2 @ I4 ) )
            @ A2 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power'
thf(fact_6495_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > real,D2: nat > real] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) ) @ ( D2 @ I4 ) )
            @ A2 )
          = ( divide_divide_real @ ( C @ zero_zero_nat ) @ ( D2 @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) ) @ ( D2 @ I4 ) )
            @ A2 )
          = zero_zero_real ) ) ) ).

% sum_zero_power'
thf(fact_6496_of__int__mask__eq,axiom,
    ! [N2: nat] :
      ( ( ring_1_of_int_int @ ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( bit_se2000444600071755411sk_int @ N2 ) ) ).

% of_int_mask_eq
thf(fact_6497_less__eq__mask,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( bit_se2002935070580805687sk_nat @ N2 ) ) ).

% less_eq_mask
thf(fact_6498_semiring__norm_I26_J,axiom,
    ( ( bitM @ one )
    = one ) ).

% semiring_norm(26)
thf(fact_6499_sum__subtractf__nat,axiom,
    ! [A2: set_real,G: real > nat,F: real > nat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
     => ( ( groups1935376822645274424al_nat
          @ ^ [X: real] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6500_sum__subtractf__nat,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > nat,F: vEBT_VEBT > nat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
     => ( ( groups771621172384141258BT_nat
          @ ^ [X: vEBT_VEBT] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6501_sum__subtractf__nat,axiom,
    ! [A2: set_int,G: int > nat,F: int > nat] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
     => ( ( groups4541462559716669496nt_nat
          @ ^ [X: int] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6502_sum__subtractf__nat,axiom,
    ! [A2: set_complex,G: complex > nat,F: complex > nat] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
     => ( ( groups5693394587270226106ex_nat
          @ ^ [X: complex] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6503_sum__subtractf__nat,axiom,
    ! [A2: set_nat,G: nat > nat,F: nat > nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
     => ( ( groups3542108847815614940at_nat
          @ ^ [X: nat] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6504_mask__nonnegative__int,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N2 ) ) ).

% mask_nonnegative_int
thf(fact_6505_not__mask__negative__int,axiom,
    ! [N2: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N2 ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_6506_sum_Oshift__bounds__cl__nat__ivl,axiom,
    ! [G: nat > nat,M: nat,K: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ I4 @ K ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.shift_bounds_cl_nat_ivl
thf(fact_6507_sum_Oshift__bounds__cl__nat__ivl,axiom,
    ! [G: nat > real,M: nat,K: nat,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ I4 @ K ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.shift_bounds_cl_nat_ivl
thf(fact_6508_semiring__norm_I27_J,axiom,
    ! [N2: num] :
      ( ( bitM @ ( bit0 @ N2 ) )
      = ( bit1 @ ( bitM @ N2 ) ) ) ).

% semiring_norm(27)
thf(fact_6509_semiring__norm_I28_J,axiom,
    ! [N2: num] :
      ( ( bitM @ ( bit1 @ N2 ) )
      = ( bit1 @ ( bit0 @ N2 ) ) ) ).

% semiring_norm(28)
thf(fact_6510_sum__eq__Suc0__iff,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: int] :
              ( ( member_int @ X @ A2 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y2: int] :
                  ( ( member_int @ Y2 @ A2 )
                 => ( ( X != Y2 )
                   => ( ( F @ Y2 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_6511_sum__eq__Suc0__iff,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y2: complex] :
                  ( ( member_complex @ Y2 @ A2 )
                 => ( ( X != Y2 )
                   => ( ( F @ Y2 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_6512_sum__eq__Suc0__iff,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( groups3542108847815614940at_nat @ F @ A2 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A2 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y2: nat] :
                  ( ( member_nat @ Y2 @ A2 )
                 => ( ( X != Y2 )
                   => ( ( F @ Y2 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_6513_sum__SucD,axiom,
    ! [F: nat > nat,A2: set_nat,N2: nat] :
      ( ( ( groups3542108847815614940at_nat @ F @ A2 )
        = ( suc @ N2 ) )
     => ? [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
          & ( ord_less_nat @ zero_zero_nat @ ( F @ X3 ) ) ) ) ).

% sum_SucD
thf(fact_6514_sum__eq__1__iff,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
          = one_one_nat )
        = ( ? [X: int] :
              ( ( member_int @ X @ A2 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y2: int] :
                  ( ( member_int @ Y2 @ A2 )
                 => ( ( X != Y2 )
                   => ( ( F @ Y2 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_6515_sum__eq__1__iff,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
          = one_one_nat )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y2: complex] :
                  ( ( member_complex @ Y2 @ A2 )
                 => ( ( X != Y2 )
                   => ( ( F @ Y2 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_6516_sum__eq__1__iff,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( groups3542108847815614940at_nat @ F @ A2 )
          = one_one_nat )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A2 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y2: nat] :
                  ( ( member_nat @ Y2 @ A2 )
                 => ( ( X != Y2 )
                   => ( ( F @ Y2 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_6517_sum__power__add,axiom,
    ! [X2: complex,M: nat,I5: set_nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [I4: nat] : ( power_power_complex @ X2 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_6518_sum__power__add,axiom,
    ! [X2: rat,M: nat,I5: set_nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( power_power_rat @ X2 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_6519_sum__power__add,axiom,
    ! [X2: int,M: nat,I5: set_nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( power_power_int @ X2 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_int @ ( power_power_int @ X2 @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_6520_sum__power__add,axiom,
    ! [X2: real,M: nat,I5: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( power_power_real @ X2 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_6521_sum_OatLeastAtMost__rev,axiom,
    ! [G: nat > nat,N2: nat,M: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).

% sum.atLeastAtMost_rev
thf(fact_6522_sum_OatLeastAtMost__rev,axiom,
    ! [G: nat > real,N2: nat,M: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).

% sum.atLeastAtMost_rev
thf(fact_6523_less__mask,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ord_less_nat @ N2 @ ( bit_se2002935070580805687sk_nat @ N2 ) ) ) ).

% less_mask
thf(fact_6524_sum__nth__roots,axiom,
    ! [N2: nat,C: complex] :
      ( ( ord_less_nat @ one_one_nat @ N2 )
     => ( ( groups7754918857620584856omplex
          @ ^ [X: complex] : X
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = C ) ) )
        = zero_zero_complex ) ) ).

% sum_nth_roots
thf(fact_6525_sum__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ N2 )
     => ( ( groups7754918857620584856omplex
          @ ^ [X: complex] : X
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = one_one_complex ) ) )
        = zero_zero_complex ) ) ).

% sum_roots_unity
thf(fact_6526_eval__nat__numeral_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
      = ( suc @ ( numeral_numeral_nat @ ( bitM @ N2 ) ) ) ) ).

% eval_nat_numeral(2)
thf(fact_6527_one__plus__BitM,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ ( bitM @ N2 ) )
      = ( bit0 @ N2 ) ) ).

% one_plus_BitM
thf(fact_6528_BitM__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ ( bitM @ N2 ) @ one )
      = ( bit0 @ N2 ) ) ).

% BitM_plus_one
thf(fact_6529_sum__diff__nat,axiom,
    ! [B2: set_int,A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ B2 @ A2 )
       => ( ( groups4541462559716669496nt_nat @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ F @ B2 ) ) ) ) ) ).

% sum_diff_nat
thf(fact_6530_sum__diff__nat,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ B2 @ A2 )
       => ( ( groups5693394587270226106ex_nat @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B2 ) ) ) ) ) ).

% sum_diff_nat
thf(fact_6531_sum__diff__nat,axiom,
    ! [B2: set_nat,A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( ( groups3542108847815614940at_nat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ F @ B2 ) ) ) ) ) ).

% sum_diff_nat
thf(fact_6532_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6533_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6534_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6535_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6536_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_rat @ ( G @ ( suc @ N2 ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6537_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_int @ ( G @ ( suc @ N2 ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6538_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_nat @ ( G @ ( suc @ N2 ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6539_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_real @ ( G @ ( suc @ N2 ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6540_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_rat @ ( G @ M ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6541_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_int @ ( G @ M ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6542_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_nat @ ( G @ M ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6543_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_real @ ( G @ M ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6544_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_rat @ ( G @ M )
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6545_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_int @ ( G @ M )
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6546_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_nat @ ( G @ M )
          @ ( groups3542108847815614940at_nat
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6547_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_real @ ( G @ M )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6548_sum__Suc__diff,axiom,
    ! [M: nat,N2: nat,F: nat > rat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( minus_minus_rat @ ( F @ ( suc @ I4 ) ) @ ( F @ I4 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( minus_minus_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_6549_sum__Suc__diff,axiom,
    ! [M: nat,N2: nat,F: nat > int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( minus_minus_int @ ( F @ ( suc @ I4 ) ) @ ( F @ I4 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( minus_minus_int @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_6550_sum__Suc__diff,axiom,
    ! [M: nat,N2: nat,F: nat > real] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( minus_minus_real @ ( F @ ( suc @ I4 ) ) @ ( F @ I4 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( minus_minus_real @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_6551_numeral__BitM,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bitM @ N2 ) )
      = ( minus_minus_complex @ ( numera6690914467698888265omplex @ ( bit0 @ N2 ) ) @ one_one_complex ) ) ).

% numeral_BitM
thf(fact_6552_numeral__BitM,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bitM @ N2 ) )
      = ( minus_minus_real @ ( numeral_numeral_real @ ( bit0 @ N2 ) ) @ one_one_real ) ) ).

% numeral_BitM
thf(fact_6553_numeral__BitM,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bitM @ N2 ) )
      = ( minus_minus_rat @ ( numeral_numeral_rat @ ( bit0 @ N2 ) ) @ one_one_rat ) ) ).

% numeral_BitM
thf(fact_6554_numeral__BitM,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bitM @ N2 ) )
      = ( minus_minus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ one_one_int ) ) ).

% numeral_BitM
thf(fact_6555_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_6556_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_6557_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_6558_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > rat,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_6559_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > int,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_6560_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > nat,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_6561_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > real,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_6562_set__encode__def,axiom,
    ( nat_set_encode
    = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% set_encode_def
thf(fact_6563_Suc__mask__eq__exp,axiom,
    ! [N2: nat] :
      ( ( suc @ ( bit_se2002935070580805687sk_nat @ N2 ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% Suc_mask_eq_exp
thf(fact_6564_mask__nat__less__exp,axiom,
    ! [N2: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% mask_nat_less_exp
thf(fact_6565_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > complex] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2073611262835488442omplex
            @ ^ [K2: nat] : ( minus_minus_complex @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_complex @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2073611262835488442omplex
            @ ^ [K2: nat] : ( minus_minus_complex @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_complex ) ) ) ).

% sum_natinterval_diff
thf(fact_6566_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > rat] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2906978787729119204at_rat
            @ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_rat @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2906978787729119204at_rat
            @ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_rat ) ) ) ).

% sum_natinterval_diff
thf(fact_6567_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > int] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups3539618377306564664at_int
            @ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_int @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups3539618377306564664at_int
            @ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_int ) ) ) ).

% sum_natinterval_diff
thf(fact_6568_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > real] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups6591440286371151544t_real
            @ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_real @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups6591440286371151544t_real
            @ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_real ) ) ) ).

% sum_natinterval_diff
thf(fact_6569_sum__telescope_H_H,axiom,
    ! [M: nat,N2: nat,F: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups2906978787729119204at_rat
          @ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( minus_minus_rat @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_6570_sum__telescope_H_H,axiom,
    ! [M: nat,N2: nat,F: nat > int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3539618377306564664at_int
          @ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( minus_minus_int @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_6571_sum__telescope_H_H,axiom,
    ! [M: nat,N2: nat,F: nat > real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups6591440286371151544t_real
          @ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( minus_minus_real @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_6572_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2119862282449309892nteger @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_6573_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_6574_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_6575_mask__nat__def,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ).

% mask_nat_def
thf(fact_6576_mask__half__int,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ).

% mask_half_int
thf(fact_6577_mask__eq__sum__exp,axiom,
    ! [N2: nat] :
      ( ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int )
      = ( groups3539618377306564664at_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N2 ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_6578_mask__eq__sum__exp,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N2 ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_6579_finite__transitivity__chain,axiom,
    ! [A2: set_VEBT_VEBT,R2: vEBT_VEBT > vEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ! [X3: vEBT_VEBT] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: vEBT_VEBT,Y3: vEBT_VEBT,Z5: vEBT_VEBT] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z5 )
               => ( R2 @ X3 @ Z5 ) ) )
         => ( ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ A2 )
               => ? [Y4: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ Y4 @ A2 )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A2 = bot_bo8194388402131092736T_VEBT ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_6580_finite__transitivity__chain,axiom,
    ! [A2: set_complex,R2: complex > complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X3: complex] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: complex,Y3: complex,Z5: complex] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z5 )
               => ( R2 @ X3 @ Z5 ) ) )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ A2 )
               => ? [Y4: complex] :
                    ( ( member_complex @ Y4 @ A2 )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A2 = bot_bot_set_complex ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_6581_finite__transitivity__chain,axiom,
    ! [A2: set_nat,R2: nat > nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X3: nat] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z5: nat] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z5 )
               => ( R2 @ X3 @ Z5 ) ) )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ A2 )
               => ? [Y4: nat] :
                    ( ( member_nat @ Y4 @ A2 )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A2 = bot_bot_set_nat ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_6582_finite__transitivity__chain,axiom,
    ! [A2: set_int,R2: int > int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X3: int] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: int,Y3: int,Z5: int] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z5 )
               => ( R2 @ X3 @ Z5 ) ) )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ A2 )
               => ? [Y4: int] :
                    ( ( member_int @ Y4 @ A2 )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A2 = bot_bot_set_int ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_6583_finite__transitivity__chain,axiom,
    ! [A2: set_real,R2: real > real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X3: real] :
            ~ ( R2 @ X3 @ X3 )
       => ( ! [X3: real,Y3: real,Z5: real] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z5 )
               => ( R2 @ X3 @ Z5 ) ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ A2 )
               => ? [Y4: real] :
                    ( ( member_real @ Y4 @ A2 )
                    & ( R2 @ X3 @ Y4 ) ) )
           => ( A2 = bot_bot_set_real ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_6584_divmod__nat__def,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M3 @ N ) @ ( modulo_modulo_nat @ M3 @ N ) ) ) ) ).

% divmod_nat_def
thf(fact_6585_mask__int__def,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) ) ) ).

% mask_int_def
thf(fact_6586_ex__le__of__int,axiom,
    ! [X2: real] :
    ? [Z5: int] : ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ Z5 ) ) ).

% ex_le_of_int
thf(fact_6587_ex__le__of__int,axiom,
    ! [X2: rat] :
    ? [Z5: int] : ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ Z5 ) ) ).

% ex_le_of_int
thf(fact_6588_ex__of__int__less,axiom,
    ! [X2: real] :
    ? [Z5: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z5 ) @ X2 ) ).

% ex_of_int_less
thf(fact_6589_ex__of__int__less,axiom,
    ! [X2: rat] :
    ? [Z5: int] : ( ord_less_rat @ ( ring_1_of_int_rat @ Z5 ) @ X2 ) ).

% ex_of_int_less
thf(fact_6590_ex__less__of__int,axiom,
    ! [X2: real] :
    ? [Z5: int] : ( ord_less_real @ X2 @ ( ring_1_of_int_real @ Z5 ) ) ).

% ex_less_of_int
thf(fact_6591_ex__less__of__int,axiom,
    ! [X2: rat] :
    ? [Z5: int] : ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ Z5 ) ) ).

% ex_less_of_int
thf(fact_6592_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X2: complex] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X2 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_complex @ ( power_power_complex @ X2 @ M ) @ ( power_power_complex @ X2 @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_6593_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X2: rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X2 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_rat @ ( power_power_rat @ X2 @ M ) @ ( power_power_rat @ X2 @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_6594_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X2: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X2 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_int @ ( power_power_int @ X2 @ M ) @ ( power_power_int @ X2 @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_6595_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X2: real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X2 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_real @ ( power_power_real @ X2 @ M ) @ ( power_power_real @ X2 @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_6596_sum_Oin__pairs,axiom,
    ! [G: nat > rat,M: nat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_6597_sum_Oin__pairs,axiom,
    ! [G: nat > int,M: nat,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_6598_sum_Oin__pairs,axiom,
    ! [G: nat > nat,M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_6599_sum_Oin__pairs,axiom,
    ! [G: nat > real,M: nat,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_6600_mask__eq__exp__minus__1,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_6601_mask__eq__exp__minus__1,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_6602_infinite__nat__iff__unbounded,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M3: nat] :
          ? [N: nat] :
            ( ( ord_less_nat @ M3 @ N )
            & ( member_nat @ N @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_6603_unbounded__k__infinite,axiom,
    ! [K: nat,S3: set_nat] :
      ( ! [M4: nat] :
          ( ( ord_less_nat @ K @ M4 )
         => ? [N7: nat] :
              ( ( ord_less_nat @ M4 @ N7 )
              & ( member_nat @ N7 @ S3 ) ) )
     => ~ ( finite_finite_nat @ S3 ) ) ).

% unbounded_k_infinite
thf(fact_6604_infinite__nat__iff__unbounded__le,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M3: nat] :
          ? [N: nat] :
            ( ( ord_less_eq_nat @ M3 @ N )
            & ( member_nat @ N @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_6605_mask__eq__sum__exp__nat,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( suc @ zero_zero_nat ) )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N2 ) ) ) ) ).

% mask_eq_sum_exp_nat
thf(fact_6606_gauss__sum__nat,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ N2 @ ( suc @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_nat
thf(fact_6607_arith__series__nat,axiom,
    ! [A: nat,D2: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I4 @ D2 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N2 @ D2 ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series_nat
thf(fact_6608_Sum__Icc__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N2 @ ( plus_plus_nat @ N2 @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Icc_nat
thf(fact_6609_round__unique,axiom,
    ! [X2: real,Y: int] :
      ( ( ord_less_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y ) )
     => ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y ) @ ( plus_plus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( archim8280529875227126926d_real @ X2 )
          = Y ) ) ) ).

% round_unique
thf(fact_6610_round__unique,axiom,
    ! [X2: rat,Y: int] :
      ( ( ord_less_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y ) )
     => ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y ) @ ( plus_plus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
       => ( ( archim7778729529865785530nd_rat @ X2 )
          = Y ) ) ) ).

% round_unique
thf(fact_6611_round__unique_H,axiom,
    ! [X2: real,N2: int] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ ( ring_1_of_int_real @ N2 ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( archim8280529875227126926d_real @ X2 )
        = N2 ) ) ).

% round_unique'
thf(fact_6612_round__unique_H,axiom,
    ! [X2: rat,N2: int] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ ( ring_1_of_int_rat @ N2 ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
     => ( ( archim7778729529865785530nd_rat @ X2 )
        = N2 ) ) ).

% round_unique'
thf(fact_6613_of__int__round__abs__le,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) @ X2 ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_6614_of__int__round__abs__le,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) @ X2 ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_6615_of__int__round__gt,axiom,
    ! [X2: real] : ( ord_less_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) ) ).

% of_int_round_gt
thf(fact_6616_of__int__round__gt,axiom,
    ! [X2: rat] : ( ord_less_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) ) ).

% of_int_round_gt
thf(fact_6617_of__int__round__ge,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) ) ).

% of_int_round_ge
thf(fact_6618_of__int__round__ge,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) ) ).

% of_int_round_ge
thf(fact_6619_of__int__round__le,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) @ ( plus_plus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_6620_of__int__round__le,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) @ ( plus_plus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_6621_round__numeral,axiom,
    ! [N2: num] :
      ( ( archim8280529875227126926d_real @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% round_numeral
thf(fact_6622_round__numeral,axiom,
    ! [N2: num] :
      ( ( archim7778729529865785530nd_rat @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% round_numeral
thf(fact_6623_round__neg__numeral,axiom,
    ! [N2: num] :
      ( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% round_neg_numeral
thf(fact_6624_round__neg__numeral,axiom,
    ! [N2: num] :
      ( ( archim7778729529865785530nd_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% round_neg_numeral
thf(fact_6625_round__mono,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y )
     => ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X2 ) @ ( archim7778729529865785530nd_rat @ Y ) ) ) ).

% round_mono
thf(fact_6626_round__diff__minimal,axiom,
    ! [Z: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_6627_round__diff__minimal,axiom,
    ! [Z: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_6628_sum__gp,axiom,
    ! [N2: nat,M: nat,X2: rat] :
      ( ( ( ord_less_nat @ N2 @ M )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_rat ) )
      & ( ~ ( ord_less_nat @ N2 @ M )
       => ( ( ( X2 = one_one_rat )
           => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( semiri681578069525770553at_rat @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
          & ( ( X2 != one_one_rat )
           => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X2 @ M ) @ ( power_power_rat @ X2 @ ( suc @ N2 ) ) ) @ ( minus_minus_rat @ one_one_rat @ X2 ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_6629_sum__gp,axiom,
    ! [N2: nat,M: nat,X2: complex] :
      ( ( ( ord_less_nat @ N2 @ M )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_complex ) )
      & ( ~ ( ord_less_nat @ N2 @ M )
       => ( ( ( X2 = one_one_complex )
           => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( semiri8010041392384452111omplex @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
          & ( ( X2 != one_one_complex )
           => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X2 @ M ) @ ( power_power_complex @ X2 @ ( suc @ N2 ) ) ) @ ( minus_minus_complex @ one_one_complex @ X2 ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_6630_sum__gp,axiom,
    ! [N2: nat,M: nat,X2: real] :
      ( ( ( ord_less_nat @ N2 @ M )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ N2 @ M )
       => ( ( ( X2 = one_one_real )
           => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( semiri5074537144036343181t_real @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
          & ( ( X2 != one_one_real )
           => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X2 @ M ) @ ( power_power_real @ X2 @ ( suc @ N2 ) ) ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_6631_gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_from_Suc_0
thf(fact_6632_gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_from_Suc_0
thf(fact_6633_sum__gp__offset,axiom,
    ! [X2: rat,M: nat,N2: nat] :
      ( ( ( X2 = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) )
      & ( ( X2 != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ ( suc @ N2 ) ) ) ) @ ( minus_minus_rat @ one_one_rat @ X2 ) ) ) ) ) ).

% sum_gp_offset
thf(fact_6634_sum__gp__offset,axiom,
    ! [X2: complex,M: nat,N2: nat] :
      ( ( ( X2 = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) )
      & ( ( X2 != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ ( suc @ N2 ) ) ) ) @ ( minus_minus_complex @ one_one_complex @ X2 ) ) ) ) ) ).

% sum_gp_offset
thf(fact_6635_sum__gp__offset,axiom,
    ! [X2: real,M: nat,N2: nat] :
      ( ( ( X2 = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) )
      & ( ( X2 != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( divide_divide_real @ ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( suc @ N2 ) ) ) ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).

% sum_gp_offset
thf(fact_6636_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_6637_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_6638_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_6639_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_6640_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_6641_gauss__sum,axiom,
    ! [N2: nat] :
      ( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% gauss_sum
thf(fact_6642_gauss__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum
thf(fact_6643_arith__series,axiom,
    ! [A: int,D2: int,N2: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I4 ) @ D2 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_int @ ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ D2 ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% arith_series
thf(fact_6644_arith__series,axiom,
    ! [A: nat,D2: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I4 ) @ D2 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ D2 ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series
thf(fact_6645_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_6646_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_6647_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_6648_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = ( semiri8010041392384452111omplex @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_6649_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_6650_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( semiri4939895301339042750nteger @ N2 ) ) ).

% abs_of_nat
thf(fact_6651_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( semiri681578069525770553at_rat @ N2 ) ) ).

% abs_of_nat
thf(fact_6652_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( semiri1314217659103216013at_int @ N2 ) ) ).

% abs_of_nat
thf(fact_6653_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( semiri5074537144036343181t_real @ N2 ) ) ).

% abs_of_nat
thf(fact_6654_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri681578069525770553at_rat @ M )
        = zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6655_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6656_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6657_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6658_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = zero_zero_complex )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6659_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_rat
        = ( semiri681578069525770553at_rat @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_6660_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_6661_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_6662_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_6663_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_complex
        = ( semiri8010041392384452111omplex @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_6664_of__nat__0,axiom,
    ( ( semiri681578069525770553at_rat @ zero_zero_nat )
    = zero_zero_rat ) ).

% of_nat_0
thf(fact_6665_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_6666_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_6667_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_6668_of__nat__0,axiom,
    ( ( semiri8010041392384452111omplex @ zero_zero_nat )
    = zero_zero_complex ) ).

% of_nat_0
thf(fact_6669_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_6670_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_6671_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_6672_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_6673_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_rat @ N2 ) ) ).

% of_nat_numeral
thf(fact_6674_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% of_nat_numeral
thf(fact_6675_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_real @ N2 ) ) ).

% of_nat_numeral
thf(fact_6676_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ N2 ) ) ).

% of_nat_numeral
thf(fact_6677_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N2 ) )
      = ( numera6690914467698888265omplex @ N2 ) ) ).

% of_nat_numeral
thf(fact_6678_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_6679_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_6680_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_6681_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_6682_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% of_nat_add
thf(fact_6683_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% of_nat_add
thf(fact_6684_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% of_nat_add
thf(fact_6685_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% of_nat_add
thf(fact_6686_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N2 ) ) ) ).

% of_nat_add
thf(fact_6687_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% of_nat_mult
thf(fact_6688_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% of_nat_mult
thf(fact_6689_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% of_nat_mult
thf(fact_6690_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% of_nat_mult
thf(fact_6691_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N2 ) ) ) ).

% of_nat_mult
thf(fact_6692_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri681578069525770553at_rat @ N2 )
        = one_one_rat )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6693_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ N2 )
        = one_one_int )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6694_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ N2 )
        = one_one_real )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6695_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N2 )
        = one_one_nat )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6696_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri8010041392384452111omplex @ N2 )
        = one_one_complex )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6697_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_rat
        = ( semiri681578069525770553at_rat @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6698_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6699_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6700_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6701_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_complex
        = ( semiri8010041392384452111omplex @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6702_of__nat__1,axiom,
    ( ( semiri681578069525770553at_rat @ one_one_nat )
    = one_one_rat ) ).

% of_nat_1
thf(fact_6703_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_6704_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_6705_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_6706_of__nat__1,axiom,
    ( ( semiri8010041392384452111omplex @ one_one_nat )
    = one_one_complex ) ).

% of_nat_1
thf(fact_6707_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X2 )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X2
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6708_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X2 )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X2
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6709_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X2 )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X2
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6710_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ( semiri8010041392384452111omplex @ X2 )
        = ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
      = ( X2
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6711_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X2 ) )
      = ( ( power_power_nat @ B @ W )
        = X2 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6712_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X2 ) )
      = ( ( power_power_nat @ B @ W )
        = X2 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6713_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X2 ) )
      = ( ( power_power_nat @ B @ W )
        = X2 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6714_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
        = ( semiri8010041392384452111omplex @ X2 ) )
      = ( ( power_power_nat @ B @ W )
        = X2 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6715_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_6716_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_6717_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_6718_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_6719_negative__zless,axiom,
    ! [N2: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_6720_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri5074537144036343181t_real @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% of_nat_of_bool
thf(fact_6721_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri8010041392384452111omplex @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n1201886186963655149omplex @ P ) ) ).

% of_nat_of_bool
thf(fact_6722_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri1316708129612266289at_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n2687167440665602831ol_nat @ P ) ) ).

% of_nat_of_bool
thf(fact_6723_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri1314217659103216013at_int @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% of_nat_of_bool
thf(fact_6724_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri4939895301339042750nteger @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% of_nat_of_bool
thf(fact_6725_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6726_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6727_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6728_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6729_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ M ) )
      = ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).

% of_nat_Suc
thf(fact_6730_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_6731_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_6732_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_6733_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ M ) )
      = ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).

% of_nat_Suc
thf(fact_6734_real__of__nat__less__numeral__iff,axiom,
    ! [N2: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_6735_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N2: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N2 ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_6736_numeral__le__real__of__nat__iff,axiom,
    ! [N2: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_6737_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_6738_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_6739_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_6740_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_6741_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6742_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6743_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6744_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6745_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6746_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6747_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6748_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6749_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X2: num,N2: nat] :
      ( ( ( semiri681578069525770553at_rat @ Y )
        = ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6750_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X2: num,N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ Y )
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6751_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X2: num,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ Y )
        = ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6752_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X2: num,N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6753_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X2: num,N2: nat] :
      ( ( ( semiri8010041392384452111omplex @ Y )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6754_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: nat] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N2 )
        = ( semiri681578069525770553at_rat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6755_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 )
        = ( semiri1314217659103216013at_int @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6756_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: nat] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N2 )
        = ( semiri5074537144036343181t_real @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6757_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 )
        = ( semiri1316708129612266289at_nat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6758_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: nat] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N2 )
        = ( semiri8010041392384452111omplex @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6759_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6760_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6761_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6762_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X2: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6763_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6764_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6765_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6766_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X2: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6767_of__nat__zero__less__power__iff,axiom,
    ! [X2: nat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X2 ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6768_of__nat__zero__less__power__iff,axiom,
    ! [X2: nat,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X2 ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6769_of__nat__zero__less__power__iff,axiom,
    ! [X2: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X2 ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6770_of__nat__zero__less__power__iff,axiom,
    ! [X2: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6771_even__of__nat,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_of_nat
thf(fact_6772_even__of__nat,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_of_nat
thf(fact_6773_even__of__nat,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_of_nat
thf(fact_6774_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6775_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6776_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6777_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6778_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) @ ( semiri681578069525770553at_rat @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6779_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) @ ( semiri1314217659103216013at_int @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6780_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) @ ( semiri5074537144036343181t_real @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6781_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ ( semiri1316708129612266289at_nat @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6782_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6783_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6784_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6785_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X2: nat,I: num,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) )
      = ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6786_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) @ ( semiri5074537144036343181t_real @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6787_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) @ ( semiri681578069525770553at_rat @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6788_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ ( semiri1316708129612266289at_nat @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6789_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N2: nat,X2: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) @ ( semiri1314217659103216013at_int @ X2 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X2 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6790_real__arch__simple,axiom,
    ! [X2: real] :
    ? [N3: nat] : ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% real_arch_simple
thf(fact_6791_real__arch__simple,axiom,
    ! [X2: rat] :
    ? [N3: nat] : ( ord_less_eq_rat @ X2 @ ( semiri681578069525770553at_rat @ N3 ) ) ).

% real_arch_simple
thf(fact_6792_reals__Archimedean2,axiom,
    ! [X2: rat] :
    ? [N3: nat] : ( ord_less_rat @ X2 @ ( semiri681578069525770553at_rat @ N3 ) ) ).

% reals_Archimedean2
thf(fact_6793_reals__Archimedean2,axiom,
    ! [X2: real] :
    ? [N3: nat] : ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% reals_Archimedean2
thf(fact_6794_mult__of__nat__commute,axiom,
    ! [X2: nat,Y: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ X2 ) @ Y )
      = ( times_times_rat @ Y @ ( semiri681578069525770553at_rat @ X2 ) ) ) ).

% mult_of_nat_commute
thf(fact_6795_mult__of__nat__commute,axiom,
    ! [X2: nat,Y: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X2 ) @ Y )
      = ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X2 ) ) ) ).

% mult_of_nat_commute
thf(fact_6796_mult__of__nat__commute,axiom,
    ! [X2: nat,Y: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X2 ) @ Y )
      = ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X2 ) ) ) ).

% mult_of_nat_commute
thf(fact_6797_mult__of__nat__commute,axiom,
    ! [X2: nat,Y: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ Y )
      = ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X2 ) ) ) ).

% mult_of_nat_commute
thf(fact_6798_mult__of__nat__commute,axiom,
    ! [X2: nat,Y: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ X2 ) @ Y )
      = ( times_times_complex @ Y @ ( semiri8010041392384452111omplex @ X2 ) ) ) ).

% mult_of_nat_commute
thf(fact_6799_int__diff__cases,axiom,
    ! [Z: int] :
      ~ ! [M4: nat,N3: nat] :
          ( Z
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M4 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% int_diff_cases
thf(fact_6800_of__nat__less__of__int__iff,axiom,
    ! [N2: nat,X2: int] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( ring_1_of_int_rat @ X2 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ X2 ) ) ).

% of_nat_less_of_int_iff
thf(fact_6801_of__nat__less__of__int__iff,axiom,
    ! [N2: nat,X2: int] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( ring_1_of_int_int @ X2 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ X2 ) ) ).

% of_nat_less_of_int_iff
thf(fact_6802_of__nat__less__of__int__iff,axiom,
    ! [N2: nat,X2: int] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( ring_1_of_int_real @ X2 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ X2 ) ) ).

% of_nat_less_of_int_iff
thf(fact_6803_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_6804_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_6805_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_6806_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_6807_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).

% of_nat_less_0_iff
thf(fact_6808_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_6809_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_6810_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_6811_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ N2 ) )
     != zero_zero_rat ) ).

% of_nat_neq_0
thf(fact_6812_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_6813_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N2 ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_6814_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N2 ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_6815_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ N2 ) )
     != zero_zero_complex ) ).

% of_nat_neq_0
thf(fact_6816_div__mult2__eq_H,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
      = ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% div_mult2_eq'
thf(fact_6817_div__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% div_mult2_eq'
thf(fact_6818_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_6819_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_6820_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_6821_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_6822_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_6823_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_6824_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_6825_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_6826_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_6827_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).

% of_nat_mono
thf(fact_6828_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_6829_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_6830_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_6831_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_6832_of__nat__dvd__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( dvd_dvd_nat @ M @ N2 ) ) ).

% of_nat_dvd_iff
thf(fact_6833_of__nat__dvd__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( dvd_dvd_nat @ M @ N2 ) ) ).

% of_nat_dvd_iff
thf(fact_6834_of__nat__dvd__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( dvd_dvd_nat @ M @ N2 ) ) ).

% of_nat_dvd_iff
thf(fact_6835_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_6836_int__ops_I3_J,axiom,
    ! [N2: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% int_ops(3)
thf(fact_6837_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_6838_zle__int,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% zle_int
thf(fact_6839_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_6840_of__nat__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ).

% of_nat_mod
thf(fact_6841_of__nat__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% of_nat_mod
thf(fact_6842_of__nat__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% of_nat_mod
thf(fact_6843_zadd__int__left,axiom,
    ! [M: nat,N2: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_6844_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_6845_int__plus,axiom,
    ! [N2: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_6846_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_6847_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_6848_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z2: int] :
        ? [N: nat] :
          ( Z2
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_6849_not__int__zless__negative,axiom,
    ! [N2: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_6850_zdiv__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zdiv_int
thf(fact_6851_of__nat__max,axiom,
    ! [X2: nat,Y: nat] :
      ( ( semiri4216267220026989637d_enat @ ( ord_max_nat @ X2 @ Y ) )
      = ( ord_ma741700101516333627d_enat @ ( semiri4216267220026989637d_enat @ X2 ) @ ( semiri4216267220026989637d_enat @ Y ) ) ) ).

% of_nat_max
thf(fact_6852_of__nat__max,axiom,
    ! [X2: nat,Y: nat] :
      ( ( semiri1314217659103216013at_int @ ( ord_max_nat @ X2 @ Y ) )
      = ( ord_max_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( semiri1314217659103216013at_int @ Y ) ) ) ).

% of_nat_max
thf(fact_6853_of__nat__max,axiom,
    ! [X2: nat,Y: nat] :
      ( ( semiri5074537144036343181t_real @ ( ord_max_nat @ X2 @ Y ) )
      = ( ord_max_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( semiri5074537144036343181t_real @ Y ) ) ) ).

% of_nat_max
thf(fact_6854_of__nat__max,axiom,
    ! [X2: nat,Y: nat] :
      ( ( semiri1316708129612266289at_nat @ ( ord_max_nat @ X2 @ Y ) )
      = ( ord_max_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( semiri1316708129612266289at_nat @ Y ) ) ) ).

% of_nat_max
thf(fact_6855_zmod__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zmod_int
thf(fact_6856_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_less_as_int
thf(fact_6857_of__nat__mask__eq,axiom,
    ! [N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se2002935070580805687sk_nat @ N2 ) )
      = ( bit_se2002935070580805687sk_nat @ N2 ) ) ).

% of_nat_mask_eq
thf(fact_6858_of__nat__mask__eq,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se2002935070580805687sk_nat @ N2 ) )
      = ( bit_se2000444600071755411sk_int @ N2 ) ) ).

% of_nat_mask_eq
thf(fact_6859_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_leq_as_int
thf(fact_6860_ex__less__of__nat__mult,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ? [N3: nat] : ( ord_less_rat @ Y @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N3 ) @ X2 ) ) ) ).

% ex_less_of_nat_mult
thf(fact_6861_ex__less__of__nat__mult,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ? [N3: nat] : ( ord_less_real @ Y @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X2 ) ) ) ).

% ex_less_of_nat_mult
thf(fact_6862_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_6863_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_6864_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_6865_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_6866_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri8010041392384452111omplex @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_6867_reals__Archimedean3,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ! [Y4: real] :
        ? [N3: nat] : ( ord_less_real @ Y4 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X2 ) ) ) ).

% reals_Archimedean3
thf(fact_6868_int__cases4,axiom,
    ! [M: int] :
      ( ! [N3: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_6869_real__of__nat__div4,axiom,
    ! [N2: nat,X2: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ X2 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ X2 ) ) ) ).

% real_of_nat_div4
thf(fact_6870_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_6871_int__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ).

% int_Suc
thf(fact_6872_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z2: int] :
        ? [N: nat] :
          ( Z2
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_6873_real__of__nat__div,axiom,
    ! [D2: nat,N2: nat] :
      ( ( dvd_dvd_nat @ D2 @ N2 )
     => ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ D2 ) )
        = ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ D2 ) ) ) ) ).

% real_of_nat_div
thf(fact_6874_mod__mult2__eq_H,axiom,
    ! [A: code_integer,M: nat,N2: nat] :
      ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_6875_mod__mult2__eq_H,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_6876_mod__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_6877_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_6878_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_6879_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ ( semiri8010041392384452111omplex @ N2 ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_6880_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_6881_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_6882_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_6883_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).

% nat_less_real_le
thf(fact_6884_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_6885_zmult__zless__mono2__lemma,axiom,
    ! [I: int,J: int,K: nat] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_6886_negD,axiom,
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ zero_zero_int )
     => ? [N3: nat] :
          ( X2
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% negD
thf(fact_6887_negative__zless__0,axiom,
    ! [N2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_6888_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_6889_real__of__nat__div__aux,axiom,
    ! [X2: nat,D2: nat] :
      ( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( semiri5074537144036343181t_real @ D2 ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X2 @ D2 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X2 @ D2 ) ) @ ( semiri5074537144036343181t_real @ D2 ) ) ) ) ).

% real_of_nat_div_aux
thf(fact_6890_nat__approx__posE,axiom,
    ! [E: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ E )
     => ~ ! [N3: nat] :
            ~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_6891_nat__approx__posE,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ~ ! [N3: nat] :
            ~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_6892_of__nat__less__two__power,axiom,
    ! [N2: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N2 ) ) ).

% of_nat_less_two_power
thf(fact_6893_of__nat__less__two__power,axiom,
    ! [N2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).

% of_nat_less_two_power
thf(fact_6894_of__nat__less__two__power,axiom,
    ! [N2: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ).

% of_nat_less_two_power
thf(fact_6895_inverse__of__nat__le,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( N2 != zero_zero_nat )
       => ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_6896_inverse__of__nat__le,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( N2 != zero_zero_nat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_6897_real__archimedian__rdiv__eq__0,axiom,
    ! [X2: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M4 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X2 ) @ C ) )
         => ( X2 = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_6898_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_6899_zdiff__int__split,axiom,
    ! [P: int > $o,X2: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X2 @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X2 )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X2 @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_6900_real__of__nat__div2,axiom,
    ! [N2: nat,X2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ X2 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ X2 ) ) ) ) ).

% real_of_nat_div2
thf(fact_6901_real__of__nat__div3,axiom,
    ! [N2: nat,X2: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ X2 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ X2 ) ) ) @ one_one_real ) ).

% real_of_nat_div3
thf(fact_6902_ln__realpow,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ln_ln_real @ ( power_power_real @ X2 @ N2 ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( ln_ln_real @ X2 ) ) ) ) ).

% ln_realpow
thf(fact_6903_linear__plus__1__le__power,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X2 @ one_one_real ) @ N2 ) ) ) ).

% linear_plus_1_le_power
thf(fact_6904_Bernoulli__inequality,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X2 ) @ N2 ) ) ) ).

% Bernoulli_inequality
thf(fact_6905_Bernoulli__inequality__even,axiom,
    ! [N2: nat,X2: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X2 ) @ N2 ) ) ) ).

% Bernoulli_inequality_even
thf(fact_6906_double__arith__series,axiom,
    ! [A: rat,D2: rat,N2: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( plus_plus_rat @ A @ ( times_times_rat @ ( semiri681578069525770553at_rat @ I4 ) @ D2 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ D2 ) ) ) ) ).

% double_arith_series
thf(fact_6907_double__arith__series,axiom,
    ! [A: int,D2: int,N2: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I4 ) @ D2 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ D2 ) ) ) ) ).

% double_arith_series
thf(fact_6908_double__arith__series,axiom,
    ! [A: complex,D2: complex,N2: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
        @ ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( plus_plus_complex @ A @ ( times_times_complex @ ( semiri8010041392384452111omplex @ I4 ) @ D2 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ D2 ) ) ) ) ).

% double_arith_series
thf(fact_6909_double__arith__series,axiom,
    ! [A: nat,D2: nat,N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I4 ) @ D2 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ D2 ) ) ) ) ).

% double_arith_series
thf(fact_6910_double__arith__series,axiom,
    ! [A: real,D2: real,N2: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( plus_plus_real @ A @ ( times_times_real @ ( semiri5074537144036343181t_real @ I4 ) @ D2 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ D2 ) ) ) ) ).

% double_arith_series
thf(fact_6911_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) ) ).

% double_gauss_sum
thf(fact_6912_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ).

% double_gauss_sum
thf(fact_6913_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) ) ).

% double_gauss_sum
thf(fact_6914_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) ) ).

% double_gauss_sum
thf(fact_6915_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) ) ).

% double_gauss_sum
thf(fact_6916_of__nat__code__if,axiom,
    ( semiri681578069525770553at_rat
    = ( ^ [N: nat] :
          ( if_rat @ ( N = zero_zero_nat ) @ zero_zero_rat
          @ ( produc6207742614233964070at_rat
            @ ^ [M3: nat,Q4: nat] : ( if_rat @ ( Q4 = zero_zero_nat ) @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M3 ) ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M3 ) ) @ one_one_rat ) )
            @ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_6917_of__nat__code__if,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N: nat] :
          ( if_int @ ( N = zero_zero_nat ) @ zero_zero_int
          @ ( produc6840382203811409530at_int
            @ ^ [M3: nat,Q4: nat] : ( if_int @ ( Q4 = zero_zero_nat ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M3 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M3 ) ) @ one_one_int ) )
            @ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_6918_of__nat__code__if,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [N: nat] :
          ( if_real @ ( N = zero_zero_nat ) @ zero_zero_real
          @ ( produc1703576794950452218t_real
            @ ^ [M3: nat,Q4: nat] : ( if_real @ ( Q4 = zero_zero_nat ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M3 ) ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M3 ) ) @ one_one_real ) )
            @ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_6919_of__nat__code__if,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N: nat] :
          ( if_nat @ ( N = zero_zero_nat ) @ zero_zero_nat
          @ ( produc6842872674320459806at_nat
            @ ^ [M3: nat,Q4: nat] : ( if_nat @ ( Q4 = zero_zero_nat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M3 ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M3 ) ) @ one_one_nat ) )
            @ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_6920_of__nat__code__if,axiom,
    ( semiri8010041392384452111omplex
    = ( ^ [N: nat] :
          ( if_complex @ ( N = zero_zero_nat ) @ zero_zero_complex
          @ ( produc1917071388513777916omplex
            @ ^ [M3: nat,Q4: nat] : ( if_complex @ ( Q4 = zero_zero_nat ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M3 ) ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M3 ) ) @ one_one_complex ) )
            @ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_6921_monoseq__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( topolo6980174941875973593q_real
        @ ^ [N: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% monoseq_arctan_series
thf(fact_6922_lemma__termdiff3,axiom,
    ! [H2: real,Z: real,K5: real,N2: nat] :
      ( ( H2 != zero_zero_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N2 ) @ ( power_power_real @ Z @ N2 ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_6923_lemma__termdiff3,axiom,
    ! [H2: complex,Z: complex,K5: real,N2: nat] :
      ( ( H2 != zero_zero_complex )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N2 ) @ ( power_power_complex @ Z @ N2 ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_6924_ln__series,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ( ln_ln_real @ X2 )
          = ( suminf_real
            @ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ one_one_real ) @ ( suc @ N ) ) ) ) ) ) ) ).

% ln_series
thf(fact_6925_lemma__termdiff2,axiom,
    ! [H2: rat,Z: rat,N2: nat] :
      ( ( H2 != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ N2 ) @ ( power_power_rat @ Z @ N2 ) ) @ H2 ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_rat @ H2
          @ ( groups2906978787729119204at_rat
            @ ^ [P5: nat] :
                ( groups2906978787729119204at_rat
                @ ^ [Q4: nat] : ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ Q4 ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_6926_lemma__termdiff2,axiom,
    ! [H2: complex,Z: complex,N2: nat] :
      ( ( H2 != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N2 ) @ ( power_power_complex @ Z @ N2 ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_complex @ H2
          @ ( groups2073611262835488442omplex
            @ ^ [P5: nat] :
                ( groups2073611262835488442omplex
                @ ^ [Q4: nat] : ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ Q4 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_6927_lemma__termdiff2,axiom,
    ! [H2: real,Z: real,N2: nat] :
      ( ( H2 != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N2 ) @ ( power_power_real @ Z @ N2 ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_real @ H2
          @ ( groups6591440286371151544t_real
            @ ^ [P5: nat] :
                ( groups6591440286371151544t_real
                @ ^ [Q4: nat] : ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ Q4 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_6928_arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( arctan @ X2 )
        = ( suminf_real
          @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).

% arctan_series
thf(fact_6929_lessThan__iff,axiom,
    ! [I: rat,K: rat] :
      ( ( member_rat @ I @ ( set_ord_lessThan_rat @ K ) )
      = ( ord_less_rat @ I @ K ) ) ).

% lessThan_iff
thf(fact_6930_lessThan__iff,axiom,
    ! [I: num,K: num] :
      ( ( member_num @ I @ ( set_ord_lessThan_num @ K ) )
      = ( ord_less_num @ I @ K ) ) ).

% lessThan_iff
thf(fact_6931_lessThan__iff,axiom,
    ! [I: int,K: int] :
      ( ( member_int @ I @ ( set_ord_lessThan_int @ K ) )
      = ( ord_less_int @ I @ K ) ) ).

% lessThan_iff
thf(fact_6932_lessThan__iff,axiom,
    ! [I: nat,K: nat] :
      ( ( member_nat @ I @ ( set_ord_lessThan_nat @ K ) )
      = ( ord_less_nat @ I @ K ) ) ).

% lessThan_iff
thf(fact_6933_lessThan__iff,axiom,
    ! [I: real,K: real] :
      ( ( member_real @ I @ ( set_or5984915006950818249n_real @ K ) )
      = ( ord_less_real @ I @ K ) ) ).

% lessThan_iff
thf(fact_6934_finite__lessThan,axiom,
    ! [K: nat] : ( finite_finite_nat @ ( set_ord_lessThan_nat @ K ) ) ).

% finite_lessThan
thf(fact_6935_lessThan__subset__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_lessThan_rat @ X2 ) @ ( set_ord_lessThan_rat @ Y ) )
      = ( ord_less_eq_rat @ X2 @ Y ) ) ).

% lessThan_subset_iff
thf(fact_6936_lessThan__subset__iff,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_lessThan_num @ X2 ) @ ( set_ord_lessThan_num @ Y ) )
      = ( ord_less_eq_num @ X2 @ Y ) ) ).

% lessThan_subset_iff
thf(fact_6937_lessThan__subset__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_lessThan_int @ X2 ) @ ( set_ord_lessThan_int @ Y ) )
      = ( ord_less_eq_int @ X2 @ Y ) ) ).

% lessThan_subset_iff
thf(fact_6938_lessThan__subset__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X2 ) @ ( set_ord_lessThan_nat @ Y ) )
      = ( ord_less_eq_nat @ X2 @ Y ) ) ).

% lessThan_subset_iff
thf(fact_6939_lessThan__subset__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_set_real @ ( set_or5984915006950818249n_real @ X2 ) @ ( set_or5984915006950818249n_real @ Y ) )
      = ( ord_less_eq_real @ X2 @ Y ) ) ).

% lessThan_subset_iff
thf(fact_6940_sum_OlessThan__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_6941_sum_OlessThan__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_6942_sum_OlessThan__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_6943_sum_OlessThan__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_6944_powser__zero,axiom,
    ! [F: nat > complex] :
      ( ( suminf_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_6945_powser__zero,axiom,
    ! [F: nat > real] :
      ( ( suminf_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ zero_zero_real @ N ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_6946_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_6947_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( semiri1314217659103216013at_int @ A3 )
          = ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_6948_infinite__Iio,axiom,
    ! [A: int] :
      ~ ( finite_finite_int @ ( set_ord_lessThan_int @ A ) ) ).

% infinite_Iio
thf(fact_6949_infinite__Iio,axiom,
    ! [A: real] :
      ~ ( finite_finite_real @ ( set_or5984915006950818249n_real @ A ) ) ).

% infinite_Iio
thf(fact_6950_lessThan__def,axiom,
    ( set_or890127255671739683et_nat
    = ( ^ [U2: set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] : ( ord_less_set_nat @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_6951_lessThan__def,axiom,
    ( set_ord_lessThan_rat
    = ( ^ [U2: rat] :
          ( collect_rat
          @ ^ [X: rat] : ( ord_less_rat @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_6952_lessThan__def,axiom,
    ( set_ord_lessThan_num
    = ( ^ [U2: num] :
          ( collect_num
          @ ^ [X: num] : ( ord_less_num @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_6953_lessThan__def,axiom,
    ( set_ord_lessThan_int
    = ( ^ [U2: int] :
          ( collect_int
          @ ^ [X: int] : ( ord_less_int @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_6954_lessThan__def,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [U2: nat] :
          ( collect_nat
          @ ^ [X: nat] : ( ord_less_nat @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_6955_lessThan__def,axiom,
    ( set_or5984915006950818249n_real
    = ( ^ [U2: real] :
          ( collect_real
          @ ^ [X: real] : ( ord_less_real @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_6956_lessThan__strict__subset__iff,axiom,
    ! [M: rat,N2: rat] :
      ( ( ord_less_set_rat @ ( set_ord_lessThan_rat @ M ) @ ( set_ord_lessThan_rat @ N2 ) )
      = ( ord_less_rat @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_6957_lessThan__strict__subset__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_set_num @ ( set_ord_lessThan_num @ M ) @ ( set_ord_lessThan_num @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_6958_lessThan__strict__subset__iff,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_set_int @ ( set_ord_lessThan_int @ M ) @ ( set_ord_lessThan_int @ N2 ) )
      = ( ord_less_int @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_6959_lessThan__strict__subset__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_set_nat @ ( set_ord_lessThan_nat @ M ) @ ( set_ord_lessThan_nat @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_6960_lessThan__strict__subset__iff,axiom,
    ! [M: real,N2: real] :
      ( ( ord_less_set_real @ ( set_or5984915006950818249n_real @ M ) @ ( set_or5984915006950818249n_real @ N2 ) )
      = ( ord_less_real @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_6961_complex__mod__minus__le__complex__mod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X2 ) ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% complex_mod_minus_le_complex_mod
thf(fact_6962_complex__mod__triangle__ineq2,axiom,
    ! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).

% complex_mod_triangle_ineq2
thf(fact_6963_finite__nat__bounded,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [K3: nat] : ( ord_less_eq_set_nat @ S3 @ ( set_ord_lessThan_nat @ K3 ) ) ) ).

% finite_nat_bounded
thf(fact_6964_finite__nat__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K2: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_lessThan_nat @ K2 ) ) ) ) ).

% finite_nat_iff_bounded
thf(fact_6965_sum_Onat__diff__reindex,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
        @ ( set_ord_lessThan_nat @ N2 ) )
      = ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.nat_diff_reindex
thf(fact_6966_sum_Onat__diff__reindex,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
        @ ( set_ord_lessThan_nat @ N2 ) )
      = ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.nat_diff_reindex
thf(fact_6967_sum__diff__distrib,axiom,
    ! [Q: real > nat,P: real > nat,N2: real] :
      ( ! [X3: real] : ( ord_less_eq_nat @ ( Q @ X3 ) @ ( P @ X3 ) )
     => ( ( minus_minus_nat @ ( groups1935376822645274424al_nat @ P @ ( set_or5984915006950818249n_real @ N2 ) ) @ ( groups1935376822645274424al_nat @ Q @ ( set_or5984915006950818249n_real @ N2 ) ) )
        = ( groups1935376822645274424al_nat
          @ ^ [X: real] : ( minus_minus_nat @ ( P @ X ) @ ( Q @ X ) )
          @ ( set_or5984915006950818249n_real @ N2 ) ) ) ) ).

% sum_diff_distrib
thf(fact_6968_sum__diff__distrib,axiom,
    ! [Q: nat > nat,P: nat > nat,N2: nat] :
      ( ! [X3: nat] : ( ord_less_eq_nat @ ( Q @ X3 ) @ ( P @ X3 ) )
     => ( ( minus_minus_nat @ ( groups3542108847815614940at_nat @ P @ ( set_ord_lessThan_nat @ N2 ) ) @ ( groups3542108847815614940at_nat @ Q @ ( set_ord_lessThan_nat @ N2 ) ) )
        = ( groups3542108847815614940at_nat
          @ ^ [X: nat] : ( minus_minus_nat @ ( P @ X ) @ ( Q @ X ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum_diff_distrib
thf(fact_6969_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_6970_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_6971_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_6972_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_6973_sumr__diff__mult__const2,axiom,
    ! [F: nat > rat,N2: nat,R: rat] :
      ( ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ R ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( minus_minus_rat @ ( F @ I4 ) @ R )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_6974_sumr__diff__mult__const2,axiom,
    ! [F: nat > int,N2: nat,R: int] :
      ( ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ R ) )
      = ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( minus_minus_int @ ( F @ I4 ) @ R )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_6975_sumr__diff__mult__const2,axiom,
    ! [F: nat > complex,N2: nat,R: complex] :
      ( ( minus_minus_complex @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ R ) )
      = ( groups2073611262835488442omplex
        @ ^ [I4: nat] : ( minus_minus_complex @ ( F @ I4 ) @ R )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_6976_sumr__diff__mult__const2,axiom,
    ! [F: nat > real,N2: nat,R: real] :
      ( ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ R ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( minus_minus_real @ ( F @ I4 ) @ R )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_6977_sum__lessThan__telescope,axiom,
    ! [F: nat > rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [N: nat] : ( minus_minus_rat @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_rat @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_6978_sum__lessThan__telescope,axiom,
    ! [F: nat > int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [N: nat] : ( minus_minus_int @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_int @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_6979_sum__lessThan__telescope,axiom,
    ! [F: nat > real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [N: nat] : ( minus_minus_real @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_real @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_6980_sum__lessThan__telescope_H,axiom,
    ! [F: nat > rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [N: nat] : ( minus_minus_rat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_6981_sum__lessThan__telescope_H,axiom,
    ! [F: nat > int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [N: nat] : ( minus_minus_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_6982_sum__lessThan__telescope_H,axiom,
    ! [F: nat > real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_6983_power__diff__1__eq,axiom,
    ! [X2: complex,N2: nat] :
      ( ( minus_minus_complex @ ( power_power_complex @ X2 @ N2 ) @ one_one_complex )
      = ( times_times_complex @ ( minus_minus_complex @ X2 @ one_one_complex ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_6984_power__diff__1__eq,axiom,
    ! [X2: rat,N2: nat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X2 @ N2 ) @ one_one_rat )
      = ( times_times_rat @ ( minus_minus_rat @ X2 @ one_one_rat ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_6985_power__diff__1__eq,axiom,
    ! [X2: int,N2: nat] :
      ( ( minus_minus_int @ ( power_power_int @ X2 @ N2 ) @ one_one_int )
      = ( times_times_int @ ( minus_minus_int @ X2 @ one_one_int ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_6986_power__diff__1__eq,axiom,
    ! [X2: real,N2: nat] :
      ( ( minus_minus_real @ ( power_power_real @ X2 @ N2 ) @ one_one_real )
      = ( times_times_real @ ( minus_minus_real @ X2 @ one_one_real ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_6987_one__diff__power__eq,axiom,
    ! [X2: complex,N2: nat] :
      ( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ N2 ) )
      = ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X2 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_6988_one__diff__power__eq,axiom,
    ! [X2: rat,N2: nat] :
      ( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ N2 ) )
      = ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X2 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_6989_one__diff__power__eq,axiom,
    ! [X2: int,N2: nat] :
      ( ( minus_minus_int @ one_one_int @ ( power_power_int @ X2 @ N2 ) )
      = ( times_times_int @ ( minus_minus_int @ one_one_int @ X2 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_6990_one__diff__power__eq,axiom,
    ! [X2: real,N2: nat] :
      ( ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ N2 ) )
      = ( times_times_real @ ( minus_minus_real @ one_one_real @ X2 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_6991_geometric__sum,axiom,
    ! [X2: complex,N2: nat] :
      ( ( X2 != one_one_complex )
     => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X2 @ N2 ) @ one_one_complex ) @ ( minus_minus_complex @ X2 @ one_one_complex ) ) ) ) ).

% geometric_sum
thf(fact_6992_geometric__sum,axiom,
    ! [X2: rat,N2: nat] :
      ( ( X2 != one_one_rat )
     => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X2 @ N2 ) @ one_one_rat ) @ ( minus_minus_rat @ X2 @ one_one_rat ) ) ) ) ).

% geometric_sum
thf(fact_6993_geometric__sum,axiom,
    ! [X2: real,N2: nat] :
      ( ( X2 != one_one_real )
     => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X2 @ N2 ) @ one_one_real ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ) ).

% geometric_sum
thf(fact_6994_monoseq__realpow,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( topolo6980174941875973593q_real @ ( power_power_real @ X2 ) ) ) ) ).

% monoseq_realpow
thf(fact_6995_sum__gp__strict,axiom,
    ! [X2: rat,N2: nat] :
      ( ( ( X2 = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( semiri681578069525770553at_rat @ N2 ) ) )
      & ( ( X2 != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ N2 ) ) @ ( minus_minus_rat @ one_one_rat @ X2 ) ) ) ) ) ).

% sum_gp_strict
thf(fact_6996_sum__gp__strict,axiom,
    ! [X2: complex,N2: nat] :
      ( ( ( X2 = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( semiri8010041392384452111omplex @ N2 ) ) )
      & ( ( X2 != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ N2 ) ) @ ( minus_minus_complex @ one_one_complex @ X2 ) ) ) ) ) ).

% sum_gp_strict
thf(fact_6997_sum__gp__strict,axiom,
    ! [X2: real,N2: nat] :
      ( ( ( X2 = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( semiri5074537144036343181t_real @ N2 ) ) )
      & ( ( X2 != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ N2 ) ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).

% sum_gp_strict
thf(fact_6998_lemma__termdiff1,axiom,
    ! [Z: complex,H2: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [P5: nat] : ( minus_minus_complex @ ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z @ P5 ) ) @ ( power_power_complex @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups2073611262835488442omplex
        @ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ Z @ P5 ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_6999_lemma__termdiff1,axiom,
    ! [Z: rat,H2: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [P5: nat] : ( minus_minus_rat @ ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z @ P5 ) ) @ ( power_power_rat @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups2906978787729119204at_rat
        @ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ Z @ P5 ) @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_7000_lemma__termdiff1,axiom,
    ! [Z: int,H2: int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [P5: nat] : ( minus_minus_int @ ( times_times_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z @ P5 ) ) @ ( power_power_int @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups3539618377306564664at_int
        @ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ Z @ P5 ) @ ( minus_minus_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_7001_lemma__termdiff1,axiom,
    ! [Z: real,H2: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [P5: nat] : ( minus_minus_real @ ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z @ P5 ) ) @ ( power_power_real @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ Z @ P5 ) @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_7002_diff__power__eq__sum,axiom,
    ! [X2: complex,N2: nat,Y: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ X2 @ ( suc @ N2 ) ) @ ( power_power_complex @ Y @ ( suc @ N2 ) ) )
      = ( times_times_complex @ ( minus_minus_complex @ X2 @ Y )
        @ ( groups2073611262835488442omplex
          @ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ X2 @ P5 ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7003_diff__power__eq__sum,axiom,
    ! [X2: rat,N2: nat,Y: rat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X2 @ ( suc @ N2 ) ) @ ( power_power_rat @ Y @ ( suc @ N2 ) ) )
      = ( times_times_rat @ ( minus_minus_rat @ X2 @ Y )
        @ ( groups2906978787729119204at_rat
          @ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ X2 @ P5 ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7004_diff__power__eq__sum,axiom,
    ! [X2: int,N2: nat,Y: int] :
      ( ( minus_minus_int @ ( power_power_int @ X2 @ ( suc @ N2 ) ) @ ( power_power_int @ Y @ ( suc @ N2 ) ) )
      = ( times_times_int @ ( minus_minus_int @ X2 @ Y )
        @ ( groups3539618377306564664at_int
          @ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ X2 @ P5 ) @ ( power_power_int @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7005_diff__power__eq__sum,axiom,
    ! [X2: real,N2: nat,Y: real] :
      ( ( minus_minus_real @ ( power_power_real @ X2 @ ( suc @ N2 ) ) @ ( power_power_real @ Y @ ( suc @ N2 ) ) )
      = ( times_times_real @ ( minus_minus_real @ X2 @ Y )
        @ ( groups6591440286371151544t_real
          @ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ X2 @ P5 ) @ ( power_power_real @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7006_power__diff__sumr2,axiom,
    ! [X2: complex,N2: nat,Y: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ X2 @ N2 ) @ ( power_power_complex @ Y @ N2 ) )
      = ( times_times_complex @ ( minus_minus_complex @ X2 @ Y )
        @ ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( times_times_complex @ ( power_power_complex @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) ) @ ( power_power_complex @ X2 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7007_power__diff__sumr2,axiom,
    ! [X2: rat,N2: nat,Y: rat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X2 @ N2 ) @ ( power_power_rat @ Y @ N2 ) )
      = ( times_times_rat @ ( minus_minus_rat @ X2 @ Y )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( times_times_rat @ ( power_power_rat @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) ) @ ( power_power_rat @ X2 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7008_power__diff__sumr2,axiom,
    ! [X2: int,N2: nat,Y: int] :
      ( ( minus_minus_int @ ( power_power_int @ X2 @ N2 ) @ ( power_power_int @ Y @ N2 ) )
      = ( times_times_int @ ( minus_minus_int @ X2 @ Y )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( times_times_int @ ( power_power_int @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) ) @ ( power_power_int @ X2 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7009_power__diff__sumr2,axiom,
    ! [X2: real,N2: nat,Y: real] :
      ( ( minus_minus_real @ ( power_power_real @ X2 @ N2 ) @ ( power_power_real @ Y @ N2 ) )
      = ( times_times_real @ ( minus_minus_real @ X2 @ Y )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) ) @ ( power_power_real @ X2 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7010_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > rat,K5: rat,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_rat @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ K5 )
       => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7011_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > int,K5: int,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_int @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ K5 )
       => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7012_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > nat,K5: nat,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_nat @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ K5 )
       => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7013_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > real,K5: real,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_real @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ K5 )
       => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7014_one__diff__power__eq_H,axiom,
    ! [X2: complex,N2: nat] :
      ( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ N2 ) )
      = ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X2 )
        @ ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( power_power_complex @ X2 @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7015_one__diff__power__eq_H,axiom,
    ! [X2: rat,N2: nat] :
      ( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ N2 ) )
      = ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X2 )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( power_power_rat @ X2 @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7016_one__diff__power__eq_H,axiom,
    ! [X2: int,N2: nat] :
      ( ( minus_minus_int @ one_one_int @ ( power_power_int @ X2 @ N2 ) )
      = ( times_times_int @ ( minus_minus_int @ one_one_int @ X2 )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( power_power_int @ X2 @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7017_one__diff__power__eq_H,axiom,
    ! [X2: real,N2: nat] :
      ( ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ N2 ) )
      = ( times_times_real @ ( minus_minus_real @ one_one_real @ X2 )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( power_power_real @ X2 @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7018_sum__split__even__odd,axiom,
    ! [F: nat > real,G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( F @ I4 ) @ ( G @ I4 ) )
        @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ one_one_nat ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum_split_even_odd
thf(fact_7019_norm__divide__numeral,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_7020_norm__divide__numeral,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_7021_norm__mult__numeral2,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_7022_norm__mult__numeral2,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_7023_norm__mult__numeral1,axiom,
    ! [W: num,A: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_7024_norm__mult__numeral1,axiom,
    ! [W: num,A: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_7025_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_7026_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_7027_norm__le__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X2 ) @ zero_zero_real )
      = ( X2 = zero_zero_real ) ) ).

% norm_le_zero_iff
thf(fact_7028_norm__le__zero__iff,axiom,
    ! [X2: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ zero_zero_real )
      = ( X2 = zero_zero_complex ) ) ).

% norm_le_zero_iff
thf(fact_7029_zero__less__norm__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X2 ) )
      = ( X2 != zero_zero_real ) ) ).

% zero_less_norm_iff
thf(fact_7030_zero__less__norm__iff,axiom,
    ! [X2: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X2 ) )
      = ( X2 != zero_zero_complex ) ) ).

% zero_less_norm_iff
thf(fact_7031_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_7032_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_7033_norm__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) )
      = ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_minus_commute
thf(fact_7034_norm__minus__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) )
      = ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ A ) ) ) ).

% norm_minus_commute
thf(fact_7035_norm__not__less__zero,axiom,
    ! [X2: complex] :
      ~ ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ zero_zero_real ) ).

% norm_not_less_zero
thf(fact_7036_norm__ge__zero,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% norm_ge_zero
thf(fact_7037_norm__mult,axiom,
    ! [X2: real,Y: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ X2 @ Y ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_mult
thf(fact_7038_norm__mult,axiom,
    ! [X2: complex,Y: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ X2 @ Y ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_mult
thf(fact_7039_norm__divide,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_divide
thf(fact_7040_norm__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_divide
thf(fact_7041_sum__norm__le,axiom,
    ! [S3: set_real,F: real > complex,G: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups5754745047067104278omplex @ F @ S3 ) ) @ ( groups8097168146408367636l_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7042_sum__norm__le,axiom,
    ! [S3: set_VEBT_VEBT,F: vEBT_VEBT > complex,G: vEBT_VEBT > real] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups1794756597179926696omplex @ F @ S3 ) ) @ ( groups2240296850493347238T_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7043_sum__norm__le,axiom,
    ! [S3: set_int,F: int > complex,G: int > real] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups3049146728041665814omplex @ F @ S3 ) ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7044_sum__norm__le,axiom,
    ! [S3: set_nat,F: nat > complex,G: nat > real] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7045_sum__norm__le,axiom,
    ! [S3: set_complex,F: complex > complex,G: complex > real] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ S3 ) ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7046_sum__norm__le,axiom,
    ! [S3: set_nat,F: nat > real,G: nat > real] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ S3 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7047_norm__power,axiom,
    ! [X2: real,N2: nat] :
      ( ( real_V7735802525324610683m_real @ ( power_power_real @ X2 @ N2 ) )
      = ( power_power_real @ ( real_V7735802525324610683m_real @ X2 ) @ N2 ) ) ).

% norm_power
thf(fact_7048_norm__power,axiom,
    ! [X2: complex,N2: nat] :
      ( ( real_V1022390504157884413omplex @ ( power_power_complex @ X2 @ N2 ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ X2 ) @ N2 ) ) ).

% norm_power
thf(fact_7049_norm__sum,axiom,
    ! [F: nat > complex,A2: set_nat] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( real_V1022390504157884413omplex @ ( F @ I4 ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_7050_norm__sum,axiom,
    ! [F: complex > complex,A2: set_complex] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ A2 ) )
      @ ( groups5808333547571424918x_real
        @ ^ [I4: complex] : ( real_V1022390504157884413omplex @ ( F @ I4 ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_7051_norm__sum,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( real_V7735802525324610683m_real @ ( F @ I4 ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_7052_norm__uminus__minus,axiom,
    ! [X2: real,Y: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ Y ) )
      = ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y ) ) ) ).

% norm_uminus_minus
thf(fact_7053_norm__uminus__minus,axiom,
    ! [X2: complex,Y: complex] :
      ( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ Y ) )
      = ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y ) ) ) ).

% norm_uminus_minus
thf(fact_7054_nonzero__norm__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_7055_nonzero__norm__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_7056_power__eq__imp__eq__norm,axiom,
    ! [W: real,N2: nat,Z: real] :
      ( ( ( power_power_real @ W @ N2 )
        = ( power_power_real @ Z @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( real_V7735802525324610683m_real @ W )
          = ( real_V7735802525324610683m_real @ Z ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_7057_power__eq__imp__eq__norm,axiom,
    ! [W: complex,N2: nat,Z: complex] :
      ( ( ( power_power_complex @ W @ N2 )
        = ( power_power_complex @ Z @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( real_V1022390504157884413omplex @ W )
          = ( real_V1022390504157884413omplex @ Z ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_7058_norm__mult__less,axiom,
    ! [X2: real,R: real,Y: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ R )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X2 @ Y ) ) @ ( times_times_real @ R @ S ) ) ) ) ).

% norm_mult_less
thf(fact_7059_norm__mult__less,axiom,
    ! [X2: complex,R: real,Y: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ R )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X2 @ Y ) ) @ ( times_times_real @ R @ S ) ) ) ) ).

% norm_mult_less
thf(fact_7060_norm__mult__ineq,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X2 @ Y ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_mult_ineq
thf(fact_7061_norm__mult__ineq,axiom,
    ! [X2: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X2 @ Y ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_mult_ineq
thf(fact_7062_norm__triangle__lt,axiom,
    ! [X2: real,Y: real,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_7063_norm__triangle__lt,axiom,
    ! [X2: complex,Y: complex,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_7064_norm__add__less,axiom,
    ! [X2: real,R: real,Y: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ R )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_add_less
thf(fact_7065_norm__add__less,axiom,
    ! [X2: complex,R: real,Y: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ R )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_add_less
thf(fact_7066_norm__power__ineq,axiom,
    ! [X2: real,N2: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X2 @ N2 ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X2 ) @ N2 ) ) ).

% norm_power_ineq
thf(fact_7067_norm__power__ineq,axiom,
    ! [X2: complex,N2: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X2 @ N2 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X2 ) @ N2 ) ) ).

% norm_power_ineq
thf(fact_7068_norm__add__leD,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_7069_norm__add__leD,axiom,
    ! [A: complex,B: complex,C: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_7070_norm__triangle__le,axiom,
    ! [X2: real,Y: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_7071_norm__triangle__le,axiom,
    ! [X2: complex,Y: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_7072_norm__triangle__ineq,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_triangle_ineq
thf(fact_7073_norm__triangle__ineq,axiom,
    ! [X2: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_triangle_ineq
thf(fact_7074_norm__triangle__mono,axiom,
    ! [A: real,R: real,B: real,S: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_7075_norm__triangle__mono,axiom,
    ! [A: complex,R: real,B: complex,S: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_7076_norm__diff__triangle__less,axiom,
    ! [X2: real,Y: real,E1: real,Z: real,E22: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y @ Z ) ) @ E22 )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_7077_norm__diff__triangle__less,axiom,
    ! [X2: complex,Y: complex,E1: real,Z: complex,E22: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y @ Z ) ) @ E22 )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_7078_norm__triangle__sub,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y ) ) ) ) ).

% norm_triangle_sub
thf(fact_7079_norm__triangle__sub,axiom,
    ! [X2: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y ) ) ) ) ).

