TPTP Problem File: ITP232^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP232^1 : TPTP v9.0.0. Released v8.1.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem VEBT_InsertCorrectness 00398_025158
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0067_VEBT_InsertCorrectness_00398_025158 [Des22]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.60 v8.2.0, 0.46 v8.1.0
% Syntax : Number of formulae : 10550 (4901 unt; 947 typ; 0 def)
% Number of atoms : 28296 (11383 equ; 0 cnn)
% Maximal formula atoms : 71 ( 2 avg)
% Number of connectives : 106561 (2822 ~; 516 |;1980 &;89722 @)
% ( 0 <=>;11521 =>; 0 <=; 0 <~>)
% Maximal formula depth : 39 ( 6 avg)
% Number of types : 79 ( 78 usr)
% Number of type conns : 4353 (4353 >; 0 *; 0 +; 0 <<)
% Number of symbols : 872 ( 869 usr; 62 con; 0-5 aty)
% Number of variables : 25317 (2216 ^;22358 !; 743 ?;25317 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-17 20:55:22.573
%------------------------------------------------------------------------------
% Could-be-implicit typings (78)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
produc4471711990508489141at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J_J,type,
set_fi4554929511873752355omplex: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
list_P7413028617227757229T_VEBT: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
list_P5578671422887162913nteger: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
set_Pr4811707699266497531nteger: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc7248412053542808358at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J_J,type,
set_fi7789364187291644575l_real: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
filter6041513312241820739omplex: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
list_P7037539587688870467BT_nat: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
list_P4547456442757143711BT_int: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
list_P5647936690300460905T_VEBT: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
produc8243902056947475879T_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
set_Pr7556676689462069481BT_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
set_Pr5085853215250843933omplex: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc8923325533196201883nteger: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
list_P3126845725202233233VEBT_o: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
list_P7495141550334521929T_VEBT: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
filter2146258269922977983l_real: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
list_P8526636022914148096eger_o: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
set_Pr448751882837621926eger_o: $tType ).
thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
option4927543243414619207at_nat: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
filter1242075044329608583at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
set_Pr6218003697084177305l_real: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
produc9072475918466114483BT_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
produc4894624898956917775BT_int: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
set_Pr1261947904930325089at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
set_Pr958786334691620121nt_int: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
produc4411394909380815293omplex: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
list_P7333126701944960589_nat_o: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J_J,type,
list_P6285523579766656935_o_nat: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
list_P3795440434834930179_o_int: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
set_list_VEBT_VEBT: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
produc334124729049499915VEBT_o: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
produc2504756804600209347T_VEBT: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
produc6271795597528267376eger_o: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
produc2422161461964618553l_real: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
product_prod_nat_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
product_prod_int_int: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
list_P4002435161011370285od_o_o: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Complex__Ocomplex_J_J,type,
set_list_complex: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
set_set_complex: $tType ).
thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
list_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
set_list_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
set_list_int: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
product_prod_o_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
product_prod_o_int: $tType ).
thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
list_set_nat: $tType ).
thf(ty_n_t__List__Olist_It__Code____Numeral__Ointeger_J,type,
list_Code_integer: $tType ).
thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
set_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
set_set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
set_set_int: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
set_Product_unit: $tType ).
thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
list_complex: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
set_list_o: $tType ).
thf(ty_n_t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
product_prod_o_o: $tType ).
thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
set_complex: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
filter_real: $tType ).
thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
option_num: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
filter_nat: $tType ).
thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
list_real: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
list_int: $tType ).
thf(ty_n_t__VEBT____Definitions__OVEBT,type,
vEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
set_rat: $tType ).
thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
set_num: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Code____Numeral__Ointeger,type,
code_integer: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__List__Olist_I_Eo_J,type,
list_o: $tType ).
thf(ty_n_t__Complex__Ocomplex,type,
complex: $tType ).
thf(ty_n_t__Set__Oset_I_Eo_J,type,
set_o: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Rat__Orat,type,
rat: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (869)
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
archim7802044766580827645g_real: real > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
archim3151403230148437115or_rat: rat > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
archim6058952711729229775r_real: real > int ).
thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
archim7778729529865785530nd_rat: rat > int ).
thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
archim8280529875227126926d_real: real > int ).
thf(sy_c_BNF__Cardinal__Order__Relation_OnatLeq,type,
bNF_Ca8665028551170535155natLeq: set_Pr1261947904930325089at_nat ).
thf(sy_c_BNF__Cardinal__Order__Relation_OnatLess,type,
bNF_Ca8459412986667044542atLess: set_Pr1261947904930325089at_nat ).
thf(sy_c_Binomial_Obinomial,type,
binomial: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
gbinomial_complex: complex > nat > complex ).
thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
gbinomial_int: int > nat > int ).
thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
gbinomial_nat: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
gbinomial_rat: rat > nat > rat ).
thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
gbinomial_real: real > nat > real ).
thf(sy_c_Bit__Operations_Oand__int__rel,type,
bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
bit_ri7919022796975470100ot_int: int > int ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
bit_ri631733984087533419it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Code____Numeral__Ointeger,type,
bit_se3949692690581998587nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
bit_se725231765392027082nd_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
bit_se727722235901077358nd_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
bit_se8568078237143864401it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
bit_se8570568707652914677it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
bit_se1345352211410354436nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
bit_se2159334234014336723it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
bit_se2161824704523386999it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
bit_se2000444600071755411sk_int: nat > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
bit_se2002935070580805687sk_nat: nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
bit_se1409905431419307370or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
bit_se1412395901928357646or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
bit_se545348938243370406it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
bit_se547839408752420682it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
bit_se2793503036327961859nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
bit_se7879613467334960850it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
bit_se7882103937844011126it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Code____Numeral__Ointeger,type,
bit_se1745604003318907178nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
bit_se2923211474154528505it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
bit_se2925701944663578781it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
bit_se8260200283734997820nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
bit_se4203085406695923979it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
bit_se4205575877204974255it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
bit_se6526347334894502574or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
bit_se6528837805403552850or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
bit_se1146084159140164899it_int: int > nat > $o ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
bit_se1148574629649215175it_nat: nat > nat > $o ).
thf(sy_c_Bit__Operations_Otake__bit__num,type,
bit_take_bit_num: nat > num > option_num ).
thf(sy_c_Code__Numeral_Obit__cut__integer,type,
code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).
thf(sy_c_Code__Numeral_Odivmod__abs,type,
code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Code__Numeral_Odivmod__integer,type,
code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
code_int_of_integer: code_integer > int ).
thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
code_integer_of_int: int > code_integer ).
thf(sy_c_Code__Numeral_Onat__of__integer,type,
code_nat_of_integer: code_integer > nat ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
comple8358262395181532106omplex: set_fi4554929511873752355omplex > filter6041513312241820739omplex ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
comple2936214249959783750l_real: set_fi7789364187291644575l_real > filter2146258269922977983l_real ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Nat__Onat,type,
complete_Inf_Inf_nat: set_nat > nat ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
comple7806235888213564991et_nat: set_set_nat > set_nat ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
complete_Sup_Sup_nat: set_nat > nat ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
comple7399068483239264473et_nat: set_set_nat > set_nat ).
thf(sy_c_Complex_OArg,type,
arg: complex > real ).
thf(sy_c_Complex_Ocis,type,
cis: real > complex ).
thf(sy_c_Complex_Ocomplex_OComplex,type,
complex2: real > real > complex ).
thf(sy_c_Conditionally__Complete__Lattices_Opreorder__class_Obdd__above_001t__Nat__Onat,type,
condit2214826472909112428ve_nat: set_nat > $o ).
thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).
thf(sy_c_Divides_Odivmod__nat,type,
divmod_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Divides_Oeucl__rel__int,type,
eucl_rel_int: int > int > product_prod_int_int > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Code____Numeral__Ointeger,type,
unique5706413561485394159nteger: produc8923325533196201883nteger > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Int__Oint,type,
unique6319869463603278526ux_int: product_prod_int_int > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Nat__Onat,type,
unique6322359934112328802ux_nat: product_prod_nat_nat > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Code____Numeral__Ointeger,type,
unique3479559517661332726nteger: num > num > produc8923325533196201883nteger ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
unique5052692396658037445od_int: num > num > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
comm_s8582702949713902594nteger: code_integer > nat > code_integer ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
comm_s2602460028002588243omplex: complex > nat > complex ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
comm_s4660882817536571857er_int: int > nat > int ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
comm_s4663373288045622133er_nat: nat > nat > nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
comm_s4028243227959126397er_rat: rat > nat > rat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
comm_s7457072308508201937r_real: real > nat > real ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
semiri5044797733671781792omplex: nat > complex ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
semiri1406184849735516958ct_int: nat > int ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
semiri1408675320244567234ct_nat: nat > nat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
semiri773545260158071498ct_rat: nat > rat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
semiri2265585572941072030t_real: nat > real ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
inverse_inverse_real: real > real ).
thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
at_bot_real: filter_real ).
thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
at_top_nat: filter_nat ).
thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
at_top_real: filter_real ).
thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
eventually_nat: ( nat > $o ) > filter_nat > $o ).
thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
eventu1038000079068216329at_nat: ( product_prod_nat_nat > $o ) > filter1242075044329608583at_nat > $o ).
thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
eventually_real: ( real > $o ) > filter_real > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).
thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
princi3496590319149328850omplex: set_Pr5085853215250843933omplex > filter6041513312241820739omplex ).
thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
princi6114159922880469582l_real: set_Pr6218003697084177305l_real > filter2146258269922977983l_real ).
thf(sy_c_Filter_Oprod__filter_001t__Nat__Onat_001t__Nat__Onat,type,
prod_filter_nat_nat: filter_nat > filter_nat > filter1242075044329608583at_nat ).
thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
finite_card_complex: set_complex > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
finite_card_int: set_int > nat ).
thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Nat__Onat_J,type,
finite_card_list_nat: set_list_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
finite_card_nat: set_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
finite410649719033368117t_unit: set_Product_unit > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
finite_card_set_nat: set_set_nat > nat ).
thf(sy_c_Finite__Set_Ofinite_001_Eo,type,
finite_finite_o: set_o > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
finite3207457112153483333omplex: set_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
finite_finite_int: set_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_I_Eo_J,type,
finite_finite_list_o: set_list_o > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Complex__Ocomplex_J,type,
finite8712137658972009173omplex: set_list_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Int__Oint_J,type,
finite3922522038869484883st_int: set_list_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
finite8100373058378681591st_nat: set_list_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
finite3004134309566078307T_VEBT: set_list_VEBT_VEBT > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
finite_finite_nat: set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
finite_finite_num: set_num > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Rat__Orat,type,
finite_finite_rat: set_rat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
finite_finite_real: set_real > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Complex__Ocomplex_J,type,
finite6551019134538273531omplex: set_set_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Int__Oint_J,type,
finite6197958912794628473et_int: set_set_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
finite1152437895449049373et_nat: set_set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__VEBT____Definitions__OVEBT,type,
finite5795047828879050333T_VEBT: set_VEBT_VEBT > $o ).
thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).
thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
comp_nat_nat_nat: ( nat > nat ) > ( nat > nat ) > nat > nat ).
thf(sy_c_Fun_Oid_001_Eo,type,
id_o: $o > $o ).
thf(sy_c_Fun_Oid_001t__Nat__Onat,type,
id_nat: nat > nat ).
thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Nat__Onat,type,
inj_on_nat_nat: ( nat > nat ) > set_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Real__Oreal_001t__Real__Oreal,type,
inj_on_real_real: ( real > real ) > set_real > $o ).
thf(sy_c_Fun_Oinj__on_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
inj_on_set_nat_nat: ( set_nat > nat ) > set_set_nat > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
map_fu434086159418415080_int_o: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > $o ) > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > int > int > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
map_fu4960017516451851995nt_int: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > int > int > int ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
map_fu4826362097070443709at_o_o: ( int > product_prod_nat_nat ) > ( $o > $o ) > ( product_prod_nat_nat > $o ) > int > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
map_fu2345160673673942751at_nat: ( int > product_prod_nat_nat ) > ( nat > nat ) > ( product_prod_nat_nat > nat ) > int > nat ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).
thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_Eo_001_Eo,type,
map_fu1856342031159181835at_o_o: ( real > nat > rat ) > ( $o > $o ) > ( ( nat > rat ) > $o ) > real > $o ).
thf(sy_c_Fun_Ostrict__mono__on_001t__Nat__Onat_001t__Nat__Onat,type,
strict1292158309912662752at_nat: ( nat > nat ) > set_nat > $o ).
thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).
thf(sy_c_Fun__Def_Ois__measure_001t__Int__Oint,type,
fun_is_measure_int: ( int > nat ) > $o ).
thf(sy_c_GCD_OGcd__class_OGcd_001t__Int__Oint,type,
gcd_Gcd_int: set_int > int ).
thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
gcd_Gcd_nat: set_nat > nat ).
thf(sy_c_GCD_Obezw,type,
bezw: nat > nat > product_prod_int_int ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
abs_abs_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
abs_abs_complex: complex > complex ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
abs_abs_rat: rat > rat ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
abs_abs_real: real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Int__Oint_M_Eo_J,type,
minus_minus_int_o: ( int > $o ) > ( int > $o ) > int > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
minus_1139252259498527702_nat_o: ( list_nat > $o ) > ( list_nat > $o ) > list_nat > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
minus_6910147592129066416_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > set_nat > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
minus_2794559001203777698VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > vEBT_VEBT > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
minus_minus_complex: complex > complex > complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
minus_minus_rat: rat > rat > rat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
minus_811609699411566653omplex: set_complex > set_complex > set_complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
minus_minus_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
minus_7954133019191499631st_nat: set_list_nat > set_list_nat > set_list_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
minus_minus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
minus_minus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
minus_5127226145743854075T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
one_one_Code_integer: code_integer ).
thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
one_one_complex: complex ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
one_one_rat: rat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
plus_plus_complex: complex > complex > complex ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
plus_plus_rat: rat > rat > rat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
sgn_sgn_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
sgn_sgn_complex: complex > complex ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
sgn_sgn_int: int > int ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
sgn_sgn_rat: rat > rat ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
sgn_sgn_real: real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
times_3573771949741848930nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
times_times_complex: complex > complex > complex ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
times_times_rat: rat > rat > rat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Int__Oint_M_Eo_J,type,
uminus_uminus_int_o: ( int > $o ) > int > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
uminus5770388063884162150_nat_o: ( list_nat > $o ) > list_nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Nat__Onat_M_Eo_J,type,
uminus_uminus_nat_o: ( nat > $o ) > nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
uminus_uminus_real_o: ( real > $o ) > real > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
uminus6401447641752708672_nat_o: ( set_nat > $o ) > set_nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
uminus2746543603091002386VEBT_o: ( vEBT_VEBT > $o ) > vEBT_VEBT > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
uminus1351360451143612070nteger: code_integer > code_integer ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
uminus1482373934393186551omplex: complex > complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
uminus_uminus_rat: rat > rat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Int__Oint_J,type,
uminus1532241313380277803et_int: set_int > set_int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
uminus3195874150345416415st_nat: set_list_nat > set_list_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
uminus5710092332889474511et_nat: set_nat > set_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
uminus612125837232591019t_real: set_real > set_real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
uminus613421341184616069et_nat: set_set_nat > set_set_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
uminus8041839845116263051T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
zero_z3403309356797280102nteger: code_integer ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
zero_zero_complex: complex ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
zero_zero_rat: rat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_Eo_001t__Nat__Onat,type,
groups8507830703676809646_o_nat: ( $o > nat ) > set_o > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Rat__Orat,type,
groups5058264527183730370ex_rat: ( complex > rat ) > set_complex > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
groups7873554091576472773nteger: ( int > code_integer ) > set_int > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
groups4538972089207619220nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
groups8778361861064173332t_real: ( int > real ) > set_int > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Extended____Nat__Oenat,type,
groups7108830773950497114d_enat: ( nat > extended_enat ) > set_nat > extended_enat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
groups977919841031483927at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Real__Oreal,type,
groups4567486121110086003t_real: ( product_prod_nat_nat > real ) > set_Pr1261947904930325089at_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
groups7713935264441627589nteger: ( real > code_integer ) > set_real > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
groups1932886352136224148al_int: ( real > int ) > set_real > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Rat__Orat,type,
groups1300246762558778688al_rat: ( real > rat ) > set_real > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
groups8097168146408367636l_real: ( real > real ) > set_real > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
groups8294997508430121362at_nat: ( set_nat > nat ) > set_set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
groups5107569545109728110t_real: ( set_nat > real ) > set_set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Code____Numeral__Ointeger,type,
groups5748017345553531991nteger: ( vEBT_VEBT > code_integer ) > set_VEBT_VEBT > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Complex__Ocomplex,type,
groups1794756597179926696omplex: ( vEBT_VEBT > complex ) > set_VEBT_VEBT > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
groups769130701875090982BT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
groups771621172384141258BT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
groups136491112297645522BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
groups2240296850493347238T_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Code____Numeral__Ointeger,type,
groups8682486955453173170nteger: ( complex > code_integer ) > set_complex > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
groups3708469109370488835omplex: ( complex > complex ) > set_complex > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Int__Oint,type,
groups858564598930262913ex_int: ( complex > int ) > set_complex > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Nat__Onat,type,
groups861055069439313189ex_nat: ( complex > nat ) > set_complex > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Rat__Orat,type,
groups225925009352817453ex_rat: ( complex > rat ) > set_complex > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Real__Oreal,type,
groups766887009212190081x_real: ( complex > real ) > set_complex > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
groups3827104343326376752nteger: ( int > code_integer ) > set_int > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Complex__Ocomplex,type,
groups7440179247065528705omplex: ( int > complex ) > set_int > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
groups1705073143266064639nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Nat__Onat,type,
groups1707563613775114915nt_nat: ( int > nat ) > set_int > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Rat__Orat,type,
groups1072433553688619179nt_rat: ( int > rat ) > set_int > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Real__Oreal,type,
groups2316167850115554303t_real: ( int > real ) > set_int > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
groups3455450783089532116nteger: ( nat > code_integer ) > set_nat > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Complex__Ocomplex,type,
groups6464643781859351333omplex: ( nat > complex ) > set_nat > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
groups705719431365010083at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Rat__Orat,type,
groups73079841787564623at_rat: ( nat > rat ) > set_nat > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Real__Oreal,type,
groups129246275422532515t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
groups4075276357253098568at_int: ( product_prod_nat_nat > int ) > set_Pr1261947904930325089at_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
groups4077766827762148844at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Complex__Ocomplex,type,
groups713298508707869441omplex: ( real > complex ) > set_real > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Int__Oint,type,
groups4694064378042380927al_int: ( real > int ) > set_real > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Nat__Onat,type,
groups4696554848551431203al_nat: ( real > nat ) > set_real > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Rat__Orat,type,
groups4061424788464935467al_rat: ( real > rat ) > set_real > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Real__Oreal,type,
groups1681761925125756287l_real: ( real > real ) > set_real > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
groups3619160379726066777t_real: ( set_nat > real ) > set_set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Complex__Ocomplex,type,
groups127312072573709053omplex: ( vEBT_VEBT > complex ) > set_VEBT_VEBT > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
groups6359315924273963643BT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
groups6361806394783013919BT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
groups5726676334696518183BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
groups2703838992350267259T_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > real ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).
thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
groups4561878855575611511st_nat: list_nat > nat ).
thf(sy_c_HOL_OThe_001t__Int__Oint,type,
the_int: ( int > $o ) > int ).
thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
the_real: ( real > $o ) > real ).
thf(sy_c_If_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
if_int_int: $o > ( int > int ) > ( int > int ) > int > int ).
thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
if_Code_integer: $o > code_integer > code_integer > code_integer ).
thf(sy_c_If_001t__Complex__Ocomplex,type,
if_complex: $o > complex > complex > complex ).
thf(sy_c_If_001t__Extended____Nat__Oenat,type,
if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
if_list_int: $o > list_int > list_int > list_int ).
thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
if_list_nat: $o > list_nat > list_nat > list_nat ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Num__Onum,type,
if_num: $o > num > num > num ).
thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
if_option_num: $o > option_num > option_num > option_num ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_If_001t__Rat__Orat,type,
if_rat: $o > rat > rat > rat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
if_set_int: $o > set_int > set_int > set_int ).
thf(sy_c_If_001t__VEBT____Definitions__OVEBT,type,
if_VEBT_VEBT: $o > vEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_Infinite__Set_Owellorder__class_Oenumerate_001t__Nat__Onat,type,
infini8530281810654367211te_nat: set_nat > nat > nat ).
thf(sy_c_Int_OAbs__Integ,type,
abs_Integ: product_prod_nat_nat > int ).
thf(sy_c_Int_ORep__Integ,type,
rep_Integ: int > product_prod_nat_nat ).
thf(sy_c_Int_Oint__ge__less__than,type,
int_ge_less_than: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Oint__ge__less__than2,type,
int_ge_less_than2: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Int_Opower__int_001t__Real__Oreal,type,
power_int_real: real > int > real ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
ring_18347121197199848620nteger: int > code_integer ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
ring_17405671764205052669omplex: int > complex ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
ring_1_of_int_int: int > int ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
ring_1_of_int_rat: int > rat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Int__Oint,type,
inf_inf_int: int > int > int ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
inf_inf_nat: nat > nat > nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
inf_in2572325071724192079at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).
thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Int__Oint,type,
sup_sup_int: int > int > int ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
sup_sup_nat: nat > nat > nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
sup_sup_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
lattic8263393255366662781ax_int: set_int > int ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
lattic8265883725875713057ax_nat: set_nat > nat ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Complex__Ocomplex_001t__Num__Onum,type,
lattic1922116423962787043ex_num: ( complex > num ) > set_complex > complex ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Complex__Ocomplex_001t__Rat__Orat,type,
lattic4729654577720512673ex_rat: ( complex > rat ) > set_complex > complex ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Complex__Ocomplex_001t__Real__Oreal,type,
lattic8794016678065449205x_real: ( complex > real ) > set_complex > complex ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Int__Oint_001t__Num__Onum,type,
lattic5003618458639192673nt_num: ( int > num ) > set_int > int ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Int__Oint_001t__Rat__Orat,type,
lattic7811156612396918303nt_rat: ( int > rat ) > set_int > int ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Int__Oint_001t__Real__Oreal,type,
lattic2675449441010098035t_real: ( int > real ) > set_int > int ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Num__Onum,type,
lattic4004264746738138117at_num: ( nat > num ) > set_nat > nat ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Rat__Orat,type,
lattic6811802900495863747at_rat: ( nat > rat ) > set_nat > nat ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Real__Oreal,type,
lattic488527866317076247t_real: ( nat > real ) > set_nat > nat ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Real__Oreal_001t__Num__Onum,type,
lattic1613168225601753569al_num: ( real > num ) > set_real > real ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Real__Oreal_001t__Rat__Orat,type,
lattic4420706379359479199al_rat: ( real > rat ) > set_real > real ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Real__Oreal_001t__Real__Oreal,type,
lattic8440615504127631091l_real: ( real > real ) > set_real > real ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__VEBT____Definitions__OVEBT_001t__Num__Onum,type,
lattic3331990488459210229BT_num: ( vEBT_VEBT > num ) > set_VEBT_VEBT > vEBT_VEBT ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
lattic6139528642216935859BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > vEBT_VEBT ).
thf(sy_c_List_Oappend_001t__Int__Oint,type,
append_int: list_int > list_int > list_int ).
thf(sy_c_List_Oappend_001t__Nat__Onat,type,
append_nat: list_nat > list_nat > list_nat ).
thf(sy_c_List_Ocount__list_001_Eo,type,
count_list_o: list_o > $o > nat ).
thf(sy_c_List_Ocount__list_001t__Complex__Ocomplex,type,
count_list_complex: list_complex > complex > nat ).
thf(sy_c_List_Ocount__list_001t__Int__Oint,type,
count_list_int: list_int > int > nat ).
thf(sy_c_List_Ocount__list_001t__Nat__Onat,type,
count_list_nat: list_nat > nat > nat ).
thf(sy_c_List_Ocount__list_001t__Real__Oreal,type,
count_list_real: list_real > real > nat ).
thf(sy_c_List_Ocount__list_001t__Set__Oset_It__Nat__Onat_J,type,
count_list_set_nat: list_set_nat > set_nat > nat ).
thf(sy_c_List_Ocount__list_001t__VEBT____Definitions__OVEBT,type,
count_list_VEBT_VEBT: list_VEBT_VEBT > vEBT_VEBT > nat ).
thf(sy_c_List_Odistinct_001t__Int__Oint,type,
distinct_int: list_int > $o ).
thf(sy_c_List_Odistinct_001t__Nat__Onat,type,
distinct_nat: list_nat > $o ).
thf(sy_c_List_Odrop_001t__Nat__Onat,type,
drop_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Olast_001t__Nat__Onat,type,
last_nat: list_nat > nat ).
thf(sy_c_List_Olinorder__class_Osort__key_001t__Int__Oint_001t__Int__Oint,type,
linord1735203802627413978nt_int: ( int > int ) > list_int > list_int ).
thf(sy_c_List_Olinorder__class_Osort__key_001t__Nat__Onat_001t__Nat__Onat,type,
linord738340561235409698at_nat: ( nat > nat ) > list_nat > list_nat ).
thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
linord2614967742042102400et_nat: set_nat > list_nat ).
thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
cons_int: int > list_int > list_int ).
thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
cons_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
nil_int: list_int ).
thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
nil_nat: list_nat ).
thf(sy_c_List_Olist_Ohd_001t__Nat__Onat,type,
hd_nat: list_nat > nat ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
map_nat_nat: ( nat > nat ) > list_nat > list_nat ).
thf(sy_c_List_Olist_Oset_001_Eo,type,
set_o2: list_o > set_o ).
thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
set_complex2: list_complex > set_complex ).
thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
set_int2: list_int > set_int ).
thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
set_nat2: list_nat > set_nat ).
thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
set_real2: list_real > set_real ).
thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
set_set_nat2: list_set_nat > set_set_nat ).
thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).
thf(sy_c_List_Olist_Otl_001t__Nat__Onat,type,
tl_nat: list_nat > list_nat ).
thf(sy_c_List_Olist__update_001_Eo,type,
list_update_o: list_o > nat > $o > list_o ).
thf(sy_c_List_Olist__update_001t__Int__Oint,type,
list_update_int: list_int > nat > int > list_int ).
thf(sy_c_List_Olist__update_001t__Nat__Onat,type,
list_update_nat: list_nat > nat > nat > list_nat ).
thf(sy_c_List_Olist__update_001t__Real__Oreal,type,
list_update_real: list_real > nat > real > list_real ).
thf(sy_c_List_Olist__update_001t__Set__Oset_It__Nat__Onat_J,type,
list_update_set_nat: list_set_nat > nat > set_nat > list_set_nat ).
thf(sy_c_List_Olist__update_001t__VEBT____Definitions__OVEBT,type,
list_u1324408373059187874T_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Onth_001_Eo,type,
nth_o: list_o > nat > $o ).
thf(sy_c_List_Onth_001t__Code____Numeral__Ointeger,type,
nth_Code_integer: list_Code_integer > nat > code_integer ).
thf(sy_c_List_Onth_001t__Int__Oint,type,
nth_int: list_int > nat > int ).
thf(sy_c_List_Onth_001t__Nat__Onat,type,
nth_nat: list_nat > nat > nat ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
nth_Product_prod_o_o: list_P4002435161011370285od_o_o > nat > product_prod_o_o ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
nth_Pr1649062631805364268_o_int: list_P3795440434834930179_o_int > nat > product_prod_o_int ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
nth_Pr5826913651314560976_o_nat: list_P6285523579766656935_o_nat > nat > product_prod_o_nat ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
nth_Pr6777367263587873994T_VEBT: list_P7495141550334521929T_VEBT > nat > produc2504756804600209347T_VEBT ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
nth_Pr8522763379788166057eger_o: list_P8526636022914148096eger_o > nat > produc6271795597528267376eger_o ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
nth_Pr2304437835452373666nteger: list_P5578671422887162913nteger > nat > produc8923325533196201883nteger ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
nth_Pr4606735188037164562VEBT_o: list_P3126845725202233233VEBT_o > nat > produc334124729049499915VEBT_o ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
nth_Pr6837108013167703752BT_int: list_P4547456442757143711BT_int > nat > produc4894624898956917775BT_int ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
nth_Pr1791586995822124652BT_nat: list_P7037539587688870467BT_nat > nat > produc9072475918466114483BT_nat ).
thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
nth_Pr4953567300277697838T_VEBT: list_P7413028617227757229T_VEBT > nat > produc8243902056947475879T_VEBT ).
thf(sy_c_List_Onth_001t__Real__Oreal,type,
nth_real: list_real > nat > real ).
thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
nth_set_nat: list_set_nat > nat > set_nat ).
thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_List_Oproduct_001_Eo_001_Eo,type,
product_o_o: list_o > list_o > list_P4002435161011370285od_o_o ).
thf(sy_c_List_Oproduct_001_Eo_001t__Int__Oint,type,
product_o_int: list_o > list_int > list_P3795440434834930179_o_int ).
thf(sy_c_List_Oproduct_001_Eo_001t__Nat__Onat,type,
product_o_nat: list_o > list_nat > list_P6285523579766656935_o_nat ).
thf(sy_c_List_Oproduct_001_Eo_001t__VEBT____Definitions__OVEBT,type,
product_o_VEBT_VEBT: list_o > list_VEBT_VEBT > list_P7495141550334521929T_VEBT ).
thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001_Eo,type,
produc3607205314601156340eger_o: list_Code_integer > list_o > list_P8526636022914148096eger_o ).
thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc8792966785426426881nteger: list_Code_integer > list_Code_integer > list_P5578671422887162913nteger ).
thf(sy_c_List_Oproduct_001t__Nat__Onat_001_Eo,type,
product_nat_o: list_nat > list_o > list_P7333126701944960589_nat_o ).
thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
produc7156399406898700509T_VEBT: list_nat > list_VEBT_VEBT > list_P5647936690300460905T_VEBT ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001_Eo,type,
product_VEBT_VEBT_o: list_VEBT_VEBT > list_o > list_P3126845725202233233VEBT_o ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
produc7292646706713671643BT_int: list_VEBT_VEBT > list_int > list_P4547456442757143711BT_int ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
produc7295137177222721919BT_nat: list_VEBT_VEBT > list_nat > list_P7037539587688870467BT_nat ).
thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
produc4743750530478302277T_VEBT: list_VEBT_VEBT > list_VEBT_VEBT > list_P7413028617227757229T_VEBT ).
thf(sy_c_List_Oremdups_001t__Nat__Onat,type,
remdups_nat: list_nat > list_nat ).
thf(sy_c_List_Oreplicate_001_Eo,type,
replicate_o: nat > $o > list_o ).
thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
replicate_int: nat > int > list_int ).
thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
replicate_nat: nat > nat > list_nat ).
thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
replicate_real: nat > real > list_real ).
thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
replicate_set_nat: nat > set_nat > list_set_nat ).
thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Osorted__wrt_001t__Int__Oint,type,
sorted_wrt_int: ( int > int > $o ) > list_int > $o ).
thf(sy_c_List_Osorted__wrt_001t__Nat__Onat,type,
sorted_wrt_nat: ( nat > nat > $o ) > list_nat > $o ).
thf(sy_c_List_Otake_001t__Nat__Onat,type,
take_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Oupt,type,
upt: nat > nat > list_nat ).
thf(sy_c_List_Oupto,type,
upto: int > int > list_int ).
thf(sy_c_List_Oupto__aux,type,
upto_aux: int > int > list_int > list_int ).
thf(sy_c_List_Oupto__rel,type,
upto_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
compow_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
case_nat_o: $o > ( nat > $o ) > nat > $o ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
case_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Onat_Opred,type,
pred: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_ONats_001t__Int__Oint,type,
semiring_1_Nats_int: set_int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
semiri4939895301339042750nteger: nat > code_integer ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
semiri8010041392384452111omplex: nat > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
semiri4216267220026989637d_enat: nat > extended_enat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
semiri681578069525770553at_rat: nat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Complex__Ocomplex,type,
semiri2816024913162550771omplex: ( complex > complex ) > nat > complex > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Rat__Orat,type,
semiri7787848453975740701ux_rat: ( rat > rat ) > nat > rat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Real__Oreal,type,
semiri7260567687927622513x_real: ( real > real ) > nat > real > real ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
size_size_list_o: list_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
size_s3445333598471063425nteger: list_Code_integer > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
size_s3451745648224563538omplex: list_complex > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
size_size_list_int: list_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
size_size_list_nat: list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
size_s1515746228057227161od_o_o: list_P4002435161011370285od_o_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
size_s2953683556165314199_o_int: list_P3795440434834930179_o_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J_J,type,
size_s5443766701097040955_o_nat: list_P6285523579766656935_o_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
size_s4313452262239582901T_VEBT: list_P7495141550334521929T_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
size_s6491369823275344609_nat_o: list_P7333126701944960589_nat_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
size_s4762443039079500285T_VEBT: list_P5647936690300460905T_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
size_s9168528473962070013VEBT_o: list_P3126845725202233233VEBT_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
size_s3661962791536183091BT_int: list_P4547456442757143711BT_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
size_s6152045936467909847BT_nat: list_P7037539587688870467BT_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
size_s7466405169056248089T_VEBT: list_P7413028617227757229T_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
size_size_list_real: list_real > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
size_s3254054031482475050et_nat: list_set_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
size_size_num: num > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Num__Onum_J,type,
size_size_option_num: option_num > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
size_s170228958280169651at_nat: option4927543243414619207at_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
size_size_VEBT_VEBT: vEBT_VEBT > nat ).
thf(sy_c_Nat__Bijection_Olist__encode,type,
nat_list_encode: list_nat > nat ).
thf(sy_c_Nat__Bijection_Olist__encode__rel,type,
nat_list_encode_rel: list_nat > list_nat > $o ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).
thf(sy_c_Nat__Bijection_Oprod__encode,type,
nat_prod_encode: product_prod_nat_nat > nat ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > set_nat ).
thf(sy_c_Nat__Bijection_Oset__encode,type,
nat_set_encode: set_nat > nat ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_NthRoot_Oroot,type,
root: nat > real > real ).
thf(sy_c_NthRoot_Osqrt,type,
sqrt: real > real ).
thf(sy_c_Num_OBitM,type,
bitM: num > num ).
thf(sy_c_Num_Oinc,type,
inc: num > num ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
neg_nu8804712462038260780nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
neg_nu7009210354673126013omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
neg_numeral_dbl_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
neg_nu7757733837767384882nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
neg_nu6511756317524482435omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
neg_nu3811975205180677377ec_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
neg_nu3179335615603231917ec_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
neg_nu6075765906172075777c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
neg_nu5831290666863070958nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
neg_nu8557863876264182079omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
neg_nu5219082963157363817nc_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
neg_numeral_sub_int: num > num > int ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
thf(sy_c_Num_Onum__of__nat,type,
num_of_nat: nat > num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
numera6620942414471956472nteger: num > code_integer ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
numera6690914467698888265omplex: num > complex ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
numeral_numeral_rat: num > rat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
thf(sy_c_Num_Osqr,type,
sqr: num > num ).
thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
none_num: option_num ).
thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
none_P5556105721700978146at_nat: option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
some_num: num > option_num ).
thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).
thf(sy_c_Option_Ooption_Osize__option_001t__Num__Onum,type,
size_option_num: ( num > nat ) > option_num > nat ).
thf(sy_c_Option_Ooption_Osize__option_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
size_o8335143837870341156at_nat: ( product_prod_nat_nat > nat ) > option4927543243414619207at_nat > nat ).