% norm_triangle_sub
thf(fact_7080_norm__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_7081_norm__triangle__ineq4,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_7082_norm__diff__triangle__le,axiom,
    ! [X2: real,Y: real,E1: real,Z: real,E22: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y @ Z ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_7083_norm__diff__triangle__le,axiom,
    ! [X2: complex,Y: complex,E1: real,Z: complex,E22: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y @ Z ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_7084_norm__triangle__le__diff,axiom,
    ! [X2: real,Y: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_7085_norm__triangle__le__diff,axiom,
    ! [X2: complex,Y: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_7086_norm__diff__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_7087_norm__diff__ineq,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_7088_norm__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_7089_norm__triangle__ineq2,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_7090_power__eq__1__iff,axiom,
    ! [W: real,N2: nat] :
      ( ( ( power_power_real @ W @ N2 )
        = one_one_real )
     => ( ( ( real_V7735802525324610683m_real @ W )
          = one_one_real )
        | ( N2 = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_7091_power__eq__1__iff,axiom,
    ! [W: complex,N2: nat] :
      ( ( ( power_power_complex @ W @ N2 )
        = one_one_complex )
     => ( ( ( real_V1022390504157884413omplex @ W )
          = one_one_real )
        | ( N2 = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_7092_norm__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D2 ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D2 ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_7093_norm__diff__triangle__ineq,axiom,
    ! [A: complex,B: complex,C: complex,D2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D2 ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D2 ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_7094_norm__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_7095_norm__triangle__ineq3,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_7096_square__norm__one,axiom,
    ! [X2: real] :
      ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
     => ( ( real_V7735802525324610683m_real @ X2 )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_7097_square__norm__one,axiom,
    ! [X2: complex] :
      ( ( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
     => ( ( real_V1022390504157884413omplex @ X2 )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_7098_norm__power__diff,axiom,
    ! [Z: real,W: real,M: nat] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_7099_norm__power__diff,axiom,
    ! [Z: complex,W: complex,M: nat] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_7100_suminf__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( ( suminf_real @ ( power_power_real @ C ) )
        = ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7101_suminf__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( ( suminf_complex @ ( power_power_complex @ C ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7102_sumr__cos__zero__one,axiom,
    ! [N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ zero_zero_real @ M3 ) )
        @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = one_one_real ) ).

% sumr_cos_zero_one
thf(fact_7103_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_complex ) )
       => ( ( suminf_complex @ F )
          = ( groups2073611262835488442omplex @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7104_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_int ) )
       => ( ( suminf_int @ F )
          = ( groups3539618377306564664at_int @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7105_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_nat ) )
       => ( ( suminf_nat @ F )
          = ( groups3542108847815614940at_nat @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7106_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_real ) )
       => ( ( suminf_real @ F )
          = ( groups6591440286371151544t_real @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7107_pi__series,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( suminf_real
      @ ^ [K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% pi_series
thf(fact_7108_summable__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( summable_real
        @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).

% summable_arctan_series
thf(fact_7109_geometric__deriv__sums,axiom,
    ! [Z: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
     => ( sums_real
        @ ^ [N: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( power_power_real @ Z @ N ) )
        @ ( divide_divide_real @ one_one_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% geometric_deriv_sums
thf(fact_7110_geometric__deriv__sums,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
     => ( sums_complex
        @ ^ [N: nat] : ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( power_power_complex @ Z @ N ) )
        @ ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ ( minus_minus_complex @ one_one_complex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% geometric_deriv_sums
thf(fact_7111_summable__iff__shift,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real
        @ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) )
      = ( summable_real @ F ) ) ).

% summable_iff_shift
thf(fact_7112_summable__cmult__iff,axiom,
    ! [C: complex,F: nat > complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) ) )
      = ( ( C = zero_zero_complex )
        | ( summable_complex @ F ) ) ) ).

% summable_cmult_iff
thf(fact_7113_summable__cmult__iff,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_cmult_iff
thf(fact_7114_summable__divide__iff,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( divide1717551699836669952omplex @ ( F @ N ) @ C ) )
      = ( ( C = zero_zero_complex )
        | ( summable_complex @ F ) ) ) ).

% summable_divide_iff
thf(fact_7115_summable__divide__iff,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( divide_divide_real @ ( F @ N ) @ C ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_divide_iff
thf(fact_7116_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > complex] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_complex
        @ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).

% summable_If_finite
thf(fact_7117_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > real] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_real
        @ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).

% summable_If_finite
thf(fact_7118_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_nat
        @ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).

% summable_If_finite
thf(fact_7119_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > int] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_int
        @ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).

% summable_If_finite
thf(fact_7120_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_complex
        @ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).

% summable_If_finite_set
thf(fact_7121_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_real
        @ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).

% summable_If_finite_set
thf(fact_7122_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_nat
        @ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).

% summable_If_finite_set
thf(fact_7123_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_int
        @ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).

% summable_If_finite_set
thf(fact_7124_powser__sums__zero__iff,axiom,
    ! [A: nat > complex,X2: complex] :
      ( ( sums_complex
        @ ^ [N: nat] : ( times_times_complex @ ( A @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) )
        @ X2 )
      = ( ( A @ zero_zero_nat )
        = X2 ) ) ).

% powser_sums_zero_iff
thf(fact_7125_powser__sums__zero__iff,axiom,
    ! [A: nat > real,X2: real] :
      ( ( sums_real
        @ ^ [N: nat] : ( times_times_real @ ( A @ N ) @ ( power_power_real @ zero_zero_real @ N ) )
        @ X2 )
      = ( ( A @ zero_zero_nat )
        = X2 ) ) ).

% powser_sums_zero_iff
thf(fact_7126_summable__geometric__iff,axiom,
    ! [C: real] :
      ( ( summable_real @ ( power_power_real @ C ) )
      = ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7127_summable__geometric__iff,axiom,
    ! [C: complex] :
      ( ( summable_complex @ ( power_power_complex @ C ) )
      = ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7128_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > real] :
      ( ( summable_real @ G )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7129_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > complex] :
      ( ( summable_real @ G )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7130_summable__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N8: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N8 @ N3 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test
thf(fact_7131_summable__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N8: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N8 @ N3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test
thf(fact_7132_summable__ignore__initial__segment,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) ) ) ).

% summable_ignore_initial_segment
thf(fact_7133_summable__add,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N: nat] : ( plus_plus_real @ ( F @ N ) @ ( G @ N ) ) ) ) ) ).

% summable_add
thf(fact_7134_summable__add,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ( summable_nat @ F )
     => ( ( summable_nat @ G )
       => ( summable_nat
          @ ^ [N: nat] : ( plus_plus_nat @ ( F @ N ) @ ( G @ N ) ) ) ) ) ).

% summable_add
thf(fact_7135_summable__add,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ( summable_int @ F )
     => ( ( summable_int @ G )
       => ( summable_int
          @ ^ [N: nat] : ( plus_plus_int @ ( F @ N ) @ ( G @ N ) ) ) ) ) ).

% summable_add
thf(fact_7136_sums__add,axiom,
    ! [F: nat > real,A: real,G: nat > real,B: real] :
      ( ( sums_real @ F @ A )
     => ( ( sums_real @ G @ B )
       => ( sums_real
          @ ^ [N: nat] : ( plus_plus_real @ ( F @ N ) @ ( G @ N ) )
          @ ( plus_plus_real @ A @ B ) ) ) ) ).

% sums_add
thf(fact_7137_sums__add,axiom,
    ! [F: nat > nat,A: nat,G: nat > nat,B: nat] :
      ( ( sums_nat @ F @ A )
     => ( ( sums_nat @ G @ B )
       => ( sums_nat
          @ ^ [N: nat] : ( plus_plus_nat @ ( F @ N ) @ ( G @ N ) )
          @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% sums_add
thf(fact_7138_sums__add,axiom,
    ! [F: nat > int,A: int,G: nat > int,B: int] :
      ( ( sums_int @ F @ A )
     => ( ( sums_int @ G @ B )
       => ( sums_int
          @ ^ [N: nat] : ( plus_plus_int @ ( F @ N ) @ ( G @ N ) )
          @ ( plus_plus_int @ A @ B ) ) ) ) ).

% sums_add
thf(fact_7139_sums__mult,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) )
        @ ( times_times_real @ C @ A ) ) ) ).

% sums_mult
thf(fact_7140_sums__mult2,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ C )
        @ ( times_times_real @ A @ C ) ) ) ).

% sums_mult2
thf(fact_7141_sums__diff,axiom,
    ! [F: nat > real,A: real,G: nat > real,B: real] :
      ( ( sums_real @ F @ A )
     => ( ( sums_real @ G @ B )
       => ( sums_real
          @ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( G @ N ) )
          @ ( minus_minus_real @ A @ B ) ) ) ) ).

% sums_diff
thf(fact_7142_sums__divide,axiom,
    ! [F: nat > complex,A: complex,C: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N: nat] : ( divide1717551699836669952omplex @ ( F @ N ) @ C )
        @ ( divide1717551699836669952omplex @ A @ C ) ) ) ).

% sums_divide
thf(fact_7143_sums__divide,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N: nat] : ( divide_divide_real @ ( F @ N ) @ C )
        @ ( divide_divide_real @ A @ C ) ) ) ).

% sums_divide
thf(fact_7144_summable__mult,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) ) ) ) ).

% summable_mult
thf(fact_7145_summable__mult2,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ C ) ) ) ).

% summable_mult2
thf(fact_7146_summable__diff,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( G @ N ) ) ) ) ) ).

% summable_diff
thf(fact_7147_summable__divide,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N: nat] : ( divide1717551699836669952omplex @ ( F @ N ) @ C ) ) ) ).

% summable_divide
thf(fact_7148_summable__divide,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N: nat] : ( divide_divide_real @ ( F @ N ) @ C ) ) ) ).

% summable_divide
thf(fact_7149_sums__le,axiom,
    ! [F: nat > real,G: nat > real,S: real,T: real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( sums_real @ F @ S )
       => ( ( sums_real @ G @ T )
         => ( ord_less_eq_real @ S @ T ) ) ) ) ).

% sums_le
thf(fact_7150_sums__le,axiom,
    ! [F: nat > nat,G: nat > nat,S: nat,T: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( sums_nat @ F @ S )
       => ( ( sums_nat @ G @ T )
         => ( ord_less_eq_nat @ S @ T ) ) ) ) ).

% sums_le
thf(fact_7151_sums__le,axiom,
    ! [F: nat > int,G: nat > int,S: int,T: int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( sums_int @ F @ S )
       => ( ( sums_int @ G @ T )
         => ( ord_less_eq_int @ S @ T ) ) ) ) ).

% sums_le
thf(fact_7152_suminf__le,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( summable_real @ F )
       => ( ( summable_real @ G )
         => ( ord_less_eq_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7153_suminf__le,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( summable_nat @ F )
       => ( ( summable_nat @ G )
         => ( ord_less_eq_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7154_suminf__le,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( summable_int @ F )
       => ( ( summable_int @ G )
         => ( ord_less_eq_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7155_summable__finite,axiom,
    ! [N4: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_complex ) )
       => ( summable_complex @ F ) ) ) ).

% summable_finite
thf(fact_7156_summable__finite,axiom,
    ! [N4: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_real ) )
       => ( summable_real @ F ) ) ) ).

% summable_finite
thf(fact_7157_summable__finite,axiom,
    ! [N4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_nat ) )
       => ( summable_nat @ F ) ) ) ).

% summable_finite
thf(fact_7158_summable__finite,axiom,
    ! [N4: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_int ) )
       => ( summable_int @ F ) ) ) ).

% summable_finite
thf(fact_7159_sums__mult__iff,axiom,
    ! [C: complex,F: nat > complex,D2: complex] :
      ( ( C != zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) )
          @ ( times_times_complex @ C @ D2 ) )
        = ( sums_complex @ F @ D2 ) ) ) ).

% sums_mult_iff
thf(fact_7160_sums__mult__iff,axiom,
    ! [C: real,F: nat > real,D2: real] :
      ( ( C != zero_zero_real )
     => ( ( sums_real
          @ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) )
          @ ( times_times_real @ C @ D2 ) )
        = ( sums_real @ F @ D2 ) ) ) ).

% sums_mult_iff
thf(fact_7161_sums__mult2__iff,axiom,
    ! [C: complex,F: nat > complex,D2: complex] :
      ( ( C != zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ C )
          @ ( times_times_complex @ D2 @ C ) )
        = ( sums_complex @ F @ D2 ) ) ) ).

% sums_mult2_iff
thf(fact_7162_sums__mult2__iff,axiom,
    ! [C: real,F: nat > real,D2: real] :
      ( ( C != zero_zero_real )
     => ( ( sums_real
          @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ C )
          @ ( times_times_real @ D2 @ C ) )
        = ( sums_real @ F @ D2 ) ) ) ).

% sums_mult2_iff
thf(fact_7163_summable__mult__D,axiom,
    ! [C: complex,F: nat > complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) ) )
     => ( ( C != zero_zero_complex )
       => ( summable_complex @ F ) ) ) ).

% summable_mult_D
thf(fact_7164_summable__mult__D,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) ) )
     => ( ( C != zero_zero_real )
       => ( summable_real @ F ) ) ) ).

% summable_mult_D
thf(fact_7165_summable__zero__power,axiom,
    summable_real @ ( power_power_real @ zero_zero_real ) ).

% summable_zero_power
thf(fact_7166_summable__zero__power,axiom,
    summable_complex @ ( power_power_complex @ zero_zero_complex ) ).

% summable_zero_power
thf(fact_7167_summable__zero__power,axiom,
    summable_int @ ( power_power_int @ zero_zero_int ) ).

% summable_zero_power
thf(fact_7168_suminf__mult2,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( times_times_real @ ( suminf_real @ F ) @ C )
        = ( suminf_real
          @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ C ) ) ) ) ).

% suminf_mult2
thf(fact_7169_suminf__mult,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) ) )
        = ( times_times_real @ C @ ( suminf_real @ F ) ) ) ) ).

% suminf_mult
thf(fact_7170_suminf__add,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( ( plus_plus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
          = ( suminf_real
            @ ^ [N: nat] : ( plus_plus_real @ ( F @ N ) @ ( G @ N ) ) ) ) ) ) ).

% suminf_add
thf(fact_7171_suminf__add,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ( summable_nat @ F )
     => ( ( summable_nat @ G )
       => ( ( plus_plus_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) )
          = ( suminf_nat
            @ ^ [N: nat] : ( plus_plus_nat @ ( F @ N ) @ ( G @ N ) ) ) ) ) ) ).

% suminf_add
thf(fact_7172_suminf__add,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ( summable_int @ F )
     => ( ( summable_int @ G )
       => ( ( plus_plus_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) )
          = ( suminf_int
            @ ^ [N: nat] : ( plus_plus_int @ ( F @ N ) @ ( G @ N ) ) ) ) ) ) ).

% suminf_add
thf(fact_7173_suminf__diff,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( ( minus_minus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
          = ( suminf_real
            @ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( G @ N ) ) ) ) ) ) ).

% suminf_diff
thf(fact_7174_suminf__divide,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N: nat] : ( divide1717551699836669952omplex @ ( F @ N ) @ C ) )
        = ( divide1717551699836669952omplex @ ( suminf_complex @ F ) @ C ) ) ) ).

% suminf_divide
thf(fact_7175_suminf__divide,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N: nat] : ( divide_divide_real @ ( F @ N ) @ C ) )
        = ( divide_divide_real @ ( suminf_real @ F ) @ C ) ) ) ).

% suminf_divide
thf(fact_7176_powser__insidea,axiom,
    ! [F: nat > real,X2: real,Z: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ X2 @ N ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X2 ) )
       => ( summable_real
          @ ^ [N: nat] : ( real_V7735802525324610683m_real @ ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7177_powser__insidea,axiom,
    ! [F: nat > complex,X2: complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ X2 @ N ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X2 ) )
       => ( summable_real
          @ ^ [N: nat] : ( real_V1022390504157884413omplex @ ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7178_suminf__eq__zero__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ( ( suminf_real @ F )
            = zero_zero_real )
          = ( ! [N: nat] :
                ( ( F @ N )
                = zero_zero_real ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7179_suminf__eq__zero__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ( ( suminf_nat @ F )
            = zero_zero_nat )
          = ( ! [N: nat] :
                ( ( F @ N )
                = zero_zero_nat ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7180_suminf__eq__zero__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ( ( suminf_int @ F )
            = zero_zero_int )
          = ( ! [N: nat] :
                ( ( F @ N )
                = zero_zero_int ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7181_suminf__nonneg,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7182_suminf__nonneg,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7183_suminf__nonneg,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ord_less_eq_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7184_suminf__pos,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_pos
thf(fact_7185_suminf__pos,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_pos
thf(fact_7186_suminf__pos,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_pos
thf(fact_7187_sums__mult__D,axiom,
    ! [C: complex,F: nat > complex,A: complex] :
      ( ( sums_complex
        @ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) )
        @ A )
     => ( ( C != zero_zero_complex )
       => ( sums_complex @ F @ ( divide1717551699836669952omplex @ A @ C ) ) ) ) ).

% sums_mult_D
thf(fact_7188_sums__mult__D,axiom,
    ! [C: real,F: nat > real,A: real] :
      ( ( sums_real
        @ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) )
        @ A )
     => ( ( C != zero_zero_real )
       => ( sums_real @ F @ ( divide_divide_real @ A @ C ) ) ) ) ).

% sums_mult_D
thf(fact_7189_sums__Suc__iff,axiom,
    ! [F: nat > real,S: real] :
      ( ( sums_real
        @ ^ [N: nat] : ( F @ ( suc @ N ) )
        @ S )
      = ( sums_real @ F @ ( plus_plus_real @ S @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc_iff
thf(fact_7190_sums__Suc,axiom,
    ! [F: nat > real,L2: real] :
      ( ( sums_real
        @ ^ [N: nat] : ( F @ ( suc @ N ) )
        @ L2 )
     => ( sums_real @ F @ ( plus_plus_real @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_7191_sums__Suc,axiom,
    ! [F: nat > nat,L2: nat] :
      ( ( sums_nat
        @ ^ [N: nat] : ( F @ ( suc @ N ) )
        @ L2 )
     => ( sums_nat @ F @ ( plus_plus_nat @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_7192_sums__Suc,axiom,
    ! [F: nat > int,L2: int] :
      ( ( sums_int
        @ ^ [N: nat] : ( F @ ( suc @ N ) )
        @ L2 )
     => ( sums_int @ F @ ( plus_plus_int @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_7193_summable__zero__power_H,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) ) ) ).

% summable_zero_power'
thf(fact_7194_summable__zero__power_H,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ zero_zero_real @ N ) ) ) ).

% summable_zero_power'
thf(fact_7195_summable__zero__power_H,axiom,
    ! [F: nat > int] :
      ( summable_int
      @ ^ [N: nat] : ( times_times_int @ ( F @ N ) @ ( power_power_int @ zero_zero_int @ N ) ) ) ).

% summable_zero_power'
thf(fact_7196_summable__0__powser,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) ) ) ).

% summable_0_powser
thf(fact_7197_summable__0__powser,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ zero_zero_real @ N ) ) ) ).

% summable_0_powser
thf(fact_7198_sums__zero__iff__shift,axiom,
    ! [N2: nat,F: nat > complex,S: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ( F @ I3 )
            = zero_zero_complex ) )
     => ( ( sums_complex
          @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N2 ) )
          @ S )
        = ( sums_complex @ F @ S ) ) ) ).

% sums_zero_iff_shift
thf(fact_7199_sums__zero__iff__shift,axiom,
    ! [N2: nat,F: nat > real,S: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ( F @ I3 )
            = zero_zero_real ) )
     => ( ( sums_real
          @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N2 ) )
          @ S )
        = ( sums_real @ F @ S ) ) ) ).

% sums_zero_iff_shift
thf(fact_7200_summable__powser__split__head,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ ( suc @ N ) ) @ ( power_power_complex @ Z @ N ) ) )
      = ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) ) ) ).

% summable_powser_split_head
thf(fact_7201_summable__powser__split__head,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ ( suc @ N ) ) @ ( power_power_real @ Z @ N ) ) )
      = ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) ) ) ).

% summable_powser_split_head
thf(fact_7202_powser__split__head_I3_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) )
     => ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ ( suc @ N ) ) @ ( power_power_complex @ Z @ N ) ) ) ) ).

% powser_split_head(3)
thf(fact_7203_powser__split__head_I3_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) )
     => ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ ( suc @ N ) ) @ ( power_power_real @ Z @ N ) ) ) ) ).

% powser_split_head(3)
thf(fact_7204_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > complex,M: nat,Z: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ ( plus_plus_nat @ N @ M ) ) @ ( power_power_complex @ Z @ N ) ) )
      = ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7205_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > real,M: nat,Z: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ ( plus_plus_nat @ N @ M ) ) @ ( power_power_real @ Z @ N ) ) )
      = ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7206_pi__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ pi ).

% pi_gt_zero
thf(fact_7207_pi__not__less__zero,axiom,
    ~ ( ord_less_real @ pi @ zero_zero_real ) ).

% pi_not_less_zero
thf(fact_7208_pi__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ pi ).

% pi_ge_zero
thf(fact_7209_summable__norm__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N8: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N8 @ N3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N: nat] : ( real_V1022390504157884413omplex @ ( F @ N ) ) ) ) ) ).

% summable_norm_comparison_test
thf(fact_7210_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_complex
        @ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex )
        @ ( groups2073611262835488442omplex @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_7211_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_int
        @ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int )
        @ ( groups3539618377306564664at_int @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_7212_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_nat
        @ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_7213_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_real
        @ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real )
        @ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_7214_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > complex] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_complex
        @ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex )
        @ ( groups2073611262835488442omplex @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_7215_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > int] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_int
        @ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int )
        @ ( groups3539618377306564664at_int @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_7216_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_nat
        @ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_7217_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > real] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_real
        @ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real )
        @ ( groups6591440286371151544t_real @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_7218_sums__finite,axiom,
    ! [N4: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_complex ) )
       => ( sums_complex @ F @ ( groups2073611262835488442omplex @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_7219_sums__finite,axiom,
    ! [N4: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_int ) )
       => ( sums_int @ F @ ( groups3539618377306564664at_int @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_7220_sums__finite,axiom,
    ! [N4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_nat ) )
       => ( sums_nat @ F @ ( groups3542108847815614940at_nat @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_7221_sums__finite,axiom,
    ! [N4: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N3: nat] :
            ( ~ ( member_nat @ N3 @ N4 )
           => ( ( F @ N3 )
              = zero_zero_real ) )
       => ( sums_real @ F @ ( groups6591440286371151544t_real @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_7222_summable__rabs__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N8: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N8 @ N3 )
         => ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N: nat] : ( abs_abs_real @ ( F @ N ) ) ) ) ) ).

% summable_rabs_comparison_test
thf(fact_7223_summable__rabs,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N: nat] : ( abs_abs_real @ ( F @ N ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N: nat] : ( abs_abs_real @ ( F @ N ) ) ) ) ) ).

% summable_rabs
thf(fact_7224_suminf__pos2,axiom,
    ! [F: nat > real,I: nat] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7225_suminf__pos2,axiom,
    ! [F: nat > nat,I: nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
         => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7226_suminf__pos2,axiom,
    ! [F: nat > int,I: nat] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
         => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7227_suminf__pos__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) )
          = ( ? [I4: nat] : ( ord_less_real @ zero_zero_real @ ( F @ I4 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7228_suminf__pos__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) )
          = ( ? [I4: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ I4 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7229_suminf__pos__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) )
          = ( ? [I4: nat] : ( ord_less_int @ zero_zero_int @ ( F @ I4 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7230_suminf__le__const,axiom,
    ! [F: nat > int,X2: int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X2 )
       => ( ord_less_eq_int @ ( suminf_int @ F ) @ X2 ) ) ) ).

% suminf_le_const
thf(fact_7231_suminf__le__const,axiom,
    ! [F: nat > nat,X2: nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X2 )
       => ( ord_less_eq_nat @ ( suminf_nat @ F ) @ X2 ) ) ) ).

% suminf_le_const
thf(fact_7232_suminf__le__const,axiom,
    ! [F: nat > real,X2: real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X2 )
       => ( ord_less_eq_real @ ( suminf_real @ F ) @ X2 ) ) ) ).

% suminf_le_const
thf(fact_7233_powser__sums__if,axiom,
    ! [M: nat,Z: complex] :
      ( sums_complex
      @ ^ [N: nat] : ( times_times_complex @ ( if_complex @ ( N = M ) @ one_one_complex @ zero_zero_complex ) @ ( power_power_complex @ Z @ N ) )
      @ ( power_power_complex @ Z @ M ) ) ).

% powser_sums_if
thf(fact_7234_powser__sums__if,axiom,
    ! [M: nat,Z: real] :
      ( sums_real
      @ ^ [N: nat] : ( times_times_real @ ( if_real @ ( N = M ) @ one_one_real @ zero_zero_real ) @ ( power_power_real @ Z @ N ) )
      @ ( power_power_real @ Z @ M ) ) ).

% powser_sums_if
thf(fact_7235_powser__sums__if,axiom,
    ! [M: nat,Z: int] :
      ( sums_int
      @ ^ [N: nat] : ( times_times_int @ ( if_int @ ( N = M ) @ one_one_int @ zero_zero_int ) @ ( power_power_int @ Z @ N ) )
      @ ( power_power_int @ Z @ M ) ) ).

% powser_sums_if
thf(fact_7236_summableI__nonneg__bounded,axiom,
    ! [F: nat > int,X2: int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X2 )
       => ( summable_int @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_7237_summableI__nonneg__bounded,axiom,
    ! [F: nat > nat,X2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X2 )
       => ( summable_nat @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_7238_summableI__nonneg__bounded,axiom,
    ! [F: nat > real,X2: real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X2 )
       => ( summable_real @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_7239_complete__algebra__summable__geometric,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ X2 ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7240_complete__algebra__summable__geometric,axiom,
    ! [X2: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ X2 ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7241_summable__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ C ) ) ) ).

% summable_geometric
thf(fact_7242_summable__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ C ) ) ) ).

% summable_geometric
thf(fact_7243_sums__iff__shift,axiom,
    ! [F: nat > real,N2: nat,S: real] :
      ( ( sums_real
        @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N2 ) )
        @ S )
      = ( sums_real @ F @ ( plus_plus_real @ S @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% sums_iff_shift
thf(fact_7244_sums__split__initial__segment,axiom,
    ! [F: nat > real,S: real,N2: nat] :
      ( ( sums_real @ F @ S )
     => ( sums_real
        @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N2 ) )
        @ ( minus_minus_real @ S @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% sums_split_initial_segment
thf(fact_7245_sums__iff__shift_H,axiom,
    ! [F: nat > real,N2: nat,S: real] :
      ( ( sums_real
        @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N2 ) )
        @ ( minus_minus_real @ S @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) )
      = ( sums_real @ F @ S ) ) ).

% sums_iff_shift'
thf(fact_7246_suminf__split__head,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N: nat] : ( F @ ( suc @ N ) ) )
        = ( minus_minus_real @ ( suminf_real @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).

% suminf_split_head
thf(fact_7247_sums__If__finite__set_H,axiom,
    ! [G: nat > real,S3: real,A2: set_nat,S4: real,F: nat > real] :
      ( ( sums_real @ G @ S3 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( S4
            = ( plus_plus_real @ S3
              @ ( groups6591440286371151544t_real
                @ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( G @ N ) )
                @ A2 ) ) )
         => ( sums_real
            @ ^ [N: nat] : ( if_real @ ( member_nat @ N @ A2 ) @ ( F @ N ) @ ( G @ N ) )
            @ S4 ) ) ) ) ).

% sums_If_finite_set'
thf(fact_7248_summable__norm,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N: nat] : ( real_V7735802525324610683m_real @ ( F @ N ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N: nat] : ( real_V7735802525324610683m_real @ ( F @ N ) ) ) ) ) ).

% summable_norm
thf(fact_7249_summable__norm,axiom,
    ! [F: nat > complex] :
      ( ( summable_real
        @ ^ [N: nat] : ( real_V1022390504157884413omplex @ ( F @ N ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( suminf_complex @ F ) )
        @ ( suminf_real
          @ ^ [N: nat] : ( real_V1022390504157884413omplex @ ( F @ N ) ) ) ) ) ).

% summable_norm
thf(fact_7250_sum__le__suminf,axiom,
    ! [F: nat > int,I5: set_nat] :
      ( ( summable_int @ F )
     => ( ( finite_finite_nat @ I5 )
       => ( ! [N3: nat] :
              ( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I5 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) ) )
         => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ I5 ) @ ( suminf_int @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7251_sum__le__suminf,axiom,
    ! [F: nat > nat,I5: set_nat] :
      ( ( summable_nat @ F )
     => ( ( finite_finite_nat @ I5 )
       => ( ! [N3: nat] :
              ( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I5 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) ) )
         => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ I5 ) @ ( suminf_nat @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7252_sum__le__suminf,axiom,
    ! [F: nat > real,I5: set_nat] :
      ( ( summable_real @ F )
     => ( ( finite_finite_nat @ I5 )
       => ( ! [N3: nat] :
              ( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I5 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) ) )
         => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ I5 ) @ ( suminf_real @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7253_suminf__split__initial__segment,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ( suminf_real @ F )
        = ( plus_plus_real
          @ ( suminf_real
            @ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) )
          @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).

% suminf_split_initial_segment
thf(fact_7254_suminf__minus__initial__segment,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) )
        = ( minus_minus_real @ ( suminf_real @ F ) @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).

% suminf_minus_initial_segment
thf(fact_7255_powser__sums__zero,axiom,
    ! [A: nat > complex] :
      ( sums_complex
      @ ^ [N: nat] : ( times_times_complex @ ( A @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) )
      @ ( A @ zero_zero_nat ) ) ).

% powser_sums_zero
thf(fact_7256_powser__sums__zero,axiom,
    ! [A: nat > real] :
      ( sums_real
      @ ^ [N: nat] : ( times_times_real @ ( A @ N ) @ ( power_power_real @ zero_zero_real @ N ) )
      @ ( A @ zero_zero_nat ) ) ).

% powser_sums_zero
thf(fact_7257_powser__inside,axiom,
    ! [F: nat > real,X2: real,Z: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ X2 @ N ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X2 ) )
       => ( summable_real
          @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) ) ) ) ).

% powser_inside
thf(fact_7258_powser__inside,axiom,
    ! [F: nat > complex,X2: complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ X2 @ N ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X2 ) )
       => ( summable_complex
          @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) ) ) ) ).

% powser_inside
thf(fact_7259_sum__less__suminf,axiom,
    ! [F: nat > int,N2: nat] :
      ( ( summable_int @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N2 @ M4 )
           => ( ord_less_int @ zero_zero_int @ ( F @ M4 ) ) )
       => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_int @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_7260_sum__less__suminf,axiom,
    ! [F: nat > nat,N2: nat] :
      ( ( summable_nat @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N2 @ M4 )
           => ( ord_less_nat @ zero_zero_nat @ ( F @ M4 ) ) )
       => ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_nat @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_7261_sum__less__suminf,axiom,
    ! [F: nat > real,N2: nat] :
      ( ( summable_real @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N2 @ M4 )
           => ( ord_less_real @ zero_zero_real @ ( F @ M4 ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_7262_pi__less__4,axiom,
    ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).

% pi_less_4
thf(fact_7263_pi__ge__two,axiom,
    ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).

% pi_ge_two
thf(fact_7264_pi__half__neq__two,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_neq_two
thf(fact_7265_powser__split__head_I1_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) )
     => ( ( suminf_complex
          @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) )
        = ( plus_plus_complex @ ( F @ zero_zero_nat )
          @ ( times_times_complex
            @ ( suminf_complex
              @ ^ [N: nat] : ( times_times_complex @ ( F @ ( suc @ N ) ) @ ( power_power_complex @ Z @ N ) ) )
            @ Z ) ) ) ) ).

% powser_split_head(1)
thf(fact_7266_powser__split__head_I1_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) )
     => ( ( suminf_real
          @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) )
        = ( plus_plus_real @ ( F @ zero_zero_nat )
          @ ( times_times_real
            @ ( suminf_real
              @ ^ [N: nat] : ( times_times_real @ ( F @ ( suc @ N ) ) @ ( power_power_real @ Z @ N ) ) )
            @ Z ) ) ) ) ).

% powser_split_head(1)
thf(fact_7267_powser__split__head_I2_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) )
     => ( ( times_times_complex
          @ ( suminf_complex
            @ ^ [N: nat] : ( times_times_complex @ ( F @ ( suc @ N ) ) @ ( power_power_complex @ Z @ N ) ) )
          @ Z )
        = ( minus_minus_complex
          @ ( suminf_complex
            @ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z @ N ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7268_powser__split__head_I2_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) )
     => ( ( times_times_real
          @ ( suminf_real
            @ ^ [N: nat] : ( times_times_real @ ( F @ ( suc @ N ) ) @ ( power_power_real @ Z @ N ) ) )
          @ Z )
        = ( minus_minus_real
          @ ( suminf_real
            @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z @ N ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7269_summable__partial__sum__bound,axiom,
    ! [F: nat > complex,E: real] :
      ( ( summable_complex @ F )
     => ( ( ord_less_real @ zero_zero_real @ E )
       => ~ ! [N9: nat] :
              ~ ! [M2: nat] :
                  ( ( ord_less_eq_nat @ N9 @ M2 )
                 => ! [N7: nat] : ( ord_less_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ M2 @ N7 ) ) ) @ E ) ) ) ) ).

% summable_partial_sum_bound
thf(fact_7270_summable__partial__sum__bound,axiom,
    ! [F: nat > real,E: real] :
      ( ( summable_real @ F )
     => ( ( ord_less_real @ zero_zero_real @ E )
       => ~ ! [N9: nat] :
              ~ ! [M2: nat] :
                  ( ( ord_less_eq_nat @ N9 @ M2 )
                 => ! [N7: nat] : ( ord_less_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ M2 @ N7 ) ) ) @ E ) ) ) ) ).

% summable_partial_sum_bound
thf(fact_7271_suminf__exist__split,axiom,
    ! [R: real,F: nat > real] :
      ( ( ord_less_real @ zero_zero_real @ R )
     => ( ( summable_real @ F )
       => ? [N9: nat] :
          ! [N7: nat] :
            ( ( ord_less_eq_nat @ N9 @ N7 )
           => ( ord_less_real
              @ ( real_V7735802525324610683m_real
                @ ( suminf_real
                  @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N7 ) ) ) )
              @ R ) ) ) ) ).

% suminf_exist_split
thf(fact_7272_suminf__exist__split,axiom,
    ! [R: real,F: nat > complex] :
      ( ( ord_less_real @ zero_zero_real @ R )
     => ( ( summable_complex @ F )
       => ? [N9: nat] :
          ! [N7: nat] :
            ( ( ord_less_eq_nat @ N9 @ N7 )
           => ( ord_less_real
              @ ( real_V1022390504157884413omplex
                @ ( suminf_complex
                  @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N7 ) ) ) )
              @ R ) ) ) ) ).

% suminf_exist_split
thf(fact_7273_summable__power__series,axiom,
    ! [F: nat > real,Z: real] :
      ( ! [I3: nat] : ( ord_less_eq_real @ ( F @ I3 ) @ one_one_real )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ Z )
         => ( ( ord_less_real @ Z @ one_one_real )
           => ( summable_real
              @ ^ [I4: nat] : ( times_times_real @ ( F @ I4 ) @ ( power_power_real @ Z @ I4 ) ) ) ) ) ) ) ).

% summable_power_series
thf(fact_7274_Abel__lemma,axiom,
    ! [R: real,R0: real,A: nat > complex,M5: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R )
     => ( ( ord_less_real @ R @ R0 )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N3 ) ) @ ( power_power_real @ R0 @ N3 ) ) @ M5 )
         => ( summable_real
            @ ^ [N: nat] : ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N ) ) @ ( power_power_real @ R @ N ) ) ) ) ) ) ).

% Abel_lemma
thf(fact_7275_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > real] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_ratio_test
thf(fact_7276_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > complex] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_ratio_test
thf(fact_7277_sum__less__suminf2,axiom,
    ! [F: nat > int,N2: nat,I: nat] :
      ( ( summable_int @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N2 @ M4 )
           => ( ord_less_eq_int @ zero_zero_int @ ( F @ M4 ) ) )
       => ( ( ord_less_eq_nat @ N2 @ I )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
           => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_int @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_7278_sum__less__suminf2,axiom,
    ! [F: nat > nat,N2: nat,I: nat] :
      ( ( summable_nat @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N2 @ M4 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ M4 ) ) )
       => ( ( ord_less_eq_nat @ N2 @ I )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
           => ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_nat @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_7279_sum__less__suminf2,axiom,
    ! [F: nat > real,N2: nat,I: nat] :
      ( ( summable_real @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N2 @ M4 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ M4 ) ) )
       => ( ( ord_less_eq_nat @ N2 @ I )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
           => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_real @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_7280_geometric__sums,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( sums_real @ ( power_power_real @ C ) @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).

% geometric_sums
thf(fact_7281_geometric__sums,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( sums_complex @ ( power_power_complex @ C ) @ ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).

% geometric_sums
thf(fact_7282_power__half__series,axiom,
    ( sums_real
    @ ^ [N: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N ) )
    @ one_one_real ) ).

% power_half_series
thf(fact_7283_pi__half__neq__zero,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% pi_half_neq_zero
thf(fact_7284_pi__half__less__two,axiom,
    ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_less_two
thf(fact_7285_pi__half__le__two,axiom,
    ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_le_two
thf(fact_7286_pi__half__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_gt_zero
thf(fact_7287_pi__half__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_ge_zero
thf(fact_7288_m2pi__less__pi,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).

% m2pi_less_pi
thf(fact_7289_arctan__ubound,axiom,
    ! [Y: real] : ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arctan_ubound
thf(fact_7290_arctan__one,axiom,
    ( ( arctan @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% arctan_one
thf(fact_7291_minus__pi__half__less__zero,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).

% minus_pi_half_less_zero
thf(fact_7292_arctan__lbound,axiom,
    ! [Y: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) ) ).

% arctan_lbound
thf(fact_7293_arctan__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
      & ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arctan_bounded
thf(fact_7294_sums__if_H,axiom,
    ! [G: nat > real,X2: real] :
      ( ( sums_real @ G @ X2 )
     => ( sums_real
        @ ^ [N: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        @ X2 ) ) ).

% sums_if'
thf(fact_7295_sums__if,axiom,
    ! [G: nat > real,X2: real,F: nat > real,Y: real] :
      ( ( sums_real @ G @ X2 )
     => ( ( sums_real @ F @ Y )
       => ( sums_real
          @ ^ [N: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( F @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( plus_plus_real @ X2 @ Y ) ) ) ) ).

% sums_if
thf(fact_7296_machin__Euler,axiom,
    ( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% machin_Euler
thf(fact_7297_machin,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% machin
thf(fact_7298_sum__pos__lt__pair,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ! [D3: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D3 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D3 ) @ one_one_nat ) ) ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_pos_lt_pair
thf(fact_7299_sin__cos__npi,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) ) ).

% sin_cos_npi
thf(fact_7300_diffs__equiv,axiom,
    ! [C: nat > real,X2: real] :
      ( ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( diffs_real @ C @ N ) @ ( power_power_real @ X2 @ N ) ) )
     => ( sums_real
        @ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( C @ N ) ) @ ( power_power_real @ X2 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
        @ ( suminf_real
          @ ^ [N: nat] : ( times_times_real @ ( diffs_real @ C @ N ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).

% diffs_equiv
thf(fact_7301_diffs__equiv,axiom,
    ! [C: nat > complex,X2: complex] :
      ( ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( diffs_complex @ C @ N ) @ ( power_power_complex @ X2 @ N ) ) )
     => ( sums_complex
        @ ^ [N: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( C @ N ) ) @ ( power_power_complex @ X2 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
        @ ( suminf_complex
          @ ^ [N: nat] : ( times_times_complex @ ( diffs_complex @ C @ N ) @ ( power_power_complex @ X2 @ N ) ) ) ) ) ).

% diffs_equiv
thf(fact_7302_cos__pi__eq__zero,axiom,
    ! [M: nat] :
      ( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = zero_zero_real ) ).

% cos_pi_eq_zero
thf(fact_7303_monoseq__def,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X5: nat > real] :
          ( ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_real @ ( X5 @ M3 ) @ ( X5 @ N ) ) )
          | ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_real @ ( X5 @ N ) @ ( X5 @ M3 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7304_monoseq__def,axiom,
    ( topolo7278393974255667507et_nat
    = ( ^ [X5: nat > set_nat] :
          ( ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_set_nat @ ( X5 @ M3 ) @ ( X5 @ N ) ) )
          | ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_set_nat @ ( X5 @ N ) @ ( X5 @ M3 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7305_monoseq__def,axiom,
    ( topolo4267028734544971653eq_rat
    = ( ^ [X5: nat > rat] :
          ( ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_rat @ ( X5 @ M3 ) @ ( X5 @ N ) ) )
          | ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_rat @ ( X5 @ N ) @ ( X5 @ M3 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7306_monoseq__def,axiom,
    ( topolo1459490580787246023eq_num
    = ( ^ [X5: nat > num] :
          ( ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_num @ ( X5 @ M3 ) @ ( X5 @ N ) ) )
          | ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_num @ ( X5 @ N ) @ ( X5 @ M3 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7307_monoseq__def,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X5: nat > nat] :
          ( ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_nat @ ( X5 @ M3 ) @ ( X5 @ N ) ) )
          | ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_nat @ ( X5 @ N ) @ ( X5 @ M3 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7308_monoseq__def,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X5: nat > int] :
          ( ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_int @ ( X5 @ M3 ) @ ( X5 @ N ) ) )
          | ! [M3: nat,N: nat] :
              ( ( ord_less_eq_nat @ M3 @ N )
             => ( ord_less_eq_int @ ( X5 @ N ) @ ( X5 @ M3 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7309_monoI2,axiom,
    ! [X7: nat > real] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_real @ ( X7 @ N3 ) @ ( X7 @ M4 ) ) )
     => ( topolo6980174941875973593q_real @ X7 ) ) ).

% monoI2
thf(fact_7310_monoI2,axiom,
    ! [X7: nat > set_nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_set_nat @ ( X7 @ N3 ) @ ( X7 @ M4 ) ) )
     => ( topolo7278393974255667507et_nat @ X7 ) ) ).

% monoI2
thf(fact_7311_monoI2,axiom,
    ! [X7: nat > rat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_rat @ ( X7 @ N3 ) @ ( X7 @ M4 ) ) )
     => ( topolo4267028734544971653eq_rat @ X7 ) ) ).

% monoI2
thf(fact_7312_monoI2,axiom,
    ! [X7: nat > num] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_num @ ( X7 @ N3 ) @ ( X7 @ M4 ) ) )
     => ( topolo1459490580787246023eq_num @ X7 ) ) ).

% monoI2
thf(fact_7313_monoI2,axiom,
    ! [X7: nat > nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_nat @ ( X7 @ N3 ) @ ( X7 @ M4 ) ) )
     => ( topolo4902158794631467389eq_nat @ X7 ) ) ).

% monoI2
thf(fact_7314_monoI2,axiom,
    ! [X7: nat > int] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_int @ ( X7 @ N3 ) @ ( X7 @ M4 ) ) )
     => ( topolo4899668324122417113eq_int @ X7 ) ) ).

% monoI2
thf(fact_7315_monoI1,axiom,
    ! [X7: nat > real] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_real @ ( X7 @ M4 ) @ ( X7 @ N3 ) ) )
     => ( topolo6980174941875973593q_real @ X7 ) ) ).

% monoI1
thf(fact_7316_monoI1,axiom,
    ! [X7: nat > set_nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_set_nat @ ( X7 @ M4 ) @ ( X7 @ N3 ) ) )
     => ( topolo7278393974255667507et_nat @ X7 ) ) ).

% monoI1
thf(fact_7317_monoI1,axiom,
    ! [X7: nat > rat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_rat @ ( X7 @ M4 ) @ ( X7 @ N3 ) ) )
     => ( topolo4267028734544971653eq_rat @ X7 ) ) ).

% monoI1
thf(fact_7318_monoI1,axiom,
    ! [X7: nat > num] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_num @ ( X7 @ M4 ) @ ( X7 @ N3 ) ) )
     => ( topolo1459490580787246023eq_num @ X7 ) ) ).

% monoI1
thf(fact_7319_monoI1,axiom,
    ! [X7: nat > nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_nat @ ( X7 @ M4 ) @ ( X7 @ N3 ) ) )
     => ( topolo4902158794631467389eq_nat @ X7 ) ) ).

% monoI1
thf(fact_7320_monoI1,axiom,
    ! [X7: nat > int] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_int @ ( X7 @ M4 ) @ ( X7 @ N3 ) ) )
     => ( topolo4899668324122417113eq_int @ X7 ) ) ).

% monoI1
thf(fact_7321_sin__pi__minus,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( minus_minus_real @ pi @ X2 ) )
      = ( sin_real @ X2 ) ) ).

% sin_pi_minus
thf(fact_7322_cos__periodic__pi,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( plus_plus_real @ X2 @ pi ) )
      = ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).

% cos_periodic_pi
thf(fact_7323_cos__periodic__pi2,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( plus_plus_real @ pi @ X2 ) )
      = ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).

% cos_periodic_pi2
thf(fact_7324_sin__periodic__pi,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( plus_plus_real @ X2 @ pi ) )
      = ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).

% sin_periodic_pi
thf(fact_7325_sin__periodic__pi2,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( plus_plus_real @ pi @ X2 ) )
      = ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).

% sin_periodic_pi2
thf(fact_7326_cos__minus__pi,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( minus_minus_real @ X2 @ pi ) )
      = ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).

% cos_minus_pi
thf(fact_7327_cos__pi__minus,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( minus_minus_real @ pi @ X2 ) )
      = ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).

% cos_pi_minus
thf(fact_7328_sin__minus__pi,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( minus_minus_real @ X2 @ pi ) )
      = ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).

% sin_minus_pi
thf(fact_7329_sin__cos__squared__add3,axiom,
    ! [X2: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X2 ) @ ( cos_complex @ X2 ) ) @ ( times_times_complex @ ( sin_complex @ X2 ) @ ( sin_complex @ X2 ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add3
thf(fact_7330_sin__cos__squared__add3,axiom,
    ! [X2: real] :
      ( ( plus_plus_real @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ X2 ) ) @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ X2 ) ) )
      = one_one_real ) ).

% sin_cos_squared_add3
thf(fact_7331_sin__npi2,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) )
      = zero_zero_real ) ).

% sin_npi2
thf(fact_7332_sin__npi,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = zero_zero_real ) ).

% sin_npi
thf(fact_7333_sin__npi__int,axiom,
    ! [N2: int] :
      ( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N2 ) ) )
      = zero_zero_real ) ).

% sin_npi_int
thf(fact_7334_cos__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_pi_half
thf(fact_7335_sin__two__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = zero_zero_real ) ).

% sin_two_pi
thf(fact_7336_sin__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_pi_half
thf(fact_7337_cos__two__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_real ) ).

% cos_two_pi
thf(fact_7338_cos__periodic,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cos_real @ X2 ) ) ).

% cos_periodic
thf(fact_7339_sin__periodic,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( sin_real @ X2 ) ) ).

% sin_periodic
thf(fact_7340_cos__2pi__minus,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X2 ) )
      = ( cos_real @ X2 ) ) ).

% cos_2pi_minus
thf(fact_7341_cos__npi,axiom,
    ! [N2: nat] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) ) ).

% cos_npi
thf(fact_7342_cos__npi2,axiom,
    ! [N2: nat] :
      ( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) ) ).

% cos_npi2
thf(fact_7343_sin__cos__squared__add2,axiom,
    ! [X2: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add2
thf(fact_7344_sin__cos__squared__add2,axiom,
    ! [X2: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add2
thf(fact_7345_sin__cos__squared__add,axiom,
    ! [X2: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add
thf(fact_7346_sin__cos__squared__add,axiom,
    ! [X2: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add
thf(fact_7347_sin__2npi,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) )
      = zero_zero_real ) ).

% sin_2npi
thf(fact_7348_cos__2npi,axiom,
    ! [N2: nat] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) )
      = one_one_real ) ).

% cos_2npi
thf(fact_7349_sin__2pi__minus,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X2 ) )
      = ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).

% sin_2pi_minus
thf(fact_7350_sin__int__2pin,axiom,
    ! [N2: int] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N2 ) ) )
      = zero_zero_real ) ).

% sin_int_2pin
thf(fact_7351_cos__int__2pin,axiom,
    ! [N2: int] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N2 ) ) )
      = one_one_real ) ).

% cos_int_2pin
thf(fact_7352_cos__3over2__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = zero_zero_real ) ).

% cos_3over2_pi
thf(fact_7353_sin__3over2__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sin_3over2_pi
thf(fact_7354_cos__npi__int,axiom,
    ! [N2: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N2 ) ) )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N2 ) ) )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% cos_npi_int
thf(fact_7355_sin__diff,axiom,
    ! [X2: real,Y: real] :
      ( ( sin_real @ ( minus_minus_real @ X2 @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( sin_real @ X2 ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( sin_real @ Y ) ) ) ) ).

% sin_diff
thf(fact_7356_polar__Ex,axiom,
    ! [X2: real,Y: real] :
    ? [R3: real,A5: real] :
      ( ( X2
        = ( times_times_real @ R3 @ ( cos_real @ A5 ) ) )
      & ( Y
        = ( times_times_real @ R3 @ ( sin_real @ A5 ) ) ) ) ).

% polar_Ex
thf(fact_7357_sin__add,axiom,
    ! [X2: real,Y: real] :
      ( ( sin_real @ ( plus_plus_real @ X2 @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( sin_real @ X2 ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( sin_real @ Y ) ) ) ) ).

% sin_add
thf(fact_7358_cos__add,axiom,
    ! [X2: real,Y: real] :
      ( ( cos_real @ ( plus_plus_real @ X2 @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ Y ) ) ) ) ).

% cos_add
thf(fact_7359_cos__diff,axiom,
    ! [X2: real,Y: real] :
      ( ( cos_real @ ( minus_minus_real @ X2 @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ Y ) ) ) ) ).

% cos_diff
thf(fact_7360_sin__double,axiom,
    ! [X2: complex] :
      ( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X2 ) ) @ ( cos_complex @ X2 ) ) ) ).

% sin_double
thf(fact_7361_sin__double,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X2 ) ) @ ( cos_real @ X2 ) ) ) ).

% sin_double
thf(fact_7362_sincos__principal__value,axiom,
    ! [X2: real] :
    ? [Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y3 )
      & ( ord_less_eq_real @ Y3 @ pi )
      & ( ( sin_real @ Y3 )
        = ( sin_real @ X2 ) )
      & ( ( cos_real @ Y3 )
        = ( cos_real @ X2 ) ) ) ).

% sincos_principal_value
thf(fact_7363_sin__x__le__x,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( sin_real @ X2 ) @ X2 ) ) ).

% sin_x_le_x
thf(fact_7364_sin__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( sin_real @ X2 ) @ one_one_real ) ).

% sin_le_one
thf(fact_7365_cos__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( cos_real @ X2 ) @ one_one_real ) ).

% cos_le_one
thf(fact_7366_abs__sin__x__le__abs__x,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X2 ) ) @ ( abs_abs_real @ X2 ) ) ).

% abs_sin_x_le_abs_x
thf(fact_7367_sin__cos__le1,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) ) ) ) @ one_one_real ) ).

% sin_cos_le1
thf(fact_7368_sin__squared__eq,axiom,
    ! [X2: complex] :
      ( ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7369_sin__squared__eq,axiom,
    ! [X2: real] :
      ( ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7370_cos__squared__eq,axiom,
    ! [X2: complex] :
      ( ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7371_cos__squared__eq,axiom,
    ! [X2: real] :
      ( ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7372_sin__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ pi )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_gt_zero
thf(fact_7373_sin__x__ge__neg__x,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ X2 ) @ ( sin_real @ X2 ) ) ) ).

% sin_x_ge_neg_x
thf(fact_7374_sin__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_ge_zero
thf(fact_7375_sin__ge__minus__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X2 ) ) ).

% sin_ge_minus_one
thf(fact_7376_cos__inj__pi,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ Y @ pi )
           => ( ( ( cos_real @ X2 )
                = ( cos_real @ Y ) )
             => ( X2 = Y ) ) ) ) ) ) ).

% cos_inj_pi
thf(fact_7377_cos__mono__le__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ Y @ pi )
           => ( ( ord_less_eq_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) )
              = ( ord_less_eq_real @ Y @ X2 ) ) ) ) ) ) ).

% cos_mono_le_eq
thf(fact_7378_cos__monotone__0__pi__le,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ Y @ X2 )
       => ( ( ord_less_eq_real @ X2 @ pi )
         => ( ord_less_eq_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) ) ) ) ) ).

% cos_monotone_0_pi_le
thf(fact_7379_cos__ge__minus__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X2 ) ) ).

% cos_ge_minus_one
thf(fact_7380_abs__sin__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X2 ) ) @ one_one_real ) ).

% abs_sin_le_one
thf(fact_7381_abs__cos__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X2 ) ) @ one_one_real ) ).

% abs_cos_le_one
thf(fact_7382_sin__times__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_7383_sin__times__sin,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_7384_sin__times__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_7385_sin__times__cos,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_7386_cos__times__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_7387_cos__times__sin,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_7388_sin__plus__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_7389_sin__plus__sin,axiom,
    ! [W: real,Z: real] :
      ( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_7390_sin__diff__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_7391_sin__diff__sin,axiom,
    ! [W: real,Z: real] :
      ( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_7392_cos__diff__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_7393_cos__diff__cos,axiom,
    ! [W: real,Z: real] :
      ( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_7394_cos__double,axiom,
    ! [X2: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
      = ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_7395_cos__double,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
      = ( minus_minus_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_7396_cos__double__sin,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_7397_cos__double__sin,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_7398_cos__two__neq__zero,axiom,
    ( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% cos_two_neq_zero
thf(fact_7399_cos__monotone__0__pi,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ Y @ X2 )
       => ( ( ord_less_eq_real @ X2 @ pi )
         => ( ord_less_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) ) ) ) ) ).

% cos_monotone_0_pi
thf(fact_7400_cos__mono__less__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ Y @ pi )
           => ( ( ord_less_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) )
              = ( ord_less_real @ Y @ X2 ) ) ) ) ) ) ).

% cos_mono_less_eq
thf(fact_7401_sin__eq__0__pi,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X2 )
     => ( ( ord_less_real @ X2 @ pi )
       => ( ( ( sin_real @ X2 )
            = zero_zero_real )
         => ( X2 = zero_zero_real ) ) ) ) ).

% sin_eq_0_pi
thf(fact_7402_sin__zero__pi__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ pi )
     => ( ( ( sin_real @ X2 )
          = zero_zero_real )
        = ( X2 = zero_zero_real ) ) ) ).

% sin_zero_pi_iff
thf(fact_7403_cos__monotone__minus__pi__0_H,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y )
     => ( ( ord_less_eq_real @ Y @ X2 )
       => ( ( ord_less_eq_real @ X2 @ zero_zero_real )
         => ( ord_less_eq_real @ ( cos_real @ Y ) @ ( cos_real @ X2 ) ) ) ) ) ).

% cos_monotone_minus_pi_0'
thf(fact_7404_sin__zero__iff__int2,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ X2 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( X2
            = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ pi ) ) ) ) ).

% sin_zero_iff_int2
thf(fact_7405_diffs__def,axiom,
    ( diffs_rat
    = ( ^ [C3: nat > rat,N: nat] : ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N ) ) @ ( C3 @ ( suc @ N ) ) ) ) ) ).

% diffs_def
thf(fact_7406_diffs__def,axiom,
    ( diffs_int
    = ( ^ [C3: nat > int,N: nat] : ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) @ ( C3 @ ( suc @ N ) ) ) ) ) ).

% diffs_def
thf(fact_7407_diffs__def,axiom,
    ( diffs_real
    = ( ^ [C3: nat > real,N: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( C3 @ ( suc @ N ) ) ) ) ) ).

% diffs_def
thf(fact_7408_diffs__def,axiom,
    ( diffs_complex
    = ( ^ [C3: nat > complex,N: nat] : ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( C3 @ ( suc @ N ) ) ) ) ) ).

% diffs_def
thf(fact_7409_sincos__total__pi,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = one_one_real )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
            & ( ord_less_eq_real @ T5 @ pi )
            & ( X2
              = ( cos_real @ T5 ) )
            & ( Y
              = ( sin_real @ T5 ) ) ) ) ) ).

% sincos_total_pi
thf(fact_7410_sin__expansion__lemma,axiom,
    ! [X2: real,M: nat] :
      ( ( sin_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( cos_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_expansion_lemma
thf(fact_7411_cos__expansion__lemma,axiom,
    ! [X2: real,M: nat] :
      ( ( cos_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_expansion_lemma
thf(fact_7412_termdiff__converges__all,axiom,
    ! [C: nat > complex,X2: complex] :
      ( ! [X3: complex] :
          ( summable_complex
          @ ^ [N: nat] : ( times_times_complex @ ( C @ N ) @ ( power_power_complex @ X3 @ N ) ) )
     => ( summable_complex
        @ ^ [N: nat] : ( times_times_complex @ ( diffs_complex @ C @ N ) @ ( power_power_complex @ X2 @ N ) ) ) ) ).

% termdiff_converges_all
thf(fact_7413_termdiff__converges__all,axiom,
    ! [C: nat > real,X2: real] :
      ( ! [X3: real] :
          ( summable_real
          @ ^ [N: nat] : ( times_times_real @ ( C @ N ) @ ( power_power_real @ X3 @ N ) ) )
     => ( summable_real
        @ ^ [N: nat] : ( times_times_real @ ( diffs_real @ C @ N ) @ ( power_power_real @ X2 @ N ) ) ) ) ).

% termdiff_converges_all
thf(fact_7414_sin__gt__zero__02,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_gt_zero_02
thf(fact_7415_cos__two__less__zero,axiom,
    ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_less_zero
thf(fact_7416_cos__is__zero,axiom,
    ? [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
      & ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      & ( ( cos_real @ X3 )
        = zero_zero_real )
      & ! [Y4: real] :
          ( ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
            & ( ord_less_eq_real @ Y4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ Y4 )
              = zero_zero_real ) )
         => ( Y4 = X3 ) ) ) ).

% cos_is_zero
thf(fact_7417_cos__two__le__zero,axiom,
    ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_le_zero
thf(fact_7418_cos__monotone__minus__pi__0,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y )
     => ( ( ord_less_real @ Y @ X2 )
       => ( ( ord_less_eq_real @ X2 @ zero_zero_real )
         => ( ord_less_real @ ( cos_real @ Y ) @ ( cos_real @ X2 ) ) ) ) ) ).

% cos_monotone_minus_pi_0
thf(fact_7419_cos__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ? [X3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X3 )
            & ( ord_less_eq_real @ X3 @ pi )
            & ( ( cos_real @ X3 )
              = Y )
            & ! [Y4: real] :
                ( ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ pi )
                  & ( ( cos_real @ Y4 )
                    = Y ) )
               => ( Y4 = X3 ) ) ) ) ) ).

% cos_total
thf(fact_7420_sincos__total__pi__half,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
            = one_one_real )
         => ? [T5: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ T5 )
              & ( ord_less_eq_real @ T5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( X2
                = ( cos_real @ T5 ) )
              & ( Y
                = ( sin_real @ T5 ) ) ) ) ) ) ).

% sincos_total_pi_half
thf(fact_7421_sincos__total__2pi__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ? [T5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ T5 )
          & ( ord_less_eq_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
          & ( X2
            = ( cos_real @ T5 ) )
          & ( Y
            = ( sin_real @ T5 ) ) ) ) ).

% sincos_total_2pi_le
thf(fact_7422_sincos__total__2pi,axiom,
    ! [X2: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ~ ! [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
           => ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( ( X2
                  = ( cos_real @ T5 ) )
               => ( Y
                 != ( sin_real @ T5 ) ) ) ) ) ) ).

% sincos_total_2pi
thf(fact_7423_sin__pi__divide__n__ge__0,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% sin_pi_divide_n_ge_0
thf(fact_7424_cos__times__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_7425_cos__times__cos,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_7426_cos__plus__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_7427_cos__plus__cos,axiom,
    ! [W: real,Z: real] :
      ( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_7428_sin__gt__zero2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_gt_zero2
thf(fact_7429_sin__lt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ pi @ X2 )
     => ( ( ord_less_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).

% sin_lt_zero
thf(fact_7430_cos__double__less__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) @ one_one_real ) ) ) ).

% cos_double_less_one
thf(fact_7431_sin__30,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_30
thf(fact_7432_cos__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).

% cos_gt_zero
thf(fact_7433_sin__monotone__2pi__le,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_eq_real @ Y @ X2 )
       => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sin_real @ Y ) @ ( sin_real @ X2 ) ) ) ) ) ).

% sin_monotone_2pi_le
thf(fact_7434_sin__mono__le__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( sin_real @ X2 ) @ ( sin_real @ Y ) )
              = ( ord_less_eq_real @ X2 @ Y ) ) ) ) ) ) ).

% sin_mono_le_eq
thf(fact_7435_sin__inj__pi,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ( sin_real @ X2 )
                = ( sin_real @ Y ) )
             => ( X2 = Y ) ) ) ) ) ) ).

% sin_inj_pi
thf(fact_7436_cos__60,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_60
thf(fact_7437_cos__one__2pi__int,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = one_one_real )
      = ( ? [X: int] :
            ( X2
            = ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).

% cos_one_2pi_int
thf(fact_7438_cos__double__cos,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).

% cos_double_cos
thf(fact_7439_cos__double__cos,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).

% cos_double_cos
thf(fact_7440_cos__treble__cos,axiom,
    ! [X2: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X2 ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X2 ) ) ) ) ).

% cos_treble_cos
thf(fact_7441_cos__treble__cos,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X2 ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X2 ) ) ) ) ).

% cos_treble_cos
thf(fact_7442_termdiff__converges,axiom,
    ! [X2: real,K5: real,C: nat > real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ K5 )
     => ( ! [X3: real] :
            ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ K5 )
           => ( summable_real
              @ ^ [N: nat] : ( times_times_real @ ( C @ N ) @ ( power_power_real @ X3 @ N ) ) ) )
       => ( summable_real
          @ ^ [N: nat] : ( times_times_real @ ( diffs_real @ C @ N ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).

% termdiff_converges
thf(fact_7443_termdiff__converges,axiom,
    ! [X2: complex,K5: real,C: nat > complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ K5 )
     => ( ! [X3: complex] :
            ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ K5 )
           => ( summable_complex
              @ ^ [N: nat] : ( times_times_complex @ ( C @ N ) @ ( power_power_complex @ X3 @ N ) ) ) )
       => ( summable_complex
          @ ^ [N: nat] : ( times_times_complex @ ( diffs_complex @ C @ N ) @ ( power_power_complex @ X2 @ N ) ) ) ) ) ).

% termdiff_converges
thf(fact_7444_sin__le__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ pi @ X2 )
     => ( ( ord_less_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_eq_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).

% sin_le_zero
thf(fact_7445_sin__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ( ord_less_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).

% sin_less_zero
thf(fact_7446_sin__monotone__2pi,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ X2 )
       => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sin_real @ Y ) @ ( sin_real @ X2 ) ) ) ) ) ).

% sin_monotone_2pi
thf(fact_7447_sin__mono__less__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( sin_real @ X2 ) @ ( sin_real @ Y ) )
              = ( ord_less_real @ X2 @ Y ) ) ) ) ) ) ).

% sin_mono_less_eq
thf(fact_7448_sin__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ? [X3: real] :
            ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
            & ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( sin_real @ X3 )
              = Y )
            & ! [Y4: real] :
                ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
                  & ( ( sin_real @ Y4 )
                    = Y ) )
               => ( Y4 = X3 ) ) ) ) ) ).

% sin_total
thf(fact_7449_cos__gt__zero__pi,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).

% cos_gt_zero_pi
thf(fact_7450_cos__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).

% cos_ge_zero
thf(fact_7451_cos__one__2pi,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = one_one_real )
      = ( ? [X: nat] :
            ( X2
            = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
        | ? [X: nat] :
            ( X2
            = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).

% cos_one_2pi
thf(fact_7452_sin__pi__divide__n__gt__0,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% sin_pi_divide_n_gt_0
thf(fact_7453_sin__zero__iff__int,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ X2 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X2
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_iff_int
thf(fact_7454_cos__zero__iff__int,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X2
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_iff_int
thf(fact_7455_sin__zero__lemma,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( sin_real @ X2 )
          = zero_zero_real )
       => ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_lemma
thf(fact_7456_sin__zero__iff,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ X2 )
        = zero_zero_real )
      = ( ? [N: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( X2
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% sin_zero_iff
thf(fact_7457_cos__zero__lemma,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( cos_real @ X2 )
          = zero_zero_real )
       => ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_lemma
thf(fact_7458_cos__zero__iff,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = zero_zero_real )
      = ( ? [N: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( X2
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% cos_zero_iff
thf(fact_7459_mono__SucI1,axiom,
    ! [X7: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( X7 @ N3 ) @ ( X7 @ ( suc @ N3 ) ) )
     => ( topolo6980174941875973593q_real @ X7 ) ) ).

% mono_SucI1
thf(fact_7460_mono__SucI1,axiom,
    ! [X7: nat > set_nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_nat @ ( X7 @ N3 ) @ ( X7 @ ( suc @ N3 ) ) )
     => ( topolo7278393974255667507et_nat @ X7 ) ) ).

% mono_SucI1
thf(fact_7461_mono__SucI1,axiom,
    ! [X7: nat > rat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( X7 @ N3 ) @ ( X7 @ ( suc @ N3 ) ) )
     => ( topolo4267028734544971653eq_rat @ X7 ) ) ).

% mono_SucI1
thf(fact_7462_mono__SucI1,axiom,
    ! [X7: nat > num] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( X7 @ N3 ) @ ( X7 @ ( suc @ N3 ) ) )
     => ( topolo1459490580787246023eq_num @ X7 ) ) ).

% mono_SucI1
thf(fact_7463_mono__SucI1,axiom,
    ! [X7: nat > nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( X7 @ N3 ) @ ( X7 @ ( suc @ N3 ) ) )
     => ( topolo4902158794631467389eq_nat @ X7 ) ) ).

% mono_SucI1
thf(fact_7464_mono__SucI1,axiom,
    ! [X7: nat > int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( X7 @ N3 ) @ ( X7 @ ( suc @ N3 ) ) )
     => ( topolo4899668324122417113eq_int @ X7 ) ) ).

% mono_SucI1
thf(fact_7465_mono__SucI2,axiom,
    ! [X7: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( X7 @ ( suc @ N3 ) ) @ ( X7 @ N3 ) )
     => ( topolo6980174941875973593q_real @ X7 ) ) ).

% mono_SucI2
thf(fact_7466_mono__SucI2,axiom,
    ! [X7: nat > set_nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_nat @ ( X7 @ ( suc @ N3 ) ) @ ( X7 @ N3 ) )
     => ( topolo7278393974255667507et_nat @ X7 ) ) ).

% mono_SucI2
thf(fact_7467_mono__SucI2,axiom,
    ! [X7: nat > rat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( X7 @ ( suc @ N3 ) ) @ ( X7 @ N3 ) )
     => ( topolo4267028734544971653eq_rat @ X7 ) ) ).

% mono_SucI2
thf(fact_7468_mono__SucI2,axiom,
    ! [X7: nat > num] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( X7 @ ( suc @ N3 ) ) @ ( X7 @ N3 ) )
     => ( topolo1459490580787246023eq_num @ X7 ) ) ).

% mono_SucI2
thf(fact_7469_mono__SucI2,axiom,
    ! [X7: nat > nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( X7 @ ( suc @ N3 ) ) @ ( X7 @ N3 ) )
     => ( topolo4902158794631467389eq_nat @ X7 ) ) ).

% mono_SucI2
thf(fact_7470_mono__SucI2,axiom,
    ! [X7: nat > int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( X7 @ ( suc @ N3 ) ) @ ( X7 @ N3 ) )
     => ( topolo4899668324122417113eq_int @ X7 ) ) ).

% mono_SucI2
thf(fact_7471_monoseq__Suc,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X5: nat > real] :
          ( ! [N: nat] : ( ord_less_eq_real @ ( X5 @ N ) @ ( X5 @ ( suc @ N ) ) )
          | ! [N: nat] : ( ord_less_eq_real @ ( X5 @ ( suc @ N ) ) @ ( X5 @ N ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7472_monoseq__Suc,axiom,
    ( topolo7278393974255667507et_nat
    = ( ^ [X5: nat > set_nat] :
          ( ! [N: nat] : ( ord_less_eq_set_nat @ ( X5 @ N ) @ ( X5 @ ( suc @ N ) ) )
          | ! [N: nat] : ( ord_less_eq_set_nat @ ( X5 @ ( suc @ N ) ) @ ( X5 @ N ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7473_monoseq__Suc,axiom,
    ( topolo4267028734544971653eq_rat
    = ( ^ [X5: nat > rat] :
          ( ! [N: nat] : ( ord_less_eq_rat @ ( X5 @ N ) @ ( X5 @ ( suc @ N ) ) )
          | ! [N: nat] : ( ord_less_eq_rat @ ( X5 @ ( suc @ N ) ) @ ( X5 @ N ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7474_monoseq__Suc,axiom,
    ( topolo1459490580787246023eq_num
    = ( ^ [X5: nat > num] :
          ( ! [N: nat] : ( ord_less_eq_num @ ( X5 @ N ) @ ( X5 @ ( suc @ N ) ) )
          | ! [N: nat] : ( ord_less_eq_num @ ( X5 @ ( suc @ N ) ) @ ( X5 @ N ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7475_monoseq__Suc,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X5: nat > nat] :
          ( ! [N: nat] : ( ord_less_eq_nat @ ( X5 @ N ) @ ( X5 @ ( suc @ N ) ) )
          | ! [N: nat] : ( ord_less_eq_nat @ ( X5 @ ( suc @ N ) ) @ ( X5 @ N ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7476_monoseq__Suc,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X5: nat > int] :
          ( ! [N: nat] : ( ord_less_eq_int @ ( X5 @ N ) @ ( X5 @ ( suc @ N ) ) )
          | ! [N: nat] : ( ord_less_eq_int @ ( X5 @ ( suc @ N ) ) @ ( X5 @ N ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7477_Maclaurin__minus__cos__expansion,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ? [T5: real] :
            ( ( ord_less_real @ X2 @ T5 )
            & ( ord_less_real @ T5 @ zero_zero_real )
            & ( ( cos_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_minus_cos_expansion
thf(fact_7478_Maclaurin__cos__expansion2,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ T5 )
            & ( ord_less_real @ T5 @ X2 )
            & ( ( cos_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_cos_expansion2
thf(fact_7479_Maclaurin__cos__expansion,axiom,
    ! [X2: real,N2: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
      & ( ( cos_real @ X2 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ).

% Maclaurin_cos_expansion
thf(fact_7480_sin__paired,axiom,
    ! [X2: real] :
      ( sums_real
      @ ^ [N: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
      @ ( sin_real @ X2 ) ) ).

% sin_paired
thf(fact_7481_tan__double,axiom,
    ! [X2: complex] :
      ( ( ( cos_complex @ X2 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
         != zero_zero_complex )
       => ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X2 ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_7482_tan__double,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
       != zero_zero_real )
     => ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
         != zero_zero_real )
       => ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
          = ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X2 ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_7483_tan__periodic__pi,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ pi ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_pi
thf(fact_7484_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri773545260158071498ct_rat @ ( suc @ N2 ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% fact_Suc
thf(fact_7485_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1406184849735516958ct_int @ ( suc @ N2 ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% fact_Suc
thf(fact_7486_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri5044797733671781792omplex @ ( suc @ N2 ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N2 ) ) @ ( semiri5044797733671781792omplex @ N2 ) ) ) ).

% fact_Suc
thf(fact_7487_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri2265585572941072030t_real @ ( suc @ N2 ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% fact_Suc
thf(fact_7488_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1408675320244567234ct_nat @ ( suc @ N2 ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N2 ) ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% fact_Suc
thf(fact_7489_tan__npi,axiom,
    ! [N2: nat] :
      ( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = zero_zero_real ) ).

% tan_npi
thf(fact_7490_tan__periodic__n,axiom,
    ! [X2: real,N2: num] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ N2 ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_n
thf(fact_7491_tan__periodic__nat,axiom,
    ! [X2: real,N2: nat] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_nat
thf(fact_7492_tan__periodic__int,axiom,
    ! [X2: real,I: int] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( ring_1_of_int_real @ I ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_int
thf(fact_7493_fact__2,axiom,
    ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7494_fact__2,axiom,
    ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7495_fact__2,axiom,
    ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7496_fact__2,axiom,
    ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7497_fact__2,axiom,
    ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7498_tan__periodic,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic
thf(fact_7499_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N2 ) ) ).

% fact_ge_zero
thf(fact_7500_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N2 ) ) ).

% fact_ge_zero
thf(fact_7501_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N2 ) ) ).

% fact_ge_zero
thf(fact_7502_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_zero
thf(fact_7503_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N2 ) ) ).

% fact_gt_zero
thf(fact_7504_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N2 ) ) ).

% fact_gt_zero
thf(fact_7505_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N2 ) ) ).

% fact_gt_zero
thf(fact_7506_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_gt_zero
thf(fact_7507_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ zero_zero_rat ) ).

% fact_not_neg
thf(fact_7508_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_int @ ( semiri1406184849735516958ct_int @ N2 ) @ zero_zero_int ) ).

% fact_not_neg
thf(fact_7509_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_real @ ( semiri2265585572941072030t_real @ N2 ) @ zero_zero_real ) ).

% fact_not_neg
thf(fact_7510_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ zero_zero_nat ) ).

% fact_not_neg
thf(fact_7511_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ one_one_rat @ ( semiri773545260158071498ct_rat @ N2 ) ) ).

% fact_ge_1
thf(fact_7512_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ one_one_int @ ( semiri1406184849735516958ct_int @ N2 ) ) ).

% fact_ge_1
thf(fact_7513_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ one_one_real @ ( semiri2265585572941072030t_real @ N2 ) ) ).

% fact_ge_1
thf(fact_7514_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ one_one_nat @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_1
thf(fact_7515_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% fact_mono
thf(fact_7516_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% fact_mono
thf(fact_7517_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% fact_mono
thf(fact_7518_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% fact_mono
thf(fact_7519_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_int @ ( semiri1406184849735516958ct_int @ N2 ) @ ( semiri1406184849735516958ct_int @ M ) ) ) ).

% fact_dvd
thf(fact_7520_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_Code_integer @ ( semiri3624122377584611663nteger @ N2 ) @ ( semiri3624122377584611663nteger @ M ) ) ) ).

% fact_dvd
thf(fact_7521_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri2265585572941072030t_real @ M ) ) ) ).

% fact_dvd
thf(fact_7522_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ M ) ) ) ).

% fact_dvd
thf(fact_7523_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_7524_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_7525_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_7526_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_7527_fact__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_int @ ( semiri1406184849735516958ct_int @ N2 ) @ ( semiri1406184849735516958ct_int @ M ) )
        = zero_zero_int ) ) ).

% fact_mod
thf(fact_7528_fact__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo364778990260209775nteger @ ( semiri3624122377584611663nteger @ N2 ) @ ( semiri3624122377584611663nteger @ M ) )
        = zero_z3403309356797280102nteger ) ) ).

% fact_mod
thf(fact_7529_fact__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ M ) )
        = zero_zero_nat ) ) ).

% fact_mod
thf(fact_7530_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ ( semiri681578069525770553at_rat @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_7531_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ N2 ) @ ( semiri1314217659103216013at_int @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_7532_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_7533_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1316708129612266289at_nat @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_7534_tan__def,axiom,
    ( tan_complex
    = ( ^ [X: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ X ) @ ( cos_complex @ X ) ) ) ) ).

% tan_def
thf(fact_7535_tan__def,axiom,
    ( tan_real
    = ( ^ [X: real] : ( divide_divide_real @ ( sin_real @ X ) @ ( cos_real @ X ) ) ) ) ).

% tan_def
thf(fact_7536_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ K ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ K ) @ ( semiri5044797733671781792omplex @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_7537_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ K ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_7538_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ K ) )
      = ( times_times_int @ ( numeral_numeral_int @ K ) @ ( semiri1406184849735516958ct_int @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_7539_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ K ) )
      = ( times_times_real @ ( numeral_numeral_real @ K ) @ ( semiri2265585572941072030t_real @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_7540_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ K ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_7541_square__fact__le__2__fact,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% square_fact_le_2_fact
thf(fact_7542_tan__45,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = one_one_real ) ).

% tan_45
thf(fact_7543_fact__num__eq__if,axiom,
    ( semiri773545260158071498ct_rat
    = ( ^ [M3: nat] : ( if_rat @ ( M3 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ M3 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_7544_fact__num__eq__if,axiom,
    ( semiri1406184849735516958ct_int
    = ( ^ [M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_7545_fact__num__eq__if,axiom,
    ( semiri5044797733671781792omplex
    = ( ^ [M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ M3 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_7546_fact__num__eq__if,axiom,
    ( semiri2265585572941072030t_real
    = ( ^ [M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M3 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_7547_fact__num__eq__if,axiom,
    ( semiri1408675320244567234ct_nat
    = ( ^ [M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M3 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_7548_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri773545260158071498ct_rat @ N2 )
        = ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_7549_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri1406184849735516958ct_int @ N2 )
        = ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_7550_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri5044797733671781792omplex @ N2 )
        = ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_7551_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri2265585572941072030t_real @ N2 )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_7552_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri1408675320244567234ct_nat @ N2 )
        = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_7553_tan__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( tan_real @ X2 ) ) ) ) ).

% tan_gt_zero
thf(fact_7554_lemma__tan__total,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ? [X3: real] :
          ( ( ord_less_real @ zero_zero_real @ X3 )
          & ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ord_less_real @ Y @ ( tan_real @ X3 ) ) ) ) ).

% lemma_tan_total
thf(fact_7555_tan__total,axiom,
    ! [Y: real] :
    ? [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
      & ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X3 )
        = Y )
      & ! [Y4: real] :
          ( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
            & ( ord_less_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( tan_real @ Y4 )
              = Y ) )
         => ( Y4 = X3 ) ) ) ).

% tan_total
thf(fact_7556_tan__monotone,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ X2 )
       => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X2 ) ) ) ) ) ).

% tan_monotone
thf(fact_7557_tan__monotone_H,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
         => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ Y @ X2 )
              = ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X2 ) ) ) ) ) ) ) ).

% tan_monotone'
thf(fact_7558_tan__mono__lt__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) )
              = ( ord_less_real @ X2 @ Y ) ) ) ) ) ) ).

% tan_mono_lt_eq
thf(fact_7559_lemma__tan__total1,axiom,
    ! [Y: real] :
    ? [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
      & ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X3 )
        = Y ) ) ).

% lemma_tan_total1
thf(fact_7560_tan__minus__45,axiom,
    ( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% tan_minus_45
thf(fact_7561_tan__inverse,axiom,
    ! [Y: real] :
      ( ( divide_divide_real @ one_one_real @ ( tan_real @ Y ) )
      = ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y ) ) ) ).

% tan_inverse
thf(fact_7562_add__tan__eq,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( cos_complex @ X2 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( plus_plus_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y ) )
          = ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X2 @ Y ) ) @ ( times_times_complex @ ( cos_complex @ X2 ) @ ( cos_complex @ Y ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_7563_add__tan__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ( cos_real @ X2 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( plus_plus_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) )
          = ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X2 @ Y ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_7564_tan__total__pos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ? [X3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X3 )
          & ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( tan_real @ X3 )
            = Y ) ) ) ).

% tan_total_pos
thf(fact_7565_tan__pos__pi2__le,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X2 ) ) ) ) ).

% tan_pos_pi2_le
thf(fact_7566_tan__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ( ord_less_real @ ( tan_real @ X2 ) @ zero_zero_real ) ) ) ).

% tan_less_zero
thf(fact_7567_tan__mono__le,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y )
       => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) ) ) ) ) ).

% tan_mono_le
thf(fact_7568_tan__mono__le__eq,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) )
              = ( ord_less_eq_real @ X2 @ Y ) ) ) ) ) ) ).

% tan_mono_le_eq
thf(fact_7569_tan__bound__pi2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
     => ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X2 ) ) @ one_one_real ) ) ).

% tan_bound_pi2
thf(fact_7570_arctan__unique,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ( tan_real @ X2 )
            = Y )
         => ( ( arctan @ Y )
            = X2 ) ) ) ) ).

% arctan_unique
thf(fact_7571_arctan__tan,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arctan @ ( tan_real @ X2 ) )
          = X2 ) ) ) ).

% arctan_tan
thf(fact_7572_arctan,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
      & ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ ( arctan @ Y ) )
        = Y ) ) ).

% arctan
thf(fact_7573_Maclaurin__zero,axiom,
    ! [X2: real,N2: nat,Diff: nat > complex > real] :
      ( ( X2 = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_complex ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_complex ) ) ) ) ).

% Maclaurin_zero
thf(fact_7574_Maclaurin__zero,axiom,
    ! [X2: real,N2: nat,Diff: nat > real > real] :
      ( ( X2 = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_real ) ) ) ) ).

% Maclaurin_zero
thf(fact_7575_Maclaurin__zero,axiom,
    ! [X2: real,N2: nat,Diff: nat > rat > real] :
      ( ( X2 = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_rat ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_rat ) ) ) ) ).

% Maclaurin_zero
thf(fact_7576_Maclaurin__zero,axiom,
    ! [X2: real,N2: nat,Diff: nat > nat > real] :
      ( ( X2 = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_nat ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_nat ) ) ) ) ).

% Maclaurin_zero
thf(fact_7577_Maclaurin__zero,axiom,
    ! [X2: real,N2: nat,Diff: nat > int > real] :
      ( ( X2 = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_int ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_int ) ) ) ) ).

% Maclaurin_zero
thf(fact_7578_Maclaurin__lemma,axiom,
    ! [H2: real,F: real > real,J: nat > real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ? [B9: real] :
          ( ( F @ H2 )
          = ( plus_plus_real
            @ ( groups6591440286371151544t_real
              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
              @ ( set_ord_lessThan_nat @ N2 ) )
            @ ( times_times_real @ B9 @ ( divide_divide_real @ ( power_power_real @ H2 @ N2 ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ) ) ).

% Maclaurin_lemma
thf(fact_7579_lemma__tan__add1,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( cos_complex @ X2 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y ) ) )
          = ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X2 @ Y ) ) @ ( times_times_complex @ ( cos_complex @ X2 ) @ ( cos_complex @ Y ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_7580_lemma__tan__add1,axiom,
    ! [X2: real,Y: real] :
      ( ( ( cos_real @ X2 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) ) )
          = ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X2 @ Y ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_7581_tan__diff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( cos_complex @ X2 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( minus_minus_complex @ X2 @ Y ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( minus_minus_complex @ X2 @ Y ) )
            = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_7582_tan__diff,axiom,
    ! [X2: real,Y: real] :
      ( ( ( cos_real @ X2 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( ( cos_real @ ( minus_minus_real @ X2 @ Y ) )
           != zero_zero_real )
         => ( ( tan_real @ ( minus_minus_real @ X2 @ Y ) )
            = ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_7583_tan__add,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( cos_complex @ X2 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( plus_plus_complex @ X2 @ Y ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( plus_plus_complex @ X2 @ Y ) )
            = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_7584_tan__add,axiom,
    ! [X2: real,Y: real] :
      ( ( ( cos_real @ X2 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( ( cos_real @ ( plus_plus_real @ X2 @ Y ) )
           != zero_zero_real )
         => ( ( tan_real @ ( plus_plus_real @ X2 @ Y ) )
            = ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X2 ) @ ( tan_real @ Y ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_7585_tan__total__pi4,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ? [Z5: real] :
          ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z5 )
          & ( ord_less_real @ Z5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
          & ( ( tan_real @ Z5 )
            = X2 ) ) ) ).

% tan_total_pi4
thf(fact_7586_tan__half,axiom,
    ( tan_complex
    = ( ^ [X: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) ) @ one_one_complex ) ) ) ) ).

% tan_half
thf(fact_7587_tan__half,axiom,
    ( tan_real
    = ( ^ [X: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ) ).

% tan_half
thf(fact_7588_cos__coeff__def,axiom,
    ( cos_coeff
    = ( ^ [N: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ zero_zero_real ) ) ) ).

% cos_coeff_def
thf(fact_7589_cos__paired,axiom,
    ! [X2: real] :
      ( sums_real
      @ ^ [N: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( power_power_real @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      @ ( cos_real @ X2 ) ) ).

% cos_paired
thf(fact_7590_Maclaurin__sin__expansion3,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ T5 )
            & ( ord_less_real @ T5 @ X2 )
            & ( ( sin_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_sin_expansion3
thf(fact_7591_Maclaurin__sin__expansion4,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ? [T5: real] :
          ( ( ord_less_real @ zero_zero_real @ T5 )
          & ( ord_less_eq_real @ T5 @ X2 )
          & ( ( sin_real @ X2 )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                @ ( set_ord_lessThan_nat @ N2 ) )
              @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ).

% Maclaurin_sin_expansion4
thf(fact_7592_Maclaurin__sin__expansion2,axiom,
    ! [X2: real,N2: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
      & ( ( sin_real @ X2 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ).

% Maclaurin_sin_expansion2
thf(fact_7593_Maclaurin__sin__expansion,axiom,
    ! [X2: real,N2: nat] :
    ? [T5: real] :
      ( ( sin_real @ X2 )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
          @ ( set_ord_lessThan_nat @ N2 ) )
        @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ).

% Maclaurin_sin_expansion
thf(fact_7594_sin__coeff__def,axiom,
    ( sin_coeff
    = ( ^ [N: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ).

% sin_coeff_def
thf(fact_7595_fact__mono__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% fact_mono_nat
thf(fact_7596_fact__ge__self,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_self
thf(fact_7597_fact__less__mono__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).

% fact_less_mono_nat
thf(fact_7598_fact__ge__Suc__0__nat,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_Suc_0_nat
thf(fact_7599_dvd__fact,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).

% dvd_fact
thf(fact_7600_fact__diff__Suc,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ M ) )
     => ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) )
        = ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N2 ) ) ) ) ) ).

% fact_diff_Suc
thf(fact_7601_fact__div__fact__le__pow,axiom,
    ! [R: nat,N2: nat] :
      ( ( ord_less_eq_nat @ R @ N2 )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ R ) ) ) @ ( power_power_nat @ N2 @ R ) ) ) ).

% fact_div_fact_le_pow
thf(fact_7602_sin__coeff__Suc,axiom,
    ! [N2: nat] :
      ( ( sin_coeff @ ( suc @ N2 ) )
      = ( divide_divide_real @ ( cos_coeff @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) ).

% sin_coeff_Suc
thf(fact_7603_cos__coeff__Suc,axiom,
    ! [N2: nat] :
      ( ( cos_coeff @ ( suc @ N2 ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N2 ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) ).

% cos_coeff_Suc
thf(fact_7604_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri3624122377584611663nteger @ N2 ) ) ) ).

% choose_dvd
thf(fact_7605_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% choose_dvd
thf(fact_7606_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% choose_dvd
thf(fact_7607_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% choose_dvd
thf(fact_7608_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% choose_dvd
thf(fact_7609_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ N2 ) ) @ ( semiri3624122377584611663nteger @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_7610_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ N2 ) ) @ ( semiri773545260158071498ct_rat @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_7611_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ N2 ) ) @ ( semiri1406184849735516958ct_int @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_7612_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_7613_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) @ ( semiri1408675320244567234ct_nat @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_7614_sin__tan,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( sin_real @ X2 )
        = ( divide_divide_real @ ( tan_real @ X2 ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_tan
thf(fact_7615_cos__tan,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( cos_real @ X2 )
        = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_tan
thf(fact_7616_complex__unimodular__polar,axiom,
    ! [Z: complex] :
      ( ( ( real_V1022390504157884413omplex @ Z )
        = one_one_real )
     => ~ ! [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
           => ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( Z
               != ( complex2 @ ( cos_real @ T5 ) @ ( sin_real @ T5 ) ) ) ) ) ) ).

% complex_unimodular_polar
thf(fact_7617_real__sqrt__eq__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ( sqrt @ X2 )
        = ( sqrt @ Y ) )
      = ( X2 = Y ) ) ).

% real_sqrt_eq_iff
thf(fact_7618_real__sqrt__zero,axiom,
    ( ( sqrt @ zero_zero_real )
    = zero_zero_real ) ).

% real_sqrt_zero
thf(fact_7619_real__sqrt__eq__zero__cancel__iff,axiom,
    ! [X2: real] :
      ( ( ( sqrt @ X2 )
        = zero_zero_real )
      = ( X2 = zero_zero_real ) ) ).

% real_sqrt_eq_zero_cancel_iff
thf(fact_7620_real__sqrt__less__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) )
      = ( ord_less_real @ X2 @ Y ) ) ).

% real_sqrt_less_iff
thf(fact_7621_real__sqrt__le__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ X2 @ Y ) ) ).

% real_sqrt_le_iff
thf(fact_7622_real__sqrt__one,axiom,
    ( ( sqrt @ one_one_real )
    = one_one_real ) ).

% real_sqrt_one
thf(fact_7623_real__sqrt__eq__1__iff,axiom,
    ! [X2: real] :
      ( ( ( sqrt @ X2 )
        = one_one_real )
      = ( X2 = one_one_real ) ) ).

% real_sqrt_eq_1_iff
thf(fact_7624_real__sqrt__gt__0__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y ) )
      = ( ord_less_real @ zero_zero_real @ Y ) ) ).

% real_sqrt_gt_0_iff
thf(fact_7625_real__sqrt__lt__0__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( sqrt @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% real_sqrt_lt_0_iff
thf(fact_7626_real__sqrt__le__0__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% real_sqrt_le_0_iff
thf(fact_7627_real__sqrt__ge__0__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ zero_zero_real @ Y ) ) ).

% real_sqrt_ge_0_iff
thf(fact_7628_real__sqrt__gt__1__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ one_one_real @ ( sqrt @ Y ) )
      = ( ord_less_real @ one_one_real @ Y ) ) ).

% real_sqrt_gt_1_iff
thf(fact_7629_real__sqrt__lt__1__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( sqrt @ X2 ) @ one_one_real )
      = ( ord_less_real @ X2 @ one_one_real ) ) ).

% real_sqrt_lt_1_iff
thf(fact_7630_real__sqrt__le__1__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ one_one_real )
      = ( ord_less_eq_real @ X2 @ one_one_real ) ) ).

% real_sqrt_le_1_iff
thf(fact_7631_real__sqrt__ge__1__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ one_one_real @ Y ) ) ).

% real_sqrt_ge_1_iff
thf(fact_7632_real__sqrt__abs2,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( times_times_real @ X2 @ X2 ) )
      = ( abs_abs_real @ X2 ) ) ).

% real_sqrt_abs2
thf(fact_7633_real__sqrt__mult__self,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
      = ( abs_abs_real @ A ) ) ).

% real_sqrt_mult_self
thf(fact_7634_real__sqrt__four,axiom,
    ( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% real_sqrt_four
thf(fact_7635_real__sqrt__abs,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X2 ) ) ).

% real_sqrt_abs
thf(fact_7636_real__sqrt__pow2,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( power_power_real @ ( sqrt @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X2 ) ) ).

% real_sqrt_pow2
thf(fact_7637_real__sqrt__pow2__iff,axiom,
    ! [X2: real] :
      ( ( ( power_power_real @ ( sqrt @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X2 )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% real_sqrt_pow2_iff
thf(fact_7638_real__sqrt__sum__squares__mult__squared__eq,axiom,
    ! [X2: real,Y: real,Xa2: real,Ya: real] :
      ( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_squared_eq
thf(fact_7639_real__sqrt__less__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_less_mono
thf(fact_7640_real__sqrt__le__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ord_less_eq_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_le_mono
thf(fact_7641_real__sqrt__minus,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( uminus_uminus_real @ X2 ) )
      = ( uminus_uminus_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_minus
thf(fact_7642_real__sqrt__power,axiom,
    ! [X2: real,K: nat] :
      ( ( sqrt @ ( power_power_real @ X2 @ K ) )
      = ( power_power_real @ ( sqrt @ X2 ) @ K ) ) ).

% real_sqrt_power
thf(fact_7643_real__sqrt__mult,axiom,
    ! [X2: real,Y: real] :
      ( ( sqrt @ ( times_times_real @ X2 @ Y ) )
      = ( times_times_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_mult
thf(fact_7644_real__sqrt__divide,axiom,
    ! [X2: real,Y: real] :
      ( ( sqrt @ ( divide_divide_real @ X2 @ Y ) )
      = ( divide_divide_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_divide
thf(fact_7645_complex__diff,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( minus_minus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D2 ) )
      = ( complex2 @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D2 ) ) ) ).

% complex_diff
thf(fact_7646_real__sqrt__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_real @ zero_zero_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_gt_zero
thf(fact_7647_real__sqrt__eq__zero__cancel,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( sqrt @ X2 )
          = zero_zero_real )
       => ( X2 = zero_zero_real ) ) ) ).

% real_sqrt_eq_zero_cancel
thf(fact_7648_real__sqrt__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_ge_zero
thf(fact_7649_real__sqrt__ge__one,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ord_less_eq_real @ one_one_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_ge_one
thf(fact_7650_Complex__eq__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( A
          = ( numeral_numeral_real @ W ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_numeral
thf(fact_7651_complex__add,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( plus_plus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D2 ) )
      = ( complex2 @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ).

% complex_add
thf(fact_7652_complex__norm,axiom,
    ! [X2: real,Y: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ X2 @ Y ) )
      = ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_norm
thf(fact_7653_real__div__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( divide_divide_real @ X2 @ ( sqrt @ X2 ) )
        = ( sqrt @ X2 ) ) ) ).

% real_div_sqrt
thf(fact_7654_sqrt__add__le__add__sqrt,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X2 @ Y ) ) @ ( plus_plus_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ) ) ).

% sqrt_add_le_add_sqrt
thf(fact_7655_le__real__sqrt__sumsq,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) ) ) ) ).

% le_real_sqrt_sumsq
thf(fact_7656_Complex__eq__neg__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( A
          = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_numeral
thf(fact_7657_complex__mult,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D2 ) )
      = ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D2 ) @ ( times_times_real @ B @ C ) ) ) ) ).

% complex_mult
thf(fact_7658_sqrt2__less__2,axiom,
    ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% sqrt2_less_2
thf(fact_7659_real__less__rsqrt,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
     => ( ord_less_real @ X2 @ ( sqrt @ Y ) ) ) ).

% real_less_rsqrt
thf(fact_7660_sqrt__le__D,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ Y )
     => ( ord_less_eq_real @ X2 @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sqrt_le_D
thf(fact_7661_real__le__rsqrt,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
     => ( ord_less_eq_real @ X2 @ ( sqrt @ Y ) ) ) ).

% real_le_rsqrt
thf(fact_7662_real__le__lsqrt,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ X2 @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sqrt @ X2 ) @ Y ) ) ) ) ).

% real_le_lsqrt
thf(fact_7663_real__sqrt__unique,axiom,
    ! [Y: real,X2: real] :
      ( ( ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( sqrt @ X2 )
          = Y ) ) ) ).

% real_sqrt_unique
thf(fact_7664_lemma__real__divide__sqrt__less,axiom,
    ! [U: real] :
      ( ( ord_less_real @ zero_zero_real @ U )
     => ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).

% lemma_real_divide_sqrt_less
thf(fact_7665_real__sqrt__sum__squares__eq__cancel,axiom,
    ! [X2: real,Y: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = X2 )
     => ( Y = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel
thf(fact_7666_real__sqrt__sum__squares__eq__cancel2,axiom,
    ! [X2: real,Y: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = Y )
     => ( X2 = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel2
thf(fact_7667_real__sqrt__sum__squares__ge1,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge1
thf(fact_7668_real__sqrt__sum__squares__ge2,axiom,
    ! [Y: real,X2: real] : ( ord_less_eq_real @ Y @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge2
thf(fact_7669_real__sqrt__sum__squares__triangle__ineq,axiom,
    ! [A: real,C: real,B: real,D2: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_triangle_ineq
thf(fact_7670_sqrt__ge__absD,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( sqrt @ Y ) )
     => ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y ) ) ).

% sqrt_ge_absD
thf(fact_7671_cos__45,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_45
thf(fact_7672_sin__45,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_45
thf(fact_7673_tan__60,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% tan_60
thf(fact_7674_real__less__lsqrt,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ X2 @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sqrt @ X2 ) @ Y ) ) ) ) ).

% real_less_lsqrt
thf(fact_7675_sqrt__sum__squares__le__sum,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X2 @ Y ) ) ) ) ).

% sqrt_sum_squares_le_sum
thf(fact_7676_sqrt__even__pow2,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% sqrt_even_pow2
thf(fact_7677_sqrt__sum__squares__le__sum__abs,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ Y ) ) ) ).

% sqrt_sum_squares_le_sum_abs
thf(fact_7678_real__sqrt__ge__abs2,axiom,
    ! [Y: real,X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs2
thf(fact_7679_real__sqrt__ge__abs1,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs1
thf(fact_7680_ln__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ln_ln_real @ ( sqrt @ X2 ) )
        = ( divide_divide_real @ ( ln_ln_real @ X2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% ln_sqrt
thf(fact_7681_cos__30,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_30
thf(fact_7682_sin__60,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_60
thf(fact_7683_arsinh__real__aux,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% arsinh_real_aux
thf(fact_7684_real__sqrt__power__even,axiom,
    ! [N2: nat,X2: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( power_power_real @ ( sqrt @ X2 ) @ N2 )
          = ( power_power_real @ X2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_power_even
thf(fact_7685_real__sqrt__sum__squares__mult__ge__zero,axiom,
    ! [X2: real,Y: real,Xa2: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_ge_zero
thf(fact_7686_arith__geo__mean__sqrt,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X2 @ Y ) ) @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arith_geo_mean_sqrt
thf(fact_7687_tan__30,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).

% tan_30
thf(fact_7688_cos__x__y__le__one,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).

% cos_x_y_le_one
thf(fact_7689_real__sqrt__sum__squares__less,axiom,
    ! [X2: real,U: real,Y: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
     => ( ( ord_less_real @ ( abs_abs_real @ Y ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).

% real_sqrt_sum_squares_less
thf(fact_7690_cos__arctan,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( arctan @ X2 ) )
      = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_arctan
thf(fact_7691_sin__arctan,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( arctan @ X2 ) )
      = ( divide_divide_real @ X2 @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arctan
thf(fact_7692_sqrt__sum__squares__half__less,axiom,
    ! [X2: real,U: real,Y: real] :
      ( ( ord_less_real @ X2 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_real @ Y @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ Y )
           => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).

% sqrt_sum_squares_half_less
thf(fact_7693_sin__cos__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X2 ) )
     => ( ( sin_real @ X2 )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_cos_sqrt
thf(fact_7694_arctan__half,axiom,
    ( arctan
    = ( ^ [X: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% arctan_half
thf(fact_7695_arcosh__real__def,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ( arcosh_real @ X2 )
        = ( ln_ln_real @ ( plus_plus_real @ X2 @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arcosh_real_def
thf(fact_7696_arsinh__real__def,axiom,
    ( arsinh_real
    = ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arsinh_real_def
thf(fact_7697_Maclaurin__exp__lt,axiom,
    ! [X2: real,N2: nat] :
      ( ( X2 != zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
            & ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
            & ( ( exp_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X2 @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_exp_lt
thf(fact_7698_cos__arcsin,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X2 ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_arcsin
thf(fact_7699_sin__arccos__abs,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
     => ( ( sin_real @ ( arccos @ Y ) )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arccos_abs
thf(fact_7700_exp__less__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ( ord_less_real @ ( exp_real @ X2 ) @ ( exp_real @ Y ) ) ) ).

% exp_less_mono
thf(fact_7701_exp__less__cancel__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( exp_real @ X2 ) @ ( exp_real @ Y ) )
      = ( ord_less_real @ X2 @ Y ) ) ).

% exp_less_cancel_iff
thf(fact_7702_exp__le__cancel__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( exp_real @ Y ) )
      = ( ord_less_eq_real @ X2 @ Y ) ) ).

% exp_le_cancel_iff
thf(fact_7703_one__less__exp__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ ( exp_real @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% one_less_exp_iff
thf(fact_7704_exp__less__one__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( exp_real @ X2 ) @ one_one_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% exp_less_one_iff
thf(fact_7705_one__le__exp__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% one_le_exp_iff
thf(fact_7706_exp__le__one__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X2 ) @ one_one_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% exp_le_one_iff
thf(fact_7707_exp__ln__iff,axiom,
    ! [X2: real] :
      ( ( ( exp_real @ ( ln_ln_real @ X2 ) )
        = X2 )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% exp_ln_iff
thf(fact_7708_exp__ln,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( exp_real @ ( ln_ln_real @ X2 ) )
        = X2 ) ) ).

% exp_ln
thf(fact_7709_cos__arccos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( cos_real @ ( arccos @ Y ) )
          = Y ) ) ) ).

% cos_arccos
thf(fact_7710_sin__arcsin,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( sin_real @ ( arcsin @ Y ) )
          = Y ) ) ) ).

% sin_arcsin
thf(fact_7711_arccos__0,axiom,
    ( ( arccos @ zero_zero_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arccos_0
thf(fact_7712_arcsin__1,axiom,
    ( ( arcsin @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arcsin_1
thf(fact_7713_arcsin__minus__1,axiom,
    ( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arcsin_minus_1
thf(fact_7714_norm__exp,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ X2 ) ) @ ( exp_real @ ( real_V7735802525324610683m_real @ X2 ) ) ) ).

% norm_exp
thf(fact_7715_norm__exp,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ X2 ) ) @ ( exp_real @ ( real_V1022390504157884413omplex @ X2 ) ) ) ).

% norm_exp
thf(fact_7716_exp__less__cancel,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( exp_real @ X2 ) @ ( exp_real @ Y ) )
     => ( ord_less_real @ X2 @ Y ) ) ).

% exp_less_cancel
thf(fact_7717_exp__times__arg__commute,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ ( exp_complex @ A2 ) @ A2 )
      = ( times_times_complex @ A2 @ ( exp_complex @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_7718_exp__times__arg__commute,axiom,
    ! [A2: real] :
      ( ( times_times_real @ ( exp_real @ A2 ) @ A2 )
      = ( times_times_real @ A2 @ ( exp_real @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_7719_exp__total,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ? [X3: real] :
          ( ( exp_real @ X3 )
          = Y ) ) ).

% exp_total
thf(fact_7720_exp__gt__zero,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( exp_real @ X2 ) ) ).

% exp_gt_zero
thf(fact_7721_not__exp__less__zero,axiom,
    ! [X2: real] :
      ~ ( ord_less_real @ ( exp_real @ X2 ) @ zero_zero_real ) ).

% not_exp_less_zero
thf(fact_7722_not__exp__le__zero,axiom,
    ! [X2: real] :
      ~ ( ord_less_eq_real @ ( exp_real @ X2 ) @ zero_zero_real ) ).

% not_exp_le_zero
thf(fact_7723_exp__ge__zero,axiom,
    ! [X2: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X2 ) ) ).

% exp_ge_zero
thf(fact_7724_mult__exp__exp,axiom,
    ! [X2: complex,Y: complex] :
      ( ( times_times_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ Y ) )
      = ( exp_complex @ ( plus_plus_complex @ X2 @ Y ) ) ) ).

% mult_exp_exp
thf(fact_7725_mult__exp__exp,axiom,
    ! [X2: real,Y: real] :
      ( ( times_times_real @ ( exp_real @ X2 ) @ ( exp_real @ Y ) )
      = ( exp_real @ ( plus_plus_real @ X2 @ Y ) ) ) ).

% mult_exp_exp
thf(fact_7726_exp__add__commuting,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( times_times_complex @ X2 @ Y )
        = ( times_times_complex @ Y @ X2 ) )
     => ( ( exp_complex @ ( plus_plus_complex @ X2 @ Y ) )
        = ( times_times_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ Y ) ) ) ) ).

% exp_add_commuting
thf(fact_7727_exp__add__commuting,axiom,
    ! [X2: real,Y: real] :
      ( ( ( times_times_real @ X2 @ Y )
        = ( times_times_real @ Y @ X2 ) )
     => ( ( exp_real @ ( plus_plus_real @ X2 @ Y ) )
        = ( times_times_real @ ( exp_real @ X2 ) @ ( exp_real @ Y ) ) ) ) ).

% exp_add_commuting
thf(fact_7728_exp__diff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( exp_complex @ ( minus_minus_complex @ X2 @ Y ) )
      = ( divide1717551699836669952omplex @ ( exp_complex @ X2 ) @ ( exp_complex @ Y ) ) ) ).

% exp_diff
thf(fact_7729_exp__diff,axiom,
    ! [X2: real,Y: real] :
      ( ( exp_real @ ( minus_minus_real @ X2 @ Y ) )
      = ( divide_divide_real @ ( exp_real @ X2 ) @ ( exp_real @ Y ) ) ) ).

% exp_diff
thf(fact_7730_exp__gt__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_real @ one_one_real @ ( exp_real @ X2 ) ) ) ).

% exp_gt_one
thf(fact_7731_exp__ge__add__one__self,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( exp_real @ X2 ) ) ).

% exp_ge_add_one_self
thf(fact_7732_exp__minus__inverse,axiom,
    ! [X2: real] :
      ( ( times_times_real @ ( exp_real @ X2 ) @ ( exp_real @ ( uminus_uminus_real @ X2 ) ) )
      = one_one_real ) ).

% exp_minus_inverse
thf(fact_7733_exp__minus__inverse,axiom,
    ! [X2: complex] :
      ( ( times_times_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X2 ) ) )
      = one_one_complex ) ).

% exp_minus_inverse
thf(fact_7734_exp__of__nat2__mult,axiom,
    ! [X2: real,N2: nat] :
      ( ( exp_real @ ( times_times_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) ) )
      = ( power_power_real @ ( exp_real @ X2 ) @ N2 ) ) ).

% exp_of_nat2_mult
thf(fact_7735_exp__of__nat2__mult,axiom,
    ! [X2: complex,N2: nat] :
      ( ( exp_complex @ ( times_times_complex @ X2 @ ( semiri8010041392384452111omplex @ N2 ) ) )
      = ( power_power_complex @ ( exp_complex @ X2 ) @ N2 ) ) ).

% exp_of_nat2_mult
thf(fact_7736_exp__of__nat__mult,axiom,
    ! [N2: nat,X2: real] :
      ( ( exp_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 ) )
      = ( power_power_real @ ( exp_real @ X2 ) @ N2 ) ) ).

% exp_of_nat_mult
thf(fact_7737_exp__of__nat__mult,axiom,
    ! [N2: nat,X2: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ X2 ) )
      = ( power_power_complex @ ( exp_complex @ X2 ) @ N2 ) ) ).

% exp_of_nat_mult
thf(fact_7738_arccos__le__arccos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( arccos @ Y ) @ ( arccos @ X2 ) ) ) ) ) ).

% arccos_le_arccos
thf(fact_7739_arccos__le__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arccos @ X2 ) @ ( arccos @ Y ) )
          = ( ord_less_eq_real @ Y @ X2 ) ) ) ) ).

% arccos_le_mono
thf(fact_7740_arccos__eq__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
        & ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real ) )
     => ( ( ( arccos @ X2 )
          = ( arccos @ Y ) )
        = ( X2 = Y ) ) ) ).

% arccos_eq_iff
thf(fact_7741_arcsin__le__arcsin,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( arcsin @ X2 ) @ ( arcsin @ Y ) ) ) ) ) ).

% arcsin_le_arcsin
thf(fact_7742_arcsin__minus,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( arcsin @ ( uminus_uminus_real @ X2 ) )
          = ( uminus_uminus_real @ ( arcsin @ X2 ) ) ) ) ) ).

% arcsin_minus
thf(fact_7743_arcsin__le__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arcsin @ X2 ) @ ( arcsin @ Y ) )
          = ( ord_less_eq_real @ X2 @ Y ) ) ) ) ).

% arcsin_le_mono
thf(fact_7744_arcsin__eq__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ( arcsin @ X2 )
            = ( arcsin @ Y ) )
          = ( X2 = Y ) ) ) ) ).

% arcsin_eq_iff
thf(fact_7745_exp__ge__add__one__self__aux,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( exp_real @ X2 ) ) ) ).

% exp_ge_add_one_self_aux
thf(fact_7746_lemma__exp__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ one_one_real @ Y )
     => ? [X3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X3 )
          & ( ord_less_eq_real @ X3 @ ( minus_minus_real @ Y @ one_one_real ) )
          & ( ( exp_real @ X3 )
            = Y ) ) ) ).

% lemma_exp_total
thf(fact_7747_ln__ge__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ Y @ ( ln_ln_real @ X2 ) )
        = ( ord_less_eq_real @ ( exp_real @ Y ) @ X2 ) ) ) ).

% ln_ge_iff
thf(fact_7748_ln__x__over__x__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y ) @ Y ) @ ( divide_divide_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ) ) ).

% ln_x_over_x_mono
thf(fact_7749_arccos__lbound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) ) ) ) ).

% arccos_lbound
thf(fact_7750_arccos__less__arccos,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_real @ ( arccos @ Y ) @ ( arccos @ X2 ) ) ) ) ) ).

% arccos_less_arccos
thf(fact_7751_arccos__less__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_real @ ( arccos @ X2 ) @ ( arccos @ Y ) )
          = ( ord_less_real @ Y @ X2 ) ) ) ) ).

% arccos_less_mono
thf(fact_7752_arccos__ubound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y ) @ pi ) ) ) ).

% arccos_ubound
thf(fact_7753_exp__le,axiom,
    ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).

% exp_le
thf(fact_7754_arccos__cos,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( arccos @ ( cos_real @ X2 ) )
          = X2 ) ) ) ).

% arccos_cos
thf(fact_7755_arcsin__less__arcsin,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_real @ ( arcsin @ X2 ) @ ( arcsin @ Y ) ) ) ) ) ).

% arcsin_less_arcsin
thf(fact_7756_arcsin__less__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_real @ ( arcsin @ X2 ) @ ( arcsin @ Y ) )
          = ( ord_less_real @ X2 @ Y ) ) ) ) ).

% arcsin_less_mono
thf(fact_7757_cos__arccos__abs,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
     => ( ( cos_real @ ( arccos @ Y ) )
        = Y ) ) ).

% cos_arccos_abs
thf(fact_7758_arccos__cos__eq__abs,axiom,
    ! [Theta: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
     => ( ( arccos @ ( cos_real @ Theta ) )
        = ( abs_abs_real @ Theta ) ) ) ).

% arccos_cos_eq_abs
thf(fact_7759_exp__divide__power__eq,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_real @ ( exp_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 )
        = ( exp_real @ X2 ) ) ) ).

% exp_divide_power_eq
thf(fact_7760_exp__divide__power__eq,axiom,
    ! [N2: nat,X2: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_complex @ ( exp_complex @ ( divide1717551699836669952omplex @ X2 @ ( semiri8010041392384452111omplex @ N2 ) ) ) @ N2 )
        = ( exp_complex @ X2 ) ) ) ).

% exp_divide_power_eq
thf(fact_7761_tanh__altdef,axiom,
    ( tanh_real
    = ( ^ [X: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) @ ( plus_plus_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_7762_tanh__altdef,axiom,
    ( tanh_complex
    = ( ^ [X: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_7763_exp__half__le2,axiom,
    ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% exp_half_le2
thf(fact_7764_arccos__lt__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_real @ Y @ one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_real @ ( arccos @ Y ) @ pi ) ) ) ) ).

% arccos_lt_bounded
thf(fact_7765_arccos__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_eq_real @ ( arccos @ Y ) @ pi ) ) ) ) ).

% arccos_bounded
thf(fact_7766_sin__arccos__nonzero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ( sin_real @ ( arccos @ X2 ) )
         != zero_zero_real ) ) ) ).

% sin_arccos_nonzero
thf(fact_7767_exp__double,axiom,
    ! [Z: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) )
      = ( power_power_complex @ ( exp_complex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_7768_exp__double,axiom,
    ! [Z: real] :
      ( ( exp_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) )
      = ( power_power_real @ ( exp_real @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_7769_arccos__cos2,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X2 )
       => ( ( arccos @ ( cos_real @ X2 ) )
          = ( uminus_uminus_real @ X2 ) ) ) ) ).

% arccos_cos2
thf(fact_7770_arccos__minus,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( arccos @ ( uminus_uminus_real @ X2 ) )
          = ( minus_minus_real @ pi @ ( arccos @ X2 ) ) ) ) ) ).

% arccos_minus
thf(fact_7771_cos__arcsin__nonzero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X2 ) )
         != zero_zero_real ) ) ) ).

% cos_arcsin_nonzero
thf(fact_7772_arccos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_eq_real @ ( arccos @ Y ) @ pi )
          & ( ( cos_real @ ( arccos @ Y ) )
            = Y ) ) ) ) ).

% arccos
thf(fact_7773_exp__bound__half,axiom,
    ! [Z: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_7774_exp__bound__half,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_7775_arccos__minus__abs,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( arccos @ ( uminus_uminus_real @ X2 ) )
        = ( minus_minus_real @ pi @ ( arccos @ X2 ) ) ) ) ).

% arccos_minus_abs
thf(fact_7776_exp__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% exp_bound
thf(fact_7777_real__exp__bound__lemma,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) ) ) ) ).

% real_exp_bound_lemma
thf(fact_7778_exp__ge__one__plus__x__over__n__power__n,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ X2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 ) @ ( exp_real @ X2 ) ) ) ) ).

% exp_ge_one_plus_x_over_n_power_n
thf(fact_7779_exp__ge__one__minus__x__over__n__power__n,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 ) @ ( exp_real @ ( uminus_uminus_real @ X2 ) ) ) ) ) ).

% exp_ge_one_minus_x_over_n_power_n
thf(fact_7780_arccos__le__pi2,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arccos_le_pi2
thf(fact_7781_exp__bound__lemma,axiom,
    ! [Z: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V7735802525324610683m_real @ Z ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_7782_exp__bound__lemma,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_7783_Maclaurin__exp__le,axiom,
    ! [X2: real,N2: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
      & ( ( exp_real @ X2 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X2 @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ).

% Maclaurin_exp_le
thf(fact_7784_arcsin__lt__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_real @ Y @ one_one_real )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_lt_bounded
thf(fact_7785_arcsin__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_bounded
thf(fact_7786_arcsin__ubound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arcsin_ubound
thf(fact_7787_arcsin__lbound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) ) ) ) ).

% arcsin_lbound
thf(fact_7788_exp__lower__Taylor__quadratic,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( divide_divide_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X2 ) ) ) ).

% exp_lower_Taylor_quadratic
thf(fact_7789_arcsin__sin,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arcsin @ ( sin_real @ X2 ) )
          = X2 ) ) ) ).

% arcsin_sin
thf(fact_7790_tanh__real__altdef,axiom,
    ( tanh_real
    = ( ^ [X: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ) ) ).

% tanh_real_altdef
thf(fact_7791_le__arcsin__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ Y @ ( arcsin @ X2 ) )
              = ( ord_less_eq_real @ ( sin_real @ Y ) @ X2 ) ) ) ) ) ) ).

% le_arcsin_iff
thf(fact_7792_arcsin__le__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( arcsin @ X2 ) @ Y )
              = ( ord_less_eq_real @ X2 @ ( sin_real @ Y ) ) ) ) ) ) ) ).

% arcsin_le_iff
thf(fact_7793_arcsin__pi,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ pi )
          & ( ( sin_real @ ( arcsin @ Y ) )
            = Y ) ) ) ) ).

% arcsin_pi
thf(fact_7794_arcsin,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( sin_real @ ( arcsin @ Y ) )
            = Y ) ) ) ) ).

% arcsin
thf(fact_7795_arccos__cos__eq__abs__2pi,axiom,
    ! [Theta: real] :
      ~ ! [K3: int] :
          ( ( arccos @ ( cos_real @ Theta ) )
         != ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K3 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).

% arccos_cos_eq_abs_2pi
thf(fact_7796_sin__arccos,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( sin_real @ ( arccos @ X2 ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_arccos
thf(fact_7797_pochhammer__double,axiom,
    ! [Z: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).

% pochhammer_double
thf(fact_7798_pochhammer__double,axiom,
    ! [Z: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s7457072308508201937r_real @ Z @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).

% pochhammer_double
thf(fact_7799_pochhammer__double,axiom,
    ! [Z: complex,N2: nat] :
      ( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s2602460028002588243omplex @ Z @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).

% pochhammer_double
thf(fact_7800_of__nat__code,axiom,
    ( semiri681578069525770553at_rat
    = ( ^ [N: nat] :
          ( semiri7787848453975740701ux_rat
          @ ^ [I4: rat] : ( plus_plus_rat @ I4 @ one_one_rat )
          @ N
          @ zero_zero_rat ) ) ) ).

% of_nat_code
thf(fact_7801_of__nat__code,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N: nat] :
          ( semiri8420488043553186161ux_int
          @ ^ [I4: int] : ( plus_plus_int @ I4 @ one_one_int )
          @ N
          @ zero_zero_int ) ) ) ).

% of_nat_code
thf(fact_7802_of__nat__code,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [N: nat] :
          ( semiri7260567687927622513x_real
          @ ^ [I4: real] : ( plus_plus_real @ I4 @ one_one_real )
          @ N
          @ zero_zero_real ) ) ) ).

% of_nat_code
thf(fact_7803_of__nat__code,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N: nat] :
          ( semiri8422978514062236437ux_nat
          @ ^ [I4: nat] : ( plus_plus_nat @ I4 @ one_one_nat )
          @ N
          @ zero_zero_nat ) ) ) ).

% of_nat_code
thf(fact_7804_of__nat__code,axiom,
    ( semiri8010041392384452111omplex
    = ( ^ [N: nat] :
          ( semiri2816024913162550771omplex
          @ ^ [I4: complex] : ( plus_plus_complex @ I4 @ one_one_complex )
          @ N
          @ zero_zero_complex ) ) ) ).

% of_nat_code
thf(fact_7805_gchoose__row__sum__weighted,axiom,
    ! [R: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K2: nat] : ( times_times_rat @ ( gbinomial_rat @ R @ K2 ) @ ( minus_minus_rat @ ( divide_divide_rat @ R @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K2 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ ( suc @ M ) ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ R @ ( suc @ M ) ) ) ) ).

% gchoose_row_sum_weighted
thf(fact_7806_gchoose__row__sum__weighted,axiom,
    ! [R: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K2: nat] : ( times_times_complex @ ( gbinomial_complex @ R @ K2 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ R @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K2 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ ( suc @ M ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ R @ ( suc @ M ) ) ) ) ).

% gchoose_row_sum_weighted
thf(fact_7807_gchoose__row__sum__weighted,axiom,
    ! [R: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K2: nat] : ( times_times_real @ ( gbinomial_real @ R @ K2 ) @ ( minus_minus_real @ ( divide_divide_real @ R @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
      = ( times_times_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ R @ ( suc @ M ) ) ) ) ).

% gchoose_row_sum_weighted
thf(fact_7808_central__binomial__lower__bound,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ) ) ).

% central_binomial_lower_bound
thf(fact_7809_Maclaurin__sin__bound,axiom,
    ! [X2: real,N2: nat] :
      ( ord_less_eq_real
      @ ( abs_abs_real
        @ ( minus_minus_real @ ( sin_real @ X2 )
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) )
      @ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( abs_abs_real @ X2 ) @ N2 ) ) ) ).

% Maclaurin_sin_bound
thf(fact_7810_inverse__eq__iff__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_7811_inverse__eq__iff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_7812_inverse__eq__iff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_7813_inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_7814_inverse__inverse__eq,axiom,
    ! [A: complex] :
      ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_7815_inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_7816_inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% inverse_zero
thf(fact_7817_inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% inverse_zero
thf(fact_7818_inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% inverse_zero
thf(fact_7819_inverse__nonzero__iff__nonzero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_7820_inverse__nonzero__iff__nonzero,axiom,
    ! [A: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_7821_inverse__nonzero__iff__nonzero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_7822_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_7823_inverse__mult__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_7824_inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_7825_inverse__eq__1__iff,axiom,
    ! [X2: real] :
      ( ( ( inverse_inverse_real @ X2 )
        = one_one_real )
      = ( X2 = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_7826_inverse__eq__1__iff,axiom,
    ! [X2: complex] :
      ( ( ( invers8013647133539491842omplex @ X2 )
        = one_one_complex )
      = ( X2 = one_one_complex ) ) ).

% inverse_eq_1_iff
thf(fact_7827_inverse__eq__1__iff,axiom,
    ! [X2: rat] :
      ( ( ( inverse_inverse_rat @ X2 )
        = one_one_rat )
      = ( X2 = one_one_rat ) ) ).

% inverse_eq_1_iff
thf(fact_7828_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_7829_inverse__1,axiom,
    ( ( invers8013647133539491842omplex @ one_one_complex )
    = one_one_complex ) ).

% inverse_1
thf(fact_7830_inverse__1,axiom,
    ( ( inverse_inverse_rat @ one_one_rat )
    = one_one_rat ) ).

% inverse_1
thf(fact_7831_inverse__divide,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ B @ A ) ) ).

% inverse_divide
thf(fact_7832_inverse__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ B @ A ) ) ).

% inverse_divide
thf(fact_7833_inverse__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ B @ A ) ) ).

% inverse_divide
thf(fact_7834_inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
      = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ).

% inverse_minus_eq
thf(fact_7835_inverse__minus__eq,axiom,
    ! [A: complex] :
      ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
      = ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ).

% inverse_minus_eq
thf(fact_7836_inverse__minus__eq,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
      = ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ).

% inverse_minus_eq
thf(fact_7837_abs__inverse,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
      = ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ).

% abs_inverse
thf(fact_7838_abs__inverse,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( invers8013647133539491842omplex @ A ) )
      = ( invers8013647133539491842omplex @ ( abs_abs_complex @ A ) ) ) ).

% abs_inverse
thf(fact_7839_abs__inverse,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
      = ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ).

% abs_inverse
thf(fact_7840_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_7841_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_7842_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_7843_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_7844_inverse__less__iff__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_7845_inverse__less__iff__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_7846_inverse__less__iff__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_7847_inverse__less__iff__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_7848_inverse__negative__iff__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% inverse_negative_iff_negative
thf(fact_7849_inverse__negative__iff__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% inverse_negative_iff_negative
thf(fact_7850_inverse__positive__iff__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_7851_inverse__positive__iff__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_7852_binomial__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( binomial @ N2 @ K )
        = zero_zero_nat )
      = ( ord_less_nat @ N2 @ K ) ) ).

% binomial_eq_0_iff
thf(fact_7853_binomial__Suc__Suc,axiom,
    ! [N2: nat,K: nat] :
      ( ( binomial @ ( suc @ N2 ) @ ( suc @ K ) )
      = ( plus_plus_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).

% binomial_Suc_Suc
thf(fact_7854_inverse__le__iff__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_7855_inverse__le__iff__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_7856_inverse__le__iff__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_7857_inverse__le__iff__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_7858_right__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ A @ ( inverse_inverse_real @ A ) )
        = one_one_real ) ) ).

% right_inverse
thf(fact_7859_right__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ A @ ( invers8013647133539491842omplex @ A ) )
        = one_one_complex ) ) ).

% right_inverse
thf(fact_7860_right__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ A @ ( inverse_inverse_rat @ A ) )
        = one_one_rat ) ) ).

% right_inverse
thf(fact_7861_left__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% left_inverse
thf(fact_7862_left__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
        = one_one_complex ) ) ).

% left_inverse
thf(fact_7863_left__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% left_inverse
thf(fact_7864_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_real @ ( numeral_numeral_real @ W ) )
      = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_7865_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_7866_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_rat @ ( numeral_numeral_rat @ W ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_7867_zero__less__binomial__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N2 @ K ) )
      = ( ord_less_eq_nat @ K @ N2 ) ) ).

% zero_less_binomial_iff
thf(fact_7868_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_7869_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_7870_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_7871_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: real,X2: real] :
      ( ( ( times_times_real @ Y @ X2 )
        = ( times_times_real @ X2 @ Y ) )
     => ( ( times_times_real @ ( inverse_inverse_real @ Y ) @ X2 )
        = ( times_times_real @ X2 @ ( inverse_inverse_real @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_7872_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: complex,X2: complex] :
      ( ( ( times_times_complex @ Y @ X2 )
        = ( times_times_complex @ X2 @ Y ) )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ Y ) @ X2 )
        = ( times_times_complex @ X2 @ ( invers8013647133539491842omplex @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_7873_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: rat,X2: rat] :
      ( ( ( times_times_rat @ Y @ X2 )
        = ( times_times_rat @ X2 @ Y ) )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ Y ) @ X2 )
        = ( times_times_rat @ X2 @ ( inverse_inverse_rat @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_7874_power__inverse,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ ( inverse_inverse_real @ A ) @ N2 )
      = ( inverse_inverse_real @ ( power_power_real @ A @ N2 ) ) ) ).

% power_inverse
thf(fact_7875_power__inverse,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ ( invers8013647133539491842omplex @ A ) @ N2 )
      = ( invers8013647133539491842omplex @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_inverse
thf(fact_7876_power__inverse,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ ( inverse_inverse_rat @ A ) @ N2 )
      = ( inverse_inverse_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_inverse
thf(fact_7877_inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_7878_inverse__eq__imp__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_7879_inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_7880_nonzero__imp__inverse__nonzero,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
       != zero_zero_real ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_7881_nonzero__imp__inverse__nonzero,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ A )
       != zero_zero_complex ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_7882_nonzero__imp__inverse__nonzero,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ A )
       != zero_zero_rat ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_7883_nonzero__inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_7884_nonzero__inverse__inverse__eq,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_7885_nonzero__inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_7886_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( ( A != zero_zero_real )
       => ( ( B != zero_zero_real )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_7887_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
     => ( ( A != zero_zero_complex )
       => ( ( B != zero_zero_complex )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_7888_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( ( A != zero_zero_rat )
       => ( ( B != zero_zero_rat )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_7889_inverse__zero__imp__zero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
     => ( A = zero_zero_real ) ) ).

% inverse_zero_imp_zero
thf(fact_7890_inverse__zero__imp__zero,axiom,
    ! [A: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = zero_zero_complex )
     => ( A = zero_zero_complex ) ) ).

% inverse_zero_imp_zero
thf(fact_7891_inverse__zero__imp__zero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
     => ( A = zero_zero_rat ) ) ).

% inverse_zero_imp_zero
thf(fact_7892_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% field_class.field_inverse_zero
thf(fact_7893_field__class_Ofield__inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% field_class.field_inverse_zero
thf(fact_7894_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% field_class.field_inverse_zero
thf(fact_7895_real__sqrt__inverse,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( inverse_inverse_real @ X2 ) )
      = ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_inverse
thf(fact_7896_norm__inverse__le__norm,axiom,
    ! [R: real,X2: real] :
      ( ( ord_less_eq_real @ R @ ( real_V7735802525324610683m_real @ X2 ) )
     => ( ( ord_less_real @ zero_zero_real @ R )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( inverse_inverse_real @ X2 ) ) @ ( inverse_inverse_real @ R ) ) ) ) ).

% norm_inverse_le_norm
thf(fact_7897_norm__inverse__le__norm,axiom,
    ! [R: real,X2: complex] :
      ( ( ord_less_eq_real @ R @ ( real_V1022390504157884413omplex @ X2 ) )
     => ( ( ord_less_real @ zero_zero_real @ R )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( invers8013647133539491842omplex @ X2 ) ) @ ( inverse_inverse_real @ R ) ) ) ) ).

% norm_inverse_le_norm
thf(fact_7898_binomial__eq__0,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( binomial @ N2 @ K )
        = zero_zero_nat ) ) ).

% binomial_eq_0
thf(fact_7899_positive__imp__inverse__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_7900_positive__imp__inverse__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_7901_negative__imp__inverse__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).

% negative_imp_inverse_negative
thf(fact_7902_negative__imp__inverse__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat ) ) ).

% negative_imp_inverse_negative
thf(fact_7903_inverse__positive__imp__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_7904_inverse__positive__imp__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_7905_inverse__negative__imp__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% inverse_negative_imp_negative
thf(fact_7906_inverse__negative__imp__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% inverse_negative_imp_negative
thf(fact_7907_less__imp__inverse__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_7908_less__imp__inverse__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_7909_inverse__less__imp__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_7910_inverse__less__imp__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_7911_less__imp__inverse__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_7912_less__imp__inverse__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_7913_inverse__less__imp__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_7914_inverse__less__imp__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_7915_nonzero__inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
          = ( times_times_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_7916_nonzero__inverse__mult__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
          = ( times_times_complex @ ( invers8013647133539491842omplex @ B ) @ ( invers8013647133539491842omplex @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_7917_nonzero__inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
          = ( times_times_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_7918_nonzero__inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
        = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_7919_nonzero__inverse__minus__eq,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
        = ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_7920_nonzero__inverse__minus__eq,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
        = ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_7921_Suc__times__binomial__eq,axiom,
    ! [N2: nat,K: nat] :
      ( ( times_times_nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) )
      = ( times_times_nat @ ( binomial @ ( suc @ N2 ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).

% Suc_times_binomial_eq
thf(fact_7922_Suc__times__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N2 ) @ ( suc @ K ) ) )
      = ( times_times_nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) ) ) ).

% Suc_times_binomial
thf(fact_7923_inverse__numeral__1,axiom,
    ( ( inverse_inverse_real @ ( numeral_numeral_real @ one ) )
    = ( numeral_numeral_real @ one ) ) ).

% inverse_numeral_1
thf(fact_7924_inverse__numeral__1,axiom,
    ( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( numera6690914467698888265omplex @ one ) ) ).

% inverse_numeral_1
thf(fact_7925_inverse__numeral__1,axiom,
    ( ( inverse_inverse_rat @ ( numeral_numeral_rat @ one ) )
    = ( numeral_numeral_rat @ one ) ) ).

% inverse_numeral_1
thf(fact_7926_inverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = one_one_real )
     => ( ( inverse_inverse_real @ A )
        = B ) ) ).

% inverse_unique
thf(fact_7927_inverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = one_one_complex )
     => ( ( invers8013647133539491842omplex @ A )
        = B ) ) ).

% inverse_unique
thf(fact_7928_inverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = one_one_rat )
     => ( ( inverse_inverse_rat @ A )
        = B ) ) ).

% inverse_unique
thf(fact_7929_divide__inverse__commute,axiom,
    ( divide_divide_real
    = ( ^ [A3: real,B3: real] : ( times_times_real @ ( inverse_inverse_real @ B3 ) @ A3 ) ) ) ).

% divide_inverse_commute
thf(fact_7930_divide__inverse__commute,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A3: complex,B3: complex] : ( times_times_complex @ ( invers8013647133539491842omplex @ B3 ) @ A3 ) ) ) ).

% divide_inverse_commute
thf(fact_7931_divide__inverse__commute,axiom,
    ( divide_divide_rat
    = ( ^ [A3: rat,B3: rat] : ( times_times_rat @ ( inverse_inverse_rat @ B3 ) @ A3 ) ) ) ).

% divide_inverse_commute
thf(fact_7932_divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A3: real,B3: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B3 ) ) ) ) ).

% divide_inverse
thf(fact_7933_divide__inverse,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A3: complex,B3: complex] : ( times_times_complex @ A3 @ ( invers8013647133539491842omplex @ B3 ) ) ) ) ).

% divide_inverse
thf(fact_7934_divide__inverse,axiom,
    ( divide_divide_rat
    = ( ^ [A3: rat,B3: rat] : ( times_times_rat @ A3 @ ( inverse_inverse_rat @ B3 ) ) ) ) ).

% divide_inverse
thf(fact_7935_field__class_Ofield__divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A3: real,B3: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B3 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_7936_field__class_Ofield__divide__inverse,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A3: complex,B3: complex] : ( times_times_complex @ A3 @ ( invers8013647133539491842omplex @ B3 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_7937_field__class_Ofield__divide__inverse,axiom,
    ( divide_divide_rat
    = ( ^ [A3: rat,B3: rat] : ( times_times_rat @ A3 @ ( inverse_inverse_rat @ B3 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_7938_inverse__eq__divide,axiom,
    ( inverse_inverse_real
    = ( divide_divide_real @ one_one_real ) ) ).

% inverse_eq_divide
thf(fact_7939_inverse__eq__divide,axiom,
    ( invers8013647133539491842omplex
    = ( divide1717551699836669952omplex @ one_one_complex ) ) ).

% inverse_eq_divide
thf(fact_7940_inverse__eq__divide,axiom,
    ( inverse_inverse_rat
    = ( divide_divide_rat @ one_one_rat ) ) ).

% inverse_eq_divide
thf(fact_7941_binomial__symmetric,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( binomial @ N2 @ K )
        = ( binomial @ N2 @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% binomial_symmetric
thf(fact_7942_power__mult__power__inverse__commute,axiom,
    ! [X2: real,M: nat,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( power_power_real @ ( inverse_inverse_real @ X2 ) @ N2 ) )
      = ( times_times_real @ ( power_power_real @ ( inverse_inverse_real @ X2 ) @ N2 ) @ ( power_power_real @ X2 @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_7943_power__mult__power__inverse__commute,axiom,
    ! [X2: complex,M: nat,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X2 ) @ N2 ) )
      = ( times_times_complex @ ( power_power_complex @ ( invers8013647133539491842omplex @ X2 ) @ N2 ) @ ( power_power_complex @ X2 @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_7944_power__mult__power__inverse__commute,axiom,
    ! [X2: rat,M: nat,N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( power_power_rat @ ( inverse_inverse_rat @ X2 ) @ N2 ) )
      = ( times_times_rat @ ( power_power_rat @ ( inverse_inverse_rat @ X2 ) @ N2 ) @ ( power_power_rat @ X2 @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_7945_power__mult__inverse__distrib,axiom,
    ! [X2: real,M: nat] :
      ( ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( inverse_inverse_real @ X2 ) )
      = ( times_times_real @ ( inverse_inverse_real @ X2 ) @ ( power_power_real @ X2 @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_7946_power__mult__inverse__distrib,axiom,
    ! [X2: complex,M: nat] :
      ( ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( invers8013647133539491842omplex @ X2 ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ X2 ) @ ( power_power_complex @ X2 @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_7947_power__mult__inverse__distrib,axiom,
    ! [X2: rat,M: nat] :
      ( ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( inverse_inverse_rat @ X2 ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ X2 ) @ ( power_power_rat @ X2 @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_7948_choose__mult__lemma,axiom,
    ! [M: nat,R: nat,K: nat] :
      ( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
      = ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R ) @ M ) ) ) ).

% choose_mult_lemma
thf(fact_7949_mult__inverse__of__nat__commute,axiom,
    ! [Xa2: nat,X2: real] :
      ( ( times_times_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa2 ) ) @ X2 )
      = ( times_times_real @ X2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa2 ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_7950_mult__inverse__of__nat__commute,axiom,
    ! [Xa2: nat,X2: complex] :
      ( ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa2 ) ) @ X2 )
      = ( times_times_complex @ X2 @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa2 ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_7951_mult__inverse__of__nat__commute,axiom,
    ! [Xa2: nat,X2: rat] :
      ( ( times_times_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa2 ) ) @ X2 )
      = ( times_times_rat @ X2 @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa2 ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_7952_nonzero__abs__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
        = ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ) ).

% nonzero_abs_inverse
thf(fact_7953_nonzero__abs__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
        = ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ) ).

% nonzero_abs_inverse
thf(fact_7954_binomial__le__pow,axiom,
    ! [R: nat,N2: nat] :
      ( ( ord_less_eq_nat @ R @ N2 )
     => ( ord_less_eq_nat @ ( binomial @ N2 @ R ) @ ( power_power_nat @ N2 @ R ) ) ) ).

% binomial_le_pow
thf(fact_7955_mult__inverse__of__int__commute,axiom,
    ! [Xa2: int,X2: real] :
      ( ( times_times_real @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa2 ) ) @ X2 )
      = ( times_times_real @ X2 @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa2 ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_7956_mult__inverse__of__int__commute,axiom,
    ! [Xa2: int,X2: complex] :
      ( ( times_times_complex @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa2 ) ) @ X2 )
      = ( times_times_complex @ X2 @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa2 ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_7957_mult__inverse__of__int__commute,axiom,
    ! [Xa2: int,X2: rat] :
      ( ( times_times_rat @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa2 ) ) @ X2 )
      = ( times_times_rat @ X2 @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa2 ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_7958_divide__real__def,axiom,
    ( divide_divide_real
    = ( ^ [X: real,Y2: real] : ( times_times_real @ X @ ( inverse_inverse_real @ Y2 ) ) ) ) ).

% divide_real_def
thf(fact_7959_pochhammer__pos,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X2 @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_7960_pochhammer__pos,axiom,
    ! [X2: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X2 @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_7961_pochhammer__pos,axiom,
    ! [X2: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X2 )
     => ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X2 @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_7962_pochhammer__pos,axiom,
    ! [X2: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ X2 )
     => ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X2 @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_7963_pochhammer__eq__0__mono,axiom,
    ! [A: complex,N2: nat,M: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N2 )
        = zero_zero_complex )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s2602460028002588243omplex @ A @ M )
          = zero_zero_complex ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_7964_pochhammer__eq__0__mono,axiom,
    ! [A: real,N2: nat,M: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N2 )
        = zero_zero_real )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ M )
          = zero_zero_real ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_7965_pochhammer__eq__0__mono,axiom,
    ! [A: rat,N2: nat,M: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N2 )
        = zero_zero_rat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ M )
          = zero_zero_rat ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_7966_pochhammer__neq__0__mono,axiom,
    ! [A: complex,M: nat,N2: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ M )
       != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s2602460028002588243omplex @ A @ N2 )
         != zero_zero_complex ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_7967_pochhammer__neq__0__mono,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ M )
       != zero_zero_real )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ N2 )
         != zero_zero_real ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_7968_pochhammer__neq__0__mono,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ M )
       != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ N2 )
         != zero_zero_rat ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_7969_inverse__le__imp__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_7970_inverse__le__imp__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_7971_le__imp__inverse__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_7972_le__imp__inverse__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_7973_inverse__le__imp__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_7974_inverse__le__imp__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_7975_le__imp__inverse__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_7976_le__imp__inverse__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_7977_inverse__le__1__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ X2 ) @ one_one_real )
      = ( ( ord_less_eq_real @ X2 @ zero_zero_real )
        | ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).

% inverse_le_1_iff
thf(fact_7978_inverse__le__1__iff,axiom,
    ! [X2: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ X2 ) @ one_one_rat )
      = ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
        | ( ord_less_eq_rat @ one_one_rat @ X2 ) ) ) ).

% inverse_le_1_iff
thf(fact_7979_zero__less__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ ( binomial @ N2 @ K ) ) ) ).

% zero_less_binomial
thf(fact_7980_one__less__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_less_inverse
thf(fact_7981_one__less__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_less_inverse
thf(fact_7982_one__less__inverse__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ X2 ) )
      = ( ( ord_less_real @ zero_zero_real @ X2 )
        & ( ord_less_real @ X2 @ one_one_real ) ) ) ).

% one_less_inverse_iff
thf(fact_7983_one__less__inverse__iff,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ X2 ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X2 )
        & ( ord_less_rat @ X2 @ one_one_rat ) ) ) ).

% one_less_inverse_iff
thf(fact_7984_field__class_Ofield__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% field_class.field_inverse
thf(fact_7985_field__class_Ofield__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
        = one_one_complex ) ) ).

% field_class.field_inverse
thf(fact_7986_field__class_Ofield__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% field_class.field_inverse
thf(fact_7987_division__ring__inverse__add,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( plus_plus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_7988_division__ring__inverse__add,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( plus_plus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_7989_division__ring__inverse__add,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( plus_plus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_7990_inverse__add,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( inverse_inverse_real @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% inverse_add
thf(fact_7991_inverse__add,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( invers8013647133539491842omplex @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% inverse_add
thf(fact_7992_inverse__add,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( inverse_inverse_rat @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% inverse_add
thf(fact_7993_division__ring__inverse__diff,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ B @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_7994_division__ring__inverse__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ B @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_7995_division__ring__inverse__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ B @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_7996_nonzero__inverse__eq__divide,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_7997_nonzero__inverse__eq__divide,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ A )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_7998_nonzero__inverse__eq__divide,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ A )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_7999_Suc__times__binomial__add,axiom,
    ! [A: nat,B: nat] :
      ( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
      = ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).

% Suc_times_binomial_add
thf(fact_8000_binomial__Suc__Suc__eq__times,axiom,
    ! [N2: nat,K: nat] :
      ( ( binomial @ ( suc @ N2 ) @ ( suc @ K ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) ) @ ( suc @ K ) ) ) ).

% binomial_Suc_Suc_eq_times
thf(fact_8001_choose__mult,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( times_times_nat @ ( binomial @ N2 @ M ) @ ( binomial @ M @ K ) )
          = ( times_times_nat @ ( binomial @ N2 @ K ) @ ( binomial @ ( minus_minus_nat @ N2 @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).

% choose_mult
thf(fact_8002_binomial__absorb__comp,axiom,
    ! [N2: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ N2 @ K ) @ ( binomial @ N2 @ K ) )
      = ( times_times_nat @ N2 @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ).

% binomial_absorb_comp
thf(fact_8003_gbinomial__pochhammer,axiom,
    ( gbinomial_complex
    = ( ^ [A3: complex,K2: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ A3 ) @ K2 ) ) @ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8004_gbinomial__pochhammer,axiom,
    ( gbinomial_rat
    = ( ^ [A3: rat,K2: nat] : ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ A3 ) @ K2 ) ) @ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8005_gbinomial__pochhammer,axiom,
    ( gbinomial_real
    = ( ^ [A3: real,K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ A3 ) @ K2 ) ) @ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8006_gbinomial__pochhammer_H,axiom,
    ( gbinomial_rat
    = ( ^ [A3: rat,K2: nat] : ( divide_divide_rat @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ A3 @ ( semiri681578069525770553at_rat @ K2 ) ) @ one_one_rat ) @ K2 ) @ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8007_gbinomial__pochhammer_H,axiom,
    ( gbinomial_complex
    = ( ^ [A3: complex,K2: nat] : ( divide1717551699836669952omplex @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ A3 @ ( semiri8010041392384452111omplex @ K2 ) ) @ one_one_complex ) @ K2 ) @ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8008_gbinomial__pochhammer_H,axiom,
    ( gbinomial_real
    = ( ^ [A3: real,K2: nat] : ( divide_divide_real @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ A3 @ ( semiri5074537144036343181t_real @ K2 ) ) @ one_one_real ) @ K2 ) @ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8009_gbinomial__Suc__Suc,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8010_gbinomial__Suc__Suc,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( plus_plus_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8011_gbinomial__Suc__Suc,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8012_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N2 ) @ K )
        = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_8013_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N2 ) @ K )
        = ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_8014_pochhammer__nonneg,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X2 @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8015_pochhammer__nonneg,axiom,
    ! [X2: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X2 @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8016_pochhammer__nonneg,axiom,
    ! [X2: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X2 )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X2 @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8017_pochhammer__nonneg,axiom,
    ! [X2: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ X2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X2 @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8018_inverse__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_real @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_8019_inverse__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_rat @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_8020_inverse__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_eq_real @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_8021_inverse__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_eq_rat @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_8022_one__le__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_le_inverse
thf(fact_8023_one__le__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_le_inverse
thf(fact_8024_inverse__less__1__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ X2 ) @ one_one_real )
      = ( ( ord_less_eq_real @ X2 @ zero_zero_real )
        | ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% inverse_less_1_iff
thf(fact_8025_inverse__less__1__iff,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ X2 ) @ one_one_rat )
      = ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
        | ( ord_less_rat @ one_one_rat @ X2 ) ) ) ).

% inverse_less_1_iff
thf(fact_8026_one__le__inverse__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ X2 ) )
      = ( ( ord_less_real @ zero_zero_real @ X2 )
        & ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).

% one_le_inverse_iff
thf(fact_8027_one__le__inverse__iff,axiom,
    ! [X2: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ X2 ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X2 )
        & ( ord_less_eq_rat @ X2 @ one_one_rat ) ) ) ).

% one_le_inverse_iff
thf(fact_8028_inverse__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_8029_inverse__diff__inverse,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( uminus1482373934393186551omplex @ ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_8030_inverse__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( uminus_uminus_rat @ ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_8031_reals__Archimedean,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ? [N3: nat] : ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ X2 ) ) ).

% reals_Archimedean
thf(fact_8032_reals__Archimedean,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ? [N3: nat] : ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) ) @ X2 ) ) ).

% reals_Archimedean
thf(fact_8033_binomial__absorption,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) )
      = ( times_times_nat @ N2 @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ).