thf(sy_c_Order__Relation_OunderS_001t__Nat__Onat,type,
order_underS_nat: set_Pr1261947904930325089at_nat > nat > set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
bot_bo4731626569425807221er_o_o: code_integer > $o > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Code____Numeral__Ointeger_M_062_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
bot_bo8134993004553108152eger_o: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
bot_bot_int_int_o: int > int > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Int__Oint_M_Eo_J,type,
bot_bot_int_o: int > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
bot_bot_list_nat_o: list_nat > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
bot_bot_nat_nat_o: nat > nat > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
bot_bot_nat_o: nat > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Real__Oreal_M_Eo_J,type,
bot_bot_real_o: real > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
bot_bot_set_nat_o: set_nat > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__VEBT____Definitions__OVEBT_M_062_It__Nat__Onat_M_Eo_J_J,type,
bot_bo1565574316222977092_nat_o: vEBT_VEBT > nat > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
bot_bot_VEBT_VEBT_o: vEBT_VEBT > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
bot_bo4199563552545308370d_enat: extended_enat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Filter__Ofilter_It__Nat__Onat_J,type,
bot_bot_filter_nat: filter_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
bot_bot_nat: nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Complex__Ocomplex_J,type,
bot_bot_set_complex: set_complex ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
bot_bot_set_int: set_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
bot_bot_set_list_nat: set_list_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
bot_bot_set_nat: set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Num__Onum_J,type,
bot_bot_set_num: set_num ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
bot_bo5379713665208646970eger_o: set_Pr448751882837621926eger_o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
bot_bo4276436098303576167nteger: set_Pr4811707699266497531nteger ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
bot_bo1796632182523588997nt_int: set_Pr958786334691620121nt_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
bot_bo2099793752762293965at_nat: set_Pr1261947904930325089at_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
bot_bo1642239108664514429BT_nat: set_Pr7556676689462069481BT_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Rat__Orat_J,type,
bot_bot_set_rat: set_rat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
bot_bot_set_real: set_real ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
bot_bot_set_set_int: set_set_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
bot_bot_set_set_nat: set_set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
bot_bo8194388402131092736T_VEBT: set_VEBT_VEBT ).
thf(sy_c_Orderings_Oord__class_OLeast_001t__Nat__Onat,type,
ord_Least_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Int__Oint_M_Eo_J,type,
ord_less_int_o: ( int > $o ) > ( int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_M_Eo_J,type,
ord_less_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Real__Oreal_M_Eo_J,type,
ord_less_real_o: ( real > $o ) > ( real > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
ord_less_set_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
ord_less_VEBT_VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
ord_le6747313008572928689nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Filter__Ofilter_It__Nat__Onat_J,type,
ord_less_filter_nat: filter_nat > filter_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
ord_less_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_less_set_complex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
ord_less_set_rat: set_rat > set_rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
ord_less_set_set_int: set_set_int > set_set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
ord_le3480810397992357184T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_Eo_J,type,
ord_less_eq_int_o: ( int > $o ) > ( int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
ord_le3964352015994296041_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
ord_le418104280809901481VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
ord_le3102999989581377725nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
ord_less_eq_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
ord_less_eq_set_o: set_o > set_o > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_le211207098394363844omplex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
ord_le6045566169113846134st_nat: set_list_nat > set_list_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_eq_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
ord_less_eq_set_rat: set_rat > set_rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
ord_le4403425263959731960et_int: set_set_int > set_set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
ord_max_Code_integer: code_integer > code_integer > code_integer ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Filter__Ofilter_It__Nat__Onat_J,type,
ord_max_filter_nat: filter_nat > filter_nat > filter_nat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
ord_max_int: int > int > int ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
ord_max_nat: nat > nat > nat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
ord_max_num: num > num > num ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
ord_max_rat: rat > rat > rat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
ord_max_real: real > real > real ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Int__Oint_J,type,
ord_max_set_int: set_int > set_int > set_int ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Nat__Onat_J,type,
ord_max_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Real__Oreal_J,type,
ord_max_set_real: set_real > set_real > set_real ).
thf(sy_c_Orderings_Oord__class_Omin_001t__Int__Oint,type,
ord_min_int: int > int > int ).
thf(sy_c_Orderings_Oord__class_Omin_001t__Nat__Onat,type,
ord_min_nat: nat > nat > nat ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
order_Greatest_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
order_mono_nat_nat: ( nat > nat ) > $o ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Nat__Onat_001t__Nat__Onat,type,
order_5726023648592871131at_nat: ( nat > nat ) > $o ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Real__Oreal_001t__Real__Oreal,type,
order_7092887310737990675l_real: ( real > real ) > $o ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
top_top_set_int: set_int ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
top_top_set_nat: set_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
top_to1996260823553986621t_unit: set_Product_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
top_top_set_real: set_real ).
thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
power_8256067586552552935nteger: code_integer > nat > code_integer ).
thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
power_power_complex: complex > nat > complex ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nat__Oenat,type,
power_8040749407984259932d_enat: extended_enat > nat > extended_enat ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
power_power_rat: rat > nat > rat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc3209952032786966637at_nat: ( nat > nat > nat ) > produc7248412053542808358at_nat > produc4471711990508489141at_nat ).
thf(sy_c_Product__Type_OPair_001_Eo_001_Eo,type,
product_Pair_o_o: $o > $o > product_prod_o_o ).
thf(sy_c_Product__Type_OPair_001_Eo_001t__Int__Oint,type,
product_Pair_o_int: $o > int > product_prod_o_int ).
thf(sy_c_Product__Type_OPair_001_Eo_001t__Nat__Onat,type,
product_Pair_o_nat: $o > nat > product_prod_o_nat ).
thf(sy_c_Product__Type_OPair_001_Eo_001t__VEBT____Definitions__OVEBT,type,
produc2982872950893828659T_VEBT: $o > vEBT_VEBT > produc2504756804600209347T_VEBT ).
thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).
thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
product_Pair_int_int: int > int > product_prod_int_int ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc487386426758144856at_nat: nat > product_prod_nat_nat > produc7248412053542808358at_nat ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001_Eo,type,
produc8721562602347293563VEBT_o: vEBT_VEBT > $o > produc334124729049499915VEBT_o ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
produc736041933913180425BT_int: vEBT_VEBT > int > produc4894624898956917775BT_int ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
produc537772716801021591T_VEBT: vEBT_VEBT > vEBT_VEBT > produc8243902056947475879T_VEBT ).
thf(sy_c_Product__Type_OSigma_001t__Nat__Onat_001t__Nat__Onat,type,
produc457027306803732586at_nat: set_nat > ( nat > set_nat ) > set_Pr1261947904930325089at_nat ).
thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Complex__Ocomplex_001t__Complex__Ocomplex_001_Eo,type,
produc6771430404735790350plex_o: ( complex > complex > $o ) > produc4411394909380815293omplex > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
produc1830744345554046123nteger: ( nat > nat > code_integer ) > product_prod_nat_nat > code_integer ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Complex__Ocomplex,type,
produc1917071388513777916omplex: ( nat > nat > complex ) > product_prod_nat_nat > complex ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Extended____Nat__Oenat,type,
produc2676513652042109336d_enat: ( nat > nat > extended_enat ) > product_prod_nat_nat > extended_enat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint,type,
produc6840382203811409530at_int: ( nat > nat > int ) > product_prod_nat_nat > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Rat__Orat,type,
produc6207742614233964070at_rat: ( nat > nat > rat ) > product_prod_nat_nat > rat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Real__Oreal,type,
produc1703576794950452218t_real: ( nat > nat > real ) > product_prod_nat_nat > real ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Real__Oreal_001t__Real__Oreal_001_Eo,type,
produc5414030515140494994real_o: ( real > real > $o ) > produc2422161461964618553l_real > $o ).
thf(sy_c_Rat_OFract,type,
fract: int > int > rat ).
thf(sy_c_Rat_Ofield__char__0__class_ORats_001t__Real__Oreal,type,
field_5140801741446780682s_real: set_real ).
thf(sy_c_Rat_Onormalize,type,
normalize: product_prod_int_int > product_prod_int_int ).
thf(sy_c_Rat_Opositive,type,
positive: rat > $o ).
thf(sy_c_Rat_Oquotient__of,type,
quotient_of: rat > product_prod_int_int ).
thf(sy_c_Real_OReal,type,
real2: ( nat > rat ) > real ).
thf(sy_c_Real_Ocauchy,type,
cauchy: ( nat > rat ) > $o ).
thf(sy_c_Real_Opositive,type,
positive2: real > $o ).
thf(sy_c_Real_Orep__real,type,
rep_real: real > nat > rat ).
thf(sy_c_Real_Ovanishes,type,
vanishes: ( nat > rat ) > $o ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
real_V3694042436643373181omplex: complex > complex > real ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
real_V975177566351809787t_real: real > real > real ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
real_V1022390504157884413omplex: complex > real ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
real_V7735802525324610683m_real: real > real ).
thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
real_V4546457046886955230omplex: real > complex ).
thf(sy_c_Relation_OField_001t__Nat__Onat,type,
field_nat: set_Pr1261947904930325089at_nat > set_nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
divide6298287555418463151nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
divide1717551699836669952omplex: complex > complex > complex ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
divide_divide_rat: rat > rat > rat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
dvd_dvd_Code_integer: code_integer > code_integer > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
dvd_dvd_complex: complex > complex > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
dvd_dvd_rat: rat > rat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
dvd_dvd_real: real > real > $o ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
modulo364778990260209775nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
modulo_modulo_int: int > int > int ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
modulo_modulo_nat: nat > nat > nat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
zero_n356916108424825756nteger: $o > code_integer ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
zero_n1201886186963655149omplex: $o > complex ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
zero_n2684676970156552555ol_int: $o > int ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
zero_n2687167440665602831ol_nat: $o > nat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
zero_n2052037380579107095ol_rat: $o > rat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
zero_n3304061248610475627l_real: $o > real ).
thf(sy_c_Series_Osuminf_001t__Complex__Ocomplex,type,
suminf_complex: ( nat > complex ) > complex ).
thf(sy_c_Series_Osuminf_001t__Int__Oint,type,
suminf_int: ( nat > int ) > int ).
thf(sy_c_Series_Osuminf_001t__Nat__Onat,type,
suminf_nat: ( nat > nat ) > nat ).
thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
suminf_real: ( nat > real ) > real ).
thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
summable_complex: ( nat > complex ) > $o ).
thf(sy_c_Series_Osummable_001t__Int__Oint,type,
summable_int: ( nat > int ) > $o ).
thf(sy_c_Series_Osummable_001t__Nat__Onat,type,
summable_nat: ( nat > nat ) > $o ).
thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
summable_real: ( nat > real ) > $o ).
thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
sums_complex: ( nat > complex ) > complex > $o ).
thf(sy_c_Series_Osums_001t__Int__Oint,type,
sums_int: ( nat > int ) > int > $o ).
thf(sy_c_Series_Osums_001t__Nat__Onat,type,
sums_nat: ( nat > nat ) > nat > $o ).
thf(sy_c_Series_Osums_001t__Real__Oreal,type,
sums_real: ( nat > real ) > real > $o ).
thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
collect_complex: ( complex > $o ) > set_complex ).
thf(sy_c_Set_OCollect_001t__Int__Oint,type,
collect_int: ( int > $o ) > set_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_I_Eo_J,type,
collect_list_o: ( list_o > $o ) > set_list_o ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Complex__Ocomplex_J,type,
collect_list_complex: ( list_complex > $o ) > set_list_complex ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Int__Oint_J,type,
collect_list_int: ( list_int > $o ) > set_list_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
collect_list_nat: ( list_nat > $o ) > set_list_nat ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
collec5608196760682091941T_VEBT: ( list_VEBT_VEBT > $o ) > set_list_VEBT_VEBT ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set_OCollect_001t__Num__Onum,type,
collect_num: ( num > $o ) > set_num ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
collec8663557070575231912omplex: ( produc4411394909380815293omplex > $o ) > set_Pr5085853215250843933omplex ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
collec3392354462482085612at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
collec3799799289383736868l_real: ( produc2422161461964618553l_real > $o ) > set_Pr6218003697084177305l_real ).
thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
collect_rat: ( rat > $o ) > set_rat ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Complex__Ocomplex_J,type,
collect_set_complex: ( set_complex > $o ) > set_set_complex ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Int__Oint_J,type,
collect_set_int: ( set_int > $o ) > set_set_int ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
collect_set_nat: ( set_nat > $o ) > set_set_nat ).
thf(sy_c_Set_OCollect_001t__VEBT____Definitions__OVEBT,type,
collect_VEBT_VEBT: ( vEBT_VEBT > $o ) > set_VEBT_VEBT ).
thf(sy_c_Set_OPow_001t__Nat__Onat,type,
pow_nat: set_nat > set_set_nat ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
image_int_int: ( int > int ) > set_int > set_int ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
image_int_nat: ( int > nat ) > set_int > set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
image_nat_int: ( nat > int ) > set_nat > set_int ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
image_nat_nat: ( nat > nat ) > set_nat > set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
image_5971271580939081552omplex: ( real > filter6041513312241820739omplex ) > set_real > set_fi4554929511873752355omplex ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
image_2178119161166701260l_real: ( real > filter2146258269922977983l_real ) > set_real > set_fi7789364187291644575l_real ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
image_real_real: ( real > real ) > set_real > set_real ).
thf(sy_c_Set_Oinsert_001t__Complex__Ocomplex,type,
insert_complex: complex > set_complex > set_complex ).
thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
insert_int: int > set_int > set_int ).
thf(sy_c_Set_Oinsert_001t__List__Olist_It__Nat__Onat_J,type,
insert_list_nat: list_nat > set_list_nat > set_list_nat ).
thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
insert_nat: nat > set_nat > set_nat ).
thf(sy_c_Set_Oinsert_001t__Num__Onum,type,
insert_num: num > set_num > set_num ).
thf(sy_c_Set_Oinsert_001t__Rat__Orat,type,
insert_rat: rat > set_rat > set_rat ).
thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
insert_real: real > set_real > set_real ).
thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Nat__Onat_J,type,
insert_set_nat: set_nat > set_set_nat > set_set_nat ).
thf(sy_c_Set_Oinsert_001t__VEBT____Definitions__OVEBT,type,
insert_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Nat__Onat,type,
vimage_nat_nat: ( nat > nat ) > set_nat > set_nat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Complex__Ocomplex,type,
set_fo1517530859248394432omplex: ( nat > complex > complex ) > nat > nat > complex > complex ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Int__Oint,type,
set_fo2581907887559384638at_int: ( nat > int > int ) > nat > nat > int > int ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Rat__Orat,type,
set_fo1949268297981939178at_rat: ( nat > rat > rat ) > nat > nat > rat > rat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Real__Oreal,type,
set_fo3111899725591712190t_real: ( nat > real > real ) > nat > nat > real > real ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
set_or1266510415728281911st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
set_or1269000886237332187st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
set_or7049704709247886629st_num: num > num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Rat__Orat,type,
set_or633870826150836451st_rat: rat > rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
set_or1222579329274155063t_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Int__Oint_J,type,
set_or370866239135849197et_int: set_int > set_int > set_set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Nat__Onat_J,type,
set_or4548717258645045905et_nat: set_nat > set_nat > set_set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
set_or4662586982721622107an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
set_or4665077453230672383an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
set_ord_atLeast_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
set_ord_atMost_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
set_ord_atMost_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Num__Onum,type,
set_ord_atMost_num: num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Rat__Orat,type,
set_ord_atMost_rat: rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
set_ord_atMost_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Int__Oint_J,type,
set_or58775011639299419et_int: set_int > set_set_int ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
set_or4236626031148496127et_nat: set_nat > set_set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
set_or6656581121297822940st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
set_or6659071591806873216st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
set_or5832277885323065728an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
set_or5834768355832116004an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
set_or1633881224788618240n_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
set_or1210151606488870762an_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
set_or5849166863359141190n_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
set_ord_lessThan_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
set_ord_lessThan_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Num__Onum,type,
set_ord_lessThan_num: num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Rat__Orat,type,
set_ord_lessThan_rat: rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
set_or5984915006950818249n_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Set__Oset_It__Nat__Onat_J,type,
set_or890127255671739683et_nat: set_nat > set_set_nat ).
thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Int__Oint,type,
topolo4899668324122417113eq_int: ( nat > int ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Nat__Onat,type,
topolo4902158794631467389eq_nat: ( nat > nat ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Num__Onum,type,
topolo1459490580787246023eq_num: ( nat > num ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Rat__Orat,type,
topolo4267028734544971653eq_rat: ( nat > rat ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
topolo6980174941875973593q_real: ( nat > real ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Set__Oset_It__Int__Oint_J,type,
topolo3100542954746470799et_int: ( nat > set_int ) > $o ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
topolo2177554685111907308n_real: real > set_real > filter_real ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
topolo2815343760600316023s_real: real > filter_real ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
topolo4055970368930404560y_real: ( nat > real ) > $o ).
thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Complex__Ocomplex,type,
topolo896644834953643431omplex: filter6041513312241820739omplex ).
thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Real__Oreal,type,
topolo1511823702728130853y_real: filter2146258269922977983l_real ).
thf(sy_c_Transcendental_Oarccos,type,
arccos: real > real ).
thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
arcosh_real: real > real ).
thf(sy_c_Transcendental_Oarcsin,type,
arcsin: real > real ).
thf(sy_c_Transcendental_Oarctan,type,
arctan: real > real ).
thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
arsinh_real: real > real ).
thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
artanh_real: real > real ).
thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
cos_real: real > real ).
thf(sy_c_Transcendental_Ocos__coeff,type,
cos_coeff: nat > real ).
thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
cosh_real: real > real ).
thf(sy_c_Transcendental_Ocot_001t__Complex__Ocomplex,type,
cot_complex: complex > complex ).
thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
cot_real: real > real ).
thf(sy_c_Transcendental_Odiffs_001t__Complex__Ocomplex,type,
diffs_complex: ( nat > complex ) > nat > complex ).
thf(sy_c_Transcendental_Odiffs_001t__Real__Oreal,type,
diffs_real: ( nat > real ) > nat > real ).
thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
exp_real: real > real ).
thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
ln_ln_real: real > real ).
thf(sy_c_Transcendental_Olog,type,
log: real > real > real ).
thf(sy_c_Transcendental_Opi,type,
pi: real ).
thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
powr_real: real > real > real ).
thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
sin_real: real > real ).
thf(sy_c_Transcendental_Osin__coeff,type,
sin_coeff: nat > real ).
thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
sinh_real: real > real ).
thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
tan_real: real > real ).
thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
tanh_complex: complex > complex ).
thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
tanh_real: real > real ).
thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
vEBT_Leaf: $o > $o > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
vEBT_size_VEBT: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
vEBT_VEBT_high: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
vEBT_VEBT_low: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
vEBT_invar_vebt: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_Oset__vebt,type,
vEBT_set_vebt: vEBT_VEBT > set_nat ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
vEBT_vebt_buildup: nat > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
vEBT_v4011308405150292612up_rel: nat > nat > $o ).
thf(sy_c_VEBT__Insert_Ovebt__insert,type,
vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
vEBT_vebt_insert_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
vEBT_VEBT_bit_concat: nat > nat > nat > nat ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
vEBT_VEBT_minNull: vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
vEBT_VEBT_set_vebt: vEBT_VEBT > set_nat ).
thf(sy_c_VEBT__Member_Ovebt__member,type,
vEBT_vebt_member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
vEBT_vebt_member_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__Nat__Onat_J,type,
accp_list_nat: ( list_nat > list_nat > $o ) > list_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
accp_nat: ( nat > nat > $o ) > nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).
thf(sy_c_Wellfounded_Owf_001t__Int__Oint,type,
wf_int: set_Pr958786334691620121nt_int > $o ).
thf(sy_c_Wellfounded_Owf_001t__Nat__Onat,type,
wf_nat: set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_fChoice_001t__Real__Oreal,type,
fChoice_real: ( real > $o ) > real ).
thf(sy_c_member_001_Eo,type,
member_o: $o > set_o > $o ).
thf(sy_c_member_001t__Complex__Ocomplex,type,
member_complex: complex > set_complex > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__List__Olist_I_Eo_J,type,
member_list_o: list_o > set_list_o > $o ).
thf(sy_c_member_001t__List__Olist_It__Int__Oint_J,type,
member_list_int: list_int > set_list_int > $o ).
thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
member_list_nat: list_nat > set_list_nat > $o ).
thf(sy_c_member_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
member2936631157270082147T_VEBT: list_VEBT_VEBT > set_list_VEBT_VEBT > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Num__Onum,type,
member_num: num > set_num > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
member1379723562493234055eger_o: produc6271795597528267376eger_o > set_Pr448751882837621926eger_o > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
member157494554546826820nteger: produc8923325533196201883nteger > set_Pr4811707699266497531nteger > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
member5262025264175285858nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
member373505688050248522BT_nat: produc9072475918466114483BT_nat > set_Pr7556676689462069481BT_nat > $o ).
thf(sy_c_member_001t__Rat__Orat,type,
member_rat: rat > set_rat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_c_member_001t__Set__Oset_It__Int__Oint_J,type,
member_set_int: set_int > set_set_int > $o ).
thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
member_set_nat: set_nat > set_set_nat > $o ).
thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_v_deg____,type,
deg: nat ).
thf(sy_v_i____,type,
i: nat ).
thf(sy_v_m____,type,
m: nat ).
thf(sy_v_ma____,type,
ma: nat ).
thf(sy_v_mi____,type,
mi: nat ).
thf(sy_v_na____,type,
na: nat ).
thf(sy_v_summary____,type,
summary: vEBT_VEBT ).
thf(sy_v_treeList____,type,
treeList: list_VEBT_VEBT ).
thf(sy_v_xa____,type,
xa: nat ).
% Relevant facts (9564)
thf(fact_0_not__min__Null__member,axiom,
! [T: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ T )
=> ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_1 ) ) ).
% not_min_Null_member
thf(fact_1_False,axiom,
~ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) ) ) ).
% False
thf(fact_2__092_060open_062_Iif_AminNull_A_ItreeList_A_B_Ahigh_Ami_An_J_Athen_Avebt__insert_Asummary_A_Ihigh_Ami_An_J_Aelse_Asummary_J_A_061_Asummary_092_060close_062,axiom,
( ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) ) )
=> ( ( vEBT_vebt_insert @ summary @ ( vEBT_VEBT_high @ mi @ na ) )
= summary ) ) ).
% \<open>(if minNull (treeList ! high mi n) then vebt_insert summary (high mi n) else summary) = summary\<close>
thf(fact_3__C8_C,axiom,
na = m ).
% "8"
thf(fact_4__C12_C,axiom,
vEBT_invar_vebt @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) ) ) @ ( vEBT_vebt_insert @ summary @ ( vEBT_VEBT_high @ mi @ na ) ) @ summary ) @ na ).
% "12"
thf(fact_5__C5_C,axiom,
( ( mi = ma )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ treeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X @ X_12 ) ) ) ).
% "5"
thf(fact_6_in__children__def,axiom,
( vEBT_V5917875025757280293ildren
= ( ^ [N: nat,TreeList: list_VEBT_VEBT,X2: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ N ) ) @ ( vEBT_VEBT_low @ X2 @ N ) ) ) ) ).
% in_children_def
thf(fact_7__C4_Ohyps_C_I7_J,axiom,
ord_less_eq_nat @ mi @ ma ).
% "4.hyps"(7)
thf(fact_8__C0_C,axiom,
! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ treeList ) )
=> ( vEBT_invar_vebt @ X @ na ) ) ).
% "0"
thf(fact_9_mimaxrel,axiom,
( ( xa != mi )
& ( xa != ma ) ) ).
% mimaxrel
thf(fact_10__C11_C,axiom,
! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) ) @ ( vEBT_VEBT_low @ mi @ na ) ) ) ) )
=> ( vEBT_invar_vebt @ X @ na ) ) ).
% "11"
thf(fact_11_bit__split__inv,axiom,
! [X3: nat,D: nat] :
( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X3 @ D ) @ ( vEBT_VEBT_low @ X3 @ D ) @ D )
= X3 ) ).
% bit_split_inv
thf(fact_12_abcdef,axiom,
ord_less_nat @ xa @ mi ).
% abcdef
thf(fact_13__C3_C,axiom,
( deg
= ( plus_plus_nat @ na @ m ) ) ).
% "3"
thf(fact_14_both__member__options__def,axiom,
( vEBT_V8194947554948674370ptions
= ( ^ [T2: vEBT_VEBT,X2: nat] :
( ( vEBT_V5719532721284313246member @ T2 @ X2 )
| ( vEBT_VEBT_membermima @ T2 @ X2 ) ) ) ) ).
% both_member_options_def
thf(fact_15__C1_C,axiom,
vEBT_invar_vebt @ summary @ m ).
% "1"
thf(fact_16_nth__list__update__neq,axiom,
! [I: nat,J: nat,Xs: list_nat,X3: nat] :
( ( I != J )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I @ X3 ) @ J )
= ( nth_nat @ Xs @ J ) ) ) ).
% nth_list_update_neq
thf(fact_17_nth__list__update__neq,axiom,
! [I: nat,J: nat,Xs: list_int,X3: int] :
( ( I != J )
=> ( ( nth_int @ ( list_update_int @ Xs @ I @ X3 ) @ J )
= ( nth_int @ Xs @ J ) ) ) ).
% nth_list_update_neq
thf(fact_18_nth__list__update__neq,axiom,
! [I: nat,J: nat,Xs: list_VEBT_VEBT,X3: vEBT_VEBT] :
( ( I != J )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) @ J )
= ( nth_VEBT_VEBT @ Xs @ J ) ) ) ).
% nth_list_update_neq
thf(fact_19_list__update__id,axiom,
! [Xs: list_nat,I: nat] :
( ( list_update_nat @ Xs @ I @ ( nth_nat @ Xs @ I ) )
= Xs ) ).
% list_update_id
thf(fact_20_list__update__id,axiom,
! [Xs: list_int,I: nat] :
( ( list_update_int @ Xs @ I @ ( nth_int @ Xs @ I ) )
= Xs ) ).
% list_update_id
thf(fact_21_list__update__id,axiom,
! [Xs: list_VEBT_VEBT,I: nat] :
( ( list_u1324408373059187874T_VEBT @ Xs @ I @ ( nth_VEBT_VEBT @ Xs @ I ) )
= Xs ) ).
% list_update_id
thf(fact_22_member__valid__both__member__options,axiom,
! [Tree: vEBT_VEBT,N2: nat,X3: nat] :
( ( vEBT_invar_vebt @ Tree @ N2 )
=> ( ( vEBT_vebt_member @ Tree @ X3 )
=> ( ( vEBT_V5719532721284313246member @ Tree @ X3 )
| ( vEBT_VEBT_membermima @ Tree @ X3 ) ) ) ) ).
% member_valid_both_member_options
thf(fact_23_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% nat_add_left_cancel_le
thf(fact_24_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% nat_add_left_cancel_less
thf(fact_25_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_26_add__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_27_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_28_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_29_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_30_add__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_31_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_32_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_33_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_34_add__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_35_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_36_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_37_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_38_add__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_39_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_40_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_41_valid__member__both__member__options,axiom,
! [T: vEBT_VEBT,N2: nat,X3: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( vEBT_V8194947554948674370ptions @ T @ X3 )
=> ( vEBT_vebt_member @ T @ X3 ) ) ) ).
% valid_member_both_member_options
thf(fact_42_both__member__options__equiv__member,axiom,
! [T: vEBT_VEBT,N2: nat,X3: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( vEBT_V8194947554948674370ptions @ T @ X3 )
= ( vEBT_vebt_member @ T @ X3 ) ) ) ).
% both_member_options_equiv_member
thf(fact_43_buildup__nothing__in__leaf,axiom,
! [N2: nat,X3: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N2 ) @ X3 ) ).
% buildup_nothing_in_leaf
thf(fact_44_min__Null__member,axiom,
! [T: vEBT_VEBT,X3: nat] :
( ( vEBT_VEBT_minNull @ T )
=> ~ ( vEBT_vebt_member @ T @ X3 ) ) ).
% min_Null_member
thf(fact_45_buildup__nothing__in__min__max,axiom,
! [N2: nat,X3: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N2 ) @ X3 ) ).
% buildup_nothing_in_min_max
thf(fact_46_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_47_add__right__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_48_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_49_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_50_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_51_add__left__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_52_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_53_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_54_list__update__overwrite,axiom,
! [Xs: list_VEBT_VEBT,I: nat,X3: vEBT_VEBT,Y: vEBT_VEBT] :
( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) @ I @ Y )
= ( list_u1324408373059187874T_VEBT @ Xs @ I @ Y ) ) ).
% list_update_overwrite
thf(fact_55_member__correct,axiom,
! [T: vEBT_VEBT,N2: nat,X3: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( vEBT_vebt_member @ T @ X3 )
= ( member_nat @ X3 @ ( vEBT_set_vebt @ T ) ) ) ) ).
% member_correct
thf(fact_56_subset__code_I1_J,axiom,
! [Xs: list_set_nat,B2: set_set_nat] :
( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ B2 )
= ( ! [X2: set_nat] :
( ( member_set_nat @ X2 @ ( set_set_nat2 @ Xs ) )
=> ( member_set_nat @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_57_subset__code_I1_J,axiom,
! [Xs: list_real,B2: set_real] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ B2 )
= ( ! [X2: real] :
( ( member_real @ X2 @ ( set_real2 @ Xs ) )
=> ( member_real @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_58_subset__code_I1_J,axiom,
! [Xs: list_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ B2 )
= ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( member_VEBT_VEBT @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_59_subset__code_I1_J,axiom,
! [Xs: list_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ B2 )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ Xs ) )
=> ( member_nat @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_60_subset__code_I1_J,axiom,
! [Xs: list_int,B2: set_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ B2 )
= ( ! [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ Xs ) )
=> ( member_int @ X2 @ B2 ) ) ) ) ).
% subset_code(1)
thf(fact_61_set__update__subsetI,axiom,
! [Xs: list_set_nat,A2: set_set_nat,X3: set_nat,I: nat] :
( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ A2 )
=> ( ( member_set_nat @ X3 @ A2 )
=> ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ ( list_update_set_nat @ Xs @ I @ X3 ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_62_set__update__subsetI,axiom,
! [Xs: list_real,A2: set_real,X3: real,I: nat] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ A2 )
=> ( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_set_real @ ( set_real2 @ ( list_update_real @ Xs @ I @ X3 ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_63_set__update__subsetI,axiom,
! [Xs: list_nat,A2: set_nat,X3: nat,I: nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
=> ( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_set_nat @ ( set_nat2 @ ( list_update_nat @ Xs @ I @ X3 ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_64_set__update__subsetI,axiom,
! [Xs: list_VEBT_VEBT,A2: set_VEBT_VEBT,X3: vEBT_VEBT,I: nat] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_65_set__update__subsetI,axiom,
! [Xs: list_int,A2: set_int,X3: int,I: nat] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
=> ( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_set_int @ ( set_int2 @ ( list_update_int @ Xs @ I @ X3 ) ) @ A2 ) ) ) ).
% set_update_subsetI
thf(fact_66_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_67_add__right__imp__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_68_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_69_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_70_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_71_add__left__imp__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_72_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_73_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_74_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_75_add_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_76_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_77_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_78_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_79_add_Ocommute,axiom,
( plus_plus_rat
= ( ^ [A3: rat,B3: rat] : ( plus_plus_rat @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_80_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_81_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_82_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_83_add_Oright__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_84_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_85_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_86_add_Oleft__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_87_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_88_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_89_add_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% add.assoc
thf(fact_90_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_91_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_92_mem__Collect__eq,axiom,
! [A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( member_VEBT_VEBT @ A @ ( collect_VEBT_VEBT @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_93_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_94_mem__Collect__eq,axiom,
! [A: list_nat,P: list_nat > $o] :
( ( member_list_nat @ A @ ( collect_list_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_95_mem__Collect__eq,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_96_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_97_mem__Collect__eq,axiom,
! [A: int,P: int > $o] :
( ( member_int @ A @ ( collect_int @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_98_Collect__mem__eq,axiom,
! [A2: set_VEBT_VEBT] :
( ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_99_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_100_Collect__mem__eq,axiom,
! [A2: set_list_nat] :
( ( collect_list_nat
@ ^ [X2: list_nat] : ( member_list_nat @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_101_Collect__mem__eq,axiom,
! [A2: set_set_nat] :
( ( collect_set_nat
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_102_Collect__mem__eq,axiom,
! [A2: set_nat] :
( ( collect_nat
@ ^ [X2: nat] : ( member_nat @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_103_Collect__mem__eq,axiom,
! [A2: set_int] :
( ( collect_int
@ ^ [X2: int] : ( member_int @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_104_Collect__cong,axiom,
! [P: real > $o,Q: real > $o] :
( ! [X4: real] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_real @ P )
= ( collect_real @ Q ) ) ) ).
% Collect_cong
thf(fact_105_Collect__cong,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ! [X4: list_nat] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_list_nat @ P )
= ( collect_list_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_106_Collect__cong,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X4: set_nat] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_set_nat @ P )
= ( collect_set_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_107_Collect__cong,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X4: nat] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_nat @ P )
= ( collect_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_108_Collect__cong,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_int @ P )
= ( collect_int @ Q ) ) ) ).
% Collect_cong
thf(fact_109_group__cancel_Oadd2,axiom,
! [B2: real,K: real,B: real,A: real] :
( ( B2
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B2 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_110_group__cancel_Oadd2,axiom,
! [B2: rat,K: rat,B: rat,A: rat] :
( ( B2
= ( plus_plus_rat @ K @ B ) )
=> ( ( plus_plus_rat @ A @ B2 )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_111_group__cancel_Oadd2,axiom,
! [B2: nat,K: nat,B: nat,A: nat] :
( ( B2
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B2 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_112_group__cancel_Oadd2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B2 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_113_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_114_group__cancel_Oadd1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( plus_plus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_115_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_116_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_117_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_118_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_rat @ I @ K )
= ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_119_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_120_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_121_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_122_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_123_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_124_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_125_linorder__neqE__nat,axiom,
! [X3: nat,Y: nat] :
( ( X3 != Y )
=> ( ~ ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ Y @ X3 ) ) ) ).
% linorder_neqE_nat
thf(fact_126_infinite__descent,axiom,
! [P: nat > $o,N2: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
& ~ ( P @ M2 ) ) )
=> ( P @ N2 ) ) ).
% infinite_descent
thf(fact_127_nat__less__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N3: nat] :
( ! [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N2 ) ) ).
% nat_less_induct
thf(fact_128_less__irrefl__nat,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_irrefl_nat
thf(fact_129_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_130_less__not__refl2,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ N2 @ M )
=> ( M != N2 ) ) ).
% less_not_refl2
thf(fact_131_less__not__refl,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_not_refl
thf(fact_132_nat__neq__iff,axiom,
! [M: nat,N2: nat] :
( ( M != N2 )
= ( ( ord_less_nat @ M @ N2 )
| ( ord_less_nat @ N2 @ M ) ) ) ).
% nat_neq_iff
thf(fact_133_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ? [X4: nat] :
( ( P @ X4 )
& ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X4 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_134_nat__le__linear,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
| ( ord_less_eq_nat @ N2 @ M ) ) ).
% nat_le_linear
thf(fact_135_le__antisym,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( M = N2 ) ) ) ).
% le_antisym
thf(fact_136_eq__imp__le,axiom,
! [M: nat,N2: nat] :
( ( M = N2 )
=> ( ord_less_eq_nat @ M @ N2 ) ) ).
% eq_imp_le
thf(fact_137_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_138_le__refl,axiom,
! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).
% le_refl
thf(fact_139_list__update__swap,axiom,
! [I: nat,I2: nat,Xs: list_VEBT_VEBT,X3: vEBT_VEBT,X5: vEBT_VEBT] :
( ( I != I2 )
=> ( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) @ I2 @ X5 )
= ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I2 @ X5 ) @ I @ X3 ) ) ) ).
% list_update_swap
thf(fact_140_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_141_add__le__imp__le__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_142_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_143_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_144_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_145_add__le__imp__le__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_146_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_147_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_148_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
? [C2: nat] :
( B3
= ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).