% binomial_absorption
thf(fact_8034_gbinomial__addition__formula,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ A @ ( suc @ K ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_8035_gbinomial__addition__formula,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ A @ ( suc @ K ) )
      = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_8036_gbinomial__addition__formula,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ A @ ( suc @ K ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_8037_gbinomial__absorb__comp,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ A @ K ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8038_gbinomial__absorb__comp,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ A @ K ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8039_gbinomial__absorb__comp,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ A @ K ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8040_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8041_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8042_gbinomial__mult__1_H,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8043_gbinomial__mult__1_H,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8044_gbinomial__mult__1_H,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ A )
      = ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8045_gbinomial__mult__1,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8046_gbinomial__mult__1,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8047_gbinomial__mult__1,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ A @ ( gbinomial_complex @ A @ K ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8048_forall__pos__mono__1,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D3: real,E2: real] :
          ( ( ord_less_real @ D3 @ E2 )
         => ( ( P @ D3 )
           => ( P @ E2 ) ) )
     => ( ! [N3: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono_1
thf(fact_8049_binomial__fact__lemma,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( binomial @ N2 @ K ) )
        = ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% binomial_fact_lemma
thf(fact_8050_forall__pos__mono,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D3: real,E2: real] :
          ( ( ord_less_real @ D3 @ E2 )
         => ( ( P @ D3 )
           => ( P @ E2 ) ) )
     => ( ! [N3: nat] :
            ( ( N3 != zero_zero_nat )
           => ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono
thf(fact_8051_real__arch__inverse,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
      = ( ? [N: nat] :
            ( ( N != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N ) ) @ E ) ) ) ) ).

% real_arch_inverse
thf(fact_8052_sqrt__divide__self__eq,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( divide_divide_real @ ( sqrt @ X2 ) @ X2 )
        = ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) ) ).

% sqrt_divide_self_eq
thf(fact_8053_ln__inverse,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ln_ln_real @ ( inverse_inverse_real @ X2 ) )
        = ( uminus_uminus_real @ ( ln_ln_real @ X2 ) ) ) ) ).

% ln_inverse
thf(fact_8054_pochhammer__rec,axiom,
    ! [A: complex,N2: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N2 ) )
      = ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8055_pochhammer__rec,axiom,
    ! [A: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8056_pochhammer__rec,axiom,
    ! [A: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8057_pochhammer__rec,axiom,
    ! [A: nat,N2: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8058_pochhammer__rec,axiom,
    ! [A: int,N2: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8059_pochhammer__rec_H,axiom,
    ! [Z: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N2 ) )
      = ( times_times_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8060_pochhammer__rec_H,axiom,
    ! [Z: int,N2: nat] :
      ( ( comm_s4660882817536571857er_int @ Z @ ( suc @ N2 ) )
      = ( times_times_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( comm_s4660882817536571857er_int @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8061_pochhammer__rec_H,axiom,
    ! [Z: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ Z @ ( suc @ N2 ) )
      = ( times_times_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N2 ) ) @ ( comm_s7457072308508201937r_real @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8062_pochhammer__rec_H,axiom,
    ! [Z: nat,N2: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z @ ( suc @ N2 ) )
      = ( times_times_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N2 ) ) @ ( comm_s4663373288045622133er_nat @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8063_pochhammer__rec_H,axiom,
    ! [Z: complex,N2: nat] :
      ( ( comm_s2602460028002588243omplex @ Z @ ( suc @ N2 ) )
      = ( times_times_complex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ N2 ) ) @ ( comm_s2602460028002588243omplex @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8064_pochhammer__Suc,axiom,
    ! [A: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N2 ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8065_pochhammer__Suc,axiom,
    ! [A: int,N2: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N2 ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8066_pochhammer__Suc,axiom,
    ! [A: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N2 ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8067_pochhammer__Suc,axiom,
    ! [A: nat,N2: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N2 ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8068_pochhammer__Suc,axiom,
    ! [A: complex,N2: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N2 ) )
      = ( times_times_complex @ ( comm_s2602460028002588243omplex @ A @ N2 ) @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8069_pochhammer__eq__0__iff,axiom,
    ! [A: rat,N2: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N2 )
        = zero_zero_rat )
      = ( ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N2 )
            & ( A
              = ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K2 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8070_pochhammer__eq__0__iff,axiom,
    ! [A: real,N2: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N2 )
        = zero_zero_real )
      = ( ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N2 )
            & ( A
              = ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K2 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8071_pochhammer__eq__0__iff,axiom,
    ! [A: complex,N2: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N2 )
        = zero_zero_complex )
      = ( ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N2 )
            & ( A
              = ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K2 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8072_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
        = zero_z3403309356797280102nteger )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8073_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
        = zero_zero_rat )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8074_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
        = zero_zero_int )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8075_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
        = zero_zero_real )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8076_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
        = zero_zero_complex )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8077_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
        = zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8078_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
        = zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8079_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
        = zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8080_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
        = zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8081_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
        = zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8082_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
       != zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8083_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
       != zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8084_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
       != zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8085_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
       != zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8086_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
       != zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8087_pochhammer__product_H,axiom,
    ! [Z: rat,N2: nat,M: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ N2 ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8088_pochhammer__product_H,axiom,
    ! [Z: int,N2: nat,M: nat] :
      ( ( comm_s4660882817536571857er_int @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ N2 ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8089_pochhammer__product_H,axiom,
    ! [Z: real,N2: nat,M: nat] :
      ( ( comm_s7457072308508201937r_real @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ N2 ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8090_pochhammer__product_H,axiom,
    ! [Z: nat,N2: nat,M: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ N2 ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8091_pochhammer__product_H,axiom,
    ! [Z: complex,N2: nat,M: nat] :
      ( ( comm_s2602460028002588243omplex @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ N2 ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8092_summable__exp,axiom,
    ! [X2: complex] :
      ( summable_complex
      @ ^ [N: nat] : ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri5044797733671781792omplex @ N ) ) @ ( power_power_complex @ X2 @ N ) ) ) ).

% summable_exp
thf(fact_8093_summable__exp,axiom,
    ! [X2: real] :
      ( summable_real
      @ ^ [N: nat] : ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ).

% summable_exp
thf(fact_8094_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_8095_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_8096_binomial__mono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N2 )
       => ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K6 ) ) ) ) ).

% binomial_mono
thf(fact_8097_binomial__maximum_H,axiom,
    ! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ).

% binomial_maximum'
thf(fact_8098_binomial__maximum,axiom,
    ! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% binomial_maximum
thf(fact_8099_binomial__antimono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
       => ( ( ord_less_eq_nat @ K6 @ N2 )
         => ( ord_less_eq_nat @ ( binomial @ N2 @ K6 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).

% binomial_antimono
thf(fact_8100_binomial__le__pow2,axiom,
    ! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% binomial_le_pow2
thf(fact_8101_choose__reduce__nat,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( binomial @ N2 @ K )
          = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ) ) ).

% choose_reduce_nat
thf(fact_8102_ex__inverse__of__nat__less,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ X2 ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_8103_ex__inverse__of__nat__less,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ N3 ) ) @ X2 ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_8104_times__binomial__minus1__eq,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( times_times_nat @ K @ ( binomial @ N2 @ K ) )
        = ( times_times_nat @ N2 @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% times_binomial_minus1_eq
thf(fact_8105_power__diff__conv__inverse,axiom,
    ! [X2: real,M: nat,N2: nat] :
      ( ( X2 != zero_zero_real )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( power_power_real @ X2 @ ( minus_minus_nat @ N2 @ M ) )
          = ( times_times_real @ ( power_power_real @ X2 @ N2 ) @ ( power_power_real @ ( inverse_inverse_real @ X2 ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_8106_power__diff__conv__inverse,axiom,
    ! [X2: complex,M: nat,N2: nat] :
      ( ( X2 != zero_zero_complex )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( power_power_complex @ X2 @ ( minus_minus_nat @ N2 @ M ) )
          = ( times_times_complex @ ( power_power_complex @ X2 @ N2 ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X2 ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_8107_power__diff__conv__inverse,axiom,
    ! [X2: rat,M: nat,N2: nat] :
      ( ( X2 != zero_zero_rat )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( power_power_rat @ X2 @ ( minus_minus_nat @ N2 @ M ) )
          = ( times_times_rat @ ( power_power_rat @ X2 @ N2 ) @ ( power_power_rat @ ( inverse_inverse_rat @ X2 ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_8108_Suc__times__gbinomial,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8109_Suc__times__gbinomial,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
      = ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8110_Suc__times__gbinomial,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8111_gbinomial__absorption,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8112_gbinomial__absorption,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8113_gbinomial__absorption,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8114_binomial__altdef__nat,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( binomial @ N2 @ K )
        = ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_altdef_nat
thf(fact_8115_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: rat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
        = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8116_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: real] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
        = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8117_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: complex] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_complex @ ( gbinomial_complex @ A @ M ) @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ M ) @ K ) )
        = ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8118_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s4028243227959126397er_rat @ Z @ N2 )
        = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8119_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s4660882817536571857er_int @ Z @ N2 )
        = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8120_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s7457072308508201937r_real @ Z @ N2 )
        = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8121_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s4663373288045622133er_nat @ Z @ N2 )
        = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8122_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: complex] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s2602460028002588243omplex @ Z @ N2 )
        = ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ M ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8123_binomial__less__binomial__Suc,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_nat @ K @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ord_less_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).

% binomial_less_binomial_Suc
thf(fact_8124_binomial__strict__mono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N2 )
       => ( ord_less_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K6 ) ) ) ) ).

% binomial_strict_mono
thf(fact_8125_binomial__strict__antimono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ N2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
       => ( ( ord_less_eq_nat @ K6 @ N2 )
         => ( ord_less_nat @ ( binomial @ N2 @ K6 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).

% binomial_strict_antimono
thf(fact_8126_central__binomial__odd,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( binomial @ N2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = ( binomial @ N2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% central_binomial_odd
thf(fact_8127_binomial__addition__formula,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( binomial @ N2 @ ( suc @ K ) )
        = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ) ).

% binomial_addition_formula
thf(fact_8128_fact__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K ) ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_8129_fact__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ K ) ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N2 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_8130_fact__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K ) ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_8131_binomial__fact,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8132_binomial__fact,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( semiri8010041392384452111omplex @ ( binomial @ N2 @ K ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N2 ) @ ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8133_binomial__fact,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8134_gbinomial__factors,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8135_gbinomial__factors,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8136_gbinomial__factors,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8137_gbinomial__rec,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8138_gbinomial__rec,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8139_gbinomial__rec,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8140_gbinomial__negated__upper,axiom,
    ( gbinomial_rat
    = ( ^ [A3: rat,K2: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K2 ) @ A3 ) @ one_one_rat ) @ K2 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8141_gbinomial__negated__upper,axiom,
    ( gbinomial_real
    = ( ^ [A3: real,K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( gbinomial_real @ ( minus_minus_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ K2 ) @ A3 ) @ one_one_real ) @ K2 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8142_gbinomial__negated__upper,axiom,
    ( gbinomial_complex
    = ( ^ [A3: complex,K2: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ K2 ) @ A3 ) @ one_one_complex ) @ K2 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8143_gbinomial__index__swap,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ one_one_rat ) @ K ) )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ N2 ) ) ) ).

% gbinomial_index_swap
thf(fact_8144_gbinomial__index__swap,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ one_one_real ) @ K ) )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ N2 ) ) ) ).

% gbinomial_index_swap
thf(fact_8145_gbinomial__index__swap,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ one_one_complex ) @ K ) )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ N2 ) ) ) ).

% gbinomial_index_swap
thf(fact_8146_exp__plus__inverse__exp,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) ) ).

% exp_plus_inverse_exp
thf(fact_8147_pochhammer__absorb__comp,axiom,
    ! [R: code_integer,K: nat] :
      ( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R ) @ K ) )
      = ( times_3573771949741848930nteger @ R @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8148_pochhammer__absorb__comp,axiom,
    ! [R: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ R @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R ) @ K ) )
      = ( times_times_rat @ R @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8149_pochhammer__absorb__comp,axiom,
    ! [R: int,K: nat] :
      ( ( times_times_int @ ( minus_minus_int @ R @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R ) @ K ) )
      = ( times_times_int @ R @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8150_pochhammer__absorb__comp,axiom,
    ! [R: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ R @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R ) @ K ) )
      = ( times_times_real @ R @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8151_pochhammer__absorb__comp,axiom,
    ! [R: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ R @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R ) @ K ) )
      = ( times_times_complex @ R @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8152_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ N2 )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( semiri3624122377584611663nteger @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8153_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ N2 )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8154_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ N2 )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8155_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ N2 )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( semiri5044797733671781792omplex @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8156_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ N2 )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8157_choose__two,axiom,
    ! [N2: nat] :
      ( ( binomial @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( divide_divide_nat @ ( times_times_nat @ N2 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% choose_two
thf(fact_8158_gbinomial__minus,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_8159_gbinomial__minus,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_8160_gbinomial__minus,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_8161_plus__inverse__ge__2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) ) ) ).

% plus_inverse_ge_2
thf(fact_8162_real__inv__sqrt__pow2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( inverse_inverse_real @ X2 ) ) ) ).

% real_inv_sqrt_pow2
thf(fact_8163_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_complex @ A @ K )
        = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8164_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_real @ A @ K )
        = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8165_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_rat @ A @ K )
        = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8166_tan__cot,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) )
      = ( inverse_inverse_real @ ( tan_real @ X2 ) ) ) ).

% tan_cot
thf(fact_8167_pochhammer__minus_H,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8168_pochhammer__minus_H,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8169_pochhammer__minus_H,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8170_pochhammer__minus_H,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8171_pochhammer__minus_H,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8172_pochhammer__minus,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8173_pochhammer__minus,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8174_pochhammer__minus,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8175_pochhammer__minus,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8176_pochhammer__minus,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8177_real__le__x__sinh,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ X2 @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_x_sinh
thf(fact_8178_real__le__abs__sinh,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_abs_sinh
thf(fact_8179_gbinomial__sum__up__index,axiom,
    ! [K: nat,N2: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [J3: nat] : ( gbinomial_rat @ ( semiri681578069525770553at_rat @ J3 ) @ K )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).

% gbinomial_sum_up_index
thf(fact_8180_gbinomial__sum__up__index,axiom,
    ! [K: nat,N2: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [J3: nat] : ( gbinomial_complex @ ( semiri8010041392384452111omplex @ J3 ) @ K )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).

% gbinomial_sum_up_index
thf(fact_8181_gbinomial__sum__up__index,axiom,
    ! [K: nat,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [J3: nat] : ( gbinomial_real @ ( semiri5074537144036343181t_real @ J3 ) @ K )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).

% gbinomial_sum_up_index
thf(fact_8182_tan__sec,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
       != zero_zero_real )
     => ( ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( power_power_real @ ( inverse_inverse_real @ ( cos_real @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% tan_sec
thf(fact_8183_tan__sec,axiom,
    ! [X2: complex] :
      ( ( ( cos_complex @ X2 )
       != zero_zero_complex )
     => ( ( plus_plus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( power_power_complex @ ( invers8013647133539491842omplex @ ( cos_complex @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% tan_sec
thf(fact_8184_gbinomial__absorption_H,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_rat @ A @ K )
        = ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8185_gbinomial__absorption_H,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_real @ A @ K )
        = ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8186_gbinomial__absorption_H,axiom,
    ! [K: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_complex @ A @ K )
        = ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8187_fact__double,axiom,
    ! [N2: nat] :
      ( ( semiri5044797733671781792omplex @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ N2 ) ) @ ( semiri5044797733671781792omplex @ N2 ) ) ) ).

% fact_double
thf(fact_8188_fact__double,axiom,
    ! [N2: nat] :
      ( ( semiri773545260158071498ct_rat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ N2 ) ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% fact_double
thf(fact_8189_fact__double,axiom,
    ! [N2: nat] :
      ( ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_real @ ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ N2 ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% fact_double
thf(fact_8190_binomial__code,axiom,
    ( binomial
    = ( ^ [N: nat,K2: nat] : ( if_nat @ ( ord_less_nat @ N @ K2 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) ) @ ( binomial @ N @ ( minus_minus_nat @ N @ K2 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N @ K2 ) @ one_one_nat ) @ N @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K2 ) ) ) ) ) ) ).

% binomial_code
thf(fact_8191_gbinomial__code,axiom,
    ( gbinomial_rat
    = ( ^ [A3: rat,K2: nat] :
          ( if_rat @ ( K2 = zero_zero_nat ) @ one_one_rat
          @ ( divide_divide_rat
            @ ( set_fo1949268297981939178at_rat
              @ ^ [L: nat] : ( times_times_rat @ ( minus_minus_rat @ A3 @ ( semiri681578069525770553at_rat @ L ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K2 @ one_one_nat )
              @ one_one_rat )
            @ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8192_gbinomial__code,axiom,
    ( gbinomial_complex
    = ( ^ [A3: complex,K2: nat] :
          ( if_complex @ ( K2 = zero_zero_nat ) @ one_one_complex
          @ ( divide1717551699836669952omplex
            @ ( set_fo1517530859248394432omplex
              @ ^ [L: nat] : ( times_times_complex @ ( minus_minus_complex @ A3 @ ( semiri8010041392384452111omplex @ L ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K2 @ one_one_nat )
              @ one_one_complex )
            @ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8193_gbinomial__code,axiom,
    ( gbinomial_real
    = ( ^ [A3: real,K2: nat] :
          ( if_real @ ( K2 = zero_zero_nat ) @ one_one_real
          @ ( divide_divide_real
            @ ( set_fo3111899725591712190t_real
              @ ^ [L: nat] : ( times_times_real @ ( minus_minus_real @ A3 @ ( semiri5074537144036343181t_real @ L ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K2 @ one_one_nat )
              @ one_one_real )
            @ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8194_pochhammer__times__pochhammer__half,axiom,
    ! [Z: rat,N2: nat] :
      ( ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
      = ( groups73079841787564623at_rat
        @ ^ [K2: nat] : ( plus_plus_rat @ Z @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ K2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_8195_pochhammer__times__pochhammer__half,axiom,
    ! [Z: real,N2: nat] :
      ( ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ ( suc @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
      = ( groups129246275422532515t_real
        @ ^ [K2: nat] : ( plus_plus_real @ Z @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ K2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_8196_pochhammer__times__pochhammer__half,axiom,
    ! [Z: complex,N2: nat] :
      ( ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ ( suc @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
      = ( groups6464643781859351333omplex
        @ ^ [K2: nat] : ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ K2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_8197_pochhammer__code,axiom,
    ( comm_s4028243227959126397er_rat
    = ( ^ [A3: rat,N: nat] :
          ( if_rat @ ( N = zero_zero_nat ) @ one_one_rat
          @ ( set_fo1949268297981939178at_rat
            @ ^ [O: nat] : ( times_times_rat @ ( plus_plus_rat @ A3 @ ( semiri681578069525770553at_rat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N @ one_one_nat )
            @ one_one_rat ) ) ) ) ).

% pochhammer_code
thf(fact_8198_pochhammer__code,axiom,
    ( comm_s4660882817536571857er_int
    = ( ^ [A3: int,N: nat] :
          ( if_int @ ( N = zero_zero_nat ) @ one_one_int
          @ ( set_fo2581907887559384638at_int
            @ ^ [O: nat] : ( times_times_int @ ( plus_plus_int @ A3 @ ( semiri1314217659103216013at_int @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N @ one_one_nat )
            @ one_one_int ) ) ) ) ).

% pochhammer_code
thf(fact_8199_pochhammer__code,axiom,
    ( comm_s7457072308508201937r_real
    = ( ^ [A3: real,N: nat] :
          ( if_real @ ( N = zero_zero_nat ) @ one_one_real
          @ ( set_fo3111899725591712190t_real
            @ ^ [O: nat] : ( times_times_real @ ( plus_plus_real @ A3 @ ( semiri5074537144036343181t_real @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N @ one_one_nat )
            @ one_one_real ) ) ) ) ).

% pochhammer_code
thf(fact_8200_pochhammer__code,axiom,
    ( comm_s2602460028002588243omplex
    = ( ^ [A3: complex,N: nat] :
          ( if_complex @ ( N = zero_zero_nat ) @ one_one_complex
          @ ( set_fo1517530859248394432omplex
            @ ^ [O: nat] : ( times_times_complex @ ( plus_plus_complex @ A3 @ ( semiri8010041392384452111omplex @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N @ one_one_nat )
            @ one_one_complex ) ) ) ) ).

% pochhammer_code
thf(fact_8201_pochhammer__code,axiom,
    ( comm_s4663373288045622133er_nat
    = ( ^ [A3: nat,N: nat] :
          ( if_nat @ ( N = zero_zero_nat ) @ one_one_nat
          @ ( set_fo2584398358068434914at_nat
            @ ^ [O: nat] : ( times_times_nat @ ( plus_plus_nat @ A3 @ ( semiri1316708129612266289at_nat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N @ one_one_nat )
            @ one_one_nat ) ) ) ) ).

% pochhammer_code
thf(fact_8202_gbinomial__partial__row__sum,axiom,
    ! [A: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K2: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K2 ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K2 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ one_one_rat ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8203_gbinomial__partial__row__sum,axiom,
    ! [A: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K2: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K2 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K2 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ one_one_complex ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8204_gbinomial__partial__row__sum,axiom,
    ! [A: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K2: nat] : ( times_times_real @ ( gbinomial_real @ A @ K2 ) @ ( minus_minus_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8205_atMost__iff,axiom,
    ! [I: real,K: real] :
      ( ( member_real @ I @ ( set_ord_atMost_real @ K ) )
      = ( ord_less_eq_real @ I @ K ) ) ).

% atMost_iff
thf(fact_8206_atMost__iff,axiom,
    ! [I: set_nat,K: set_nat] :
      ( ( member_set_nat @ I @ ( set_or4236626031148496127et_nat @ K ) )
      = ( ord_less_eq_set_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_8207_atMost__iff,axiom,
    ! [I: rat,K: rat] :
      ( ( member_rat @ I @ ( set_ord_atMost_rat @ K ) )
      = ( ord_less_eq_rat @ I @ K ) ) ).

% atMost_iff
thf(fact_8208_atMost__iff,axiom,
    ! [I: num,K: num] :
      ( ( member_num @ I @ ( set_ord_atMost_num @ K ) )
      = ( ord_less_eq_num @ I @ K ) ) ).

% atMost_iff
thf(fact_8209_atMost__iff,axiom,
    ! [I: int,K: int] :
      ( ( member_int @ I @ ( set_ord_atMost_int @ K ) )
      = ( ord_less_eq_int @ I @ K ) ) ).

% atMost_iff
thf(fact_8210_atMost__iff,axiom,
    ! [I: nat,K: nat] :
      ( ( member_nat @ I @ ( set_ord_atMost_nat @ K ) )
      = ( ord_less_eq_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_8211_finite__atMost,axiom,
    ! [K: nat] : ( finite_finite_nat @ ( set_ord_atMost_nat @ K ) ) ).

% finite_atMost
thf(fact_8212_prod__zero__iff,axiom,
    ! [A2: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( groups6464643781859351333omplex @ F @ A2 )
          = zero_zero_complex )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_complex ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8213_prod__zero__iff,axiom,
    ! [A2: set_int,F: int > complex] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups7440179247065528705omplex @ F @ A2 )
          = zero_zero_complex )
        = ( ? [X: int] :
              ( ( member_int @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_complex ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8214_prod__zero__iff,axiom,
    ! [A2: set_complex,F: complex > complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( groups3708469109370488835omplex @ F @ A2 )
          = zero_zero_complex )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_complex ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8215_prod__zero__iff,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( groups129246275422532515t_real @ F @ A2 )
          = zero_zero_real )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_real ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8216_prod__zero__iff,axiom,
    ! [A2: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups2316167850115554303t_real @ F @ A2 )
          = zero_zero_real )
        = ( ? [X: int] :
              ( ( member_int @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_real ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8217_prod__zero__iff,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( groups766887009212190081x_real @ F @ A2 )
          = zero_zero_real )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_real ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8218_prod__zero__iff,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( groups73079841787564623at_rat @ F @ A2 )
          = zero_zero_rat )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_rat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8219_prod__zero__iff,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups1072433553688619179nt_rat @ F @ A2 )
          = zero_zero_rat )
        = ( ? [X: int] :
              ( ( member_int @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_rat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8220_prod__zero__iff,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( groups225925009352817453ex_rat @ F @ A2 )
          = zero_zero_rat )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_rat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8221_prod__zero__iff,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups1707563613775114915nt_nat @ F @ A2 )
          = zero_zero_nat )
        = ( ? [X: int] :
              ( ( member_int @ X @ A2 )
              & ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_8222_prod_Oinfinite,axiom,
    ! [A2: set_nat,G: nat > complex] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( groups6464643781859351333omplex @ G @ A2 )
        = one_one_complex ) ) ).

% prod.infinite
thf(fact_8223_prod_Oinfinite,axiom,
    ! [A2: set_int,G: int > complex] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups7440179247065528705omplex @ G @ A2 )
        = one_one_complex ) ) ).

% prod.infinite
thf(fact_8224_prod_Oinfinite,axiom,
    ! [A2: set_complex,G: complex > complex] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( groups3708469109370488835omplex @ G @ A2 )
        = one_one_complex ) ) ).

% prod.infinite
thf(fact_8225_prod_Oinfinite,axiom,
    ! [A2: set_nat,G: nat > real] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( groups129246275422532515t_real @ G @ A2 )
        = one_one_real ) ) ).

% prod.infinite
thf(fact_8226_prod_Oinfinite,axiom,
    ! [A2: set_int,G: int > real] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups2316167850115554303t_real @ G @ A2 )
        = one_one_real ) ) ).

% prod.infinite
thf(fact_8227_prod_Oinfinite,axiom,
    ! [A2: set_complex,G: complex > real] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( groups766887009212190081x_real @ G @ A2 )
        = one_one_real ) ) ).

% prod.infinite
thf(fact_8228_prod_Oinfinite,axiom,
    ! [A2: set_nat,G: nat > rat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( groups73079841787564623at_rat @ G @ A2 )
        = one_one_rat ) ) ).

% prod.infinite
thf(fact_8229_prod_Oinfinite,axiom,
    ! [A2: set_int,G: int > rat] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups1072433553688619179nt_rat @ G @ A2 )
        = one_one_rat ) ) ).

% prod.infinite
thf(fact_8230_prod_Oinfinite,axiom,
    ! [A2: set_complex,G: complex > rat] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( groups225925009352817453ex_rat @ G @ A2 )
        = one_one_rat ) ) ).

% prod.infinite
thf(fact_8231_prod_Oinfinite,axiom,
    ! [A2: set_int,G: int > nat] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( groups1707563613775114915nt_nat @ G @ A2 )
        = one_one_nat ) ) ).

% prod.infinite
thf(fact_8232_atMost__subset__iff,axiom,
    ! [X2: set_nat,Y: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_or4236626031148496127et_nat @ X2 ) @ ( set_or4236626031148496127et_nat @ Y ) )
      = ( ord_less_eq_set_nat @ X2 @ Y ) ) ).

% atMost_subset_iff
thf(fact_8233_atMost__subset__iff,axiom,
    ! [X2: rat,Y: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ X2 ) @ ( set_ord_atMost_rat @ Y ) )
      = ( ord_less_eq_rat @ X2 @ Y ) ) ).

% atMost_subset_iff
thf(fact_8234_atMost__subset__iff,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ X2 ) @ ( set_ord_atMost_num @ Y ) )
      = ( ord_less_eq_num @ X2 @ Y ) ) ).

% atMost_subset_iff
thf(fact_8235_atMost__subset__iff,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X2 ) @ ( set_ord_atMost_int @ Y ) )
      = ( ord_less_eq_int @ X2 @ Y ) ) ).

% atMost_subset_iff
thf(fact_8236_atMost__subset__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X2 ) @ ( set_ord_atMost_nat @ Y ) )
      = ( ord_less_eq_nat @ X2 @ Y ) ) ).

% atMost_subset_iff
thf(fact_8237_dvd__prod__eqI,axiom,
    ! [A2: set_real,A: real,B: nat,F: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_nat @ B @ ( groups4696554848551431203al_nat @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8238_dvd__prod__eqI,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B: nat,F: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_nat @ B @ ( groups6361806394783013919BT_nat @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8239_dvd__prod__eqI,axiom,
    ! [A2: set_int,A: int,B: nat,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_nat @ B @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8240_dvd__prod__eqI,axiom,
    ! [A2: set_complex,A: complex,B: nat,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_nat @ B @ ( groups861055069439313189ex_nat @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8241_dvd__prod__eqI,axiom,
    ! [A2: set_real,A: real,B: int,F: real > int] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_int @ B @ ( groups4694064378042380927al_int @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8242_dvd__prod__eqI,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B: int,F: vEBT_VEBT > int] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_int @ B @ ( groups6359315924273963643BT_int @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8243_dvd__prod__eqI,axiom,
    ! [A2: set_complex,A: complex,B: int,F: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_int @ B @ ( groups858564598930262913ex_int @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8244_dvd__prod__eqI,axiom,
    ! [A2: set_real,A: real,B: code_integer,F: real > code_integer] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_Code_integer @ B @ ( groups6225526099057966256nteger @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8245_dvd__prod__eqI,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B: code_integer,F: vEBT_VEBT > code_integer] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_Code_integer @ B @ ( groups3770682396051356844nteger @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8246_dvd__prod__eqI,axiom,
    ! [A2: set_nat,A: nat,B: code_integer,F: nat > code_integer] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ( ( B
            = ( F @ A ) )
         => ( dvd_dvd_Code_integer @ B @ ( groups3455450783089532116nteger @ F @ A2 ) ) ) ) ) ).

% dvd_prod_eqI
thf(fact_8247_dvd__prodI,axiom,
    ! [A2: set_real,A: real,F: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ( dvd_dvd_nat @ ( F @ A ) @ ( groups4696554848551431203al_nat @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8248_dvd__prodI,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ A @ A2 )
       => ( dvd_dvd_nat @ ( F @ A ) @ ( groups6361806394783013919BT_nat @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8249_dvd__prodI,axiom,
    ! [A2: set_int,A: int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ( dvd_dvd_nat @ ( F @ A ) @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8250_dvd__prodI,axiom,
    ! [A2: set_complex,A: complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ A @ A2 )
       => ( dvd_dvd_nat @ ( F @ A ) @ ( groups861055069439313189ex_nat @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8251_dvd__prodI,axiom,
    ! [A2: set_real,A: real,F: real > int] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ( dvd_dvd_int @ ( F @ A ) @ ( groups4694064378042380927al_int @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8252_dvd__prodI,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > int] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ A @ A2 )
       => ( dvd_dvd_int @ ( F @ A ) @ ( groups6359315924273963643BT_int @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8253_dvd__prodI,axiom,
    ! [A2: set_complex,A: complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ A @ A2 )
       => ( dvd_dvd_int @ ( F @ A ) @ ( groups858564598930262913ex_int @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8254_dvd__prodI,axiom,
    ! [A2: set_real,A: real,F: real > code_integer] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ( dvd_dvd_Code_integer @ ( F @ A ) @ ( groups6225526099057966256nteger @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8255_dvd__prodI,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > code_integer] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ A @ A2 )
       => ( dvd_dvd_Code_integer @ ( F @ A ) @ ( groups3770682396051356844nteger @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8256_dvd__prodI,axiom,
    ! [A2: set_nat,A: nat,F: nat > code_integer] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ( dvd_dvd_Code_integer @ ( F @ A ) @ ( groups3455450783089532116nteger @ F @ A2 ) ) ) ) ).

% dvd_prodI
thf(fact_8257_prod_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups713298508707869441omplex
              @ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups713298508707869441omplex
              @ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta'
thf(fact_8258_prod_Odelta_H,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups127312072573709053omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups127312072573709053omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta'
thf(fact_8259_prod_Odelta_H,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups6464643781859351333omplex
              @ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups6464643781859351333omplex
              @ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta'
thf(fact_8260_prod_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups7440179247065528705omplex
              @ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups7440179247065528705omplex
              @ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta'
thf(fact_8261_prod_Odelta_H,axiom,
    ! [S3: set_complex,A: complex,B: complex > complex] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups3708469109370488835omplex
              @ ^ [K2: complex] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups3708469109370488835omplex
              @ ^ [K2: complex] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta'
thf(fact_8262_prod_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1681761925125756287l_real
              @ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1681761925125756287l_real
              @ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta'
thf(fact_8263_prod_Odelta_H,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2703838992350267259T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2703838992350267259T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta'
thf(fact_8264_prod_Odelta_H,axiom,
    ! [S3: set_nat,A: nat,B: nat > real] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups129246275422532515t_real
              @ ^ [K2: nat] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups129246275422532515t_real
              @ ^ [K2: nat] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta'
thf(fact_8265_prod_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups2316167850115554303t_real
              @ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups2316167850115554303t_real
              @ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta'
thf(fact_8266_prod_Odelta_H,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups766887009212190081x_real
              @ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups766887009212190081x_real
              @ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta'
thf(fact_8267_prod_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups713298508707869441omplex
              @ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups713298508707869441omplex
              @ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta
thf(fact_8268_prod_Odelta,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups127312072573709053omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups127312072573709053omplex
              @ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta
thf(fact_8269_prod_Odelta,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups6464643781859351333omplex
              @ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups6464643781859351333omplex
              @ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta
thf(fact_8270_prod_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups7440179247065528705omplex
              @ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups7440179247065528705omplex
              @ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta
thf(fact_8271_prod_Odelta,axiom,
    ! [S3: set_complex,A: complex,B: complex > complex] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups3708469109370488835omplex
              @ ^ [K2: complex] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups3708469109370488835omplex
              @ ^ [K2: complex] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
              @ S3 )
            = one_one_complex ) ) ) ) ).

% prod.delta
thf(fact_8272_prod_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1681761925125756287l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1681761925125756287l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta
thf(fact_8273_prod_Odelta,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2703838992350267259T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2703838992350267259T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta
thf(fact_8274_prod_Odelta,axiom,
    ! [S3: set_nat,A: nat,B: nat > real] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups129246275422532515t_real
              @ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups129246275422532515t_real
              @ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta
thf(fact_8275_prod_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups2316167850115554303t_real
              @ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups2316167850115554303t_real
              @ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta
thf(fact_8276_prod_Odelta,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups766887009212190081x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups766887009212190081x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
              @ S3 )
            = one_one_real ) ) ) ) ).

% prod.delta
thf(fact_8277_Icc__subset__Iic__iff,axiom,
    ! [L2: set_nat,H2: set_nat,H3: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_or4548717258645045905et_nat @ L2 @ H2 ) @ ( set_or4236626031148496127et_nat @ H3 ) )
      = ( ~ ( ord_less_eq_set_nat @ L2 @ H2 )
        | ( ord_less_eq_set_nat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8278_Icc__subset__Iic__iff,axiom,
    ! [L2: rat,H2: rat,H3: rat] :
      ( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ L2 @ H2 ) @ ( set_ord_atMost_rat @ H3 ) )
      = ( ~ ( ord_less_eq_rat @ L2 @ H2 )
        | ( ord_less_eq_rat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8279_Icc__subset__Iic__iff,axiom,
    ! [L2: num,H2: num,H3: num] :
      ( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ L2 @ H2 ) @ ( set_ord_atMost_num @ H3 ) )
      = ( ~ ( ord_less_eq_num @ L2 @ H2 )
        | ( ord_less_eq_num @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8280_Icc__subset__Iic__iff,axiom,
    ! [L2: nat,H2: nat,H3: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ L2 @ H2 ) @ ( set_ord_atMost_nat @ H3 ) )
      = ( ~ ( ord_less_eq_nat @ L2 @ H2 )
        | ( ord_less_eq_nat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8281_Icc__subset__Iic__iff,axiom,
    ! [L2: int,H2: int,H3: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ L2 @ H2 ) @ ( set_ord_atMost_int @ H3 ) )
      = ( ~ ( ord_less_eq_int @ L2 @ H2 )
        | ( ord_less_eq_int @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8282_Icc__subset__Iic__iff,axiom,
    ! [L2: real,H2: real,H3: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ L2 @ H2 ) @ ( set_ord_atMost_real @ H3 ) )
      = ( ~ ( ord_less_eq_real @ L2 @ H2 )
        | ( ord_less_eq_real @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8283_sum_OatMost__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8284_sum_OatMost__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8285_sum_OatMost__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8286_sum_OatMost__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8287_prod_OlessThan__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% prod.lessThan_Suc
thf(fact_8288_prod_OlessThan__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% prod.lessThan_Suc
thf(fact_8289_prod_OlessThan__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% prod.lessThan_Suc
thf(fact_8290_prod_OlessThan__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% prod.lessThan_Suc
thf(fact_8291_prod_OatMost__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% prod.atMost_Suc
thf(fact_8292_prod_OatMost__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% prod.atMost_Suc
thf(fact_8293_prod_OatMost__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% prod.atMost_Suc
thf(fact_8294_prod_OatMost__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% prod.atMost_Suc
thf(fact_8295_prod_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > complex] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = one_one_complex ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( times_times_complex @ ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_8296_prod_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > real] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = one_one_real ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_8297_prod_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > rat] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = one_one_rat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_8298_prod_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > nat] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = one_one_nat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_8299_prod_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > int] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = one_one_int ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_8300_divide__complex__def,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X: complex,Y2: complex] : ( times_times_complex @ X @ ( invers8013647133539491842omplex @ Y2 ) ) ) ) ).

% divide_complex_def
thf(fact_8301_infinite__Iic,axiom,
    ! [A: int] :
      ~ ( finite_finite_int @ ( set_ord_atMost_int @ A ) ) ).

% infinite_Iic
thf(fact_8302_prod_Odistrib,axiom,
    ! [G: nat > nat,H2: nat > nat,A2: set_nat] :
      ( ( groups708209901874060359at_nat
        @ ^ [X: nat] : ( times_times_nat @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ A2 ) @ ( groups708209901874060359at_nat @ H2 @ A2 ) ) ) ).

% prod.distrib
thf(fact_8303_prod_Odistrib,axiom,
    ! [G: nat > int,H2: nat > int,A2: set_nat] :
      ( ( groups705719431365010083at_int
        @ ^ [X: nat] : ( times_times_int @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( times_times_int @ ( groups705719431365010083at_int @ G @ A2 ) @ ( groups705719431365010083at_int @ H2 @ A2 ) ) ) ).

% prod.distrib
thf(fact_8304_prod_Odistrib,axiom,
    ! [G: int > int,H2: int > int,A2: set_int] :
      ( ( groups1705073143266064639nt_int
        @ ^ [X: int] : ( times_times_int @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( times_times_int @ ( groups1705073143266064639nt_int @ G @ A2 ) @ ( groups1705073143266064639nt_int @ H2 @ A2 ) ) ) ).

% prod.distrib
thf(fact_8305_prod__power__distrib,axiom,
    ! [F: nat > nat,A2: set_nat,N2: nat] :
      ( ( power_power_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ N2 )
      = ( groups708209901874060359at_nat
        @ ^ [X: nat] : ( power_power_nat @ ( F @ X ) @ N2 )
        @ A2 ) ) ).

% prod_power_distrib
thf(fact_8306_prod__power__distrib,axiom,
    ! [F: nat > int,A2: set_nat,N2: nat] :
      ( ( power_power_int @ ( groups705719431365010083at_int @ F @ A2 ) @ N2 )
      = ( groups705719431365010083at_int
        @ ^ [X: nat] : ( power_power_int @ ( F @ X ) @ N2 )
        @ A2 ) ) ).

% prod_power_distrib
thf(fact_8307_prod__power__distrib,axiom,
    ! [F: int > int,A2: set_int,N2: nat] :
      ( ( power_power_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ N2 )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : ( power_power_int @ ( F @ X ) @ N2 )
        @ A2 ) ) ).

% prod_power_distrib
thf(fact_8308_prod_Oswap__restrict,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_nat,G: vEBT_VEBT > nat > nat,R2: vEBT_VEBT > nat > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups6361806394783013919BT_nat
            @ ^ [X: vEBT_VEBT] :
                ( groups708209901874060359at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups708209901874060359at_nat
            @ ^ [Y2: nat] :
                ( groups6361806394783013919BT_nat
                @ ^ [X: vEBT_VEBT] : ( G @ X @ Y2 )
                @ ( collect_VEBT_VEBT
                  @ ^ [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8309_prod_Oswap__restrict,axiom,
    ! [A2: set_real,B2: set_nat,G: real > nat > nat,R2: real > nat > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups4696554848551431203al_nat
            @ ^ [X: real] :
                ( groups708209901874060359at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups708209901874060359at_nat
            @ ^ [Y2: nat] :
                ( groups4696554848551431203al_nat
                @ ^ [X: real] : ( G @ X @ Y2 )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8310_prod_Oswap__restrict,axiom,
    ! [A2: set_int,B2: set_nat,G: int > nat > nat,R2: int > nat > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups1707563613775114915nt_nat
            @ ^ [X: int] :
                ( groups708209901874060359at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups708209901874060359at_nat
            @ ^ [Y2: nat] :
                ( groups1707563613775114915nt_nat
                @ ^ [X: int] : ( G @ X @ Y2 )
                @ ( collect_int
                  @ ^ [X: int] :
                      ( ( member_int @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8311_prod_Oswap__restrict,axiom,
    ! [A2: set_complex,B2: set_nat,G: complex > nat > nat,R2: complex > nat > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups861055069439313189ex_nat
            @ ^ [X: complex] :
                ( groups708209901874060359at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups708209901874060359at_nat
            @ ^ [Y2: nat] :
                ( groups861055069439313189ex_nat
                @ ^ [X: complex] : ( G @ X @ Y2 )
                @ ( collect_complex
                  @ ^ [X: complex] :
                      ( ( member_complex @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8312_prod_Oswap__restrict,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_nat,G: vEBT_VEBT > nat > int,R2: vEBT_VEBT > nat > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups6359315924273963643BT_int
            @ ^ [X: vEBT_VEBT] :
                ( groups705719431365010083at_int @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups705719431365010083at_int
            @ ^ [Y2: nat] :
                ( groups6359315924273963643BT_int
                @ ^ [X: vEBT_VEBT] : ( G @ X @ Y2 )
                @ ( collect_VEBT_VEBT
                  @ ^ [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8313_prod_Oswap__restrict,axiom,
    ! [A2: set_real,B2: set_nat,G: real > nat > int,R2: real > nat > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups4694064378042380927al_int
            @ ^ [X: real] :
                ( groups705719431365010083at_int @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups705719431365010083at_int
            @ ^ [Y2: nat] :
                ( groups4694064378042380927al_int
                @ ^ [X: real] : ( G @ X @ Y2 )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8314_prod_Oswap__restrict,axiom,
    ! [A2: set_complex,B2: set_nat,G: complex > nat > int,R2: complex > nat > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( groups858564598930262913ex_int
            @ ^ [X: complex] :
                ( groups705719431365010083at_int @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y2: nat] :
                      ( ( member_nat @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups705719431365010083at_int
            @ ^ [Y2: nat] :
                ( groups858564598930262913ex_int
                @ ^ [X: complex] : ( G @ X @ Y2 )
                @ ( collect_complex
                  @ ^ [X: complex] :
                      ( ( member_complex @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8315_prod_Oswap__restrict,axiom,
    ! [A2: set_VEBT_VEBT,B2: set_int,G: vEBT_VEBT > int > int,R2: vEBT_VEBT > int > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ( groups6359315924273963643BT_int
            @ ^ [X: vEBT_VEBT] :
                ( groups1705073143266064639nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y2: int] :
                      ( ( member_int @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups1705073143266064639nt_int
            @ ^ [Y2: int] :
                ( groups6359315924273963643BT_int
                @ ^ [X: vEBT_VEBT] : ( G @ X @ Y2 )
                @ ( collect_VEBT_VEBT
                  @ ^ [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8316_prod_Oswap__restrict,axiom,
    ! [A2: set_real,B2: set_int,G: real > int > int,R2: real > int > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ( groups4694064378042380927al_int
            @ ^ [X: real] :
                ( groups1705073143266064639nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y2: int] :
                      ( ( member_int @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups1705073143266064639nt_int
            @ ^ [Y2: int] :
                ( groups4694064378042380927al_int
                @ ^ [X: real] : ( G @ X @ Y2 )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8317_prod_Oswap__restrict,axiom,
    ! [A2: set_complex,B2: set_int,G: complex > int > int,R2: complex > int > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_int @ B2 )
       => ( ( groups858564598930262913ex_int
            @ ^ [X: complex] :
                ( groups1705073143266064639nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y2: int] :
                      ( ( member_int @ Y2 @ B2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ A2 )
          = ( groups1705073143266064639nt_int
            @ ^ [Y2: int] :
                ( groups858564598930262913ex_int
                @ ^ [X: complex] : ( G @ X @ Y2 )
                @ ( collect_complex
                  @ ^ [X: complex] :
                      ( ( member_complex @ X @ A2 )
                      & ( R2 @ X @ Y2 ) ) ) )
            @ B2 ) ) ) ) ).

% prod.swap_restrict
thf(fact_8318_mod__prod__eq,axiom,
    ! [F: nat > nat,A: nat,A2: set_nat] :
      ( ( modulo_modulo_nat
        @ ( groups708209901874060359at_nat
          @ ^ [I4: nat] : ( modulo_modulo_nat @ ( F @ I4 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ A ) ) ).

% mod_prod_eq
thf(fact_8319_mod__prod__eq,axiom,
    ! [F: nat > int,A: int,A2: set_nat] :
      ( ( modulo_modulo_int
        @ ( groups705719431365010083at_int
          @ ^ [I4: nat] : ( modulo_modulo_int @ ( F @ I4 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_int @ ( groups705719431365010083at_int @ F @ A2 ) @ A ) ) ).

% mod_prod_eq
thf(fact_8320_mod__prod__eq,axiom,
    ! [F: int > int,A: int,A2: set_int] :
      ( ( modulo_modulo_int
        @ ( groups1705073143266064639nt_int
          @ ^ [I4: int] : ( modulo_modulo_int @ ( F @ I4 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ A ) ) ).

% mod_prod_eq
thf(fact_8321_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_real @ ( G @ zero_zero_nat )
        @ ( groups129246275422532515t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8322_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_rat @ ( G @ zero_zero_nat )
        @ ( groups73079841787564623at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8323_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_nat @ ( G @ zero_zero_nat )
        @ ( groups708209901874060359at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8324_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( times_times_int @ ( G @ zero_zero_nat )
        @ ( groups705719431365010083at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8325_atMost__def,axiom,
    ( set_ord_atMost_real
    = ( ^ [U2: real] :
          ( collect_real
          @ ^ [X: real] : ( ord_less_eq_real @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8326_atMost__def,axiom,
    ( set_or4236626031148496127et_nat
    = ( ^ [U2: set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] : ( ord_less_eq_set_nat @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8327_atMost__def,axiom,
    ( set_ord_atMost_rat
    = ( ^ [U2: rat] :
          ( collect_rat
          @ ^ [X: rat] : ( ord_less_eq_rat @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8328_atMost__def,axiom,
    ( set_ord_atMost_num
    = ( ^ [U2: num] :
          ( collect_num
          @ ^ [X: num] : ( ord_less_eq_num @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8329_atMost__def,axiom,
    ( set_ord_atMost_int
    = ( ^ [U2: int] :
          ( collect_int
          @ ^ [X: int] : ( ord_less_eq_int @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8330_atMost__def,axiom,
    ( set_ord_atMost_nat
    = ( ^ [U2: nat] :
          ( collect_nat
          @ ^ [X: nat] : ( ord_less_eq_nat @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8331_prod__nonneg,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ).

% prod_nonneg
thf(fact_8332_prod__nonneg,axiom,
    ! [A2: set_nat,F: nat > int] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X3 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ).

% prod_nonneg
thf(fact_8333_prod__nonneg,axiom,
    ! [A2: set_int,F: int > int] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X3 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ).

% prod_nonneg
thf(fact_8334_prod__mono,axiom,
    ! [A2: set_nat,F: nat > real,G: nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A2 ) @ ( groups129246275422532515t_real @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8335_prod__mono,axiom,
    ! [A2: set_real,F: real > real,G: real > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ ( groups1681761925125756287l_real @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8336_prod__mono,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real,G: vEBT_VEBT > real] :
      ( ! [I3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ I3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ ( groups2703838992350267259T_real @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8337_prod__mono,axiom,
    ! [A2: set_int,F: int > real,G: int > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ ( groups2316167850115554303t_real @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8338_prod__mono,axiom,
    ! [A2: set_complex,F: complex > real,G: complex > real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups766887009212190081x_real @ F @ A2 ) @ ( groups766887009212190081x_real @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8339_prod__mono,axiom,
    ! [A2: set_nat,F: nat > rat,G: nat > rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ ( groups73079841787564623at_rat @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8340_prod__mono,axiom,
    ! [A2: set_real,F: real > rat,G: real > rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8341_prod__mono,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
      ( ! [I3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ I3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ ( groups5726676334696518183BT_rat @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8342_prod__mono,axiom,
    ! [A2: set_int,F: int > rat,G: int > rat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8343_prod__mono,axiom,
    ! [A2: set_complex,F: complex > rat,G: complex > rat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups225925009352817453ex_rat @ F @ A2 ) @ ( groups225925009352817453ex_rat @ G @ A2 ) ) ) ).

% prod_mono
thf(fact_8344_prod__pos,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_nat @ zero_zero_nat @ ( F @ X3 ) ) )
     => ( ord_less_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ).

% prod_pos
thf(fact_8345_prod__pos,axiom,
    ! [A2: set_nat,F: nat > int] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_int @ zero_zero_int @ ( F @ X3 ) ) )
     => ( ord_less_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ).

% prod_pos
thf(fact_8346_prod__pos,axiom,
    ! [A2: set_int,F: int > int] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_int @ zero_zero_int @ ( F @ X3 ) ) )
     => ( ord_less_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ).

% prod_pos
thf(fact_8347_prod__ge__1,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups129246275422532515t_real @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8348_prod__ge__1,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8349_prod__ge__1,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8350_prod__ge__1,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8351_prod__ge__1,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups766887009212190081x_real @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8352_prod__ge__1,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8353_prod__ge__1,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8354_prod__ge__1,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8355_prod__ge__1,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8356_prod__ge__1,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups225925009352817453ex_rat @ F @ A2 ) ) ) ).

% prod_ge_1
thf(fact_8357_prod__zero,axiom,
    ! [A2: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_complex ) )
       => ( ( groups6464643781859351333omplex @ F @ A2 )
          = zero_zero_complex ) ) ) ).

% prod_zero
thf(fact_8358_prod__zero,axiom,
    ! [A2: set_int,F: int > complex] :
      ( ( finite_finite_int @ A2 )
     => ( ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_complex ) )
       => ( ( groups7440179247065528705omplex @ F @ A2 )
          = zero_zero_complex ) ) ) ).

% prod_zero
thf(fact_8359_prod__zero,axiom,
    ! [A2: set_complex,F: complex > complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ? [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_complex ) )
       => ( ( groups3708469109370488835omplex @ F @ A2 )
          = zero_zero_complex ) ) ) ).

% prod_zero
thf(fact_8360_prod__zero,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_real ) )
       => ( ( groups129246275422532515t_real @ F @ A2 )
          = zero_zero_real ) ) ) ).

% prod_zero
thf(fact_8361_prod__zero,axiom,
    ! [A2: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_real ) )
       => ( ( groups2316167850115554303t_real @ F @ A2 )
          = zero_zero_real ) ) ) ).

% prod_zero
thf(fact_8362_prod__zero,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ? [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_real ) )
       => ( ( groups766887009212190081x_real @ F @ A2 )
          = zero_zero_real ) ) ) ).

% prod_zero
thf(fact_8363_prod__zero,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_rat ) )
       => ( ( groups73079841787564623at_rat @ F @ A2 )
          = zero_zero_rat ) ) ) ).

% prod_zero
thf(fact_8364_prod__zero,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_rat ) )
       => ( ( groups1072433553688619179nt_rat @ F @ A2 )
          = zero_zero_rat ) ) ) ).

% prod_zero
thf(fact_8365_prod__zero,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ? [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_rat ) )
       => ( ( groups225925009352817453ex_rat @ F @ A2 )
          = zero_zero_rat ) ) ) ).

% prod_zero
thf(fact_8366_prod__zero,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ( ( F @ X4 )
              = zero_zero_nat ) )
       => ( ( groups1707563613775114915nt_nat @ F @ A2 )
          = zero_zero_nat ) ) ) ).

% prod_zero
thf(fact_8367_prod__atLeastAtMost__code,axiom,
    ! [F: nat > complex,A: nat,B: nat] :
      ( ( groups6464643781859351333omplex @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo1517530859248394432omplex
        @ ^ [A3: nat] : ( times_times_complex @ ( F @ A3 ) )
        @ A
        @ B
        @ one_one_complex ) ) ).

% prod_atLeastAtMost_code
thf(fact_8368_prod__atLeastAtMost__code,axiom,
    ! [F: nat > real,A: nat,B: nat] :
      ( ( groups129246275422532515t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo3111899725591712190t_real
        @ ^ [A3: nat] : ( times_times_real @ ( F @ A3 ) )
        @ A
        @ B
        @ one_one_real ) ) ).

% prod_atLeastAtMost_code
thf(fact_8369_prod__atLeastAtMost__code,axiom,
    ! [F: nat > rat,A: nat,B: nat] :
      ( ( groups73079841787564623at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo1949268297981939178at_rat
        @ ^ [A3: nat] : ( times_times_rat @ ( F @ A3 ) )
        @ A
        @ B
        @ one_one_rat ) ) ).

% prod_atLeastAtMost_code
thf(fact_8370_prod__atLeastAtMost__code,axiom,
    ! [F: nat > nat,A: nat,B: nat] :
      ( ( groups708209901874060359at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo2584398358068434914at_nat
        @ ^ [A3: nat] : ( times_times_nat @ ( F @ A3 ) )
        @ A
        @ B
        @ one_one_nat ) ) ).

% prod_atLeastAtMost_code
thf(fact_8371_prod__atLeastAtMost__code,axiom,
    ! [F: nat > int,A: nat,B: nat] :
      ( ( groups705719431365010083at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo2581907887559384638at_int
        @ ^ [A3: nat] : ( times_times_int @ ( F @ A3 ) )
        @ A
        @ B
        @ one_one_int ) ) ).

% prod_atLeastAtMost_code
thf(fact_8372_prod_OatMost__shift,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( times_times_real @ ( G @ zero_zero_nat )
        @ ( groups129246275422532515t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% prod.atMost_shift
thf(fact_8373_prod_OatMost__shift,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( times_times_rat @ ( G @ zero_zero_nat )
        @ ( groups73079841787564623at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% prod.atMost_shift
thf(fact_8374_prod_OatMost__shift,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( times_times_nat @ ( G @ zero_zero_nat )
        @ ( groups708209901874060359at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% prod.atMost_shift
thf(fact_8375_prod_OatMost__shift,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( times_times_int @ ( G @ zero_zero_nat )
        @ ( groups705719431365010083at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% prod.atMost_shift
thf(fact_8376_prod_Ointer__filter,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > complex,P: vEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups127312072573709053omplex @ G
          @ ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups127312072573709053omplex
          @ ^ [X: vEBT_VEBT] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8377_prod_Ointer__filter,axiom,
    ! [A2: set_real,G: real > complex,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups713298508707869441omplex @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups713298508707869441omplex
          @ ^ [X: real] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8378_prod_Ointer__filter,axiom,
    ! [A2: set_nat,G: nat > complex,P: nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups6464643781859351333omplex @ G
          @ ( collect_nat
            @ ^ [X: nat] :
                ( ( member_nat @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups6464643781859351333omplex
          @ ^ [X: nat] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8379_prod_Ointer__filter,axiom,
    ! [A2: set_int,G: int > complex,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups7440179247065528705omplex @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups7440179247065528705omplex
          @ ^ [X: int] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8380_prod_Ointer__filter,axiom,
    ! [A2: set_complex,G: complex > complex,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups3708469109370488835omplex @ G
          @ ( collect_complex
            @ ^ [X: complex] :
                ( ( member_complex @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups3708469109370488835omplex
          @ ^ [X: complex] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8381_prod_Ointer__filter,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > real,P: vEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups2703838992350267259T_real @ G
          @ ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups2703838992350267259T_real
          @ ^ [X: vEBT_VEBT] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8382_prod_Ointer__filter,axiom,
    ! [A2: set_real,G: real > real,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1681761925125756287l_real @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups1681761925125756287l_real
          @ ^ [X: real] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8383_prod_Ointer__filter,axiom,
    ! [A2: set_nat,G: nat > real,P: nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups129246275422532515t_real @ G
          @ ( collect_nat
            @ ^ [X: nat] :
                ( ( member_nat @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups129246275422532515t_real
          @ ^ [X: nat] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8384_prod_Ointer__filter,axiom,
    ! [A2: set_int,G: int > real,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups2316167850115554303t_real @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups2316167850115554303t_real
          @ ^ [X: int] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8385_prod_Ointer__filter,axiom,
    ! [A2: set_complex,G: complex > real,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups766887009212190081x_real @ G
          @ ( collect_complex
            @ ^ [X: complex] :
                ( ( member_complex @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups766887009212190081x_real
          @ ^ [X: complex] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
          @ A2 ) ) ) ).

% prod.inter_filter
thf(fact_8386_power__sum,axiom,
    ! [C: real,F: nat > nat,A2: set_nat] :
      ( ( power_power_real @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups129246275422532515t_real
        @ ^ [A3: nat] : ( power_power_real @ C @ ( F @ A3 ) )
        @ A2 ) ) ).

% power_sum
thf(fact_8387_power__sum,axiom,
    ! [C: complex,F: nat > nat,A2: set_nat] :
      ( ( power_power_complex @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups6464643781859351333omplex
        @ ^ [A3: nat] : ( power_power_complex @ C @ ( F @ A3 ) )
        @ A2 ) ) ).

% power_sum
thf(fact_8388_power__sum,axiom,
    ! [C: nat,F: nat > nat,A2: set_nat] :
      ( ( power_power_nat @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups708209901874060359at_nat
        @ ^ [A3: nat] : ( power_power_nat @ C @ ( F @ A3 ) )
        @ A2 ) ) ).

% power_sum
thf(fact_8389_power__sum,axiom,
    ! [C: int,F: nat > nat,A2: set_nat] :
      ( ( power_power_int @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups705719431365010083at_int
        @ ^ [A3: nat] : ( power_power_int @ C @ ( F @ A3 ) )
        @ A2 ) ) ).

% power_sum
thf(fact_8390_power__sum,axiom,
    ! [C: int,F: int > nat,A2: set_int] :
      ( ( power_power_int @ C @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
      = ( groups1705073143266064639nt_int
        @ ^ [A3: int] : ( power_power_int @ C @ ( F @ A3 ) )
        @ A2 ) ) ).

% power_sum
thf(fact_8391_prod_Oshift__bounds__cl__nat__ivl,axiom,
    ! [G: nat > nat,M: nat,K: nat,N2: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
      = ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ I4 @ K ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% prod.shift_bounds_cl_nat_ivl
thf(fact_8392_prod_Oshift__bounds__cl__nat__ivl,axiom,
    ! [G: nat > int,M: nat,K: nat,N2: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
      = ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ I4 @ K ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% prod.shift_bounds_cl_nat_ivl
thf(fact_8393_finite__nat__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K2: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_atMost_nat @ K2 ) ) ) ) ).

% finite_nat_iff_bounded_le
thf(fact_8394_prod__le__1,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
            & ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A2 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_8395_prod__le__1,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
            & ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_8396_prod__le__1,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
            & ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_8397_prod__le__1,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
            & ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_8398_prod__le__1,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
            & ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups766887009212190081x_real @ F @ A2 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_8399_prod__le__1,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
            & ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_8400_prod__le__1,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
            & ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_8401_prod__le__1,axiom,
    ! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ! [X3: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
            & ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_8402_prod__le__1,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
            & ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_8403_prod__le__1,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X3: complex] :
          ( ( member_complex @ X3 @ A2 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
            & ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups225925009352817453ex_rat @ F @ A2 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_8404_prod_Orelated,axiom,
    ! [R2: complex > complex > $o,S3: set_nat,H2: nat > complex,G: nat > complex] :
      ( ( R2 @ one_one_complex @ one_one_complex )
     => ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups6464643781859351333omplex @ H2 @ S3 ) @ ( groups6464643781859351333omplex @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8405_prod_Orelated,axiom,
    ! [R2: complex > complex > $o,S3: set_int,H2: int > complex,G: int > complex] :
      ( ( R2 @ one_one_complex @ one_one_complex )
     => ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups7440179247065528705omplex @ H2 @ S3 ) @ ( groups7440179247065528705omplex @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8406_prod_Orelated,axiom,
    ! [R2: complex > complex > $o,S3: set_complex,H2: complex > complex,G: complex > complex] :
      ( ( R2 @ one_one_complex @ one_one_complex )
     => ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups3708469109370488835omplex @ H2 @ S3 ) @ ( groups3708469109370488835omplex @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8407_prod_Orelated,axiom,
    ! [R2: real > real > $o,S3: set_nat,H2: nat > real,G: nat > real] :
      ( ( R2 @ one_one_real @ one_one_real )
     => ( ! [X1: real,Y1: real,X23: real,Y23: real] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups129246275422532515t_real @ H2 @ S3 ) @ ( groups129246275422532515t_real @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8408_prod_Orelated,axiom,
    ! [R2: real > real > $o,S3: set_int,H2: int > real,G: int > real] :
      ( ( R2 @ one_one_real @ one_one_real )
     => ( ! [X1: real,Y1: real,X23: real,Y23: real] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups2316167850115554303t_real @ H2 @ S3 ) @ ( groups2316167850115554303t_real @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8409_prod_Orelated,axiom,
    ! [R2: real > real > $o,S3: set_complex,H2: complex > real,G: complex > real] :
      ( ( R2 @ one_one_real @ one_one_real )
     => ( ! [X1: real,Y1: real,X23: real,Y23: real] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups766887009212190081x_real @ H2 @ S3 ) @ ( groups766887009212190081x_real @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8410_prod_Orelated,axiom,
    ! [R2: rat > rat > $o,S3: set_nat,H2: nat > rat,G: nat > rat] :
      ( ( R2 @ one_one_rat @ one_one_rat )
     => ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X3: nat] :
                ( ( member_nat @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups73079841787564623at_rat @ H2 @ S3 ) @ ( groups73079841787564623at_rat @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8411_prod_Orelated,axiom,
    ! [R2: rat > rat > $o,S3: set_int,H2: int > rat,G: int > rat] :
      ( ( R2 @ one_one_rat @ one_one_rat )
     => ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups1072433553688619179nt_rat @ H2 @ S3 ) @ ( groups1072433553688619179nt_rat @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8412_prod_Orelated,axiom,
    ! [R2: rat > rat > $o,S3: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( R2 @ one_one_rat @ one_one_rat )
     => ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X3: complex] :
                ( ( member_complex @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups225925009352817453ex_rat @ H2 @ S3 ) @ ( groups225925009352817453ex_rat @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8413_prod_Orelated,axiom,
    ! [R2: nat > nat > $o,S3: set_int,H2: int > nat,G: int > nat] :
      ( ( R2 @ one_one_nat @ one_one_nat )
     => ( ! [X1: nat,Y1: nat,X23: nat,Y23: nat] :
            ( ( ( R2 @ X1 @ X23 )
              & ( R2 @ Y1 @ Y23 ) )
           => ( R2 @ ( times_times_nat @ X1 @ Y1 ) @ ( times_times_nat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X3: int] :
                ( ( member_int @ X3 @ S3 )
               => ( R2 @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
           => ( R2 @ ( groups1707563613775114915nt_nat @ H2 @ S3 ) @ ( groups1707563613775114915nt_nat @ G @ S3 ) ) ) ) ) ) ).

% prod.related
thf(fact_8414_prod__dvd__prod__subset2,axiom,
    ! [B2: set_real,A2: set_real,F: real > nat,G: real > nat] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ A2 )
             => ( dvd_dvd_nat @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_nat @ ( groups4696554848551431203al_nat @ F @ A2 ) @ ( groups4696554848551431203al_nat @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8415_prod__dvd__prod__subset2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ A2 )
             => ( dvd_dvd_nat @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_nat @ ( groups6361806394783013919BT_nat @ F @ A2 ) @ ( groups6361806394783013919BT_nat @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8416_prod__dvd__prod__subset2,axiom,
    ! [B2: set_int,A2: set_int,F: int > nat,G: int > nat] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ A2 )
             => ( dvd_dvd_nat @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8417_prod__dvd__prod__subset2,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( ! [A5: complex] :
              ( ( member_complex @ A5 @ A2 )
             => ( dvd_dvd_nat @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) @ ( groups861055069439313189ex_nat @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8418_prod__dvd__prod__subset2,axiom,
    ! [B2: set_real,A2: set_real,F: real > int,G: real > int] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ A2 )
             => ( dvd_dvd_int @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_int @ ( groups4694064378042380927al_int @ F @ A2 ) @ ( groups4694064378042380927al_int @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8419_prod__dvd__prod__subset2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > int,G: vEBT_VEBT > int] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ A2 )
             => ( dvd_dvd_int @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_int @ ( groups6359315924273963643BT_int @ F @ A2 ) @ ( groups6359315924273963643BT_int @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8420_prod__dvd__prod__subset2,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > int,G: complex > int] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( ! [A5: complex] :
              ( ( member_complex @ A5 @ A2 )
             => ( dvd_dvd_int @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_int @ ( groups858564598930262913ex_int @ F @ A2 ) @ ( groups858564598930262913ex_int @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8421_prod__dvd__prod__subset2,axiom,
    ! [B2: set_real,A2: set_real,F: real > code_integer,G: real > code_integer] :
      ( ( finite_finite_real @ B2 )
     => ( ( ord_less_eq_set_real @ A2 @ B2 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ A2 )
             => ( dvd_dvd_Code_integer @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_Code_integer @ ( groups6225526099057966256nteger @ F @ A2 ) @ ( groups6225526099057966256nteger @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8422_prod__dvd__prod__subset2,axiom,
    ! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > code_integer,G: vEBT_VEBT > code_integer] :
      ( ( finite5795047828879050333T_VEBT @ B2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ A2 )
             => ( dvd_dvd_Code_integer @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_Code_integer @ ( groups3770682396051356844nteger @ F @ A2 ) @ ( groups3770682396051356844nteger @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8423_prod__dvd__prod__subset2,axiom,
    ! [B2: set_int,A2: set_int,F: int > code_integer,G: int > code_integer] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ A2 )
             => ( dvd_dvd_Code_integer @ ( F @ A5 ) @ ( G @ A5 ) ) )
         => ( dvd_dvd_Code_integer @ ( groups3827104343326376752nteger @ F @ A2 ) @ ( groups3827104343326376752nteger @ G @ B2 ) ) ) ) ) ).

% prod_dvd_prod_subset2
thf(fact_8424_prod__dvd__prod__subset,axiom,
    ! [B2: set_int,A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( dvd_dvd_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8425_prod__dvd__prod__subset,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( dvd_dvd_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) @ ( groups861055069439313189ex_nat @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8426_prod__dvd__prod__subset,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( dvd_dvd_int @ ( groups858564598930262913ex_int @ F @ A2 ) @ ( groups858564598930262913ex_int @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8427_prod__dvd__prod__subset,axiom,
    ! [B2: set_int,A2: set_int,F: int > code_integer] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( dvd_dvd_Code_integer @ ( groups3827104343326376752nteger @ F @ A2 ) @ ( groups3827104343326376752nteger @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8428_prod__dvd__prod__subset,axiom,
    ! [B2: set_complex,A2: set_complex,F: complex > code_integer] :
      ( ( finite3207457112153483333omplex @ B2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B2 )
       => ( dvd_dvd_Code_integer @ ( groups8682486955453173170nteger @ F @ A2 ) @ ( groups8682486955453173170nteger @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8429_prod__dvd__prod__subset,axiom,
    ! [B2: set_nat,A2: set_nat,F: nat > code_integer] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( dvd_dvd_Code_integer @ ( groups3455450783089532116nteger @ F @ A2 ) @ ( groups3455450783089532116nteger @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8430_prod__dvd__prod__subset,axiom,
    ! [B2: set_nat,A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( dvd_dvd_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ ( groups708209901874060359at_nat @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8431_prod__dvd__prod__subset,axiom,
    ! [B2: set_nat,A2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( dvd_dvd_int @ ( groups705719431365010083at_int @ F @ A2 ) @ ( groups705719431365010083at_int @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8432_prod__dvd__prod__subset,axiom,
    ! [B2: set_int,A2: set_int,F: int > int] :
      ( ( finite_finite_int @ B2 )
     => ( ( ord_less_eq_set_int @ A2 @ B2 )
       => ( dvd_dvd_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ ( groups1705073143266064639nt_int @ F @ B2 ) ) ) ) ).

% prod_dvd_prod_subset
thf(fact_8433_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_real,S3: set_real,I: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: real] :
                    ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: real] :
                        ( ( member_real @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups713298508707869441omplex @ G @ S3 )
                        = ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8434_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_VEBT_VEBT,S3: set_real,I: vEBT_VEBT > real,J: real > vEBT_VEBT,T3: set_VEBT_VEBT,G: real > complex,H2: vEBT_VEBT > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite5795047828879050333T_VEBT @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_VEBT_VEBT @ ( J @ A5 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups713298508707869441omplex @ G @ S3 )
                        = ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8435_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_VEBT_VEBT,T4: set_real,S3: set_VEBT_VEBT,I: real > vEBT_VEBT,J: vEBT_VEBT > real,T3: set_real,G: vEBT_VEBT > complex,H2: real > complex] :
      ( ( finite5795047828879050333T_VEBT @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: real] :
                    ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_VEBT_VEBT @ ( I @ B5 ) @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) ) )
               => ( ! [A5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: real] :
                        ( ( member_real @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups127312072573709053omplex @ G @ S3 )
                        = ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8436_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_VEBT_VEBT,T4: set_VEBT_VEBT,S3: set_VEBT_VEBT,I: vEBT_VEBT > vEBT_VEBT,J: vEBT_VEBT > vEBT_VEBT,T3: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
      ( ( finite5795047828879050333T_VEBT @ S4 )
     => ( ( finite5795047828879050333T_VEBT @ T4 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
               => ( member_VEBT_VEBT @ ( J @ A5 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                   => ( member_VEBT_VEBT @ ( I @ B5 ) @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) ) )
               => ( ! [A5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups127312072573709053omplex @ G @ S3 )
                        = ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8437_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_int,S3: set_real,I: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: int] :
                    ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: int] :
                        ( ( member_int @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups713298508707869441omplex @ G @ S3 )
                        = ( groups7440179247065528705omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8438_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_VEBT_VEBT,T4: set_int,S3: set_VEBT_VEBT,I: int > vEBT_VEBT,J: vEBT_VEBT > int,T3: set_int,G: vEBT_VEBT > complex,H2: int > complex] :
      ( ( finite5795047828879050333T_VEBT @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: int] :
                    ( ( member_int @ B5 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_VEBT_VEBT @ ( I @ B5 ) @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) ) )
               => ( ! [A5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: int] :
                        ( ( member_int @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups127312072573709053omplex @ G @ S3 )
                        = ( groups7440179247065528705omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8439_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_complex,S3: set_real,I: complex > real,J: real > complex,T3: set_complex,G: real > complex,H2: complex > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite3207457112153483333omplex @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_complex @ ( J @ A5 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
           => ( ! [B5: complex] :
                  ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: complex] :
                    ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                   => ( member_real @ ( I @ B5 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: complex] :
                        ( ( member_complex @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups713298508707869441omplex @ G @ S3 )
                        = ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8440_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_VEBT_VEBT,T4: set_complex,S3: set_VEBT_VEBT,I: complex > vEBT_VEBT,J: vEBT_VEBT > complex,T3: set_complex,G: vEBT_VEBT > complex,H2: complex > complex] :
      ( ( finite5795047828879050333T_VEBT @ S4 )
     => ( ( finite3207457112153483333omplex @ T4 )
       => ( ! [A5: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) )
               => ( member_complex @ ( J @ A5 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
           => ( ! [B5: complex] :
                  ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: complex] :
                    ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                   => ( member_VEBT_VEBT @ ( I @ B5 ) @ ( minus_5127226145743854075T_VEBT @ S3 @ S4 ) ) )
               => ( ! [A5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: complex] :
                        ( ( member_complex @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups127312072573709053omplex @ G @ S3 )
                        = ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8441_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_real,S3: set_int,I: real > int,J: int > real,T3: set_real,G: int > complex,H2: real > complex] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: real] :
                    ( ( member_real @ B5 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_int @ ( I @ B5 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: real] :
                        ( ( member_real @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups7440179247065528705omplex @ G @ S3 )
                        = ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8442_prod_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_VEBT_VEBT,S3: set_int,I: vEBT_VEBT > int,J: int > vEBT_VEBT,T3: set_VEBT_VEBT,G: int > complex,H2: vEBT_VEBT > complex] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite5795047828879050333T_VEBT @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_VEBT_VEBT @ ( J @ A5 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                 => ( ( J @ ( I @ B5 ) )
                    = B5 ) )
             => ( ! [B5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
                   => ( member_int @ ( I @ B5 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = one_one_complex ) )
                 => ( ! [B5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ B5 @ T4 )
                       => ( ( H2 @ B5 )
                          = one_one_complex ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S3 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups7440179247065528705omplex @ G @ S3 )
                        = ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% prod.reindex_bij_witness_not_neutral
thf(fact_8443_prod_Oin__pairs__0,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups129246275422532515t_real
        @ ^ [I4: nat] : ( times_times_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% prod.in_pairs_0
thf(fact_8444_prod_Oin__pairs__0,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups73079841787564623at_rat
        @ ^ [I4: nat] : ( times_times_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% prod.in_pairs_0
thf(fact_8445_prod_Oin__pairs__0,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( times_times_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% prod.in_pairs_0
thf(fact_8446_prod_Oin__pairs__0,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( times_times_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% prod.in_pairs_0
thf(fact_8447_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > complex] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups713298508707869441omplex @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = one_one_complex ) ) ) )
        = ( groups713298508707869441omplex @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8448_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > complex] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups7440179247065528705omplex @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = one_one_complex ) ) ) )
        = ( groups7440179247065528705omplex @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8449_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups3708469109370488835omplex @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = one_one_complex ) ) ) )
        = ( groups3708469109370488835omplex @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8450_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1681761925125756287l_real @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = one_one_real ) ) ) )
        = ( groups1681761925125756287l_real @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8451_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups2316167850115554303t_real @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = one_one_real ) ) ) )
        = ( groups2316167850115554303t_real @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8452_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups766887009212190081x_real @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = one_one_real ) ) ) )
        = ( groups766887009212190081x_real @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8453_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups4061424788464935467al_rat @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = one_one_rat ) ) ) )
        = ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8454_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups1072433553688619179nt_rat @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = one_one_rat ) ) ) )
        = ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8455_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups225925009352817453ex_rat @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = one_one_rat ) ) ) )
        = ( groups225925009352817453ex_rat @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8456_prod_Osetdiff__irrelevant,axiom,
    ! [A2: set_real,G: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups4696554848551431203al_nat @ G
          @ ( minus_minus_set_real @ A2
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = one_one_nat ) ) ) )
        = ( groups4696554848551431203al_nat @ G @ A2 ) ) ) ).

% prod.setdiff_irrelevant
thf(fact_8457_exp__sum,axiom,
    ! [I5: set_int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( exp_real @ ( groups8778361861064173332t_real @ F @ I5 ) )
        = ( groups2316167850115554303t_real
          @ ^ [X: int] : ( exp_real @ ( F @ X ) )
          @ I5 ) ) ) ).

% exp_sum
thf(fact_8458_exp__sum,axiom,
    ! [I5: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( exp_real @ ( groups5808333547571424918x_real @ F @ I5 ) )
        = ( groups766887009212190081x_real
          @ ^ [X: complex] : ( exp_real @ ( F @ X ) )
          @ I5 ) ) ) ).

% exp_sum
thf(fact_8459_exp__sum,axiom,
    ! [I5: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ I5 )
     => ( ( exp_complex @ ( groups2073611262835488442omplex @ F @ I5 ) )
        = ( groups6464643781859351333omplex
          @ ^ [X: nat] : ( exp_complex @ ( F @ X ) )
          @ I5 ) ) ) ).

% exp_sum
thf(fact_8460_exp__sum,axiom,
    ! [I5: set_int,F: int > complex] :
      ( ( finite_finite_int @ I5 )
     => ( ( exp_complex @ ( groups3049146728041665814omplex @ F @ I5 ) )
        = ( groups7440179247065528705omplex
          @ ^ [X: int] : ( exp_complex @ ( F @ X ) )
          @ I5 ) ) ) ).

% exp_sum
thf(fact_8461_exp__sum,axiom,
    ! [I5: set_complex,F: complex > complex] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( exp_complex @ ( groups7754918857620584856omplex @ F @ I5 ) )
        = ( groups3708469109370488835omplex
          @ ^ [X: complex] : ( exp_complex @ ( F @ X ) )
          @ I5 ) ) ) ).

% exp_sum
thf(fact_8462_exp__sum,axiom,
    ! [I5: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ I5 )
     => ( ( exp_real @ ( groups6591440286371151544t_real @ F @ I5 ) )
        = ( groups129246275422532515t_real
          @ ^ [X: nat] : ( exp_real @ ( F @ X ) )
          @ I5 ) ) ) ).

% exp_sum
thf(fact_8463_prod_Onat__diff__reindex,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
        @ ( set_ord_lessThan_nat @ N2 ) )
      = ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% prod.nat_diff_reindex
thf(fact_8464_prod_Onat__diff__reindex,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I4 ) ) )
        @ ( set_ord_lessThan_nat @ N2 ) )
      = ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% prod.nat_diff_reindex
thf(fact_8465_Iic__subset__Iio__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ A ) @ ( set_ord_lessThan_rat @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8466_Iic__subset__Iio__iff,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ A ) @ ( set_ord_lessThan_num @ B ) )
      = ( ord_less_num @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8467_Iic__subset__Iio__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ A ) @ ( set_ord_lessThan_int @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8468_Iic__subset__Iio__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ A ) @ ( set_ord_lessThan_nat @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8469_Iic__subset__Iio__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_set_real @ ( set_ord_atMost_real @ A ) @ ( set_or5984915006950818249n_real @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8470_prod_OatLeastAtMost__rev,axiom,
    ! [G: nat > nat,N2: nat,M: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
      = ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).

% prod.atLeastAtMost_rev
thf(fact_8471_prod_OatLeastAtMost__rev,axiom,
    ! [G: nat > int,N2: nat,M: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
      = ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).

% prod.atLeastAtMost_rev
thf(fact_8472_prod_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > complex,H2: nat > complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups6464643781859351333omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ one_one_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups6464643781859351333omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8473_prod_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > real,H2: nat > real] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups129246275422532515t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ one_one_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups129246275422532515t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8474_prod_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > rat,H2: nat > rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups73079841787564623at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ one_one_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups73079841787564623at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8475_prod_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > nat,H2: nat > nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups708209901874060359at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ one_one_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups708209901874060359at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8476_prod_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > int,H2: nat > int] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups705719431365010083at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ one_one_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups705719431365010083at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8477_less__1__prod2,axiom,
    ! [I5: set_real,I: real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8478_less__1__prod2,axiom,
    ! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( member_VEBT_VEBT @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8479_less__1__prod2,axiom,
    ! [I5: set_nat,I: nat,F: nat > real] :
      ( ( finite_finite_nat @ I5 )
     => ( ( member_nat @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups129246275422532515t_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8480_less__1__prod2,axiom,
    ! [I5: set_int,I: int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8481_less__1__prod2,axiom,
    ! [I5: set_complex,I: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups766887009212190081x_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8482_less__1__prod2,axiom,
    ! [I5: set_real,I: real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8483_less__1__prod2,axiom,
    ! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( member_VEBT_VEBT @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8484_less__1__prod2,axiom,
    ! [I5: set_nat,I: nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( member_nat @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8485_less__1__prod2,axiom,
    ! [I5: set_int,I: int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8486_less__1__prod2,axiom,
    ! [I5: set_complex,I: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups225925009352817453ex_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8487_less__1__prod,axiom,
    ! [I5: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( I5 != bot_bo8194388402131092736T_VEBT )
       => ( ! [I3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8488_less__1__prod,axiom,
    ! [I5: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups766887009212190081x_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8489_less__1__prod,axiom,
    ! [I5: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ I5 )
     => ( ( I5 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups129246275422532515t_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8490_less__1__prod,axiom,
    ! [I5: set_int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8491_less__1__prod,axiom,
    ! [I5: set_real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8492_less__1__prod,axiom,
    ! [I5: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ I5 )
     => ( ( I5 != bot_bo8194388402131092736T_VEBT )
       => ( ! [I3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8493_less__1__prod,axiom,
    ! [I5: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups225925009352817453ex_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8494_less__1__prod,axiom,
    ! [I5: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( I5 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8495_less__1__prod,axiom,
    ! [I5: set_int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8496_less__1__prod,axiom,
    ! [I5: set_real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8497_prod_Osubset__diff,axiom,
    ! [B2: set_int,A2: set_int,G: int > real] :
      ( ( ord_less_eq_set_int @ B2 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups2316167850115554303t_real @ G @ A2 )
          = ( times_times_real @ ( groups2316167850115554303t_real @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups2316167850115554303t_real @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8498_prod_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > real] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups766887009212190081x_real @ G @ A2 )
          = ( times_times_real @ ( groups766887009212190081x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups766887009212190081x_real @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8499_prod_Osubset__diff,axiom,
    ! [B2: set_int,A2: set_int,G: int > rat] :
      ( ( ord_less_eq_set_int @ B2 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups1072433553688619179nt_rat @ G @ A2 )
          = ( times_times_rat @ ( groups1072433553688619179nt_rat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups1072433553688619179nt_rat @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8500_prod_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > rat] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups225925009352817453ex_rat @ G @ A2 )
          = ( times_times_rat @ ( groups225925009352817453ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups225925009352817453ex_rat @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8501_prod_Osubset__diff,axiom,
    ! [B2: set_int,A2: set_int,G: int > nat] :
      ( ( ord_less_eq_set_int @ B2 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups1707563613775114915nt_nat @ G @ A2 )
          = ( times_times_nat @ ( groups1707563613775114915nt_nat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups1707563613775114915nt_nat @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8502_prod_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > nat] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups861055069439313189ex_nat @ G @ A2 )
          = ( times_times_nat @ ( groups861055069439313189ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups861055069439313189ex_nat @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8503_prod_Osubset__diff,axiom,
    ! [B2: set_complex,A2: set_complex,G: complex > int] :
      ( ( ord_le211207098394363844omplex @ B2 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups858564598930262913ex_int @ G @ A2 )
          = ( times_times_int @ ( groups858564598930262913ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups858564598930262913ex_int @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8504_prod_Osubset__diff,axiom,
    ! [B2: set_nat,A2: set_nat,G: nat > real] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups129246275422532515t_real @ G @ A2 )
          = ( times_times_real @ ( groups129246275422532515t_real @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups129246275422532515t_real @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8505_prod_Osubset__diff,axiom,
    ! [B2: set_nat,A2: set_nat,G: nat > rat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups73079841787564623at_rat @ G @ A2 )
          = ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups73079841787564623at_rat @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8506_prod_Osubset__diff,axiom,
    ! [B2: set_nat,A2: set_nat,G: nat > nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups708209901874060359at_nat @ G @ A2 )
          = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups708209901874060359at_nat @ G @ B2 ) ) ) ) ) ).

% prod.subset_diff
thf(fact_8507_prod_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_nat ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_nat ) )
             => ( ( ( groups4696554848551431203al_nat @ G @ A2 )
                  = ( groups4696554848551431203al_nat @ H2 @ B2 ) )
                = ( ( groups4696554848551431203al_nat @ G @ C4 )
                  = ( groups4696554848551431203al_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8508_prod_Osame__carrier,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > nat,H2: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_nat ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_nat ) )
             => ( ( ( groups6361806394783013919BT_nat @ G @ A2 )
                  = ( groups6361806394783013919BT_nat @ H2 @ B2 ) )
                = ( ( groups6361806394783013919BT_nat @ G @ C4 )
                  = ( groups6361806394783013919BT_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8509_prod_Osame__carrier,axiom,
    ! [C4: set_int,A2: set_int,B2: set_int,G: int > nat,H2: int > nat] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A2 @ C4 )
       => ( ( ord_less_eq_set_int @ B2 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_nat ) )
           => ( ! [B5: int] :
                  ( ( member_int @ B5 @ ( minus_minus_set_int @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_nat ) )
             => ( ( ( groups1707563613775114915nt_nat @ G @ A2 )
                  = ( groups1707563613775114915nt_nat @ H2 @ B2 ) )
                = ( ( groups1707563613775114915nt_nat @ G @ C4 )
                  = ( groups1707563613775114915nt_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8510_prod_Osame__carrier,axiom,
    ! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > nat,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B2 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_nat ) )
           => ( ! [B5: complex] :
                  ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_nat ) )
             => ( ( ( groups861055069439313189ex_nat @ G @ A2 )
                  = ( groups861055069439313189ex_nat @ H2 @ B2 ) )
                = ( ( groups861055069439313189ex_nat @ G @ C4 )
                  = ( groups861055069439313189ex_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8511_prod_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B2: set_real,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B2 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_int ) )
           => ( ! [B5: real] :
                  ( ( member_real @ B5 @ ( minus_minus_set_real @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_int ) )
             => ( ( ( groups4694064378042380927al_int @ G @ A2 )
                  = ( groups4694064378042380927al_int @ H2 @ B2 ) )
                = ( ( groups4694064378042380927al_int @ G @ C4 )
                  = ( groups4694064378042380927al_int @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8512_prod_Osame__carrier,axiom,
    ! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > int,H2: vEBT_VEBT > int] :
      ( ( finite5795047828879050333T_VEBT @ C4 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
       => ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
         => ( ! [A5: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ A5 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_int ) )
           => ( ! [B5: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ B5 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_int ) )
             => ( ( ( groups6359315924273963643BT_int @ G @ A2 )
                  = ( groups6359315924273963643BT_int @ H2 @ B2 ) )
                = ( ( groups6359315924273963643BT_int @ G @ C4 )
                  = ( groups6359315924273963643BT_int @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8513_prod_Osame__carrier,axiom,
    ! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > int,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B2 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_int ) )
           => ( ! [B5: complex] :
                  ( ( member_complex @ B5 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_int ) )
             => ( ( ( groups858564598930262913ex_int @ G @ A2 )
                  = ( groups858564598930262913ex_int @ H2 @ B2 ) )
                = ( ( groups858564598930262913ex_int @ G @ C4 )
                  = ( groups858564598930262913ex_int @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8514_prod_Osame__carrier,axiom,
    ! [C4: set_nat,A2: set_nat,B2: set_nat,G: nat > complex,H2: nat > complex] :
      ( ( finite_finite_nat @ C4 )
     => ( ( ord_less_eq_set_nat @ A2 @ C4 )
       => ( ( ord_less_eq_set_nat @ B2 @ C4 )
         => ( ! [A5: nat] :
                ( ( member_nat @ A5 @ ( minus_minus_set_nat @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_complex ) )
           => ( ! [B5: nat] :
                  ( ( member_nat @ B5 @ ( minus_minus_set_nat @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_complex ) )
             => ( ( ( groups6464643781859351333omplex @ G @ A2 )
                  = ( groups6464643781859351333omplex @ H2 @ B2 ) )
                = ( ( groups6464643781859351333omplex @ G @ C4 )
                  = ( groups6464643781859351333omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8515_prod_Osame__carrier,axiom,
    ! [C4: set_nat,A2: set_nat,B2: set_nat,G: nat > real,H2: nat > real] :
      ( ( finite_finite_nat @ C4 )
     => ( ( ord_less_eq_set_nat @ A2 @ C4 )
       => ( ( ord_less_eq_set_nat @ B2 @ C4 )
         => ( ! [A5: nat] :
                ( ( member_nat @ A5 @ ( minus_minus_set_nat @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_real ) )
           => ( ! [B5: nat] :
                  ( ( member_nat @ B5 @ ( minus_minus_set_nat @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_real ) )
             => ( ( ( groups129246275422532515t_real @ G @ A2 )
                  = ( groups129246275422532515t_real @ H2 @ B2 ) )
                = ( ( groups129246275422532515t_real @ G @ C4 )
                  = ( groups129246275422532515t_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8516_prod_Osame__carrier,axiom,
    ! [C4: set_nat,A2: set_nat,B2: set_nat,G: nat > rat,H2: nat > rat] :
      ( ( finite_finite_nat @ C4 )
     => ( ( ord_less_eq_set_nat @ A2 @ C4 )
       => ( ( ord_less_eq_set_nat @ B2 @ C4 )
         => ( ! [A5: nat] :
                ( ( member_nat @ A5 @ ( minus_minus_set_nat @ C4 @ A2 ) )
               => ( ( G @ A5 )
                  = one_one_rat ) )
           => ( ! [B5: nat] :
                  ( ( member_nat @ B5 @ ( minus_minus_set_nat @ C4 @ B2 ) )
                 => ( ( H2 @ B5 )
                    = one_one_rat ) )
             => ( ( ( groups73079841787564623at_rat @ G @ A2 )
                  = ( groups73079841787564623at_rat @ H2 @ B2 ) )
                = ( ( groups73079841787564623at_rat @ G @ C4 )
                  = ( groups73079841787564623at_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% prod.same_carrier
thf(fact_8517_sum__choose__lower,axiom,
    ! [R: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( binomial @ ( plus_plus_nat @ R @ K2 ) @ K2 )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( binomial @ ( suc @ ( plus_plus_nat @ R @ N2 ) ) @ N2 ) ) ).

% sum_choose_lower
thf(fact_8518_choose__rising__sum_I1_J,axiom,
    ! [N2: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N2 @ J3 ) @ N2 )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N2 @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).

% choose_rising_sum(1)
thf(fact_8519_choose__rising__sum_I2_J,axiom,
    ! [N2: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N2 @ J3 ) @ N2 )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N2 @ M ) @ one_one_nat ) @ M ) ) ).

% choose_rising_sum(2)
thf(fact_8520_fact__eq__fact__times,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1408675320244567234ct_nat @ M )
        = ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N2 )
          @ ( groups708209901874060359at_nat
            @ ^ [X: nat] : X
            @ ( set_or1269000886237332187st_nat @ ( suc @ N2 ) @ M ) ) ) ) ) ).

% fact_eq_fact_times
thf(fact_8521_sum__choose__diagonal,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3542108847815614940at_nat
          @ ^ [K2: nat] : ( binomial @ ( minus_minus_nat @ N2 @ K2 ) @ ( minus_minus_nat @ M @ K2 ) )
          @ ( set_ord_atMost_nat @ M ) )
        = ( binomial @ ( suc @ N2 ) @ M ) ) ) ).

% sum_choose_diagonal
thf(fact_8522_vandermonde,axiom,
    ! [M: nat,N2: nat,R: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( times_times_nat @ ( binomial @ M @ K2 ) @ ( binomial @ N2 @ ( minus_minus_nat @ R @ K2 ) ) )
        @ ( set_ord_atMost_nat @ R ) )
      = ( binomial @ ( plus_plus_nat @ M @ N2 ) @ R ) ) ).

% vandermonde
thf(fact_8523_fact__div__fact,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) )
        = ( groups708209901874060359at_nat
          @ ^ [X: nat] : X
          @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) ) ).

% fact_div_fact
thf(fact_8524_choose__row__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ N2 ) @ ( set_ord_atMost_nat @ N2 ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% choose_row_sum
thf(fact_8525_binomial,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N2 )
      = ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N2 @ K2 ) ) @ ( power_power_nat @ A @ K2 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial
thf(fact_8526_polynomial__product__nat,axiom,
    ! [M: nat,A: nat > nat,N2: nat,B: nat > nat,X2: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_nat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N2 @ J2 )
           => ( ( B @ J2 )
              = zero_zero_nat ) )
       => ( ( times_times_nat
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( power_power_nat @ X2 @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3542108847815614940at_nat
              @ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X2 @ J3 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) )
          = ( groups3542108847815614940at_nat
            @ ^ [R5: nat] :
                ( times_times_nat
                @ ( groups3542108847815614940at_nat
                  @ ^ [K2: nat] : ( times_times_nat @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_nat @ X2 @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).

% polynomial_product_nat
thf(fact_8527_choose__square__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( power_power_nat @ ( binomial @ N2 @ K2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ).

% choose_square_sum
thf(fact_8528_complex__inverse,axiom,
    ! [A: real,B: real] :
      ( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_inverse
thf(fact_8529_binomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% binomial_r_part_sum
thf(fact_8530_choose__linear__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( times_times_nat @ I4 @ ( binomial @ N2 @ I4 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( times_times_nat @ N2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% choose_linear_sum
thf(fact_8531_cot__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ( ord_less_real @ ( cot_real @ X2 ) @ zero_zero_real ) ) ) ).

% cot_less_zero
thf(fact_8532_of__nat__id,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N: nat] : N ) ) ).

% of_nat_id
thf(fact_8533_cot__npi,axiom,
    ! [N2: nat] :
      ( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = zero_zero_real ) ).

% cot_npi
thf(fact_8534_cot__periodic,axiom,
    ! [X2: real] :
      ( ( cot_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cot_real @ X2 ) ) ).

% cot_periodic
thf(fact_8535_real__scaleR__def,axiom,
    real_V1485227260804924795R_real = times_times_real ).

% real_scaleR_def
thf(fact_8536_complex__scaleR,axiom,
    ! [R: real,A: real,B: real] :
      ( ( real_V2046097035970521341omplex @ R @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ B ) ) ) ).

% complex_scaleR
thf(fact_8537_prod__int__plus__eq,axiom,
    ! [I: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ ( plus_plus_nat @ I @ J ) ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : X
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I @ J ) ) ) ) ) ).

% prod_int_plus_eq
thf(fact_8538_cot__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cot_real @ X2 ) ) ) ) ).

% cot_gt_zero
thf(fact_8539_tan__cot_H,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) )
      = ( cot_real @ X2 ) ) ).

% tan_cot'
thf(fact_8540_i__even__power,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) ) ).

% i_even_power
thf(fact_8541_log__base__10__eq1,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X2 )
        = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X2 ) ) ) ) ).

% log_base_10_eq1
thf(fact_8542_arctan__def,axiom,
    ( arctan
    = ( ^ [Y2: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
              & ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( tan_real @ X )
                = Y2 ) ) ) ) ) ).

% arctan_def
thf(fact_8543_sinh__real__less__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ ( sinh_real @ X2 ) @ ( sinh_real @ Y ) )
      = ( ord_less_real @ X2 @ Y ) ) ).

% sinh_real_less_iff
thf(fact_8544_sinh__real__le__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X2 ) @ ( sinh_real @ Y ) )
      = ( ord_less_eq_real @ X2 @ Y ) ) ).

% sinh_real_le_iff
thf(fact_8545_sinh__real__pos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sinh_real @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% sinh_real_pos_iff
thf(fact_8546_sinh__real__neg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( sinh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% sinh_real_neg_iff
thf(fact_8547_sinh__real__nonpos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% sinh_real_nonpos_iff
thf(fact_8548_sinh__real__nonneg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% sinh_real_nonneg_iff
thf(fact_8549_complex__i__mult__minus,axiom,
    ! [X2: complex] :
      ( ( times_times_complex @ imaginary_unit @ ( times_times_complex @ imaginary_unit @ X2 ) )
      = ( uminus1482373934393186551omplex @ X2 ) ) ).

% complex_i_mult_minus
thf(fact_8550_zero__less__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X2 ) )
          = ( ord_less_real @ one_one_real @ X2 ) ) ) ) ).

% zero_less_log_cancel_iff
thf(fact_8551_log__less__zero__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( log @ A @ X2 ) @ zero_zero_real )
          = ( ord_less_real @ X2 @ one_one_real ) ) ) ) ).

% log_less_zero_cancel_iff
thf(fact_8552_one__less__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ one_one_real @ ( log @ A @ X2 ) )
          = ( ord_less_real @ A @ X2 ) ) ) ) ).

% one_less_log_cancel_iff
thf(fact_8553_log__less__one__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( log @ A @ X2 ) @ one_one_real )
          = ( ord_less_real @ X2 @ A ) ) ) ) ).

% log_less_one_cancel_iff
thf(fact_8554_log__less__cancel__iff,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ zero_zero_real @ Y )
         => ( ( ord_less_real @ ( log @ A @ X2 ) @ ( log @ A @ Y ) )
            = ( ord_less_real @ X2 @ Y ) ) ) ) ) ).

% log_less_cancel_iff
thf(fact_8555_log__eq__one,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ A )
          = one_one_real ) ) ) ).

% log_eq_one
thf(fact_8556_divide__i,axiom,
    ! [X2: complex] :
      ( ( divide1717551699836669952omplex @ X2 @ imaginary_unit )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ imaginary_unit ) @ X2 ) ) ).

% divide_i
thf(fact_8557_i__squared,axiom,
    ( ( times_times_complex @ imaginary_unit @ imaginary_unit )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% i_squared
thf(fact_8558_log__le__cancel__iff,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ ( log @ A @ Y ) )
            = ( ord_less_eq_real @ X2 @ Y ) ) ) ) ) ).

% log_le_cancel_iff
thf(fact_8559_log__le__one__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ one_one_real )
          = ( ord_less_eq_real @ X2 @ A ) ) ) ) ).

% log_le_one_cancel_iff
thf(fact_8560_one__le__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X2 ) )
          = ( ord_less_eq_real @ A @ X2 ) ) ) ) ).

% one_le_log_cancel_iff
thf(fact_8561_log__le__zero__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ zero_zero_real )
          = ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ) ).

% log_le_zero_cancel_iff
thf(fact_8562_zero__le__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X2 ) )
          = ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ) ).

% zero_le_log_cancel_iff
thf(fact_8563_divide__numeral__i,axiom,
    ! [Z: complex,N2: num] :
      ( ( divide1717551699836669952omplex @ Z @ ( times_times_complex @ ( numera6690914467698888265omplex @ N2 ) @ imaginary_unit ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% divide_numeral_i
thf(fact_8564_log__pow__cancel,axiom,
    ! [A: real,B: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( power_power_real @ A @ B ) )
          = ( semiri5074537144036343181t_real @ B ) ) ) ) ).

% log_pow_cancel
thf(fact_8565_power2__i,axiom,
    ( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power2_i
thf(fact_8566_sinh__le__cosh__real,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( sinh_real @ X2 ) @ ( cosh_real @ X2 ) ) ).

% sinh_le_cosh_real
thf(fact_8567_sinh__less__cosh__real,axiom,
    ! [X2: real] : ( ord_less_real @ ( sinh_real @ X2 ) @ ( cosh_real @ X2 ) ) ).

% sinh_less_cosh_real
thf(fact_8568_complex__i__not__numeral,axiom,
    ! [W: num] :
      ( imaginary_unit
     != ( numera6690914467698888265omplex @ W ) ) ).

% complex_i_not_numeral
thf(fact_8569_log__def,axiom,
    ( log
    = ( ^ [A3: real,X: real] : ( divide_divide_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ A3 ) ) ) ) ).

% log_def
thf(fact_8570_cosh__real__pos,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( cosh_real @ X2 ) ) ).

% cosh_real_pos
thf(fact_8571_cosh__real__nonpos__le__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y ) )
          = ( ord_less_eq_real @ Y @ X2 ) ) ) ) ).

% cosh_real_nonpos_le_iff
thf(fact_8572_cosh__real__nonneg__le__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y ) )
          = ( ord_less_eq_real @ X2 @ Y ) ) ) ) ).

% cosh_real_nonneg_le_iff
thf(fact_8573_cosh__real__nonneg,axiom,
    ! [X2: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X2 ) ) ).

% cosh_real_nonneg
thf(fact_8574_cosh__real__ge__1,axiom,
    ! [X2: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X2 ) ) ).

% cosh_real_ge_1
thf(fact_8575_i__times__eq__iff,axiom,
    ! [W: complex,Z: complex] :
      ( ( ( times_times_complex @ imaginary_unit @ W )
        = Z )
      = ( W
        = ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) ) ) ).

% i_times_eq_iff
thf(fact_8576_complex__i__not__neg__numeral,axiom,
    ! [W: num] :
      ( imaginary_unit
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% complex_i_not_neg_numeral
thf(fact_8577_cosh__real__strict__mono,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ Y )
       => ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y ) ) ) ) ).

% cosh_real_strict_mono
thf(fact_8578_cosh__real__nonneg__less__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y ) )
          = ( ord_less_real @ X2 @ Y ) ) ) ) ).

% cosh_real_nonneg_less_iff
thf(fact_8579_cosh__real__nonpos__less__iff,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y ) )
          = ( ord_less_real @ Y @ X2 ) ) ) ) ).

% cosh_real_nonpos_less_iff
thf(fact_8580_arcosh__cosh__real,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( arcosh_real @ ( cosh_real @ X2 ) )
        = X2 ) ) ).

% arcosh_cosh_real
thf(fact_8581_ln__neg__is__const,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ln_ln_real @ X2 )
        = ( the_real
          @ ^ [X: real] : $false ) ) ) ).

% ln_neg_is_const
thf(fact_8582_i__mult__Complex,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ imaginary_unit @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% i_mult_Complex
thf(fact_8583_Complex__mult__i,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ imaginary_unit )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% Complex_mult_i
thf(fact_8584_log__base__change,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ B @ X2 )
          = ( divide_divide_real @ ( log @ A @ X2 ) @ ( log @ A @ B ) ) ) ) ) ).

% log_base_change
thf(fact_8585_less__log__of__power,axiom,
    ! [B: real,N2: nat,M: real] :
      ( ( ord_less_real @ ( power_power_real @ B @ N2 ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ M ) ) ) ) ).

% less_log_of_power
thf(fact_8586_log__of__power__eq,axiom,
    ! [M: nat,B: real,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( semiri5074537144036343181t_real @ N2 )
          = ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% log_of_power_eq
thf(fact_8587_log__mult,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( ord_less_real @ zero_zero_real @ Y )
           => ( ( log @ A @ ( times_times_real @ X2 @ Y ) )
              = ( plus_plus_real @ ( log @ A @ X2 ) @ ( log @ A @ Y ) ) ) ) ) ) ) ).

% log_mult
thf(fact_8588_log__divide,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( ord_less_real @ zero_zero_real @ Y )
           => ( ( log @ A @ ( divide_divide_real @ X2 @ Y ) )
              = ( minus_minus_real @ ( log @ A @ X2 ) @ ( log @ A @ Y ) ) ) ) ) ) ) ).

% log_divide
thf(fact_8589_le__log__of__power,axiom,
    ! [B: real,N2: nat,M: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ B @ N2 ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ M ) ) ) ) ).

% le_log_of_power
thf(fact_8590_log__base__pow,axiom,
    ! [A: real,N2: nat,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( log @ ( power_power_real @ A @ N2 ) @ X2 )
        = ( divide_divide_real @ ( log @ A @ X2 ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% log_base_pow
thf(fact_8591_log__nat__power,axiom,
    ! [X2: real,B: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( log @ B @ ( power_power_real @ X2 @ N2 ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ X2 ) ) ) ) ).

% log_nat_power
thf(fact_8592_log__inverse,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( log @ A @ ( inverse_inverse_real @ X2 ) )
            = ( uminus_uminus_real @ ( log @ A @ X2 ) ) ) ) ) ) ).

% log_inverse
thf(fact_8593_log2__of__power__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( M
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( semiri5074537144036343181t_real @ N2 )
        = ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% log2_of_power_eq
thf(fact_8594_log__of__power__less,axiom,
    ! [M: nat,B: real,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% log_of_power_less
thf(fact_8595_log__eq__div__ln__mult__log,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( B != one_one_real )
           => ( ( ord_less_real @ zero_zero_real @ X2 )
             => ( ( log @ A @ X2 )
                = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X2 ) ) ) ) ) ) ) ) ).

% log_eq_div_ln_mult_log
thf(fact_8596_arccos__def,axiom,
    ( arccos
    = ( ^ [Y2: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ X )
              & ( ord_less_eq_real @ X @ pi )
              & ( ( cos_real @ X )
                = Y2 ) ) ) ) ) ).

% arccos_def
thf(fact_8597_log__of__power__le,axiom,
    ! [M: nat,B: real,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% log_of_power_le
thf(fact_8598_less__log2__of__power,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% less_log2_of_power
thf(fact_8599_le__log2__of__power,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% le_log2_of_power
thf(fact_8600_log2__of__power__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% log2_of_power_less
thf(fact_8601_pi__half,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
    = ( the_real
      @ ^ [X: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X )
          & ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
          & ( ( cos_real @ X )
            = zero_zero_real ) ) ) ) ).

% pi_half
thf(fact_8602_pi__def,axiom,
    ( pi
    = ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
      @ ( the_real
        @ ^ [X: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X )
            & ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ X )
              = zero_zero_real ) ) ) ) ) ).

% pi_def
thf(fact_8603_cosh__ln__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( cosh_real @ ( ln_ln_real @ X2 ) )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_ln_real
thf(fact_8604_log2__of__power__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% log2_of_power_le
thf(fact_8605_log__base__10__eq2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X2 )
        = ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X2 ) ) ) ) ).

% log_base_10_eq2
thf(fact_8606_sinh__ln__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( sinh_real @ ( ln_ln_real @ X2 ) )
        = ( divide_divide_real @ ( minus_minus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_ln_real
thf(fact_8607_arcsin__def,axiom,
    ( arcsin
    = ( ^ [Y2: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
              & ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( sin_real @ X )
                = Y2 ) ) ) ) ) ).

% arcsin_def
thf(fact_8608_Arg__minus__ii,axiom,
    ( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
    = ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_minus_ii
thf(fact_8609_ceiling__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) )
          = ( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ) ).

% ceiling_log_nat_eq_powr_iff
thf(fact_8610_Arg__ii,axiom,
    ( ( arg @ imaginary_unit )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_ii
thf(fact_8611_ceiling__log__nat__eq__if,axiom,
    ! [B: nat,N2: nat,K: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
     => ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ) ) ).

% ceiling_log_nat_eq_if
thf(fact_8612_ceiling__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_divide_eq_div_numeral
thf(fact_8613_ceiling__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_minus_divide_eq_div_numeral
thf(fact_8614_Arg__bounded,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
      & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ).

% Arg_bounded
thf(fact_8615_ceiling__log2__div2,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
        = ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).

% ceiling_log2_div2
thf(fact_8616_cis__minus__pi__half,axiom,
    ( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
    = ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).

% cis_minus_pi_half
thf(fact_8617_ceiling__log__eq__powr__iff,axiom,
    ! [X2: real,B: real,K: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim7802044766580827645g_real @ ( log @ B @ X2 ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
          = ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X2 )
            & ( ord_less_eq_real @ X2 @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).

% ceiling_log_eq_powr_iff
thf(fact_8618_floor__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N2 ) )
          = ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ) ).

% floor_log_nat_eq_powr_iff
thf(fact_8619_floor__log__nat__eq__if,axiom,
    ! [B: nat,N2: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
     => ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% floor_log_nat_eq_if
thf(fact_8620_powr__gt__zero,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( powr_real @ X2 @ A ) )
      = ( X2 != zero_zero_real ) ) ).

% powr_gt_zero
thf(fact_8621_powr__nonneg__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X2 ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_8622_powr__less__cancel__iff,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_8623_powr__eq__one__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X2 )
          = one_one_real )
        = ( X2 = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_8624_powr__one__gt__zero__iff,axiom,
    ! [X2: real] :
      ( ( ( powr_real @ X2 @ one_one_real )
        = X2 )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% powr_one_gt_zero_iff
thf(fact_8625_powr__one,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ one_one_real )
        = X2 ) ) ).

% powr_one
thf(fact_8626_powr__le__cancel__iff,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_8627_numeral__powr__numeral__real,axiom,
    ! [M: num,N2: num] :
      ( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% numeral_powr_numeral_real
thf(fact_8628_log__powr__cancel,axiom,
    ! [A: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( powr_real @ A @ Y ) )
          = Y ) ) ) ).

% log_powr_cancel
thf(fact_8629_powr__log__cancel,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( powr_real @ A @ ( log @ A @ X2 ) )
            = X2 ) ) ) ) ).

% powr_log_cancel
thf(fact_8630_floor__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_divide_eq_div_numeral
thf(fact_8631_powr__numeral,axiom,
    ! [X2: real,N2: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( numeral_numeral_real @ N2 ) )
        = ( power_power_real @ X2 @ ( numeral_numeral_nat @ N2 ) ) ) ) ).

% powr_numeral
thf(fact_8632_cis__pi__half,axiom,
    ( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = imaginary_unit ) ).

% cis_pi_half
thf(fact_8633_floor__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).

% floor_one_divide_eq_div_numeral
thf(fact_8634_cis__2pi,axiom,
    ( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_complex ) ).

% cis_2pi
thf(fact_8635_floor__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_divide_eq_div_numeral
thf(fact_8636_square__powr__half,axiom,
    ! [X2: real] :
      ( ( powr_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X2 ) ) ).

% square_powr_half
thf(fact_8637_floor__minus__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_one_divide_eq_div_numeral
thf(fact_8638_powr__powr,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( powr_real @ ( powr_real @ X2 @ A ) @ B )
      = ( powr_real @ X2 @ ( times_times_real @ A @ B ) ) ) ).

% powr_powr
thf(fact_8639_powr__non__neg,axiom,
    ! [A: real,X2: real] :
      ~ ( ord_less_real @ ( powr_real @ A @ X2 ) @ zero_zero_real ) ).

% powr_non_neg
thf(fact_8640_powr__less__mono2__neg,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ X2 @ Y )
         => ( ord_less_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X2 @ A ) ) ) ) ) ).

% powr_less_mono2_neg
thf(fact_8641_powr__ge__pzero,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X2 @ Y ) ) ).

% powr_ge_pzero
thf(fact_8642_powr__mono2,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ Y )
         => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_8643_powr__less__mono,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X2 )
       => ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) ) ) ) ).

% powr_less_mono
thf(fact_8644_powr__less__cancel,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
     => ( ( ord_less_real @ one_one_real @ X2 )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_8645_powr__mono,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X2 )
       => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) ) ) ) ).

% powr_mono
thf(fact_8646_cis__mult,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( plus_plus_real @ A @ B ) ) ) ).

% cis_mult
thf(fact_8647_cis__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide1717551699836669952omplex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( minus_minus_real @ A @ B ) ) ) ).

% cis_divide
thf(fact_8648_powr__mono2_H,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ Y )
         => ( ord_less_eq_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X2 @ A ) ) ) ) ) ).

% powr_mono2'
thf(fact_8649_powr__less__mono2,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ X2 @ Y )
         => ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_less_mono2
thf(fact_8650_gr__one__powr,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X2 @ Y ) ) ) ) ).

% gr_one_powr
thf(fact_8651_powr__inj,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X2 )
            = ( powr_real @ A @ Y ) )
          = ( X2 = Y ) ) ) ) ).

% powr_inj
thf(fact_8652_ge__one__powr__ge__zero,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X2 @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_8653_powr__mono__both,axiom,
    ! [A: real,B: real,X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X2 )
         => ( ( ord_less_eq_real @ X2 @ Y )
           => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_8654_powr__le1,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_8655_powr__divide,axiom,
    ! [X2: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( powr_real @ ( divide_divide_real @ X2 @ Y ) @ A )
          = ( divide_divide_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_divide
thf(fact_8656_powr__mult,axiom,
    ! [X2: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( powr_real @ ( times_times_real @ X2 @ Y ) @ A )
          = ( times_times_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_mult
thf(fact_8657_inverse__powr,axiom,
    ! [Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( powr_real @ ( inverse_inverse_real @ Y ) @ A )
        = ( inverse_inverse_real @ ( powr_real @ Y @ A ) ) ) ) ).

% inverse_powr
thf(fact_8658_divide__powr__uminus,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
      = ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).

% divide_powr_uminus
thf(fact_8659_log__base__powr,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( A != zero_zero_real )
     => ( ( log @ ( powr_real @ A @ B ) @ X2 )
        = ( divide_divide_real @ ( log @ A @ X2 ) @ B ) ) ) ).

% log_base_powr
thf(fact_8660_ln__powr,axiom,
    ! [X2: real,Y: real] :
      ( ( X2 != zero_zero_real )
     => ( ( ln_ln_real @ ( powr_real @ X2 @ Y ) )
        = ( times_times_real @ Y @ ( ln_ln_real @ X2 ) ) ) ) ).

% ln_powr
thf(fact_8661_log__powr,axiom,
    ! [X2: real,B: real,Y: real] :
      ( ( X2 != zero_zero_real )
     => ( ( log @ B @ ( powr_real @ X2 @ Y ) )
        = ( times_times_real @ Y @ ( log @ B @ X2 ) ) ) ) ).

% log_powr
thf(fact_8662_floor__log__eq__powr__iff,axiom,
    ! [X2: real,B: real,K: int] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim6058952711729229775r_real @ ( log @ B @ X2 ) )
            = K )
          = ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X2 )
            & ( ord_less_real @ X2 @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).

% floor_log_eq_powr_iff
thf(fact_8663_powr__realpow,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) )
        = ( power_power_real @ X2 @ N2 ) ) ) ).

% powr_realpow
thf(fact_8664_less__log__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ Y @ ( log @ B @ X2 ) )
          = ( ord_less_real @ ( powr_real @ B @ Y ) @ X2 ) ) ) ) ).

% less_log_iff
thf(fact_8665_log__less__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( log @ B @ X2 ) @ Y )
          = ( ord_less_real @ X2 @ ( powr_real @ B @ Y ) ) ) ) ) ).

% log_less_iff
thf(fact_8666_less__powr__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ X2 @ ( powr_real @ B @ Y ) )
          = ( ord_less_real @ ( log @ B @ X2 ) @ Y ) ) ) ) ).

% less_powr_iff
thf(fact_8667_powr__less__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( powr_real @ B @ Y ) @ X2 )
          = ( ord_less_real @ Y @ ( log @ B @ X2 ) ) ) ) ) ).

% powr_less_iff
thf(fact_8668_real__of__int__floor__add__one__gt,axiom,
    ! [R: real] : ( ord_less_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_8669_floor__eq,axiom,
    ! [N2: int,X2: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X2 )
          = N2 ) ) ) ).

% floor_eq
thf(fact_8670_real__of__int__floor__add__one__ge,axiom,
    ! [R: real] : ( ord_less_eq_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_8671_real__of__int__floor__gt__diff__one,axiom,
    ! [R: real] : ( ord_less_real @ ( minus_minus_real @ R @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) ) ).

% real_of_int_floor_gt_diff_one
thf(fact_8672_real__of__int__floor__ge__diff__one,axiom,
    ! [R: real] : ( ord_less_eq_real @ ( minus_minus_real @ R @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) ) ).

% real_of_int_floor_ge_diff_one
thf(fact_8673_DeMoivre,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_complex @ ( cis @ A ) @ N2 )
      = ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ A ) ) ) ).

% DeMoivre
thf(fact_8674_powr__neg__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( uminus_uminus_real @ one_one_real ) )
        = ( divide_divide_real @ one_one_real @ X2 ) ) ) ).

% powr_neg_one
thf(fact_8675_powr__mult__base,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( times_times_real @ X2 @ ( powr_real @ X2 @ Y ) )
        = ( powr_real @ X2 @ ( plus_plus_real @ one_one_real @ Y ) ) ) ) ).

% powr_mult_base
thf(fact_8676_powr__le__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X2 )
          = ( ord_less_eq_real @ Y @ ( log @ B @ X2 ) ) ) ) ) ).

% powr_le_iff
thf(fact_8677_le__powr__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ ( powr_real @ B @ Y ) )
          = ( ord_less_eq_real @ ( log @ B @ X2 ) @ Y ) ) ) ) ).

% le_powr_iff
thf(fact_8678_log__le__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( log @ B @ X2 ) @ Y )
          = ( ord_less_eq_real @ X2 @ ( powr_real @ B @ Y ) ) ) ) ) ).

% log_le_iff
thf(fact_8679_le__log__iff,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ Y @ ( log @ B @ X2 ) )
          = ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X2 ) ) ) ) ).

% le_log_iff
thf(fact_8680_floor__eq2,axiom,
    ! [N2: int,X2: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N2 ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X2 )
          = N2 ) ) ) ).

% floor_eq2
thf(fact_8681_floor__divide__real__eq__div,axiom,
    ! [B: int,A: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
        = ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).

% floor_divide_real_eq_div
thf(fact_8682_ln__powr__bound,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( divide_divide_real @ ( powr_real @ X2 @ A ) @ A ) ) ) ) ).

% ln_powr_bound
thf(fact_8683_ln__powr__bound2,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X2 ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X2 ) ) ) ) ).

% ln_powr_bound2
thf(fact_8684_log__add__eq__powr,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( plus_plus_real @ ( log @ B @ X2 ) @ Y )
            = ( log @ B @ ( times_times_real @ X2 @ ( powr_real @ B @ Y ) ) ) ) ) ) ) ).

% log_add_eq_powr
thf(fact_8685_add__log__eq__powr,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( plus_plus_real @ Y @ ( log @ B @ X2 ) )
            = ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y ) @ X2 ) ) ) ) ) ) ).

% add_log_eq_powr
thf(fact_8686_minus__log__eq__powr,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( minus_minus_real @ Y @ ( log @ B @ X2 ) )
            = ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y ) @ X2 ) ) ) ) ) ) ).

% minus_log_eq_powr
thf(fact_8687_log__minus__eq__powr,axiom,
    ! [B: real,X2: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( minus_minus_real @ ( log @ B @ X2 ) @ Y )
            = ( log @ B @ ( times_times_real @ X2 @ ( powr_real @ B @ ( uminus_uminus_real @ Y ) ) ) ) ) ) ) ) ).

% log_minus_eq_powr
thf(fact_8688_powr__half__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        = ( sqrt @ X2 ) ) ) ).

% powr_half_sqrt
thf(fact_8689_powr__neg__numeral,axiom,
    ! [X2: real,N2: num] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
        = ( divide_divide_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).

% powr_neg_numeral
thf(fact_8690_floor__log2__div2,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).

% floor_log2_div2
thf(fact_8691_bij__betw__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( bij_betw_nat_complex
        @ ^ [K2: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
        @ ( set_ord_lessThan_nat @ N2 )
        @ ( collect_complex
          @ ^ [Z2: complex] :
              ( ( power_power_complex @ Z2 @ N2 )
              = one_one_complex ) ) ) ) ).

% bij_betw_roots_unity
thf(fact_8692_exp__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ imaginary_unit ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i
thf(fact_8693_exp__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ pi ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i'
thf(fact_8694_exp__two__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
    = one_one_complex ) ).

% exp_two_pi_i
thf(fact_8695_exp__two__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
    = one_one_complex ) ).

% exp_two_pi_i'
thf(fact_8696_complex__exp__exists,axiom,
    ! [Z: complex] :
    ? [A5: complex,R3: real] :
      ( Z
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( exp_complex @ A5 ) ) ) ).

% complex_exp_exists
thf(fact_8697_complex__of__real__mult__Complex,axiom,
    ! [R: real,X2: real,Y: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ ( complex2 @ X2 @ Y ) )
      = ( complex2 @ ( times_times_real @ R @ X2 ) @ ( times_times_real @ R @ Y ) ) ) ).

% complex_of_real_mult_Complex
thf(fact_8698_Complex__mult__complex__of__real,axiom,
    ! [X2: real,Y: real,R: real] :
      ( ( times_times_complex @ ( complex2 @ X2 @ Y ) @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ ( times_times_real @ X2 @ R ) @ ( times_times_real @ Y @ R ) ) ) ).

% Complex_mult_complex_of_real
thf(fact_8699_complex__of__real__add__Complex,axiom,
    ! [R: real,X2: real,Y: real] :
      ( ( plus_plus_complex @ ( real_V4546457046886955230omplex @ R ) @ ( complex2 @ X2 @ Y ) )
      = ( complex2 @ ( plus_plus_real @ R @ X2 ) @ Y ) ) ).

% complex_of_real_add_Complex
thf(fact_8700_Complex__add__complex__of__real,axiom,
    ! [X2: real,Y: real,R: real] :
      ( ( plus_plus_complex @ ( complex2 @ X2 @ Y ) @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ ( plus_plus_real @ X2 @ R ) @ Y ) ) ).

% Complex_add_complex_of_real
thf(fact_8701_cis__conv__exp,axiom,
    ( cis
    = ( ^ [B3: real] : ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B3 ) ) ) ) ) ).

% cis_conv_exp
thf(fact_8702_complex__of__real__i,axiom,
    ! [R: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ imaginary_unit )
      = ( complex2 @ zero_zero_real @ R ) ) ).

% complex_of_real_i
thf(fact_8703_i__complex__of__real,axiom,
    ! [R: real] :
      ( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ zero_zero_real @ R ) ) ).

% i_complex_of_real
thf(fact_8704_Complex__eq,axiom,
    ( complex2
    = ( ^ [A3: real,B3: real] : ( plus_plus_complex @ ( real_V4546457046886955230omplex @ A3 ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B3 ) ) ) ) ) ).

% Complex_eq
thf(fact_8705_complex__split__polar,axiom,
    ! [Z: complex] :
    ? [R3: real,A5: real] :
      ( Z
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A5 ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A5 ) ) ) ) ) ) ).

% complex_split_polar
thf(fact_8706_cmod__unit__one,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) )
      = one_one_real ) ).

% cmod_unit_one
thf(fact_8707_cmod__complex__polar,axiom,
    ! [R: real,A: real] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) ) )
      = ( abs_abs_real @ R ) ) ).

% cmod_complex_polar
thf(fact_8708_csqrt__ii,axiom,
    ( ( csqrt @ imaginary_unit )
    = ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt_ii
thf(fact_8709_modulo__int__unfold,axiom,
    ! [L2: int,K: int,N2: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L2 )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N2 = zero_zero_nat ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
          = ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
      & ( ~ ( ( ( sgn_sgn_int @ L2 )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N2 = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L2 ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L2 ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L2 )
                @ ( minus_minus_int
                  @ ( semiri1314217659103216013at_int
                    @ ( times_times_nat @ N2
                      @ ( zero_n2687167440665602831ol_nat
                        @ ~ ( dvd_dvd_nat @ N2 @ M ) ) ) )
                  @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ) ) ) ) ) ).

% modulo_int_unfold
thf(fact_8710_num_Osize__gen_I3_J,axiom,
    ! [X32: num] :
      ( ( size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(3)
thf(fact_8711_powr__int,axiom,
    ! [X2: real,I: int] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ I ) )
            = ( power_power_real @ X2 @ ( nat2 @ I ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ I ) )
            = ( divide_divide_real @ one_one_real @ ( power_power_real @ X2 @ ( nat2 @ ( uminus_uminus_int @ I ) ) ) ) ) ) ) ) ).

% powr_int
thf(fact_8712_nat__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_numeral
thf(fact_8713_zless__nat__conj,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
      = ( ( ord_less_int @ zero_zero_int @ Z )
        & ( ord_less_int @ W @ Z ) ) ) ).

% zless_nat_conj
thf(fact_8714_nat__neg__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = zero_zero_nat ) ).

% nat_neg_numeral
thf(fact_8715_sgn__mult__dvd__iff,axiom,
    ! [R: int,L2: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R ) @ L2 ) @ K )
      = ( ( dvd_dvd_int @ L2 @ K )
        & ( ( R = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% sgn_mult_dvd_iff
thf(fact_8716_mult__sgn__dvd__iff,axiom,
    ! [L2: int,R: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ L2 @ ( sgn_sgn_int @ R ) ) @ K )
      = ( ( dvd_dvd_int @ L2 @ K )
        & ( ( R = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% mult_sgn_dvd_iff
thf(fact_8717_dvd__sgn__mult__iff,axiom,
    ! [L2: int,R: int,K: int] :
      ( ( dvd_dvd_int @ L2 @ ( times_times_int @ ( sgn_sgn_int @ R ) @ K ) )
      = ( ( dvd_dvd_int @ L2 @ K )
        | ( R = zero_zero_int ) ) ) ).

% dvd_sgn_mult_iff
thf(fact_8718_dvd__mult__sgn__iff,axiom,
    ! [L2: int,K: int,R: int] :
      ( ( dvd_dvd_int @ L2 @ ( times_times_int @ K @ ( sgn_sgn_int @ R ) ) )
      = ( ( dvd_dvd_int @ L2 @ K )
        | ( R = zero_zero_int ) ) ) ).

% dvd_mult_sgn_iff
thf(fact_8719_zero__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% zero_less_nat_eq
thf(fact_8720_diff__nat__numeral,axiom,
    ! [V: num,V3: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V3 ) )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V3 ) ) ) ) ).

% diff_nat_numeral
thf(fact_8721_numeral__power__eq__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,Y: int] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 )
        = ( nat2 @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_nat_cancel_iff
thf(fact_8722_nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X2: num,N2: nat] :
      ( ( ( nat2 @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% nat_eq_numeral_power_cancel_iff
thf(fact_8723_power2__csqrt,axiom,
    ! [Z: complex] :
      ( ( power_power_complex @ ( csqrt @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = Z ) ).

% power2_csqrt
thf(fact_8724_nat__ceiling__le__eq,axiom,
    ! [X2: real,A: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X2 ) ) @ A )
      = ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ A ) ) ) ).

% nat_ceiling_le_eq
thf(fact_8725_one__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% one_less_nat_eq
thf(fact_8726_nat__numeral__diff__1,axiom,
    ! [V: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).

% nat_numeral_diff_1
thf(fact_8727_numeral__power__less__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) @ ( nat2 @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_less_nat_cancel_iff
thf(fact_8728_nat__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% nat_less_numeral_power_cancel_iff
thf(fact_8729_nat__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N2: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) ) ) ).

% nat_le_numeral_power_cancel_iff
thf(fact_8730_numeral__power__le__nat__cancel__iff,axiom,
    ! [X2: num,N2: nat,A: int] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N2 ) @ ( nat2 @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N2 ) @ A ) ) ).

% numeral_power_le_nat_cancel_iff
thf(fact_8731_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_8732_nat__numeral__as__int,axiom,
    ( numeral_numeral_nat
    = ( ^ [I4: num] : ( nat2 @ ( numeral_numeral_int @ I4 ) ) ) ) ).

% nat_numeral_as_int
thf(fact_8733_nat__mono,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ X2 @ Y )
     => ( ord_less_eq_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y ) ) ) ).

% nat_mono
thf(fact_8734_int__sgnE,axiom,
    ! [K: int] :
      ~ ! [N3: nat,L4: int] :
          ( K
         != ( times_times_int @ ( sgn_sgn_int @ L4 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% int_sgnE
thf(fact_8735_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_8736_div__eq__sgn__abs,axiom,
    ! [K: int,L2: int] :
      ( ( ( sgn_sgn_int @ K )
        = ( sgn_sgn_int @ L2 ) )
     => ( ( divide_divide_int @ K @ L2 )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ).

% div_eq_sgn_abs
thf(fact_8737_unset__bit__nat__def,axiom,
    ( bit_se4205575877204974255it_nat
    = ( ^ [M3: nat,N: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M3 @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% unset_bit_nat_def
thf(fact_8738_nat__mask__eq,axiom,
    ! [N2: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( bit_se2002935070580805687sk_nat @ N2 ) ) ).

% nat_mask_eq
thf(fact_8739_nat__mono__iff,axiom,
    ! [Z: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_mono_iff
thf(fact_8740_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).

% zless_nat_eq_int_zless
thf(fact_8741_nat__le__iff,axiom,
    ! [X2: int,N2: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X2 ) @ N2 )
      = ( ord_less_eq_int @ X2 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nat_le_iff
thf(fact_8742_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_8743_sgn__mod,axiom,
    ! [L2: int,K: int] :
      ( ( L2 != zero_zero_int )
     => ( ~ ( dvd_dvd_int @ L2 @ K )
       => ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L2 ) )
          = ( sgn_sgn_int @ L2 ) ) ) ) ).

% sgn_mod
thf(fact_8744_int__minus,axiom,
    ! [N2: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N2 @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_8745_nat__abs__mult__distrib,axiom,
    ! [W: int,Z: int] :
      ( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z ) ) )
      = ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z ) ) ) ) ).

% nat_abs_mult_distrib
thf(fact_8746_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_8747_nat__times__as__int,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B3: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_times_as_int
thf(fact_8748_real__nat__ceiling__ge,axiom,
    ! [X2: real] : ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X2 ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_8749_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A3: nat,B3: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_8750_nat__div__as__int,axiom,
    ( divide_divide_nat
    = ( ^ [A3: nat,B3: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_div_as_int
thf(fact_8751_nat__mod__as__int,axiom,
    ( modulo_modulo_nat
    = ( ^ [A3: nat,B3: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_mod_as_int
thf(fact_8752_zsgn__def,axiom,
    ( sgn_sgn_int
    = ( ^ [I4: int] : ( if_int @ ( I4 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I4 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zsgn_def
thf(fact_8753_nat__less__eq__zless,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_less_eq_zless
thf(fact_8754_nat__le__eq__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_eq_int @ W @ Z ) ) ) ).

% nat_le_eq_zle
thf(fact_8755_split__nat,axiom,
    ! [P: nat > $o,I: int] :
      ( ( P @ ( nat2 @ I ) )
      = ( ! [N: nat] :
            ( ( I
              = ( semiri1314217659103216013at_int @ N ) )
           => ( P @ N ) )
        & ( ( ord_less_int @ I @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_8756_le__nat__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N2 @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ K ) ) ) ).

% le_nat_iff
thf(fact_8757_nat__add__distrib,axiom,
    ! [Z: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
       => ( ( nat2 @ ( plus_plus_int @ Z @ Z6 ) )
          = ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_8758_div__sgn__abs__cancel,axiom,
    ! [V: int,K: int,L2: int] :
      ( ( V != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L2 ) ) )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ).

% div_sgn_abs_cancel
thf(fact_8759_nat__mult__distrib,axiom,
    ! [Z: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( times_times_int @ Z @ Z6 ) )
        = ( times_times_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ).

% nat_mult_distrib
thf(fact_8760_Suc__as__int,axiom,
    ( suc
    = ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_8761_nat__diff__distrib_H,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( minus_minus_int @ X2 @ Y ) )
          = ( minus_minus_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_8762_nat__diff__distrib,axiom,
    ! [Z6: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
     => ( ( ord_less_eq_int @ Z6 @ Z )
       => ( ( nat2 @ ( minus_minus_int @ Z @ Z6 ) )
          = ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_8763_nat__abs__triangle__ineq,axiom,
    ! [K: int,L2: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L2 ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_8764_nat__div__distrib,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( nat2 @ ( divide_divide_int @ X2 @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib
thf(fact_8765_nat__div__distrib_H,axiom,
    ! [Y: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( nat2 @ ( divide_divide_int @ X2 @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib'
thf(fact_8766_div__dvd__sgn__abs,axiom,
    ! [L2: int,K: int] :
      ( ( dvd_dvd_int @ L2 @ K )
     => ( ( divide_divide_int @ K @ L2 )
        = ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( sgn_sgn_int @ L2 ) ) @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ) ).

% div_dvd_sgn_abs
thf(fact_8767_nat__power__eq,axiom,
    ! [Z: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( power_power_int @ Z @ N2 ) )
        = ( power_power_nat @ ( nat2 @ Z ) @ N2 ) ) ) ).

% nat_power_eq
thf(fact_8768_nat__floor__neg,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
        = zero_zero_nat ) ) ).

% nat_floor_neg
thf(fact_8769_nat__mod__distrib,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( modulo_modulo_int @ X2 @ Y ) )
          = ( modulo_modulo_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_mod_distrib
thf(fact_8770_div__abs__eq__div__nat,axiom,
    ! [K: int,L2: int] :
      ( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ).

% div_abs_eq_div_nat
thf(fact_8771_floor__eq3,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
          = N2 ) ) ) ).

% floor_eq3
thf(fact_8772_le__nat__floor,axiom,
    ! [X2: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X2 ) @ A )
     => ( ord_less_eq_nat @ X2 @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).

% le_nat_floor
thf(fact_8773_mod__abs__eq__div__nat,axiom,
    ! [K: int,L2: int] :
      ( ( modulo_modulo_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) )
      = ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ).

% mod_abs_eq_div_nat
thf(fact_8774_divide__int__def,axiom,
    ( divide_divide_int
    = ( ^ [K2: int,L: int] :
          ( if_int @ ( L = zero_zero_int ) @ zero_zero_int
          @ ( if_int
            @ ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L ) )
            @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) )
            @ ( uminus_uminus_int
              @ ( semiri1314217659103216013at_int
                @ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) )
                  @ ( zero_n2687167440665602831ol_nat
                    @ ~ ( dvd_dvd_int @ L @ K2 ) ) ) ) ) ) ) ) ) ).

% divide_int_def
thf(fact_8775_of__real__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( real_V4546457046886955230omplex @ ( sqrt @ X2 ) )
        = ( csqrt @ ( real_V4546457046886955230omplex @ X2 ) ) ) ) ).

% of_real_sqrt
thf(fact_8776_modulo__int__def,axiom,
    ( modulo_modulo_int
    = ( ^ [K2: int,L: int] :
          ( if_int @ ( L = zero_zero_int ) @ K2
          @ ( if_int
            @ ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L )
              @ ( minus_minus_int
                @ ( times_times_int @ ( abs_abs_int @ L )
                  @ ( zero_n2684676970156552555ol_int
                    @ ~ ( dvd_dvd_int @ L @ K2 ) ) )
                @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ) ) ) ) ) ).

% modulo_int_def
thf(fact_8777_nat__2,axiom,
    ( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% nat_2
thf(fact_8778_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( suc @ ( nat2 @ Z ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_8779_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_8780_nat__mult__distrib__neg,axiom,
    ! [Z: int,Z6: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ ( times_times_int @ Z @ Z6 ) )
        = ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z ) ) @ ( nat2 @ ( uminus_uminus_int @ Z6 ) ) ) ) ) ).

% nat_mult_distrib_neg
thf(fact_8781_nat__abs__int__diff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ B @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ A @ B ) ) ) ) ).

% nat_abs_int_diff
thf(fact_8782_floor__eq4,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
          = N2 ) ) ) ).

% floor_eq4
thf(fact_8783_num_Osize__gen_I1_J,axiom,
    ( ( size_num @ one )
    = zero_zero_nat ) ).

% num.size_gen(1)
thf(fact_8784_diff__nat__eq__if,axiom,
    ! [Z6: int,Z: int] :
      ( ( ( ord_less_int @ Z6 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
          = ( nat2 @ Z ) ) )
      & ( ~ ( ord_less_int @ Z6 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z @ Z6 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z @ Z6 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_8785_eucl__rel__int__remainderI,axiom,
    ! [R: int,L2: int,K: int,Q2: int] :
      ( ( ( sgn_sgn_int @ R )
        = ( sgn_sgn_int @ L2 ) )
     => ( ( ord_less_int @ ( abs_abs_int @ R ) @ ( abs_abs_int @ L2 ) )
       => ( ( K
            = ( plus_plus_int @ ( times_times_int @ Q2 @ L2 ) @ R ) )
         => ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R ) ) ) ) ) ).

% eucl_rel_int_remainderI
thf(fact_8786_eucl__rel__int_Osimps,axiom,
    ( eucl_rel_int
    = ( ^ [A12: int,A23: int,A32: product_prod_int_int] :
          ( ? [K2: int] :
              ( ( A12 = K2 )
              & ( A23 = zero_zero_int )
              & ( A32
                = ( product_Pair_int_int @ zero_zero_int @ K2 ) ) )
          | ? [L: int,K2: int,Q4: int] :
              ( ( A12 = K2 )
              & ( A23 = L )
              & ( A32
                = ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
              & ( L != zero_zero_int )
              & ( K2
                = ( times_times_int @ Q4 @ L ) ) )
          | ? [R5: int,L: int,K2: int,Q4: int] :
              ( ( A12 = K2 )
              & ( A23 = L )
              & ( A32
                = ( product_Pair_int_int @ Q4 @ R5 ) )
              & ( ( sgn_sgn_int @ R5 )
                = ( sgn_sgn_int @ L ) )
              & ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L ) )
              & ( K2
                = ( plus_plus_int @ ( times_times_int @ Q4 @ L ) @ R5 ) ) ) ) ) ) ).

% eucl_rel_int.simps
thf(fact_8787_eucl__rel__int_Ocases,axiom,
    ! [A1: int,A22: int,A33: product_prod_int_int] :
      ( ( eucl_rel_int @ A1 @ A22 @ A33 )
     => ( ( ( A22 = zero_zero_int )
         => ( A33
           != ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
       => ( ! [Q3: int] :
              ( ( A33
                = ( product_Pair_int_int @ Q3 @ zero_zero_int ) )
             => ( ( A22 != zero_zero_int )
               => ( A1
                 != ( times_times_int @ Q3 @ A22 ) ) ) )
         => ~ ! [R3: int,Q3: int] :
                ( ( A33
                  = ( product_Pair_int_int @ Q3 @ R3 ) )
               => ( ( ( sgn_sgn_int @ R3 )
                    = ( sgn_sgn_int @ A22 ) )
                 => ( ( ord_less_int @ ( abs_abs_int @ R3 ) @ ( abs_abs_int @ A22 ) )
                   => ( A1
                     != ( plus_plus_int @ ( times_times_int @ Q3 @ A22 ) @ R3 ) ) ) ) ) ) ) ) ).

% eucl_rel_int.cases
thf(fact_8788_div__noneq__sgn__abs,axiom,
    ! [L2: int,K: int] :
      ( ( L2 != zero_zero_int )
     => ( ( ( sgn_sgn_int @ K )
         != ( sgn_sgn_int @ L2 ) )
       => ( ( divide_divide_int @ K @ L2 )
          = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) )
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( dvd_dvd_int @ L2 @ K ) ) ) ) ) ) ).

% div_noneq_sgn_abs
thf(fact_8789_even__nat__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_nat_iff
thf(fact_8790_powr__real__of__int,axiom,
    ! [X2: real,N2: int] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ N2 )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N2 ) )
            = ( power_power_real @ X2 @ ( nat2 @ N2 ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ N2 )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N2 ) )
            = ( inverse_inverse_real @ ( power_power_real @ X2 @ ( nat2 @ ( uminus_uminus_int @ N2 ) ) ) ) ) ) ) ) ).

% powr_real_of_int
thf(fact_8791_num_Osize__gen_I2_J,axiom,
    ! [X22: num] :
      ( ( size_num @ ( bit0 @ X22 ) )
      = ( plus_plus_nat @ ( size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_8792_divide__int__unfold,axiom,
    ! [L2: int,K: int,N2: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L2 )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N2 = zero_zero_nat ) )
       => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
          = zero_zero_int ) )
      & ( ~ ( ( ( sgn_sgn_int @ L2 )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N2 = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L2 ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N2 ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L2 ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( uminus_uminus_int
                @ ( semiri1314217659103216013at_int
                  @ ( plus_plus_nat @ ( divide_divide_nat @ M @ N2 )
                    @ ( zero_n2687167440665602831ol_nat
                      @ ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ) ) ) ) ) ) ) ).

% divide_int_unfold
thf(fact_8793_bij__betw__nth__root__unity,axiom,
    ! [C: complex,N2: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N2 @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) )
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = one_one_complex ) )
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = C ) ) ) ) ) ).

% bij_betw_nth_root_unity
thf(fact_8794_and__int__unfold,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L: int] :
          ( if_int
          @ ( ( K2 = zero_zero_int )
            | ( L = zero_zero_int ) )
          @ zero_zero_int
          @ ( if_int
            @ ( K2
              = ( uminus_uminus_int @ one_one_int ) )
            @ L
            @ ( if_int
              @ ( L
                = ( uminus_uminus_int @ one_one_int ) )
              @ K2
              @ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% and_int_unfold
thf(fact_8795_sgn__le__0__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sgn_sgn_real @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% sgn_le_0_iff
thf(fact_8796_zero__le__sgn__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% zero_le_sgn_iff
thf(fact_8797_real__root__zero,axiom,
    ! [N2: nat] :
      ( ( root @ N2 @ zero_zero_real )
      = zero_zero_real ) ).

% real_root_zero
thf(fact_8798_concat__bit__of__zero__2,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_concat_bit @ N2 @ K @ zero_zero_int )
      = ( bit_se2923211474154528505it_int @ N2 @ K ) ) ).

% concat_bit_of_zero_2
thf(fact_8799_real__root__Suc__0,axiom,
    ! [X2: real] :
      ( ( root @ ( suc @ zero_zero_nat ) @ X2 )
      = X2 ) ).

% real_root_Suc_0
thf(fact_8800_root__0,axiom,
    ! [X2: real] :
      ( ( root @ zero_zero_nat @ X2 )
      = zero_zero_real ) ).

% root_0
thf(fact_8801_real__root__eq__iff,axiom,
    ! [N2: nat,X2: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( root @ N2 @ X2 )
          = ( root @ N2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% real_root_eq_iff
thf(fact_8802_and__nonnegative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        | ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).

% and_nonnegative_int_iff
thf(fact_8803_and__negative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        & ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).

% and_negative_int_iff
thf(fact_8804_real__root__eq__0__iff,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( root @ N2 @ X2 )
          = zero_zero_real )
        = ( X2 = zero_zero_real ) ) ) ).

% real_root_eq_0_iff
thf(fact_8805_real__root__less__iff,axiom,
    ! [N2: nat,X2: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ ( root @ N2 @ X2 ) @ ( root @ N2 @ Y ) )
        = ( ord_less_real @ X2 @ Y ) ) ) ).

% real_root_less_iff
thf(fact_8806_real__root__le__iff,axiom,
    ! [N2: nat,X2: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ ( root @ N2 @ X2 ) @ ( root @ N2 @ Y ) )
        = ( ord_less_eq_real @ X2 @ Y ) ) ) ).

% real_root_le_iff
thf(fact_8807_real__root__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ one_one_real )
        = one_one_real ) ) ).

% real_root_one
thf(fact_8808_real__root__eq__1__iff,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( root @ N2 @ X2 )
          = one_one_real )
        = ( X2 = one_one_real ) ) ) ).

% real_root_eq_1_iff
thf(fact_8809_take__bit__of__Suc__0,axiom,
    ! [N2: nat] :
      ( ( bit_se2925701944663578781it_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% take_bit_of_Suc_0
thf(fact_8810_real__root__gt__0__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ ( root @ N2 @ Y ) )
        = ( ord_less_real @ zero_zero_real @ Y ) ) ) ).

% real_root_gt_0_iff
thf(fact_8811_real__root__lt__0__iff,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ ( root @ N2 @ X2 ) @ zero_zero_real )
        = ( ord_less_real @ X2 @ zero_zero_real ) ) ) ).

% real_root_lt_0_iff
thf(fact_8812_real__root__ge__0__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ Y ) )
        = ( ord_less_eq_real @ zero_zero_real @ Y ) ) ) ).

% real_root_ge_0_iff
thf(fact_8813_real__root__le__0__iff,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ ( root @ N2 @ X2 ) @ zero_zero_real )
        = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ) ).

% real_root_le_0_iff
thf(fact_8814_real__root__gt__1__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ one_one_real @ ( root @ N2 @ Y ) )
        = ( ord_less_real @ one_one_real @ Y ) ) ) ).

% real_root_gt_1_iff
thf(fact_8815_real__root__lt__1__iff,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ ( root @ N2 @ X2 ) @ one_one_real )
        = ( ord_less_real @ X2 @ one_one_real ) ) ) ).

% real_root_lt_1_iff
thf(fact_8816_real__root__ge__1__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ one_one_real @ ( root @ N2 @ Y ) )
        = ( ord_less_eq_real @ one_one_real @ Y ) ) ) ).

% real_root_ge_1_iff
thf(fact_8817_real__root__le__1__iff,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ ( root @ N2 @ X2 ) @ one_one_real )
        = ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).

% real_root_le_1_iff
thf(fact_8818_and__minus__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = one_one_int ) ).

% and_minus_numerals(2)
thf(fact_8819_and__minus__numerals_I6_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ one_one_int )
      = one_one_int ) ).

% and_minus_numerals(6)
thf(fact_8820_real__root__pow__pos2,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( power_power_real @ ( root @ N2 @ X2 ) @ N2 )
          = X2 ) ) ) ).

% real_root_pow_pos2
thf(fact_8821_and__minus__numerals_I5_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_minus_numerals(5)
thf(fact_8822_and__minus__numerals_I1_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = zero_zero_int ) ).