% le_iff_add
thf(fact_149_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_150_add__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_151_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_152_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_153_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_154_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_155_add__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_156_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_157_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_158_add__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_mono
thf(fact_159_add__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_160_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_161_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_162_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_163_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_164_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_165_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_166_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_167_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( I = J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_168_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_169_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_170_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_171_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_172_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_173_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_174_add__less__imp__less__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_175_add__less__imp__less__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_176_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_177_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_178_add__less__imp__less__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_179_add__less__imp__less__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_180_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_181_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_182_add__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_183_add__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_184_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_185_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_186_add__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_187_add__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_188_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_189_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_190_add__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_191_add__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_192_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_193_add__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_194_add__mono__thms__linordered__field_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( K = L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_195_add__mono__thms__linordered__field_I1_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I @ J )
& ( K = L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_196_add__mono__thms__linordered__field_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_197_add__mono__thms__linordered__field_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_198_add__mono__thms__linordered__field_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_199_add__mono__thms__linordered__field_I2_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( I = J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_200_add__mono__thms__linordered__field_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_201_add__mono__thms__linordered__field_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_202_add__mono__thms__linordered__field_I5_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_203_add__mono__thms__linordered__field_I5_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I @ J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_204_add__mono__thms__linordered__field_I5_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_205_add__mono__thms__linordered__field_I5_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_206_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_207_le__neq__implies__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( M != N2 )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% le_neq_implies_less
thf(fact_208_less__or__eq__imp__le,axiom,
! [M: nat,N2: nat] :
( ( ( ord_less_nat @ M @ N2 )
| ( M = N2 ) )
=> ( ord_less_eq_nat @ M @ N2 ) ) ).
% less_or_eq_imp_le
thf(fact_209_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N: nat] :
( ( ord_less_nat @ M3 @ N )
| ( M3 = N ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_210_less__imp__le__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_eq_nat @ M @ N2 ) ) ).
% less_imp_le_nat
thf(fact_211_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
& ( M3 != N ) ) ) ) ).
% nat_less_le
thf(fact_212_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N2: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% less_add_eq_less
thf(fact_213_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_214_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_215_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_216_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_217_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_218_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_219_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_220_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N: nat] :
? [K2: nat] :
( N
= ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_221_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_222_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_223_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_224_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_225_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_226_add__leD2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
=> ( ord_less_eq_nat @ K @ N2 ) ) ).
% add_leD2
thf(fact_227_add__leD1,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
=> ( ord_less_eq_nat @ M @ N2 ) ) ).
% add_leD1
thf(fact_228_le__add2,axiom,
! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M @ N2 ) ) ).
% le_add2
thf(fact_229_le__add1,axiom,
! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) ) ).
% le_add1
thf(fact_230_add__leE,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
=> ~ ( ( ord_less_eq_nat @ M @ N2 )
=> ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).
% add_leE
thf(fact_231_add__less__le__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_232_add__less__le__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_233_add__less__le__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_234_add__less__le__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_235_add__le__less__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_236_add__le__less__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_237_add__le__less__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_238_add__le__less__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_239_add__mono__thms__linordered__field_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_240_add__mono__thms__linordered__field_I3_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I @ J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_241_add__mono__thms__linordered__field_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_242_add__mono__thms__linordered__field_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_243_add__mono__thms__linordered__field_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_244_add__mono__thms__linordered__field_I4_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_245_add__mono__thms__linordered__field_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_246_add__mono__thms__linordered__field_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_247_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M4: nat,N3: nat] :
( ( ord_less_nat @ M4 @ N3 )
=> ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_248_buildup__gives__valid,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N2 ) @ N2 ) ) ).
% buildup_gives_valid
thf(fact_249_set__vebt__set__vebt_H__valid,axiom,
! [T: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( vEBT_set_vebt @ T )
= ( vEBT_VEBT_set_vebt @ T ) ) ) ).
% set_vebt_set_vebt'_valid
thf(fact_250_valid__eq2,axiom,
! [T: vEBT_VEBT,D: nat] :
( ( vEBT_VEBT_valid @ T @ D )
=> ( vEBT_invar_vebt @ T @ D ) ) ).
% valid_eq2
thf(fact_251_valid__eq1,axiom,
! [T: vEBT_VEBT,D: nat] :
( ( vEBT_invar_vebt @ T @ D )
=> ( vEBT_VEBT_valid @ T @ D ) ) ).
% valid_eq1
thf(fact_252_valid__eq,axiom,
vEBT_VEBT_valid = vEBT_invar_vebt ).
% valid_eq
thf(fact_253_dual__order_Orefl,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).
% dual_order.refl
thf(fact_254_dual__order_Orefl,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% dual_order.refl
thf(fact_255_dual__order_Orefl,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% dual_order.refl
thf(fact_256_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_257_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_258_order__refl,axiom,
! [X3: set_int] : ( ord_less_eq_set_int @ X3 @ X3 ) ).
% order_refl
thf(fact_259_order__refl,axiom,
! [X3: rat] : ( ord_less_eq_rat @ X3 @ X3 ) ).
% order_refl
thf(fact_260_order__refl,axiom,
! [X3: num] : ( ord_less_eq_num @ X3 @ X3 ) ).
% order_refl
thf(fact_261_order__refl,axiom,
! [X3: nat] : ( ord_less_eq_nat @ X3 @ X3 ) ).
% order_refl
thf(fact_262_order__refl,axiom,
! [X3: int] : ( ord_less_eq_int @ X3 @ X3 ) ).
% order_refl
thf(fact_263_inthall,axiom,
! [Xs: list_set_nat,P: set_nat > $o,N2: nat] :
( ! [X4: set_nat] :
( ( member_set_nat @ X4 @ ( set_set_nat2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N2 @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( P @ ( nth_set_nat @ Xs @ N2 ) ) ) ) ).
% inthall
thf(fact_264_inthall,axiom,
! [Xs: list_real,P: real > $o,N2: nat] :
( ! [X4: real] :
( ( member_real @ X4 @ ( set_real2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs ) )
=> ( P @ ( nth_real @ Xs @ N2 ) ) ) ) ).
% inthall
thf(fact_265_inthall,axiom,
! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o,N2: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ N2 ) ) ) ) ).
% inthall
thf(fact_266_inthall,axiom,
! [Xs: list_o,P: $o > $o,N2: nat] :
( ! [X4: $o] :
( ( member_o @ X4 @ ( set_o2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs ) )
=> ( P @ ( nth_o @ Xs @ N2 ) ) ) ) ).
% inthall
thf(fact_267_inthall,axiom,
! [Xs: list_nat,P: nat > $o,N2: nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs ) )
=> ( P @ ( nth_nat @ Xs @ N2 ) ) ) ) ).
% inthall
thf(fact_268_inthall,axiom,
! [Xs: list_int,P: int > $o,N2: nat] :
( ! [X4: int] :
( ( member_int @ X4 @ ( set_int2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs ) )
=> ( P @ ( nth_int @ Xs @ N2 ) ) ) ) ).
% inthall
thf(fact_269_deg__not__0,axiom,
! [T: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% deg_not_0
thf(fact_270_nat__descend__induct,axiom,
! [N2: nat,P: nat > $o,M: nat] :
( ! [K3: nat] :
( ( ord_less_nat @ N2 @ K3 )
=> ( P @ K3 ) )
=> ( ! [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N2 )
=> ( ! [I4: nat] :
( ( ord_less_nat @ K3 @ I4 )
=> ( P @ I4 ) )
=> ( P @ K3 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_271_valid__0__not,axiom,
! [T: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).
% valid_0_not
thf(fact_272_valid__tree__deg__neq__0,axiom,
! [T: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).
% valid_tree_deg_neq_0
thf(fact_273_le__zero__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_274_not__gr__zero,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_275_add_Oright__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.right_neutral
thf(fact_276_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_277_add_Oright__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.right_neutral
thf(fact_278_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_279_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_280_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_281_double__zero__sym,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( plus_plus_rat @ A @ A ) )
= ( A = zero_zero_rat ) ) ).
% double_zero_sym
thf(fact_282_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_283_add__cancel__left__left,axiom,
! [B: complex,A: complex] :
( ( ( plus_plus_complex @ B @ A )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_left
thf(fact_284_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_285_add__cancel__left__left,axiom,
! [B: rat,A: rat] :
( ( ( plus_plus_rat @ B @ A )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_left
thf(fact_286_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_287_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_288_add__cancel__left__right,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_right
thf(fact_289_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_290_add__cancel__left__right,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_right
thf(fact_291_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_292_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_293_add__cancel__right__left,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ B @ A ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_left
thf(fact_294_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_295_add__cancel__right__left,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ B @ A ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_left
thf(fact_296_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_297_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_298_add__cancel__right__right,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ A @ B ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_right
thf(fact_299_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_300_add__cancel__right__right,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ A @ B ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_right
thf(fact_301_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_302_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_303_add__eq__0__iff__both__eq__0,axiom,
! [X3: nat,Y: nat] :
( ( ( plus_plus_nat @ X3 @ Y )
= zero_zero_nat )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_304_zero__eq__add__iff__both__eq__0,axiom,
! [X3: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X3 @ Y ) )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_305_add__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add_0
thf(fact_306_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_307_add__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add_0
thf(fact_308_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_309_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_310_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_311_neq0__conv,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% neq0_conv
thf(fact_312_less__nat__zero__code,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_313_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_314_le0,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% le0
thf(fact_315_add__is__0,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus_nat @ M @ N2 )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N2 = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_316_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_317_length__list__update,axiom,
! [Xs: list_VEBT_VEBT,I: nat,X3: vEBT_VEBT] :
( ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) )
= ( size_s6755466524823107622T_VEBT @ Xs ) ) ).
% length_list_update
thf(fact_318_length__list__update,axiom,
! [Xs: list_o,I: nat,X3: $o] :
( ( size_size_list_o @ ( list_update_o @ Xs @ I @ X3 ) )
= ( size_size_list_o @ Xs ) ) ).
% length_list_update
thf(fact_319_length__list__update,axiom,
! [Xs: list_nat,I: nat,X3: nat] :
( ( size_size_list_nat @ ( list_update_nat @ Xs @ I @ X3 ) )
= ( size_size_list_nat @ Xs ) ) ).
% length_list_update
thf(fact_320_length__list__update,axiom,
! [Xs: list_int,I: nat,X3: int] :
( ( size_size_list_int @ ( list_update_int @ Xs @ I @ X3 ) )
= ( size_size_list_int @ Xs ) ) ).
% length_list_update
thf(fact_321_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_322_add__le__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel1
thf(fact_323_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_324_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_325_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_326_add__le__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel2
thf(fact_327_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_328_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_329_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_330_le__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel1
thf(fact_331_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_332_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_333_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_334_le__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel2
thf(fact_335_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_336_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_337_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_338_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_339_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_340_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_341_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_342_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_343_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_344_add__less__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel1
thf(fact_345_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_346_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_347_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_348_add__less__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel2
thf(fact_349_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_350_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_351_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_352_less__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel1
thf(fact_353_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_354_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_355_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_356_less__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel2
thf(fact_357_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_358_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_359_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_360_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_361_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_362_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_363_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_364_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_365_add__gr__0,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% add_gr_0
thf(fact_366_list__update__beyond,axiom,
! [Xs: list_VEBT_VEBT,I: nat,X3: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ I )
=> ( ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 )
= Xs ) ) ).
% list_update_beyond
thf(fact_367_list__update__beyond,axiom,
! [Xs: list_o,I: nat,X3: $o] :
( ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ I )
=> ( ( list_update_o @ Xs @ I @ X3 )
= Xs ) ) ).
% list_update_beyond
thf(fact_368_list__update__beyond,axiom,
! [Xs: list_nat,I: nat,X3: nat] :
( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ I )
=> ( ( list_update_nat @ Xs @ I @ X3 )
= Xs ) ) ).
% list_update_beyond
thf(fact_369_list__update__beyond,axiom,
! [Xs: list_int,I: nat,X3: int] :
( ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ I )
=> ( ( list_update_int @ Xs @ I @ X3 )
= Xs ) ) ).
% list_update_beyond
thf(fact_370_nth__list__update__eq,axiom,
! [I: nat,Xs: list_VEBT_VEBT,X3: vEBT_VEBT] :
( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) @ I )
= X3 ) ) ).
% nth_list_update_eq
thf(fact_371_nth__list__update__eq,axiom,
! [I: nat,Xs: list_o,X3: $o] :
( ( ord_less_nat @ I @ ( size_size_list_o @ Xs ) )
=> ( ( nth_o @ ( list_update_o @ Xs @ I @ X3 ) @ I )
= X3 ) ) ).
% nth_list_update_eq
thf(fact_372_nth__list__update__eq,axiom,
! [I: nat,Xs: list_nat,X3: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs ) )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I @ X3 ) @ I )
= X3 ) ) ).
% nth_list_update_eq
thf(fact_373_nth__list__update__eq,axiom,
! [I: nat,Xs: list_int,X3: int] :
( ( ord_less_nat @ I @ ( size_size_list_int @ Xs ) )
=> ( ( nth_int @ ( list_update_int @ Xs @ I @ X3 ) @ I )
= X3 ) ) ).
% nth_list_update_eq
thf(fact_374_set__swap,axiom,
! [I: nat,Xs: list_VEBT_VEBT,J: nat] :
( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ ( nth_VEBT_VEBT @ Xs @ J ) ) @ J @ ( nth_VEBT_VEBT @ Xs @ I ) ) )
= ( set_VEBT_VEBT2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_375_set__swap,axiom,
! [I: nat,Xs: list_o,J: nat] :
( ( ord_less_nat @ I @ ( size_size_list_o @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_size_list_o @ Xs ) )
=> ( ( set_o2 @ ( list_update_o @ ( list_update_o @ Xs @ I @ ( nth_o @ Xs @ J ) ) @ J @ ( nth_o @ Xs @ I ) ) )
= ( set_o2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_376_set__swap,axiom,
! [I: nat,Xs: list_nat,J: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs ) )
=> ( ( set_nat2 @ ( list_update_nat @ ( list_update_nat @ Xs @ I @ ( nth_nat @ Xs @ J ) ) @ J @ ( nth_nat @ Xs @ I ) ) )
= ( set_nat2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_377_set__swap,axiom,
! [I: nat,Xs: list_int,J: nat] :
( ( ord_less_nat @ I @ ( size_size_list_int @ Xs ) )
=> ( ( ord_less_nat @ J @ ( size_size_list_int @ Xs ) )
=> ( ( set_int2 @ ( list_update_int @ ( list_update_int @ Xs @ I @ ( nth_int @ Xs @ J ) ) @ J @ ( nth_int @ Xs @ I ) ) )
= ( set_int2 @ Xs ) ) ) ) ).
% set_swap
thf(fact_378_neq__if__length__neq,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs )
!= ( size_s6755466524823107622T_VEBT @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_379_neq__if__length__neq,axiom,
! [Xs: list_o,Ys: list_o] :
( ( ( size_size_list_o @ Xs )
!= ( size_size_list_o @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_380_neq__if__length__neq,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( ( size_size_list_nat @ Xs )
!= ( size_size_list_nat @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_381_neq__if__length__neq,axiom,
! [Xs: list_int,Ys: list_int] :
( ( ( size_size_list_int @ Xs )
!= ( size_size_list_int @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_382_Ex__list__of__length,axiom,
! [N2: nat] :
? [Xs2: list_VEBT_VEBT] :
( ( size_s6755466524823107622T_VEBT @ Xs2 )
= N2 ) ).
% Ex_list_of_length
thf(fact_383_Ex__list__of__length,axiom,
! [N2: nat] :
? [Xs2: list_o] :
( ( size_size_list_o @ Xs2 )
= N2 ) ).
% Ex_list_of_length
thf(fact_384_Ex__list__of__length,axiom,
! [N2: nat] :
? [Xs2: list_nat] :
( ( size_size_list_nat @ Xs2 )
= N2 ) ).
% Ex_list_of_length
thf(fact_385_Ex__list__of__length,axiom,
! [N2: nat] :
? [Xs2: list_int] :
( ( size_size_list_int @ Xs2 )
= N2 ) ).
% Ex_list_of_length
thf(fact_386_zero__reorient,axiom,
! [X3: complex] :
( ( zero_zero_complex = X3 )
= ( X3 = zero_zero_complex ) ) ).
% zero_reorient
thf(fact_387_zero__reorient,axiom,
! [X3: real] :
( ( zero_zero_real = X3 )
= ( X3 = zero_zero_real ) ) ).
% zero_reorient
thf(fact_388_zero__reorient,axiom,
! [X3: rat] :
( ( zero_zero_rat = X3 )
= ( X3 = zero_zero_rat ) ) ).
% zero_reorient
thf(fact_389_zero__reorient,axiom,
! [X3: nat] :
( ( zero_zero_nat = X3 )
= ( X3 = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_390_zero__reorient,axiom,
! [X3: int] :
( ( zero_zero_int = X3 )
= ( X3 = zero_zero_int ) ) ).
% zero_reorient
thf(fact_391_size__neq__size__imp__neq,axiom,
! [X3: list_VEBT_VEBT,Y: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ X3 )
!= ( size_s6755466524823107622T_VEBT @ Y ) )
=> ( X3 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_392_size__neq__size__imp__neq,axiom,
! [X3: list_o,Y: list_o] :
( ( ( size_size_list_o @ X3 )
!= ( size_size_list_o @ Y ) )
=> ( X3 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_393_size__neq__size__imp__neq,axiom,
! [X3: list_nat,Y: list_nat] :
( ( ( size_size_list_nat @ X3 )
!= ( size_size_list_nat @ Y ) )
=> ( X3 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_394_size__neq__size__imp__neq,axiom,
! [X3: list_int,Y: list_int] :
( ( ( size_size_list_int @ X3 )
!= ( size_size_list_int @ Y ) )
=> ( X3 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_395_size__neq__size__imp__neq,axiom,
! [X3: num,Y: num] :
( ( ( size_size_num @ X3 )
!= ( size_size_num @ Y ) )
=> ( X3 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_396_length__pos__if__in__set,axiom,
! [X3: set_nat,Xs: list_set_nat] :
( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_397_length__pos__if__in__set,axiom,
! [X3: real,Xs: list_real] :
( ( member_real @ X3 @ ( set_real2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_398_length__pos__if__in__set,axiom,
! [X3: vEBT_VEBT,Xs: list_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_399_length__pos__if__in__set,axiom,
! [X3: $o,Xs: list_o] :
( ( member_o @ X3 @ ( set_o2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_400_length__pos__if__in__set,axiom,
! [X3: nat,Xs: list_nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_401_length__pos__if__in__set,axiom,
! [X3: int,Xs: list_int] :
( ( member_int @ X3 @ ( set_int2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_402_length__induct,axiom,
! [P: list_VEBT_VEBT > $o,Xs: list_VEBT_VEBT] :
( ! [Xs2: list_VEBT_VEBT] :
( ! [Ys2: list_VEBT_VEBT] :
( ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ Ys2 ) @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
=> ( P @ Ys2 ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_403_length__induct,axiom,
! [P: list_o > $o,Xs: list_o] :
( ! [Xs2: list_o] :
( ! [Ys2: list_o] :
( ( ord_less_nat @ ( size_size_list_o @ Ys2 ) @ ( size_size_list_o @ Xs2 ) )
=> ( P @ Ys2 ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_404_length__induct,axiom,
! [P: list_nat > $o,Xs: list_nat] :
( ! [Xs2: list_nat] :
( ! [Ys2: list_nat] :
( ( ord_less_nat @ ( size_size_list_nat @ Ys2 ) @ ( size_size_list_nat @ Xs2 ) )
=> ( P @ Ys2 ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_405_length__induct,axiom,
! [P: list_int > $o,Xs: list_int] :
( ! [Xs2: list_int] :
( ! [Ys2: list_int] :
( ( ord_less_nat @ ( size_size_list_int @ Ys2 ) @ ( size_size_list_int @ Xs2 ) )
=> ( P @ Ys2 ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_406_zero__le,axiom,
! [X3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X3 ) ).
% zero_le
thf(fact_407_gr__zeroI,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr_zeroI
thf(fact_408_not__less__zero,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less_zero
thf(fact_409_gr__implies__not__zero,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_410_zero__less__iff__neq__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
= ( N2 != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_411_comm__monoid__add__class_Oadd__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_412_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_413_comm__monoid__add__class_Oadd__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_414_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_415_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_416_add_Ocomm__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.comm_neutral
thf(fact_417_add_Ocomm__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.comm_neutral
thf(fact_418_add_Ocomm__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.comm_neutral
thf(fact_419_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_420_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_421_add_Ogroup__left__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add.group_left_neutral
thf(fact_422_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_423_add_Ogroup__left__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add.group_left_neutral
thf(fact_424_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_425_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_426_gr0I,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr0I
thf(fact_427_not__gr0,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr0
thf(fact_428_not__less0,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less0
thf(fact_429_less__zeroE,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_zeroE
thf(fact_430_gr__implies__not0,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_431_infinite__descent0,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N2 ) ) ) ).
% infinite_descent0
thf(fact_432_less__eq__nat_Osimps_I1_J,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% less_eq_nat.simps(1)
thf(fact_433_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_434_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_435_le__0__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_436_plus__nat_Oadd__0,axiom,
! [N2: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N2 )
= N2 ) ).
% plus_nat.add_0
thf(fact_437_add__eq__self__zero,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus_nat @ M @ N2 )
= M )
=> ( N2 = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_438_nth__equalityI,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs )
= ( size_s6755466524823107622T_VEBT @ Ys ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( nth_VEBT_VEBT @ Xs @ I3 )
= ( nth_VEBT_VEBT @ Ys @ I3 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_439_nth__equalityI,axiom,
! [Xs: list_o,Ys: list_o] :
( ( ( size_size_list_o @ Xs )
= ( size_size_list_o @ Ys ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs ) )
=> ( ( nth_o @ Xs @ I3 )
= ( nth_o @ Ys @ I3 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_440_nth__equalityI,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
=> ( ( nth_nat @ Xs @ I3 )
= ( nth_nat @ Ys @ I3 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_441_nth__equalityI,axiom,
! [Xs: list_int,Ys: list_int] :
( ( ( size_size_list_int @ Xs )
= ( size_size_list_int @ Ys ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs ) )
=> ( ( nth_int @ Xs @ I3 )
= ( nth_int @ Ys @ I3 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_442_Skolem__list__nth,axiom,
! [K: nat,P: nat > vEBT_VEBT > $o] :
( ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ? [X6: vEBT_VEBT] : ( P @ I5 @ X6 ) ) )
= ( ? [Xs3: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs3 )
= K )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ( P @ I5 @ ( nth_VEBT_VEBT @ Xs3 @ I5 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_443_Skolem__list__nth,axiom,
! [K: nat,P: nat > $o > $o] :
( ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ? [X6: $o] : ( P @ I5 @ X6 ) ) )
= ( ? [Xs3: list_o] :
( ( ( size_size_list_o @ Xs3 )
= K )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ( P @ I5 @ ( nth_o @ Xs3 @ I5 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_444_Skolem__list__nth,axiom,
! [K: nat,P: nat > nat > $o] :
( ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ? [X6: nat] : ( P @ I5 @ X6 ) ) )
= ( ? [Xs3: list_nat] :
( ( ( size_size_list_nat @ Xs3 )
= K )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ( P @ I5 @ ( nth_nat @ Xs3 @ I5 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_445_Skolem__list__nth,axiom,
! [K: nat,P: nat > int > $o] :
( ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ? [X6: int] : ( P @ I5 @ X6 ) ) )
= ( ? [Xs3: list_int] :
( ( ( size_size_list_int @ Xs3 )
= K )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ K )
=> ( P @ I5 @ ( nth_int @ Xs3 @ I5 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_446_list__eq__iff__nth__eq,axiom,
( ( ^ [Y4: list_VEBT_VEBT,Z: list_VEBT_VEBT] : ( Y4 = Z ) )
= ( ^ [Xs3: list_VEBT_VEBT,Ys3: list_VEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs3 )
= ( size_s6755466524823107622T_VEBT @ Ys3 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_s6755466524823107622T_VEBT @ Xs3 ) )
=> ( ( nth_VEBT_VEBT @ Xs3 @ I5 )
= ( nth_VEBT_VEBT @ Ys3 @ I5 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_447_list__eq__iff__nth__eq,axiom,
( ( ^ [Y4: list_o,Z: list_o] : ( Y4 = Z ) )
= ( ^ [Xs3: list_o,Ys3: list_o] :
( ( ( size_size_list_o @ Xs3 )
= ( size_size_list_o @ Ys3 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_o @ Xs3 ) )
=> ( ( nth_o @ Xs3 @ I5 )
= ( nth_o @ Ys3 @ I5 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_448_list__eq__iff__nth__eq,axiom,
( ( ^ [Y4: list_nat,Z: list_nat] : ( Y4 = Z ) )
= ( ^ [Xs3: list_nat,Ys3: list_nat] :
( ( ( size_size_list_nat @ Xs3 )
= ( size_size_list_nat @ Ys3 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_nat @ Xs3 ) )
=> ( ( nth_nat @ Xs3 @ I5 )
= ( nth_nat @ Ys3 @ I5 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_449_list__eq__iff__nth__eq,axiom,
( ( ^ [Y4: list_int,Z: list_int] : ( Y4 = Z ) )
= ( ^ [Xs3: list_int,Ys3: list_int] :
( ( ( size_size_list_int @ Xs3 )
= ( size_size_list_int @ Ys3 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_int @ Xs3 ) )
=> ( ( nth_int @ Xs3 @ I5 )
= ( nth_int @ Ys3 @ I5 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_450_add__decreasing,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_451_add__decreasing,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_452_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_453_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_454_add__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_455_add__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_456_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_457_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_458_add__decreasing2,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_459_add__decreasing2,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_460_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_461_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_462_add__increasing2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_463_add__increasing2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_464_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_465_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_466_add__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_467_add__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_468_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_469_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_470_add__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_nonpos
thf(fact_471_add__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_nonpos
thf(fact_472_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_473_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_474_add__nonneg__eq__0__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( plus_plus_real @ X3 @ Y )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_475_add__nonneg__eq__0__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ( ( plus_plus_rat @ X3 @ Y )
= zero_zero_rat )
= ( ( X3 = zero_zero_rat )
& ( Y = zero_zero_rat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_476_add__nonneg__eq__0__iff,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X3 @ Y )
= zero_zero_nat )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_477_add__nonneg__eq__0__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( plus_plus_int @ X3 @ Y )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_478_add__nonpos__eq__0__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ( ( plus_plus_real @ X3 @ Y )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_479_add__nonpos__eq__0__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
=> ( ( ( plus_plus_rat @ X3 @ Y )
= zero_zero_rat )
= ( ( X3 = zero_zero_rat )
& ( Y = zero_zero_rat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_480_add__nonpos__eq__0__iff,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X3 @ Y )
= zero_zero_nat )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_481_add__nonpos__eq__0__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y @ zero_zero_int )
=> ( ( ( plus_plus_int @ X3 @ Y )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_482_add__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_neg
thf(fact_483_add__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_neg
thf(fact_484_add__neg__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_485_add__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_486_add__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_487_add__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_488_add__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_489_add__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_490_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C3: nat] :
( ( B
= ( plus_plus_nat @ A @ C3 ) )
=> ( C3 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_491_pos__add__strict,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_492_pos__add__strict,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_493_pos__add__strict,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_494_pos__add__strict,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_495_ex__least__nat__le,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N2 )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ K3 )
=> ~ ( P @ I4 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_496_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_497_nth__mem,axiom,
! [N2: nat,Xs: list_set_nat] :
( ( ord_less_nat @ N2 @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( member_set_nat @ ( nth_set_nat @ Xs @ N2 ) @ ( set_set_nat2 @ Xs ) ) ) ).
% nth_mem
thf(fact_498_nth__mem,axiom,
! [N2: nat,Xs: list_real] :
( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs ) )
=> ( member_real @ ( nth_real @ Xs @ N2 ) @ ( set_real2 @ Xs ) ) ) ).
% nth_mem
thf(fact_499_nth__mem,axiom,
! [N2: nat,Xs: list_VEBT_VEBT] :
( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ Xs @ N2 ) @ ( set_VEBT_VEBT2 @ Xs ) ) ) ).
% nth_mem
thf(fact_500_nth__mem,axiom,
! [N2: nat,Xs: list_o] :
( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs ) )
=> ( member_o @ ( nth_o @ Xs @ N2 ) @ ( set_o2 @ Xs ) ) ) ).
% nth_mem
thf(fact_501_nth__mem,axiom,
! [N2: nat,Xs: list_nat] :
( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs ) )
=> ( member_nat @ ( nth_nat @ Xs @ N2 ) @ ( set_nat2 @ Xs ) ) ) ).
% nth_mem
thf(fact_502_nth__mem,axiom,
! [N2: nat,Xs: list_int] :
( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs ) )
=> ( member_int @ ( nth_int @ Xs @ N2 ) @ ( set_int2 @ Xs ) ) ) ).
% nth_mem
thf(fact_503_list__ball__nth,axiom,
! [N2: nat,Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X4 ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ N2 ) ) ) ) ).
% list_ball_nth
thf(fact_504_list__ball__nth,axiom,
! [N2: nat,Xs: list_o,P: $o > $o] :
( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs ) )
=> ( ! [X4: $o] :
( ( member_o @ X4 @ ( set_o2 @ Xs ) )
=> ( P @ X4 ) )
=> ( P @ ( nth_o @ Xs @ N2 ) ) ) ) ).
% list_ball_nth
thf(fact_505_list__ball__nth,axiom,
! [N2: nat,Xs: list_nat,P: nat > $o] :
( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs ) )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
=> ( P @ X4 ) )
=> ( P @ ( nth_nat @ Xs @ N2 ) ) ) ) ).
% list_ball_nth
thf(fact_506_list__ball__nth,axiom,
! [N2: nat,Xs: list_int,P: int > $o] :
( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs ) )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( set_int2 @ Xs ) )
=> ( P @ X4 ) )
=> ( P @ ( nth_int @ Xs @ N2 ) ) ) ) ).
% list_ball_nth
thf(fact_507_in__set__conv__nth,axiom,
! [X3: set_nat,Xs: list_set_nat] :
( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs ) )
= ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_s3254054031482475050et_nat @ Xs ) )
& ( ( nth_set_nat @ Xs @ I5 )
= X3 ) ) ) ) ).
% in_set_conv_nth
thf(fact_508_in__set__conv__nth,axiom,
! [X3: real,Xs: list_real] :
( ( member_real @ X3 @ ( set_real2 @ Xs ) )
= ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_real @ Xs ) )
& ( ( nth_real @ Xs @ I5 )
= X3 ) ) ) ) ).
% in_set_conv_nth
thf(fact_509_in__set__conv__nth,axiom,
! [X3: vEBT_VEBT,Xs: list_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs ) )
= ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
& ( ( nth_VEBT_VEBT @ Xs @ I5 )
= X3 ) ) ) ) ).
% in_set_conv_nth
thf(fact_510_in__set__conv__nth,axiom,
! [X3: $o,Xs: list_o] :
( ( member_o @ X3 @ ( set_o2 @ Xs ) )
= ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_o @ Xs ) )
& ( ( nth_o @ Xs @ I5 )
= X3 ) ) ) ) ).
% in_set_conv_nth
thf(fact_511_in__set__conv__nth,axiom,
! [X3: nat,Xs: list_nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs ) )
= ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_nat @ Xs ) )
& ( ( nth_nat @ Xs @ I5 )
= X3 ) ) ) ) ).
% in_set_conv_nth
thf(fact_512_in__set__conv__nth,axiom,
! [X3: int,Xs: list_int] :
( ( member_int @ X3 @ ( set_int2 @ Xs ) )
= ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_int @ Xs ) )
& ( ( nth_int @ Xs @ I5 )
= X3 ) ) ) ) ).
% in_set_conv_nth
thf(fact_513_all__nth__imp__all__set,axiom,
! [Xs: list_set_nat,P: set_nat > $o,X3: set_nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( P @ ( nth_set_nat @ Xs @ I3 ) ) )
=> ( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs ) )
=> ( P @ X3 ) ) ) ).
% all_nth_imp_all_set
thf(fact_514_all__nth__imp__all__set,axiom,
! [Xs: list_real,P: real > $o,X3: real] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs ) )
=> ( P @ ( nth_real @ Xs @ I3 ) ) )
=> ( ( member_real @ X3 @ ( set_real2 @ Xs ) )
=> ( P @ X3 ) ) ) ).
% all_nth_imp_all_set
thf(fact_515_all__nth__imp__all__set,axiom,
! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o,X3: vEBT_VEBT] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ I3 ) ) )
=> ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X3 ) ) ) ).
% all_nth_imp_all_set
thf(fact_516_all__nth__imp__all__set,axiom,
! [Xs: list_o,P: $o > $o,X3: $o] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs ) )
=> ( P @ ( nth_o @ Xs @ I3 ) ) )
=> ( ( member_o @ X3 @ ( set_o2 @ Xs ) )
=> ( P @ X3 ) ) ) ).
% all_nth_imp_all_set
thf(fact_517_all__nth__imp__all__set,axiom,
! [Xs: list_nat,P: nat > $o,X3: nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
=> ( P @ ( nth_nat @ Xs @ I3 ) ) )
=> ( ( member_nat @ X3 @ ( set_nat2 @ Xs ) )
=> ( P @ X3 ) ) ) ).
% all_nth_imp_all_set
thf(fact_518_all__nth__imp__all__set,axiom,
! [Xs: list_int,P: int > $o,X3: int] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs ) )
=> ( P @ ( nth_int @ Xs @ I3 ) ) )
=> ( ( member_int @ X3 @ ( set_int2 @ Xs ) )
=> ( P @ X3 ) ) ) ).