% and_minus_numerals(1)
thf(fact_8823_nat__take__bit__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( nat2 @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
        = ( bit_se2925701944663578781it_nat @ N2 @ ( nat2 @ K ) ) ) ) ).

% nat_take_bit_eq
thf(fact_8824_take__bit__nat__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( bit_se2925701944663578781it_nat @ N2 @ ( nat2 @ K ) )
        = ( nat2 @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ) ).

% take_bit_nat_eq
thf(fact_8825_sgn__root,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( sgn_sgn_real @ ( root @ N2 @ X2 ) )
        = ( sgn_sgn_real @ X2 ) ) ) ).

% sgn_root
thf(fact_8826_concat__bit__take__bit__eq,axiom,
    ! [N2: nat,B: int] :
      ( ( bit_concat_bit @ N2 @ ( bit_se2923211474154528505it_int @ N2 @ B ) )
      = ( bit_concat_bit @ N2 @ B ) ) ).

% concat_bit_take_bit_eq
thf(fact_8827_concat__bit__eq__iff,axiom,
    ! [N2: nat,K: int,L2: int,R: int,S: int] :
      ( ( ( bit_concat_bit @ N2 @ K @ L2 )
        = ( bit_concat_bit @ N2 @ R @ S ) )
      = ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
          = ( bit_se2923211474154528505it_int @ N2 @ R ) )
        & ( L2 = S ) ) ) ).

% concat_bit_eq_iff
thf(fact_8828_real__root__mult__exp,axiom,
    ! [M: nat,N2: nat,X2: real] :
      ( ( root @ ( times_times_nat @ M @ N2 ) @ X2 )
      = ( root @ M @ ( root @ N2 @ X2 ) ) ) ).

% real_root_mult_exp
thf(fact_8829_real__root__mult,axiom,
    ! [N2: nat,X2: real,Y: real] :
      ( ( root @ N2 @ ( times_times_real @ X2 @ Y ) )
      = ( times_times_real @ ( root @ N2 @ X2 ) @ ( root @ N2 @ Y ) ) ) ).

% real_root_mult
thf(fact_8830_real__root__minus,axiom,
    ! [N2: nat,X2: real] :
      ( ( root @ N2 @ ( uminus_uminus_real @ X2 ) )
      = ( uminus_uminus_real @ ( root @ N2 @ X2 ) ) ) ).

% real_root_minus
thf(fact_8831_take__bit__mult,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_se2923211474154528505it_int @ N2 @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( bit_se2923211474154528505it_int @ N2 @ L2 ) ) )
      = ( bit_se2923211474154528505it_int @ N2 @ ( times_times_int @ K @ L2 ) ) ) ).

% take_bit_mult
thf(fact_8832_take__bit__minus,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) )
      = ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ K ) ) ) ).

% take_bit_minus
thf(fact_8833_take__bit__diff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_se2923211474154528505it_int @ N2 @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( bit_se2923211474154528505it_int @ N2 @ L2 ) ) )
      = ( bit_se2923211474154528505it_int @ N2 @ ( minus_minus_int @ K @ L2 ) ) ) ).

% take_bit_diff
thf(fact_8834_take__bit__tightened__less__eq__nat,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q2 ) @ ( bit_se2925701944663578781it_nat @ N2 @ Q2 ) ) ) ).

% take_bit_tightened_less_eq_nat
thf(fact_8835_take__bit__nat__less__eq__self,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ M ) ).

% take_bit_nat_less_eq_self
thf(fact_8836_real__root__commute,axiom,
    ! [M: nat,N2: nat,X2: real] :
      ( ( root @ M @ ( root @ N2 @ X2 ) )
      = ( root @ N2 @ ( root @ M @ X2 ) ) ) ).

% real_root_commute
thf(fact_8837_real__root__divide,axiom,
    ! [N2: nat,X2: real,Y: real] :
      ( ( root @ N2 @ ( divide_divide_real @ X2 @ Y ) )
      = ( divide_divide_real @ ( root @ N2 @ X2 ) @ ( root @ N2 @ Y ) ) ) ).

% real_root_divide
thf(fact_8838_real__root__inverse,axiom,
    ! [N2: nat,X2: real] :
      ( ( root @ N2 @ ( inverse_inverse_real @ X2 ) )
      = ( inverse_inverse_real @ ( root @ N2 @ X2 ) ) ) ).

% real_root_inverse
thf(fact_8839_real__root__pos__pos__le,axiom,
    ! [X2: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ X2 ) ) ) ).

% real_root_pos_pos_le
thf(fact_8840_take__bit__tightened__less__eq__int,axiom,
    ! [M: nat,N2: nat,K: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).

% take_bit_tightened_less_eq_int
thf(fact_8841_AND__lower,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X2 @ Y ) ) ) ).

% AND_lower
thf(fact_8842_AND__upper1,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y ) @ X2 ) ) ).

% AND_upper1
thf(fact_8843_AND__upper2,axiom,
    ! [Y: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y ) @ Y ) ) ).

% AND_upper2
thf(fact_8844_AND__upper1_H,axiom,
    ! [Y: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y @ Ya ) @ Z ) ) ) ).

% AND_upper1'
thf(fact_8845_AND__upper2_H,axiom,
    ! [Y: int,Z: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y ) @ Z ) ) ) ).

% AND_upper2'
thf(fact_8846_take__bit__nonnegative,axiom,
    ! [N2: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ).

% take_bit_nonnegative
thf(fact_8847_take__bit__int__less__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% take_bit_int_less_eq_self_iff
thf(fact_8848_take__bit__int__greater__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% take_bit_int_greater_self_iff
thf(fact_8849_not__take__bit__negative,axiom,
    ! [N2: nat,K: int] :
      ~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ zero_zero_int ) ).

% not_take_bit_negative
thf(fact_8850_real__sgn__eq,axiom,
    ( sgn_sgn_real
    = ( ^ [X: real] : ( divide_divide_real @ X @ ( abs_abs_real @ X ) ) ) ) ).

% real_sgn_eq
thf(fact_8851_root__sgn__power,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N2 ) ) )
        = Y ) ) ).

% root_sgn_power
thf(fact_8852_sgn__power__root,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N2 @ X2 ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N2 @ X2 ) ) @ N2 ) )
        = X2 ) ) ).

% sgn_power_root
thf(fact_8853_split__root,axiom,
    ! [P: real > $o,N2: nat,X2: real] :
      ( ( P @ ( root @ N2 @ X2 ) )
      = ( ( ( N2 = zero_zero_nat )
         => ( P @ zero_zero_real ) )
        & ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ! [Y2: real] :
              ( ( ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N2 ) )
                = X2 )
             => ( P @ Y2 ) ) ) ) ) ).

% split_root
thf(fact_8854_real__root__less__mono,axiom,
    ! [N2: nat,X2: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ X2 @ Y )
       => ( ord_less_real @ ( root @ N2 @ X2 ) @ ( root @ N2 @ Y ) ) ) ) ).

% real_root_less_mono
thf(fact_8855_real__root__le__mono,axiom,
    ! [N2: nat,X2: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ X2 @ Y )
       => ( ord_less_eq_real @ ( root @ N2 @ X2 ) @ ( root @ N2 @ Y ) ) ) ) ).

% real_root_le_mono
thf(fact_8856_real__root__power,axiom,
    ! [N2: nat,X2: real,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ ( power_power_real @ X2 @ K ) )
        = ( power_power_real @ ( root @ N2 @ X2 ) @ K ) ) ) ).

% real_root_power
thf(fact_8857_real__root__abs,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ ( abs_abs_real @ X2 ) )
        = ( abs_abs_real @ ( root @ N2 @ X2 ) ) ) ) ).

% real_root_abs
thf(fact_8858_AND__upper2_H_H,axiom,
    ! [Y: int,Z: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ X2 @ Y ) @ Z ) ) ) ).

% AND_upper2''
thf(fact_8859_AND__upper1_H_H,axiom,
    ! [Y: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y @ Ya ) @ Z ) ) ) ).

% AND_upper1''
thf(fact_8860_and__less__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ L2 @ zero_zero_int )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ K ) ) ).

% and_less_eq
thf(fact_8861_take__bit__decr__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
       != zero_zero_int )
     => ( ( bit_se2923211474154528505it_int @ N2 @ ( minus_minus_int @ K @ one_one_int ) )
        = ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ one_one_int ) ) ) ).

% take_bit_decr_eq
thf(fact_8862_sgn__eq,axiom,
    ( sgn_sgn_complex
    = ( ^ [Z2: complex] : ( divide1717551699836669952omplex @ Z2 @ ( real_V4546457046886955230omplex @ ( real_V1022390504157884413omplex @ Z2 ) ) ) ) ) ).

% sgn_eq
thf(fact_8863_real__root__gt__zero,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_real @ zero_zero_real @ ( root @ N2 @ X2 ) ) ) ) ).

% real_root_gt_zero
thf(fact_8864_real__root__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ( ord_less_real @ one_one_real @ X2 )
         => ( ord_less_real @ ( root @ N4 @ X2 ) @ ( root @ N2 @ X2 ) ) ) ) ) ).

% real_root_strict_decreasing
thf(fact_8865_sqrt__def,axiom,
    ( sqrt
    = ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% sqrt_def
thf(fact_8866_sgn__real__def,axiom,
    ( sgn_sgn_real
    = ( ^ [A3: real] : ( if_real @ ( A3 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A3 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).

% sgn_real_def
thf(fact_8867_root__abs__power,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( abs_abs_real @ ( root @ N2 @ ( power_power_real @ Y @ N2 ) ) )
        = ( abs_abs_real @ Y ) ) ) ).

% root_abs_power
thf(fact_8868_even__and__iff__int,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L2 ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) ).

% even_and_iff_int
thf(fact_8869_take__bit__eq__mask__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
        = ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( ( bit_se2923211474154528505it_int @ N2 @ ( plus_plus_int @ K @ one_one_int ) )
        = zero_zero_int ) ) ).

% take_bit_eq_mask_iff
thf(fact_8870_real__root__pos__pos,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ X2 ) ) ) ) ).

% real_root_pos_pos
thf(fact_8871_take__bit__nat__eq__self,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( bit_se2925701944663578781it_nat @ N2 @ M )
        = M ) ) ).

% take_bit_nat_eq_self
thf(fact_8872_take__bit__nat__less__exp,axiom,
    ! [N2: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% take_bit_nat_less_exp
thf(fact_8873_take__bit__nat__eq__self__iff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N2 @ M )
        = M )
      = ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% take_bit_nat_eq_self_iff
thf(fact_8874_real__root__strict__increasing,axiom,
    ! [N2: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( ord_less_real @ X2 @ one_one_real )
           => ( ord_less_real @ ( root @ N2 @ X2 ) @ ( root @ N4 @ X2 ) ) ) ) ) ) ).

% real_root_strict_increasing
thf(fact_8875_real__root__decreasing,axiom,
    ! [N2: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ( ord_less_eq_real @ one_one_real @ X2 )
         => ( ord_less_eq_real @ ( root @ N4 @ X2 ) @ ( root @ N2 @ X2 ) ) ) ) ) ).

% real_root_decreasing
thf(fact_8876_real__root__pow__pos,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( power_power_real @ ( root @ N2 @ X2 ) @ N2 )
          = X2 ) ) ) ).

% real_root_pow_pos
thf(fact_8877_real__root__pos__unique,axiom,
    ! [N2: nat,Y: real,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ Y @ N2 )
            = X2 )
         => ( ( root @ N2 @ X2 )
            = Y ) ) ) ) ).

% real_root_pos_unique
thf(fact_8878_real__root__power__cancel,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( root @ N2 @ ( power_power_real @ X2 @ N2 ) )
          = X2 ) ) ) ).

% real_root_power_cancel
thf(fact_8879_odd__real__root__pow,axiom,
    ! [N2: nat,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( root @ N2 @ X2 ) @ N2 )
        = X2 ) ) ).

% odd_real_root_pow
thf(fact_8880_odd__real__root__unique,axiom,
    ! [N2: nat,Y: real,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ( power_power_real @ Y @ N2 )
          = X2 )
       => ( ( root @ N2 @ X2 )
          = Y ) ) ) ).

% odd_real_root_unique
thf(fact_8881_odd__real__root__power__cancel,axiom,
    ! [N2: nat,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( root @ N2 @ ( power_power_real @ X2 @ N2 ) )
        = X2 ) ) ).

% odd_real_root_power_cancel
thf(fact_8882_take__bit__nat__def,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N: nat,M3: nat] : ( modulo_modulo_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% take_bit_nat_def
thf(fact_8883_sgn__power__injE,axiom,
    ! [A: real,N2: nat,X2: real,B: real] :
      ( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) )
        = X2 )
     => ( ( X2
          = ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N2 ) ) )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( A = B ) ) ) ) ).

% sgn_power_injE
thf(fact_8884_take__bit__int__less__exp,axiom,
    ! [N2: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).

% take_bit_int_less_exp
thf(fact_8885_take__bit__int__def,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N: nat,K2: int] : ( modulo_modulo_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% take_bit_int_def
thf(fact_8886_take__bit__nat__less__self__iff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ M )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M ) ) ).

% take_bit_nat_less_self_iff
thf(fact_8887_real__root__increasing,axiom,
    ! [N2: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
         => ( ( ord_less_eq_real @ X2 @ one_one_real )
           => ( ord_less_eq_real @ ( root @ N2 @ X2 ) @ ( root @ N4 @ X2 ) ) ) ) ) ) ).

% real_root_increasing
thf(fact_8888_take__bit__Suc__minus__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_minus_bit0
thf(fact_8889_take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% take_bit_int_greater_eq_self_iff
thf(fact_8890_take__bit__int__less__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ).

% take_bit_int_less_self_iff
thf(fact_8891_cis__Arg__unique,axiom,
    ! [Z: complex,X2: real] :
      ( ( ( sgn_sgn_complex @ Z )
        = ( cis @ X2 ) )
     => ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X2 )
       => ( ( ord_less_eq_real @ X2 @ pi )
         => ( ( arg @ Z )
            = X2 ) ) ) ) ).

% cis_Arg_unique
thf(fact_8892_ln__root,axiom,
    ! [N2: nat,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ln_ln_real @ ( root @ N2 @ B ) )
          = ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% ln_root
thf(fact_8893_log__root,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( log @ B @ ( root @ N2 @ A ) )
          = ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% log_root
thf(fact_8894_log__base__root,axiom,
    ! [N2: nat,B: real,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( log @ ( root @ N2 @ B ) @ X2 )
          = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ X2 ) ) ) ) ) ).

% log_base_root
thf(fact_8895_take__bit__int__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
        = K )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_int_eq_self_iff
thf(fact_8896_take__bit__int__eq__self,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( bit_se2923211474154528505it_int @ N2 @ K )
          = K ) ) ) ).

% take_bit_int_eq_self
thf(fact_8897_take__bit__numeral__minus__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_minus_bit0
thf(fact_8898_take__bit__incr__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
       != ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) )
     => ( ( bit_se2923211474154528505it_int @ N2 @ ( plus_plus_int @ K @ one_one_int ) )
        = ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ) ).

% take_bit_incr_eq
thf(fact_8899_Arg__correct,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( ( sgn_sgn_complex @ Z )
          = ( cis @ ( arg @ Z ) ) )
        & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
        & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ) ).

% Arg_correct
thf(fact_8900_root__powr__inverse,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( root @ N2 @ X2 )
          = ( powr_real @ X2 @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ) ).

% root_powr_inverse
thf(fact_8901_take__bit__int__less__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% take_bit_int_less_eq
thf(fact_8902_take__bit__int__greater__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).

% take_bit_int_greater_eq
thf(fact_8903_signed__take__bit__eq__take__bit__shift,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( plus_plus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_eq_take_bit_shift
thf(fact_8904_and__int__rec,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
              & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_int_rec
thf(fact_8905_take__bit__eq__mask__iff__exp__dvd,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
        = ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).

% take_bit_eq_mask_iff_exp_dvd
thf(fact_8906_take__bit__minus__small__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ K ) )
          = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ) ) ).

% take_bit_minus_small_eq
thf(fact_8907_arctan__inverse,axiom,
    ! [X2: real] :
      ( ( X2 != zero_zero_real )
     => ( ( arctan @ ( divide_divide_real @ one_one_real @ X2 ) )
        = ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X2 ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X2 ) ) ) ) ).

% arctan_inverse
thf(fact_8908_take__bit__numeral__minus__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_bit1
thf(fact_8909_and__int_Oelims,axiom,
    ! [X2: int,Xa2: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ X2 @ Xa2 )
        = Y )
     => ( ( ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
        & ( ~ ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.elims
thf(fact_8910_and__int_Osimps,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L: int] :
          ( if_int
          @ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
          @ ( uminus_uminus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) )
          @ ( plus_plus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
            @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_int.simps
thf(fact_8911_take__bit__Suc__minus__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_bit1
thf(fact_8912_pred__numeral__inc,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( inc @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% pred_numeral_inc
thf(fact_8913_and__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = zero_zero_nat ) ).

% and_nat_numerals(1)
thf(fact_8914_and__nat__numerals_I3_J,axiom,
    ! [X2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% and_nat_numerals(3)
thf(fact_8915_and__nat__numerals_I4_J,axiom,
    ! [X2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% and_nat_numerals(4)
thf(fact_8916_and__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = one_one_nat ) ).

% and_nat_numerals(2)
thf(fact_8917_and__Suc__0__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se727722235901077358nd_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_Suc_0_eq
thf(fact_8918_Suc__0__and__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Suc_0_and_eq
thf(fact_8919_num__induct,axiom,
    ! [P: num > $o,X2: num] :
      ( ( P @ one )
     => ( ! [X3: num] :
            ( ( P @ X3 )
           => ( P @ ( inc @ X3 ) ) )
       => ( P @ X2 ) ) ) ).

% num_induct
thf(fact_8920_add__inc,axiom,
    ! [X2: num,Y: num] :
      ( ( plus_plus_num @ X2 @ ( inc @ Y ) )
      = ( inc @ ( plus_plus_num @ X2 @ Y ) ) ) ).

% add_inc
thf(fact_8921_inc_Osimps_I1_J,axiom,
    ( ( inc @ one )
    = ( bit0 @ one ) ) ).

% inc.simps(1)
thf(fact_8922_inc_Osimps_I2_J,axiom,
    ! [X2: num] :
      ( ( inc @ ( bit0 @ X2 ) )
      = ( bit1 @ X2 ) ) ).

% inc.simps(2)
thf(fact_8923_inc_Osimps_I3_J,axiom,
    ! [X2: num] :
      ( ( inc @ ( bit1 @ X2 ) )
      = ( bit0 @ ( inc @ X2 ) ) ) ).

% inc.simps(3)
thf(fact_8924_add__One,axiom,
    ! [X2: num] :
      ( ( plus_plus_num @ X2 @ one )
      = ( inc @ X2 ) ) ).

% add_One
thf(fact_8925_inc__BitM__eq,axiom,
    ! [N2: num] :
      ( ( inc @ ( bitM @ N2 ) )
      = ( bit0 @ N2 ) ) ).

% inc_BitM_eq
thf(fact_8926_BitM__inc__eq,axiom,
    ! [N2: num] :
      ( ( bitM @ ( inc @ N2 ) )
      = ( bit1 @ N2 ) ) ).

% BitM_inc_eq
thf(fact_8927_and__nat__def,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% and_nat_def
thf(fact_8928_mult__inc,axiom,
    ! [X2: num,Y: num] :
      ( ( times_times_num @ X2 @ ( inc @ Y ) )
      = ( plus_plus_num @ ( times_times_num @ X2 @ Y ) @ X2 ) ) ).

% mult_inc
thf(fact_8929_atLeastAtMostPlus1__int__conv,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N2 ) )
     => ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N2 ) )
        = ( insert_int @ ( plus_plus_int @ one_one_int @ N2 ) @ ( set_or1266510415728281911st_int @ M @ N2 ) ) ) ) ).

% atLeastAtMostPlus1_int_conv
thf(fact_8930_simp__from__to,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I4: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I4 ) @ bot_bot_set_int @ ( insert_int @ I4 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) ) ) ) ).

% simp_from_to
thf(fact_8931_and__nat__unfold,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N: nat] :
          ( if_nat
          @ ( ( M3 = zero_zero_nat )
            | ( N = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_nat_unfold
thf(fact_8932_and__nat__rec,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_nat_rec
thf(fact_8933_and__int_Opsimps,axiom,
    ! [K: int,L2: int] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L2 ) )
     => ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L2 )
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) ) ) )
        & ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L2 )
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.psimps
thf(fact_8934_and__int_Opelims,axiom,
    ! [X2: int,Xa2: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) )
       => ~ ( ( ( ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                  & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y
                  = ( uminus_uminus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
              & ( ~ ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y
                  = ( plus_plus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
                    @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) ) ) ) ) ).

% and_int.pelims
thf(fact_8935_Arg__def,axiom,
    ( arg
    = ( ^ [Z2: complex] :
          ( if_real @ ( Z2 = zero_zero_complex ) @ zero_zero_real
          @ ( fChoice_real
            @ ^ [A3: real] :
                ( ( ( sgn_sgn_complex @ Z2 )
                  = ( cis @ A3 ) )
                & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A3 )
                & ( ord_less_eq_real @ A3 @ pi ) ) ) ) ) ) ).

% Arg_def
thf(fact_8936_set__encode__insert,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ N2 @ A2 )
       => ( ( nat_set_encode @ ( insert_nat @ N2 @ A2 ) )
          = ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).

% set_encode_insert
thf(fact_8937_atLeastAtMost__insertL,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% atLeastAtMost_insertL
thf(fact_8938_atLeastAtMostSuc__conv,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) )
        = ( insert_nat @ ( suc @ N2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ).

% atLeastAtMostSuc_conv
thf(fact_8939_Icc__eq__insert__lb__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( set_or1269000886237332187st_nat @ M @ N2 )
        = ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ).

% Icc_eq_insert_lb_nat
thf(fact_8940_lessThan__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).

% lessThan_nat_numeral
thf(fact_8941_atMost__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).

% atMost_nat_numeral
thf(fact_8942_atLeast1__atMost__eq__remove0,axiom,
    ! [N2: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N2 ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_atMost_eq_remove0
thf(fact_8943_set__decode__plus__power__2,axiom,
    ! [N2: nat,Z: nat] :
      ( ~ ( member_nat @ N2 @ ( nat_set_decode @ Z ) )
     => ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ Z ) )
        = ( insert_nat @ N2 @ ( nat_set_decode @ Z ) ) ) ) ).

% set_decode_plus_power_2
thf(fact_8944_and__int_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [K3: int,L4: int] :
            ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K3 @ L4 ) )
           => ( ( ~ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ L4 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( P @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
             => ( P @ K3 @ L4 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% and_int.pinduct
thf(fact_8945_upto_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [I3: int,J2: int] :
            ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I3 @ J2 ) )
           => ( ( ( ord_less_eq_int @ I3 @ J2 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) @ J2 ) )
             => ( P @ I3 @ J2 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% upto.pinduct
thf(fact_8946_signed__take__bit__eq__take__bit__minus,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K2 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N ) ) ) ) ) ) ).

% signed_take_bit_eq_take_bit_minus
thf(fact_8947_or__int__unfold,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L: int] :
          ( if_int
          @ ( ( K2
              = ( uminus_uminus_int @ one_one_int ) )
            | ( L
              = ( uminus_uminus_int @ one_one_int ) ) )
          @ ( uminus_uminus_int @ one_one_int )
          @ ( if_int @ ( K2 = zero_zero_int ) @ L @ ( if_int @ ( L = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% or_int_unfold
thf(fact_8948_or__nonnegative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).

% or_nonnegative_int_iff
thf(fact_8949_or__negative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        | ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).

% or_negative_int_iff
thf(fact_8950_signed__take__bit__nonnegative__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% signed_take_bit_nonnegative_iff
thf(fact_8951_signed__take__bit__negative__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ zero_zero_int )
      = ( bit_se1146084159140164899it_int @ K @ N2 ) ) ).

% signed_take_bit_negative_iff
thf(fact_8952_bit__minus__numeral__Bit0__Suc__iff,axiom,
    ! [W: num,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N2 ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N2 ) ) ).

% bit_minus_numeral_Bit0_Suc_iff
thf(fact_8953_bit__minus__numeral__Bit1__Suc__iff,axiom,
    ! [W: num,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N2 ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N2 ) ) ) ).

% bit_minus_numeral_Bit1_Suc_iff
thf(fact_8954_or__minus__numerals_I6_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) ) ).

% or_minus_numerals(6)
thf(fact_8955_or__minus__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) ) ).

% or_minus_numerals(2)
thf(fact_8956_bit__minus__numeral__int_I1_J,axiom,
    ! [W: num,N2: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N2 ) ) ) ).

% bit_minus_numeral_int(1)
thf(fact_8957_bit__minus__numeral__int_I2_J,axiom,
    ! [W: num,N2: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N2 ) ) ) ) ).

% bit_minus_numeral_int(2)
thf(fact_8958_bit__or__int__iff,axiom,
    ! [K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) @ N2 )
      = ( ( bit_se1146084159140164899it_int @ K @ N2 )
        | ( bit_se1146084159140164899it_int @ L2 @ N2 ) ) ) ).

% bit_or_int_iff
thf(fact_8959_bit__and__int__iff,axiom,
    ! [K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ N2 )
      = ( ( bit_se1146084159140164899it_int @ K @ N2 )
        & ( bit_se1146084159140164899it_int @ L2 @ N2 ) ) ) ).

% bit_and_int_iff
thf(fact_8960_or__greater__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L2 )
     => ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L2 ) ) ) ).

% or_greater_eq
thf(fact_8961_OR__lower,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X2 @ Y ) ) ) ) ).

% OR_lower
thf(fact_8962_plus__and__or,axiom,
    ! [X2: int,Y: int] :
      ( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X2 @ Y ) @ ( bit_se1409905431419307370or_int @ X2 @ Y ) )
      = ( plus_plus_int @ X2 @ Y ) ) ).

% plus_and_or
thf(fact_8963_pow_Osimps_I1_J,axiom,
    ! [X2: num] :
      ( ( pow @ X2 @ one )
      = X2 ) ).

% pow.simps(1)
thf(fact_8964_bit__not__int__iff_H,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N2 )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% bit_not_int_iff'
thf(fact_8965_bit__imp__take__bit__positive,axiom,
    ! [N2: nat,M: nat,K: int] :
      ( ( ord_less_nat @ N2 @ M )
     => ( ( bit_se1146084159140164899it_int @ K @ N2 )
       => ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).

% bit_imp_take_bit_positive
thf(fact_8966_bit__concat__bit__iff,axiom,
    ! [M: nat,K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L2 ) @ N2 )
      = ( ( ( ord_less_nat @ N2 @ M )
          & ( bit_se1146084159140164899it_int @ K @ N2 ) )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( bit_se1146084159140164899it_int @ L2 @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% bit_concat_bit_iff
thf(fact_8967_signed__take__bit__eq__concat__bit,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N: nat,K2: int] : ( bit_concat_bit @ N @ K2 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N ) ) ) ) ) ) ).

% signed_take_bit_eq_concat_bit
thf(fact_8968_int__bit__bound,axiom,
    ! [K: int] :
      ~ ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ N3 @ M2 )
             => ( ( bit_se1146084159140164899it_int @ K @ M2 )
                = ( bit_se1146084159140164899it_int @ K @ N3 ) ) )
         => ~ ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N3 @ one_one_nat ) )
                = ( ~ ( bit_se1146084159140164899it_int @ K @ N3 ) ) ) ) ) ).

% int_bit_bound
thf(fact_8969_bit__int__def,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [K2: int,N: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% bit_int_def
thf(fact_8970_OR__upper,axiom,
    ! [X2: int,N2: nat,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_int @ X2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
         => ( ord_less_int @ ( bit_se1409905431419307370or_int @ X2 @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% OR_upper
thf(fact_8971_or__int__rec,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
              | ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_int_rec
thf(fact_8972_set__bit__eq,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N: nat,K2: int] :
          ( plus_plus_int @ K2
          @ ( times_times_int
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( bit_se1146084159140164899it_int @ K2 @ N ) )
            @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% set_bit_eq
thf(fact_8973_unset__bit__eq,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N: nat,K2: int] : ( minus_minus_int @ K2 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% unset_bit_eq
thf(fact_8974_take__bit__Suc__from__most,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ K )
      = ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).

% take_bit_Suc_from_most
thf(fact_8975_or__minus__numerals_I1_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(1)
thf(fact_8976_or__minus__numerals_I5_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(5)
thf(fact_8977_cis__multiple__2pi,axiom,
    ! [N2: real] :
      ( ( member_real @ N2 @ ring_1_Ints_real )
     => ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N2 ) )
        = one_one_complex ) ) ).

% cis_multiple_2pi
thf(fact_8978_xor__Suc__0__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se6528837805403552850or_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( minus_minus_nat @ ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% xor_Suc_0_eq
thf(fact_8979_or__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_nat_numerals(2)
thf(fact_8980_or__nat__numerals_I4_J,axiom,
    ! [X2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% or_nat_numerals(4)
thf(fact_8981_or__nat__numerals_I3_J,axiom,
    ! [X2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% or_nat_numerals(3)
thf(fact_8982_or__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_nat_numerals(1)
thf(fact_8983_xor__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% xor_nat_numerals(1)
thf(fact_8984_xor__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y ) ) ) ).

% xor_nat_numerals(2)
thf(fact_8985_xor__nat__numerals_I3_J,axiom,
    ! [X2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% xor_nat_numerals(3)
thf(fact_8986_xor__nat__numerals_I4_J,axiom,
    ! [X2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit0 @ X2 ) ) ) ).

% xor_nat_numerals(4)
thf(fact_8987_or__minus__numerals_I8_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N2 ) ) ) ) ) ).

% or_minus_numerals(8)
thf(fact_8988_or__minus__numerals_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N2 ) ) ) ) ) ).

% or_minus_numerals(4)
thf(fact_8989_or__minus__numerals_I7_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(7)
thf(fact_8990_or__minus__numerals_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(3)
thf(fact_8991_or__not__num__neg_Osimps_I1_J,axiom,
    ( ( bit_or_not_num_neg @ one @ one )
    = one ) ).

% or_not_num_neg.simps(1)
thf(fact_8992_not__bit__Suc__0__Suc,axiom,
    ! [N2: nat] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N2 ) ) ).

% not_bit_Suc_0_Suc
thf(fact_8993_bit__Suc__0__iff,axiom,
    ! [N2: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( N2 = zero_zero_nat ) ) ).

% bit_Suc_0_iff
thf(fact_8994_or__not__num__neg_Osimps_I4_J,axiom,
    ! [N2: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N2 ) @ one )
      = ( bit0 @ one ) ) ).

% or_not_num_neg.simps(4)
thf(fact_8995_or__not__num__neg_Osimps_I6_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N2 ) @ ( bit1 @ M ) )
      = ( bit0 @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(6)
thf(fact_8996_or__not__num__neg_Osimps_I7_J,axiom,
    ! [N2: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N2 ) @ one )
      = one ) ).

% or_not_num_neg.simps(7)
thf(fact_8997_or__not__num__neg_Osimps_I3_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(3)
thf(fact_8998_or__not__num__neg_Osimps_I5_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N2 ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(5)
thf(fact_8999_not__bit__Suc__0__numeral,axiom,
    ! [N2: num] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N2 ) ) ).

% not_bit_Suc_0_numeral
thf(fact_9000_or__not__num__neg_Osimps_I9_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N2 ) @ ( bit1 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(9)
thf(fact_9001_or__nat__def,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% or_nat_def
thf(fact_9002_or__not__num__neg_Osimps_I2_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(2)
thf(fact_9003_or__not__num__neg_Osimps_I8_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N2 ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(8)
thf(fact_9004_bit__nat__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N2 )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% bit_nat_iff
thf(fact_9005_sin__times__pi__eq__0,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ ( times_times_real @ X2 @ pi ) )
        = zero_zero_real )
      = ( member_real @ X2 @ ring_1_Ints_real ) ) ).

% sin_times_pi_eq_0
thf(fact_9006_or__not__num__neg_Oelims,axiom,
    ! [X2: num,Xa2: num,Y: num] :
      ( ( ( bit_or_not_num_neg @ X2 @ Xa2 )
        = Y )
     => ( ( ( X2 = one )
         => ( ( Xa2 = one )
           => ( Y != one ) ) )
       => ( ( ( X2 = one )
           => ! [M4: num] :
                ( ( Xa2
                  = ( bit0 @ M4 ) )
               => ( Y
                 != ( bit1 @ M4 ) ) ) )
         => ( ( ( X2 = one )
             => ! [M4: num] :
                  ( ( Xa2
                    = ( bit1 @ M4 ) )
                 => ( Y
                   != ( bit1 @ M4 ) ) ) )
           => ( ( ? [N3: num] :
                    ( X2
                    = ( bit0 @ N3 ) )
               => ( ( Xa2 = one )
                 => ( Y
                   != ( bit0 @ one ) ) ) )
             => ( ! [N3: num] :
                    ( ( X2
                      = ( bit0 @ N3 ) )
                   => ! [M4: num] :
                        ( ( Xa2
                          = ( bit0 @ M4 ) )
                       => ( Y
                         != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
               => ( ! [N3: num] :
                      ( ( X2
                        = ( bit0 @ N3 ) )
                     => ! [M4: num] :
                          ( ( Xa2
                            = ( bit1 @ M4 ) )
                         => ( Y
                           != ( bit0 @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
                 => ( ( ? [N3: num] :
                          ( X2
                          = ( bit1 @ N3 ) )
                     => ( ( Xa2 = one )
                       => ( Y != one ) ) )
                   => ( ! [N3: num] :
                          ( ( X2
                            = ( bit1 @ N3 ) )
                         => ! [M4: num] :
                              ( ( Xa2
                                = ( bit0 @ M4 ) )
                             => ( Y
                               != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
                     => ~ ! [N3: num] :
                            ( ( X2
                              = ( bit1 @ N3 ) )
                           => ! [M4: num] :
                                ( ( Xa2
                                  = ( bit1 @ M4 ) )
                               => ( Y
                                 != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.elims
thf(fact_9007_bit__nat__def,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [M3: nat,N: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% bit_nat_def
thf(fact_9008_sin__integer__2pi,axiom,
    ! [N2: real] :
      ( ( member_real @ N2 @ ring_1_Ints_real )
     => ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N2 ) )
        = zero_zero_real ) ) ).

% sin_integer_2pi
thf(fact_9009_cos__integer__2pi,axiom,
    ! [N2: real] :
      ( ( member_real @ N2 @ ring_1_Ints_real )
     => ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N2 ) )
        = one_one_real ) ) ).

% cos_integer_2pi
thf(fact_9010_Suc__0__or__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% Suc_0_or_eq
thf(fact_9011_or__Suc__0__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se1412395901928357646or_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% or_Suc_0_eq
thf(fact_9012_or__nat__rec,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              | ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_nat_rec
thf(fact_9013_xor__nat__unfold,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N @ ( if_nat @ ( N = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% xor_nat_unfold
thf(fact_9014_xor__nat__rec,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
             != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_nat_rec
thf(fact_9015_or__nat__unfold,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N @ ( if_nat @ ( N = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% or_nat_unfold
thf(fact_9016_Suc__0__xor__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( minus_minus_nat @ ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% Suc_0_xor_eq
thf(fact_9017_horner__sum__of__bool__2__less,axiom,
    ! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).

% horner_sum_of_bool_2_less
thf(fact_9018_push__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% push_bit_nonnegative_int_iff
thf(fact_9019_push__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se545348938243370406it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% push_bit_negative_int_iff
thf(fact_9020_concat__bit__of__zero__1,axiom,
    ! [N2: nat,L2: int] :
      ( ( bit_concat_bit @ N2 @ zero_zero_int @ L2 )
      = ( bit_se545348938243370406it_int @ N2 @ L2 ) ) ).

% concat_bit_of_zero_1
thf(fact_9021_xor__nonnegative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        = ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).

% xor_nonnegative_int_iff
thf(fact_9022_xor__negative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
       != ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).

% xor_negative_int_iff
thf(fact_9023_push__bit__of__Suc__0,axiom,
    ! [N2: nat] :
      ( ( bit_se547839408752420682it_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% push_bit_of_Suc_0
thf(fact_9024_bit__xor__int__iff,axiom,
    ! [K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) @ N2 )
      = ( ( bit_se1146084159140164899it_int @ K @ N2 )
       != ( bit_se1146084159140164899it_int @ L2 @ N2 ) ) ) ).

% bit_xor_int_iff
thf(fact_9025_flip__bit__int__def,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N: nat,K2: int] : ( bit_se6526347334894502574or_int @ K2 @ ( bit_se545348938243370406it_int @ N @ one_one_int ) ) ) ) ).

% flip_bit_int_def
thf(fact_9026_push__bit__nat__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se547839408752420682it_nat @ N2 @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se545348938243370406it_int @ N2 @ K ) ) ) ).

% push_bit_nat_eq
thf(fact_9027_XOR__lower,axiom,
    ! [X2: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X2 @ Y ) ) ) ) ).

% XOR_lower
thf(fact_9028_flip__bit__nat__def,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [M3: nat,N: nat] : ( bit_se6528837805403552850or_nat @ N @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% flip_bit_nat_def
thf(fact_9029_set__bit__nat__def,axiom,
    ( bit_se7882103937844011126it_nat
    = ( ^ [M3: nat,N: nat] : ( bit_se1412395901928357646or_nat @ N @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% set_bit_nat_def
thf(fact_9030_bit__push__bit__iff__int,axiom,
    ! [M: nat,K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N2 )
      = ( ( ord_less_eq_nat @ M @ N2 )
        & ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).

% bit_push_bit_iff_int
thf(fact_9031_xor__nat__def,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% xor_nat_def
thf(fact_9032_bit__push__bit__iff__nat,axiom,
    ! [M: nat,Q2: nat,N2: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q2 ) @ N2 )
      = ( ( ord_less_eq_nat @ M @ N2 )
        & ( bit_se1148574629649215175it_nat @ Q2 @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).

% bit_push_bit_iff_nat
thf(fact_9033_concat__bit__eq,axiom,
    ( bit_concat_bit
    = ( ^ [N: nat,K2: int,L: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ ( bit_se545348938243370406it_int @ N @ L ) ) ) ) ).

% concat_bit_eq
thf(fact_9034_concat__bit__def,axiom,
    ( bit_concat_bit
    = ( ^ [N: nat,K2: int,L: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ ( bit_se545348938243370406it_int @ N @ L ) ) ) ) ).

% concat_bit_def
thf(fact_9035_set__bit__int__def,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N: nat,K2: int] : ( bit_se1409905431419307370or_int @ K2 @ ( bit_se545348938243370406it_int @ N @ one_one_int ) ) ) ) ).

% set_bit_int_def
thf(fact_9036_push__bit__int__def,axiom,
    ( bit_se545348938243370406it_int
    = ( ^ [N: nat,K2: int] : ( times_times_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% push_bit_int_def
thf(fact_9037_push__bit__nat__def,axiom,
    ( bit_se547839408752420682it_nat
    = ( ^ [N: nat,M3: nat] : ( times_times_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% push_bit_nat_def
thf(fact_9038_push__bit__minus__one,axiom,
    ! [N2: nat] :
      ( ( bit_se545348938243370406it_int @ N2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% push_bit_minus_one
thf(fact_9039_XOR__upper,axiom,
    ! [X2: int,N2: nat,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_int @ X2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
         => ( ord_less_int @ ( bit_se6526347334894502574or_int @ X2 @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% XOR_upper
thf(fact_9040_xor__int__rec,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) )
             != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_int_rec
thf(fact_9041_xor__int__unfold,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L: int] :
          ( if_int
          @ ( K2
            = ( uminus_uminus_int @ one_one_int ) )
          @ ( bit_ri7919022796975470100ot_int @ L )
          @ ( if_int
            @ ( L
              = ( uminus_uminus_int @ one_one_int ) )
            @ ( bit_ri7919022796975470100ot_int @ K2 )
            @ ( if_int @ ( K2 = zero_zero_int ) @ L @ ( if_int @ ( L = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_int_unfold
thf(fact_9042_Sum__Ico__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or4665077453230672383an_nat @ M @ N2 ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N2 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Ico_nat
thf(fact_9043_Cauchy__iff2,axiom,
    ( topolo4055970368930404560y_real
    = ( ^ [X5: nat > real] :
        ! [J3: nat] :
        ? [M8: nat] :
        ! [M3: nat] :
          ( ( ord_less_eq_nat @ M8 @ M3 )
         => ! [N: nat] :
              ( ( ord_less_eq_nat @ M8 @ N )
             => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X5 @ M3 ) @ ( X5 @ N ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).

% Cauchy_iff2
thf(fact_9044_sum__power2,axiom,
    ! [K: nat] :
      ( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
      = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).

% sum_power2
thf(fact_9045_finite__atLeastLessThan,axiom,
    ! [L2: nat,U: nat] : ( finite_finite_nat @ ( set_or4665077453230672383an_nat @ L2 @ U ) ) ).

% finite_atLeastLessThan
thf(fact_9046_not__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% not_nonnegative_int_iff
thf(fact_9047_not__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% not_negative_int_iff
thf(fact_9048_or__minus__minus__numerals,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int ) ) ) ) ).

% or_minus_minus_numerals
thf(fact_9049_and__minus__minus__numerals,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int ) ) ) ) ).

% and_minus_minus_numerals
thf(fact_9050_bit__not__int__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N2 )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% bit_not_int_iff
thf(fact_9051_all__nat__less__eq,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_nat @ M3 @ N2 )
           => ( P @ M3 ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
           => ( P @ X ) ) ) ) ).

% all_nat_less_eq
thf(fact_9052_ex__nat__less__eq,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_nat @ M3 @ N2 )
            & ( P @ M3 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
            & ( P @ X ) ) ) ) ).

% ex_nat_less_eq
thf(fact_9053_or__int__def,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ ( bit_ri7919022796975470100ot_int @ L ) ) ) ) ) ).

% or_int_def
thf(fact_9054_not__int__def,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K2: int] : ( minus_minus_int @ ( uminus_uminus_int @ K2 ) @ one_one_int ) ) ) ).

% not_int_def
thf(fact_9055_and__not__numerals_I1_J,axiom,
    ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = zero_zero_int ) ).

% and_not_numerals(1)
thf(fact_9056_or__not__numerals_I1_J,axiom,
    ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(1)
thf(fact_9057_unset__bit__int__def,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N: nat,K2: int] : ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N @ one_one_int ) ) ) ) ) ).

% unset_bit_int_def
thf(fact_9058_xor__int__def,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ L ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ L ) ) ) ) ).

% xor_int_def
thf(fact_9059_subset__eq__atLeast0__lessThan__finite,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_lessThan_finite
thf(fact_9060_not__int__div__2,axiom,
    ! [K: int] :
      ( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% not_int_div_2
thf(fact_9061_even__not__iff__int,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_not_iff_int
thf(fact_9062_and__not__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = one_one_int ) ).

% and_not_numerals(2)
thf(fact_9063_and__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(4)
thf(fact_9064_or__not__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) ) ).

% or_not_numerals(2)
thf(fact_9065_or__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).

% or_not_numerals(4)
thf(fact_9066_bit__minus__int__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N2 )
      = ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N2 ) ) ).

% bit_minus_int_iff
thf(fact_9067_numeral__or__not__num__eq,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N2 ) )
      = ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% numeral_or_not_num_eq
thf(fact_9068_int__numeral__not__or__num__neg,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ) ).

% int_numeral_not_or_num_neg
thf(fact_9069_int__numeral__or__not__num__neg,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N2 ) ) ) ) ).

% int_numeral_or_not_num_neg
thf(fact_9070_atLeastLessThanSuc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N2 ) )
          = ( insert_nat @ N2 @ ( set_or4665077453230672383an_nat @ M @ N2 ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N2 ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThanSuc
thf(fact_9071_and__not__numerals_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% and_not_numerals(5)
thf(fact_9072_and__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(7)
thf(fact_9073_or__not__numerals_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) ) ).

% or_not_numerals(3)
thf(fact_9074_and__not__numerals_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = zero_zero_int ) ).

% and_not_numerals(3)
thf(fact_9075_or__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(7)
thf(fact_9076_atLeastLessThan__nat__numeral,axiom,
    ! [M: nat,K: num] :
      ( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThan_nat_numeral
thf(fact_9077_and__not__numerals_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% and_not_numerals(9)
thf(fact_9078_and__not__numerals_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% and_not_numerals(6)
thf(fact_9079_or__not__numerals_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% or_not_numerals(6)
thf(fact_9080_or__not__numerals_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% or_not_numerals(5)
thf(fact_9081_atLeast1__lessThan__eq__remove0,axiom,
    ! [N2: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N2 ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_lessThan_eq_remove0
thf(fact_9082_and__not__numerals_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% and_not_numerals(8)
thf(fact_9083_or__not__numerals_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% or_not_numerals(9)
thf(fact_9084_or__not__numerals_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% or_not_numerals(8)
thf(fact_9085_not__int__rec,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K2: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% not_int_rec
thf(fact_9086_Chebyshev__sum__upper__nat,axiom,
    ! [N2: nat,A: nat > nat,B: nat > nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_eq_nat @ I3 @ J2 )
         => ( ( ord_less_nat @ J2 @ N2 )
           => ( ord_less_eq_nat @ ( A @ I3 ) @ ( A @ J2 ) ) ) )
     => ( ! [I3: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ N2 )
             => ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I3 ) ) ) )
       => ( ord_less_eq_nat
          @ ( times_times_nat @ N2
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( B @ I4 ) )
              @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) )
          @ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ) ) ) ).

% Chebyshev_sum_upper_nat
thf(fact_9087_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( set_or4662586982721622107an_int @ L2 @ ( plus_plus_int @ U @ one_one_int ) )
      = ( set_or1266510415728281911st_int @ L2 @ U ) ) ).

% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9088_valid__eq,axiom,
    vEBT_VEBT_valid = vEBT_invar_vebt ).

% valid_eq
thf(fact_9089_valid__eq1,axiom,
    ! [T: vEBT_VEBT,D2: nat] :
      ( ( vEBT_invar_vebt @ T @ D2 )
     => ( vEBT_VEBT_valid @ T @ D2 ) ) ).

% valid_eq1
thf(fact_9090_valid__eq2,axiom,
    ! [T: vEBT_VEBT,D2: nat] :
      ( ( vEBT_VEBT_valid @ T @ D2 )
     => ( vEBT_invar_vebt @ T @ D2 ) ) ).

% valid_eq2
thf(fact_9091_Code__Target__Int_Opositive__def,axiom,
    code_Target_positive = numeral_numeral_int ).

% Code_Target_Int.positive_def
thf(fact_9092_divmod__step__integer__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_integer_def
thf(fact_9093_minus__integer__code_I2_J,axiom,
    ! [L2: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ L2 )
      = ( uminus1351360451143612070nteger @ L2 ) ) ).

% minus_integer_code(2)
thf(fact_9094_minus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( minus_8373710615458151222nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% minus_integer_code(1)
thf(fact_9095_times__integer__code_I2_J,axiom,
    ! [L2: code_integer] :
      ( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L2 )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(2)
thf(fact_9096_times__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(1)
thf(fact_9097_plus__integer__code_I2_J,axiom,
    ! [L2: code_integer] :
      ( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L2 )
      = L2 ) ).

% plus_integer_code(2)
thf(fact_9098_plus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% plus_integer_code(1)
thf(fact_9099_divmod__integer_H__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ) ).

% divmod_integer'_def
thf(fact_9100_sgn__integer__code,axiom,
    ( sgn_sgn_Code_integer
    = ( ^ [K2: code_integer] : ( if_Code_integer @ ( K2 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).

% sgn_integer_code
thf(fact_9101_integer__of__int__code,axiom,
    ( code_integer_of_int
    = ( ^ [K2: int] :
          ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K2 ) ) )
          @ ( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% integer_of_int_code
thf(fact_9102_Code__Numeral_Opositive__def,axiom,
    code_positive = numera6620942414471956472nteger ).

% Code_Numeral.positive_def
thf(fact_9103_modulo__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( modulo364778990260209775nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( modulo_modulo_int @ Xa2 @ X2 ) ) ) ).

% modulo_integer.abs_eq
thf(fact_9104_less__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( ord_le6747313008572928689nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( ord_less_int @ Xa2 @ X2 ) ) ).

% less_integer.abs_eq
thf(fact_9105_less__integer__code_I1_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ).

% less_integer_code(1)
thf(fact_9106_divide__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( divide6298287555418463151nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( divide_divide_int @ Xa2 @ X2 ) ) ) ).

% divide_integer.abs_eq
thf(fact_9107_abs__integer__code,axiom,
    ( abs_abs_Code_integer
    = ( ^ [K2: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ K2 ) @ K2 ) ) ) ).

% abs_integer_code
thf(fact_9108_plus__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( plus_p5714425477246183910nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( plus_plus_int @ Xa2 @ X2 ) ) ) ).

% plus_integer.abs_eq
thf(fact_9109_times__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( times_times_int @ Xa2 @ X2 ) ) ) ).

% times_integer.abs_eq
thf(fact_9110_minus__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( minus_8373710615458151222nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( minus_minus_int @ Xa2 @ X2 ) ) ) ).

% minus_integer.abs_eq
thf(fact_9111_integer__of__num_I3_J,axiom,
    ! [N2: num] :
      ( ( code_integer_of_num @ ( bit1 @ N2 ) )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N2 ) @ ( code_integer_of_num @ N2 ) ) @ one_one_Code_integer ) ) ).

% integer_of_num(3)
thf(fact_9112_bit__cut__integer__def,axiom,
    ( code_bit_cut_integer
    = ( ^ [K2: code_integer] :
          ( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K2 ) ) ) ) ).

% bit_cut_integer_def
thf(fact_9113_divmod__integer__def,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L: code_integer] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ K2 @ L ) @ ( modulo364778990260209775nteger @ K2 @ L ) ) ) ) ).

% divmod_integer_def
thf(fact_9114_integer__of__num__def,axiom,
    code_integer_of_num = numera6620942414471956472nteger ).

% integer_of_num_def
thf(fact_9115_integer__of__num__triv_I1_J,axiom,
    ( ( code_integer_of_num @ one )
    = one_one_Code_integer ) ).

% integer_of_num_triv(1)
thf(fact_9116_integer__of__num_I2_J,axiom,
    ! [N2: num] :
      ( ( code_integer_of_num @ ( bit0 @ N2 ) )
      = ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N2 ) @ ( code_integer_of_num @ N2 ) ) ) ).

% integer_of_num(2)
thf(fact_9117_integer__of__num__triv_I2_J,axiom,
    ( ( code_integer_of_num @ ( bit0 @ one ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% integer_of_num_triv(2)
thf(fact_9118_bit__cut__integer__code,axiom,
    ( code_bit_cut_integer
    = ( ^ [K2: code_integer] :
          ( if_Pro5737122678794959658eger_o @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
          @ ( produc9125791028180074456eger_o
            @ ^ [R5: code_integer,S6: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S6 ) ) @ ( S6 = one_one_Code_integer ) )
            @ ( code_divmod_abs @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_cut_integer_code
thf(fact_9119_csqrt_Osimps_I1_J,axiom,
    ! [Z: complex] :
      ( ( re @ ( csqrt @ Z ) )
      = ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% csqrt.simps(1)
thf(fact_9120_card__Collect__less__nat,axiom,
    ! [N2: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N2 ) ) )
      = N2 ) ).

% card_Collect_less_nat
thf(fact_9121_card__atLeastLessThan,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or4665077453230672383an_nat @ L2 @ U ) )
      = ( minus_minus_nat @ U @ L2 ) ) ).

% card_atLeastLessThan
thf(fact_9122_card__Collect__le__nat,axiom,
    ! [N2: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I4: nat] : ( ord_less_eq_nat @ I4 @ N2 ) ) )
      = ( suc @ N2 ) ) ).

% card_Collect_le_nat
thf(fact_9123_card__atLeastAtMost,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or1269000886237332187st_nat @ L2 @ U ) )
      = ( minus_minus_nat @ ( suc @ U ) @ L2 ) ) ).

% card_atLeastAtMost
thf(fact_9124_complex__Re__numeral,axiom,
    ! [V: num] :
      ( ( re @ ( numera6690914467698888265omplex @ V ) )
      = ( numeral_numeral_real @ V ) ) ).

% complex_Re_numeral
thf(fact_9125_card__atLeastLessThan__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or4662586982721622107an_int @ L2 @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L2 ) ) ) ).

% card_atLeastLessThan_int
thf(fact_9126_Re__divide__of__nat,axiom,
    ! [Z: complex,N2: nat] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N2 ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% Re_divide_of_nat
thf(fact_9127_Re__divide__of__real,axiom,
    ! [Z: complex,R: real] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( real_V4546457046886955230omplex @ R ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ R ) ) ).

% Re_divide_of_real
thf(fact_9128_Re__sgn,axiom,
    ! [Z: complex] :
      ( ( re @ ( sgn_sgn_complex @ Z ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% Re_sgn
thf(fact_9129_card__atLeastAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or1266510415728281911st_int @ L2 @ U ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L2 ) @ one_one_int ) ) ) ).

% card_atLeastAtMost_int
thf(fact_9130_Re__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Re_divide_numeral
thf(fact_9131_complex__Re__le__cmod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( re @ X2 ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% complex_Re_le_cmod
thf(fact_9132_plus__complex_Osimps_I1_J,axiom,
    ! [X2: complex,Y: complex] :
      ( ( re @ ( plus_plus_complex @ X2 @ Y ) )
      = ( plus_plus_real @ ( re @ X2 ) @ ( re @ Y ) ) ) ).

% plus_complex.simps(1)
thf(fact_9133_scaleR__complex_Osimps_I1_J,axiom,
    ! [R: real,X2: complex] :
      ( ( re @ ( real_V2046097035970521341omplex @ R @ X2 ) )
      = ( times_times_real @ R @ ( re @ X2 ) ) ) ).

% scaleR_complex.simps(1)
thf(fact_9134_minus__complex_Osimps_I1_J,axiom,
    ! [X2: complex,Y: complex] :
      ( ( re @ ( minus_minus_complex @ X2 @ Y ) )
      = ( minus_minus_real @ ( re @ X2 ) @ ( re @ Y ) ) ) ).

% minus_complex.simps(1)
thf(fact_9135_abs__Re__le__cmod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X2 ) ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% abs_Re_le_cmod
thf(fact_9136_Re__csqrt,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) ) ).

% Re_csqrt
thf(fact_9137_card__less__Suc2,axiom,
    ! [M5: set_nat,I: nat] :
      ( ~ ( member_nat @ zero_zero_nat @ M5 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ ( suc @ K2 ) @ M5 )
                & ( ord_less_nat @ K2 @ I ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M5 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc2
thf(fact_9138_card__less__Suc,axiom,
    ! [M5: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M5 )
     => ( ( suc
          @ ( finite_card_nat
            @ ( collect_nat
              @ ^ [K2: nat] :
                  ( ( member_nat @ ( suc @ K2 ) @ M5 )
                  & ( ord_less_nat @ K2 @ I ) ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M5 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc
thf(fact_9139_card__less,axiom,
    ! [M5: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M5 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M5 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) )
       != zero_zero_nat ) ) ).

% card_less
thf(fact_9140_subset__card__intvl__is__intvl,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) )
     => ( A2
        = ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% subset_card_intvl_is_intvl
thf(fact_9141_subset__eq__atLeast0__lessThan__card,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
     => ( ord_less_eq_nat @ ( finite_card_nat @ N4 ) @ N2 ) ) ).

% subset_eq_atLeast0_lessThan_card
thf(fact_9142_card__sum__le__nat__sum,axiom,
    ! [S3: set_nat] :
      ( ord_less_eq_nat
      @ ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S3 ) ) )
      @ ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ S3 ) ) ).

% card_sum_le_nat_sum
thf(fact_9143_card__nth__roots,axiom,
    ! [C: complex,N2: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( finite_card_complex
            @ ( collect_complex
              @ ^ [Z2: complex] :
                  ( ( power_power_complex @ Z2 @ N2 )
                  = C ) ) )
          = N2 ) ) ) ).

% card_nth_roots
thf(fact_9144_card__roots__unity__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( finite_card_complex
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = one_one_complex ) ) )
        = N2 ) ) ).

% card_roots_unity_eq
thf(fact_9145_cmod__plus__Re__le__0__iff,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ zero_zero_real )
      = ( ( re @ Z )
        = ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ).

% cmod_plus_Re_le_0_iff
thf(fact_9146_cos__n__Re__cis__pow__n,axiom,
    ! [N2: nat,A: real] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ A ) )
      = ( re @ ( power_power_complex @ ( cis @ A ) @ N2 ) ) ) ).

% cos_n_Re_cis_pow_n
thf(fact_9147_divmod__abs__def,axiom,
    ( code_divmod_abs
    = ( ^ [K2: code_integer,L: code_integer] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( abs_abs_Code_integer @ K2 ) @ ( abs_abs_Code_integer @ L ) ) @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K2 ) @ ( abs_abs_Code_integer @ L ) ) ) ) ) ).

% divmod_abs_def
thf(fact_9148_divmod__integer__code,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L )
            @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ ( code_divmod_abs @ K2 @ L )
              @ ( produc6916734918728496179nteger
                @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L @ S6 ) ) )
                @ ( code_divmod_abs @ K2 @ L ) ) )
            @ ( if_Pro6119634080678213985nteger @ ( L = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K2 )
              @ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
                @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K2 @ L )
                  @ ( produc6916734918728496179nteger
                    @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L ) @ S6 ) ) )
                    @ ( code_divmod_abs @ K2 @ L ) ) ) ) ) ) ) ) ) ).

% divmod_integer_code
thf(fact_9149_csqrt_Ocode,axiom,
    ( csqrt
    = ( ^ [Z2: complex] :
          ( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          @ ( times_times_real
            @ ( if_real
              @ ( ( im @ Z2 )
                = zero_zero_real )
              @ one_one_real
              @ ( sgn_sgn_real @ ( im @ Z2 ) ) )
            @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% csqrt.code
thf(fact_9150_csqrt_Osimps_I2_J,axiom,
    ! [Z: complex] :
      ( ( im @ ( csqrt @ Z ) )
      = ( times_times_real
        @ ( if_real
          @ ( ( im @ Z )
            = zero_zero_real )
          @ one_one_real
          @ ( sgn_sgn_real @ ( im @ Z ) ) )
        @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt.simps(2)
thf(fact_9151_complex__Im__numeral,axiom,
    ! [V: num] :
      ( ( im @ ( numera6690914467698888265omplex @ V ) )
      = zero_zero_real ) ).

% complex_Im_numeral
thf(fact_9152_Im__i__times,axiom,
    ! [Z: complex] :
      ( ( im @ ( times_times_complex @ imaginary_unit @ Z ) )
      = ( re @ Z ) ) ).

% Im_i_times
thf(fact_9153_Im__divide__of__real,axiom,
    ! [Z: complex,R: real] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( real_V4546457046886955230omplex @ R ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ R ) ) ).

% Im_divide_of_real
thf(fact_9154_Im__sgn,axiom,
    ! [Z: complex] :
      ( ( im @ ( sgn_sgn_complex @ Z ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% Im_sgn
thf(fact_9155_Re__power__real,axiom,
    ! [X2: complex,N2: nat] :
      ( ( ( im @ X2 )
        = zero_zero_real )
     => ( ( re @ ( power_power_complex @ X2 @ N2 ) )
        = ( power_power_real @ ( re @ X2 ) @ N2 ) ) ) ).

% Re_power_real
thf(fact_9156_Re__i__times,axiom,
    ! [Z: complex] :
      ( ( re @ ( times_times_complex @ imaginary_unit @ Z ) )
      = ( uminus_uminus_real @ ( im @ Z ) ) ) ).

% Re_i_times
thf(fact_9157_Im__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Im_divide_numeral
thf(fact_9158_Im__divide__of__nat,axiom,
    ! [Z: complex,N2: nat] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N2 ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% Im_divide_of_nat
thf(fact_9159_csqrt__of__real__nonneg,axiom,
    ! [X2: complex] :
      ( ( ( im @ X2 )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( re @ X2 ) )
       => ( ( csqrt @ X2 )
          = ( real_V4546457046886955230omplex @ ( sqrt @ ( re @ X2 ) ) ) ) ) ) ).

% csqrt_of_real_nonneg
thf(fact_9160_csqrt__minus,axiom,
    ! [X2: complex] :
      ( ( ( ord_less_real @ ( im @ X2 ) @ zero_zero_real )
        | ( ( ( im @ X2 )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( re @ X2 ) ) ) )
     => ( ( csqrt @ ( uminus1482373934393186551omplex @ X2 ) )
        = ( times_times_complex @ imaginary_unit @ ( csqrt @ X2 ) ) ) ) ).

% csqrt_minus
thf(fact_9161_csqrt__of__real__nonpos,axiom,
    ! [X2: complex] :
      ( ( ( im @ X2 )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ ( re @ X2 ) @ zero_zero_real )
       => ( ( csqrt @ X2 )
          = ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X2 ) ) ) ) ) ) ) ) ).

% csqrt_of_real_nonpos
thf(fact_9162_plus__complex_Osimps_I2_J,axiom,
    ! [X2: complex,Y: complex] :
      ( ( im @ ( plus_plus_complex @ X2 @ Y ) )
      = ( plus_plus_real @ ( im @ X2 ) @ ( im @ Y ) ) ) ).

% plus_complex.simps(2)
thf(fact_9163_scaleR__complex_Osimps_I2_J,axiom,
    ! [R: real,X2: complex] :
      ( ( im @ ( real_V2046097035970521341omplex @ R @ X2 ) )
      = ( times_times_real @ R @ ( im @ X2 ) ) ) ).

% scaleR_complex.simps(2)
thf(fact_9164_minus__complex_Osimps_I2_J,axiom,
    ! [X2: complex,Y: complex] :
      ( ( im @ ( minus_minus_complex @ X2 @ Y ) )
      = ( minus_minus_real @ ( im @ X2 ) @ ( im @ Y ) ) ) ).

% minus_complex.simps(2)
thf(fact_9165_abs__Im__le__cmod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X2 ) ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% abs_Im_le_cmod
thf(fact_9166_times__complex_Osimps_I2_J,axiom,
    ! [X2: complex,Y: complex] :
      ( ( im @ ( times_times_complex @ X2 @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( re @ X2 ) @ ( im @ Y ) ) @ ( times_times_real @ ( im @ X2 ) @ ( re @ Y ) ) ) ) ).

% times_complex.simps(2)
thf(fact_9167_cmod__Im__le__iff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( re @ X2 )
        = ( re @ Y ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X2 ) ) @ ( abs_abs_real @ ( im @ Y ) ) ) ) ) ).

% cmod_Im_le_iff
thf(fact_9168_cmod__Re__le__iff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( ( im @ X2 )
        = ( im @ Y ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X2 ) ) @ ( abs_abs_real @ ( re @ Y ) ) ) ) ) ).

% cmod_Re_le_iff
thf(fact_9169_times__complex_Osimps_I1_J,axiom,
    ! [X2: complex,Y: complex] :
      ( ( re @ ( times_times_complex @ X2 @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( re @ X2 ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X2 ) @ ( im @ Y ) ) ) ) ).

% times_complex.simps(1)
thf(fact_9170_plus__complex_Ocode,axiom,
    ( plus_plus_complex
    = ( ^ [X: complex,Y2: complex] : ( complex2 @ ( plus_plus_real @ ( re @ X ) @ ( re @ Y2 ) ) @ ( plus_plus_real @ ( im @ X ) @ ( im @ Y2 ) ) ) ) ) ).

% plus_complex.code
thf(fact_9171_scaleR__complex_Ocode,axiom,
    ( real_V2046097035970521341omplex
    = ( ^ [R5: real,X: complex] : ( complex2 @ ( times_times_real @ R5 @ ( re @ X ) ) @ ( times_times_real @ R5 @ ( im @ X ) ) ) ) ) ).

% scaleR_complex.code
thf(fact_9172_minus__complex_Ocode,axiom,
    ( minus_minus_complex
    = ( ^ [X: complex,Y2: complex] : ( complex2 @ ( minus_minus_real @ ( re @ X ) @ ( re @ Y2 ) ) @ ( minus_minus_real @ ( im @ X ) @ ( im @ Y2 ) ) ) ) ) ).

% minus_complex.code
thf(fact_9173_csqrt__principal,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) )
      | ( ( ( re @ ( csqrt @ Z ) )
          = zero_zero_real )
        & ( ord_less_eq_real @ zero_zero_real @ ( im @ ( csqrt @ Z ) ) ) ) ) ).

% csqrt_principal
thf(fact_9174_cmod__le,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) ) ).

% cmod_le
thf(fact_9175_sin__n__Im__cis__pow__n,axiom,
    ! [N2: nat,A: real] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ A ) )
      = ( im @ ( power_power_complex @ ( cis @ A ) @ N2 ) ) ) ).

% sin_n_Im_cis_pow_n
thf(fact_9176_Re__exp,axiom,
    ! [Z: complex] :
      ( ( re @ ( exp_complex @ Z ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( cos_real @ ( im @ Z ) ) ) ) ).

% Re_exp
thf(fact_9177_Im__exp,axiom,
    ! [Z: complex] :
      ( ( im @ ( exp_complex @ Z ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( sin_real @ ( im @ Z ) ) ) ) ).

% Im_exp
thf(fact_9178_complex__eq,axiom,
    ! [A: complex] :
      ( A
      = ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( re @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( im @ A ) ) ) ) ) ).

% complex_eq
thf(fact_9179_times__complex_Ocode,axiom,
    ( times_times_complex
    = ( ^ [X: complex,Y2: complex] : ( complex2 @ ( minus_minus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( im @ Y2 ) ) @ ( times_times_real @ ( im @ X ) @ ( re @ Y2 ) ) ) ) ) ) ).

% times_complex.code
thf(fact_9180_exp__eq__polar,axiom,
    ( exp_complex
    = ( ^ [Z2: complex] : ( times_times_complex @ ( real_V4546457046886955230omplex @ ( exp_real @ ( re @ Z2 ) ) ) @ ( cis @ ( im @ Z2 ) ) ) ) ) ).

% exp_eq_polar
thf(fact_9181_cmod__power2,axiom,
    ! [Z: complex] :
      ( ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cmod_power2
thf(fact_9182_Im__power2,axiom,
    ! [X2: complex] :
      ( ( im @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X2 ) ) @ ( im @ X2 ) ) ) ).

% Im_power2
thf(fact_9183_Re__power2,axiom,
    ! [X2: complex] :
      ( ( re @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Re_power2
thf(fact_9184_complex__eq__0,axiom,
    ! [Z: complex] :
      ( ( Z = zero_zero_complex )
      = ( ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real ) ) ).

% complex_eq_0
thf(fact_9185_norm__complex__def,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z2: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% norm_complex_def
thf(fact_9186_inverse__complex_Osimps_I1_J,axiom,
    ! [X2: complex] :
      ( ( re @ ( invers8013647133539491842omplex @ X2 ) )
      = ( divide_divide_real @ ( re @ X2 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(1)
thf(fact_9187_complex__neq__0,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
      = ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_neq_0
thf(fact_9188_Re__divide,axiom,
    ! [X2: complex,Y: complex] :
      ( ( re @ ( divide1717551699836669952omplex @ X2 @ Y ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X2 ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X2 ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_divide
thf(fact_9189_csqrt__square,axiom,
    ! [B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
        | ( ( ( re @ B )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
     => ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = B ) ) ).

% csqrt_square
thf(fact_9190_csqrt__unique,axiom,
    ! [W: complex,Z: complex] :
      ( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = Z )
     => ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
          | ( ( ( re @ W )
              = zero_zero_real )
            & ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
       => ( ( csqrt @ Z )
          = W ) ) ) ).

% csqrt_unique
thf(fact_9191_inverse__complex_Osimps_I2_J,axiom,
    ! [X2: complex] :
      ( ( im @ ( invers8013647133539491842omplex @ X2 ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X2 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(2)
thf(fact_9192_Im__divide,axiom,
    ! [X2: complex,Y: complex] :
      ( ( im @ ( divide1717551699836669952omplex @ X2 @ Y ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X2 ) @ ( re @ Y ) ) @ ( times_times_real @ ( re @ X2 ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_divide
thf(fact_9193_complex__abs__le__norm,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% complex_abs_le_norm
thf(fact_9194_complex__unit__circle,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real ) ) ).

% complex_unit_circle
thf(fact_9195_inverse__complex_Ocode,axiom,
    ( invers8013647133539491842omplex
    = ( ^ [X: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% inverse_complex.code
thf(fact_9196_Complex__divide,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X: complex,Y2: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% Complex_divide
thf(fact_9197_Im__Reals__divide,axiom,
    ! [R: complex,Z: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ R @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R ) ) @ ( im @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_Reals_divide
thf(fact_9198_Re__divide__Reals,axiom,
    ! [R: complex,Z: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ Z @ R ) )
        = ( divide_divide_real @ ( re @ Z ) @ ( re @ R ) ) ) ) ).

% Re_divide_Reals
thf(fact_9199_imaginary__eq__real__iff,axiom,
    ! [Y: complex,X2: complex] :
      ( ( member_complex @ Y @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X2 @ real_V2521375963428798218omplex )
       => ( ( ( times_times_complex @ imaginary_unit @ Y )
            = X2 )
          = ( ( X2 = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% imaginary_eq_real_iff
thf(fact_9200_real__eq__imaginary__iff,axiom,
    ! [Y: complex,X2: complex] :
      ( ( member_complex @ Y @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X2 @ real_V2521375963428798218omplex )
       => ( ( X2
            = ( times_times_complex @ imaginary_unit @ Y ) )
          = ( ( X2 = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% real_eq_imaginary_iff
thf(fact_9201_Im__divide__Reals,axiom,
    ! [R: complex,Z: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ Z @ R ) )
        = ( divide_divide_real @ ( im @ Z ) @ ( re @ R ) ) ) ) ).

% Im_divide_Reals
thf(fact_9202_Re__Reals__divide,axiom,
    ! [R: complex,Z: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ R @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( re @ R ) @ ( re @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_Reals_divide
thf(fact_9203_complex__diff__cnj,axiom,
    ! [Z: complex] :
      ( ( minus_minus_complex @ Z @ ( cnj @ Z ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z ) ) ) @ imaginary_unit ) ) ).

% complex_diff_cnj
thf(fact_9204_complex__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_mult_cnj
thf(fact_9205_complex__cnj__mult,axiom,
    ! [X2: complex,Y: complex] :
      ( ( cnj @ ( times_times_complex @ X2 @ Y ) )
      = ( times_times_complex @ ( cnj @ X2 ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_mult
thf(fact_9206_complex__cnj__divide,axiom,
    ! [X2: complex,Y: complex] :
      ( ( cnj @ ( divide1717551699836669952omplex @ X2 @ Y ) )
      = ( divide1717551699836669952omplex @ ( cnj @ X2 ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_divide
thf(fact_9207_complex__cnj__add,axiom,
    ! [X2: complex,Y: complex] :
      ( ( cnj @ ( plus_plus_complex @ X2 @ Y ) )
      = ( plus_plus_complex @ ( cnj @ X2 ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_add
thf(fact_9208_complex__cnj__numeral,axiom,
    ! [W: num] :
      ( ( cnj @ ( numera6690914467698888265omplex @ W ) )
      = ( numera6690914467698888265omplex @ W ) ) ).

% complex_cnj_numeral
thf(fact_9209_complex__cnj__diff,axiom,
    ! [X2: complex,Y: complex] :
      ( ( cnj @ ( minus_minus_complex @ X2 @ Y ) )
      = ( minus_minus_complex @ ( cnj @ X2 ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_diff
thf(fact_9210_complex__cnj__neg__numeral,axiom,
    ! [W: num] :
      ( ( cnj @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% complex_cnj_neg_numeral
thf(fact_9211_complex__In__mult__cnj__zero,axiom,
    ! [Z: complex] :
      ( ( im @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = zero_zero_real ) ).

% complex_In_mult_cnj_zero
thf(fact_9212_Re__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Re_complex_div_eq_0
thf(fact_9213_Im__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Im_complex_div_eq_0
thf(fact_9214_complex__mod__sqrt__Re__mult__cnj,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z2: complex] : ( sqrt @ ( re @ ( times_times_complex @ Z2 @ ( cnj @ Z2 ) ) ) ) ) ) ).