% all_nth_imp_all_set
thf(fact_519_all__set__conv__all__nth,axiom,
! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ I5 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_520_all__set__conv__all__nth,axiom,
! [Xs: list_o,P: $o > $o] :
( ( ! [X2: $o] :
( ( member_o @ X2 @ ( set_o2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_o @ Xs ) )
=> ( P @ ( nth_o @ Xs @ I5 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_521_all__set__conv__all__nth,axiom,
! [Xs: list_nat,P: nat > $o] :
( ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_nat @ Xs ) )
=> ( P @ ( nth_nat @ Xs @ I5 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_522_all__set__conv__all__nth,axiom,
! [Xs: list_int,P: int > $o] :
( ( ! [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ Xs ) )
=> ( P @ X2 ) ) )
= ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( size_size_list_int @ Xs ) )
=> ( P @ ( nth_int @ Xs @ I5 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_523_nle__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_eq_rat @ A @ B ) )
= ( ( ord_less_eq_rat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_524_nle__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_eq_num @ A @ B ) )
= ( ( ord_less_eq_num @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_525_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_526_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_527_le__cases3,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( ( ord_less_eq_rat @ X3 @ Y )
=> ~ ( ord_less_eq_rat @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_rat @ Y @ X3 )
=> ~ ( ord_less_eq_rat @ X3 @ Z2 ) )
=> ( ( ( ord_less_eq_rat @ X3 @ Z2 )
=> ~ ( ord_less_eq_rat @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_rat @ Z2 @ Y )
=> ~ ( ord_less_eq_rat @ Y @ X3 ) )
=> ( ( ( ord_less_eq_rat @ Y @ Z2 )
=> ~ ( ord_less_eq_rat @ Z2 @ X3 ) )
=> ~ ( ( ord_less_eq_rat @ Z2 @ X3 )
=> ~ ( ord_less_eq_rat @ X3 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_528_le__cases3,axiom,
! [X3: num,Y: num,Z2: num] :
( ( ( ord_less_eq_num @ X3 @ Y )
=> ~ ( ord_less_eq_num @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_num @ Y @ X3 )
=> ~ ( ord_less_eq_num @ X3 @ Z2 ) )
=> ( ( ( ord_less_eq_num @ X3 @ Z2 )
=> ~ ( ord_less_eq_num @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_num @ Z2 @ Y )
=> ~ ( ord_less_eq_num @ Y @ X3 ) )
=> ( ( ( ord_less_eq_num @ Y @ Z2 )
=> ~ ( ord_less_eq_num @ Z2 @ X3 ) )
=> ~ ( ( ord_less_eq_num @ Z2 @ X3 )
=> ~ ( ord_less_eq_num @ X3 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_529_le__cases3,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( ( ord_less_eq_nat @ X3 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ X3 )
=> ~ ( ord_less_eq_nat @ X3 @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ X3 @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X3 ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ X3 ) )
=> ~ ( ( ord_less_eq_nat @ Z2 @ X3 )
=> ~ ( ord_less_eq_nat @ X3 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_530_le__cases3,axiom,
! [X3: int,Y: int,Z2: int] :
( ( ( ord_less_eq_int @ X3 @ Y )
=> ~ ( ord_less_eq_int @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_int @ Y @ X3 )
=> ~ ( ord_less_eq_int @ X3 @ Z2 ) )
=> ( ( ( ord_less_eq_int @ X3 @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_int @ Z2 @ Y )
=> ~ ( ord_less_eq_int @ Y @ X3 ) )
=> ( ( ( ord_less_eq_int @ Y @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ X3 ) )
=> ~ ( ( ord_less_eq_int @ Z2 @ X3 )
=> ~ ( ord_less_eq_int @ X3 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_531_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: set_int,Z: set_int] : ( Y4 = Z ) )
= ( ^ [X2: set_int,Y5: set_int] :
( ( ord_less_eq_set_int @ X2 @ Y5 )
& ( ord_less_eq_set_int @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_532_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: rat,Z: rat] : ( Y4 = Z ) )
= ( ^ [X2: rat,Y5: rat] :
( ( ord_less_eq_rat @ X2 @ Y5 )
& ( ord_less_eq_rat @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_533_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z: num] : ( Y4 = Z ) )
= ( ^ [X2: num,Y5: num] :
( ( ord_less_eq_num @ X2 @ Y5 )
& ( ord_less_eq_num @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_534_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [X2: nat,Y5: nat] :
( ( ord_less_eq_nat @ X2 @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_535_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [X2: int,Y5: int] :
( ( ord_less_eq_int @ X2 @ Y5 )
& ( ord_less_eq_int @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_536_ord__eq__le__trans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( A = B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_537_ord__eq__le__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( A = B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_538_ord__eq__le__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_539_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_540_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_541_ord__le__eq__trans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_542_ord__le__eq__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_543_ord__le__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_544_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_545_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_546_order__antisym,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y )
=> ( ( ord_less_eq_set_int @ Y @ X3 )
=> ( X3 = Y ) ) ) ).
% order_antisym
thf(fact_547_order__antisym,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ord_less_eq_rat @ Y @ X3 )
=> ( X3 = Y ) ) ) ).
% order_antisym
thf(fact_548_order__antisym,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_num @ X3 @ Y )
=> ( ( ord_less_eq_num @ Y @ X3 )
=> ( X3 = Y ) ) ) ).
% order_antisym
thf(fact_549_order__antisym,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ( ord_less_eq_nat @ Y @ X3 )
=> ( X3 = Y ) ) ) ).
% order_antisym
thf(fact_550_order__antisym,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ( ord_less_eq_int @ Y @ X3 )
=> ( X3 = Y ) ) ) ).
% order_antisym
thf(fact_551_order_Otrans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% order.trans
thf(fact_552_order_Otrans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% order.trans
thf(fact_553_order_Otrans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% order.trans
thf(fact_554_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_555_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_556_order__trans,axiom,
! [X3: set_int,Y: set_int,Z2: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y )
=> ( ( ord_less_eq_set_int @ Y @ Z2 )
=> ( ord_less_eq_set_int @ X3 @ Z2 ) ) ) ).
% order_trans
thf(fact_557_order__trans,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ord_less_eq_rat @ Y @ Z2 )
=> ( ord_less_eq_rat @ X3 @ Z2 ) ) ) ).
% order_trans
thf(fact_558_order__trans,axiom,
! [X3: num,Y: num,Z2: num] :
( ( ord_less_eq_num @ X3 @ Y )
=> ( ( ord_less_eq_num @ Y @ Z2 )
=> ( ord_less_eq_num @ X3 @ Z2 ) ) ) ).
% order_trans
thf(fact_559_order__trans,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_eq_nat @ X3 @ Z2 ) ) ) ).
% order_trans
thf(fact_560_order__trans,axiom,
! [X3: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_eq_int @ X3 @ Z2 ) ) ) ).
% order_trans
thf(fact_561_linorder__wlog,axiom,
! [P: rat > rat > $o,A: rat,B: rat] :
( ! [A4: rat,B4: rat] :
( ( ord_less_eq_rat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: rat,B4: rat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_562_linorder__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A4: num,B4: num] :
( ( ord_less_eq_num @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: num,B4: num] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_563_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: nat,B4: nat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_564_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B4: int] :
( ( ord_less_eq_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: int,B4: int] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_565_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: set_int,Z: set_int] : ( Y4 = Z ) )
= ( ^ [A3: set_int,B3: set_int] :
( ( ord_less_eq_set_int @ B3 @ A3 )
& ( ord_less_eq_set_int @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_566_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: rat,Z: rat] : ( Y4 = Z ) )
= ( ^ [A3: rat,B3: rat] :
( ( ord_less_eq_rat @ B3 @ A3 )
& ( ord_less_eq_rat @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_567_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: num,Z: num] : ( Y4 = Z ) )
= ( ^ [A3: num,B3: num] :
( ( ord_less_eq_num @ B3 @ A3 )
& ( ord_less_eq_num @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_568_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ B3 @ A3 )
& ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_569_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ B3 @ A3 )
& ( ord_less_eq_int @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_570_dual__order_Oantisym,axiom,
! [B: set_int,A: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_571_dual__order_Oantisym,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_572_dual__order_Oantisym,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_573_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_574_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_575_dual__order_Otrans,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ C @ B )
=> ( ord_less_eq_set_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_576_dual__order_Otrans,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_577_dual__order_Otrans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_578_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_579_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_580_antisym,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_581_antisym,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_582_antisym,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_583_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_584_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_585_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: set_int,Z: set_int] : ( Y4 = Z ) )
= ( ^ [A3: set_int,B3: set_int] :
( ( ord_less_eq_set_int @ A3 @ B3 )
& ( ord_less_eq_set_int @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_586_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: rat,Z: rat] : ( Y4 = Z ) )
= ( ^ [A3: rat,B3: rat] :
( ( ord_less_eq_rat @ A3 @ B3 )
& ( ord_less_eq_rat @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_587_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z: num] : ( Y4 = Z ) )
= ( ^ [A3: num,B3: num] :
( ( ord_less_eq_num @ A3 @ B3 )
& ( ord_less_eq_num @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_588_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
& ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_589_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
& ( ord_less_eq_int @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_590_order__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_591_order__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_592_order__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_593_order__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_eq_int @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_594_order__subst1,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_595_order__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_596_order__subst1,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_597_order__subst1,axiom,
! [A: num,F: int > num,B: int,C: int] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_eq_int @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_598_order__subst1,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_599_order__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_600_order__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_601_order__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_602_order__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_603_order__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_604_order__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_605_order__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_606_order__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_607_order__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_608_order__subst2,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_609_order__subst2,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_610_order__eq__refl,axiom,
! [X3: set_int,Y: set_int] :
( ( X3 = Y )
=> ( ord_less_eq_set_int @ X3 @ Y ) ) ).
% order_eq_refl
thf(fact_611_order__eq__refl,axiom,
! [X3: rat,Y: rat] :
( ( X3 = Y )
=> ( ord_less_eq_rat @ X3 @ Y ) ) ).
% order_eq_refl
thf(fact_612_order__eq__refl,axiom,
! [X3: num,Y: num] :
( ( X3 = Y )
=> ( ord_less_eq_num @ X3 @ Y ) ) ).
% order_eq_refl
thf(fact_613_order__eq__refl,axiom,
! [X3: nat,Y: nat] :
( ( X3 = Y )
=> ( ord_less_eq_nat @ X3 @ Y ) ) ).
% order_eq_refl
thf(fact_614_order__eq__refl,axiom,
! [X3: int,Y: int] :
( ( X3 = Y )
=> ( ord_less_eq_int @ X3 @ Y ) ) ).
% order_eq_refl
thf(fact_615_linorder__linear,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
| ( ord_less_eq_rat @ Y @ X3 ) ) ).
% linorder_linear
thf(fact_616_linorder__linear,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_num @ X3 @ Y )
| ( ord_less_eq_num @ Y @ X3 ) ) ).
% linorder_linear
thf(fact_617_linorder__linear,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
| ( ord_less_eq_nat @ Y @ X3 ) ) ).
% linorder_linear
thf(fact_618_linorder__linear,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
| ( ord_less_eq_int @ Y @ X3 ) ) ).
% linorder_linear
thf(fact_619_ord__eq__le__subst,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_620_ord__eq__le__subst,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_621_ord__eq__le__subst,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_622_ord__eq__le__subst,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_623_ord__eq__le__subst,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_624_ord__eq__le__subst,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_625_ord__eq__le__subst,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_626_ord__eq__le__subst,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_627_ord__eq__le__subst,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_628_ord__eq__le__subst,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_629_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_630_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_631_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_632_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_633_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_634_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_635_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_636_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_637_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_638_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_639_linorder__le__cases,axiom,
! [X3: rat,Y: rat] :
( ~ ( ord_less_eq_rat @ X3 @ Y )
=> ( ord_less_eq_rat @ Y @ X3 ) ) ).
% linorder_le_cases
thf(fact_640_linorder__le__cases,axiom,
! [X3: num,Y: num] :
( ~ ( ord_less_eq_num @ X3 @ Y )
=> ( ord_less_eq_num @ Y @ X3 ) ) ).
% linorder_le_cases
thf(fact_641_linorder__le__cases,axiom,
! [X3: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_less_eq_nat @ Y @ X3 ) ) ).
% linorder_le_cases
thf(fact_642_linorder__le__cases,axiom,
! [X3: int,Y: int] :
( ~ ( ord_less_eq_int @ X3 @ Y )
=> ( ord_less_eq_int @ Y @ X3 ) ) ).
% linorder_le_cases
thf(fact_643_order__antisym__conv,axiom,
! [Y: set_int,X3: set_int] :
( ( ord_less_eq_set_int @ Y @ X3 )
=> ( ( ord_less_eq_set_int @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% order_antisym_conv
thf(fact_644_order__antisym__conv,axiom,
! [Y: rat,X3: rat] :
( ( ord_less_eq_rat @ Y @ X3 )
=> ( ( ord_less_eq_rat @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% order_antisym_conv
thf(fact_645_order__antisym__conv,axiom,
! [Y: num,X3: num] :
( ( ord_less_eq_num @ Y @ X3 )
=> ( ( ord_less_eq_num @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% order_antisym_conv
thf(fact_646_order__antisym__conv,axiom,
! [Y: nat,X3: nat] :
( ( ord_less_eq_nat @ Y @ X3 )
=> ( ( ord_less_eq_nat @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% order_antisym_conv
thf(fact_647_order__antisym__conv,axiom,
! [Y: int,X3: int] :
( ( ord_less_eq_int @ Y @ X3 )
=> ( ( ord_less_eq_int @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% order_antisym_conv
thf(fact_648_set__update__memI,axiom,
! [N2: nat,Xs: list_set_nat,X3: set_nat] :
( ( ord_less_nat @ N2 @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( member_set_nat @ X3 @ ( set_set_nat2 @ ( list_update_set_nat @ Xs @ N2 @ X3 ) ) ) ) ).
% set_update_memI
thf(fact_649_set__update__memI,axiom,
! [N2: nat,Xs: list_real,X3: real] :
( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs ) )
=> ( member_real @ X3 @ ( set_real2 @ ( list_update_real @ Xs @ N2 @ X3 ) ) ) ) ).
% set_update_memI
thf(fact_650_set__update__memI,axiom,
! [N2: nat,Xs: list_VEBT_VEBT,X3: vEBT_VEBT] :
( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs @ N2 @ X3 ) ) ) ) ).
% set_update_memI
thf(fact_651_set__update__memI,axiom,
! [N2: nat,Xs: list_o,X3: $o] :
( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs ) )
=> ( member_o @ X3 @ ( set_o2 @ ( list_update_o @ Xs @ N2 @ X3 ) ) ) ) ).
% set_update_memI
thf(fact_652_set__update__memI,axiom,
! [N2: nat,Xs: list_nat,X3: nat] :
( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs ) )
=> ( member_nat @ X3 @ ( set_nat2 @ ( list_update_nat @ Xs @ N2 @ X3 ) ) ) ) ).
% set_update_memI
thf(fact_653_set__update__memI,axiom,
! [N2: nat,Xs: list_int,X3: int] :
( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs ) )
=> ( member_int @ X3 @ ( set_int2 @ ( list_update_int @ Xs @ N2 @ X3 ) ) ) ) ).
% set_update_memI
thf(fact_654_lt__ex,axiom,
! [X3: real] :
? [Y2: real] : ( ord_less_real @ Y2 @ X3 ) ).
% lt_ex
thf(fact_655_lt__ex,axiom,
! [X3: rat] :
? [Y2: rat] : ( ord_less_rat @ Y2 @ X3 ) ).
% lt_ex
thf(fact_656_lt__ex,axiom,
! [X3: int] :
? [Y2: int] : ( ord_less_int @ Y2 @ X3 ) ).
% lt_ex
thf(fact_657_gt__ex,axiom,
! [X3: real] :
? [X_1: real] : ( ord_less_real @ X3 @ X_1 ) ).
% gt_ex
thf(fact_658_gt__ex,axiom,
! [X3: rat] :
? [X_1: rat] : ( ord_less_rat @ X3 @ X_1 ) ).
% gt_ex
thf(fact_659_gt__ex,axiom,
! [X3: nat] :
? [X_1: nat] : ( ord_less_nat @ X3 @ X_1 ) ).
% gt_ex
thf(fact_660_gt__ex,axiom,
! [X3: int] :
? [X_1: int] : ( ord_less_int @ X3 @ X_1 ) ).
% gt_ex
thf(fact_661_dense,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ? [Z3: real] :
( ( ord_less_real @ X3 @ Z3 )
& ( ord_less_real @ Z3 @ Y ) ) ) ).
% dense
thf(fact_662_dense,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ? [Z3: rat] :
( ( ord_less_rat @ X3 @ Z3 )
& ( ord_less_rat @ Z3 @ Y ) ) ) ).
% dense
thf(fact_663_less__imp__neq,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( X3 != Y ) ) ).
% less_imp_neq
thf(fact_664_less__imp__neq,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( X3 != Y ) ) ).
% less_imp_neq
thf(fact_665_less__imp__neq,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
=> ( X3 != Y ) ) ).
% less_imp_neq
thf(fact_666_less__imp__neq,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( X3 != Y ) ) ).
% less_imp_neq
thf(fact_667_less__imp__neq,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( X3 != Y ) ) ).
% less_imp_neq
thf(fact_668_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_669_order_Oasym,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( ord_less_rat @ B @ A ) ) ).
% order.asym
thf(fact_670_order_Oasym,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order.asym
thf(fact_671_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_672_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_673_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_674_ord__eq__less__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( A = B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_675_ord__eq__less__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_676_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_677_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_678_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_679_ord__less__eq__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( B = C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_680_ord__less__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_681_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_682_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_683_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X4: nat] :
( ! [Y3: nat] :
( ( ord_less_nat @ Y3 @ X4 )
=> ( P @ Y3 ) )
=> ( P @ X4 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_684_antisym__conv3,axiom,
! [Y: real,X3: real] :
( ~ ( ord_less_real @ Y @ X3 )
=> ( ( ~ ( ord_less_real @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv3
thf(fact_685_antisym__conv3,axiom,
! [Y: rat,X3: rat] :
( ~ ( ord_less_rat @ Y @ X3 )
=> ( ( ~ ( ord_less_rat @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv3
thf(fact_686_antisym__conv3,axiom,
! [Y: num,X3: num] :
( ~ ( ord_less_num @ Y @ X3 )
=> ( ( ~ ( ord_less_num @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv3
thf(fact_687_antisym__conv3,axiom,
! [Y: nat,X3: nat] :
( ~ ( ord_less_nat @ Y @ X3 )
=> ( ( ~ ( ord_less_nat @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv3
thf(fact_688_antisym__conv3,axiom,
! [Y: int,X3: int] :
( ~ ( ord_less_int @ Y @ X3 )
=> ( ( ~ ( ord_less_int @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv3
thf(fact_689_linorder__cases,axiom,
! [X3: real,Y: real] :
( ~ ( ord_less_real @ X3 @ Y )
=> ( ( X3 != Y )
=> ( ord_less_real @ Y @ X3 ) ) ) ).
% linorder_cases
thf(fact_690_linorder__cases,axiom,
! [X3: rat,Y: rat] :
( ~ ( ord_less_rat @ X3 @ Y )
=> ( ( X3 != Y )
=> ( ord_less_rat @ Y @ X3 ) ) ) ).
% linorder_cases
thf(fact_691_linorder__cases,axiom,
! [X3: num,Y: num] :
( ~ ( ord_less_num @ X3 @ Y )
=> ( ( X3 != Y )
=> ( ord_less_num @ Y @ X3 ) ) ) ).
% linorder_cases
thf(fact_692_linorder__cases,axiom,
! [X3: nat,Y: nat] :
( ~ ( ord_less_nat @ X3 @ Y )
=> ( ( X3 != Y )
=> ( ord_less_nat @ Y @ X3 ) ) ) ).
% linorder_cases
thf(fact_693_linorder__cases,axiom,
! [X3: int,Y: int] :
( ~ ( ord_less_int @ X3 @ Y )
=> ( ( X3 != Y )
=> ( ord_less_int @ Y @ X3 ) ) ) ).
% linorder_cases
thf(fact_694_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_695_dual__order_Oasym,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ~ ( ord_less_rat @ A @ B ) ) ).
% dual_order.asym
thf(fact_696_dual__order_Oasym,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ~ ( ord_less_num @ A @ B ) ) ).
% dual_order.asym
thf(fact_697_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_698_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_699_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_700_dual__order_Oirrefl,axiom,
! [A: rat] :
~ ( ord_less_rat @ A @ A ) ).
% dual_order.irrefl
thf(fact_701_dual__order_Oirrefl,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% dual_order.irrefl
thf(fact_702_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_703_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_704_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X7: nat] : ( P2 @ X7 ) )
= ( ^ [P3: nat > $o] :
? [N: nat] :
( ( P3 @ N )
& ! [M3: nat] :
( ( ord_less_nat @ M3 @ N )
=> ~ ( P3 @ M3 ) ) ) ) ) ).
% exists_least_iff
thf(fact_705_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B4: real] :
( ( ord_less_real @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: real] : ( P @ A4 @ A4 )
=> ( ! [A4: real,B4: real] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_706_linorder__less__wlog,axiom,
! [P: rat > rat > $o,A: rat,B: rat] :
( ! [A4: rat,B4: rat] :
( ( ord_less_rat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: rat] : ( P @ A4 @ A4 )
=> ( ! [A4: rat,B4: rat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_707_linorder__less__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A4: num,B4: num] :
( ( ord_less_num @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: num] : ( P @ A4 @ A4 )
=> ( ! [A4: num,B4: num] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_708_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( ord_less_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ A4 )
=> ( ! [A4: nat,B4: nat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_709_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B4: int] :
( ( ord_less_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: int] : ( P @ A4 @ A4 )
=> ( ! [A4: int,B4: int] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_710_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_711_order_Ostrict__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_712_order_Ostrict__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_713_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_714_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_715_not__less__iff__gr__or__eq,axiom,
! [X3: real,Y: real] :
( ( ~ ( ord_less_real @ X3 @ Y ) )
= ( ( ord_less_real @ Y @ X3 )
| ( X3 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_716_not__less__iff__gr__or__eq,axiom,
! [X3: rat,Y: rat] :
( ( ~ ( ord_less_rat @ X3 @ Y ) )
= ( ( ord_less_rat @ Y @ X3 )
| ( X3 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_717_not__less__iff__gr__or__eq,axiom,
! [X3: num,Y: num] :
( ( ~ ( ord_less_num @ X3 @ Y ) )
= ( ( ord_less_num @ Y @ X3 )
| ( X3 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_718_not__less__iff__gr__or__eq,axiom,
! [X3: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X3 @ Y ) )
= ( ( ord_less_nat @ Y @ X3 )
| ( X3 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_719_not__less__iff__gr__or__eq,axiom,
! [X3: int,Y: int] :
( ( ~ ( ord_less_int @ X3 @ Y ) )
= ( ( ord_less_int @ Y @ X3 )
| ( X3 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_720_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_721_dual__order_Ostrict__trans,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_722_dual__order_Ostrict__trans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_723_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_724_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_725_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_726_order_Ostrict__implies__not__eq,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_727_order_Ostrict__implies__not__eq,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_728_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_729_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_730_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_731_dual__order_Ostrict__implies__not__eq,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_732_dual__order_Ostrict__implies__not__eq,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_733_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_734_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_735_linorder__neqE,axiom,
! [X3: real,Y: real] :
( ( X3 != Y )
=> ( ~ ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ Y @ X3 ) ) ) ).
% linorder_neqE
thf(fact_736_linorder__neqE,axiom,
! [X3: rat,Y: rat] :
( ( X3 != Y )
=> ( ~ ( ord_less_rat @ X3 @ Y )
=> ( ord_less_rat @ Y @ X3 ) ) ) ).
% linorder_neqE
thf(fact_737_linorder__neqE,axiom,
! [X3: num,Y: num] :
( ( X3 != Y )
=> ( ~ ( ord_less_num @ X3 @ Y )
=> ( ord_less_num @ Y @ X3 ) ) ) ).
% linorder_neqE
thf(fact_738_linorder__neqE,axiom,
! [X3: nat,Y: nat] :
( ( X3 != Y )
=> ( ~ ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ Y @ X3 ) ) ) ).
% linorder_neqE
thf(fact_739_linorder__neqE,axiom,
! [X3: int,Y: int] :
( ( X3 != Y )
=> ( ~ ( ord_less_int @ X3 @ Y )
=> ( ord_less_int @ Y @ X3 ) ) ) ).
% linorder_neqE
thf(fact_740_order__less__asym,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ~ ( ord_less_real @ Y @ X3 ) ) ).
% order_less_asym
thf(fact_741_order__less__asym,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ~ ( ord_less_rat @ Y @ X3 ) ) ).
% order_less_asym
thf(fact_742_order__less__asym,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
=> ~ ( ord_less_num @ Y @ X3 ) ) ).
% order_less_asym
thf(fact_743_order__less__asym,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ~ ( ord_less_nat @ Y @ X3 ) ) ).
% order_less_asym
thf(fact_744_order__less__asym,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ~ ( ord_less_int @ Y @ X3 ) ) ).
% order_less_asym
thf(fact_745_linorder__neq__iff,axiom,
! [X3: real,Y: real] :
( ( X3 != Y )
= ( ( ord_less_real @ X3 @ Y )
| ( ord_less_real @ Y @ X3 ) ) ) ).
% linorder_neq_iff
thf(fact_746_linorder__neq__iff,axiom,
! [X3: rat,Y: rat] :
( ( X3 != Y )
= ( ( ord_less_rat @ X3 @ Y )
| ( ord_less_rat @ Y @ X3 ) ) ) ).
% linorder_neq_iff
thf(fact_747_linorder__neq__iff,axiom,
! [X3: num,Y: num] :
( ( X3 != Y )
= ( ( ord_less_num @ X3 @ Y )
| ( ord_less_num @ Y @ X3 ) ) ) ).
% linorder_neq_iff
thf(fact_748_linorder__neq__iff,axiom,
! [X3: nat,Y: nat] :
( ( X3 != Y )
= ( ( ord_less_nat @ X3 @ Y )
| ( ord_less_nat @ Y @ X3 ) ) ) ).
% linorder_neq_iff
thf(fact_749_linorder__neq__iff,axiom,
! [X3: int,Y: int] :
( ( X3 != Y )
= ( ( ord_less_int @ X3 @ Y )
| ( ord_less_int @ Y @ X3 ) ) ) ).
% linorder_neq_iff
thf(fact_750_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_751_order__less__asym_H,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( ord_less_rat @ B @ A ) ) ).
% order_less_asym'
thf(fact_752_order__less__asym_H,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order_less_asym'
thf(fact_753_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_754_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_755_order__less__trans,axiom,
! [X3: real,Y: real,Z2: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X3 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_756_order__less__trans,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( ( ord_less_rat @ Y @ Z2 )
=> ( ord_less_rat @ X3 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_757_order__less__trans,axiom,
! [X3: num,Y: num,Z2: num] :
( ( ord_less_num @ X3 @ Y )
=> ( ( ord_less_num @ Y @ Z2 )
=> ( ord_less_num @ X3 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_758_order__less__trans,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X3 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_759_order__less__trans,axiom,
! [X3: int,Y: int,Z2: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X3 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_760_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_761_ord__eq__less__subst,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_762_ord__eq__less__subst,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_763_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_764_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_765_ord__eq__less__subst,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_766_ord__eq__less__subst,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_767_ord__eq__less__subst,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_768_ord__eq__less__subst,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_769_ord__eq__less__subst,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_770_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_771_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_772_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_773_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_774_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_775_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_776_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_777_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_778_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_779_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_780_order__less__irrefl,axiom,
! [X3: real] :
~ ( ord_less_real @ X3 @ X3 ) ).
% order_less_irrefl
thf(fact_781_order__less__irrefl,axiom,
! [X3: rat] :
~ ( ord_less_rat @ X3 @ X3 ) ).
% order_less_irrefl
thf(fact_782_order__less__irrefl,axiom,
! [X3: num] :
~ ( ord_less_num @ X3 @ X3 ) ).
% order_less_irrefl
thf(fact_783_order__less__irrefl,axiom,
! [X3: nat] :
~ ( ord_less_nat @ X3 @ X3 ) ).
% order_less_irrefl
thf(fact_784_order__less__irrefl,axiom,
! [X3: int] :
~ ( ord_less_int @ X3 @ X3 ) ).
% order_less_irrefl
thf(fact_785_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_786_order__less__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_787_order__less__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_num @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_788_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_nat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_789_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_int @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_790_order__less__subst1,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_791_order__less__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_792_order__less__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_num @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_793_order__less__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_nat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_794_order__less__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_int @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_795_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_796_order__less__subst2,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_797_order__less__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_798_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_799_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_800_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_801_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_802_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_803_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_804_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_805_order__less__not__sym,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ~ ( ord_less_real @ Y @ X3 ) ) ).
% order_less_not_sym
thf(fact_806_order__less__not__sym,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ~ ( ord_less_rat @ Y @ X3 ) ) ).
% order_less_not_sym
thf(fact_807_order__less__not__sym,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
=> ~ ( ord_less_num @ Y @ X3 ) ) ).
% order_less_not_sym
thf(fact_808_order__less__not__sym,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ~ ( ord_less_nat @ Y @ X3 ) ) ).
% order_less_not_sym
thf(fact_809_order__less__not__sym,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ~ ( ord_less_int @ Y @ X3 ) ) ).
% order_less_not_sym
thf(fact_810_order__less__imp__triv,axiom,
! [X3: real,Y: real,P: $o] :
( ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_real @ Y @ X3 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_811_order__less__imp__triv,axiom,
! [X3: rat,Y: rat,P: $o] :
( ( ord_less_rat @ X3 @ Y )
=> ( ( ord_less_rat @ Y @ X3 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_812_order__less__imp__triv,axiom,
! [X3: num,Y: num,P: $o] :
( ( ord_less_num @ X3 @ Y )
=> ( ( ord_less_num @ Y @ X3 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_813_order__less__imp__triv,axiom,
! [X3: nat,Y: nat,P: $o] :
( ( ord_less_nat @ X3 @ Y )
=> ( ( ord_less_nat @ Y @ X3 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_814_order__less__imp__triv,axiom,
! [X3: int,Y: int,P: $o] :
( ( ord_less_int @ X3 @ Y )
=> ( ( ord_less_int @ Y @ X3 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_815_linorder__less__linear,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
| ( X3 = Y )
| ( ord_less_real @ Y @ X3 ) ) ).
% linorder_less_linear
thf(fact_816_linorder__less__linear,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
| ( X3 = Y )
| ( ord_less_rat @ Y @ X3 ) ) ).
% linorder_less_linear
thf(fact_817_linorder__less__linear,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
| ( X3 = Y )
| ( ord_less_num @ Y @ X3 ) ) ).
% linorder_less_linear
thf(fact_818_linorder__less__linear,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
| ( X3 = Y )
| ( ord_less_nat @ Y @ X3 ) ) ).
% linorder_less_linear
thf(fact_819_linorder__less__linear,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
| ( X3 = Y )
| ( ord_less_int @ Y @ X3 ) ) ).
% linorder_less_linear
thf(fact_820_order__less__imp__not__eq,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( X3 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_821_order__less__imp__not__eq,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( X3 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_822_order__less__imp__not__eq,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
=> ( X3 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_823_order__less__imp__not__eq,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( X3 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_824_order__less__imp__not__eq,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( X3 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_825_order__less__imp__not__eq2,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( Y != X3 ) ) ).
% order_less_imp_not_eq2
thf(fact_826_order__less__imp__not__eq2,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( Y != X3 ) ) ).
% order_less_imp_not_eq2
thf(fact_827_order__less__imp__not__eq2,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
=> ( Y != X3 ) ) ).
% order_less_imp_not_eq2
thf(fact_828_order__less__imp__not__eq2,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( Y != X3 ) ) ).
% order_less_imp_not_eq2
thf(fact_829_order__less__imp__not__eq2,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( Y != X3 ) ) ).
% order_less_imp_not_eq2
thf(fact_830_order__less__imp__not__less,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ~ ( ord_less_real @ Y @ X3 ) ) ).
% order_less_imp_not_less
thf(fact_831_order__less__imp__not__less,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ~ ( ord_less_rat @ Y @ X3 ) ) ).
% order_less_imp_not_less
thf(fact_832_order__less__imp__not__less,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
=> ~ ( ord_less_num @ Y @ X3 ) ) ).
% order_less_imp_not_less
thf(fact_833_order__less__imp__not__less,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ~ ( ord_less_nat @ Y @ X3 ) ) ).
% order_less_imp_not_less
thf(fact_834_order__less__imp__not__less,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ~ ( ord_less_int @ Y @ X3 ) ) ).
% order_less_imp_not_less
thf(fact_835_nth__list__update,axiom,
! [I: nat,Xs: list_VEBT_VEBT,J: nat,X3: vEBT_VEBT] :
( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( ( I = J )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) @ J )
= X3 ) )
& ( ( I != J )
=> ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) @ J )
= ( nth_VEBT_VEBT @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_836_nth__list__update,axiom,
! [I: nat,Xs: list_o,X3: $o,J: nat] :
( ( ord_less_nat @ I @ ( size_size_list_o @ Xs ) )
=> ( ( nth_o @ ( list_update_o @ Xs @ I @ X3 ) @ J )
= ( ( ( I = J )
=> X3 )
& ( ( I != J )
=> ( nth_o @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_837_nth__list__update,axiom,
! [I: nat,Xs: list_nat,J: nat,X3: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs ) )
=> ( ( ( I = J )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I @ X3 ) @ J )
= X3 ) )
& ( ( I != J )
=> ( ( nth_nat @ ( list_update_nat @ Xs @ I @ X3 ) @ J )
= ( nth_nat @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_838_nth__list__update,axiom,
! [I: nat,Xs: list_int,J: nat,X3: int] :
( ( ord_less_nat @ I @ ( size_size_list_int @ Xs ) )
=> ( ( ( I = J )
=> ( ( nth_int @ ( list_update_int @ Xs @ I @ X3 ) @ J )
= X3 ) )
& ( ( I != J )
=> ( ( nth_int @ ( list_update_int @ Xs @ I @ X3 ) @ J )
= ( nth_int @ Xs @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_839_list__update__same__conv,axiom,
! [I: nat,Xs: list_VEBT_VEBT,X3: vEBT_VEBT] :
( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( ( ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 )
= Xs )
= ( ( nth_VEBT_VEBT @ Xs @ I )
= X3 ) ) ) ).
% list_update_same_conv
thf(fact_840_list__update__same__conv,axiom,
! [I: nat,Xs: list_o,X3: $o] :
( ( ord_less_nat @ I @ ( size_size_list_o @ Xs ) )
=> ( ( ( list_update_o @ Xs @ I @ X3 )
= Xs )
= ( ( nth_o @ Xs @ I )
= X3 ) ) ) ).
% list_update_same_conv
thf(fact_841_list__update__same__conv,axiom,
! [I: nat,Xs: list_nat,X3: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs ) )
=> ( ( ( list_update_nat @ Xs @ I @ X3 )
= Xs )
= ( ( nth_nat @ Xs @ I )
= X3 ) ) ) ).
% list_update_same_conv
thf(fact_842_list__update__same__conv,axiom,
! [I: nat,Xs: list_int,X3: int] :
( ( ord_less_nat @ I @ ( size_size_list_int @ Xs ) )
=> ( ( ( list_update_int @ Xs @ I @ X3 )
= Xs )
= ( ( nth_int @ Xs @ I )
= X3 ) ) ) ).
% list_update_same_conv
thf(fact_843_add__neg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_nonpos
thf(fact_844_add__neg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_nonpos
thf(fact_845_add__neg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_846_add__neg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_nonpos
thf(fact_847_add__nonneg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_848_add__nonneg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_849_add__nonneg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_850_add__nonneg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_851_add__nonpos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_neg
thf(fact_852_add__nonpos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_neg
thf(fact_853_add__nonpos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_854_add__nonpos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_neg
thf(fact_855_add__pos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_856_add__pos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_857_add__pos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_858_add__pos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_859_add__strict__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_860_add__strict__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_861_add__strict__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_862_add__strict__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_863_add__strict__increasing2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_864_add__strict__increasing2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_865_add__strict__increasing2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_866_add__strict__increasing2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_867_leD,axiom,
! [Y: real,X3: real] :
( ( ord_less_eq_real @ Y @ X3 )
=> ~ ( ord_less_real @ X3 @ Y ) ) ).
% leD
thf(fact_868_leD,axiom,
! [Y: set_int,X3: set_int] :
( ( ord_less_eq_set_int @ Y @ X3 )
=> ~ ( ord_less_set_int @ X3 @ Y ) ) ).
% leD
thf(fact_869_leD,axiom,
! [Y: rat,X3: rat] :
( ( ord_less_eq_rat @ Y @ X3 )
=> ~ ( ord_less_rat @ X3 @ Y ) ) ).
% leD
thf(fact_870_leD,axiom,
! [Y: num,X3: num] :
( ( ord_less_eq_num @ Y @ X3 )
=> ~ ( ord_less_num @ X3 @ Y ) ) ).
% leD
thf(fact_871_leD,axiom,
! [Y: nat,X3: nat] :
( ( ord_less_eq_nat @ Y @ X3 )
=> ~ ( ord_less_nat @ X3 @ Y ) ) ).
% leD
thf(fact_872_leD,axiom,
! [Y: int,X3: int] :
( ( ord_less_eq_int @ Y @ X3 )
=> ~ ( ord_less_int @ X3 @ Y ) ) ).
% leD
thf(fact_873_leI,axiom,
! [X3: real,Y: real] :
( ~ ( ord_less_real @ X3 @ Y )
=> ( ord_less_eq_real @ Y @ X3 ) ) ).
% leI
thf(fact_874_leI,axiom,
! [X3: rat,Y: rat] :
( ~ ( ord_less_rat @ X3 @ Y )
=> ( ord_less_eq_rat @ Y @ X3 ) ) ).
% leI
thf(fact_875_leI,axiom,
! [X3: num,Y: num] :
( ~ ( ord_less_num @ X3 @ Y )
=> ( ord_less_eq_num @ Y @ X3 ) ) ).