% complex_mod_sqrt_Re_mult_cnj
thf(fact_9215_Re__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_lt_0
thf(fact_9216_Re__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_gt_0
thf(fact_9217_Re__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_ge_0
thf(fact_9218_Re__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_le_0
thf(fact_9219_Im__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_lt_0
thf(fact_9220_Im__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_gt_0
thf(fact_9221_Im__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_ge_0
thf(fact_9222_Im__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_le_0
thf(fact_9223_complex__mod__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% complex_mod_mult_cnj
thf(fact_9224_complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
      & ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).

% complex_div_gt_0
thf(fact_9225_complex__norm__square,axiom,
    ! [Z: complex] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ Z @ ( cnj @ Z ) ) ) ).

% complex_norm_square
thf(fact_9226_complex__add__cnj,axiom,
    ! [Z: complex] :
      ( ( plus_plus_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z ) ) ) ) ).

% complex_add_cnj
thf(fact_9227_complex__div__cnj,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A3: complex,B3: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A3 @ ( cnj @ B3 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_div_cnj
thf(fact_9228_cnj__add__mult__eq__Re,axiom,
    ! [Z: complex,W: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ Z @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z ) @ W ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z @ ( cnj @ W ) ) ) ) ) ) ).

% cnj_add_mult_eq_Re
thf(fact_9229_vebt__mint_Opelims,axiom,
    ! [X2: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_mint @ X2 )
        = Y )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ X2 )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( ( A5
                   => ( Y
                      = ( some_nat @ zero_zero_nat ) ) )
                  & ( ~ A5
                   => ( ( B5
                       => ( Y
                          = ( some_nat @ one_one_nat ) ) )
                      & ( ~ B5
                       => ( Y = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A5 @ B5 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y
                      = ( some_nat @ Mi2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_mint.pelims
thf(fact_9230_vebt__maxt_Opelims,axiom,
    ! [X2: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X2 )
        = Y )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ X2 )
       => ( ! [A5: $o,B5: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A5 @ B5 ) )
             => ( ( ( B5
                   => ( Y
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B5
                   => ( ( A5
                       => ( Y
                          = ( some_nat @ zero_zero_nat ) ) )
                      & ( ~ A5
                       => ( Y = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A5 @ B5 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y
                      = ( some_nat @ Ma2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_maxt.pelims
thf(fact_9231_VEBT__internal_OminNull_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Y: $o] :
      ( ( ( vEBT_VEBT_minNull @ X2 )
        = Y )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
       => ( ( ( X2
              = ( vEBT_Leaf @ $false @ $false ) )
           => ( Y
             => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
         => ( ! [Uv2: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ $true @ Uv2 ) )
               => ( ~ Y
                 => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
           => ( ! [Uu2: $o] :
                  ( ( X2
                    = ( vEBT_Leaf @ Uu2 @ $true ) )
                 => ( ~ Y
                   => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) ) )
             => ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
                   => ( Y
                     => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) )
               => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
                     => ( ~ Y
                       => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(1)
thf(fact_9232_VEBT__internal_OminNull_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ X2 )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
       => ( ( ( X2
              = ( vEBT_Leaf @ $false @ $false ) )
           => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(2)
thf(fact_9233_VEBT__internal_OminNull_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ X2 )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
       => ( ! [Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ $true @ Uv2 ) )
             => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) )
         => ( ! [Uu2: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ Uu2 @ $true ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) )
           => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
                 => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(3)
thf(fact_9234_nat_Odisc__eq__case_I2_J,axiom,
    ! [Nat: nat] :
      ( ( Nat != zero_zero_nat )
      = ( case_nat_o @ $false
        @ ^ [Uu3: nat] : $true
        @ Nat ) ) ).

% nat.disc_eq_case(2)
thf(fact_9235_nat_Odisc__eq__case_I1_J,axiom,
    ! [Nat: nat] :
      ( ( Nat = zero_zero_nat )
      = ( case_nat_o @ $true
        @ ^ [Uu3: nat] : $false
        @ Nat ) ) ).

% nat.disc_eq_case(1)
thf(fact_9236_less__eq__nat_Osimps_I2_J,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
      = ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N2 ) ) ).

% less_eq_nat.simps(2)
thf(fact_9237_max__Suc2,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_max_nat @ M @ ( suc @ N2 ) )
      = ( case_nat_nat @ ( suc @ N2 )
        @ ^ [M6: nat] : ( suc @ ( ord_max_nat @ M6 @ N2 ) )
        @ M ) ) ).

% max_Suc2
thf(fact_9238_max__Suc1,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_max_nat @ ( suc @ N2 ) @ M )
      = ( case_nat_nat @ ( suc @ N2 )
        @ ^ [M6: nat] : ( suc @ ( ord_max_nat @ N2 @ M6 ) )
        @ M ) ) ).

% max_Suc1
thf(fact_9239_diff__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N2 ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [K2: nat] : K2
        @ ( minus_minus_nat @ M @ N2 ) ) ) ).

% diff_Suc
thf(fact_9240_finite__enumerate,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [R3: nat > nat] :
          ( ( strict1292158309912662752at_nat @ R3 @ ( set_ord_lessThan_nat @ ( finite_card_nat @ S3 ) ) )
          & ! [N7: nat] :
              ( ( ord_less_nat @ N7 @ ( finite_card_nat @ S3 ) )
             => ( member_nat @ ( R3 @ N7 ) @ S3 ) ) ) ) ).

% finite_enumerate
thf(fact_9241_floor__real__def,axiom,
    ( archim6058952711729229775r_real
    = ( ^ [X: real] :
          ( the_int
          @ ^ [Z2: int] :
              ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X )
              & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ) ) ) ).

% floor_real_def
thf(fact_9242_floor__rat__def,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [X: rat] :
          ( the_int
          @ ^ [Z2: int] :
              ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ X )
              & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ) ) ) ).

% floor_rat_def
thf(fact_9243_abs__rat__def,axiom,
    ( abs_abs_rat
    = ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).

% abs_rat_def
thf(fact_9244_sgn__rat__def,axiom,
    ( sgn_sgn_rat
    = ( ^ [A3: rat] : ( if_rat @ ( A3 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A3 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).

% sgn_rat_def
thf(fact_9245_less__eq__rat__def,axiom,
    ( ord_less_eq_rat
    = ( ^ [X: rat,Y2: rat] :
          ( ( ord_less_rat @ X @ Y2 )
          | ( X = Y2 ) ) ) ) ).

% less_eq_rat_def
thf(fact_9246_obtain__pos__sum,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ R )
     => ~ ! [S2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ S2 )
           => ! [T5: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ T5 )
               => ( R
                 != ( plus_plus_rat @ S2 @ T5 ) ) ) ) ) ).

% obtain_pos_sum
thf(fact_9247_pred__def,axiom,
    ( pred
    = ( case_nat_nat @ zero_zero_nat
      @ ^ [X24: nat] : X24 ) ) ).

% pred_def
thf(fact_9248_rat__inverse__code,axiom,
    ! [P4: rat] :
      ( ( quotient_of @ ( inverse_inverse_rat @ P4 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,B3: int] : ( if_Pro3027730157355071871nt_int @ ( A3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A3 ) @ B3 ) @ ( abs_abs_int @ A3 ) ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_inverse_code
thf(fact_9249_normalize__negative,axiom,
    ! [Q2: int,P4: int] :
      ( ( ord_less_int @ Q2 @ zero_zero_int )
     => ( ( normalize @ ( product_Pair_int_int @ P4 @ Q2 ) )
        = ( normalize @ ( product_Pair_int_int @ ( uminus_uminus_int @ P4 ) @ ( uminus_uminus_int @ Q2 ) ) ) ) ) ).

% normalize_negative
thf(fact_9250_prod__decode__aux_Osimps,axiom,
    ( nat_prod_decode_aux
    = ( ^ [K2: nat,M3: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M3 @ K2 ) @ ( product_Pair_nat_nat @ M3 @ ( minus_minus_nat @ K2 @ M3 ) ) @ ( nat_prod_decode_aux @ ( suc @ K2 ) @ ( minus_minus_nat @ M3 @ ( suc @ K2 ) ) ) ) ) ) ).

% prod_decode_aux.simps
thf(fact_9251_quotient__of__number_I3_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( numeral_numeral_rat @ K ) )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).

% quotient_of_number(3)
thf(fact_9252_quotient__of__number_I5_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% quotient_of_number(5)
thf(fact_9253_divide__rat__def,axiom,
    ( divide_divide_rat
    = ( ^ [Q4: rat,R5: rat] : ( times_times_rat @ Q4 @ ( inverse_inverse_rat @ R5 ) ) ) ) ).

% divide_rat_def
thf(fact_9254_diff__rat__def,axiom,
    ( minus_minus_rat
    = ( ^ [Q4: rat,R5: rat] : ( plus_plus_rat @ Q4 @ ( uminus_uminus_rat @ R5 ) ) ) ) ).

% diff_rat_def
thf(fact_9255_rat__times__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( times_times_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C3: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ B3 ) @ ( times_times_int @ C3 @ D ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_times_code
thf(fact_9256_rat__divide__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( divide_divide_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C3: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ C3 @ B3 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_divide_code
thf(fact_9257_quotient__of__div,axiom,
    ! [R: rat,N2: int,D2: int] :
      ( ( ( quotient_of @ R )
        = ( product_Pair_int_int @ N2 @ D2 ) )
     => ( R
        = ( divide_divide_rat @ ( ring_1_of_int_rat @ N2 ) @ ( ring_1_of_int_rat @ D2 ) ) ) ) ).

% quotient_of_div
thf(fact_9258_rat__plus__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( plus_plus_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C3: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ B3 @ C3 ) ) @ ( times_times_int @ C3 @ D ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_plus_code
thf(fact_9259_rat__minus__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( minus_minus_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C3: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ B3 @ C3 ) ) @ ( times_times_int @ C3 @ D ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_minus_code
thf(fact_9260_quotient__of__denom__pos,axiom,
    ! [R: rat,P4: int,Q2: int] :
      ( ( ( quotient_of @ R )
        = ( product_Pair_int_int @ P4 @ Q2 ) )
     => ( ord_less_int @ zero_zero_int @ Q2 ) ) ).

% quotient_of_denom_pos
thf(fact_9261_normalize__denom__pos,axiom,
    ! [R: product_prod_int_int,P4: int,Q2: int] :
      ( ( ( normalize @ R )
        = ( product_Pair_int_int @ P4 @ Q2 ) )
     => ( ord_less_int @ zero_zero_int @ Q2 ) ) ).

% normalize_denom_pos
thf(fact_9262_normalize__crossproduct,axiom,
    ! [Q2: int,S: int,P4: int,R: int] :
      ( ( Q2 != zero_zero_int )
     => ( ( S != zero_zero_int )
       => ( ( ( normalize @ ( product_Pair_int_int @ P4 @ Q2 ) )
            = ( normalize @ ( product_Pair_int_int @ R @ S ) ) )
         => ( ( times_times_int @ P4 @ S )
            = ( times_times_int @ R @ Q2 ) ) ) ) ) ).

% normalize_crossproduct
thf(fact_9263_prod__decode__aux_Oelims,axiom,
    ! [X2: nat,Xa2: nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X2 @ Xa2 )
        = Y )
     => ( ( ( ord_less_eq_nat @ Xa2 @ X2 )
         => ( Y
            = ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X2 @ Xa2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ Xa2 @ X2 )
         => ( Y
            = ( nat_prod_decode_aux @ ( suc @ X2 ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X2 ) ) ) ) ) ) ) ).

% prod_decode_aux.elims
thf(fact_9264_drop__bit__numeral__minus__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_numeral_minus_bit1
thf(fact_9265_Suc__0__div__numeral,axiom,
    ! [K: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_div_numeral
thf(fact_9266_Suc__0__mod__numeral,axiom,
    ! [K: num] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_mod_numeral
thf(fact_9267_drop__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% drop_bit_nonnegative_int_iff
thf(fact_9268_drop__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% drop_bit_negative_int_iff
thf(fact_9269_drop__bit__minus__one,axiom,
    ! [N2: nat] :
      ( ( bit_se8568078237143864401it_int @ N2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% drop_bit_minus_one
thf(fact_9270_fst__divmod__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( product_fst_nat_nat @ ( divmod_nat @ M @ N2 ) )
      = ( divide_divide_nat @ M @ N2 ) ) ).

% fst_divmod_nat
thf(fact_9271_snd__divmod__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( product_snd_nat_nat @ ( divmod_nat @ M @ N2 ) )
      = ( modulo_modulo_nat @ M @ N2 ) ) ).

% snd_divmod_nat
thf(fact_9272_drop__bit__Suc__minus__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_Suc_minus_bit0
thf(fact_9273_drop__bit__numeral__minus__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_numeral_minus_bit0
thf(fact_9274_drop__bit__Suc__minus__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_Suc_minus_bit1
thf(fact_9275_drop__bit__push__bit__int,axiom,
    ! [M: nat,N2: nat,K: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N2 @ K ) )
      = ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N2 ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N2 @ M ) @ K ) ) ) ).

% drop_bit_push_bit_int
thf(fact_9276_drop__bit__int__def,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N: nat,K2: int] : ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% drop_bit_int_def
thf(fact_9277_Frct__code__post_I5_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% Frct_code_post(5)
thf(fact_9278_Frct__code__post_I6_J,axiom,
    ! [K: num,L2: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L2 ) ) )
      = ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L2 ) ) ) ).

% Frct_code_post(6)
thf(fact_9279_fst__divmod__integer,axiom,
    ! [K: code_integer,L2: code_integer] :
      ( ( produc8508995932063986495nteger @ ( code_divmod_integer @ K @ L2 ) )
      = ( divide6298287555418463151nteger @ K @ L2 ) ) ).

% fst_divmod_integer
thf(fact_9280_snd__divmod__integer,axiom,
    ! [K: code_integer,L2: code_integer] :
      ( ( produc6174133586879617921nteger @ ( code_divmod_integer @ K @ L2 ) )
      = ( modulo364778990260209775nteger @ K @ L2 ) ) ).

% snd_divmod_integer
thf(fact_9281_fst__divmod__abs,axiom,
    ! [K: code_integer,L2: code_integer] :
      ( ( produc8508995932063986495nteger @ ( code_divmod_abs @ K @ L2 ) )
      = ( divide6298287555418463151nteger @ ( abs_abs_Code_integer @ K ) @ ( abs_abs_Code_integer @ L2 ) ) ) ).

% fst_divmod_abs
thf(fact_9282_snd__divmod__abs,axiom,
    ! [K: code_integer,L2: code_integer] :
      ( ( produc6174133586879617921nteger @ ( code_divmod_abs @ K @ L2 ) )
      = ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K ) @ ( abs_abs_Code_integer @ L2 ) ) ) ).

% snd_divmod_abs
thf(fact_9283_drop__bit__of__Suc__0,axiom,
    ! [N2: nat] :
      ( ( bit_se8570568707652914677it_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).

% drop_bit_of_Suc_0
thf(fact_9284_drop__bit__nat__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se8570568707652914677it_nat @ N2 @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se8568078237143864401it_int @ N2 @ K ) ) ) ).

% drop_bit_nat_eq
thf(fact_9285_quotient__of__denom__pos_H,axiom,
    ! [R: rat] : ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ ( quotient_of @ R ) ) ) ).

% quotient_of_denom_pos'
thf(fact_9286_drop__bit__nat__def,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N: nat,M3: nat] : ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% drop_bit_nat_def
thf(fact_9287_Frct__code__post_I4_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
      = ( numeral_numeral_rat @ K ) ) ).

% Frct_code_post(4)
thf(fact_9288_one__mod__minus__numeral,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ) ).

% one_mod_minus_numeral
thf(fact_9289_minus__one__mod__numeral,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N2 ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ).

% minus_one_mod_numeral
thf(fact_9290_minus__numeral__mod__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ).

% minus_numeral_mod_numeral
thf(fact_9291_numeral__mod__minus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ) ).

% numeral_mod_minus_numeral
thf(fact_9292_Divides_Oadjust__mod__def,axiom,
    ( adjust_mod
    = ( ^ [L: int,R5: int] : ( if_int @ ( R5 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ L @ R5 ) ) ) ) ).

% Divides.adjust_mod_def
thf(fact_9293_bezw_Osimps,axiom,
    ( bezw
    = ( ^ [X: nat,Y2: nat] : ( if_Pro3027730157355071871nt_int @ ( Y2 = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y2 ) ) ) ) ) ) ) ) ).

% bezw.simps
thf(fact_9294_bezw_Oelims,axiom,
    ! [X2: nat,Xa2: nat,Y: product_prod_int_int] :
      ( ( ( bezw @ X2 @ Xa2 )
        = Y )
     => ( ( ( Xa2 = zero_zero_nat )
         => ( Y
            = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
        & ( ( Xa2 != zero_zero_nat )
         => ( Y
            = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X2 @ Xa2 ) ) ) ) ) ) ) ) ) ).

% bezw.elims
thf(fact_9295_bezw__non__0,axiom,
    ! [Y: nat,X2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Y )
     => ( ( bezw @ X2 @ Y )
        = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X2 @ Y ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X2 @ Y ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X2 @ Y ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X2 @ Y ) ) ) ) ) ) ) ).

% bezw_non_0
thf(fact_9296_bezw_Opelims,axiom,
    ! [X2: nat,Xa2: nat,Y: product_prod_int_int] :
      ( ( ( bezw @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) )
       => ~ ( ( ( ( Xa2 = zero_zero_nat )
               => ( Y
                  = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
              & ( ( Xa2 != zero_zero_nat )
               => ( Y
                  = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X2 @ Xa2 ) ) ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) ) ) ) ) ).

% bezw.pelims
thf(fact_9297_normalize__def,axiom,
    ( normalize
    = ( ^ [P5: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P5 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) )
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_snd_int_int @ P5 )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) ) ) ) ) ) ).

% normalize_def
thf(fact_9298_gcd__pos__int,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( gcd_gcd_int @ M @ N2 ) )
      = ( ( M != zero_zero_int )
        | ( N2 != zero_zero_int ) ) ) ).

% gcd_pos_int
thf(fact_9299_gcd__neg__numeral__2__int,axiom,
    ! [X2: int,N2: num] :
      ( ( gcd_gcd_int @ X2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( gcd_gcd_int @ X2 @ ( numeral_numeral_int @ N2 ) ) ) ).

% gcd_neg_numeral_2_int
thf(fact_9300_gcd__neg__numeral__1__int,axiom,
    ! [N2: num,X2: int] :
      ( ( gcd_gcd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ X2 )
      = ( gcd_gcd_int @ ( numeral_numeral_int @ N2 ) @ X2 ) ) ).

% gcd_neg_numeral_1_int
thf(fact_9301_gcd__red__int,axiom,
    ( gcd_gcd_int
    = ( ^ [X: int,Y2: int] : ( gcd_gcd_int @ Y2 @ ( modulo_modulo_int @ X @ Y2 ) ) ) ) ).

% gcd_red_int
thf(fact_9302_bezout__int,axiom,
    ! [X2: int,Y: int] :
    ? [U3: int,V2: int] :
      ( ( plus_plus_int @ ( times_times_int @ U3 @ X2 ) @ ( times_times_int @ V2 @ Y ) )
      = ( gcd_gcd_int @ X2 @ Y ) ) ).

% bezout_int
thf(fact_9303_gcd__mult__distrib__int,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( times_times_int @ ( abs_abs_int @ K ) @ ( gcd_gcd_int @ M @ N2 ) )
      = ( gcd_gcd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N2 ) ) ) ).

% gcd_mult_distrib_int
thf(fact_9304_gcd__le2__int,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).

% gcd_le2_int
thf(fact_9305_gcd__le1__int,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).

% gcd_le1_int
thf(fact_9306_gcd__non__0__int,axiom,
    ! [Y: int,X2: int] :
      ( ( ord_less_int @ zero_zero_int @ Y )
     => ( ( gcd_gcd_int @ X2 @ Y )
        = ( gcd_gcd_int @ Y @ ( modulo_modulo_int @ X2 @ Y ) ) ) ) ).

% gcd_non_0_int
thf(fact_9307_gcd__code__int,axiom,
    ( gcd_gcd_int
    = ( ^ [K2: int,L: int] : ( abs_abs_int @ ( if_int @ ( L = zero_zero_int ) @ K2 @ ( gcd_gcd_int @ L @ ( modulo_modulo_int @ ( abs_abs_int @ K2 ) @ ( abs_abs_int @ L ) ) ) ) ) ) ) ).

% gcd_code_int
thf(fact_9308_nat__descend__induct,axiom,
    ! [N2: nat,P: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N2 @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N2 )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K3 @ I2 )
                 => ( P @ I2 ) )
             => ( P @ K3 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_9309_prod__decode__aux_Opelims,axiom,
    ! [X2: nat,Xa2: nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) )
       => ~ ( ( ( ( ord_less_eq_nat @ Xa2 @ X2 )
               => ( Y
                  = ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X2 @ Xa2 ) ) ) )
              & ( ~ ( ord_less_eq_nat @ Xa2 @ X2 )
               => ( Y
                  = ( nat_prod_decode_aux @ ( suc @ X2 ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X2 ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) ) ) ) ) ).

% prod_decode_aux.pelims
thf(fact_9310_divmod__integer__eq__cases,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( L = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K2 )
            @ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L
              @ ( if_Pro6119634080678213985nteger
                @ ( ( sgn_sgn_Code_integer @ K2 )
                  = ( sgn_sgn_Code_integer @ L ) )
                @ ( code_divmod_abs @ K2 @ L )
                @ ( produc6916734918728496179nteger
                  @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L ) @ S6 ) ) )
                  @ ( code_divmod_abs @ K2 @ L ) ) ) ) ) ) ) ) ).

% divmod_integer_eq_cases
thf(fact_9311_gcd__pos__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N2 ) )
      = ( ( M != zero_zero_nat )
        | ( N2 != zero_zero_nat ) ) ) ).

% gcd_pos_nat
thf(fact_9312_gcd__red__nat,axiom,
    ( gcd_gcd_nat
    = ( ^ [X: nat,Y2: nat] : ( gcd_gcd_nat @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) ) ).

% gcd_red_nat
thf(fact_9313_gcd__mult__distrib__nat,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( gcd_gcd_nat @ M @ N2 ) )
      = ( gcd_gcd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% gcd_mult_distrib_nat
thf(fact_9314_gcd__le1__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).

% gcd_le1_nat
thf(fact_9315_gcd__le2__nat,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).

% gcd_le2_nat
thf(fact_9316_gcd__diff1__nat,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 )
        = ( gcd_gcd_nat @ M @ N2 ) ) ) ).

% gcd_diff1_nat
thf(fact_9317_gcd__diff2__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ N2 @ M ) @ N2 )
        = ( gcd_gcd_nat @ M @ N2 ) ) ) ).

% gcd_diff2_nat
thf(fact_9318_gcd__nat_Oelims,axiom,
    ! [X2: nat,Xa2: nat,Y: nat] :
      ( ( ( gcd_gcd_nat @ X2 @ Xa2 )
        = Y )
     => ( ( ( Xa2 = zero_zero_nat )
         => ( Y = X2 ) )
        & ( ( Xa2 != zero_zero_nat )
         => ( Y
            = ( gcd_gcd_nat @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) ) ) ) ).

% gcd_nat.elims
thf(fact_9319_gcd__nat_Osimps,axiom,
    ( gcd_gcd_nat
    = ( ^ [X: nat,Y2: nat] : ( if_nat @ ( Y2 = zero_zero_nat ) @ X @ ( gcd_gcd_nat @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) ) ) ).

% gcd_nat.simps
thf(fact_9320_gcd__non__0__nat,axiom,
    ! [Y: nat,X2: nat] :
      ( ( Y != zero_zero_nat )
     => ( ( gcd_gcd_nat @ X2 @ Y )
        = ( gcd_gcd_nat @ Y @ ( modulo_modulo_nat @ X2 @ Y ) ) ) ) ).

% gcd_non_0_nat
thf(fact_9321_bezout__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [X3: nat,Y3: nat] :
          ( ( times_times_nat @ A @ X3 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_nat
thf(fact_9322_bezout__gcd__nat_H,axiom,
    ! [B: nat,A: nat] :
    ? [X3: nat,Y3: nat] :
      ( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y3 ) @ ( times_times_nat @ A @ X3 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ A @ X3 ) @ ( times_times_nat @ B @ Y3 ) )
          = ( gcd_gcd_nat @ A @ B ) ) )
      | ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y3 ) @ ( times_times_nat @ B @ X3 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ B @ X3 ) @ ( times_times_nat @ A @ Y3 ) )
          = ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_gcd_nat'
thf(fact_9323_gcd__code__integer,axiom,
    ( gcd_gcd_Code_integer
    = ( ^ [K2: code_integer,L: code_integer] : ( abs_abs_Code_integer @ ( if_Code_integer @ ( L = zero_z3403309356797280102nteger ) @ K2 @ ( gcd_gcd_Code_integer @ L @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K2 ) @ ( abs_abs_Code_integer @ L ) ) ) ) ) ) ) ).

% gcd_code_integer
thf(fact_9324_bezw__aux,axiom,
    ! [X2: nat,Y: nat] :
      ( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X2 @ Y ) )
      = ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X2 @ Y ) ) @ ( semiri1314217659103216013at_int @ X2 ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X2 @ Y ) ) @ ( semiri1314217659103216013at_int @ Y ) ) ) ) ).

% bezw_aux
thf(fact_9325_gcd__nat_Opelims,axiom,
    ! [X2: nat,Xa2: nat,Y: nat] :
      ( ( ( gcd_gcd_nat @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) )
       => ~ ( ( ( ( Xa2 = zero_zero_nat )
               => ( Y = X2 ) )
              & ( ( Xa2 != zero_zero_nat )
               => ( Y
                  = ( gcd_gcd_nat @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) ) ) ) ) ).

% gcd_nat.pelims
thf(fact_9326_card__greaterThanLessThan__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or5832277885323065728an_int @ L2 @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L2 @ one_one_int ) ) ) ) ).

% card_greaterThanLessThan_int
thf(fact_9327_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
    ! [L2: int,U: int] :
      ( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L2 @ one_one_int ) @ U )
      = ( set_or5832277885323065728an_int @ L2 @ U ) ) ).

% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_9328_Code__Numeral_Onegative__def,axiom,
    ( code_negative
    = ( comp_C3531382070062128313er_num @ uminus1351360451143612070nteger @ numera6620942414471956472nteger ) ) ).

% Code_Numeral.negative_def
thf(fact_9329_Code__Target__Int_Onegative__def,axiom,
    ( code_Target_negative
    = ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).

% Code_Target_Int.negative_def
thf(fact_9330_xor__minus__numerals_I2_J,axiom,
    ! [K: int,N2: num] :
      ( ( bit_se6526347334894502574or_int @ K @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K @ ( neg_numeral_sub_int @ N2 @ one ) ) ) ) ).

% xor_minus_numerals(2)
thf(fact_9331_finite__greaterThanLessThan,axiom,
    ! [L2: nat,U: nat] : ( finite_finite_nat @ ( set_or5834768355832116004an_nat @ L2 @ U ) ) ).

% finite_greaterThanLessThan
thf(fact_9332_card__greaterThanLessThan,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or5834768355832116004an_nat @ L2 @ U ) )
      = ( minus_minus_nat @ U @ ( suc @ L2 ) ) ) ).

% card_greaterThanLessThan
thf(fact_9333_xor__minus__numerals_I1_J,axiom,
    ! [N2: num,K: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ K )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N2 @ one ) @ K ) ) ) ).

% xor_minus_numerals(1)
thf(fact_9334_sub__BitM__One__eq,axiom,
    ! [N2: num] :
      ( ( neg_numeral_sub_int @ ( bitM @ N2 ) @ one )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N2 @ one ) ) ) ).

% sub_BitM_One_eq
thf(fact_9335_max__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
    @ ^ [X: nat,Y2: nat] : ( ord_less_eq_nat @ Y2 @ X )
    @ ^ [X: nat,Y2: nat] : ( ord_less_nat @ Y2 @ X ) ) ).

% max_nat.semilattice_neutr_order_axioms
thf(fact_9336_Suc__funpow,axiom,
    ! [N2: nat] :
      ( ( compow_nat_nat @ N2 @ suc )
      = ( plus_plus_nat @ N2 ) ) ).

% Suc_funpow
thf(fact_9337_int__of__integer__code,axiom,
    ( code_int_of_integer
    = ( ^ [K2: code_integer] :
          ( if_int @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K2 ) ) )
          @ ( if_int @ ( K2 = zero_z3403309356797280102nteger ) @ zero_zero_int
            @ ( produc1553301316500091796er_int
              @ ^ [L: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L ) ) @ one_one_int ) )
              @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% int_of_integer_code
thf(fact_9338_int__of__integer__numeral,axiom,
    ! [K: num] :
      ( ( code_int_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% int_of_integer_numeral
thf(fact_9339_plus__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( plus_p5714425477246183910nteger @ X2 @ Xa2 ) )
      = ( plus_plus_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% plus_integer.rep_eq
thf(fact_9340_times__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( times_3573771949741848930nteger @ X2 @ Xa2 ) )
      = ( times_times_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% times_integer.rep_eq
thf(fact_9341_minus__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( minus_8373710615458151222nteger @ X2 @ Xa2 ) )
      = ( minus_minus_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% minus_integer.rep_eq
thf(fact_9342_divide__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( divide6298287555418463151nteger @ X2 @ Xa2 ) )
      = ( divide_divide_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% divide_integer.rep_eq
thf(fact_9343_modulo__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( modulo364778990260209775nteger @ X2 @ Xa2 ) )
      = ( modulo_modulo_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% modulo_integer.rep_eq
thf(fact_9344_less__integer_Orep__eq,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [X: code_integer,Xa4: code_integer] : ( ord_less_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).

% less_integer.rep_eq
thf(fact_9345_integer__less__iff,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [K2: code_integer,L: code_integer] : ( ord_less_int @ ( code_int_of_integer @ K2 ) @ ( code_int_of_integer @ L ) ) ) ) ).

% integer_less_iff
thf(fact_9346_times__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( times_times_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y2: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X @ U2 ) @ ( times_times_nat @ Y2 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X @ V4 ) @ ( times_times_nat @ Y2 @ U2 ) ) ) )
          @ Xa2
          @ X2 ) ) ) ).

% times_int.abs_eq
thf(fact_9347_Gcd__remove0__nat,axiom,
    ! [M5: set_nat] :
      ( ( finite_finite_nat @ M5 )
     => ( ( gcd_Gcd_nat @ M5 )
        = ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M5 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).

% Gcd_remove0_nat
thf(fact_9348_nat_Oabs__eq,axiom,
    ! [X2: product_prod_nat_nat] :
      ( ( nat2 @ ( abs_Integ @ X2 ) )
      = ( produc6842872674320459806at_nat @ minus_minus_nat @ X2 ) ) ).

% nat.abs_eq
thf(fact_9349_less__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( ord_less_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y2: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y2 ) ) )
        @ Xa2
        @ X2 ) ) ).

% less_int.abs_eq
thf(fact_9350_less__eq__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( ord_less_eq_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y2: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y2 ) ) )
        @ Xa2
        @ X2 ) ) ).

% less_eq_int.abs_eq
thf(fact_9351_plus__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( plus_plus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y2: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ U2 ) @ ( plus_plus_nat @ Y2 @ V4 ) ) )
          @ Xa2
          @ X2 ) ) ) ).

% plus_int.abs_eq
thf(fact_9352_minus__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( minus_minus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y2: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ Y2 @ U2 ) ) )
          @ Xa2
          @ X2 ) ) ) ).

% minus_int.abs_eq
thf(fact_9353_num__of__nat_Osimps_I2_J,axiom,
    ! [N2: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( num_of_nat @ ( suc @ N2 ) )
          = ( inc @ ( num_of_nat @ N2 ) ) ) )
      & ( ~ ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( num_of_nat @ ( suc @ N2 ) )
          = one ) ) ) ).

% num_of_nat.simps(2)
thf(fact_9354_num__of__nat__numeral__eq,axiom,
    ! [Q2: num] :
      ( ( num_of_nat @ ( numeral_numeral_nat @ Q2 ) )
      = Q2 ) ).

% num_of_nat_numeral_eq
thf(fact_9355_num__of__nat_Osimps_I1_J,axiom,
    ( ( num_of_nat @ zero_zero_nat )
    = one ) ).

% num_of_nat.simps(1)
thf(fact_9356_numeral__num__of__nat,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( numeral_numeral_nat @ ( num_of_nat @ N2 ) )
        = N2 ) ) ).

% numeral_num_of_nat
thf(fact_9357_num__of__nat__One,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ one_one_nat )
     => ( ( num_of_nat @ N2 )
        = one ) ) ).

% num_of_nat_One
thf(fact_9358_num__of__nat__double,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( num_of_nat @ ( plus_plus_nat @ N2 @ N2 ) )
        = ( bit0 @ ( num_of_nat @ N2 ) ) ) ) ).

% num_of_nat_double
thf(fact_9359_num__of__nat__plus__distrib,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( num_of_nat @ ( plus_plus_nat @ M @ N2 ) )
          = ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N2 ) ) ) ) ) ).

% num_of_nat_plus_distrib
thf(fact_9360_nth__sorted__list__of__set__greaterThanLessThan,axiom,
    ! [N2: nat,J: nat,I: nat] :
      ( ( ord_less_nat @ N2 @ ( minus_minus_nat @ J @ ( suc @ I ) ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) ) @ N2 )
        = ( suc @ ( plus_plus_nat @ I @ N2 ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9361_less__eq__int_Orep__eq,axiom,
    ( ord_less_eq_int
    = ( ^ [X: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y2: nat,Z2: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y2 @ V4 ) @ ( plus_plus_nat @ U2 @ Z2 ) ) )
          @ ( rep_Integ @ X )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_eq_int.rep_eq
thf(fact_9362_less__int_Orep__eq,axiom,
    ( ord_less_int
    = ( ^ [X: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y2: nat,Z2: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y2 @ V4 ) @ ( plus_plus_nat @ U2 @ Z2 ) ) )
          @ ( rep_Integ @ X )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_int.rep_eq
thf(fact_9363_nat_Orep__eq,axiom,
    ( nat2
    = ( ^ [X: int] : ( produc6842872674320459806at_nat @ minus_minus_nat @ ( rep_Integ @ X ) ) ) ) ).

% nat.rep_eq
thf(fact_9364_nth__sorted__list__of__set__greaterThanAtMost,axiom,
    ! [N2: nat,J: nat,I: nat] :
      ( ( ord_less_nat @ N2 @ ( minus_minus_nat @ J @ I ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) ) @ N2 )
        = ( suc @ ( plus_plus_nat @ I @ N2 ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9365_prod__encode__def,axiom,
    ( nat_prod_encode
    = ( produc6842872674320459806at_nat
      @ ^ [M3: nat,N: nat] : ( plus_plus_nat @ ( nat_triangle @ ( plus_plus_nat @ M3 @ N ) ) @ M3 ) ) ) ).

% prod_encode_def
thf(fact_9366_pow_Osimps_I3_J,axiom,
    ! [X2: num,Y: num] :
      ( ( pow @ X2 @ ( bit1 @ Y ) )
      = ( times_times_num @ ( sqr @ ( pow @ X2 @ Y ) ) @ X2 ) ) ).

% pow.simps(3)
thf(fact_9367_finite__greaterThanAtMost,axiom,
    ! [L2: nat,U: nat] : ( finite_finite_nat @ ( set_or6659071591806873216st_nat @ L2 @ U ) ) ).

% finite_greaterThanAtMost
thf(fact_9368_card__greaterThanAtMost,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or6659071591806873216st_nat @ L2 @ U ) )
      = ( minus_minus_nat @ U @ L2 ) ) ).

% card_greaterThanAtMost
thf(fact_9369_sqr_Osimps_I2_J,axiom,
    ! [N2: num] :
      ( ( sqr @ ( bit0 @ N2 ) )
      = ( bit0 @ ( bit0 @ ( sqr @ N2 ) ) ) ) ).

% sqr.simps(2)
thf(fact_9370_sqr_Osimps_I1_J,axiom,
    ( ( sqr @ one )
    = one ) ).

% sqr.simps(1)
thf(fact_9371_sqr__conv__mult,axiom,
    ( sqr
    = ( ^ [X: num] : ( times_times_num @ X @ X ) ) ) ).

% sqr_conv_mult
thf(fact_9372_le__prod__encode__2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_2
thf(fact_9373_le__prod__encode__1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_1
thf(fact_9374_pow_Osimps_I2_J,axiom,
    ! [X2: num,Y: num] :
      ( ( pow @ X2 @ ( bit0 @ Y ) )
      = ( sqr @ ( pow @ X2 @ Y ) ) ) ).

% pow.simps(2)
thf(fact_9375_sqr_Osimps_I3_J,axiom,
    ! [N2: num] :
      ( ( sqr @ ( bit1 @ N2 ) )
      = ( bit1 @ ( bit0 @ ( plus_plus_num @ ( sqr @ N2 ) @ N2 ) ) ) ) ).

% sqr.simps(3)
thf(fact_9376_prod__encode__prod__decode__aux,axiom,
    ! [K: nat,M: nat] :
      ( ( nat_prod_encode @ ( nat_prod_decode_aux @ K @ M ) )
      = ( plus_plus_nat @ ( nat_triangle @ K ) @ M ) ) ).

% prod_encode_prod_decode_aux
thf(fact_9377_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_valid @ X2 @ Xa2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X2
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa2 = one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( ( Deg2 = Xa2 )
                & ! [X3: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                   => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                  = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                & ( case_o184042715313410164at_nat
                  @ ( ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X5 )
                    & ! [X: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                  @ ( produc6081775807080527818_nat_o
                    @ ^ [Mi3: nat,Ma3: nat] :
                        ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                        & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                        & ! [I4: nat] :
                            ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                           => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X5 ) )
                              = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                        & ( ( Mi3 = Ma3 )
                         => ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                        & ( ( Mi3 != Ma3 )
                         => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                            & ! [X: nat] :
                                ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                 => ( ( ord_less_nat @ Mi3 @ X )
                                    & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                  @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(3)
thf(fact_9378_card__greaterThanAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or6656581121297822940st_int @ L2 @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L2 ) ) ) ).

% card_greaterThanAtMost_int
thf(fact_9379_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L2 @ one_one_int ) @ U )
      = ( set_or6656581121297822940st_int @ L2 @ U ) ) ).

% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_9380_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
    ! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg3: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList2 @ Summary ) @ Deg3 )
      = ( ( Deg = Deg3 )
        & ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
           => ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( case_o184042715313410164at_nat
          @ ( ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X5 )
            & ! [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
               => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
          @ ( produc6081775807080527818_nat_o
            @ ^ [Mi3: nat,Ma3: nat] :
                ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                & ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                   => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X5 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                & ( ( Mi3 = Ma3 )
                 => ! [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                & ( ( Mi3 != Ma3 )
                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                    & ! [X: nat] :
                        ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                       => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
          @ Mima2 ) ) ) ).

% VEBT_internal.valid'.simps(2)
thf(fact_9381_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_valid @ X2 @ Xa2 )
        = Y )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X2
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Y
            = ( Xa2 != one_one_nat ) ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( Y
                = ( ~ ( ( Deg2 = Xa2 )
                      & ! [X: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X5 )
                          & ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X5 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X: nat] :
                                      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                       => ( ( ord_less_nat @ Mi3 @ X )
                                          & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.elims(1)
thf(fact_9382_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_valid @ X2 @ Xa2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X2
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa2 != one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
             => ~ ( ( Deg2 = Xa2 )
                  & ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                     => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( case_o184042715313410164at_nat
                    @ ( ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X5 )
                      & ! [X: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                    @ ( produc6081775807080527818_nat_o
                      @ ^ [Mi3: nat,Ma3: nat] :
                          ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                          & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                          & ! [I4: nat] :
                              ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                             => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X5 ) )
                                = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                          & ( ( Mi3 = Ma3 )
                           => ! [X: vEBT_VEBT] :
                                ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                               => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                          & ( ( Mi3 != Ma3 )
                           => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                              & ! [X: nat] :
                                  ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                   => ( ( ord_less_nat @ Mi3 @ X )
                                      & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                    @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(2)
thf(fact_9383_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_valid @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
               => ( Xa2 = one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa2 ) )
                 => ( ( Deg2 = Xa2 )
                    & ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( case_o184042715313410164at_nat
                      @ ( ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X5 )
                        & ! [X: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                           => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                      @ ( produc6081775807080527818_nat_o
                        @ ^ [Mi3: nat,Ma3: nat] :
                            ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                            & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                            & ! [I4: nat] :
                                ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                               => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X5 ) )
                                  = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                            & ( ( Mi3 = Ma3 )
                             => ! [X: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                 => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                            & ( ( Mi3 != Ma3 )
                             => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                & ! [X: nat] :
                                    ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                   => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                     => ( ( ord_less_nat @ Mi3 @ X )
                                        & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                      @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(3)
thf(fact_9384_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_valid @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
               => ( Xa2 != one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa2 ) )
                 => ~ ( ( Deg2 = Xa2 )
                      & ! [X4: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X5 )
                          & ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X5 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X: nat] :
                                      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                       => ( ( ord_less_nat @ Mi3 @ X )
                                          & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(2)
thf(fact_9385_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_valid @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( Y
                  = ( Xa2 = one_one_nat ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( Y
                    = ( ( Deg2 = Xa2 )
                      & ! [X: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X5 )
                          & ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X5 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X: nat] :
                                      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                       => ( ( ord_less_nat @ Mi3 @ X )
                                          & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(1)
thf(fact_9386_take__bit__numeral__minus__numeral__int,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( case_option_int_num @ zero_zero_int
        @ ^ [Q4: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q4 ) ) )
        @ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N2 ) ) ) ).

% take_bit_numeral_minus_numeral_int
thf(fact_9387_and__minus__numerals_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N2 ) ) ) ) ).

% and_minus_numerals(3)
thf(fact_9388_take__bit__num__simps_I1_J,axiom,
    ! [M: num] :
      ( ( bit_take_bit_num @ zero_zero_nat @ M )
      = none_num ) ).

% take_bit_num_simps(1)
thf(fact_9389_take__bit__num__simps_I2_J,axiom,
    ! [N2: nat] :
      ( ( bit_take_bit_num @ ( suc @ N2 ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(2)
thf(fact_9390_take__bit__num__simps_I5_J,axiom,
    ! [R: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(5)
thf(fact_9391_take__bit__num__simps_I3_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N2 ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
        @ ( bit_take_bit_num @ N2 @ M ) ) ) ).

% take_bit_num_simps(3)
thf(fact_9392_take__bit__num__simps_I4_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N2 ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N2 @ M ) ) ) ) ).

% take_bit_num_simps(4)
thf(fact_9393_take__bit__num__simps_I6_J,axiom,
    ! [R: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
        @ ( bit_take_bit_num @ ( pred_numeral @ R ) @ M ) ) ) ).

% take_bit_num_simps(6)
thf(fact_9394_take__bit__num__simps_I7_J,axiom,
    ! [R: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R ) @ M ) ) ) ) ).

% take_bit_num_simps(7)
thf(fact_9395_and__minus__numerals_I8_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N2 ) ) ) ) ).

% and_minus_numerals(8)
thf(fact_9396_and__minus__numerals_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N2 ) ) ) ) ).

% and_minus_numerals(4)
thf(fact_9397_and__minus__numerals_I7_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N2 ) ) ) ) ).

% and_minus_numerals(7)
thf(fact_9398_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ N2 @ ( bit0 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N: nat] :
            ( case_o6005452278849405969um_num @ none_num
            @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
            @ ( bit_take_bit_num @ N @ M ) )
        @ N2 ) ) ).

% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_9399_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
    ! [N2: nat] :
      ( ( bit_take_bit_num @ N2 @ one )
      = ( case_nat_option_num @ none_num
        @ ^ [N: nat] : ( some_num @ one )
        @ N2 ) ) ).

% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_9400_and__not__num_Osimps_I1_J,axiom,
    ( ( bit_and_not_num @ one @ one )
    = none_num ) ).

% and_not_num.simps(1)
thf(fact_9401_and__not__num_Osimps_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_and_not_num @ one @ ( bit0 @ N2 ) )
      = ( some_num @ one ) ) ).

% and_not_num.simps(2)
thf(fact_9402_and__not__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(4)
thf(fact_9403_GreatestI__ex__nat,axiom,
    ! [P: nat > $o,B: nat] :
      ( ? [X_12: nat] : ( P @ X_12 )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_9404_Greatest__le__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).

% Greatest_le_nat
thf(fact_9405_GreatestI__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_nat
thf(fact_9406_and__not__num_Osimps_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_and_not_num @ one @ ( bit1 @ N2 ) )
      = none_num ) ).

% and_not_num.simps(3)
thf(fact_9407_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ N2 @ ( bit1 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N @ M ) ) )
        @ N2 ) ) ).

% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_9408_and__not__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(7)
thf(fact_9409_and__not__num__eq__Some__iff,axiom,
    ! [M: num,N2: num,Q2: num] :
      ( ( ( bit_and_not_num @ M @ N2 )
        = ( some_num @ Q2 ) )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
        = ( numeral_numeral_int @ Q2 ) ) ) ).

% and_not_num_eq_Some_iff
thf(fact_9410_and__not__num_Osimps_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
        @ ( bit_and_not_num @ M @ N2 ) ) ) ).

% and_not_num.simps(8)
thf(fact_9411_and__not__num__eq__None__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( bit_and_not_num @ M @ N2 )
        = none_num )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
        = zero_zero_int ) ) ).

% and_not_num_eq_None_iff
thf(fact_9412_int__numeral__and__not__num,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N2 ) ) ) ).

% int_numeral_and_not_num
thf(fact_9413_int__numeral__not__and__num,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N2 @ M ) ) ) ).

% int_numeral_not_and_num
thf(fact_9414_take__bit__num__def,axiom,
    ( bit_take_bit_num
    = ( ^ [N: nat,M3: num] :
          ( if_option_num
          @ ( ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ M3 ) )
            = zero_zero_nat )
          @ none_num
          @ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ M3 ) ) ) ) ) ) ) ).

% take_bit_num_def
thf(fact_9415_Rats__eq__int__div__nat,axiom,
    ( field_5140801741446780682s_real
    = ( collect_real
      @ ^ [Uu3: real] :
        ? [I4: int,N: nat] :
          ( ( Uu3
            = ( divide_divide_real @ ( ring_1_of_int_real @ I4 ) @ ( semiri5074537144036343181t_real @ N ) ) )
          & ( N != zero_zero_nat ) ) ) ) ).

% Rats_eq_int_div_nat
thf(fact_9416_Rats__abs__iff,axiom,
    ! [X2: real] :
      ( ( member_real @ ( abs_abs_real @ X2 ) @ field_5140801741446780682s_real )
      = ( member_real @ X2 @ field_5140801741446780682s_real ) ) ).

% Rats_abs_iff
thf(fact_9417_Rats__no__top__le,axiom,
    ! [X2: real] :
    ? [X3: real] :
      ( ( member_real @ X3 @ field_5140801741446780682s_real )
      & ( ord_less_eq_real @ X2 @ X3 ) ) ).

% Rats_no_top_le
thf(fact_9418_Rats__dense__in__real,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_real @ X2 @ Y )
     => ? [X3: real] :
          ( ( member_real @ X3 @ field_5140801741446780682s_real )
          & ( ord_less_real @ X2 @ X3 )
          & ( ord_less_real @ X3 @ Y ) ) ) ).

% Rats_dense_in_real
thf(fact_9419_Rats__no__bot__less,axiom,
    ! [X2: real] :
    ? [X3: real] :
      ( ( member_real @ X3 @ field_5140801741446780682s_real )
      & ( ord_less_real @ X3 @ X2 ) ) ).

% Rats_no_bot_less
thf(fact_9420_Rats__eq__int__div__int,axiom,
    ( field_5140801741446780682s_real
    = ( collect_real
      @ ^ [Uu3: real] :
        ? [I4: int,J3: int] :
          ( ( Uu3
            = ( divide_divide_real @ ( ring_1_of_int_real @ I4 ) @ ( ring_1_of_int_real @ J3 ) ) )
          & ( J3 != zero_zero_int ) ) ) ) ).

% Rats_eq_int_div_int
thf(fact_9421_and__not__num_Oelims,axiom,
    ! [X2: num,Xa2: num,Y: option_num] :
      ( ( ( bit_and_not_num @ X2 @ Xa2 )
        = Y )
     => ( ( ( X2 = one )
         => ( ( Xa2 = one )
           => ( Y != none_num ) ) )
       => ( ( ( X2 = one )
           => ( ? [N3: num] :
                  ( Xa2
                  = ( bit0 @ N3 ) )
             => ( Y
               != ( some_num @ one ) ) ) )
         => ( ( ( X2 = one )
             => ( ? [N3: num] :
                    ( Xa2
                    = ( bit1 @ N3 ) )
               => ( Y != none_num ) ) )
           => ( ! [M4: num] :
                  ( ( X2
                    = ( bit0 @ M4 ) )
                 => ( ( Xa2 = one )
                   => ( Y
                     != ( some_num @ ( bit0 @ M4 ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X2
                      = ( bit0 @ M4 ) )
                   => ! [N3: num] :
                        ( ( Xa2
                          = ( bit0 @ N3 ) )
                       => ( Y
                         != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X2
                        = ( bit0 @ M4 ) )
                     => ! [N3: num] :
                          ( ( Xa2
                            = ( bit1 @ N3 ) )
                         => ( Y
                           != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X2
                          = ( bit1 @ M4 ) )
                       => ( ( Xa2 = one )
                         => ( Y
                           != ( some_num @ ( bit0 @ M4 ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X2
                            = ( bit1 @ M4 ) )
                         => ! [N3: num] :
                              ( ( Xa2
                                = ( bit0 @ N3 ) )
                             => ( Y
                               != ( case_o6005452278849405969um_num @ ( some_num @ one )
                                  @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
                                  @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X2
                              = ( bit1 @ M4 ) )
                           => ! [N3: num] :
                                ( ( Xa2
                                  = ( bit1 @ N3 ) )
                               => ( Y
                                 != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_not_num.elims
thf(fact_9422_and__not__num_Osimps_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N2 ) ) ) ).

% and_not_num.simps(5)
thf(fact_9423_and__not__num_Osimps_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N2 ) ) ) ).

% and_not_num.simps(6)
thf(fact_9424_and__not__num_Osimps_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N2 ) ) ) ).

% and_not_num.simps(9)
thf(fact_9425_rat__less__code,axiom,
    ( ord_less_rat
    = ( ^ [P5: rat,Q4: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A3: int,C3: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B3: int,D: int] : ( ord_less_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ C3 @ B3 ) )
              @ ( quotient_of @ Q4 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_code
thf(fact_9426_rat__less__eq__code,axiom,
    ( ord_less_eq_rat
    = ( ^ [P5: rat,Q4: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A3: int,C3: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B3: int,D: int] : ( ord_less_eq_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ C3 @ B3 ) )
              @ ( quotient_of @ Q4 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_eq_code
thf(fact_9427_int__ge__less__than2__def,axiom,
    ( int_ge_less_than2
    = ( ^ [D: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z7: int,Z2: int] :
                ( ( ord_less_eq_int @ D @ Z2 )
                & ( ord_less_int @ Z7 @ Z2 ) ) ) ) ) ) ).

% int_ge_less_than2_def
thf(fact_9428_int__ge__less__than__def,axiom,
    ( int_ge_less_than
    = ( ^ [D: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z7: int,Z2: int] :
                ( ( ord_less_eq_int @ D @ Z7 )
                & ( ord_less_int @ Z7 @ Z2 ) ) ) ) ) ) ).

% int_ge_less_than_def
thf(fact_9429_and__num_Oelims,axiom,
    ! [X2: num,Xa2: num,Y: option_num] :
      ( ( ( bit_un7362597486090784418nd_num @ X2 @ Xa2 )
        = Y )
     => ( ( ( X2 = one )
         => ( ( Xa2 = one )
           => ( Y
             != ( some_num @ one ) ) ) )
       => ( ( ( X2 = one )
           => ( ? [N3: num] :
                  ( Xa2
                  = ( bit0 @ N3 ) )
             => ( Y != none_num ) ) )
         => ( ( ( X2 = one )
             => ( ? [N3: num] :
                    ( Xa2
                    = ( bit1 @ N3 ) )
               => ( Y
                 != ( some_num @ one ) ) ) )
           => ( ( ? [M4: num] :
                    ( X2
                    = ( bit0 @ M4 ) )
               => ( ( Xa2 = one )
                 => ( Y != none_num ) ) )
             => ( ! [M4: num] :
                    ( ( X2
                      = ( bit0 @ M4 ) )
                   => ! [N3: num] :
                        ( ( Xa2
                          = ( bit0 @ N3 ) )
                       => ( Y
                         != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N3 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X2
                        = ( bit0 @ M4 ) )
                     => ! [N3: num] :
                          ( ( Xa2
                            = ( bit1 @ N3 ) )
                         => ( Y
                           != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N3 ) ) ) ) )
                 => ( ( ? [M4: num] :
                          ( X2
                          = ( bit1 @ M4 ) )
                     => ( ( Xa2 = one )
                       => ( Y
                         != ( some_num @ one ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X2
                            = ( bit1 @ M4 ) )
                         => ! [N3: num] :
                              ( ( Xa2
                                = ( bit0 @ N3 ) )
                             => ( Y
                               != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N3 ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X2
                              = ( bit1 @ M4 ) )
                           => ! [N3: num] :
                                ( ( Xa2
                                  = ( bit1 @ N3 ) )
                               => ( Y
                                 != ( case_o6005452278849405969um_num @ ( some_num @ one )
                                    @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
                                    @ ( bit_un7362597486090784418nd_num @ M4 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_num.elims
thf(fact_9430_xor__num_Oelims,axiom,
    ! [X2: num,Xa2: num,Y: option_num] :
      ( ( ( bit_un2480387367778600638or_num @ X2 @ Xa2 )
        = Y )
     => ( ( ( X2 = one )
         => ( ( Xa2 = one )
           => ( Y != none_num ) ) )
       => ( ( ( X2 = one )
           => ! [N3: num] :
                ( ( Xa2
                  = ( bit0 @ N3 ) )
               => ( Y
                 != ( some_num @ ( bit1 @ N3 ) ) ) ) )
         => ( ( ( X2 = one )
             => ! [N3: num] :
                  ( ( Xa2
                    = ( bit1 @ N3 ) )
                 => ( Y
                   != ( some_num @ ( bit0 @ N3 ) ) ) ) )
           => ( ! [M4: num] :
                  ( ( X2
                    = ( bit0 @ M4 ) )
                 => ( ( Xa2 = one )
                   => ( Y
                     != ( some_num @ ( bit1 @ M4 ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X2
                      = ( bit0 @ M4 ) )
                   => ! [N3: num] :
                        ( ( Xa2
                          = ( bit0 @ N3 ) )
                       => ( Y
                         != ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N3 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X2
                        = ( bit0 @ M4 ) )
                     => ! [N3: num] :
                          ( ( Xa2
                            = ( bit1 @ N3 ) )
                         => ( Y
                           != ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N3 ) ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X2
                          = ( bit1 @ M4 ) )
                       => ( ( Xa2 = one )
                         => ( Y
                           != ( some_num @ ( bit0 @ M4 ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X2
                            = ( bit1 @ M4 ) )
                         => ! [N3: num] :
                              ( ( Xa2
                                = ( bit0 @ N3 ) )
                             => ( Y
                               != ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N3 ) ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X2
                              = ( bit1 @ M4 ) )
                           => ! [N3: num] :
                                ( ( Xa2
                                  = ( bit1 @ N3 ) )
                               => ( Y
                                 != ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.elims
thf(fact_9431_and__num_Osimps_I1_J,axiom,
    ( ( bit_un7362597486090784418nd_num @ one @ one )
    = ( some_num @ one ) ) ).

% and_num.simps(1)
thf(fact_9432_xor__num_Osimps_I1_J,axiom,
    ( ( bit_un2480387367778600638or_num @ one @ one )
    = none_num ) ).

% xor_num.simps(1)
thf(fact_9433_xor__num_Osimps_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N2 ) ) ) ).

% xor_num.simps(5)
thf(fact_9434_and__num_Osimps_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N2 ) ) ) ).

% and_num.simps(5)
thf(fact_9435_and__num_Osimps_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_un7362597486090784418nd_num @ one @ ( bit1 @ N2 ) )
      = ( some_num @ one ) ) ).

% and_num.simps(3)
thf(fact_9436_and__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ one )
      = ( some_num @ one ) ) ).

% and_num.simps(7)
thf(fact_9437_and__num_Osimps_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_un7362597486090784418nd_num @ one @ ( bit0 @ N2 ) )
      = none_num ) ).

% and_num.simps(2)
thf(fact_9438_and__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ one )
      = none_num ) ).

% and_num.simps(4)
thf(fact_9439_and__num_Osimps_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N2 ) ) ) ).

% and_num.simps(8)
thf(fact_9440_and__num_Osimps_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N2 ) ) ) ).

% and_num.simps(6)
thf(fact_9441_xor__num_Osimps_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N2 ) ) ) ).

% xor_num.simps(9)
thf(fact_9442_xor__num_Osimps_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_un2480387367778600638or_num @ one @ ( bit0 @ N2 ) )
      = ( some_num @ ( bit1 @ N2 ) ) ) ).

% xor_num.simps(2)
thf(fact_9443_xor__num_Osimps_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_un2480387367778600638or_num @ one @ ( bit1 @ N2 ) )
      = ( some_num @ ( bit0 @ N2 ) ) ) ).

% xor_num.simps(3)
thf(fact_9444_xor__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit1 @ M ) ) ) ).

% xor_num.simps(4)
thf(fact_9445_xor__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% xor_num.simps(7)
thf(fact_9446_and__num_Osimps_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
        @ ( bit_un7362597486090784418nd_num @ M @ N2 ) ) ) ).

% and_num.simps(9)
thf(fact_9447_xor__num_Osimps_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N2 ) ) ) ) ).

% xor_num.simps(8)
thf(fact_9448_xor__num_Osimps_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N2 ) ) ) ) ).

% xor_num.simps(6)
thf(fact_9449_xor__num__dict,axiom,
    bit_un2480387367778600638or_num = bit_un6178654185764691216or_num ).

% xor_num_dict
thf(fact_9450_and__num__dict,axiom,
    bit_un7362597486090784418nd_num = bit_un1837492267222099188nd_num ).

% and_num_dict
thf(fact_9451_Bit__Operations_Otake__bit__num__code,axiom,
    ( bit_take_bit_num
    = ( ^ [N: nat,M3: num] :
          ( produc478579273971653890on_num
          @ ^ [A3: nat,X: num] :
              ( case_nat_option_num @ none_num
              @ ^ [O: nat] :
                  ( case_num_option_num @ ( some_num @ one )
                  @ ^ [P5: num] :
                      ( case_o6005452278849405969um_num @ none_num
                      @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
                      @ ( bit_take_bit_num @ O @ P5 ) )
                  @ ^ [P5: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P5 ) ) )
                  @ X )
              @ A3 )
          @ ( product_Pair_nat_num @ N @ M3 ) ) ) ) ).

% Bit_Operations.take_bit_num_code
thf(fact_9452_rat__floor__lemma,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( divide_divide_int @ A @ B ) ) @ ( fract @ A @ B ) )
      & ( ord_less_rat @ ( fract @ A @ B ) @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ) ).

% rat_floor_lemma
thf(fact_9453_image__minus__const__atLeastLessThan__nat,axiom,
    ! [C: nat,Y: nat,X2: nat] :
      ( ( ( ord_less_nat @ C @ Y )
       => ( ( image_nat_nat
            @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
            @ ( set_or4665077453230672383an_nat @ X2 @ Y ) )
          = ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X2 @ C ) @ ( minus_minus_nat @ Y @ C ) ) ) )
      & ( ~ ( ord_less_nat @ C @ Y )
       => ( ( ( ord_less_nat @ X2 @ Y )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X2 @ Y ) )
              = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
          & ( ~ ( ord_less_nat @ X2 @ Y )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X2 @ Y ) )
              = bot_bot_set_nat ) ) ) ) ) ).

% image_minus_const_atLeastLessThan_nat
thf(fact_9454_bij__betw__Suc,axiom,
    ! [M5: set_nat,N4: set_nat] :
      ( ( bij_betw_nat_nat @ suc @ M5 @ N4 )
      = ( ( image_nat_nat @ suc @ M5 )
        = N4 ) ) ).

% bij_betw_Suc
thf(fact_9455_mult__rat,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( times_times_rat @ ( fract @ A @ B ) @ ( fract @ C @ D2 ) )
      = ( fract @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ).

% mult_rat
thf(fact_9456_divide__rat,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( divide_divide_rat @ ( fract @ A @ B ) @ ( fract @ C @ D2 ) )
      = ( fract @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ B @ C ) ) ) ).

% divide_rat
thf(fact_9457_floor__Fract,axiom,
    ! [A: int,B: int] :
      ( ( archim3151403230148437115or_rat @ ( fract @ A @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% floor_Fract
thf(fact_9458_less__rat,axiom,
    ! [B: int,D2: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D2 != zero_zero_int )
       => ( ( ord_less_rat @ ( fract @ A @ B ) @ ( fract @ C @ D2 ) )
          = ( ord_less_int @ ( times_times_int @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ B @ D2 ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% less_rat
thf(fact_9459_add__rat,axiom,
    ! [B: int,D2: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D2 != zero_zero_int )
       => ( ( plus_plus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D2 ) )
          = ( fract @ ( plus_plus_int @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ).

% add_rat
thf(fact_9460_le__rat,axiom,
    ! [B: int,D2: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D2 != zero_zero_int )
       => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ ( fract @ C @ D2 ) )
          = ( ord_less_eq_int @ ( times_times_int @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ B @ D2 ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% le_rat
thf(fact_9461_diff__rat,axiom,
    ! [B: int,D2: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D2 != zero_zero_int )
       => ( ( minus_minus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D2 ) )
          = ( fract @ ( minus_minus_int @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ).

% diff_rat
thf(fact_9462_sgn__rat,axiom,
    ! [A: int,B: int] :
      ( ( sgn_sgn_rat @ ( fract @ A @ B ) )
      = ( ring_1_of_int_rat @ ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ) ).

% sgn_rat
thf(fact_9463_Rat__induct__pos,axiom,
    ! [P: rat > $o,Q2: rat] :
      ( ! [A5: int,B5: int] :
          ( ( ord_less_int @ zero_zero_int @ B5 )
         => ( P @ ( fract @ A5 @ B5 ) ) )
     => ( P @ Q2 ) ) ).

% Rat_induct_pos
thf(fact_9464_eq__rat_I1_J,axiom,
    ! [B: int,D2: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D2 != zero_zero_int )
       => ( ( ( fract @ A @ B )
            = ( fract @ C @ D2 ) )
          = ( ( times_times_int @ A @ D2 )
            = ( times_times_int @ C @ B ) ) ) ) ) ).

% eq_rat(1)
thf(fact_9465_mult__rat__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( fract @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( fract @ A @ B ) ) ) ).

% mult_rat_cancel
thf(fact_9466_Fract__coprime,axiom,
    ! [A: int,B: int] :
      ( ( fract @ ( divide_divide_int @ A @ ( gcd_gcd_int @ A @ B ) ) @ ( divide_divide_int @ B @ ( gcd_gcd_int @ A @ B ) ) )
      = ( fract @ A @ B ) ) ).

% Fract_coprime
thf(fact_9467_Fract__of__int__quotient,axiom,
    ( fract
    = ( ^ [K2: int,L: int] : ( divide_divide_rat @ ( ring_1_of_int_rat @ K2 ) @ ( ring_1_of_int_rat @ L ) ) ) ) ).

% Fract_of_int_quotient
thf(fact_9468_rat__number__collapse_I3_J,axiom,
    ! [W: num] :
      ( ( fract @ ( numeral_numeral_int @ W ) @ one_one_int )
      = ( numeral_numeral_rat @ W ) ) ).

% rat_number_collapse(3)
thf(fact_9469_rat__number__expand_I3_J,axiom,
    ( numeral_numeral_rat
    = ( ^ [K2: num] : ( fract @ ( numeral_numeral_int @ K2 ) @ one_one_int ) ) ) ).

% rat_number_expand(3)
thf(fact_9470_Fract__less__zero__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ ( fract @ A @ B ) @ zero_zero_rat )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% Fract_less_zero_iff
thf(fact_9471_zero__less__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ ( fract @ A @ B ) )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% zero_less_Fract_iff
thf(fact_9472_one__less__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ one_one_rat @ ( fract @ A @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% one_less_Fract_iff
thf(fact_9473_Fract__less__one__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ ( fract @ A @ B ) @ one_one_rat )
        = ( ord_less_int @ A @ B ) ) ) ).

% Fract_less_one_iff
thf(fact_9474_Fract__add__one,axiom,
    ! [N2: int,M: int] :
      ( ( N2 != zero_zero_int )
     => ( ( fract @ ( plus_plus_int @ M @ N2 ) @ N2 )
        = ( plus_plus_rat @ ( fract @ M @ N2 ) @ one_one_rat ) ) ) ).

% Fract_add_one
thf(fact_9475_Fract__le__zero__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ zero_zero_rat )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% Fract_le_zero_iff
thf(fact_9476_zero__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_Fract_iff
thf(fact_9477_Fract__le__one__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ one_one_rat )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% Fract_le_one_iff
thf(fact_9478_one__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% one_le_Fract_iff
thf(fact_9479_rat__number__expand_I5_J,axiom,
    ! [K: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) )
      = ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% rat_number_expand(5)
thf(fact_9480_rat__number__collapse_I4_J,axiom,
    ! [W: num] :
      ( ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ one_one_int )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ).

% rat_number_collapse(4)
thf(fact_9481_Inf__real__def,axiom,
    ( comple4887499456419720421f_real
    = ( ^ [X5: set_real] : ( uminus_uminus_real @ ( comple1385675409528146559p_real @ ( image_real_real @ uminus_uminus_real @ X5 ) ) ) ) ) ).

% Inf_real_def
thf(fact_9482_infinite__UNIV__nat,axiom,
    ~ ( finite_finite_nat @ top_top_set_nat ) ).

% infinite_UNIV_nat
thf(fact_9483_nat__not__finite,axiom,
    ~ ( finite_finite_nat @ top_top_set_nat ) ).

% nat_not_finite
thf(fact_9484_suminf__eq__SUP__real,axiom,
    ! [X7: nat > real] :
      ( ( summable_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( X7 @ I3 ) )
       => ( ( suminf_real @ X7 )
          = ( comple1385675409528146559p_real
            @ ( image_nat_real
              @ ^ [I4: nat] : ( groups6591440286371151544t_real @ X7 @ ( set_ord_lessThan_nat @ I4 ) )
              @ top_top_set_nat ) ) ) ) ) ).

% suminf_eq_SUP_real
thf(fact_9485_infinite__int__iff__infinite__nat__abs,axiom,
    ! [S3: set_int] :
      ( ( ~ ( finite_finite_int @ S3 ) )
      = ( ~ ( finite_finite_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ S3 ) ) ) ) ).

% infinite_int_iff_infinite_nat_abs
thf(fact_9486_image__add__int__atLeastLessThan,axiom,
    ! [L2: int,U: int] :
      ( ( image_int_int
        @ ^ [X: int] : ( plus_plus_int @ X @ L2 )
        @ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L2 ) ) )
      = ( set_or4662586982721622107an_int @ L2 @ U ) ) ).

% image_add_int_atLeastLessThan
thf(fact_9487_range__mod,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( image_nat_nat
          @ ^ [M3: nat] : ( modulo_modulo_nat @ M3 @ N2 )
          @ top_top_set_nat )
        = ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ).

% range_mod
thf(fact_9488_card__UNIV__bool,axiom,
    ( ( finite_card_o @ top_top_set_o )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% card_UNIV_bool
thf(fact_9489_range__mult,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
      & ( ( A != zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = top_top_set_real ) ) ) ).

% range_mult
thf(fact_9490_root__def,axiom,
    ( root
    = ( ^ [N: nat,X: real] :
          ( if_real @ ( N = zero_zero_nat ) @ zero_zero_real
          @ ( the_in5290026491893676941l_real @ top_top_set_real
            @ ^ [Y2: real] : ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N ) )
            @ X ) ) ) ) ).

% root_def
thf(fact_9491_card__UNIV__char,axiom,
    ( ( finite_card_char @ top_top_set_char )
    = ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% card_UNIV_char
thf(fact_9492_UNIV__char__of__nat,axiom,
    ( top_top_set_char
    = ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% UNIV_char_of_nat
thf(fact_9493_nat__of__char__less__256,axiom,
    ! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% nat_of_char_less_256
thf(fact_9494_range__nat__of__char,axiom,
    ( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
    = ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% range_nat_of_char
thf(fact_9495_integer__of__char__code,axiom,
    ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
      ( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).

% integer_of_char_code
thf(fact_9496_sorted__list__of__set__greaterThanAtMost,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( suc @ I ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) )
        = ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanAtMost
thf(fact_9497_sorted__list__of__set__greaterThanLessThan,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) )
        = ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanLessThan
thf(fact_9498_String_Ochar__of__ascii__of,axiom,
    ! [C: char] :
      ( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
      = ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).

% String.char_of_ascii_of
thf(fact_9499_sorted__list__of__set__lessThan__Suc,axiom,
    ! [K: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K ) ) @ ( cons_nat @ K @ nil_nat ) ) ) ).

% sorted_list_of_set_lessThan_Suc
thf(fact_9500_sorted__list__of__set__atMost__Suc,axiom,
    ! [K: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K ) ) @ ( cons_nat @ ( suc @ K ) @ nil_nat ) ) ) ).

% sorted_list_of_set_atMost_Suc
thf(fact_9501_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I4: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I4 ) @ Js @ ( upto_aux @ I4 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_9502_upto_Opelims,axiom,
    ! [X2: int,Xa2: int,Y: list_int] :
      ( ( ( upto @ X2 @ Xa2 )
        = Y )
     => ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) )
       => ~ ( ( ( ( ord_less_eq_int @ X2 @ Xa2 )
               => ( Y
                  = ( cons_int @ X2 @ ( upto @ ( plus_plus_int @ X2 @ one_one_int ) @ Xa2 ) ) ) )
              & ( ~ ( ord_less_eq_int @ X2 @ Xa2 )
               => ( Y = nil_int ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) ) ) ) ) ).

% upto.pelims
thf(fact_9503_upto_Opsimps,axiom,
    ! [I: int,J: int] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I @ J ) )
     => ( ( ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) )
        & ( ~ ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = nil_int ) ) ) ) ).

% upto.psimps
thf(fact_9504_upto__Nil,axiom,
    ! [I: int,J: int] :
      ( ( ( upto @ I @ J )
        = nil_int )
      = ( ord_less_int @ J @ I ) ) ).

% upto_Nil
thf(fact_9505_upto__Nil2,axiom,
    ! [I: int,J: int] :
      ( ( nil_int
        = ( upto @ I @ J ) )
      = ( ord_less_int @ J @ I ) ) ).

% upto_Nil2
thf(fact_9506_upto__empty,axiom,
    ! [J: int,I: int] :
      ( ( ord_less_int @ J @ I )
     => ( ( upto @ I @ J )
        = nil_int ) ) ).

% upto_empty
thf(fact_9507_upto__single,axiom,
    ! [I: int] :
      ( ( upto @ I @ I )
      = ( cons_int @ I @ nil_int ) ) ).

% upto_single
thf(fact_9508_nth__upto,axiom,
    ! [I: int,K: nat,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) @ J )
     => ( ( nth_int @ ( upto @ I @ J ) @ K )
        = ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).

% nth_upto
thf(fact_9509_length__upto,axiom,
    ! [I: int,J: int] :
      ( ( size_size_list_int @ ( upto @ I @ J ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I ) @ one_one_int ) ) ) ).

% length_upto
thf(fact_9510_upto__rec__numeral_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N2 ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(1)
thf(fact_9511_upto__rec__numeral_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(4)
thf(fact_9512_upto__rec__numeral_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N2 ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(3)
thf(fact_9513_upto__rec__numeral_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(2)
thf(fact_9514_upto__aux__def,axiom,
    ( upto_aux
    = ( ^ [I4: int,J3: int] : ( append_int @ ( upto @ I4 @ J3 ) ) ) ) ).

% upto_aux_def
thf(fact_9515_upto__code,axiom,
    ( upto
    = ( ^ [I4: int,J3: int] : ( upto_aux @ I4 @ J3 @ nil_int ) ) ) ).