% leI
thf(fact_876_leI,axiom,
! [X3: nat,Y: nat] :
( ~ ( ord_less_nat @ X3 @ Y )
=> ( ord_less_eq_nat @ Y @ X3 ) ) ).
% leI
thf(fact_877_leI,axiom,
! [X3: int,Y: int] :
( ~ ( ord_less_int @ X3 @ Y )
=> ( ord_less_eq_int @ Y @ X3 ) ) ).
% leI
thf(fact_878_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_879_nless__le,axiom,
! [A: set_int,B: set_int] :
( ( ~ ( ord_less_set_int @ A @ B ) )
= ( ~ ( ord_less_eq_set_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_880_nless__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_rat @ A @ B ) )
= ( ~ ( ord_less_eq_rat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_881_nless__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_num @ A @ B ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_882_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_883_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_884_antisym__conv1,axiom,
! [X3: real,Y: real] :
( ~ ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_eq_real @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% antisym_conv1
thf(fact_885_antisym__conv1,axiom,
! [X3: set_int,Y: set_int] :
( ~ ( ord_less_set_int @ X3 @ Y )
=> ( ( ord_less_eq_set_int @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% antisym_conv1
thf(fact_886_antisym__conv1,axiom,
! [X3: rat,Y: rat] :
( ~ ( ord_less_rat @ X3 @ Y )
=> ( ( ord_less_eq_rat @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% antisym_conv1
thf(fact_887_antisym__conv1,axiom,
! [X3: num,Y: num] :
( ~ ( ord_less_num @ X3 @ Y )
=> ( ( ord_less_eq_num @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% antisym_conv1
thf(fact_888_antisym__conv1,axiom,
! [X3: nat,Y: nat] :
( ~ ( ord_less_nat @ X3 @ Y )
=> ( ( ord_less_eq_nat @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% antisym_conv1
thf(fact_889_antisym__conv1,axiom,
! [X3: int,Y: int] :
( ~ ( ord_less_int @ X3 @ Y )
=> ( ( ord_less_eq_int @ X3 @ Y )
= ( X3 = Y ) ) ) ).
% antisym_conv1
thf(fact_890_antisym__conv2,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ~ ( ord_less_real @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv2
thf(fact_891_antisym__conv2,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y )
=> ( ( ~ ( ord_less_set_int @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv2
thf(fact_892_antisym__conv2,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ~ ( ord_less_rat @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv2
thf(fact_893_antisym__conv2,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_num @ X3 @ Y )
=> ( ( ~ ( ord_less_num @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv2
thf(fact_894_antisym__conv2,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ( ~ ( ord_less_nat @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv2
thf(fact_895_antisym__conv2,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ( ~ ( ord_less_int @ X3 @ Y ) )
= ( X3 = Y ) ) ) ).
% antisym_conv2
thf(fact_896_dense__ge,axiom,
! [Z2: real,Y: real] :
( ! [X4: real] :
( ( ord_less_real @ Z2 @ X4 )
=> ( ord_less_eq_real @ Y @ X4 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_ge
thf(fact_897_dense__ge,axiom,
! [Z2: rat,Y: rat] :
( ! [X4: rat] :
( ( ord_less_rat @ Z2 @ X4 )
=> ( ord_less_eq_rat @ Y @ X4 ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ).
% dense_ge
thf(fact_898_dense__le,axiom,
! [Y: real,Z2: real] :
( ! [X4: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_eq_real @ X4 @ Z2 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_le
thf(fact_899_dense__le,axiom,
! [Y: rat,Z2: rat] :
( ! [X4: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_eq_rat @ X4 @ Z2 ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ).
% dense_le
thf(fact_900_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X2: real,Y5: real] :
( ( ord_less_eq_real @ X2 @ Y5 )
& ~ ( ord_less_eq_real @ Y5 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_901_less__le__not__le,axiom,
( ord_less_set_int
= ( ^ [X2: set_int,Y5: set_int] :
( ( ord_less_eq_set_int @ X2 @ Y5 )
& ~ ( ord_less_eq_set_int @ Y5 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_902_less__le__not__le,axiom,
( ord_less_rat
= ( ^ [X2: rat,Y5: rat] :
( ( ord_less_eq_rat @ X2 @ Y5 )
& ~ ( ord_less_eq_rat @ Y5 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_903_less__le__not__le,axiom,
( ord_less_num
= ( ^ [X2: num,Y5: num] :
( ( ord_less_eq_num @ X2 @ Y5 )
& ~ ( ord_less_eq_num @ Y5 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_904_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X2: nat,Y5: nat] :
( ( ord_less_eq_nat @ X2 @ Y5 )
& ~ ( ord_less_eq_nat @ Y5 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_905_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X2: int,Y5: int] :
( ( ord_less_eq_int @ X2 @ Y5 )
& ~ ( ord_less_eq_int @ Y5 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_906_not__le__imp__less,axiom,
! [Y: real,X3: real] :
( ~ ( ord_less_eq_real @ Y @ X3 )
=> ( ord_less_real @ X3 @ Y ) ) ).
% not_le_imp_less
thf(fact_907_not__le__imp__less,axiom,
! [Y: rat,X3: rat] :
( ~ ( ord_less_eq_rat @ Y @ X3 )
=> ( ord_less_rat @ X3 @ Y ) ) ).
% not_le_imp_less
thf(fact_908_not__le__imp__less,axiom,
! [Y: num,X3: num] :
( ~ ( ord_less_eq_num @ Y @ X3 )
=> ( ord_less_num @ X3 @ Y ) ) ).
% not_le_imp_less
thf(fact_909_not__le__imp__less,axiom,
! [Y: nat,X3: nat] :
( ~ ( ord_less_eq_nat @ Y @ X3 )
=> ( ord_less_nat @ X3 @ Y ) ) ).
% not_le_imp_less
thf(fact_910_not__le__imp__less,axiom,
! [Y: int,X3: int] :
( ~ ( ord_less_eq_int @ Y @ X3 )
=> ( ord_less_int @ X3 @ Y ) ) ).
% not_le_imp_less
thf(fact_911_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A3: real,B3: real] :
( ( ord_less_real @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_912_order_Oorder__iff__strict,axiom,
( ord_less_eq_set_int
= ( ^ [A3: set_int,B3: set_int] :
( ( ord_less_set_int @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_913_order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [A3: rat,B3: rat] :
( ( ord_less_rat @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_914_order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [A3: num,B3: num] :
( ( ord_less_num @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_915_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_nat @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_916_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B3: int] :
( ( ord_less_int @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_917_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_918_order_Ostrict__iff__order,axiom,
( ord_less_set_int
= ( ^ [A3: set_int,B3: set_int] :
( ( ord_less_eq_set_int @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_919_order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [A3: rat,B3: rat] :
( ( ord_less_eq_rat @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_920_order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [A3: num,B3: num] :
( ( ord_less_eq_num @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_921_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_922_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_923_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_924_order_Ostrict__trans1,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_set_int @ B @ C )
=> ( ord_less_set_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_925_order_Ostrict__trans1,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_926_order_Ostrict__trans1,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_927_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_928_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_929_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_930_order_Ostrict__trans2,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_set_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_931_order_Ostrict__trans2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_932_order_Ostrict__trans2,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_933_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_934_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_935_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
& ~ ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_936_order_Ostrict__iff__not,axiom,
( ord_less_set_int
= ( ^ [A3: set_int,B3: set_int] :
( ( ord_less_eq_set_int @ A3 @ B3 )
& ~ ( ord_less_eq_set_int @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_937_order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [A3: rat,B3: rat] :
( ( ord_less_eq_rat @ A3 @ B3 )
& ~ ( ord_less_eq_rat @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_938_order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [A3: num,B3: num] :
( ( ord_less_eq_num @ A3 @ B3 )
& ~ ( ord_less_eq_num @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_939_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
& ~ ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_940_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
& ~ ( ord_less_eq_int @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_941_dense__ge__bounded,axiom,
! [Z2: real,X3: real,Y: real] :
( ( ord_less_real @ Z2 @ X3 )
=> ( ! [W: real] :
( ( ord_less_real @ Z2 @ W )
=> ( ( ord_less_real @ W @ X3 )
=> ( ord_less_eq_real @ Y @ W ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_ge_bounded
thf(fact_942_dense__ge__bounded,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( ord_less_rat @ Z2 @ X3 )
=> ( ! [W: rat] :
( ( ord_less_rat @ Z2 @ W )
=> ( ( ord_less_rat @ W @ X3 )
=> ( ord_less_eq_rat @ Y @ W ) ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ) ).
% dense_ge_bounded
thf(fact_943_dense__le__bounded,axiom,
! [X3: real,Y: real,Z2: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ! [W: real] :
( ( ord_less_real @ X3 @ W )
=> ( ( ord_less_real @ W @ Y )
=> ( ord_less_eq_real @ W @ Z2 ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_le_bounded
thf(fact_944_dense__le__bounded,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( ! [W: rat] :
( ( ord_less_rat @ X3 @ W )
=> ( ( ord_less_rat @ W @ Y )
=> ( ord_less_eq_rat @ W @ Z2 ) ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ) ).
% dense_le_bounded
thf(fact_945_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B3: real,A3: real] :
( ( ord_less_real @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_946_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_set_int
= ( ^ [B3: set_int,A3: set_int] :
( ( ord_less_set_int @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_947_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [B3: rat,A3: rat] :
( ( ord_less_rat @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_948_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [B3: num,A3: num] :
( ( ord_less_num @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_949_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A3: nat] :
( ( ord_less_nat @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_950_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B3: int,A3: int] :
( ( ord_less_int @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_951_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B3: real,A3: real] :
( ( ord_less_eq_real @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_952_dual__order_Ostrict__iff__order,axiom,
( ord_less_set_int
= ( ^ [B3: set_int,A3: set_int] :
( ( ord_less_eq_set_int @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_953_dual__order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [B3: rat,A3: rat] :
( ( ord_less_eq_rat @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_954_dual__order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [B3: num,A3: num] :
( ( ord_less_eq_num @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_955_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B3: nat,A3: nat] :
( ( ord_less_eq_nat @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_956_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B3: int,A3: int] :
( ( ord_less_eq_int @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_957_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_958_dual__order_Ostrict__trans1,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_set_int @ C @ B )
=> ( ord_less_set_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_959_dual__order_Ostrict__trans1,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_960_dual__order_Ostrict__trans1,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_961_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_962_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_963_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_964_dual__order_Ostrict__trans2,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ C @ B )
=> ( ord_less_set_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_965_dual__order_Ostrict__trans2,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_966_dual__order_Ostrict__trans2,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_967_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_968_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_969_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B3: real,A3: real] :
( ( ord_less_eq_real @ B3 @ A3 )
& ~ ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_970_dual__order_Ostrict__iff__not,axiom,
( ord_less_set_int
= ( ^ [B3: set_int,A3: set_int] :
( ( ord_less_eq_set_int @ B3 @ A3 )
& ~ ( ord_less_eq_set_int @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_971_dual__order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [B3: rat,A3: rat] :
( ( ord_less_eq_rat @ B3 @ A3 )
& ~ ( ord_less_eq_rat @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_972_dual__order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [B3: num,A3: num] :
( ( ord_less_eq_num @ B3 @ A3 )
& ~ ( ord_less_eq_num @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_973_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B3: nat,A3: nat] :
( ( ord_less_eq_nat @ B3 @ A3 )
& ~ ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_974_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B3: int,A3: int] :
( ( ord_less_eq_int @ B3 @ A3 )
& ~ ( ord_less_eq_int @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_975_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_976_order_Ostrict__implies__order,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_set_int @ A @ B )
=> ( ord_less_eq_set_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_977_order_Ostrict__implies__order,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_978_order_Ostrict__implies__order,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( ord_less_eq_num @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_979_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_980_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_981_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_982_dual__order_Ostrict__implies__order,axiom,
! [B: set_int,A: set_int] :
( ( ord_less_set_int @ B @ A )
=> ( ord_less_eq_set_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_983_dual__order_Ostrict__implies__order,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_984_dual__order_Ostrict__implies__order,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ord_less_eq_num @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_985_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_986_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_987_order__le__less,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y5: real] :
( ( ord_less_real @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_988_order__le__less,axiom,
( ord_less_eq_set_int
= ( ^ [X2: set_int,Y5: set_int] :
( ( ord_less_set_int @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_989_order__le__less,axiom,
( ord_less_eq_rat
= ( ^ [X2: rat,Y5: rat] :
( ( ord_less_rat @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_990_order__le__less,axiom,
( ord_less_eq_num
= ( ^ [X2: num,Y5: num] :
( ( ord_less_num @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_991_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y5: nat] :
( ( ord_less_nat @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_992_order__le__less,axiom,
( ord_less_eq_int
= ( ^ [X2: int,Y5: int] :
( ( ord_less_int @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_993_order__less__le,axiom,
( ord_less_real
= ( ^ [X2: real,Y5: real] :
( ( ord_less_eq_real @ X2 @ Y5 )
& ( X2 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_994_order__less__le,axiom,
( ord_less_set_int
= ( ^ [X2: set_int,Y5: set_int] :
( ( ord_less_eq_set_int @ X2 @ Y5 )
& ( X2 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_995_order__less__le,axiom,
( ord_less_rat
= ( ^ [X2: rat,Y5: rat] :
( ( ord_less_eq_rat @ X2 @ Y5 )
& ( X2 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_996_order__less__le,axiom,
( ord_less_num
= ( ^ [X2: num,Y5: num] :
( ( ord_less_eq_num @ X2 @ Y5 )
& ( X2 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_997_order__less__le,axiom,
( ord_less_nat
= ( ^ [X2: nat,Y5: nat] :
( ( ord_less_eq_nat @ X2 @ Y5 )
& ( X2 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_998_order__less__le,axiom,
( ord_less_int
= ( ^ [X2: int,Y5: int] :
( ( ord_less_eq_int @ X2 @ Y5 )
& ( X2 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_999_linorder__not__le,axiom,
! [X3: real,Y: real] :
( ( ~ ( ord_less_eq_real @ X3 @ Y ) )
= ( ord_less_real @ Y @ X3 ) ) ).
% linorder_not_le
thf(fact_1000_linorder__not__le,axiom,
! [X3: rat,Y: rat] :
( ( ~ ( ord_less_eq_rat @ X3 @ Y ) )
= ( ord_less_rat @ Y @ X3 ) ) ).
% linorder_not_le
thf(fact_1001_linorder__not__le,axiom,
! [X3: num,Y: num] :
( ( ~ ( ord_less_eq_num @ X3 @ Y ) )
= ( ord_less_num @ Y @ X3 ) ) ).
% linorder_not_le
thf(fact_1002_linorder__not__le,axiom,
! [X3: nat,Y: nat] :
( ( ~ ( ord_less_eq_nat @ X3 @ Y ) )
= ( ord_less_nat @ Y @ X3 ) ) ).
% linorder_not_le
thf(fact_1003_linorder__not__le,axiom,
! [X3: int,Y: int] :
( ( ~ ( ord_less_eq_int @ X3 @ Y ) )
= ( ord_less_int @ Y @ X3 ) ) ).
% linorder_not_le
thf(fact_1004_linorder__not__less,axiom,
! [X3: real,Y: real] :
( ( ~ ( ord_less_real @ X3 @ Y ) )
= ( ord_less_eq_real @ Y @ X3 ) ) ).
% linorder_not_less
thf(fact_1005_linorder__not__less,axiom,
! [X3: rat,Y: rat] :
( ( ~ ( ord_less_rat @ X3 @ Y ) )
= ( ord_less_eq_rat @ Y @ X3 ) ) ).
% linorder_not_less
thf(fact_1006_linorder__not__less,axiom,
! [X3: num,Y: num] :
( ( ~ ( ord_less_num @ X3 @ Y ) )
= ( ord_less_eq_num @ Y @ X3 ) ) ).
% linorder_not_less
thf(fact_1007_linorder__not__less,axiom,
! [X3: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X3 @ Y ) )
= ( ord_less_eq_nat @ Y @ X3 ) ) ).
% linorder_not_less
thf(fact_1008_linorder__not__less,axiom,
! [X3: int,Y: int] :
( ( ~ ( ord_less_int @ X3 @ Y ) )
= ( ord_less_eq_int @ Y @ X3 ) ) ).
% linorder_not_less
thf(fact_1009_order__less__imp__le,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_eq_real @ X3 @ Y ) ) ).
% order_less_imp_le
thf(fact_1010_order__less__imp__le,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_less_set_int @ X3 @ Y )
=> ( ord_less_eq_set_int @ X3 @ Y ) ) ).
% order_less_imp_le
thf(fact_1011_order__less__imp__le,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( ord_less_eq_rat @ X3 @ Y ) ) ).
% order_less_imp_le
thf(fact_1012_order__less__imp__le,axiom,
! [X3: num,Y: num] :
( ( ord_less_num @ X3 @ Y )
=> ( ord_less_eq_num @ X3 @ Y ) ) ).
% order_less_imp_le
thf(fact_1013_order__less__imp__le,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_eq_nat @ X3 @ Y ) ) ).
% order_less_imp_le
thf(fact_1014_order__less__imp__le,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ord_less_eq_int @ X3 @ Y ) ) ).
% order_less_imp_le
thf(fact_1015_order__le__neq__trans,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1016_order__le__neq__trans,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_set_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1017_order__le__neq__trans,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( A != B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1018_order__le__neq__trans,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( A != B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1019_order__le__neq__trans,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1020_order__le__neq__trans,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1021_order__neq__le__trans,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1022_order__neq__le__trans,axiom,
! [A: set_int,B: set_int] :
( ( A != B )
=> ( ( ord_less_eq_set_int @ A @ B )
=> ( ord_less_set_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1023_order__neq__le__trans,axiom,
! [A: rat,B: rat] :
( ( A != B )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1024_order__neq__le__trans,axiom,
! [A: num,B: num] :
( ( A != B )
=> ( ( ord_less_eq_num @ A @ B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1025_order__neq__le__trans,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1026_order__neq__le__trans,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1027_order__le__less__trans,axiom,
! [X3: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X3 @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_1028_order__le__less__trans,axiom,
! [X3: set_int,Y: set_int,Z2: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y )
=> ( ( ord_less_set_int @ Y @ Z2 )
=> ( ord_less_set_int @ X3 @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_1029_order__le__less__trans,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ord_less_rat @ Y @ Z2 )
=> ( ord_less_rat @ X3 @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_1030_order__le__less__trans,axiom,
! [X3: num,Y: num,Z2: num] :
( ( ord_less_eq_num @ X3 @ Y )
=> ( ( ord_less_num @ Y @ Z2 )
=> ( ord_less_num @ X3 @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_1031_order__le__less__trans,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X3 @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_1032_order__le__less__trans,axiom,
! [X3: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X3 @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_1033_order__less__le__trans,axiom,
! [X3: real,Y: real,Z2: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_real @ X3 @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_1034_order__less__le__trans,axiom,
! [X3: set_int,Y: set_int,Z2: set_int] :
( ( ord_less_set_int @ X3 @ Y )
=> ( ( ord_less_eq_set_int @ Y @ Z2 )
=> ( ord_less_set_int @ X3 @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_1035_order__less__le__trans,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( ( ord_less_eq_rat @ Y @ Z2 )
=> ( ord_less_rat @ X3 @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_1036_order__less__le__trans,axiom,
! [X3: num,Y: num,Z2: num] :
( ( ord_less_num @ X3 @ Y )
=> ( ( ord_less_eq_num @ Y @ Z2 )
=> ( ord_less_num @ X3 @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_1037_order__less__le__trans,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_nat @ X3 @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_1038_order__less__le__trans,axiom,
! [X3: int,Y: int,Z2: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_int @ X3 @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_1039_order__le__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1040_order__le__less__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1041_order__le__less__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_num @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1042_order__le__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_nat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1043_order__le__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_int @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1044_order__le__less__subst1,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1045_order__le__less__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1046_order__le__less__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_num @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1047_order__le__less__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_nat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1048_order__le__less__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_int @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1049_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1050_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1051_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1052_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1053_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1054_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1055_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1056_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1057_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1058_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1059_order__less__le__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1060_order__less__le__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1061_order__less__le__subst1,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1062_order__less__le__subst1,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1063_order__less__le__subst1,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_eq_rat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1064_order__less__le__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1065_order__less__le__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1066_order__less__le__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1067_order__less__le__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1068_order__less__le__subst1,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1069_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1070_order__less__le__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1071_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_num @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1072_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_nat @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1073_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_int @ X4 @ Y2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1074_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_real @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1075_order__less__le__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y2: rat] :
( ( ord_less_rat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1076_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_num @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1077_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_nat @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1078_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > rat,C: rat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_int @ X4 @ Y2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1079_linorder__le__less__linear,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
| ( ord_less_real @ Y @ X3 ) ) ).
% linorder_le_less_linear
thf(fact_1080_linorder__le__less__linear,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
| ( ord_less_rat @ Y @ X3 ) ) ).
% linorder_le_less_linear
thf(fact_1081_linorder__le__less__linear,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_num @ X3 @ Y )
| ( ord_less_num @ Y @ X3 ) ) ).
% linorder_le_less_linear
thf(fact_1082_linorder__le__less__linear,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
| ( ord_less_nat @ Y @ X3 ) ) ).
% linorder_le_less_linear
thf(fact_1083_linorder__le__less__linear,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
| ( ord_less_int @ Y @ X3 ) ) ).
% linorder_le_less_linear
thf(fact_1084_order__le__imp__less__or__eq,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ord_less_real @ X3 @ Y )
| ( X3 = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1085_order__le__imp__less__or__eq,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y )
=> ( ( ord_less_set_int @ X3 @ Y )
| ( X3 = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1086_order__le__imp__less__or__eq,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ord_less_rat @ X3 @ Y )
| ( X3 = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1087_order__le__imp__less__or__eq,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_num @ X3 @ Y )
=> ( ( ord_less_num @ X3 @ Y )
| ( X3 = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1088_order__le__imp__less__or__eq,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ( ord_less_nat @ X3 @ Y )
| ( X3 = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1089_order__le__imp__less__or__eq,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ( ord_less_int @ X3 @ Y )
| ( X3 = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1090_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_1091_double__eq__0__iff,axiom,
! [A: rat] :
( ( ( plus_plus_rat @ A @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% double_eq_0_iff
thf(fact_1092_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_1093_field__le__epsilon,axiom,
! [X3: real,Y: real] :
( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ( ord_less_eq_real @ X3 @ ( plus_plus_real @ Y @ E ) ) )
=> ( ord_less_eq_real @ X3 @ Y ) ) ).
% field_le_epsilon
thf(fact_1094_field__le__epsilon,axiom,
! [X3: rat,Y: rat] :
( ! [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
=> ( ord_less_eq_rat @ X3 @ ( plus_plus_rat @ Y @ E ) ) )
=> ( ord_less_eq_rat @ X3 @ Y ) ) ).
% field_le_epsilon
thf(fact_1095_add__less__zeroD,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X3 @ Y ) @ zero_zero_real )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
| ( ord_less_real @ Y @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_1096_add__less__zeroD,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ X3 @ Y ) @ zero_zero_rat )
=> ( ( ord_less_rat @ X3 @ zero_zero_rat )
| ( ord_less_rat @ Y @ zero_zero_rat ) ) ) ).
% add_less_zeroD
thf(fact_1097_add__less__zeroD,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ ( plus_plus_int @ X3 @ Y ) @ zero_zero_int )
=> ( ( ord_less_int @ X3 @ zero_zero_int )
| ( ord_less_int @ Y @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_1098_buildup__gives__empty,axiom,
! [N2: nat] :
( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N2 ) )
= bot_bot_set_nat ) ).
% buildup_gives_empty
thf(fact_1099_subsetI,axiom,
! [A2: set_nat,B2: set_nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( member_nat @ X4 @ B2 ) )
=> ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).
% subsetI
thf(fact_1100_subsetI,axiom,
! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( member_VEBT_VEBT @ X4 @ B2 ) )
=> ( ord_le4337996190870823476T_VEBT @ A2 @ B2 ) ) ).
% subsetI
thf(fact_1101_subsetI,axiom,
! [A2: set_set_nat,B2: set_set_nat] :
( ! [X4: set_nat] :
( ( member_set_nat @ X4 @ A2 )
=> ( member_set_nat @ X4 @ B2 ) )
=> ( ord_le6893508408891458716et_nat @ A2 @ B2 ) ) ).
% subsetI
thf(fact_1102_subsetI,axiom,
! [A2: set_real,B2: set_real] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( member_real @ X4 @ B2 ) )
=> ( ord_less_eq_set_real @ A2 @ B2 ) ) ).
% subsetI
thf(fact_1103_subsetI,axiom,
! [A2: set_int,B2: set_int] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( member_int @ X4 @ B2 ) )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% subsetI
thf(fact_1104_psubsetI,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( A2 != B2 )
=> ( ord_less_set_int @ A2 @ B2 ) ) ) ).
% psubsetI
thf(fact_1105_subset__antisym,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ).
% subset_antisym
thf(fact_1106_set__vebt__finite,axiom,
! [T: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( finite_finite_nat @ ( vEBT_VEBT_set_vebt @ T ) ) ) ).
% set_vebt_finite
thf(fact_1107_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
= ( P @ B4 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
=> ( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
=> ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_1108_add__0__iff,axiom,
! [B: complex,A: complex] :
( ( B
= ( plus_plus_complex @ B @ A ) )
= ( A = zero_zero_complex ) ) ).
% add_0_iff
thf(fact_1109_add__0__iff,axiom,
! [B: real,A: real] :
( ( B
= ( plus_plus_real @ B @ A ) )
= ( A = zero_zero_real ) ) ).
% add_0_iff
thf(fact_1110_add__0__iff,axiom,
! [B: rat,A: rat] :
( ( B
= ( plus_plus_rat @ B @ A ) )
= ( A = zero_zero_rat ) ) ).
% add_0_iff
thf(fact_1111_add__0__iff,axiom,
! [B: nat,A: nat] :
( ( B
= ( plus_plus_nat @ B @ A ) )
= ( A = zero_zero_nat ) ) ).
% add_0_iff
thf(fact_1112_add__0__iff,axiom,
! [B: int,A: int] :
( ( B
= ( plus_plus_int @ B @ A ) )
= ( A = zero_zero_int ) ) ).
% add_0_iff
thf(fact_1113_verit__sum__simplify,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% verit_sum_simplify
thf(fact_1114_verit__sum__simplify,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% verit_sum_simplify
thf(fact_1115_verit__sum__simplify,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% verit_sum_simplify
thf(fact_1116_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_1117_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_1118_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_1119_less__numeral__extra_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).
% less_numeral_extra(3)
thf(fact_1120_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_1121_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_1122_empty__Collect__eq,axiom,
! [P: list_nat > $o] :
( ( bot_bot_set_list_nat
= ( collect_list_nat @ P ) )
= ( ! [X2: list_nat] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_1123_empty__Collect__eq,axiom,
! [P: set_nat > $o] :
( ( bot_bot_set_set_nat
= ( collect_set_nat @ P ) )
= ( ! [X2: set_nat] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_1124_empty__Collect__eq,axiom,
! [P: real > $o] :
( ( bot_bot_set_real
= ( collect_real @ P ) )
= ( ! [X2: real] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_1125_empty__Collect__eq,axiom,
! [P: nat > $o] :
( ( bot_bot_set_nat
= ( collect_nat @ P ) )
= ( ! [X2: nat] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_1126_empty__Collect__eq,axiom,
! [P: int > $o] :
( ( bot_bot_set_int
= ( collect_int @ P ) )
= ( ! [X2: int] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_1127_Collect__empty__eq,axiom,
! [P: list_nat > $o] :
( ( ( collect_list_nat @ P )
= bot_bot_set_list_nat )
= ( ! [X2: list_nat] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_1128_Collect__empty__eq,axiom,
! [P: set_nat > $o] :
( ( ( collect_set_nat @ P )
= bot_bot_set_set_nat )
= ( ! [X2: set_nat] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_1129_Collect__empty__eq,axiom,
! [P: real > $o] :
( ( ( collect_real @ P )
= bot_bot_set_real )
= ( ! [X2: real] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_1130_Collect__empty__eq,axiom,
! [P: nat > $o] :
( ( ( collect_nat @ P )
= bot_bot_set_nat )
= ( ! [X2: nat] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_1131_Collect__empty__eq,axiom,
! [P: int > $o] :
( ( ( collect_int @ P )
= bot_bot_set_int )
= ( ! [X2: int] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_1132_all__not__in__conv,axiom,
! [A2: set_VEBT_VEBT] :
( ( ! [X2: vEBT_VEBT] :
~ ( member_VEBT_VEBT @ X2 @ A2 ) )
= ( A2 = bot_bo8194388402131092736T_VEBT ) ) ).
% all_not_in_conv
thf(fact_1133_all__not__in__conv,axiom,
! [A2: set_set_nat] :
( ( ! [X2: set_nat] :
~ ( member_set_nat @ X2 @ A2 ) )
= ( A2 = bot_bot_set_set_nat ) ) ).
% all_not_in_conv
thf(fact_1134_all__not__in__conv,axiom,
! [A2: set_real] :
( ( ! [X2: real] :
~ ( member_real @ X2 @ A2 ) )
= ( A2 = bot_bot_set_real ) ) ).
% all_not_in_conv
thf(fact_1135_all__not__in__conv,axiom,
! [A2: set_nat] :
( ( ! [X2: nat] :
~ ( member_nat @ X2 @ A2 ) )
= ( A2 = bot_bot_set_nat ) ) ).
% all_not_in_conv
thf(fact_1136_all__not__in__conv,axiom,
! [A2: set_int] :
( ( ! [X2: int] :
~ ( member_int @ X2 @ A2 ) )
= ( A2 = bot_bot_set_int ) ) ).
% all_not_in_conv
thf(fact_1137_empty__iff,axiom,
! [C: vEBT_VEBT] :
~ ( member_VEBT_VEBT @ C @ bot_bo8194388402131092736T_VEBT ) ).
% empty_iff
thf(fact_1138_empty__iff,axiom,
! [C: set_nat] :
~ ( member_set_nat @ C @ bot_bot_set_set_nat ) ).
% empty_iff
thf(fact_1139_empty__iff,axiom,
! [C: real] :
~ ( member_real @ C @ bot_bot_set_real ) ).
% empty_iff
thf(fact_1140_empty__iff,axiom,
! [C: nat] :
~ ( member_nat @ C @ bot_bot_set_nat ) ).
% empty_iff
thf(fact_1141_empty__iff,axiom,
! [C: int] :
~ ( member_int @ C @ bot_bot_set_int ) ).
% empty_iff
thf(fact_1142_empty__subsetI,axiom,
! [A2: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A2 ) ).
% empty_subsetI
thf(fact_1143_empty__subsetI,axiom,
! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).
% empty_subsetI
thf(fact_1144_empty__subsetI,axiom,
! [A2: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A2 ) ).
% empty_subsetI
thf(fact_1145_subset__empty,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ bot_bot_set_real )
= ( A2 = bot_bot_set_real ) ) ).
% subset_empty
thf(fact_1146_subset__empty,axiom,
! [A2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
= ( A2 = bot_bot_set_nat ) ) ).
% subset_empty
thf(fact_1147_subset__empty,axiom,
! [A2: set_int] :
( ( ord_less_eq_set_int @ A2 @ bot_bot_set_int )
= ( A2 = bot_bot_set_int ) ) ).
% subset_empty
thf(fact_1148_List_Ofinite__set,axiom,
! [Xs: list_VEBT_VEBT] : ( finite5795047828879050333T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) ) ).
% List.finite_set
thf(fact_1149_List_Ofinite__set,axiom,
! [Xs: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs ) ) ).
% List.finite_set
thf(fact_1150_List_Ofinite__set,axiom,
! [Xs: list_int] : ( finite_finite_int @ ( set_int2 @ Xs ) ) ).
% List.finite_set
thf(fact_1151_List_Ofinite__set,axiom,
! [Xs: list_complex] : ( finite3207457112153483333omplex @ ( set_complex2 @ Xs ) ) ).
% List.finite_set
thf(fact_1152_ex__in__conv,axiom,
! [A2: set_VEBT_VEBT] :
( ( ? [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ A2 ) )
= ( A2 != bot_bo8194388402131092736T_VEBT ) ) ).
% ex_in_conv
thf(fact_1153_ex__in__conv,axiom,
! [A2: set_set_nat] :
( ( ? [X2: set_nat] : ( member_set_nat @ X2 @ A2 ) )
= ( A2 != bot_bot_set_set_nat ) ) ).
% ex_in_conv
thf(fact_1154_ex__in__conv,axiom,
! [A2: set_real] :
( ( ? [X2: real] : ( member_real @ X2 @ A2 ) )
= ( A2 != bot_bot_set_real ) ) ).
% ex_in_conv
thf(fact_1155_ex__in__conv,axiom,
! [A2: set_nat] :
( ( ? [X2: nat] : ( member_nat @ X2 @ A2 ) )
= ( A2 != bot_bot_set_nat ) ) ).
% ex_in_conv
thf(fact_1156_ex__in__conv,axiom,
! [A2: set_int] :
( ( ? [X2: int] : ( member_int @ X2 @ A2 ) )
= ( A2 != bot_bot_set_int ) ) ).
% ex_in_conv
thf(fact_1157_equals0I,axiom,
! [A2: set_VEBT_VEBT] :
( ! [Y2: vEBT_VEBT] :
~ ( member_VEBT_VEBT @ Y2 @ A2 )
=> ( A2 = bot_bo8194388402131092736T_VEBT ) ) ).
% equals0I
thf(fact_1158_equals0I,axiom,
! [A2: set_set_nat] :
( ! [Y2: set_nat] :
~ ( member_set_nat @ Y2 @ A2 )
=> ( A2 = bot_bot_set_set_nat ) ) ).
% equals0I
thf(fact_1159_equals0I,axiom,
! [A2: set_real] :
( ! [Y2: real] :
~ ( member_real @ Y2 @ A2 )
=> ( A2 = bot_bot_set_real ) ) ).
% equals0I
thf(fact_1160_equals0I,axiom,
! [A2: set_nat] :
( ! [Y2: nat] :
~ ( member_nat @ Y2 @ A2 )
=> ( A2 = bot_bot_set_nat ) ) ).
% equals0I
thf(fact_1161_equals0I,axiom,
! [A2: set_int] :
( ! [Y2: int] :
~ ( member_int @ Y2 @ A2 )
=> ( A2 = bot_bot_set_int ) ) ).
% equals0I
thf(fact_1162_equals0D,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT] :
( ( A2 = bot_bo8194388402131092736T_VEBT )
=> ~ ( member_VEBT_VEBT @ A @ A2 ) ) ).
% equals0D
thf(fact_1163_equals0D,axiom,
! [A2: set_set_nat,A: set_nat] :
( ( A2 = bot_bot_set_set_nat )
=> ~ ( member_set_nat @ A @ A2 ) ) ).
% equals0D
thf(fact_1164_equals0D,axiom,
! [A2: set_real,A: real] :
( ( A2 = bot_bot_set_real )
=> ~ ( member_real @ A @ A2 ) ) ).
% equals0D
thf(fact_1165_equals0D,axiom,
! [A2: set_nat,A: nat] :
( ( A2 = bot_bot_set_nat )
=> ~ ( member_nat @ A @ A2 ) ) ).
% equals0D
thf(fact_1166_equals0D,axiom,
! [A2: set_int,A: int] :
( ( A2 = bot_bot_set_int )
=> ~ ( member_int @ A @ A2 ) ) ).
% equals0D
thf(fact_1167_emptyE,axiom,
! [A: vEBT_VEBT] :
~ ( member_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ).
% emptyE
thf(fact_1168_emptyE,axiom,
! [A: set_nat] :
~ ( member_set_nat @ A @ bot_bot_set_set_nat ) ).
% emptyE
thf(fact_1169_emptyE,axiom,
! [A: real] :
~ ( member_real @ A @ bot_bot_set_real ) ).
% emptyE
thf(fact_1170_emptyE,axiom,
! [A: nat] :
~ ( member_nat @ A @ bot_bot_set_nat ) ).