% upto_code
thf(fact_9516_atLeastAtMost__upto,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ I4 @ J3 ) ) ) ) ).

% atLeastAtMost_upto
thf(fact_9517_distinct__upto,axiom,
    ! [I: int,J: int] : ( distinct_int @ ( upto @ I @ J ) ) ).

% distinct_upto
thf(fact_9518_upto__split2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).

% upto_split2
thf(fact_9519_upto__split1,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).

% upto_split1
thf(fact_9520_atLeastLessThan__upto,axiom,
    ( set_or4662586982721622107an_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ I4 @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% atLeastLessThan_upto
thf(fact_9521_greaterThanAtMost__upto,axiom,
    ( set_or6656581121297822940st_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) ) ) ).

% greaterThanAtMost_upto
thf(fact_9522_upto_Osimps,axiom,
    ( upto
    = ( ^ [I4: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I4 @ J3 ) @ ( cons_int @ I4 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).

% upto.simps
thf(fact_9523_upto_Oelims,axiom,
    ! [X2: int,Xa2: int,Y: list_int] :
      ( ( ( upto @ X2 @ Xa2 )
        = Y )
     => ( ( ( ord_less_eq_int @ X2 @ Xa2 )
         => ( Y
            = ( cons_int @ X2 @ ( upto @ ( plus_plus_int @ X2 @ one_one_int ) @ Xa2 ) ) ) )
        & ( ~ ( ord_less_eq_int @ X2 @ Xa2 )
         => ( Y = nil_int ) ) ) ) ).

% upto.elims
thf(fact_9524_upto__rec1,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) ) ).

% upto_rec1
thf(fact_9525_upto__rec2,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).

% upto_rec2
thf(fact_9526_greaterThanLessThan__upto,axiom,
    ( set_or5832277885323065728an_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% greaterThanLessThan_upto
thf(fact_9527_upto__split3,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).

% upto_split3
thf(fact_9528_DERIV__real__root__generic,axiom,
    ! [N2: nat,X2: real,D4: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( X2 != zero_zero_real )
       => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
           => ( ( ord_less_real @ zero_zero_real @ X2 )
             => ( D4
                = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X2 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
         => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
             => ( ( ord_less_real @ X2 @ zero_zero_real )
               => ( D4
                  = ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X2 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
           => ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
               => ( D4
                  = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X2 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
             => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ D4 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ).

% DERIV_real_root_generic
thf(fact_9529_DERIV__local__const,axiom,
    ! [F: real > real,L2: real,X2: real,D2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ( ! [Y3: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D2 )
             => ( ( F @ X2 )
                = ( F @ Y3 ) ) )
         => ( L2 = zero_zero_real ) ) ) ) ).

% DERIV_local_const
thf(fact_9530_MVT2,axiom,
    ! [A: real,B: real,F: real > real,F4: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ord_less_eq_real @ A @ X3 )
           => ( ( ord_less_eq_real @ X3 @ B )
             => ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
       => ? [Z5: real] :
            ( ( ord_less_real @ A @ Z5 )
            & ( ord_less_real @ Z5 @ B )
            & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
              = ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F4 @ Z5 ) ) ) ) ) ) ).

% MVT2
thf(fact_9531_has__real__derivative__neg__dec__left,axiom,
    ! [F: real > real,L2: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D3 )
                   => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_left
thf(fact_9532_has__real__derivative__pos__inc__left,axiom,
    ! [F: real > real,L2: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D3 )
                   => ( ord_less_real @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_left
thf(fact_9533_has__real__derivative__pos__inc__right,axiom,
    ! [F: real > real,L2: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D3 )
                   => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_right
thf(fact_9534_has__real__derivative__neg__dec__right,axiom,
    ! [F: real > real,L2: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D3 )
                   => ( ord_less_real @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_right
thf(fact_9535_DERIV__neg__dec__right,axiom,
    ! [F: real > real,L2: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D3 )
                 => ( ord_less_real @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ).

% DERIV_neg_dec_right
thf(fact_9536_DERIV__pos__inc__right,axiom,
    ! [F: real > real,L2: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D3 )
                 => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_pos_inc_right
thf(fact_9537_DERIV__isconst__all,axiom,
    ! [F: real > real,X2: real,Y: real] :
      ( ! [X3: real] : ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( F @ X2 )
        = ( F @ Y ) ) ) ).

% DERIV_isconst_all
thf(fact_9538_DERIV__mirror,axiom,
    ! [F: real > real,Y: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ Y @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ X2 ) @ top_top_set_real ) )
      = ( has_fi5821293074295781190e_real
        @ ^ [X: real] : ( F @ ( uminus_uminus_real @ X ) )
        @ ( uminus_uminus_real @ Y )
        @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_mirror
thf(fact_9539_DERIV__const__ratio__const2,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X3: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
       => ( ( divide_divide_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( minus_minus_real @ B @ A ) )
          = K ) ) ) ).

% DERIV_const_ratio_const2
thf(fact_9540_DERIV__const__ratio__const,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X3: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
       => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
          = ( times_times_real @ ( minus_minus_real @ B @ A ) @ K ) ) ) ) ).

% DERIV_const_ratio_const
thf(fact_9541_DERIV__neg__dec__left,axiom,
    ! [F: real > real,L2: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D3 )
                 => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_neg_dec_left
thf(fact_9542_DERIV__pos__inc__left,axiom,
    ! [F: real > real,L2: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D3 )
                 => ( ord_less_real @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ).

% DERIV_pos_inc_left
thf(fact_9543_DERIV__isconst3,axiom,
    ! [A: real,B: real,X2: real,Y: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( member_real @ X2 @ ( set_or1633881224788618240n_real @ A @ B ) )
       => ( ( member_real @ Y @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
           => ( ( F @ X2 )
              = ( F @ Y ) ) ) ) ) ) ).

% DERIV_isconst3
thf(fact_9544_DERIV__pos__imp__increasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ord_less_eq_real @ A @ X3 )
           => ( ( ord_less_eq_real @ X3 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y4 ) ) ) )
       => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing
thf(fact_9545_DERIV__neg__imp__decreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ord_less_eq_real @ A @ X3 )
           => ( ( ord_less_eq_real @ X3 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  & ( ord_less_real @ Y4 @ zero_zero_real ) ) ) )
       => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_neg_imp_decreasing
thf(fact_9546_deriv__nonneg__imp__mono,axiom,
    ! [A: real,B: real,G: real > real,G2: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ ( set_or1222579329274155063t_real @ A @ B ) )
         => ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ ( set_or1222579329274155063t_real @ A @ B ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X3 ) ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).

% deriv_nonneg_imp_mono
thf(fact_9547_DERIV__nonneg__imp__nondecreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ord_less_eq_real @ A @ X3 )
           => ( ( ord_less_eq_real @ X3 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ zero_zero_real @ Y4 ) ) ) )
       => ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_nonneg_imp_nondecreasing
thf(fact_9548_DERIV__nonpos__imp__nonincreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ord_less_eq_real @ A @ X3 )
           => ( ( ord_less_eq_real @ X3 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ Y4 @ zero_zero_real ) ) ) )
       => ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_nonpos_imp_nonincreasing
thf(fact_9549_DERIV__ln,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( inverse_inverse_real @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_ln
thf(fact_9550_DERIV__const__average,axiom,
    ! [A: real,B: real,V: real > real,K: real] :
      ( ( A != B )
     => ( ! [X3: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
       => ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% DERIV_const_average
thf(fact_9551_DERIV__local__max,axiom,
    ! [F: real > real,L2: real,X2: real,D2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ( ! [Y3: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D2 )
             => ( ord_less_eq_real @ ( F @ Y3 ) @ ( F @ X2 ) ) )
         => ( L2 = zero_zero_real ) ) ) ) ).

% DERIV_local_max
thf(fact_9552_DERIV__local__min,axiom,
    ! [F: real > real,L2: real,X2: real,D2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ( ! [Y3: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y3 ) ) )
         => ( L2 = zero_zero_real ) ) ) ) ).

% DERIV_local_min
thf(fact_9553_DERIV__ln__divide,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_ln_divide
thf(fact_9554_DERIV__pow,axiom,
    ! [N2: nat,X2: real,S: set_real] :
      ( has_fi5821293074295781190e_real
      @ ^ [X: real] : ( power_power_real @ X @ N2 )
      @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ X2 @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) )
      @ ( topolo2177554685111907308n_real @ X2 @ S ) ) ).

% DERIV_pow
thf(fact_9555_DERIV__fun__pow,axiom,
    ! [G: real > real,M: real,X2: real,N2: nat] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( has_fi5821293074295781190e_real
        @ ^ [X: real] : ( power_power_real @ ( G @ X ) @ N2 )
        @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( G @ X2 ) @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) @ M )
        @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_fun_pow
thf(fact_9556_has__real__derivative__powr,axiom,
    ! [Z: real,R: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( has_fi5821293074295781190e_real
        @ ^ [Z2: real] : ( powr_real @ Z2 @ R )
        @ ( times_times_real @ R @ ( powr_real @ Z @ ( minus_minus_real @ R @ one_one_real ) ) )
        @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) ).

% has_real_derivative_powr
thf(fact_9557_DERIV__series_H,axiom,
    ! [F: real > nat > real,F4: real > nat > real,X0: real,A: real,B: real,L5: nat > real] :
      ( ! [N3: nat] :
          ( has_fi5821293074295781190e_real
          @ ^ [X: real] : ( F @ X @ N3 )
          @ ( F4 @ X0 @ N3 )
          @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
           => ( summable_real @ ( F @ X3 ) ) )
       => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ( summable_real @ ( F4 @ X0 ) )
           => ( ( summable_real @ L5 )
             => ( ! [N3: nat,X3: real,Y3: real] :
                    ( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
                   => ( ( member_real @ Y3 @ ( set_or1633881224788618240n_real @ A @ B ) )
                     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X3 @ N3 ) @ ( F @ Y3 @ N3 ) ) ) @ ( times_times_real @ ( L5 @ N3 ) @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y3 ) ) ) ) ) )
               => ( has_fi5821293074295781190e_real
                  @ ^ [X: real] : ( suminf_real @ ( F @ X ) )
                  @ ( suminf_real @ ( F4 @ X0 ) )
                  @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_series'
thf(fact_9558_DERIV__log,axiom,
    ! [X2: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X2 ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_log
thf(fact_9559_DERIV__fun__powr,axiom,
    ! [G: real > real,M: real,X2: real,R: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X2 ) )
       => ( has_fi5821293074295781190e_real
          @ ^ [X: real] : ( powr_real @ ( G @ X ) @ R )
          @ ( times_times_real @ ( times_times_real @ R @ ( powr_real @ ( G @ X2 ) @ ( minus_minus_real @ R @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
          @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_fun_powr
thf(fact_9560_DERIV__powr,axiom,
    ! [G: real > real,M: real,X2: real,F: real > real,R: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X2 ) )
       => ( ( has_fi5821293074295781190e_real @ F @ R @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
         => ( has_fi5821293074295781190e_real
            @ ^ [X: real] : ( powr_real @ ( G @ X ) @ ( F @ X ) )
            @ ( times_times_real @ ( powr_real @ ( G @ X2 ) @ ( F @ X2 ) ) @ ( plus_plus_real @ ( times_times_real @ R @ ( ln_ln_real @ ( G @ X2 ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X2 ) ) @ ( G @ X2 ) ) ) )
            @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).

% DERIV_powr
thf(fact_9561_DERIV__real__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_real_sqrt
thf(fact_9562_DERIV__arctan,axiom,
    ! [X2: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ).

% DERIV_arctan
thf(fact_9563_arsinh__real__has__field__derivative,axiom,
    ! [X2: real,A2: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ).

% arsinh_real_has_field_derivative
thf(fact_9564_DERIV__real__sqrt__generic,axiom,
    ! [X2: real,D4: real] :
      ( ( X2 != zero_zero_real )
     => ( ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( D4
            = ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( ( ord_less_real @ X2 @ zero_zero_real )
           => ( D4
              = ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
         => ( has_fi5821293074295781190e_real @ sqrt @ D4 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).

% DERIV_real_sqrt_generic
thf(fact_9565_arcosh__real__has__field__derivative,axiom,
    ! [X2: real,A2: set_real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ) ).

% arcosh_real_has_field_derivative
thf(fact_9566_artanh__real__has__field__derivative,axiom,
    ! [X2: real,A2: set_real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ) ).

% artanh_real_has_field_derivative
thf(fact_9567_DERIV__power__series_H,axiom,
    ! [R2: real,F: nat > real,X0: real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R2 ) @ R2 ) )
         => ( summable_real
            @ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( F @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) @ ( power_power_real @ X3 @ N ) ) ) )
     => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R2 ) @ R2 ) )
       => ( ( ord_less_real @ zero_zero_real @ R2 )
         => ( has_fi5821293074295781190e_real
            @ ^ [X: real] :
                ( suminf_real
                @ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ X @ ( suc @ N ) ) ) )
            @ ( suminf_real
              @ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( F @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) @ ( power_power_real @ X0 @ N ) ) )
            @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).

% DERIV_power_series'
thf(fact_9568_DERIV__real__root,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X2 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_real_root
thf(fact_9569_DERIV__arccos,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_arccos
thf(fact_9570_DERIV__arcsin,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_arcsin
thf(fact_9571_Maclaurin__all__le,axiom,
    ! [Diff: nat > real > real,F: real > real,X2: real,N2: nat] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,X3: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
            & ( ( F @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_all_le
thf(fact_9572_Maclaurin__all__le__objl,axiom,
    ! [Diff: nat > real > real,F: real > real,X2: real,N2: nat] :
      ( ( ( ( Diff @ zero_zero_nat )
          = F )
        & ! [M4: nat,X3: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
     => ? [T5: real] :
          ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
          & ( ( F @ X2 )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                @ ( set_ord_lessThan_nat @ N2 ) )
              @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ).

% Maclaurin_all_le_objl
thf(fact_9573_DERIV__odd__real__root,axiom,
    ! [N2: nat,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( X2 != zero_zero_real )
       => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X2 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_odd_real_root
thf(fact_9574_Maclaurin__minus,axiom,
    ! [H2: real,N2: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ H2 @ zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T5: real] :
                ( ( ( ord_less_nat @ M4 @ N2 )
                  & ( ord_less_eq_real @ H2 @ T5 )
                  & ( ord_less_eq_real @ T5 @ zero_zero_real ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
           => ? [T5: real] :
                ( ( ord_less_real @ H2 @ T5 )
                & ( ord_less_real @ T5 @ zero_zero_real )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N2 ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ) ).

% Maclaurin_minus
thf(fact_9575_Maclaurin2,axiom,
    ! [H2: real,Diff: nat > real > real,F: real > real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N2 )
                & ( ord_less_eq_real @ zero_zero_real @ T5 )
                & ( ord_less_eq_real @ T5 @ H2 ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ? [T5: real] :
              ( ( ord_less_real @ zero_zero_real @ T5 )
              & ( ord_less_eq_real @ T5 @ H2 )
              & ( ( F @ H2 )
                = ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                    @ ( set_ord_lessThan_nat @ N2 ) )
                  @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ).

% Maclaurin2
thf(fact_9576_Maclaurin,axiom,
    ! [H2: real,N2: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T5: real] :
                ( ( ( ord_less_nat @ M4 @ N2 )
                  & ( ord_less_eq_real @ zero_zero_real @ T5 )
                  & ( ord_less_eq_real @ T5 @ H2 ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
           => ? [T5: real] :
                ( ( ord_less_real @ zero_zero_real @ T5 )
                & ( ord_less_real @ T5 @ H2 )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N2 ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ) ).

% Maclaurin
thf(fact_9577_Maclaurin__all__lt,axiom,
    ! [Diff: nat > real > real,F: real > real,N2: nat,X2: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( X2 != zero_zero_real )
         => ( ! [M4: nat,X3: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
           => ? [T5: real] :
                ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
                & ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
                & ( ( F @ X2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N2 ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ) ) ) ).

% Maclaurin_all_lt
thf(fact_9578_Maclaurin__bi__le,axiom,
    ! [Diff: nat > real > real,F: real > real,N2: nat,X2: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,T5: real] :
            ( ( ( ord_less_nat @ M4 @ N2 )
              & ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) ) )
           => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
            & ( ( F @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X2 @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_bi_le
thf(fact_9579_Taylor__down,axiom,
    ! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N2 )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ? [T5: real] :
                  ( ( ord_less_real @ A @ T5 )
                  & ( ord_less_real @ T5 @ C )
                  & ( ( F @ A )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N2 ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ).

% Taylor_down
thf(fact_9580_Taylor__up,axiom,
    ! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N2 )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_real @ C @ B )
             => ? [T5: real] :
                  ( ( ord_less_real @ C @ T5 )
                  & ( ord_less_real @ T5 @ B )
                  & ( ( F @ B )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N2 ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ).

% Taylor_up
thf(fact_9581_Taylor,axiom,
    ! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N2 )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ( ( ord_less_eq_real @ A @ X2 )
               => ( ( ord_less_eq_real @ X2 @ B )
                 => ( ( X2 != C )
                   => ? [T5: real] :
                        ( ( ( ord_less_real @ X2 @ C )
                         => ( ( ord_less_real @ X2 @ T5 )
                            & ( ord_less_real @ T5 @ C ) ) )
                        & ( ~ ( ord_less_real @ X2 @ C )
                         => ( ( ord_less_real @ C @ T5 )
                            & ( ord_less_real @ T5 @ X2 ) ) )
                        & ( ( F @ X2 )
                          = ( plus_plus_real
                            @ ( groups6591440286371151544t_real
                              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ C ) @ M3 ) )
                              @ ( set_ord_lessThan_nat @ N2 ) )
                            @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% Taylor
thf(fact_9582_Maclaurin__lemma2,axiom,
    ! [N2: nat,H2: real,Diff: nat > real > real,K: nat,B2: real] :
      ( ! [M4: nat,T5: real] :
          ( ( ( ord_less_nat @ M4 @ N2 )
            & ( ord_less_eq_real @ zero_zero_real @ T5 )
            & ( ord_less_eq_real @ T5 @ H2 ) )
         => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
     => ( ( N2
          = ( suc @ K ) )
       => ! [M2: nat,T6: real] :
            ( ( ( ord_less_nat @ M2 @ N2 )
              & ( ord_less_eq_real @ zero_zero_real @ T6 )
              & ( ord_less_eq_real @ T6 @ H2 ) )
           => ( has_fi5821293074295781190e_real
              @ ^ [U2: real] :
                  ( minus_minus_real @ ( Diff @ M2 @ U2 )
                  @ ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M2 @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ U2 @ P5 ) )
                      @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ M2 ) ) )
                    @ ( times_times_real @ B2 @ ( divide_divide_real @ ( power_power_real @ U2 @ ( minus_minus_nat @ N2 @ M2 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ M2 ) ) ) ) ) )
              @ ( minus_minus_real @ ( Diff @ ( suc @ M2 ) @ T6 )
                @ ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M2 ) @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ T6 @ P5 ) )
                    @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ M2 ) ) ) )
                  @ ( times_times_real @ B2 @ ( divide_divide_real @ ( power_power_real @ T6 @ ( minus_minus_nat @ N2 @ ( suc @ M2 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ ( suc @ M2 ) ) ) ) ) ) )
              @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) ) ) ) ).

% Maclaurin_lemma2
thf(fact_9583_DERIV__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( has_fi5821293074295781190e_real
        @ ^ [X9: real] :
            ( suminf_real
            @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X9 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
        @ ( suminf_real
          @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( power_power_real @ X2 @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_arctan_series
thf(fact_9584_DERIV__even__real__root,axiom,
    ! [N2: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( ord_less_real @ X2 @ zero_zero_real )
         => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ ( power_power_real @ ( root @ N2 @ X2 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).

% DERIV_even_real_root
thf(fact_9585_isCont__Lb__Ub,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ( ord_less_eq_real @ A @ X3 )
              & ( ord_less_eq_real @ X3 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ F ) )
       => ? [L6: real,M9: real] :
            ( ! [X4: real] :
                ( ( ( ord_less_eq_real @ A @ X4 )
                  & ( ord_less_eq_real @ X4 @ B ) )
               => ( ( ord_less_eq_real @ L6 @ ( F @ X4 ) )
                  & ( ord_less_eq_real @ ( F @ X4 ) @ M9 ) ) )
            & ! [Y4: real] :
                ( ( ( ord_less_eq_real @ L6 @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ M9 ) )
               => ? [X3: real] :
                    ( ( ord_less_eq_real @ A @ X3 )
                    & ( ord_less_eq_real @ X3 @ B )
                    & ( ( F @ X3 )
                      = Y4 ) ) ) ) ) ) ).

% isCont_Lb_Ub
thf(fact_9586_LIM__fun__less__zero,axiom,
    ! [F: real > real,L2: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X4: real] :
                ( ( ( X4 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R3 ) )
               => ( ord_less_real @ ( F @ X4 ) @ zero_zero_real ) ) ) ) ) ).

% LIM_fun_less_zero
thf(fact_9587_LIM__fun__not__zero,axiom,
    ! [F: real > real,L2: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( L2 != zero_zero_real )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X4: real] :
                ( ( ( X4 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R3 ) )
               => ( ( F @ X4 )
                 != zero_zero_real ) ) ) ) ) ).

% LIM_fun_not_zero
thf(fact_9588_LIM__fun__gt__zero,axiom,
    ! [F: real > real,L2: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X4: real] :
                ( ( ( X4 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R3 ) )
               => ( ord_less_real @ zero_zero_real @ ( F @ X4 ) ) ) ) ) ) ).

% LIM_fun_gt_zero
thf(fact_9589_isCont__real__sqrt,axiom,
    ! [X2: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ sqrt ) ).

% isCont_real_sqrt
thf(fact_9590_isCont__real__root,axiom,
    ! [X2: real,N2: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ ( root @ N2 ) ) ).

% isCont_real_root
thf(fact_9591_continuous__frac,axiom,
    ! [X2: real] :
      ( ~ ( member_real @ X2 @ ring_1_Ints_real )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ archim2898591450579166408c_real ) ) ).

% continuous_frac
thf(fact_9592_isCont__inverse__function2,axiom,
    ! [A: real,X2: real,B: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ A @ X2 )
     => ( ( ord_less_real @ X2 @ B )
       => ( ! [Z5: real] :
              ( ( ord_less_eq_real @ A @ Z5 )
             => ( ( ord_less_eq_real @ Z5 @ B )
               => ( ( G @ ( F @ Z5 ) )
                  = Z5 ) ) )
         => ( ! [Z5: real] :
                ( ( ord_less_eq_real @ A @ Z5 )
               => ( ( ord_less_eq_real @ Z5 @ B )
                 => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) @ F ) ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X2 ) @ top_top_set_real ) @ G ) ) ) ) ) ).

% isCont_inverse_function2
thf(fact_9593_isCont__arcosh,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arcosh_real ) ) ).

% isCont_arcosh
thf(fact_9594_LIM__cos__div__sin,axiom,
    ( filterlim_real_real
    @ ^ [X: real] : ( divide_divide_real @ ( cos_real @ X ) @ ( sin_real @ X ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).

% LIM_cos_div_sin
thf(fact_9595_continuous__floor,axiom,
    ! [X2: real] :
      ( ~ ( member_real @ X2 @ ring_1_Ints_real )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ ( comp_int_real_real @ ring_1_of_int_real @ archim6058952711729229775r_real ) ) ) ).

% continuous_floor
thf(fact_9596_DERIV__inverse__function,axiom,
    ! [F: real > real,D4: real,G: real > real,X2: real,A: real,B: real] :
      ( ( has_fi5821293074295781190e_real @ F @ D4 @ ( topolo2177554685111907308n_real @ ( G @ X2 ) @ top_top_set_real ) )
     => ( ( D4 != zero_zero_real )
       => ( ( ord_less_real @ A @ X2 )
         => ( ( ord_less_real @ X2 @ B )
           => ( ! [Y3: real] :
                  ( ( ord_less_real @ A @ Y3 )
                 => ( ( ord_less_real @ Y3 @ B )
                   => ( ( F @ ( G @ Y3 ) )
                      = Y3 ) ) )
             => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ G )
               => ( has_fi5821293074295781190e_real @ G @ ( inverse_inverse_real @ D4 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_inverse_function
thf(fact_9597_isCont__arccos,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arccos ) ) ) ).

% isCont_arccos
thf(fact_9598_isCont__arcsin,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arcsin ) ) ) ).

% isCont_arcsin
thf(fact_9599_LIM__less__bound,axiom,
    ! [B: real,X2: real,F: real > real] :
      ( ( ord_less_real @ B @ X2 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ B @ X2 ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
       => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ F )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X2 ) ) ) ) ) ).

% LIM_less_bound
thf(fact_9600_isCont__artanh,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ artanh_real ) ) ) ).

% isCont_artanh
thf(fact_9601_isCont__inverse__function,axiom,
    ! [D2: real,X2: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ D2 )
     => ( ! [Z5: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z5 @ X2 ) ) @ D2 )
           => ( ( G @ ( F @ Z5 ) )
              = Z5 ) )
       => ( ! [Z5: real] :
              ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z5 @ X2 ) ) @ D2 )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) @ F ) )
         => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X2 ) @ top_top_set_real ) @ G ) ) ) ) ).

% isCont_inverse_function
thf(fact_9602_GMVT_H,axiom,
    ! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F4: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [Z5: real] :
            ( ( ord_less_eq_real @ A @ Z5 )
           => ( ( ord_less_eq_real @ Z5 @ B )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) @ F ) ) )
       => ( ! [Z5: real] :
              ( ( ord_less_eq_real @ A @ Z5 )
             => ( ( ord_less_eq_real @ Z5 @ B )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) @ G ) ) )
         => ( ! [Z5: real] :
                ( ( ord_less_real @ A @ Z5 )
               => ( ( ord_less_real @ Z5 @ B )
                 => ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z5 ) @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) ) ) )
           => ( ! [Z5: real] :
                  ( ( ord_less_real @ A @ Z5 )
                 => ( ( ord_less_real @ Z5 @ B )
                   => ( has_fi5821293074295781190e_real @ F @ ( F4 @ Z5 ) @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) ) ) )
             => ? [C2: real] :
                  ( ( ord_less_real @ A @ C2 )
                  & ( ord_less_real @ C2 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C2 ) )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F4 @ C2 ) ) ) ) ) ) ) ) ) ).

% GMVT'
thf(fact_9603_summable__Leibniz_I2_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
         => ! [N7: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) @ one_one_nat ) ) ) ) ) ) ) ) ).

% summable_Leibniz(2)
thf(fact_9604_summable__Leibniz_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
         => ! [N7: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) @ one_one_nat ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) ) ) ) ) ) ) ) ).

% summable_Leibniz(3)
thf(fact_9605_mult__nat__right__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat
        @ ^ [X: nat] : ( times_times_nat @ X @ C )
        @ at_top_nat
        @ at_top_nat ) ) ).

% mult_nat_right_at_top
thf(fact_9606_mult__nat__left__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).

% mult_nat_left_at_top
thf(fact_9607_monoseq__convergent,axiom,
    ! [X7: nat > real,B2: real] :
      ( ( topolo6980174941875973593q_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X7 @ I3 ) ) @ B2 )
       => ~ ! [L6: real] :
              ~ ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat ) ) ) ).

% monoseq_convergent
thf(fact_9608_LIMSEQ__root,axiom,
    ( filterlim_nat_real
    @ ^ [N: nat] : ( root @ N @ ( semiri5074537144036343181t_real @ N ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_root
thf(fact_9609_nested__sequence__unique,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N3 ) ) @ ( G @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
         => ( ( filterlim_nat_real
              @ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( G @ N ) )
              @ ( topolo2815343760600316023s_real @ zero_zero_real )
              @ at_top_nat )
           => ? [L4: real] :
                ( ! [N7: nat] : ( ord_less_eq_real @ ( F @ N7 ) @ L4 )
                & ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat )
                & ! [N7: nat] : ( ord_less_eq_real @ L4 @ ( G @ N7 ) )
                & ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat ) ) ) ) ) ) ).

% nested_sequence_unique
thf(fact_9610_LIMSEQ__inverse__zero,axiom,
    ! [X7: nat > real] :
      ( ! [R3: real] :
        ? [N8: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N8 @ N3 )
         => ( ord_less_real @ R3 @ ( X7 @ N3 ) ) )
     => ( filterlim_nat_real
        @ ^ [N: nat] : ( inverse_inverse_real @ ( X7 @ N ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_zero
thf(fact_9611_lim__inverse__n_H,axiom,
    ( filterlim_nat_real
    @ ^ [N: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_inverse_n'
thf(fact_9612_LIMSEQ__root__const,axiom,
    ! [C: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( filterlim_nat_real
        @ ^ [N: nat] : ( root @ N @ C )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat ) ) ).

% LIMSEQ_root_const
thf(fact_9613_LIMSEQ__inverse__real__of__nat__add,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N: nat] : ( plus_plus_real @ R @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add
thf(fact_9614_increasing__LIMSEQ,axiom,
    ! [F: nat > real,L2: real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ L2 )
       => ( ! [E2: real] :
              ( ( ord_less_real @ zero_zero_real @ E2 )
             => ? [N7: nat] : ( ord_less_eq_real @ L2 @ ( plus_plus_real @ ( F @ N7 ) @ E2 ) ) )
         => ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat ) ) ) ) ).

% increasing_LIMSEQ
thf(fact_9615_LIMSEQ__realpow__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( filterlim_nat_real @ ( power_power_real @ X2 ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% LIMSEQ_realpow_zero
thf(fact_9616_LIMSEQ__divide__realpow__zero,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( filterlim_nat_real
        @ ^ [N: nat] : ( divide_divide_real @ A @ ( power_power_real @ X2 @ N ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_divide_realpow_zero
thf(fact_9617_LIMSEQ__abs__realpow__zero,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero
thf(fact_9618_LIMSEQ__abs__realpow__zero2,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero2
thf(fact_9619_LIMSEQ__inverse__realpow__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( filterlim_nat_real
        @ ^ [N: nat] : ( inverse_inverse_real @ ( power_power_real @ X2 @ N ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_realpow_zero
thf(fact_9620_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N: nat] : ( plus_plus_real @ R @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_9621_tendsto__exp__limit__sequentially,axiom,
    ! [X2: real] :
      ( filterlim_nat_real
      @ ^ [N: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
      @ at_top_nat ) ).

% tendsto_exp_limit_sequentially
thf(fact_9622_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N: nat] : ( times_times_real @ R @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_9623_summable__Leibniz_I1_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( summable_real
          @ ^ [N: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( A @ N ) ) ) ) ) ).

% summable_Leibniz(1)
thf(fact_9624_summable,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( summable_real
            @ ^ [N: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( A @ N ) ) ) ) ) ) ).

% summable
thf(fact_9625_cos__diff__limit__1,axiom,
    ! [Theta: nat > real,Theta2: real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ~ ! [K3: nat > int] :
            ~ ( filterlim_nat_real
              @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
              @ ( topolo2815343760600316023s_real @ Theta2 )
              @ at_top_nat ) ) ).

% cos_diff_limit_1
thf(fact_9626_cos__limit__1,axiom,
    ! [Theta: nat > real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ? [K3: nat > int] :
          ( filterlim_nat_real
          @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ at_top_nat ) ) ).

% cos_limit_1
thf(fact_9627_summable__Leibniz_I4_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(4)
thf(fact_9628_zeroseq__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( filterlim_nat_real
        @ ^ [N: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% zeroseq_arctan_series
thf(fact_9629_summable__Leibniz_H_I2_J,axiom,
    ! [A: nat > real,N2: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( ord_less_eq_real
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) ) ) ) ) ).

% summable_Leibniz'(2)
thf(fact_9630_summable__Leibniz_H_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( filterlim_nat_real
            @ ^ [N: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(3)
thf(fact_9631_sums__alternating__upper__lower,axiom,
    ! [A: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
         => ? [L4: real] :
              ( ! [N7: nat] :
                  ( ord_less_eq_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) ) )
                  @ L4 )
              & ( filterlim_nat_real
                @ ^ [N: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat )
              & ! [N7: nat] :
                  ( ord_less_eq_real @ L4
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) @ one_one_nat ) ) ) )
              & ( filterlim_nat_real
                @ ^ [N: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat ) ) ) ) ) ).

% sums_alternating_upper_lower
thf(fact_9632_summable__Leibniz_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(5)
thf(fact_9633_summable__Leibniz_H_I4_J,axiom,
    ! [A: nat > real,N2: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( ord_less_eq_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ) ) ) ).

% summable_Leibniz'(4)
thf(fact_9634_summable__Leibniz_H_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( filterlim_nat_real
            @ ^ [N: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(5)
thf(fact_9635_eventually__sequentially__seg,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat
        @ ^ [N: nat] : ( P @ ( plus_plus_nat @ N @ K ) )
        @ at_top_nat )
      = ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentially_seg
thf(fact_9636_le__sequentially,axiom,
    ! [F3: filter_nat] :
      ( ( ord_le2510731241096832064er_nat @ F3 @ at_top_nat )
      = ( ! [N6: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N6 ) @ F3 ) ) ) ).

% le_sequentially
thf(fact_9637_eventually__sequentiallyI,axiom,
    ! [C: nat,P: nat > $o] :
      ( ! [X3: nat] :
          ( ( ord_less_eq_nat @ C @ X3 )
         => ( P @ X3 ) )
     => ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentiallyI
thf(fact_9638_eventually__sequentially,axiom,
    ! [P: nat > $o] :
      ( ( eventually_nat @ P @ at_top_nat )
      = ( ? [N6: nat] :
          ! [N: nat] :
            ( ( ord_less_eq_nat @ N6 @ N )
           => ( P @ N ) ) ) ) ).

% eventually_sequentially
thf(fact_9639_sequentially__offset,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat @ P @ at_top_nat )
     => ( eventually_nat
        @ ^ [I4: nat] : ( P @ ( plus_plus_nat @ I4 @ K ) )
        @ at_top_nat ) ) ).

% sequentially_offset
thf(fact_9640_real__bounded__linear,axiom,
    ( real_V5970128139526366754l_real
    = ( ^ [F5: real > real] :
        ? [C3: real] :
          ( F5
          = ( ^ [X: real] : ( times_times_real @ X @ C3 ) ) ) ) ) ).

% real_bounded_linear
thf(fact_9641_sqrt__at__top,axiom,
    filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).

% sqrt_at_top
thf(fact_9642_lhopital__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_top
thf(fact_9643_lhopital__left__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_top
thf(fact_9644_eventually__at__left__real,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( eventually_real
        @ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ B @ A ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).

% eventually_at_left_real
thf(fact_9645_lhospital__at__top__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F4: real > real,X2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ at_top_real )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ at_top_real )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ at_top_real )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ at_top_real )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ at_top_real ) ) ) ) ) ) ).

% lhospital_at_top_at_top
thf(fact_9646_lhopital__at__top,axiom,
    ! [G: real > real,X2: real,G2: real > real,F: real > real,F4: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top
thf(fact_9647_lhopital__left__at__top,axiom,
    ! [G: real > real,X2: real,G2: real > real,F: real > real,F4: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top
thf(fact_9648_ln__x__over__x__tendsto__0,axiom,
    ( filterlim_real_real
    @ ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ X ) @ X )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_real ) ).

% ln_x_over_x_tendsto_0
thf(fact_9649_tendsto__power__div__exp__0,axiom,
    ! [K: nat] :
      ( filterlim_real_real
      @ ^ [X: real] : ( divide_divide_real @ ( power_power_real @ X @ K ) @ ( exp_real @ X ) )
      @ ( topolo2815343760600316023s_real @ zero_zero_real )
      @ at_top_real ) ).

% tendsto_power_div_exp_0
thf(fact_9650_lhopital,axiom,
    ! [F: real > real,X2: real,G: real > real,G2: real > real,F4: real > real,F3: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ) ) ).

% lhopital
thf(fact_9651_lhopital__left,axiom,
    ! [F: real > real,X2: real,G: real > real,G2: real > real,F4: real > real,F3: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) ) ) ) ) ) ) ) ) ).

% lhopital_left
thf(fact_9652_tendsto__exp__limit__at__top,axiom,
    ! [X2: real] :
      ( filterlim_real_real
      @ ^ [Y2: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ Y2 ) ) @ Y2 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
      @ at_top_real ) ).

% tendsto_exp_limit_at_top
thf(fact_9653_filterlim__tan__at__left,axiom,
    filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% filterlim_tan_at_left
thf(fact_9654_DERIV__neg__imp__decreasing__at__top,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X3: real] :
          ( ( ord_less_eq_real @ B @ X3 )
         => ? [Y4: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              & ( ord_less_real @ Y4 @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_neg_imp_decreasing_at_top
thf(fact_9655_tendsto__arctan__at__top,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).

% tendsto_arctan_at_top
thf(fact_9656_dist__real__def,axiom,
    ( real_V975177566351809787t_real
    = ( ^ [X: real,Y2: real] : ( abs_abs_real @ ( minus_minus_real @ X @ Y2 ) ) ) ) ).

% dist_real_def
thf(fact_9657_dist__complex__def,axiom,
    ( real_V3694042436643373181omplex
    = ( ^ [X: complex,Y2: complex] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y2 ) ) ) ) ).

% dist_complex_def
thf(fact_9658_filterlim__pow__at__bot__even,axiom,
    ! [N2: nat,F: real > real,F3: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F3 )
       => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
         => ( filterlim_real_real
            @ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N2 )
            @ at_top_real
            @ F3 ) ) ) ) ).

% filterlim_pow_at_bot_even
thf(fact_9659_lhopital__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_bot
thf(fact_9660_DERIV__pos__imp__increasing__at__bot,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X3: real] :
          ( ( ord_less_eq_real @ X3 @ B )
         => ? [Y4: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              & ( ord_less_real @ zero_zero_real @ Y4 ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing_at_bot
thf(fact_9661_filterlim__pow__at__bot__odd,axiom,
    ! [N2: nat,F: real > real,F3: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F3 )
       => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
         => ( filterlim_real_real
            @ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N2 )
            @ at_bot_real
            @ F3 ) ) ) ) ).

% filterlim_pow_at_bot_odd
thf(fact_9662_lhopital__left__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_bot
thf(fact_9663_tendsto__arctan__at__bot,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).

% tendsto_arctan_at_bot
thf(fact_9664_Bseq__realpow,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( bfun_nat_real @ ( power_power_real @ X2 ) @ at_top_nat ) ) ) ).

% Bseq_realpow
thf(fact_9665_tendsto__exp__limit__at__right,axiom,
    ! [X2: real] :
      ( filterlim_real_real
      @ ^ [Y2: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X2 @ Y2 ) ) @ ( divide_divide_real @ one_one_real @ Y2 ) )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
      @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% tendsto_exp_limit_at_right
thf(fact_9666_filterlim__tan__at__right,axiom,
    filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% filterlim_tan_at_right
thf(fact_9667_eventually__at__right__to__0,axiom,
    ! [P: real > $o,A: real] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( plus_plus_real @ X @ A ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_right_to_0
thf(fact_9668_eventually__at__right__real,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( eventually_real
        @ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ A @ B ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).

% eventually_at_right_real
thf(fact_9669_lhopital__right__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_top
thf(fact_9670_lhopital__right__0,axiom,
    ! [F0: real > real,G0: real > real,G2: real > real,F4: real > real,F3: filter_real] :
      ( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G0 @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F0 @ X ) @ ( G0 @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right_0
thf(fact_9671_lhopital__right,axiom,
    ! [F: real > real,X2: real,G: real > real,G2: real > real,F4: real > real,F3: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F3
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right
thf(fact_9672_lhopital__right__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_bot
thf(fact_9673_lhopital__right__at__top,axiom,
    ! [G: real > real,X2: real,G2: real > real,F: real > real,F4: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top
thf(fact_9674_lhopital__right__0__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F4: real > real,X2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).

% lhopital_right_0_at_top
thf(fact_9675_greaterThan__Suc,axiom,
    ! [K: nat] :
      ( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).

% greaterThan_Suc
thf(fact_9676_atLeast__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_atLeast_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).

% atLeast_Suc
thf(fact_9677_decseq__bounded,axiom,
    ! [X7: nat > real,B2: real] :
      ( ( order_9091379641038594480t_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B2 @ ( X7 @ I3 ) )
       => ( bfun_nat_real @ X7 @ at_top_nat ) ) ) ).

% decseq_bounded
thf(fact_9678_decseq__convergent,axiom,
    ! [X7: nat > real,B2: real] :
      ( ( order_9091379641038594480t_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B2 @ ( X7 @ I3 ) )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I2: nat] : ( ord_less_eq_real @ L6 @ ( X7 @ I2 ) ) ) ) ) ).

% decseq_convergent
thf(fact_9679_GMVT,axiom,
    ! [A: real,B: real,F: real > real,G: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ( ord_less_eq_real @ A @ X3 )
              & ( ord_less_eq_real @ X3 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ F ) )
       => ( ! [X3: real] :
              ( ( ( ord_less_real @ A @ X3 )
                & ( ord_less_real @ X3 @ B ) )
             => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
         => ( ! [X3: real] :
                ( ( ( ord_less_eq_real @ A @ X3 )
                  & ( ord_less_eq_real @ X3 @ B ) )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ G ) )
           => ( ! [X3: real] :
                  ( ( ( ord_less_real @ A @ X3 )
                    & ( ord_less_real @ X3 @ B ) )
                 => ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
             => ? [G_c: real,F_c: real,C2: real] :
                  ( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C2 @ top_top_set_real ) )
                  & ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C2 @ top_top_set_real ) )
                  & ( ord_less_real @ A @ C2 )
                  & ( ord_less_real @ C2 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).

% GMVT
thf(fact_9680_real__differentiableE,axiom,
    ! [F: real > real,X2: real,S: set_real] :
      ( ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X2 @ S ) )
     => ~ ! [Df: real] :
            ~ ( has_fi5821293074295781190e_real @ F @ Df @ ( topolo2177554685111907308n_real @ X2 @ S ) ) ) ).

% real_differentiableE
thf(fact_9681_real__differentiable__def,axiom,
    ! [F: real > real,X2: real,S: set_real] :
      ( ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X2 @ S ) )
      = ( ? [D6: real] : ( has_fi5821293074295781190e_real @ F @ D6 @ ( topolo2177554685111907308n_real @ X2 @ S ) ) ) ) ).

% real_differentiable_def
thf(fact_9682_MVT,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X3: real] :
              ( ( ord_less_real @ A @ X3 )
             => ( ( ord_less_real @ X3 @ B )
               => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
         => ? [L4: real,Z5: real] :
              ( ( ord_less_real @ A @ Z5 )
              & ( ord_less_real @ Z5 @ B )
              & ( has_fi5821293074295781190e_real @ F @ L4 @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) )
              & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                = ( times_times_real @ ( minus_minus_real @ B @ A ) @ L4 ) ) ) ) ) ) ).

% MVT
thf(fact_9683_continuous__on__arcosh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ A2 )
           => ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
       => ( topolo5044208981011980120l_real @ A2
          @ ^ [X: real] : ( arcosh_real @ ( F @ X ) ) ) ) ) ).

% continuous_on_arcosh'
thf(fact_9684_continuous__image__closed__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ? [C2: real,D3: real] :
            ( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ C2 @ D3 ) )
            & ( ord_less_eq_real @ C2 @ D3 ) ) ) ) ).

% continuous_image_closed_interval
thf(fact_9685_Rolle__deriv,axiom,
    ! [A: real,B: real,F: real > real,F4: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ A )
          = ( F @ B ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ! [X3: real] :
                ( ( ord_less_real @ A @ X3 )
               => ( ( ord_less_real @ X3 @ B )
                 => ( has_de1759254742604945161l_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
           => ? [Z5: real] :
                ( ( ord_less_real @ A @ Z5 )
                & ( ord_less_real @ Z5 @ B )
                & ( ( F4 @ Z5 )
                  = ( ^ [V4: real] : zero_zero_real ) ) ) ) ) ) ) ).

% Rolle_deriv
thf(fact_9686_mvt,axiom,
    ! [A: real,B: real,F: real > real,F4: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X3: real] :
              ( ( ord_less_real @ A @ X3 )
             => ( ( ord_less_real @ X3 @ B )
               => ( has_de1759254742604945161l_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
         => ~ ! [Xi: real] :
                ( ( ord_less_real @ A @ Xi )
               => ( ( ord_less_real @ Xi @ B )
                 => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                   != ( F4 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).

% mvt
thf(fact_9687_DERIV__isconst__end,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X3: real] :
              ( ( ord_less_real @ A @ X3 )
             => ( ( ord_less_real @ X3 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
         => ( ( F @ B )
            = ( F @ A ) ) ) ) ) ).

% DERIV_isconst_end
thf(fact_9688_DERIV__neg__imp__decreasing__open,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ord_less_real @ A @ X3 )
           => ( ( ord_less_real @ X3 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  & ( ord_less_real @ Y4 @ zero_zero_real ) ) ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ) ).

% DERIV_neg_imp_decreasing_open
thf(fact_9689_DERIV__pos__imp__increasing__open,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X3: real] :
            ( ( ord_less_real @ A @ X3 )
           => ( ( ord_less_real @ X3 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y4 ) ) ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ) ).

% DERIV_pos_imp_increasing_open
thf(fact_9690_DERIV__isconst2,axiom,
    ! [A: real,B: real,F: real > real,X2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X3: real] :
              ( ( ord_less_real @ A @ X3 )
             => ( ( ord_less_real @ X3 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
         => ( ( ord_less_eq_real @ A @ X2 )
           => ( ( ord_less_eq_real @ X2 @ B )
             => ( ( F @ X2 )
                = ( F @ A ) ) ) ) ) ) ) ).

% DERIV_isconst2
thf(fact_9691_Rolle,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ A )
          = ( F @ B ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ! [X3: real] :
                ( ( ord_less_real @ A @ X3 )
               => ( ( ord_less_real @ X3 @ B )
                 => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
           => ? [Z5: real] :
                ( ( ord_less_real @ A @ Z5 )
                & ( ord_less_real @ Z5 @ B )
                & ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ Z5 @ top_top_set_real ) ) ) ) ) ) ) ).

% Rolle
thf(fact_9692_uniformity__complex__def,axiom,
    ( topolo896644834953643431omplex
    = ( comple8358262395181532106omplex
      @ ( image_5971271580939081552omplex
        @ ^ [E3: real] :
            ( princi3496590319149328850omplex
            @ ( collec8663557070575231912omplex
              @ ( produc6771430404735790350plex_o
                @ ^ [X: complex,Y2: complex] : ( ord_less_real @ ( real_V3694042436643373181omplex @ X @ Y2 ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_complex_def
thf(fact_9693_uniformity__real__def,axiom,
    ( topolo1511823702728130853y_real
    = ( comple2936214249959783750l_real
      @ ( image_2178119161166701260l_real
        @ ^ [E3: real] :
            ( princi6114159922880469582l_real
            @ ( collec3799799289383736868l_real
              @ ( produc5414030515140494994real_o
                @ ^ [X: real,Y2: real] : ( ord_less_real @ ( real_V975177566351809787t_real @ X @ Y2 ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_real_def
thf(fact_9694_mono__Suc,axiom,
    order_mono_nat_nat @ suc ).

% mono_Suc
thf(fact_9695_mono__times__nat,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( order_mono_nat_nat @ ( times_times_nat @ N2 ) ) ) ).

% mono_times_nat
thf(fact_9696_incseq__bounded,axiom,
    ! [X7: nat > real,B2: real] :
      ( ( order_mono_nat_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X7 @ I3 ) @ B2 )
       => ( bfun_nat_real @ X7 @ at_top_nat ) ) ) ).

% incseq_bounded
thf(fact_9697_incseq__convergent,axiom,
    ! [X7: nat > real,B2: real] :
      ( ( order_mono_nat_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X7 @ I3 ) @ B2 )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I2: nat] : ( ord_less_eq_real @ ( X7 @ I2 ) @ L6 ) ) ) ) ).

% incseq_convergent
thf(fact_9698_mono__ge2__power__minus__self,axiom,
    ! [K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( order_mono_nat_nat
        @ ^ [M3: nat] : ( minus_minus_nat @ ( power_power_nat @ K @ M3 ) @ M3 ) ) ) ).

% mono_ge2_power_minus_self
thf(fact_9699_nonneg__incseq__Bseq__subseq__iff,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ! [X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
     => ( ( order_mono_nat_real @ F )
       => ( ( order_5726023648592871131at_nat @ G )
         => ( ( bfun_nat_real
              @ ^ [X: nat] : ( F @ ( G @ X ) )
              @ at_top_nat )
            = ( bfun_nat_real @ F @ at_top_nat ) ) ) ) ) ).

% nonneg_incseq_Bseq_subseq_iff
thf(fact_9700_strict__mono__imp__increasing,axiom,
    ! [F: nat > nat,N2: nat] :
      ( ( order_5726023648592871131at_nat @ F )
     => ( ord_less_eq_nat @ N2 @ ( F @ N2 ) ) ) ).

% strict_mono_imp_increasing
thf(fact_9701_infinite__enumerate,axiom,
    ! [S3: set_nat] :
      ( ~ ( finite_finite_nat @ S3 )
     => ? [R3: nat > nat] :
          ( ( order_5726023648592871131at_nat @ R3 )
          & ! [N7: nat] : ( member_nat @ ( R3 @ N7 ) @ S3 ) ) ) ).

% infinite_enumerate
thf(fact_9702_inj__sgn__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( inj_on_real_real
        @ ^ [Y2: real] : ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N2 ) )
        @ top_top_set_real ) ) ).

% inj_sgn_power
thf(fact_9703_log__inj,axiom,
    ! [B: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( inj_on_real_real @ ( log @ B ) @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% log_inj
thf(fact_9704_pos__deriv__imp__strict__mono,axiom,
    ! [F: real > real,F4: real > real] :
      ( ! [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ! [X3: real] : ( ord_less_real @ zero_zero_real @ ( F4 @ X3 ) )
       => ( order_7092887310737990675l_real @ F ) ) ) ).

% pos_deriv_imp_strict_mono
thf(fact_9705_inj__Suc,axiom,
    ! [N4: set_nat] : ( inj_on_nat_nat @ suc @ N4 ) ).

% inj_Suc
thf(fact_9706_inj__on__set__encode,axiom,
    inj_on_set_nat_nat @ nat_set_encode @ ( collect_set_nat @ finite_finite_nat ) ).

% inj_on_set_encode
thf(fact_9707_inj__on__diff__nat,axiom,
    ! [N4: set_nat,K: nat] :
      ( ! [N3: nat] :
          ( ( member_nat @ N3 @ N4 )
         => ( ord_less_eq_nat @ K @ N3 ) )
     => ( inj_on_nat_nat
        @ ^ [N: nat] : ( minus_minus_nat @ N @ K )
        @ N4 ) ) ).

% inj_on_diff_nat
thf(fact_9708_summable__reindex,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
         => ( summable_real @ ( comp_nat_real_nat @ F @ G ) ) ) ) ) ).

% summable_reindex
thf(fact_9709_suminf__reindex__mono,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
         => ( ord_less_eq_real @ ( suminf_real @ ( comp_nat_real_nat @ F @ G ) ) @ ( suminf_real @ F ) ) ) ) ) ).

% suminf_reindex_mono
thf(fact_9710_inj__on__char__of__nat,axiom,
    inj_on_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% inj_on_char_of_nat
thf(fact_9711_suminf__reindex,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
         => ( ! [X3: nat] :
                ( ~ ( member_nat @ X3 @ ( image_nat_nat @ G @ top_top_set_nat ) )
               => ( ( F @ X3 )
                  = zero_zero_real ) )
           => ( ( suminf_real @ ( comp_nat_real_nat @ F @ G ) )
              = ( suminf_real @ F ) ) ) ) ) ) ).

% suminf_reindex
thf(fact_9712_sup__nat__def,axiom,
    sup_sup_nat = ord_max_nat ).

% sup_nat_def
thf(fact_9713_sup__enat__def,axiom,
    sup_su3973961784419623482d_enat = ord_ma741700101516333627d_enat ).

% sup_enat_def
thf(fact_9714_atLeastLessThan__add__Un,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( set_or4665077453230672383an_nat @ I @ ( plus_plus_nat @ J @ K ) )
        = ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).

% atLeastLessThan_add_Un
thf(fact_9715_powr__real__of__int_H,axiom,
    ! [X2: real,N2: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( X2 != zero_zero_real )
          | ( ord_less_int @ zero_zero_int @ N2 ) )
       => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N2 ) )
          = ( power_int_real @ X2 @ N2 ) ) ) ) ).

% powr_real_of_int'
thf(fact_9716_positive__rat,axiom,
    ! [A: int,B: int] :
      ( ( positive @ ( fract @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% positive_rat
thf(fact_9717_Rat_Opositive__mult,axiom,
    ! [X2: rat,Y: rat] :
      ( ( positive @ X2 )
     => ( ( positive @ Y )
       => ( positive @ ( times_times_rat @ X2 @ Y ) ) ) ) ).

% Rat.positive_mult
thf(fact_9718_Rat_Opositive__add,axiom,
    ! [X2: rat,Y: rat] :
      ( ( positive @ X2 )
     => ( ( positive @ Y )
       => ( positive @ ( plus_plus_rat @ X2 @ Y ) ) ) ) ).

% Rat.positive_add
thf(fact_9719_less__rat__def,axiom,
    ( ord_less_rat
    = ( ^ [X: rat,Y2: rat] : ( positive @ ( minus_minus_rat @ Y2 @ X ) ) ) ) ).

% less_rat_def
thf(fact_9720_Rat_Opositive_Orep__eq,axiom,
    ( positive
    = ( ^ [X: rat] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ ( rep_Rat @ X ) ) @ ( product_snd_int_int @ ( rep_Rat @ X ) ) ) ) ) ) ).

% Rat.positive.rep_eq
thf(fact_9721_min__Suc__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_min_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( suc @ ( ord_min_nat @ M @ N2 ) ) ) ).

% min_Suc_Suc
thf(fact_9722_min__0L,axiom,
    ! [N2: nat] :
      ( ( ord_min_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% min_0L
thf(fact_9723_min__0R,axiom,
    ! [N2: nat] :
      ( ( ord_min_nat @ N2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% min_0R
thf(fact_9724_min__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ord_min_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_min_nat @ N2 @ ( pred_numeral @ K ) ) ) ) ).

% min_Suc_numeral
thf(fact_9725_min__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ord_min_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( suc @ ( ord_min_nat @ ( pred_numeral @ K ) @ N2 ) ) ) ).

% min_numeral_Suc
thf(fact_9726_inf__nat__def,axiom,
    inf_inf_nat = ord_min_nat ).

% inf_nat_def
thf(fact_9727_concat__bit__assoc__sym,axiom,
    ! [M: nat,N2: nat,K: int,L2: int,R: int] :
      ( ( bit_concat_bit @ M @ ( bit_concat_bit @ N2 @ K @ L2 ) @ R )
      = ( bit_concat_bit @ ( ord_min_nat @ M @ N2 ) @ K @ ( bit_concat_bit @ ( minus_minus_nat @ M @ N2 ) @ L2 @ R ) ) ) ).

% concat_bit_assoc_sym
thf(fact_9728_nat__mult__min__left,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( times_times_nat @ ( ord_min_nat @ M @ N2 ) @ Q2 )
      = ( ord_min_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N2 @ Q2 ) ) ) ).

% nat_mult_min_left
thf(fact_9729_nat__mult__min__right,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( times_times_nat @ M @ ( ord_min_nat @ N2 @ Q2 ) )
      = ( ord_min_nat @ ( times_times_nat @ M @ N2 ) @ ( times_times_nat @ M @ Q2 ) ) ) ).

% nat_mult_min_right
thf(fact_9730_min__diff,axiom,
    ! [M: nat,I: nat,N2: nat] :
      ( ( ord_min_nat @ ( minus_minus_nat @ M @ I ) @ ( minus_minus_nat @ N2 @ I ) )
      = ( minus_minus_nat @ ( ord_min_nat @ M @ N2 ) @ I ) ) ).

% min_diff
thf(fact_9731_take__bit__concat__bit__eq,axiom,
    ! [M: nat,N2: nat,K: int,L2: int] :
      ( ( bit_se2923211474154528505it_int @ M @ ( bit_concat_bit @ N2 @ K @ L2 ) )
      = ( bit_concat_bit @ ( ord_min_nat @ M @ N2 ) @ K @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ M @ N2 ) @ L2 ) ) ) ).

% take_bit_concat_bit_eq
thf(fact_9732_min__Suc1,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_min_nat @ ( suc @ N2 ) @ M )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [M6: nat] : ( suc @ ( ord_min_nat @ N2 @ M6 ) )
        @ M ) ) ).

% min_Suc1
thf(fact_9733_min__Suc2,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_min_nat @ M @ ( suc @ N2 ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [M6: nat] : ( suc @ ( ord_min_nat @ M6 @ N2 ) )
        @ M ) ) ).

% min_Suc2
thf(fact_9734_min__enat__simps_I3_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_mi8085742599997312461d_enat @ zero_z5237406670263579293d_enat @ Q2 )
      = zero_z5237406670263579293d_enat ) ).

% min_enat_simps(3)
thf(fact_9735_min__enat__simps_I2_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_mi8085742599997312461d_enat @ Q2 @ zero_z5237406670263579293d_enat )
      = zero_z5237406670263579293d_enat ) ).

% min_enat_simps(2)
thf(fact_9736_inf__enat__def,axiom,
    inf_in1870772243966228564d_enat = ord_mi8085742599997312461d_enat ).

% inf_enat_def
thf(fact_9737_num__of__integer__code,axiom,
    ( code_num_of_integer
    = ( ^ [K2: code_integer] :
          ( if_num @ ( ord_le3102999989581377725nteger @ K2 @ one_one_Code_integer ) @ one
          @ ( produc7336495610019696514er_num
            @ ^ [L: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L ) @ ( code_num_of_integer @ L ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L ) @ ( code_num_of_integer @ L ) ) @ one ) )
            @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% num_of_integer_code
thf(fact_9738_card__le__Suc__Max,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ S3 ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S3 ) ) ) ) ).

% card_le_Suc_Max
thf(fact_9739_divide__nat__def,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N: nat] :
          ( if_nat @ ( N = zero_zero_nat ) @ zero_zero_nat
          @ ( lattic8265883725875713057ax_nat
            @ ( collect_nat
              @ ^ [K2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K2 @ N ) @ M3 ) ) ) ) ) ) ).

% divide_nat_def
thf(fact_9740_gcd__is__Max__divisors__nat,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( gcd_gcd_nat @ M @ N2 )
        = ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D: nat] :
                ( ( dvd_dvd_nat @ D @ M )
                & ( dvd_dvd_nat @ D @ N2 ) ) ) ) ) ) ).

% gcd_is_Max_divisors_nat
thf(fact_9741_Gcd__eq__Max,axiom,
    ! [M5: set_nat] :
      ( ( finite_finite_nat @ M5 )
     => ( ( M5 != bot_bot_set_nat )
       => ( ~ ( member_nat @ zero_zero_nat @ M5 )
         => ( ( gcd_Gcd_nat @ M5 )
            = ( lattic8265883725875713057ax_nat
              @ ( comple7806235888213564991et_nat
                @ ( image_nat_set_nat
                  @ ^ [M3: nat] :
                      ( collect_nat
                      @ ^ [D: nat] : ( dvd_dvd_nat @ D @ M3 ) )
                  @ M5 ) ) ) ) ) ) ) ).

% Gcd_eq_Max
thf(fact_9742_rat__floor__code,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [P5: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P5 ) ) ) ) ).

% rat_floor_code
thf(fact_9743_Divides_Oadjust__div__def,axiom,
    ( adjust_div
    = ( produc8211389475949308722nt_int
      @ ^ [Q4: int,R5: int] : ( plus_plus_int @ Q4 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).

% Divides.adjust_div_def
thf(fact_9744_nat__of__integer__code,axiom,
    ( code_nat_of_integer
    = ( ^ [K2: code_integer] :
          ( if_nat @ ( ord_le3102999989581377725nteger @ K2 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
          @ ( produc1555791787009142072er_nat
            @ ^ [L: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L ) @ ( code_nat_of_integer @ L ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L ) @ ( code_nat_of_integer @ L ) ) @ one_one_nat ) )
            @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% nat_of_integer_code
thf(fact_9745_nat__of__integer__code__post_I3_J,axiom,
    ! [K: num] :
      ( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_of_integer_code_post(3)
thf(fact_9746_remdups__upt,axiom,
    ! [M: nat,N2: nat] :
      ( ( remdups_nat @ ( upt @ M @ N2 ) )
      = ( upt @ M @ N2 ) ) ).

% remdups_upt
thf(fact_9747_hd__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( hd_nat @ ( upt @ I @ J ) )
        = I ) ) ).

% hd_upt
thf(fact_9748_drop__upt,axiom,
    ! [M: nat,I: nat,J: nat] :
      ( ( drop_nat @ M @ ( upt @ I @ J ) )
      = ( upt @ ( plus_plus_nat @ I @ M ) @ J ) ) ).

% drop_upt
thf(fact_9749_length__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( size_size_list_nat @ ( upt @ I @ J ) )
      = ( minus_minus_nat @ J @ I ) ) ).

% length_upt
thf(fact_9750_take__upt,axiom,
    ! [I: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ M ) @ N2 )
     => ( ( take_nat @ M @ ( upt @ I @ N2 ) )
        = ( upt @ I @ ( plus_plus_nat @ I @ M ) ) ) ) ).

% take_upt
thf(fact_9751_upt__conv__Nil,axiom,
    ! [J: nat,I: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( upt @ I @ J )
        = nil_nat ) ) ).

% upt_conv_Nil
thf(fact_9752_sorted__list__of__set__range,axiom,
    ! [M: nat,N2: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_or4665077453230672383an_nat @ M @ N2 ) )
      = ( upt @ M @ N2 ) ) ).

% sorted_list_of_set_range
thf(fact_9753_upt__eq__Nil__conv,axiom,
    ! [I: nat,J: nat] :
      ( ( ( upt @ I @ J )
        = nil_nat )
      = ( ( J = zero_zero_nat )
        | ( ord_less_eq_nat @ J @ I ) ) ) ).

% upt_eq_Nil_conv
thf(fact_9754_nth__upt,axiom,
    ! [I: nat,K: nat,J: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J )
     => ( ( nth_nat @ ( upt @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ K ) ) ) ).

% nth_upt
thf(fact_9755_upt__rec__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
          = ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) ) ) ) )
      & ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
          = nil_nat ) ) ) ).

% upt_rec_numeral
thf(fact_9756_upt__conv__Cons,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( upt @ I @ J )
        = ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).

% upt_conv_Cons
thf(fact_9757_upt__0,axiom,
    ! [I: nat] :
      ( ( upt @ I @ zero_zero_nat )
      = nil_nat ) ).

% upt_0
thf(fact_9758_atMost__upto,axiom,
    ( set_ord_atMost_nat
    = ( ^ [N: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ ( suc @ N ) ) ) ) ) ).

% atMost_upto
thf(fact_9759_upt__conv__Cons__Cons,axiom,
    ! [M: nat,N2: nat,Ns: list_nat,Q2: nat] :
      ( ( ( cons_nat @ M @ ( cons_nat @ N2 @ Ns ) )
        = ( upt @ M @ Q2 ) )
      = ( ( cons_nat @ N2 @ Ns )
        = ( upt @ ( suc @ M ) @ Q2 ) ) ) ).

% upt_conv_Cons_Cons
thf(fact_9760_atLeast__upt,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [N: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ N ) ) ) ) ).

% atLeast_upt
thf(fact_9761_atLeastLessThan__upt,axiom,
    ( set_or4665077453230672383an_nat
    = ( ^ [I4: nat,J3: nat] : ( set_nat2 @ ( upt @ I4 @ J3 ) ) ) ) ).

% atLeastLessThan_upt
thf(fact_9762_greaterThanAtMost__upt,axiom,
    ( set_or6659071591806873216st_nat
    = ( ^ [N: nat,M3: nat] : ( set_nat2 @ ( upt @ ( suc @ N ) @ ( suc @ M3 ) ) ) ) ) ).

% greaterThanAtMost_upt
thf(fact_9763_atLeastAtMost__upt,axiom,
    ( set_or1269000886237332187st_nat
    = ( ^ [N: nat,M3: nat] : ( set_nat2 @ ( upt @ N @ ( suc @ M3 ) ) ) ) ) ).

% atLeastAtMost_upt
thf(fact_9764_greaterThanLessThan__upt,axiom,
    ( set_or5834768355832116004an_nat
    = ( ^ [N: nat,M3: nat] : ( set_nat2 @ ( upt @ ( suc @ N ) @ M3 ) ) ) ) ).

% greaterThanLessThan_upt
thf(fact_9765_distinct__upt,axiom,
    ! [I: nat,J: nat] : ( distinct_nat @ ( upt @ I @ J ) ) ).

% distinct_upt
thf(fact_9766_map__decr__upt,axiom,
    ! [M: nat,N2: nat] :
      ( ( map_nat_nat
        @ ^ [N: nat] : ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) )
        @ ( upt @ ( suc @ M ) @ ( suc @ N2 ) ) )
      = ( upt @ M @ N2 ) ) ).

% map_decr_upt
thf(fact_9767_map__Suc__upt,axiom,
    ! [M: nat,N2: nat] :
      ( ( map_nat_nat @ suc @ ( upt @ M @ N2 ) )
      = ( upt @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).

% map_Suc_upt
thf(fact_9768_map__add__upt,axiom,
    ! [N2: nat,M: nat] :
      ( ( map_nat_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ I4 @ N2 )
        @ ( upt @ zero_zero_nat @ M ) )
      = ( upt @ N2 @ ( plus_plus_nat @ M @ N2 ) ) ) ).

% map_add_upt
thf(fact_9769_upt__add__eq__append,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( upt @ I @ ( plus_plus_nat @ J @ K ) )
        = ( append_nat @ ( upt @ I @ J ) @ ( upt @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).

% upt_add_eq_append
thf(fact_9770_upt__eq__Cons__conv,axiom,
    ! [I: nat,J: nat,X2: nat,Xs2: list_nat] :
      ( ( ( upt @ I @ J )
        = ( cons_nat @ X2 @ Xs2 ) )
      = ( ( ord_less_nat @ I @ J )
        & ( I = X2 )
        & ( ( upt @ ( plus_plus_nat @ I @ one_one_nat ) @ J )
          = Xs2 ) ) ) ).

% upt_eq_Cons_conv
thf(fact_9771_upt__rec,axiom,
    ( upt
    = ( ^ [I4: nat,J3: nat] : ( if_list_nat @ ( ord_less_nat @ I4 @ J3 ) @ ( cons_nat @ I4 @ ( upt @ ( suc @ I4 ) @ J3 ) ) @ nil_nat ) ) ) ).

% upt_rec
thf(fact_9772_upt__Suc__append,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( upt @ I @ ( suc @ J ) )
        = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).

% upt_Suc_append
thf(fact_9773_upt__Suc,axiom,
    ! [I: nat,J: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
      & ( ~ ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = nil_nat ) ) ) ).

% upt_Suc
thf(fact_9774_tl__upt,axiom,
    ! [M: nat,N2: nat] :
      ( ( tl_nat @ ( upt @ M @ N2 ) )
      = ( upt @ ( suc @ M ) @ N2 ) ) ).

% tl_upt
thf(fact_9775_sum__list__upt,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups4561878855575611511st_nat @ ( upt @ M @ N2 ) )
        = ( groups3542108847815614940at_nat
          @ ^ [X: nat] : X
          @ ( set_or4665077453230672383an_nat @ M @ N2 ) ) ) ) ).

% sum_list_upt
thf(fact_9776_card__length__sum__list__rec,axiom,
    ! [M: nat,N4: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( finite_card_list_nat
          @ ( collect_list_nat
            @ ^ [L: list_nat] :
                ( ( ( size_size_list_nat @ L )
                  = M )
                & ( ( groups4561878855575611511st_nat @ L )
                  = N4 ) ) ) )
        = ( plus_plus_nat
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L: list_nat] :
                  ( ( ( size_size_list_nat @ L )
                    = ( minus_minus_nat @ M @ one_one_nat ) )
                  & ( ( groups4561878855575611511st_nat @ L )
                    = N4 ) ) ) )
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L: list_nat] :
                  ( ( ( size_size_list_nat @ L )
                    = M )
                  & ( ( plus_plus_nat @ ( groups4561878855575611511st_nat @ L ) @ one_one_nat )
                    = N4 ) ) ) ) ) ) ) ).

% card_length_sum_list_rec
thf(fact_9777_card__length__sum__list,axiom,
    ! [M: nat,N4: nat] :
      ( ( finite_card_list_nat
        @ ( collect_list_nat
          @ ^ [L: list_nat] :
              ( ( ( size_size_list_nat @ L )
                = M )
              & ( ( groups4561878855575611511st_nat @ L )
                = N4 ) ) ) )
      = ( binomial @ ( minus_minus_nat @ ( plus_plus_nat @ N4 @ M ) @ one_one_nat ) @ N4 ) ) ).

% card_length_sum_list
thf(fact_9778_VEBT_Osize_I3_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size(3)
thf(fact_9779_VEBT_Osize__gen_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size_gen(1)
thf(fact_9780_sorted__wrt__upt,axiom,
    ! [M: nat,N2: nat] : ( sorted_wrt_nat @ ord_less_nat @ ( upt @ M @ N2 ) ) ).

% sorted_wrt_upt
thf(fact_9781_sorted__upt,axiom,
    ! [M: nat,N2: nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( upt @ M @ N2 ) ) ).

% sorted_upt
thf(fact_9782_sorted__wrt__less__idx,axiom,
    ! [Ns: list_nat,I: nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Ns )
     => ( ( ord_less_nat @ I @ ( size_size_list_nat @ Ns ) )
       => ( ord_less_eq_nat @ I @ ( nth_nat @ Ns @ I ) ) ) ) ).

% sorted_wrt_less_idx

% Helper facts (40)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X2: int,Y: int] :
      ( ( if_int @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X2: int,Y: int] :
      ( ( if_int @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y: nat] :
      ( ( if_nat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y: nat] :
      ( ( if_nat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
    ! [X2: num,Y: num] :
      ( ( if_num @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
    ! [X2: num,Y: num] :
      ( ( if_num @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
    ! [X2: rat,Y: rat] :
      ( ( if_rat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
    ! [X2: rat,Y: rat] :
      ( ( if_rat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X2: real,Y: real] :
      ( ( if_real @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X2: real,Y: real] :
      ( ( if_real @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
    ! [P: real > $o] :
      ( ( P @ ( fChoice_real @ P ) )
      = ( ? [X5: real] : ( P @ X5 ) ) ) ).

thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X2: complex,Y: complex] :
      ( ( if_complex @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X2: complex,Y: complex] :
      ( ( if_complex @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X2: extended_enat,Y: extended_enat] :
      ( ( if_Extended_enat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X2: extended_enat,Y: extended_enat] :
      ( ( if_Extended_enat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( if_Code_integer @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X2: code_integer,Y: code_integer] :
      ( ( if_Code_integer @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X2: set_int,Y: set_int] :
      ( ( if_set_int @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X2: set_int,Y: set_int] :
      ( ( if_set_int @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Nat__Onat_J_T,axiom,
    ! [X2: set_nat,Y: set_nat] :
      ( ( if_set_nat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Nat__Onat_J_T,axiom,
    ! [X2: set_nat,Y: set_nat] :
      ( ( if_set_nat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X2: vEBT_VEBT,Y: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X2: vEBT_VEBT,Y: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X2: list_int,Y: list_int] :
      ( ( if_list_int @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X2: list_int,Y: list_int] :
      ( ( if_list_int @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X2: list_nat,Y: list_nat] :
      ( ( if_list_nat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X2: list_nat,Y: list_nat] :
      ( ( if_list_nat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X2: option_nat,Y: option_nat] :
      ( ( if_option_nat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X2: option_nat,Y: option_nat] :
      ( ( if_option_nat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X2: option_num,Y: option_num] :
      ( ( if_option_num @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X2: option_num,Y: option_num] :
      ( ( if_option_num @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X2: product_prod_int_int,Y: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X2: product_prod_int_int,Y: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X2: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X2: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X2: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X2: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X2: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X2: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $true @ X2 @ Y )
      = X2 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( ord_less_nat @ succy @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
    & ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
    & ( ( plus_plus_nat @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = deg ) ) ).

%------------------------------------------------------------------------------