% emptyE
thf(fact_1171_emptyE,axiom,
! [A: int] :
~ ( member_int @ A @ bot_bot_set_int ) ).
% emptyE
thf(fact_1172_not__psubset__empty,axiom,
! [A2: set_real] :
~ ( ord_less_set_real @ A2 @ bot_bot_set_real ) ).
% not_psubset_empty
thf(fact_1173_not__psubset__empty,axiom,
! [A2: set_nat] :
~ ( ord_less_set_nat @ A2 @ bot_bot_set_nat ) ).
% not_psubset_empty
thf(fact_1174_not__psubset__empty,axiom,
! [A2: set_int] :
~ ( ord_less_set_int @ A2 @ bot_bot_set_int ) ).
% not_psubset_empty
thf(fact_1175_psubsetD,axiom,
! [A2: set_nat,B2: set_nat,C: nat] :
( ( ord_less_set_nat @ A2 @ B2 )
=> ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B2 ) ) ) ).
% psubsetD
thf(fact_1176_psubsetD,axiom,
! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,C: vEBT_VEBT] :
( ( ord_le3480810397992357184T_VEBT @ A2 @ B2 )
=> ( ( member_VEBT_VEBT @ C @ A2 )
=> ( member_VEBT_VEBT @ C @ B2 ) ) ) ).
% psubsetD
thf(fact_1177_psubsetD,axiom,
! [A2: set_int,B2: set_int,C: int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B2 ) ) ) ).
% psubsetD
thf(fact_1178_psubsetD,axiom,
! [A2: set_set_nat,B2: set_set_nat,C: set_nat] :
( ( ord_less_set_set_nat @ A2 @ B2 )
=> ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B2 ) ) ) ).
% psubsetD
thf(fact_1179_psubsetD,axiom,
! [A2: set_real,B2: set_real,C: real] :
( ( ord_less_set_real @ A2 @ B2 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B2 ) ) ) ).
% psubsetD
thf(fact_1180_ex__min__if__finite,axiom,
! [S2: set_real] :
( ( finite_finite_real @ S2 )
=> ( ( S2 != bot_bot_set_real )
=> ? [X4: real] :
( ( member_real @ X4 @ S2 )
& ~ ? [Xa: real] :
( ( member_real @ Xa @ S2 )
& ( ord_less_real @ Xa @ X4 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_1181_ex__min__if__finite,axiom,
! [S2: set_rat] :
( ( finite_finite_rat @ S2 )
=> ( ( S2 != bot_bot_set_rat )
=> ? [X4: rat] :
( ( member_rat @ X4 @ S2 )
& ~ ? [Xa: rat] :
( ( member_rat @ Xa @ S2 )
& ( ord_less_rat @ Xa @ X4 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_1182_ex__min__if__finite,axiom,
! [S2: set_num] :
( ( finite_finite_num @ S2 )
=> ( ( S2 != bot_bot_set_num )
=> ? [X4: num] :
( ( member_num @ X4 @ S2 )
& ~ ? [Xa: num] :
( ( member_num @ Xa @ S2 )
& ( ord_less_num @ Xa @ X4 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_1183_ex__min__if__finite,axiom,
! [S2: set_nat] :
( ( finite_finite_nat @ S2 )
=> ( ( S2 != bot_bot_set_nat )
=> ? [X4: nat] :
( ( member_nat @ X4 @ S2 )
& ~ ? [Xa: nat] :
( ( member_nat @ Xa @ S2 )
& ( ord_less_nat @ Xa @ X4 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_1184_ex__min__if__finite,axiom,
! [S2: set_int] :
( ( finite_finite_int @ S2 )
=> ( ( S2 != bot_bot_set_int )
=> ? [X4: int] :
( ( member_int @ X4 @ S2 )
& ~ ? [Xa: int] :
( ( member_int @ Xa @ S2 )
& ( ord_less_int @ Xa @ X4 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_1185_infinite__growing,axiom,
! [X8: set_real] :
( ( X8 != bot_bot_set_real )
=> ( ! [X4: real] :
( ( member_real @ X4 @ X8 )
=> ? [Xa: real] :
( ( member_real @ Xa @ X8 )
& ( ord_less_real @ X4 @ Xa ) ) )
=> ~ ( finite_finite_real @ X8 ) ) ) ).
% infinite_growing
thf(fact_1186_infinite__growing,axiom,
! [X8: set_rat] :
( ( X8 != bot_bot_set_rat )
=> ( ! [X4: rat] :
( ( member_rat @ X4 @ X8 )
=> ? [Xa: rat] :
( ( member_rat @ Xa @ X8 )
& ( ord_less_rat @ X4 @ Xa ) ) )
=> ~ ( finite_finite_rat @ X8 ) ) ) ).
% infinite_growing
thf(fact_1187_infinite__growing,axiom,
! [X8: set_num] :
( ( X8 != bot_bot_set_num )
=> ( ! [X4: num] :
( ( member_num @ X4 @ X8 )
=> ? [Xa: num] :
( ( member_num @ Xa @ X8 )
& ( ord_less_num @ X4 @ Xa ) ) )
=> ~ ( finite_finite_num @ X8 ) ) ) ).
% infinite_growing
thf(fact_1188_infinite__growing,axiom,
! [X8: set_nat] :
( ( X8 != bot_bot_set_nat )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ X8 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ X8 )
& ( ord_less_nat @ X4 @ Xa ) ) )
=> ~ ( finite_finite_nat @ X8 ) ) ) ).
% infinite_growing
thf(fact_1189_infinite__growing,axiom,
! [X8: set_int] :
( ( X8 != bot_bot_set_int )
=> ( ! [X4: int] :
( ( member_int @ X4 @ X8 )
=> ? [Xa: int] :
( ( member_int @ Xa @ X8 )
& ( ord_less_int @ X4 @ Xa ) ) )
=> ~ ( finite_finite_int @ X8 ) ) ) ).
% infinite_growing
thf(fact_1190_bot_Oextremum__uniqueI,axiom,
! [A: filter_nat] :
( ( ord_le2510731241096832064er_nat @ A @ bot_bot_filter_nat )
=> ( A = bot_bot_filter_nat ) ) ).
% bot.extremum_uniqueI
thf(fact_1191_bot_Oextremum__uniqueI,axiom,
! [A: set_real] :
( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
=> ( A = bot_bot_set_real ) ) ).
% bot.extremum_uniqueI
thf(fact_1192_bot_Oextremum__uniqueI,axiom,
! [A: set_nat] :
( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
=> ( A = bot_bot_set_nat ) ) ).
% bot.extremum_uniqueI
thf(fact_1193_bot_Oextremum__uniqueI,axiom,
! [A: set_int] :
( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
=> ( A = bot_bot_set_int ) ) ).
% bot.extremum_uniqueI
thf(fact_1194_bot_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ bot_bot_nat )
=> ( A = bot_bot_nat ) ) ).
% bot.extremum_uniqueI
thf(fact_1195_bot_Oextremum__unique,axiom,
! [A: filter_nat] :
( ( ord_le2510731241096832064er_nat @ A @ bot_bot_filter_nat )
= ( A = bot_bot_filter_nat ) ) ).
% bot.extremum_unique
thf(fact_1196_bot_Oextremum__unique,axiom,
! [A: set_real] :
( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
= ( A = bot_bot_set_real ) ) ).
% bot.extremum_unique
thf(fact_1197_bot_Oextremum__unique,axiom,
! [A: set_nat] :
( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
= ( A = bot_bot_set_nat ) ) ).
% bot.extremum_unique
thf(fact_1198_bot_Oextremum__unique,axiom,
! [A: set_int] :
( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
= ( A = bot_bot_set_int ) ) ).
% bot.extremum_unique
thf(fact_1199_bot_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ bot_bot_nat )
= ( A = bot_bot_nat ) ) ).
% bot.extremum_unique
thf(fact_1200_bot_Oextremum,axiom,
! [A: filter_nat] : ( ord_le2510731241096832064er_nat @ bot_bot_filter_nat @ A ) ).
% bot.extremum
thf(fact_1201_bot_Oextremum,axiom,
! [A: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A ) ).
% bot.extremum
thf(fact_1202_bot_Oextremum,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).
% bot.extremum
thf(fact_1203_bot_Oextremum,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A ) ).
% bot.extremum
thf(fact_1204_bot_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).
% bot.extremum
thf(fact_1205_bot_Onot__eq__extremum,axiom,
! [A: filter_nat] :
( ( A != bot_bot_filter_nat )
= ( ord_less_filter_nat @ bot_bot_filter_nat @ A ) ) ).
% bot.not_eq_extremum
thf(fact_1206_bot_Onot__eq__extremum,axiom,
! [A: set_real] :
( ( A != bot_bot_set_real )
= ( ord_less_set_real @ bot_bot_set_real @ A ) ) ).
% bot.not_eq_extremum
thf(fact_1207_bot_Onot__eq__extremum,axiom,
! [A: set_nat] :
( ( A != bot_bot_set_nat )
= ( ord_less_set_nat @ bot_bot_set_nat @ A ) ) ).
% bot.not_eq_extremum
thf(fact_1208_bot_Onot__eq__extremum,axiom,
! [A: set_int] :
( ( A != bot_bot_set_int )
= ( ord_less_set_int @ bot_bot_set_int @ A ) ) ).
% bot.not_eq_extremum
thf(fact_1209_bot_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != bot_bot_nat )
= ( ord_less_nat @ bot_bot_nat @ A ) ) ).
% bot.not_eq_extremum
thf(fact_1210_bot_Oextremum__strict,axiom,
! [A: filter_nat] :
~ ( ord_less_filter_nat @ A @ bot_bot_filter_nat ) ).
% bot.extremum_strict
thf(fact_1211_bot_Oextremum__strict,axiom,
! [A: set_real] :
~ ( ord_less_set_real @ A @ bot_bot_set_real ) ).
% bot.extremum_strict
thf(fact_1212_bot_Oextremum__strict,axiom,
! [A: set_nat] :
~ ( ord_less_set_nat @ A @ bot_bot_set_nat ) ).
% bot.extremum_strict
thf(fact_1213_bot_Oextremum__strict,axiom,
! [A: set_int] :
~ ( ord_less_set_int @ A @ bot_bot_set_int ) ).
% bot.extremum_strict
thf(fact_1214_bot_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ bot_bot_nat ) ).
% bot.extremum_strict
thf(fact_1215_finite__list,axiom,
! [A2: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ? [Xs2: list_VEBT_VEBT] :
( ( set_VEBT_VEBT2 @ Xs2 )
= A2 ) ) ).
% finite_list
thf(fact_1216_finite__list,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ? [Xs2: list_nat] :
( ( set_nat2 @ Xs2 )
= A2 ) ) ).
% finite_list
thf(fact_1217_finite__list,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ? [Xs2: list_int] :
( ( set_int2 @ Xs2 )
= A2 ) ) ).
% finite_list
thf(fact_1218_finite__list,axiom,
! [A2: set_complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ? [Xs2: list_complex] :
( ( set_complex2 @ Xs2 )
= A2 ) ) ).
% finite_list
thf(fact_1219_verit__la__disequality,axiom,
! [A: rat,B: rat] :
( ( A = B )
| ~ ( ord_less_eq_rat @ A @ B )
| ~ ( ord_less_eq_rat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1220_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1221_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1222_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1223_verit__comp__simplify1_I2_J,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_1224_verit__comp__simplify1_I2_J,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_1225_verit__comp__simplify1_I2_J,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_1226_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_1227_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_1228_linorder__neqE__linordered__idom,axiom,
! [X3: real,Y: real] :
( ( X3 != Y )
=> ( ~ ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ Y @ X3 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1229_linorder__neqE__linordered__idom,axiom,
! [X3: rat,Y: rat] :
( ( X3 != Y )
=> ( ~ ( ord_less_rat @ X3 @ Y )
=> ( ord_less_rat @ Y @ X3 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1230_linorder__neqE__linordered__idom,axiom,
! [X3: int,Y: int] :
( ( X3 != Y )
=> ( ~ ( ord_less_int @ X3 @ Y )
=> ( ord_less_int @ Y @ X3 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1231_linordered__field__no__ub,axiom,
! [X: real] :
? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).
% linordered_field_no_ub
thf(fact_1232_linordered__field__no__ub,axiom,
! [X: rat] :
? [X_1: rat] : ( ord_less_rat @ X @ X_1 ) ).
% linordered_field_no_ub
thf(fact_1233_linordered__field__no__lb,axiom,
! [X: real] :
? [Y2: real] : ( ord_less_real @ Y2 @ X ) ).
% linordered_field_no_lb
thf(fact_1234_linordered__field__no__lb,axiom,
! [X: rat] :
? [Y2: rat] : ( ord_less_rat @ Y2 @ X ) ).
% linordered_field_no_lb
thf(fact_1235_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1236_verit__comp__simplify1_I1_J,axiom,
! [A: rat] :
~ ( ord_less_rat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1237_verit__comp__simplify1_I1_J,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1238_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1239_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1240_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_1241_is__num__normalize_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_1242_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_1243_subset__iff__psubset__eq,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_set_int @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_1244_subset__psubset__trans,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_set_int @ B2 @ C4 )
=> ( ord_less_set_int @ A2 @ C4 ) ) ) ).
% subset_psubset_trans
thf(fact_1245_subset__not__subset__eq,axiom,
( ord_less_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ~ ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_1246_psubset__subset__trans,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ C4 )
=> ( ord_less_set_int @ A2 @ C4 ) ) ) ).
% psubset_subset_trans
thf(fact_1247_psubset__imp__subset,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% psubset_imp_subset
thf(fact_1248_Collect__mono__iff,axiom,
! [P: real > $o,Q: real > $o] :
( ( ord_less_eq_set_real @ ( collect_real @ P ) @ ( collect_real @ Q ) )
= ( ! [X2: real] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1249_Collect__mono__iff,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ( ord_le6045566169113846134st_nat @ ( collect_list_nat @ P ) @ ( collect_list_nat @ Q ) )
= ( ! [X2: list_nat] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1250_Collect__mono__iff,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) )
= ( ! [X2: set_nat] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1251_Collect__mono__iff,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
= ( ! [X2: nat] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1252_Collect__mono__iff,axiom,
! [P: int > $o,Q: int > $o] :
( ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) )
= ( ! [X2: int] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1253_set__eq__subset,axiom,
( ( ^ [Y4: set_int,Z: set_int] : ( Y4 = Z ) )
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).
% set_eq_subset
thf(fact_1254_subset__trans,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ C4 )
=> ( ord_less_eq_set_int @ A2 @ C4 ) ) ) ).
% subset_trans
thf(fact_1255_Collect__mono,axiom,
! [P: real > $o,Q: real > $o] :
( ! [X4: real] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_less_eq_set_real @ ( collect_real @ P ) @ ( collect_real @ Q ) ) ) ).
% Collect_mono
thf(fact_1256_Collect__mono,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ! [X4: list_nat] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_le6045566169113846134st_nat @ ( collect_list_nat @ P ) @ ( collect_list_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_1257_Collect__mono,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X4: set_nat] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_1258_Collect__mono,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X4: nat] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_1259_Collect__mono,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) ) ) ).
% Collect_mono
thf(fact_1260_subset__refl,axiom,
! [A2: set_int] : ( ord_less_eq_set_int @ A2 @ A2 ) ).
% subset_refl
thf(fact_1261_subset__iff,axiom,
( ord_less_eq_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
! [T2: nat] :
( ( member_nat @ T2 @ A5 )
=> ( member_nat @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1262_subset__iff,axiom,
( ord_le4337996190870823476T_VEBT
= ( ^ [A5: set_VEBT_VEBT,B5: set_VEBT_VEBT] :
! [T2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ T2 @ A5 )
=> ( member_VEBT_VEBT @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1263_subset__iff,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
! [T2: set_nat] :
( ( member_set_nat @ T2 @ A5 )
=> ( member_set_nat @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1264_subset__iff,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B5: set_real] :
! [T2: real] :
( ( member_real @ T2 @ A5 )
=> ( member_real @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1265_subset__iff,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
! [T2: int] :
( ( member_int @ T2 @ A5 )
=> ( member_int @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1266_psubset__eq,axiom,
( ord_less_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% psubset_eq
thf(fact_1267_equalityD2,axiom,
! [A2: set_int,B2: set_int] :
( ( A2 = B2 )
=> ( ord_less_eq_set_int @ B2 @ A2 ) ) ).
% equalityD2
thf(fact_1268_equalityD1,axiom,
! [A2: set_int,B2: set_int] :
( ( A2 = B2 )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% equalityD1
thf(fact_1269_subset__eq,axiom,
( ord_less_eq_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
! [X2: nat] :
( ( member_nat @ X2 @ A5 )
=> ( member_nat @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1270_subset__eq,axiom,
( ord_le4337996190870823476T_VEBT
= ( ^ [A5: set_VEBT_VEBT,B5: set_VEBT_VEBT] :
! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A5 )
=> ( member_VEBT_VEBT @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1271_subset__eq,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
! [X2: set_nat] :
( ( member_set_nat @ X2 @ A5 )
=> ( member_set_nat @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1272_subset__eq,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B5: set_real] :
! [X2: real] :
( ( member_real @ X2 @ A5 )
=> ( member_real @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1273_subset__eq,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
! [X2: int] :
( ( member_int @ X2 @ A5 )
=> ( member_int @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1274_equalityE,axiom,
! [A2: set_int,B2: set_int] :
( ( A2 = B2 )
=> ~ ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ~ ( ord_less_eq_set_int @ B2 @ A2 ) ) ) ).
% equalityE
thf(fact_1275_psubsetE,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ~ ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ord_less_eq_set_int @ B2 @ A2 ) ) ) ).
% psubsetE
thf(fact_1276_subsetD,axiom,
! [A2: set_nat,B2: set_nat,C: nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B2 ) ) ) ).
% subsetD
thf(fact_1277_subsetD,axiom,
! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,C: vEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ( member_VEBT_VEBT @ C @ A2 )
=> ( member_VEBT_VEBT @ C @ B2 ) ) ) ).
% subsetD
thf(fact_1278_subsetD,axiom,
! [A2: set_set_nat,B2: set_set_nat,C: set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ B2 )
=> ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B2 ) ) ) ).
% subsetD
thf(fact_1279_subsetD,axiom,
! [A2: set_real,B2: set_real,C: real] :
( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B2 ) ) ) ).
% subsetD
thf(fact_1280_subsetD,axiom,
! [A2: set_int,B2: set_int,C: int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B2 ) ) ) ).
% subsetD
thf(fact_1281_in__mono,axiom,
! [A2: set_nat,B2: set_nat,X3: nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( member_nat @ X3 @ A2 )
=> ( member_nat @ X3 @ B2 ) ) ) ).
% in_mono
thf(fact_1282_in__mono,axiom,
! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,X3: vEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( member_VEBT_VEBT @ X3 @ B2 ) ) ) ).
% in_mono
thf(fact_1283_in__mono,axiom,
! [A2: set_set_nat,B2: set_set_nat,X3: set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ B2 )
=> ( ( member_set_nat @ X3 @ A2 )
=> ( member_set_nat @ X3 @ B2 ) ) ) ).
% in_mono
thf(fact_1284_in__mono,axiom,
! [A2: set_real,B2: set_real,X3: real] :
( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ X3 @ A2 )
=> ( member_real @ X3 @ B2 ) ) ) ).
% in_mono
thf(fact_1285_in__mono,axiom,
! [A2: set_int,B2: set_int,X3: int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( member_int @ X3 @ A2 )
=> ( member_int @ X3 @ B2 ) ) ) ).
% in_mono
thf(fact_1286_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_1287_le__numeral__extra_I3_J,axiom,
ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).
% le_numeral_extra(3)
thf(fact_1288_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_1289_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_1290_verit__comp__simplify1_I3_J,axiom,
! [B6: real,A6: real] :
( ( ~ ( ord_less_eq_real @ B6 @ A6 ) )
= ( ord_less_real @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1291_verit__comp__simplify1_I3_J,axiom,
! [B6: rat,A6: rat] :
( ( ~ ( ord_less_eq_rat @ B6 @ A6 ) )
= ( ord_less_rat @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1292_verit__comp__simplify1_I3_J,axiom,
! [B6: num,A6: num] :
( ( ~ ( ord_less_eq_num @ B6 @ A6 ) )
= ( ord_less_num @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1293_verit__comp__simplify1_I3_J,axiom,
! [B6: nat,A6: nat] :
( ( ~ ( ord_less_eq_nat @ B6 @ A6 ) )
= ( ord_less_nat @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1294_verit__comp__simplify1_I3_J,axiom,
! [B6: int,A6: int] :
( ( ~ ( ord_less_eq_int @ B6 @ A6 ) )
= ( ord_less_int @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1295_finite__has__maximal,axiom,
! [A2: set_real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ? [X4: real] :
( ( member_real @ X4 @ A2 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_1296_finite__has__maximal,axiom,
! [A2: set_set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( A2 != bot_bot_set_set_int )
=> ? [X4: set_int] :
( ( member_set_int @ X4 @ A2 )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_1297_finite__has__maximal,axiom,
! [A2: set_rat] :
( ( finite_finite_rat @ A2 )
=> ( ( A2 != bot_bot_set_rat )
=> ? [X4: rat] :
( ( member_rat @ X4 @ A2 )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_1298_finite__has__maximal,axiom,
! [A2: set_num] :
( ( finite_finite_num @ A2 )
=> ( ( A2 != bot_bot_set_num )
=> ? [X4: num] :
( ( member_num @ X4 @ A2 )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_1299_finite__has__maximal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_1300_finite__has__maximal,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_1301_finite__has__minimal,axiom,
! [A2: set_real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ? [X4: real] :
( ( member_real @ X4 @ A2 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_1302_finite__has__minimal,axiom,
! [A2: set_set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( A2 != bot_bot_set_set_int )
=> ? [X4: set_int] :
( ( member_set_int @ X4 @ A2 )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_1303_finite__has__minimal,axiom,
! [A2: set_rat] :
( ( finite_finite_rat @ A2 )
=> ( ( A2 != bot_bot_set_rat )
=> ? [X4: rat] :
( ( member_rat @ X4 @ A2 )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_1304_finite__has__minimal,axiom,
! [A2: set_num] :
( ( finite_finite_num @ A2 )
=> ( ( A2 != bot_bot_set_num )
=> ? [X4: num] :
( ( member_num @ X4 @ A2 )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_1305_finite__has__minimal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_1306_finite__has__minimal,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_1307_finite__nat__set__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [N4: set_nat] :
? [M3: nat] :
! [X2: nat] :
( ( member_nat @ X2 @ N4 )
=> ( ord_less_eq_nat @ X2 @ M3 ) ) ) ) ).
% finite_nat_set_iff_bounded_le
thf(fact_1308_infinite__nat__iff__unbounded__le,axiom,
! [S2: set_nat] :
( ( ~ ( finite_finite_nat @ S2 ) )
= ( ! [M3: nat] :
? [N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
& ( member_nat @ N @ S2 ) ) ) ) ).
% infinite_nat_iff_unbounded_le
thf(fact_1309_finite__nat__set__iff__bounded,axiom,
( finite_finite_nat
= ( ^ [N4: set_nat] :
? [M3: nat] :
! [X2: nat] :
( ( member_nat @ X2 @ N4 )
=> ( ord_less_nat @ X2 @ M3 ) ) ) ) ).
% finite_nat_set_iff_bounded
thf(fact_1310_infinite__nat__iff__unbounded,axiom,
! [S2: set_nat] :
( ( ~ ( finite_finite_nat @ S2 ) )
= ( ! [M3: nat] :
? [N: nat] :
( ( ord_less_nat @ M3 @ N )
& ( member_nat @ N @ S2 ) ) ) ) ).
% infinite_nat_iff_unbounded
thf(fact_1311_bounded__nat__set__is__finite,axiom,
! [N5: set_nat,N2: nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ N5 )
=> ( ord_less_nat @ X4 @ N2 ) )
=> ( finite_finite_nat @ N5 ) ) ).
% bounded_nat_set_is_finite
thf(fact_1312_unbounded__k__infinite,axiom,
! [K: nat,S2: set_nat] :
( ! [M4: nat] :
( ( ord_less_nat @ K @ M4 )
=> ? [N6: nat] :
( ( ord_less_nat @ M4 @ N6 )
& ( member_nat @ N6 @ S2 ) ) )
=> ~ ( finite_finite_nat @ S2 ) ) ).
% unbounded_k_infinite
thf(fact_1313_finite__psubset__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ! [A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ! [B7: set_nat] :
( ( ord_less_set_nat @ B7 @ A7 )
=> ( P @ B7 ) )
=> ( P @ A7 ) ) )
=> ( P @ A2 ) ) ) ).
% finite_psubset_induct
thf(fact_1314_finite__psubset__induct,axiom,
! [A2: set_int,P: set_int > $o] :
( ( finite_finite_int @ A2 )
=> ( ! [A7: set_int] :
( ( finite_finite_int @ A7 )
=> ( ! [B7: set_int] :
( ( ord_less_set_int @ B7 @ A7 )
=> ( P @ B7 ) )
=> ( P @ A7 ) ) )
=> ( P @ A2 ) ) ) ).
% finite_psubset_induct
thf(fact_1315_finite__psubset__induct,axiom,
! [A2: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [A7: set_complex] :
( ( finite3207457112153483333omplex @ A7 )
=> ( ! [B7: set_complex] :
( ( ord_less_set_complex @ B7 @ A7 )
=> ( P @ B7 ) )
=> ( P @ A7 ) ) )
=> ( P @ A2 ) ) ) ).
% finite_psubset_induct
thf(fact_1316_arg__min__if__finite_I2_J,axiom,
! [S2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( S2 != bot_bot_set_complex )
=> ~ ? [X: complex] :
( ( member_complex @ X @ S2 )
& ( ord_less_real @ ( F @ X ) @ ( F @ ( lattic8794016678065449205x_real @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1317_arg__min__if__finite_I2_J,axiom,
! [S2: set_real,F: real > real] :
( ( finite_finite_real @ S2 )
=> ( ( S2 != bot_bot_set_real )
=> ~ ? [X: real] :
( ( member_real @ X @ S2 )
& ( ord_less_real @ ( F @ X ) @ ( F @ ( lattic8440615504127631091l_real @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1318_arg__min__if__finite_I2_J,axiom,
! [S2: set_nat,F: nat > real] :
( ( finite_finite_nat @ S2 )
=> ( ( S2 != bot_bot_set_nat )
=> ~ ? [X: nat] :
( ( member_nat @ X @ S2 )
& ( ord_less_real @ ( F @ X ) @ ( F @ ( lattic488527866317076247t_real @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1319_arg__min__if__finite_I2_J,axiom,
! [S2: set_int,F: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( S2 != bot_bot_set_int )
=> ~ ? [X: int] :
( ( member_int @ X @ S2 )
& ( ord_less_real @ ( F @ X ) @ ( F @ ( lattic2675449441010098035t_real @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1320_arg__min__if__finite_I2_J,axiom,
! [S2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( S2 != bot_bot_set_complex )
=> ~ ? [X: complex] :
( ( member_complex @ X @ S2 )
& ( ord_less_rat @ ( F @ X ) @ ( F @ ( lattic4729654577720512673ex_rat @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1321_arg__min__if__finite_I2_J,axiom,
! [S2: set_real,F: real > rat] :
( ( finite_finite_real @ S2 )
=> ( ( S2 != bot_bot_set_real )
=> ~ ? [X: real] :
( ( member_real @ X @ S2 )
& ( ord_less_rat @ ( F @ X ) @ ( F @ ( lattic4420706379359479199al_rat @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1322_arg__min__if__finite_I2_J,axiom,
! [S2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ S2 )
=> ( ( S2 != bot_bot_set_nat )
=> ~ ? [X: nat] :
( ( member_nat @ X @ S2 )
& ( ord_less_rat @ ( F @ X ) @ ( F @ ( lattic6811802900495863747at_rat @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1323_arg__min__if__finite_I2_J,axiom,
! [S2: set_int,F: int > rat] :
( ( finite_finite_int @ S2 )
=> ( ( S2 != bot_bot_set_int )
=> ~ ? [X: int] :
( ( member_int @ X @ S2 )
& ( ord_less_rat @ ( F @ X ) @ ( F @ ( lattic7811156612396918303nt_rat @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1324_arg__min__if__finite_I2_J,axiom,
! [S2: set_complex,F: complex > num] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( S2 != bot_bot_set_complex )
=> ~ ? [X: complex] :
( ( member_complex @ X @ S2 )
& ( ord_less_num @ ( F @ X ) @ ( F @ ( lattic1922116423962787043ex_num @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1325_arg__min__if__finite_I2_J,axiom,
! [S2: set_real,F: real > num] :
( ( finite_finite_real @ S2 )
=> ( ( S2 != bot_bot_set_real )
=> ~ ? [X: real] :
( ( member_real @ X @ S2 )
& ( ord_less_num @ ( F @ X ) @ ( F @ ( lattic1613168225601753569al_num @ F @ S2 ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1326_bot__set__def,axiom,
( bot_bot_set_list_nat
= ( collect_list_nat @ bot_bot_list_nat_o ) ) ).
% bot_set_def
thf(fact_1327_bot__set__def,axiom,
( bot_bot_set_set_nat
= ( collect_set_nat @ bot_bot_set_nat_o ) ) ).
% bot_set_def
thf(fact_1328_bot__set__def,axiom,
( bot_bot_set_real
= ( collect_real @ bot_bot_real_o ) ) ).
% bot_set_def
thf(fact_1329_bot__set__def,axiom,
( bot_bot_set_nat
= ( collect_nat @ bot_bot_nat_o ) ) ).
% bot_set_def
thf(fact_1330_bot__set__def,axiom,
( bot_bot_set_int
= ( collect_int @ bot_bot_int_o ) ) ).
% bot_set_def
thf(fact_1331_bot__nat__def,axiom,
bot_bot_nat = zero_zero_nat ).
% bot_nat_def
thf(fact_1332_finite__maxlen,axiom,
! [M5: set_list_VEBT_VEBT] :
( ( finite3004134309566078307T_VEBT @ M5 )
=> ? [N3: nat] :
! [X: list_VEBT_VEBT] :
( ( member2936631157270082147T_VEBT @ X @ M5 )
=> ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ X ) @ N3 ) ) ) ).
% finite_maxlen
thf(fact_1333_finite__maxlen,axiom,
! [M5: set_list_o] :
( ( finite_finite_list_o @ M5 )
=> ? [N3: nat] :
! [X: list_o] :
( ( member_list_o @ X @ M5 )
=> ( ord_less_nat @ ( size_size_list_o @ X ) @ N3 ) ) ) ).
% finite_maxlen
thf(fact_1334_finite__maxlen,axiom,
! [M5: set_list_nat] :
( ( finite8100373058378681591st_nat @ M5 )
=> ? [N3: nat] :
! [X: list_nat] :
( ( member_list_nat @ X @ M5 )
=> ( ord_less_nat @ ( size_size_list_nat @ X ) @ N3 ) ) ) ).
% finite_maxlen
thf(fact_1335_finite__maxlen,axiom,
! [M5: set_list_int] :
( ( finite3922522038869484883st_int @ M5 )
=> ? [N3: nat] :
! [X: list_int] :
( ( member_list_int @ X @ M5 )
=> ( ord_less_nat @ ( size_size_list_int @ X ) @ N3 ) ) ) ).
% finite_maxlen
thf(fact_1336_bounded__Max__nat,axiom,
! [P: nat > $o,X3: nat,M5: nat] :
( ( P @ X3 )
=> ( ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M5 ) )
=> ~ ! [M4: nat] :
( ( P @ M4 )
=> ~ ! [X: nat] :
( ( P @ X )
=> ( ord_less_eq_nat @ X @ M4 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_1337_finite__has__maximal2,axiom,
! [A2: set_set_nat,A: set_nat] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ( member_set_nat @ A @ A2 )
=> ? [X4: set_nat] :
( ( member_set_nat @ X4 @ A2 )
& ( ord_less_eq_set_nat @ A @ X4 )
& ! [Xa: set_nat] :
( ( member_set_nat @ Xa @ A2 )
=> ( ( ord_less_eq_set_nat @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_1338_finite__has__maximal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X4: real] :
( ( member_real @ X4 @ A2 )
& ( ord_less_eq_real @ A @ X4 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_1339_finite__has__maximal2,axiom,
! [A2: set_set_int,A: set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( member_set_int @ A @ A2 )
=> ? [X4: set_int] :
( ( member_set_int @ X4 @ A2 )
& ( ord_less_eq_set_int @ A @ X4 )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_1340_finite__has__maximal2,axiom,
! [A2: set_rat,A: rat] :
( ( finite_finite_rat @ A2 )
=> ( ( member_rat @ A @ A2 )
=> ? [X4: rat] :
( ( member_rat @ X4 @ A2 )
& ( ord_less_eq_rat @ A @ X4 )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_1341_finite__has__maximal2,axiom,
! [A2: set_num,A: num] :
( ( finite_finite_num @ A2 )
=> ( ( member_num @ A @ A2 )
=> ? [X4: num] :
( ( member_num @ X4 @ A2 )
& ( ord_less_eq_num @ A @ X4 )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_1342_finite__has__maximal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ord_less_eq_nat @ A @ X4 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_1343_finite__has__maximal2,axiom,
! [A2: set_int,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_eq_int @ A @ X4 )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_1344_finite__has__minimal2,axiom,
! [A2: set_set_nat,A: set_nat] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ( member_set_nat @ A @ A2 )
=> ? [X4: set_nat] :
( ( member_set_nat @ X4 @ A2 )
& ( ord_less_eq_set_nat @ X4 @ A )
& ! [Xa: set_nat] :
( ( member_set_nat @ Xa @ A2 )
=> ( ( ord_less_eq_set_nat @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_1345_finite__has__minimal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X4: real] :
( ( member_real @ X4 @ A2 )
& ( ord_less_eq_real @ X4 @ A )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_1346_finite__has__minimal2,axiom,
! [A2: set_set_int,A: set_int] :
( ( finite6197958912794628473et_int @ A2 )
=> ( ( member_set_int @ A @ A2 )
=> ? [X4: set_int] :
( ( member_set_int @ X4 @ A2 )
& ( ord_less_eq_set_int @ X4 @ A )
& ! [Xa: set_int] :
( ( member_set_int @ Xa @ A2 )
=> ( ( ord_less_eq_set_int @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_1347_finite__has__minimal2,axiom,
! [A2: set_rat,A: rat] :
( ( finite_finite_rat @ A2 )
=> ( ( member_rat @ A @ A2 )
=> ? [X4: rat] :
( ( member_rat @ X4 @ A2 )
& ( ord_less_eq_rat @ X4 @ A )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_1348_finite__has__minimal2,axiom,
! [A2: set_num,A: num] :
( ( finite_finite_num @ A2 )
=> ( ( member_num @ A @ A2 )
=> ? [X4: num] :
( ( member_num @ X4 @ A2 )
& ( ord_less_eq_num @ X4 @ A )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_1349_finite__has__minimal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ord_less_eq_nat @ X4 @ A )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_1350_finite__has__minimal2,axiom,
! [A2: set_int,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_eq_int @ X4 @ A )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_1351_finite_OemptyI,axiom,
finite3207457112153483333omplex @ bot_bot_set_complex ).
% finite.emptyI
thf(fact_1352_finite_OemptyI,axiom,
finite_finite_real @ bot_bot_set_real ).
% finite.emptyI
thf(fact_1353_finite_OemptyI,axiom,
finite_finite_nat @ bot_bot_set_nat ).
% finite.emptyI
thf(fact_1354_finite_OemptyI,axiom,
finite_finite_int @ bot_bot_set_int ).
% finite.emptyI
thf(fact_1355_infinite__imp__nonempty,axiom,
! [S2: set_complex] :
( ~ ( finite3207457112153483333omplex @ S2 )
=> ( S2 != bot_bot_set_complex ) ) ).
% infinite_imp_nonempty
thf(fact_1356_infinite__imp__nonempty,axiom,
! [S2: set_real] :
( ~ ( finite_finite_real @ S2 )
=> ( S2 != bot_bot_set_real ) ) ).
% infinite_imp_nonempty
thf(fact_1357_infinite__imp__nonempty,axiom,
! [S2: set_nat] :
( ~ ( finite_finite_nat @ S2 )
=> ( S2 != bot_bot_set_nat ) ) ).
% infinite_imp_nonempty
thf(fact_1358_infinite__imp__nonempty,axiom,
! [S2: set_int] :
( ~ ( finite_finite_int @ S2 )
=> ( S2 != bot_bot_set_int ) ) ).
% infinite_imp_nonempty
thf(fact_1359_finite__transitivity__chain,axiom,
! [A2: set_VEBT_VEBT,R: vEBT_VEBT > vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [X4: vEBT_VEBT] :
~ ( R @ X4 @ X4 )
=> ( ! [X4: vEBT_VEBT,Y2: vEBT_VEBT,Z3: vEBT_VEBT] :
( ( R @ X4 @ Y2 )
=> ( ( R @ Y2 @ Z3 )
=> ( R @ X4 @ Z3 ) ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ? [Y3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ Y3 @ A2 )
& ( R @ X4 @ Y3 ) ) )
=> ( A2 = bot_bo8194388402131092736T_VEBT ) ) ) ) ) ).
% finite_transitivity_chain
thf(fact_1360_finite__transitivity__chain,axiom,
! [A2: set_set_nat,R: set_nat > set_nat > $o] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ! [X4: set_nat] :
~ ( R @ X4 @ X4 )
=> ( ! [X4: set_nat,Y2: set_nat,Z3: set_nat] :
( ( R @ X4 @ Y2 )
=> ( ( R @ Y2 @ Z3 )
=> ( R @ X4 @ Z3 ) ) )
=> ( ! [X4: set_nat] :
( ( member_set_nat @ X4 @ A2 )
=> ? [Y3: set_nat] :
( ( member_set_nat @ Y3 @ A2 )
& ( R @ X4 @ Y3 ) ) )
=> ( A2 = bot_bot_set_set_nat ) ) ) ) ) ).
% finite_transitivity_chain
thf(fact_1361_finite__transitivity__chain,axiom,
! [A2: set_complex,R: complex > complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X4: complex] :
~ ( R @ X4 @ X4 )
=> ( ! [X4: complex,Y2: complex,Z3: complex] :
( ( R @ X4 @ Y2 )
=> ( ( R @ Y2 @ Z3 )
=> ( R @ X4 @ Z3 ) ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ? [Y3: complex] :
( ( member_complex @ Y3 @ A2 )
& ( R @ X4 @ Y3 ) ) )
=> ( A2 = bot_bot_set_complex ) ) ) ) ) ).
% finite_transitivity_chain
thf(fact_1362_finite__transitivity__chain,axiom,
! [A2: set_real,R: real > real > $o] :
( ( finite_finite_real @ A2 )
=> ( ! [X4: real] :
~ ( R @ X4 @ X4 )
=> ( ! [X4: real,Y2: real,Z3: real] :
( ( R @ X4 @ Y2 )
=> ( ( R @ Y2 @ Z3 )
=> ( R @ X4 @ Z3 ) ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ? [Y3: real] :
( ( member_real @ Y3 @ A2 )
& ( R @ X4 @ Y3 ) ) )
=> ( A2 = bot_bot_set_real ) ) ) ) ) ).
% finite_transitivity_chain
thf(fact_1363_finite__transitivity__chain,axiom,
! [A2: set_nat,R: nat > nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ! [X4: nat] :
~ ( R @ X4 @ X4 )
=> ( ! [X4: nat,Y2: nat,Z3: nat] :
( ( R @ X4 @ Y2 )
=> ( ( R @ Y2 @ Z3 )
=> ( R @ X4 @ Z3 ) ) )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ? [Y3: nat] :
( ( member_nat @ Y3 @ A2 )
& ( R @ X4 @ Y3 ) ) )
=> ( A2 = bot_bot_set_nat ) ) ) ) ) ).
% finite_transitivity_chain
thf(fact_1364_finite__transitivity__chain,axiom,
! [A2: set_int,R: int > int > $o] :
( ( finite_finite_int @ A2 )
=> ( ! [X4: int] :
~ ( R @ X4 @ X4 )
=> ( ! [X4: int,Y2: int,Z3: int] :
( ( R @ X4 @ Y2 )
=> ( ( R @ Y2 @ Z3 )
=> ( R @ X4 @ Z3 ) ) )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ? [Y3: int] :
( ( member_int @ Y3 @ A2 )
& ( R @ X4 @ Y3 ) ) )
=> ( A2 = bot_bot_set_int ) ) ) ) ) ).
% finite_transitivity_chain
thf(fact_1365_finite__subset,axiom,
! [A2: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( finite_finite_nat @ B2 )
=> ( finite_finite_nat @ A2 ) ) ) ).
% finite_subset
thf(fact_1366_finite__subset,axiom,
! [A2: set_complex,B2: set_complex] :
( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( finite3207457112153483333omplex @ A2 ) ) ) ).
% finite_subset
thf(fact_1367_finite__subset,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( finite_finite_int @ B2 )
=> ( finite_finite_int @ A2 ) ) ) ).
% finite_subset
thf(fact_1368_infinite__super,axiom,
! [S2: set_nat,T3: set_nat] :
( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ~ ( finite_finite_nat @ S2 )
=> ~ ( finite_finite_nat @ T3 ) ) ) ).
% infinite_super
thf(fact_1369_infinite__super,axiom,
! [S2: set_complex,T3: set_complex] :
( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ~ ( finite3207457112153483333omplex @ S2 )
=> ~ ( finite3207457112153483333omplex @ T3 ) ) ) ).
% infinite_super
thf(fact_1370_infinite__super,axiom,
! [S2: set_int,T3: set_int] :
( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ~ ( finite_finite_int @ S2 )
=> ~ ( finite_finite_int @ T3 ) ) ) ).
% infinite_super
thf(fact_1371_rev__finite__subset,axiom,
! [B2: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( finite_finite_nat @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_1372_rev__finite__subset,axiom,
! [B2: set_complex,A2: set_complex] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( finite3207457112153483333omplex @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_1373_rev__finite__subset,axiom,
! [B2: set_int,A2: set_int] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( finite_finite_int @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_1374_arg__min__least,axiom,
! [S2: set_VEBT_VEBT,Y: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( S2 != bot_bo8194388402131092736T_VEBT )
=> ( ( member_VEBT_VEBT @ Y @ S2 )
=> ( ord_less_eq_rat @ ( F @ ( lattic6139528642216935859BT_rat @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1375_arg__min__least,axiom,
! [S2: set_complex,Y: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( S2 != bot_bot_set_complex )
=> ( ( member_complex @ Y @ S2 )
=> ( ord_less_eq_rat @ ( F @ ( lattic4729654577720512673ex_rat @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1376_arg__min__least,axiom,
! [S2: set_real,Y: real,F: real > rat] :
( ( finite_finite_real @ S2 )
=> ( ( S2 != bot_bot_set_real )
=> ( ( member_real @ Y @ S2 )
=> ( ord_less_eq_rat @ ( F @ ( lattic4420706379359479199al_rat @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1377_arg__min__least,axiom,
! [S2: set_nat,Y: nat,F: nat > rat] :
( ( finite_finite_nat @ S2 )
=> ( ( S2 != bot_bot_set_nat )
=> ( ( member_nat @ Y @ S2 )
=> ( ord_less_eq_rat @ ( F @ ( lattic6811802900495863747at_rat @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1378_arg__min__least,axiom,
! [S2: set_int,Y: int,F: int > rat] :
( ( finite_finite_int @ S2 )
=> ( ( S2 != bot_bot_set_int )
=> ( ( member_int @ Y @ S2 )
=> ( ord_less_eq_rat @ ( F @ ( lattic7811156612396918303nt_rat @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1379_arg__min__least,axiom,
! [S2: set_VEBT_VEBT,Y: vEBT_VEBT,F: vEBT_VEBT > num] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( S2 != bot_bo8194388402131092736T_VEBT )
=> ( ( member_VEBT_VEBT @ Y @ S2 )
=> ( ord_less_eq_num @ ( F @ ( lattic3331990488459210229BT_num @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1380_arg__min__least,axiom,
! [S2: set_complex,Y: complex,F: complex > num] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( S2 != bot_bot_set_complex )
=> ( ( member_complex @ Y @ S2 )
=> ( ord_less_eq_num @ ( F @ ( lattic1922116423962787043ex_num @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1381_arg__min__least,axiom,
! [S2: set_real,Y: real,F: real > num] :
( ( finite_finite_real @ S2 )
=> ( ( S2 != bot_bot_set_real )
=> ( ( member_real @ Y @ S2 )
=> ( ord_less_eq_num @ ( F @ ( lattic1613168225601753569al_num @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1382_arg__min__least,axiom,
! [S2: set_nat,Y: nat,F: nat > num] :
( ( finite_finite_nat @ S2 )
=> ( ( S2 != bot_bot_set_nat )
=> ( ( member_nat @ Y @ S2 )
=> ( ord_less_eq_num @ ( F @ ( lattic4004264746738138117at_num @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1383_arg__min__least,axiom,
! [S2: set_int,Y: int,F: int > num] :
( ( finite_finite_int @ S2 )
=> ( ( S2 != bot_bot_set_int )
=> ( ( member_int @ Y @ S2 )
=> ( ord_less_eq_num @ ( F @ ( lattic5003618458639192673nt_num @ F @ S2 ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1384_subset__emptyI,axiom,
! [A2: set_VEBT_VEBT] :
( ! [X4: vEBT_VEBT] :
~ ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_le4337996190870823476T_VEBT @ A2 @ bot_bo8194388402131092736T_VEBT ) ) ).
% subset_emptyI
thf(fact_1385_subset__emptyI,axiom,
! [A2: set_set_nat] :
( ! [X4: set_nat] :
~ ( member_set_nat @ X4 @ A2 )
=> ( ord_le6893508408891458716et_nat @ A2 @ bot_bot_set_set_nat ) ) ).
% subset_emptyI
thf(fact_1386_subset__emptyI,axiom,
! [A2: set_real] :
( ! [X4: real] :
~ ( member_real @ X4 @ A2 )
=> ( ord_less_eq_set_real @ A2 @ bot_bot_set_real ) ) ).
% subset_emptyI
thf(fact_1387_subset__emptyI,axiom,
! [A2: set_nat] :
( ! [X4: nat] :
~ ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat ) ) ).
% subset_emptyI
thf(fact_1388_subset__emptyI,axiom,
! [A2: set_int] :
( ! [X4: int] :
~ ( member_int @ X4 @ A2 )
=> ( ord_less_eq_set_int @ A2 @ bot_bot_set_int ) ) ).
% subset_emptyI
thf(fact_1389_field__lbound__gt__zero,axiom,
! [D1: real,D2: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D2 )
=> ? [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
& ( ord_less_real @ E @ D1 )
& ( ord_less_real @ E @ D2 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_1390_field__lbound__gt__zero,axiom,
! [D1: rat,D2: rat] :
( ( ord_less_rat @ zero_zero_rat @ D1 )
=> ( ( ord_less_rat @ zero_zero_rat @ D2 )
=> ? [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
& ( ord_less_rat @ E @ D1 )
& ( ord_less_rat @ E @ D2 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_1391_minf_I8_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ~ ( ord_less_eq_real @ T @ X ) ) ).
% minf(8)
thf(fact_1392_minf_I8_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ~ ( ord_less_eq_rat @ T @ X ) ) ).
% minf(8)
thf(fact_1393_minf_I8_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ~ ( ord_less_eq_num @ T @ X ) ) ).
% minf(8)
thf(fact_1394_minf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ~ ( ord_less_eq_nat @ T @ X ) ) ).
% minf(8)
thf(fact_1395_minf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ~ ( ord_less_eq_int @ T @ X ) ) ).
% minf(8)
thf(fact_1396_minf_I6_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( ord_less_eq_real @ X @ T ) ) ).
% minf(6)
thf(fact_1397_minf_I6_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( ord_less_eq_rat @ X @ T ) ) ).
% minf(6)
thf(fact_1398_minf_I6_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ( ord_less_eq_num @ X @ T ) ) ).
% minf(6)
thf(fact_1399_minf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( ord_less_eq_nat @ X @ T ) ) ).
% minf(6)
thf(fact_1400_minf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( ord_less_eq_int @ X @ T ) ) ).
% minf(6)
thf(fact_1401_pinf_I8_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( ord_less_eq_real @ T @ X ) ) ).
% pinf(8)
thf(fact_1402_pinf_I8_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( ord_less_eq_rat @ T @ X ) ) ).
% pinf(8)
thf(fact_1403_pinf_I8_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ( ord_less_eq_num @ T @ X ) ) ).
% pinf(8)
thf(fact_1404_pinf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( ord_less_eq_nat @ T @ X ) ) ).
% pinf(8)
thf(fact_1405_pinf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( ord_less_eq_int @ T @ X ) ) ).
% pinf(8)
thf(fact_1406_pinf_I6_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ~ ( ord_less_eq_real @ X @ T ) ) ).
% pinf(6)
thf(fact_1407_pinf_I6_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ~ ( ord_less_eq_rat @ X @ T ) ) ).
% pinf(6)
thf(fact_1408_pinf_I6_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ~ ( ord_less_eq_num @ X @ T ) ) ).
% pinf(6)
thf(fact_1409_pinf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ~ ( ord_less_eq_nat @ X @ T ) ) ).
% pinf(6)
thf(fact_1410_pinf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ~ ( ord_less_eq_int @ X @ T ) ) ).
% pinf(6)
thf(fact_1411_complete__interval,axiom,
! [A: real,B: real,P: real > $o] :
( ( ord_less_real @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C3: real] :
( ( ord_less_eq_real @ A @ C3 )
& ( ord_less_eq_real @ C3 @ B )
& ! [X: real] :
( ( ( ord_less_eq_real @ A @ X )
& ( ord_less_real @ X @ C3 ) )
=> ( P @ X ) )
& ! [D3: real] :
( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_real @ X4 @ D3 ) )
=> ( P @ X4 ) )
=> ( ord_less_eq_real @ D3 @ C3 ) ) ) ) ) ) ).
% complete_interval
thf(fact_1412_complete__interval,axiom,
! [A: nat,B: nat,P: nat > $o] :
( ( ord_less_nat @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C3: nat] :
( ( ord_less_eq_nat @ A @ C3 )
& ( ord_less_eq_nat @ C3 @ B )
& ! [X: nat] :
( ( ( ord_less_eq_nat @ A @ X )
& ( ord_less_nat @ X @ C3 ) )
=> ( P @ X ) )
& ! [D3: nat] :
( ! [X4: nat] :
( ( ( ord_less_eq_nat @ A @ X4 )
& ( ord_less_nat @ X4 @ D3 ) )
=> ( P @ X4 ) )
=> ( ord_less_eq_nat @ D3 @ C3 ) ) ) ) ) ) ).
% complete_interval
thf(fact_1413_complete__interval,axiom,
! [A: int,B: int,P: int > $o] :
( ( ord_less_int @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C3: int] :
( ( ord_less_eq_int @ A @ C3 )
& ( ord_less_eq_int @ C3 @ B )
& ! [X: int] :
( ( ( ord_less_eq_int @ A @ X )
& ( ord_less_int @ X @ C3 ) )
=> ( P @ X ) )
& ! [D3: int] :
( ! [X4: int] :
( ( ( ord_less_eq_int @ A @ X4 )
& ( ord_less_int @ X4 @ D3 ) )
=> ( P @ X4 ) )
=> ( ord_less_eq_int @ D3 @ C3 ) ) ) ) ) ) ).
% complete_interval
thf(fact_1414__C10_C,axiom,
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ xa @ ( ord_max_nat @ mi @ ma ) ) ) @ deg @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) ) @ ( vEBT_VEBT_low @ mi @ na ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) ) ) @ ( vEBT_vebt_insert @ summary @ ( vEBT_VEBT_high @ mi @ na ) ) @ summary ) ) ) ).
% "10"
thf(fact_1415__C7_C,axiom,
( ( mi != ma )
=> ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
=> ( ( ( ( vEBT_VEBT_high @ ma @ na )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I4 ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
& ! [Y3: nat] :
( ( ( ( vEBT_VEBT_high @ Y3 @ na )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I4 ) @ ( vEBT_VEBT_low @ Y3 @ na ) ) )
=> ( ( ord_less_nat @ mi @ Y3 )
& ( ord_less_eq_nat @ Y3 @ ma ) ) ) ) ) ) ).
% "7"
thf(fact_1416_count__notin,axiom,
! [X3: set_nat,Xs: list_set_nat] :
( ~ ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs ) )
=> ( ( count_list_set_nat @ Xs @ X3 )
= zero_zero_nat ) ) ).
% count_notin
thf(fact_1417_count__notin,axiom,
! [X3: real,Xs: list_real] :
( ~ ( member_real @ X3 @ ( set_real2 @ Xs ) )
=> ( ( count_list_real @ Xs @ X3 )
= zero_zero_nat ) ) ).
% count_notin
thf(fact_1418_count__notin,axiom,
! [X3: vEBT_VEBT,Xs: list_VEBT_VEBT] :
( ~ ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( ( count_list_VEBT_VEBT @ Xs @ X3 )
= zero_zero_nat ) ) ).
% count_notin
thf(fact_1419_count__notin,axiom,
! [X3: int,Xs: list_int] :
( ~ ( member_int @ X3 @ ( set_int2 @ Xs ) )
=> ( ( count_list_int @ Xs @ X3 )
= zero_zero_nat ) ) ).
% count_notin
thf(fact_1420_count__notin,axiom,
! [X3: nat,Xs: list_nat] :
( ~ ( member_nat @ X3 @ ( set_nat2 @ Xs ) )
=> ( ( count_list_nat @ Xs @ X3 )
= zero_zero_nat ) ) ).
% count_notin
thf(fact_1421_intind,axiom,
! [I: nat,N2: nat,P: nat > $o,X3: nat] :
( ( ord_less_nat @ I @ N2 )
=> ( ( P @ X3 )
=> ( P @ ( nth_nat @ ( replicate_nat @ N2 @ X3 ) @ I ) ) ) ) ).
% intind
thf(fact_1422_intind,axiom,
! [I: nat,N2: nat,P: int > $o,X3: int] :
( ( ord_less_nat @ I @ N2 )
=> ( ( P @ X3 )
=> ( P @ ( nth_int @ ( replicate_int @ N2 @ X3 ) @ I ) ) ) ) ).
% intind
thf(fact_1423_intind,axiom,
! [I: nat,N2: nat,P: vEBT_VEBT > $o,X3: vEBT_VEBT] :
( ( ord_less_nat @ I @ N2 )
=> ( ( P @ X3 )
=> ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X3 ) @ I ) ) ) ) ).
% intind
thf(fact_1424_deg__deg__n,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( Deg = N2 ) ) ).
% deg_deg_n
thf(fact_1425__C2_C,axiom,
( ( size_s6755466524823107622T_VEBT @ treeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).
% "2"
thf(fact_1426__092_060open_062i_A_060_A2_A_094_Am_092_060close_062,axiom,
ord_less_nat @ i @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ).
% \<open>i < 2 ^ m\<close>
thf(fact_1427_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_1428_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_1429_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numera1916890842035813515d_enat @ M )
= ( numera1916890842035813515d_enat @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_1430_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_1431_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numera6620942414471956472nteger @ M )
= ( numera6620942414471956472nteger @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_1432_verit__eq__simplify_I8_J,axiom,
! [X22: num,Y22: num] :
( ( ( bit0 @ X22 )
= ( bit0 @ Y22 ) )
= ( X22 = Y22 ) ) ).
% verit_eq_simplify(8)
thf(fact_1433__C4_Ohyps_C_I8_J,axiom,
ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).
% "4.hyps"(8)
thf(fact_1434__C4_Oprems_C,axiom,
ord_less_nat @ xa @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).
% "4.prems"
thf(fact_1435__C4_OIH_C_I1_J,axiom,
! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ treeList ) )
=> ( ( vEBT_invar_vebt @ X @ na )
& ! [Xa: nat] :
( ( ord_less_nat @ Xa @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_insert @ X @ Xa ) @ na ) ) ) ) ).
% "4.IH"(1)
thf(fact_1436_mi__eq__ma__no__ch,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg )
=> ( ( Mi = Ma )
=> ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X @ X_12 ) )
& ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 ) ) ) ) ).
% mi_eq_ma_no_ch
thf(fact_1437__C4_C,axiom,
! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I4 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ summary @ I4 ) ) ) ).
% "4"
thf(fact_1438_high__bound__aux,axiom,
! [Ma: nat,N2: nat,M: nat] :
( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% high_bound_aux
thf(fact_1439_member__bound,axiom,
! [Tree: vEBT_VEBT,X3: nat,N2: nat] :
( ( vEBT_vebt_member @ Tree @ X3 )
=> ( ( vEBT_invar_vebt @ Tree @ N2 )
=> ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% member_bound
thf(fact_1440_numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( ord_less_eq_num @ M @ N2 ) ) ).
% numeral_le_iff
thf(fact_1441_numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
= ( ord_less_eq_num @ M @ N2 ) ) ).
% numeral_le_iff
thf(fact_1442_numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( ord_less_eq_num @ M @ N2 ) ) ).
% numeral_le_iff
thf(fact_1443_numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
= ( ord_less_eq_num @ M @ N2 ) ) ).
% numeral_le_iff
thf(fact_1444_numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= ( ord_less_eq_num @ M @ N2 ) ) ).
% numeral_le_iff
thf(fact_1445_numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= ( ord_less_eq_num @ M @ N2 ) ) ).
% numeral_le_iff
thf(fact_1446_numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% numeral_less_iff
thf(fact_1447_numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% numeral_less_iff
thf(fact_1448_numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% numeral_less_iff
thf(fact_1449_numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% numeral_less_iff
thf(fact_1450_numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% numeral_less_iff
thf(fact_1451_numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% numeral_less_iff
thf(fact_1452_add__numeral__left,axiom,
! [V: num,W2: num,Z2: rat] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W2 ) @ Z2 ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W2 ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_1453_add__numeral__left,axiom,
! [V: num,W2: num,Z2: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W2 ) @ Z2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W2 ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_1454_add__numeral__left,axiom,
! [V: num,W2: num,Z2: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W2 ) @ Z2 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W2 ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_1455_add__numeral__left,axiom,
! [V: num,W2: num,Z2: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W2 ) @ Z2 ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W2 ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_1456_add__numeral__left,axiom,
! [V: num,W2: num,Z2: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W2 ) @ Z2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W2 ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_1457_add__numeral__left,axiom,
! [V: num,W2: num,Z2: code_integer] :
( ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ V ) @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ W2 ) @ Z2 ) )
= ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W2 ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_1458_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_1459_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_1460_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_1461_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_1462_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_1463_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_1464_insert__simp__mima,axiom,
! [X3: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X3 = Mi )
| ( X3 = Ma ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).
% insert_simp_mima
thf(fact_1465_valid__insert__both__member__options__pres,axiom,
! [T: vEBT_VEBT,N2: nat,X3: nat,Y: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( vEBT_V8194947554948674370ptions @ T @ X3 )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ Y ) @ X3 ) ) ) ) ) ).
% valid_insert_both_member_options_pres
thf(fact_1466_valid__insert__both__member__options__add,axiom,
! [T: vEBT_VEBT,N2: nat,X3: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ X3 ) @ X3 ) ) ) ).
% valid_insert_both_member_options_add
thf(fact_1467_max__bot,axiom,
! [X3: filter_nat] :
( ( ord_max_filter_nat @ bot_bot_filter_nat @ X3 )
= X3 ) ).
% max_bot
thf(fact_1468_max__bot,axiom,
! [X3: set_real] :
( ( ord_max_set_real @ bot_bot_set_real @ X3 )
= X3 ) ).
% max_bot
thf(fact_1469_max__bot,axiom,
! [X3: set_nat] :
( ( ord_max_set_nat @ bot_bot_set_nat @ X3 )
= X3 ) ).
% max_bot
thf(fact_1470_max__bot,axiom,
! [X3: set_int] :
( ( ord_max_set_int @ bot_bot_set_int @ X3 )
= X3 ) ).
% max_bot
thf(fact_1471_max__bot,axiom,
! [X3: nat] :
( ( ord_max_nat @ bot_bot_nat @ X3 )
= X3 ) ).
% max_bot
thf(fact_1472_max__bot2,axiom,
! [X3: filter_nat] :
( ( ord_max_filter_nat @ X3 @ bot_bot_filter_nat )
= X3 ) ).
% max_bot2
thf(fact_1473_max__bot2,axiom,
! [X3: set_real] :
( ( ord_max_set_real @ X3 @ bot_bot_set_real )
= X3 ) ).
% max_bot2
thf(fact_1474_max__bot2,axiom,
! [X3: set_nat] :
( ( ord_max_set_nat @ X3 @ bot_bot_set_nat )
= X3 ) ).
% max_bot2
thf(fact_1475_max__bot2,axiom,
! [X3: set_int] :
( ( ord_max_set_int @ X3 @ bot_bot_set_int )
= X3 ) ).
% max_bot2
thf(fact_1476_max__bot2,axiom,
! [X3: nat] :
( ( ord_max_nat @ X3 @ bot_bot_nat )
= X3 ) ).
% max_bot2
thf(fact_1477_post__member__pre__member,axiom,
! [T: vEBT_VEBT,N2: nat,X3: nat,Y: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T @ X3 ) @ Y )
=> ( ( vEBT_vebt_member @ T @ Y )
| ( X3 = Y ) ) ) ) ) ) ).
% post_member_pre_member
thf(fact_1478_replicate__eq__replicate,axiom,
! [M: nat,X3: vEBT_VEBT,N2: nat,Y: vEBT_VEBT] :
( ( ( replicate_VEBT_VEBT @ M @ X3 )
= ( replicate_VEBT_VEBT @ N2 @ Y ) )
= ( ( M = N2 )
& ( ( M != zero_zero_nat )
=> ( X3 = Y ) ) ) ) ).
% replicate_eq_replicate
thf(fact_1479_length__replicate,axiom,
! [N2: nat,X3: vEBT_VEBT] :
( ( size_s6755466524823107622T_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X3 ) )
= N2 ) ).
% length_replicate
thf(fact_1480_length__replicate,axiom,
! [N2: nat,X3: $o] :
( ( size_size_list_o @ ( replicate_o @ N2 @ X3 ) )
= N2 ) ).
% length_replicate
thf(fact_1481_length__replicate,axiom,
! [N2: nat,X3: nat] :
( ( size_size_list_nat @ ( replicate_nat @ N2 @ X3 ) )
= N2 ) ).
% length_replicate
thf(fact_1482_length__replicate,axiom,
! [N2: nat,X3: int] :
( ( size_size_list_int @ ( replicate_int @ N2 @ X3 ) )
= N2 ) ).
% length_replicate
thf(fact_1483_max__nat_Oeq__neutr__iff,axiom,
! [A: nat,B: nat] :
( ( ( ord_max_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.eq_neutr_iff
thf(fact_1484_max__nat_Oleft__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ zero_zero_nat @ A )
= A ) ).
% max_nat.left_neutral
thf(fact_1485_max__nat_Oneutr__eq__iff,axiom,
! [A: nat,B: nat] :
( ( zero_zero_nat
= ( ord_max_nat @ A @ B ) )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.neutr_eq_iff
thf(fact_1486_max__nat_Oright__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ A @ zero_zero_nat )
= A ) ).
% max_nat.right_neutral
thf(fact_1487_max__0L,axiom,
! [N2: nat] :
( ( ord_max_nat @ zero_zero_nat @ N2 )
= N2 ) ).
% max_0L
thf(fact_1488_max__0R,axiom,
! [N2: nat] :
( ( ord_max_nat @ N2 @ zero_zero_nat )
= N2 ) ).
% max_0R
thf(fact_1489_mi__ma__2__deg,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
& ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).
% mi_ma_2_deg
thf(fact_1490__C4_OIH_C_I2_J,axiom,
! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_insert @ summary @ X3 ) @ m ) ) ).
% "4.IH"(2)
thf(fact_1491_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
=> ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
= ( numera1916890842035813515d_enat @ V ) ) )
& ( ~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
=> ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
= ( numera1916890842035813515d_enat @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_1492_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ V ) ) )
& ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_1493_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
= ( numera6620942414471956472nteger @ V ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
= ( numera6620942414471956472nteger @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_1494_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ V ) ) )
& ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_1495_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
=> ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
= ( numeral_numeral_nat @ V ) ) )
& ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
=> ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
= ( numeral_numeral_nat @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_1496_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ V ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_1497_max__0__1_I4_J,axiom,
! [X3: num] :
( ( ord_max_rat @ ( numeral_numeral_rat @ X3 ) @ zero_zero_rat )
= ( numeral_numeral_rat @ X3 ) ) ).
% max_0_1(4)
thf(fact_1498_max__0__1_I4_J,axiom,
! [X3: num] :
( ( ord_max_nat @ ( numeral_numeral_nat @ X3 ) @ zero_zero_nat )
= ( numeral_numeral_nat @ X3 ) ) ).
% max_0_1(4)
thf(fact_1499_max__0__1_I4_J,axiom,
! [X3: num] :
( ( ord_max_int @ ( numeral_numeral_int @ X3 ) @ zero_zero_int )
= ( numeral_numeral_int @ X3 ) ) ).
% max_0_1(4)
thf(fact_1500_max__0__1_I4_J,axiom,
! [X3: num] :
( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X3 ) @ zero_z5237406670263579293d_enat )
= ( numera1916890842035813515d_enat @ X3 ) ) ).
% max_0_1(4)
thf(fact_1501_max__0__1_I4_J,axiom,
! [X3: num] :
( ( ord_max_real @ ( numeral_numeral_real @ X3 ) @ zero_zero_real )
= ( numeral_numeral_real @ X3 ) ) ).
% max_0_1(4)
thf(fact_1502_max__0__1_I4_J,axiom,
! [X3: num] :
( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X3 ) @ zero_z3403309356797280102nteger )
= ( numera6620942414471956472nteger @ X3 ) ) ).
% max_0_1(4)
thf(fact_1503_max__0__1_I3_J,axiom,
! [X3: num] :
( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X3 ) )
= ( numeral_numeral_rat @ X3 ) ) ).
% max_0_1(3)
thf(fact_1504_max__0__1_I3_J,axiom,
! [X3: num] :
( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X3 ) )
= ( numeral_numeral_nat @ X3 ) ) ).
% max_0_1(3)
thf(fact_1505_max__0__1_I3_J,axiom,
! [X3: num] :
( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X3 ) )
= ( numeral_numeral_int @ X3 ) ) ).
% max_0_1(3)
thf(fact_1506_max__0__1_I3_J,axiom,
! [X3: num] :
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ X3 ) )
= ( numera1916890842035813515d_enat @ X3 ) ) ).
% max_0_1(3)
thf(fact_1507_max__0__1_I3_J,axiom,
! [X3: num] :
( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X3 ) )
= ( numeral_numeral_real @ X3 ) ) ).
% max_0_1(3)
thf(fact_1508_max__0__1_I3_J,axiom,
! [X3: num] :
( ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ X3 ) )
= ( numera6620942414471956472nteger @ X3 ) ) ).
% max_0_1(3)
thf(fact_1509__C6_C,axiom,
( ( ord_less_eq_nat @ mi @ ma )
& ( ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ) ) ).
% "6"
thf(fact_1510_myIHs,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ treeList ) )
=> ( ( vEBT_invar_vebt @ X3 @ na )
=> ( ( ord_less_nat @ Xa2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_insert @ X3 @ Xa2 ) @ na ) ) ) ) ).
% myIHs
thf(fact_1511_in__set__replicate,axiom,
! [X3: set_nat,N2: nat,Y: set_nat] :
( ( member_set_nat @ X3 @ ( set_set_nat2 @ ( replicate_set_nat @ N2 @ Y ) ) )
= ( ( X3 = Y )
& ( N2 != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_1512_in__set__replicate,axiom,
! [X3: real,N2: nat,Y: real] :
( ( member_real @ X3 @ ( set_real2 @ ( replicate_real @ N2 @ Y ) ) )
= ( ( X3 = Y )
& ( N2 != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_1513_in__set__replicate,axiom,
! [X3: int,N2: nat,Y: int] :
( ( member_int @ X3 @ ( set_int2 @ ( replicate_int @ N2 @ Y ) ) )
= ( ( X3 = Y )
& ( N2 != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_1514_in__set__replicate,axiom,
! [X3: nat,N2: nat,Y: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ ( replicate_nat @ N2 @ Y ) ) )
= ( ( X3 = Y )
& ( N2 != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_1515_in__set__replicate,axiom,
! [X3: vEBT_VEBT,N2: nat,Y: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ Y ) ) )
= ( ( X3 = Y )
& ( N2 != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_1516_Bex__set__replicate,axiom,
! [N2: nat,A: int,P: int > $o] :
( ( ? [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ ( replicate_int @ N2 @ A ) ) )
& ( P @ X2 ) ) )
= ( ( P @ A )
& ( N2 != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_1517_Bex__set__replicate,axiom,
! [N2: nat,A: nat,P: nat > $o] :
( ( ? [X2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ ( replicate_nat @ N2 @ A ) ) )
& ( P @ X2 ) ) )
= ( ( P @ A )
& ( N2 != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_1518_Bex__set__replicate,axiom,
! [N2: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ? [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ A ) ) )
& ( P @ X2 ) ) )
= ( ( P @ A )
& ( N2 != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_1519_Ball__set__replicate,axiom,
! [N2: nat,A: int,P: int > $o] :
( ( ! [X2: int] :
( ( member_int @ X2 @ ( set_int2 @ ( replicate_int @ N2 @ A ) ) )
=> ( P @ X2 ) ) )
= ( ( P @ A )
| ( N2 = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_1520_Ball__set__replicate,axiom,
! [N2: nat,A: nat,P: nat > $o] :
( ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ ( replicate_nat @ N2 @ A ) ) )
=> ( P @ X2 ) ) )
= ( ( P @ A )
| ( N2 = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_1521_Ball__set__replicate,axiom,
! [N2: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ A ) ) )
=> ( P @ X2 ) ) )
= ( ( P @ A )
| ( N2 = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_1522_nth__replicate,axiom,
! [I: nat,N2: nat,X3: nat] :
( ( ord_less_nat @ I @ N2 )
=> ( ( nth_nat @ ( replicate_nat @ N2 @ X3 ) @ I )
= X3 ) ) ).
% nth_replicate
thf(fact_1523_nth__replicate,axiom,
! [I: nat,N2: nat,X3: int] :
( ( ord_less_nat @ I @ N2 )
=> ( ( nth_int @ ( replicate_int @ N2 @ X3 ) @ I )
= X3 ) ) ).
% nth_replicate
thf(fact_1524_nth__replicate,axiom,
! [I: nat,N2: nat,X3: vEBT_VEBT] :
( ( ord_less_nat @ I @ N2 )
=> ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X3 ) @ I )
= X3 ) ) ).
% nth_replicate
thf(fact_1525_highlowprop,axiom,
( ( ord_less_nat @ ( vEBT_VEBT_high @ mi @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
& ( ord_less_nat @ ( vEBT_VEBT_low @ mi @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) ) ).
% highlowprop
thf(fact_1526_add__One__commute,axiom,
! [N2: num] :
( ( plus_plus_num @ one @ N2 )
= ( plus_plus_num @ N2 @ one ) ) ).
% add_One_commute
thf(fact_1527_verit__eq__simplify_I10_J,axiom,
! [X22: num] :
( one
!= ( bit0 @ X22 ) ) ).
% verit_eq_simplify(10)
thf(fact_1528_le__num__One__iff,axiom,
! [X3: num] :
( ( ord_less_eq_num @ X3 @ one )
= ( X3 = one ) ) ).
% le_num_One_iff
thf(fact_1529_numeral__Bit0,axiom,
! [N2: num] :
( ( numeral_numeral_rat @ ( bit0 @ N2 ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_1530_numeral__Bit0,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_1531_numeral__Bit0,axiom,
! [N2: num] :
( ( numeral_numeral_int @ ( bit0 @ N2 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_1532_numeral__Bit0,axiom,
! [N2: num] :
( ( numera1916890842035813515d_enat @ ( bit0 @ N2 ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ ( numera1916890842035813515d_enat @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_1533_numeral__Bit0,axiom,
! [N2: num] :
( ( numeral_numeral_real @ ( bit0 @ N2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_1534_numeral__Bit0,axiom,
! [N2: num] :
( ( numera6620942414471956472nteger @ ( bit0 @ N2 ) )
= ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_1535_max__absorb2,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y )
=> ( ( ord_max_set_int @ X3 @ Y )
= Y ) ) ).
% max_absorb2
thf(fact_1536_max__absorb2,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ord_max_rat @ X3 @ Y )
= Y ) ) ).
% max_absorb2
thf(fact_1537_max__absorb2,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_num @ X3 @ Y )
=> ( ( ord_max_num @ X3 @ Y )
= Y ) ) ).
% max_absorb2
thf(fact_1538_max__absorb2,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ( ord_max_nat @ X3 @ Y )
= Y ) ) ).
% max_absorb2
thf(fact_1539_max__absorb2,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ( ord_max_int @ X3 @ Y )
= Y ) ) ).
% max_absorb2
thf(fact_1540_max__absorb1,axiom,
! [Y: set_int,X3: set_int] :
( ( ord_less_eq_set_int @ Y @ X3 )
=> ( ( ord_max_set_int @ X3 @ Y )
= X3 ) ) ).
% max_absorb1
thf(fact_1541_max__absorb1,axiom,
! [Y: rat,X3: rat] :
( ( ord_less_eq_rat @ Y @ X3 )
=> ( ( ord_max_rat @ X3 @ Y )
= X3 ) ) ).
% max_absorb1
thf(fact_1542_max__absorb1,axiom,
! [Y: num,X3: num] :
( ( ord_less_eq_num @ Y @ X3 )
=> ( ( ord_max_num @ X3 @ Y )
= X3 ) ) ).
% max_absorb1
thf(fact_1543_max__absorb1,axiom,
! [Y: nat,X3: nat] :
( ( ord_less_eq_nat @ Y @ X3 )
=> ( ( ord_max_nat @ X3 @ Y )
= X3 ) ) ).
% max_absorb1
thf(fact_1544_max__absorb1,axiom,
! [Y: int,X3: int] :
( ( ord_less_eq_int @ Y @ X3 )
=> ( ( ord_max_int @ X3 @ Y )
= X3 ) ) ).
% max_absorb1
thf(fact_1545_max__def,axiom,
( ord_max_set_int
= ( ^ [A3: set_int,B3: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def
thf(fact_1546_max__def,axiom,
( ord_max_rat
= ( ^ [A3: rat,B3: rat] : ( if_rat @ ( ord_less_eq_rat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def
thf(fact_1547_max__def,axiom,
( ord_max_num
= ( ^ [A3: num,B3: num] : ( if_num @ ( ord_less_eq_num @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def
thf(fact_1548_max__def,axiom,
( ord_max_nat
= ( ^ [A3: nat,B3: nat] : ( if_nat @ ( ord_less_eq_nat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def
thf(fact_1549_max__def,axiom,
( ord_max_int
= ( ^ [A3: int,B3: int] : ( if_int @ ( ord_less_eq_int @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def
thf(fact_1550_max__add__distrib__right,axiom,
! [X3: real,Y: real,Z2: real] :
( ( plus_plus_real @ X3 @ ( ord_max_real @ Y @ Z2 ) )
= ( ord_max_real @ ( plus_plus_real @ X3 @ Y ) @ ( plus_plus_real @ X3 @ Z2 ) ) ) ).
% max_add_distrib_right
thf(fact_1551_max__add__distrib__right,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( plus_plus_rat @ X3 @ ( ord_max_rat @ Y @ Z2 ) )
= ( ord_max_rat @ ( plus_plus_rat @ X3 @ Y ) @ ( plus_plus_rat @ X3 @ Z2 ) ) ) ).
% max_add_distrib_right
thf(fact_1552_max__add__distrib__right,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( plus_plus_nat @ X3 @ ( ord_max_nat @ Y @ Z2 ) )
= ( ord_max_nat @ ( plus_plus_nat @ X3 @ Y ) @ ( plus_plus_nat @ X3 @ Z2 ) ) ) ).
% max_add_distrib_right
thf(fact_1553_max__add__distrib__right,axiom,
! [X3: int,Y: int,Z2: int] :
( ( plus_plus_int @ X3 @ ( ord_max_int @ Y @ Z2 ) )
= ( ord_max_int @ ( plus_plus_int @ X3 @ Y ) @ ( plus_plus_int @ X3 @ Z2 ) ) ) ).
% max_add_distrib_right
thf(fact_1554_max__add__distrib__left,axiom,
! [X3: real,Y: real,Z2: real] :
( ( plus_plus_real @ ( ord_max_real @ X3 @ Y ) @ Z2 )
= ( ord_max_real @ ( plus_plus_real @ X3 @ Z2 ) @ ( plus_plus_real @ Y @ Z2 ) ) ) ).
% max_add_distrib_left
thf(fact_1555_max__add__distrib__left,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( plus_plus_rat @ ( ord_max_rat @ X3 @ Y ) @ Z2 )
= ( ord_max_rat @ ( plus_plus_rat @ X3 @ Z2 ) @ ( plus_plus_rat @ Y @ Z2 ) ) ) ).
% max_add_distrib_left
thf(fact_1556_max__add__distrib__left,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( plus_plus_nat @ ( ord_max_nat @ X3 @ Y ) @ Z2 )
= ( ord_max_nat @ ( plus_plus_nat @ X3 @ Z2 ) @ ( plus_plus_nat @ Y @ Z2 ) ) ) ).
% max_add_distrib_left
thf(fact_1557_max__add__distrib__left,axiom,
! [X3: int,Y: int,Z2: int] :
( ( plus_plus_int @ ( ord_max_int @ X3 @ Y ) @ Z2 )
= ( ord_max_int @ ( plus_plus_int @ X3 @ Z2 ) @ ( plus_plus_int @ Y @ Z2 ) ) ) ).
% max_add_distrib_left
thf(fact_1558_nat__add__max__right,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( plus_plus_nat @ M @ ( ord_max_nat @ N2 @ Q2 ) )
= ( ord_max_nat @ ( plus_plus_nat @ M @ N2 ) @ ( plus_plus_nat @ M @ Q2 ) ) ) ).
% nat_add_max_right
thf(fact_1559_nat__add__max__left,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( plus_plus_nat @ ( ord_max_nat @ M @ N2 ) @ Q2 )
= ( ord_max_nat @ ( plus_plus_nat @ M @ Q2 ) @ ( plus_plus_nat @ N2 @ Q2 ) ) ) ).
% nat_add_max_left
thf(fact_1560_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_complex
!= ( numera6690914467698888265omplex @ N2 ) ) ).
% zero_neq_numeral
thf(fact_1561_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_rat
!= ( numeral_numeral_rat @ N2 ) ) ).
% zero_neq_numeral
thf(fact_1562_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N2 ) ) ).
% zero_neq_numeral
thf(fact_1563_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N2 ) ) ).
% zero_neq_numeral
thf(fact_1564_zero__neq__numeral,axiom,
! [N2: num] :
( zero_z5237406670263579293d_enat
!= ( numera1916890842035813515d_enat @ N2 ) ) ).
% zero_neq_numeral
thf(fact_1565_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N2 ) ) ).
% zero_neq_numeral
thf(fact_1566_zero__neq__numeral,axiom,
! [N2: num] :
( zero_z3403309356797280102nteger
!= ( numera6620942414471956472nteger @ N2 ) ) ).
% zero_neq_numeral
thf(fact_1567_num_Osize_I4_J,axiom,
( ( size_size_num @ one )
= zero_zero_nat ) ).
% num.size(4)
thf(fact_1568_not__numeral__le__zero,axiom,
! [N2: num] :
~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ zero_z5237406670263579293d_enat ) ).
% not_numeral_le_zero
thf(fact_1569_not__numeral__le__zero,axiom,
! [N2: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ zero_zero_real ) ).
% not_numeral_le_zero
thf(fact_1570_not__numeral__le__zero,axiom,
! [N2: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ N2 ) @ zero_z3403309356797280102nteger ) ).
% not_numeral_le_zero
thf(fact_1571_not__numeral__le__zero,axiom,
! [N2: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ zero_zero_rat ) ).
% not_numeral_le_zero
thf(fact_1572_not__numeral__le__zero,axiom,
! [N2: num] :
~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ zero_zero_nat ) ).
% not_numeral_le_zero
thf(fact_1573_not__numeral__le__zero,axiom,
! [N2: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ zero_zero_int ) ).
% not_numeral_le_zero
thf(fact_1574_zero__le__numeral,axiom,
! [N2: num] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ N2 ) ) ).
% zero_le_numeral
thf(fact_1575_zero__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N2 ) ) ).
% zero_le_numeral
thf(fact_1576_zero__le__numeral,axiom,
! [N2: num] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ N2 ) ) ).
% zero_le_numeral
thf(fact_1577_zero__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N2 ) ) ).
% zero_le_numeral
thf(fact_1578_zero__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N2 ) ) ).
% zero_le_numeral
thf(fact_1579_zero__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N2 ) ) ).
% zero_le_numeral
thf(fact_1580_not__numeral__less__zero,axiom,
! [N2: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ zero_zero_rat ) ).
% not_numeral_less_zero
thf(fact_1581_not__numeral__less__zero,axiom,
! [N2: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N2 ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_1582_not__numeral__less__zero,axiom,
! [N2: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_1583_not__numeral__less__zero,axiom,
! [N2: num] :
~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ zero_z5237406670263579293d_enat ) ).
% not_numeral_less_zero
thf(fact_1584_not__numeral__less__zero,axiom,
! [N2: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_1585_not__numeral__less__zero,axiom,
! [N2: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ N2 ) @ zero_z3403309356797280102nteger ) ).
% not_numeral_less_zero
thf(fact_1586_zero__less__numeral,axiom,
! [N2: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N2 ) ) ).
% zero_less_numeral
thf(fact_1587_zero__less__numeral,axiom,
! [N2: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N2 ) ) ).
% zero_less_numeral
thf(fact_1588_zero__less__numeral,axiom,
! [N2: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N2 ) ) ).
% zero_less_numeral
thf(fact_1589_zero__less__numeral,axiom,
! [N2: num] : ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ N2 ) ) ).
% zero_less_numeral
thf(fact_1590_zero__less__numeral,axiom,
! [N2: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N2 ) ) ).
% zero_less_numeral
thf(fact_1591_zero__less__numeral,axiom,
! [N2: num] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ N2 ) ) ).
% zero_less_numeral
thf(fact_1592_replicate__eqI,axiom,
! [Xs: list_set_nat,N2: nat,X3: set_nat] :
( ( ( size_s3254054031482475050et_nat @ Xs )
= N2 )
=> ( ! [Y2: set_nat] :
( ( member_set_nat @ Y2 @ ( set_set_nat2 @ Xs ) )
=> ( Y2 = X3 ) )
=> ( Xs
= ( replicate_set_nat @ N2 @ X3 ) ) ) ) ).
% replicate_eqI
thf(fact_1593_replicate__eqI,axiom,
! [Xs: list_real,N2: nat,X3: real] :
( ( ( size_size_list_real @ Xs )
= N2 )
=> ( ! [Y2: real] :
( ( member_real @ Y2 @ ( set_real2 @ Xs ) )
=> ( Y2 = X3 ) )
=> ( Xs
= ( replicate_real @ N2 @ X3 ) ) ) ) ).
% replicate_eqI
thf(fact_1594_replicate__eqI,axiom,
! [Xs: list_VEBT_VEBT,N2: nat,X3: vEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs )
= N2 )
=> ( ! [Y2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ Y2 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( Y2 = X3 ) )
=> ( Xs
= ( replicate_VEBT_VEBT @ N2 @ X3 ) ) ) ) ).
% replicate_eqI
thf(fact_1595_replicate__eqI,axiom,
! [Xs: list_o,N2: nat,X3: $o] :
( ( ( size_size_list_o @ Xs )
= N2 )
=> ( ! [Y2: $o] :
( ( member_o @ Y2 @ ( set_o2 @ Xs ) )
=> ( Y2 = X3 ) )
=> ( Xs
= ( replicate_o @ N2 @ X3 ) ) ) ) ).
% replicate_eqI
thf(fact_1596_replicate__eqI,axiom,
! [Xs: list_nat,N2: nat,X3: nat] :
( ( ( size_size_list_nat @ Xs )
= N2 )
=> ( ! [Y2: nat] :
( ( member_nat @ Y2 @ ( set_nat2 @ Xs ) )
=> ( Y2 = X3 ) )
=> ( Xs
= ( replicate_nat @ N2 @ X3 ) ) ) ) ).
% replicate_eqI
thf(fact_1597_replicate__eqI,axiom,
! [Xs: list_int,N2: nat,X3: int] :
( ( ( size_size_list_int @ Xs )
= N2 )
=> ( ! [Y2: int] :
( ( member_int @ Y2 @ ( set_int2 @ Xs ) )
=> ( Y2 = X3 ) )
=> ( Xs
= ( replicate_int @ N2 @ X3 ) ) ) ) ).
% replicate_eqI
thf(fact_1598_replicate__length__same,axiom,
! [Xs: list_VEBT_VEBT,X3: vEBT_VEBT] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( X4 = X3 ) )
=> ( ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Xs ) @ X3 )
= Xs ) ) ).
% replicate_length_same
thf(fact_1599_replicate__length__same,axiom,
! [Xs: list_o,X3: $o] :
( ! [X4: $o] :
( ( member_o @ X4 @ ( set_o2 @ Xs ) )
=> ( X4 = X3 ) )
=> ( ( replicate_o @ ( size_size_list_o @ Xs ) @ X3 )
= Xs ) ) ).
% replicate_length_same
thf(fact_1600_replicate__length__same,axiom,
! [Xs: list_nat,X3: nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
=> ( X4 = X3 ) )
=> ( ( replicate_nat @ ( size_size_list_nat @ Xs ) @ X3 )
= Xs ) ) ).
% replicate_length_same
thf(fact_1601_replicate__length__same,axiom,
! [Xs: list_int,X3: int] :
( ! [X4: int] :
( ( member_int @ X4 @ ( set_int2 @ Xs ) )
=> ( X4 = X3 ) )
=> ( ( replicate_int @ ( size_size_list_int @ Xs ) @ X3 )
= Xs ) ) ).
% replicate_length_same
thf(fact_1602_ex__gt__or__lt,axiom,
! [A: real] :
? [B4: real] :
( ( ord_less_real @ A @ B4 )
| ( ord_less_real @ B4 @ A ) ) ).
% ex_gt_or_lt
thf(fact_1603_pinf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% pinf(1)
thf(fact_1604_pinf_I1_J,axiom,
! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% pinf(1)
thf(fact_1605_pinf_I1_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% pinf(1)
thf(fact_1606_pinf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% pinf(1)
thf(fact_1607_pinf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% pinf(1)
thf(fact_1608_pinf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% pinf(2)
thf(fact_1609_pinf_I2_J,axiom,
! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% pinf(2)
thf(fact_1610_pinf_I2_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% pinf(2)
thf(fact_1611_pinf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% pinf(2)
thf(fact_1612_pinf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% pinf(2)
thf(fact_1613_pinf_I3_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(3)
thf(fact_1614_pinf_I3_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(3)
thf(fact_1615_pinf_I3_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(3)
thf(fact_1616_pinf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(3)
thf(fact_1617_pinf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(3)
thf(fact_1618_pinf_I4_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(4)
thf(fact_1619_pinf_I4_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(4)
thf(fact_1620_pinf_I4_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(4)
thf(fact_1621_pinf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(4)
thf(fact_1622_pinf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( X != T ) ) ).
% pinf(4)
thf(fact_1623_pinf_I5_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ~ ( ord_less_real @ X @ T ) ) ).
% pinf(5)
thf(fact_1624_pinf_I5_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ~ ( ord_less_rat @ X @ T ) ) ).
% pinf(5)
thf(fact_1625_pinf_I5_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ~ ( ord_less_num @ X @ T ) ) ).
% pinf(5)
thf(fact_1626_pinf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ~ ( ord_less_nat @ X @ T ) ) ).
% pinf(5)
thf(fact_1627_pinf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ~ ( ord_less_int @ X @ T ) ) ).
% pinf(5)
thf(fact_1628_pinf_I7_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( ord_less_real @ T @ X ) ) ).
% pinf(7)
thf(fact_1629_pinf_I7_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( ord_less_rat @ T @ X ) ) ).
% pinf(7)
thf(fact_1630_pinf_I7_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ Z3 @ X )
=> ( ord_less_num @ T @ X ) ) ).
% pinf(7)
thf(fact_1631_pinf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( ord_less_nat @ T @ X ) ) ).
% pinf(7)
thf(fact_1632_pinf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( ord_less_int @ T @ X ) ) ).
% pinf(7)
thf(fact_1633_minf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% minf(1)
thf(fact_1634_minf_I1_J,axiom,
! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% minf(1)
thf(fact_1635_minf_I1_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% minf(1)
thf(fact_1636_minf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% minf(1)
thf(fact_1637_minf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( ( ( P @ X )
& ( Q @ X ) )
= ( ( P4 @ X )
& ( Q3 @ X ) ) ) ) ) ) ).
% minf(1)
thf(fact_1638_minf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% minf(2)
thf(fact_1639_minf_I2_J,axiom,
! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% minf(2)
thf(fact_1640_minf_I2_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% minf(2)
thf(fact_1641_minf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% minf(2)
thf(fact_1642_minf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( ( ( P @ X )
| ( Q @ X ) )
= ( ( P4 @ X )
| ( Q3 @ X ) ) ) ) ) ) ).
% minf(2)
thf(fact_1643_minf_I3_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( X != T ) ) ).
% minf(3)
thf(fact_1644_minf_I3_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( X != T ) ) ).
% minf(3)
thf(fact_1645_minf_I3_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ( X != T ) ) ).
% minf(3)
thf(fact_1646_minf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( X != T ) ) ).
% minf(3)
thf(fact_1647_minf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( X != T ) ) ).
% minf(3)
thf(fact_1648_minf_I4_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( X != T ) ) ).
% minf(4)
thf(fact_1649_minf_I4_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( X != T ) ) ).
% minf(4)
thf(fact_1650_minf_I4_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ( X != T ) ) ).
% minf(4)
thf(fact_1651_minf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( X != T ) ) ).
% minf(4)
thf(fact_1652_minf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( X != T ) ) ).
% minf(4)
thf(fact_1653_minf_I5_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( ord_less_real @ X @ T ) ) ).
% minf(5)
thf(fact_1654_minf_I5_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( ord_less_rat @ X @ T ) ) ).
% minf(5)
thf(fact_1655_minf_I5_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ( ord_less_num @ X @ T ) ) ).
% minf(5)
thf(fact_1656_minf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( ord_less_nat @ X @ T ) ) ).
% minf(5)
thf(fact_1657_minf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( ord_less_int @ X @ T ) ) ).
% minf(5)
thf(fact_1658_minf_I7_J,axiom,
! [T: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ~ ( ord_less_real @ T @ X ) ) ).
% minf(7)
thf(fact_1659_minf_I7_J,axiom,
! [T: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ~ ( ord_less_rat @ T @ X ) ) ).
% minf(7)
thf(fact_1660_minf_I7_J,axiom,
! [T: num] :
? [Z3: num] :
! [X: num] :
( ( ord_less_num @ X @ Z3 )
=> ~ ( ord_less_num @ T @ X ) ) ).
% minf(7)
thf(fact_1661_minf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ~ ( ord_less_nat @ T @ X ) ) ).
% minf(7)
thf(fact_1662_minf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ~ ( ord_less_int @ T @ X ) ) ).
% minf(7)
thf(fact_1663_count__le__length,axiom,
! [Xs: list_VEBT_VEBT,X3: vEBT_VEBT] : ( ord_less_eq_nat @ ( count_list_VEBT_VEBT @ Xs @ X3 ) @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ).
% count_le_length
thf(fact_1664_count__le__length,axiom,
! [Xs: list_o,X3: $o] : ( ord_less_eq_nat @ ( count_list_o @ Xs @ X3 ) @ ( size_size_list_o @ Xs ) ) ).
% count_le_length
thf(fact_1665_count__le__length,axiom,
! [Xs: list_nat,X3: nat] : ( ord_less_eq_nat @ ( count_list_nat @ Xs @ X3 ) @ ( size_size_list_nat @ Xs ) ) ).
% count_le_length
thf(fact_1666_count__le__length,axiom,
! [Xs: list_int,X3: int] : ( ord_less_eq_nat @ ( count_list_int @ Xs @ X3 ) @ ( size_size_list_int @ Xs ) ) ).
% count_le_length
thf(fact_1667_invar__vebt_Ointros_I4_J,axiom,
! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N2 )
=> ( ( Deg
= ( plus_plus_nat @ N2 @ M ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(4)
thf(fact_1668_sum__power2__eq__zero__iff,axiom,
! [X3: rat,Y: rat] :
( ( ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_rat )
= ( ( X3 = zero_zero_rat )
& ( Y = zero_zero_rat ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1669_sum__power2__eq__zero__iff,axiom,
! [X3: real,Y: real] :
( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1670_sum__power2__eq__zero__iff,axiom,
! [X3: int,Y: int] :
( ( ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1671_zero__less__power2,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_real ) ) ).
% zero_less_power2
thf(fact_1672_zero__less__power2,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_power2
thf(fact_1673_zero__less__power2,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_int ) ) ).
% zero_less_power2
thf(fact_1674_power2__eq__iff__nonneg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X3 = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1675_power2__eq__iff__nonneg,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ( ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X3 = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1676_power2__eq__iff__nonneg,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X3 = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1677_power2__eq__iff__nonneg,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X3 = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1678_power2__less__eq__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% power2_less_eq_zero_iff
thf(fact_1679_power2__less__eq__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% power2_less_eq_zero_iff
thf(fact_1680_power2__less__eq__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% power2_less_eq_zero_iff
thf(fact_1681_insert__simp__norm,axiom,
! [X3: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( ( ord_less_nat @ Mi @ X3 )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( X3 != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( ord_max_nat @ X3 @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_norm
thf(fact_1682_insert__simp__excp,axiom,
! [Mi: nat,Deg: nat,TreeList2: list_VEBT_VEBT,X3: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( ( ord_less_nat @ X3 @ Mi )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( X3 != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X3 @ ( ord_max_nat @ Mi @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_excp
thf(fact_1683_zero__eq__power2,axiom,
! [A: rat] :
( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% zero_eq_power2
thf(fact_1684_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_1685_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_1686_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_1687_zero__eq__power2,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% zero_eq_power2
thf(fact_1688_power__mono__iff,axiom,
! [A: real,B: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1689_power__mono__iff,axiom,
! [A: rat,B: rat,N2: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1690_power__mono__iff,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1691_power__mono__iff,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1692_power__eq__0__iff,axiom,
! [A: rat,N2: nat] :
( ( ( power_power_rat @ A @ N2 )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_1693_power__eq__0__iff,axiom,
! [A: nat,N2: nat] :
( ( ( power_power_nat @ A @ N2 )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_1694_power__eq__0__iff,axiom,
! [A: real,N2: nat] :
( ( ( power_power_real @ A @ N2 )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_1695_power__eq__0__iff,axiom,
! [A: int,N2: nat] :
( ( ( power_power_int @ A @ N2 )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_1696_power__eq__0__iff,axiom,
! [A: complex,N2: nat] :
( ( ( power_power_complex @ A @ N2 )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_1697_member__inv,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
& ( ( X3 = Mi )
| ( X3 = Ma )
| ( ( ord_less_nat @ X3 @ Ma )
& ( ord_less_nat @ Mi @ X3 )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% member_inv
thf(fact_1698_pow__sum,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).
% pow_sum
thf(fact_1699_high__def,axiom,
( vEBT_VEBT_high
= ( ^ [X2: nat,N: nat] : ( divide_divide_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% high_def
thf(fact_1700__C9_C,axiom,
( ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= na ) ).
% "9"
thf(fact_1701_div__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% div_0
thf(fact_1702_div__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% div_0
thf(fact_1703_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_1704_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_1705_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_1706_divide__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divide_eq_0_iff
thf(fact_1707_divide__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_eq_0_iff
thf(fact_1708_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_1709_div__by__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% div_by_0
thf(fact_1710_div__by__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% div_by_0
thf(fact_1711_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_1712_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_1713_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_1714_divide__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ C @ A )
= ( divide1717551699836669952omplex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_1715_divide__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( divide_divide_rat @ C @ A )
= ( divide_divide_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_1716_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_1717_divide__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_1718_divide__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_1719_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_1720_division__ring__divide__zero,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% division_ring_divide_zero
thf(fact_1721_division__ring__divide__zero,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% division_ring_divide_zero
thf(fact_1722_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_1723_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
= zero_zero_rat ) ).
% power_zero_numeral
thf(fact_1724_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_1725_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_1726_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_1727_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
= zero_zero_complex ) ).
% power_zero_numeral
thf(fact_1728_nat__zero__less__power__iff,axiom,
! [X3: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X3 @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N2 = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1729_both__member__options__ding,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat,X3: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ X3 ) ) ) ) ).
% both_member_options_ding
thf(fact_1730_add__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_1731_add__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_1732_divide__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_1733_divide__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_1734_divide__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_1735_divide__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_1736_zero__le__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1737_zero__le__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1738_divide__nonneg__nonneg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1739_divide__nonneg__nonneg,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1740_divide__nonneg__nonpos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1741_divide__nonneg__nonpos,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1742_divide__nonpos__nonneg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1743_divide__nonpos__nonneg,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1744_divide__nonpos__nonpos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1745_divide__nonpos__nonpos,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1746_divide__right__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1747_divide__right__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1748_divide__neg__neg,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ zero_zero_rat )
=> ( ( ord_less_rat @ Y @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% divide_neg_neg
thf(fact_1749_divide__neg__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_neg_neg
thf(fact_1750_divide__neg__pos,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y ) @ zero_zero_rat ) ) ) ).
% divide_neg_pos
thf(fact_1751_divide__neg__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_1752_divide__pos__neg,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_rat @ Y @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y ) @ zero_zero_rat ) ) ) ).
% divide_pos_neg
thf(fact_1753_divide__pos__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_1754_divide__pos__pos,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% divide_pos_pos
thf(fact_1755_divide__pos__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_pos_pos
thf(fact_1756_divide__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_1757_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_1758_divide__less__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) )
& ( C != zero_zero_rat ) ) ) ).
% divide_less_cancel
thf(fact_1759_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_1760_zero__less__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_divide_iff
thf(fact_1761_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_1762_divide__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_1763_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_1764_divide__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_1765_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_1766_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_1767_frac__le,axiom,
! [Y: real,X3: real,W2: real,Z2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W2 )
=> ( ( ord_less_eq_real @ W2 @ Z2 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Z2 ) @ ( divide_divide_real @ Y @ W2 ) ) ) ) ) ) ).
% frac_le
thf(fact_1768_frac__le,axiom,
! [Y: rat,X3: rat,W2: rat,Z2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ord_less_rat @ zero_zero_rat @ W2 )
=> ( ( ord_less_eq_rat @ W2 @ Z2 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Z2 ) @ ( divide_divide_rat @ Y @ W2 ) ) ) ) ) ) ).
% frac_le
thf(fact_1769_frac__less,axiom,
! [X3: real,Y: real,W2: real,Z2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W2 )
=> ( ( ord_less_eq_real @ W2 @ Z2 )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Z2 ) @ ( divide_divide_real @ Y @ W2 ) ) ) ) ) ) ).
% frac_less
thf(fact_1770_frac__less,axiom,
! [X3: rat,Y: rat,W2: rat,Z2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_rat @ X3 @ Y )
=> ( ( ord_less_rat @ zero_zero_rat @ W2 )
=> ( ( ord_less_eq_rat @ W2 @ Z2 )
=> ( ord_less_rat @ ( divide_divide_rat @ X3 @ Z2 ) @ ( divide_divide_rat @ Y @ W2 ) ) ) ) ) ) ).
% frac_less
thf(fact_1771_frac__less2,axiom,
! [X3: real,Y: real,W2: real,Z2: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W2 )
=> ( ( ord_less_real @ W2 @ Z2 )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Z2 ) @ ( divide_divide_real @ Y @ W2 ) ) ) ) ) ) ).
% frac_less2
thf(fact_1772_frac__less2,axiom,
! [X3: rat,Y: rat,W2: rat,Z2: rat] :
( ( ord_less_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ X3 @ Y )
=> ( ( ord_less_rat @ zero_zero_rat @ W2 )
=> ( ( ord_less_rat @ W2 @ Z2 )
=> ( ord_less_rat @ ( divide_divide_rat @ X3 @ Z2 ) @ ( divide_divide_rat @ Y @ W2 ) ) ) ) ) ) ).
% frac_less2
thf(fact_1773_divide__le__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_1774_divide__le__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_1775_divide__nonneg__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_neg
thf(fact_1776_divide__nonneg__neg,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_rat @ Y @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_neg
thf(fact_1777_divide__nonneg__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonneg_pos
thf(fact_1778_divide__nonneg__pos,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% divide_nonneg_pos
thf(fact_1779_divide__nonpos__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonpos_neg
thf(fact_1780_divide__nonpos__neg,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
=> ( ( ord_less_rat @ Y @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% divide_nonpos_neg
thf(fact_1781_divide__nonpos__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_pos
thf(fact_1782_divide__nonpos__pos,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_pos
thf(fact_1783_field__sum__of__halves,axiom,
! [X3: rat] :
( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X3 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= X3 ) ).
% field_sum_of_halves
thf(fact_1784_field__sum__of__halves,axiom,
! [X3: real] :
( ( plus_plus_real @ ( divide_divide_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= X3 ) ).
% field_sum_of_halves
thf(fact_1785_half__gt__zero__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% half_gt_zero_iff
thf(fact_1786_half__gt__zero__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% half_gt_zero_iff
thf(fact_1787_half__gt__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_1788_half__gt__zero,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_1789_field__less__half__sum,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( ord_less_rat @ X3 @ ( divide_divide_rat @ ( plus_plus_rat @ X3 @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_1790_field__less__half__sum,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ X3 @ ( divide_divide_real @ ( plus_plus_real @ X3 @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_1791_power__not__zero,axiom,
! [A: rat,N2: nat] :
( ( A != zero_zero_rat )
=> ( ( power_power_rat @ A @ N2 )
!= zero_zero_rat ) ) ).
% power_not_zero
thf(fact_1792_power__not__zero,axiom,
! [A: nat,N2: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N2 )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_1793_power__not__zero,axiom,
! [A: real,N2: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N2 )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_1794_power__not__zero,axiom,
! [A: int,N2: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N2 )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_1795_power__not__zero,axiom,
! [A: complex,N2: nat] :
( ( A != zero_zero_complex )
=> ( ( power_power_complex @ A @ N2 )
!= zero_zero_complex ) ) ).
% power_not_zero
thf(fact_1796_power__mono,axiom,
! [A: real,B: real,N2: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_1797_power__mono,axiom,
! [A: rat,B: rat,N2: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_1798_power__mono,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_1799_power__mono,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_1800_zero__le__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_1801_zero__le__power,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_1802_zero__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_1803_zero__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_1804_zero__less__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_1805_zero__less__power,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_1806_zero__less__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_1807_zero__less__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_1808_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% nat_power_less_imp_less
thf(fact_1809_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Ux ) ).
% VEBT_internal.naive_member.simps(2)
thf(fact_1810_power__less__imp__less__base,axiom,
! [A: real,N2: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_1811_power__less__imp__less__base,axiom,
! [A: rat,N2: nat,B: rat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_1812_power__less__imp__less__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_1813_power__less__imp__less__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_1814_zero__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( power_power_rat @ zero_zero_rat @ N2 )
= zero_zero_rat ) ) ).
% zero_power
thf(fact_1815_zero__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_1816_zero__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( power_power_real @ zero_zero_real @ N2 )
= zero_zero_real ) ) ).
% zero_power
thf(fact_1817_zero__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ).
% zero_power
thf(fact_1818_zero__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( power_power_complex @ zero_zero_complex @ N2 )
= zero_zero_complex ) ) ).
% zero_power
thf(fact_1819_power__eq__iff__eq__base,axiom,
! [N2: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N2 )
= ( power_power_real @ B @ N2 ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1820_power__eq__iff__eq__base,axiom,
! [N2: nat,A: rat,B: rat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ( power_power_rat @ A @ N2 )
= ( power_power_rat @ B @ N2 ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1821_power__eq__iff__eq__base,axiom,
! [N2: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N2 )
= ( power_power_nat @ B @ N2 ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1822_power__eq__iff__eq__base,axiom,
! [N2: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N2 )
= ( power_power_int @ B @ N2 ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1823_power__eq__imp__eq__base,axiom,
! [A: real,N2: nat,B: real] :
( ( ( power_power_real @ A @ N2 )
= ( power_power_real @ B @ N2 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1824_power__eq__imp__eq__base,axiom,
! [A: rat,N2: nat,B: rat] :
( ( ( power_power_rat @ A @ N2 )
= ( power_power_rat @ B @ N2 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1825_power__eq__imp__eq__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ( power_power_nat @ A @ N2 )
= ( power_power_nat @ B @ N2 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1826_power__eq__imp__eq__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ( power_power_int @ A @ N2 )
= ( power_power_int @ B @ N2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1827_zero__power2,axiom,
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat ) ).
% zero_power2
thf(fact_1828_zero__power2,axiom,
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% zero_power2
thf(fact_1829_zero__power2,axiom,
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real ) ).
% zero_power2
thf(fact_1830_zero__power2,axiom,
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% zero_power2
thf(fact_1831_zero__power2,axiom,
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex ) ).
% zero_power2
thf(fact_1832_less__exp,axiom,
! [N2: nat] : ( ord_less_nat @ N2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).
% less_exp
thf(fact_1833_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_1834_power2__nat__le__eq__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% power2_nat_le_eq_le
thf(fact_1835_power2__nat__le__imp__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N2 )
=> ( ord_less_eq_nat @ M @ N2 ) ) ).
% power2_nat_le_imp_le
thf(fact_1836_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Va: list_VEBT_VEBT,Vb: vEBT_VEBT,X3: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va @ Vb ) @ X3 )
= ( ( X3 = Mi )
| ( X3 = Ma ) ) ) ).
% VEBT_internal.membermima.simps(3)
thf(fact_1837_zero__le__power2,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_1838_zero__le__power2,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_1839_zero__le__power2,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_1840_power2__eq__imp__eq,axiom,
! [X3: real,Y: real] :
( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( X3 = Y ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1841_power2__eq__imp__eq,axiom,
! [X3: rat,Y: rat] :
( ( ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( X3 = Y ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1842_power2__eq__imp__eq,axiom,
! [X3: nat,Y: nat] :
( ( ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( X3 = Y ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1843_power2__eq__imp__eq,axiom,
! [X3: int,Y: int] :
( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( X3 = Y ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1844_power2__le__imp__le,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ X3 @ Y ) ) ) ).
% power2_le_imp_le
thf(fact_1845_power2__le__imp__le,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ord_less_eq_rat @ X3 @ Y ) ) ) ).
% power2_le_imp_le
thf(fact_1846_power2__le__imp__le,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power2_le_imp_le
thf(fact_1847_power2__le__imp__le,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ord_less_eq_int @ X3 @ Y ) ) ) ).
% power2_le_imp_le
thf(fact_1848_power__strict__mono,axiom,
! [A: real,B: real,N2: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ) ).
% power_strict_mono
thf(fact_1849_power__strict__mono,axiom,
! [A: rat,B: rat,N2: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ) ).
% power_strict_mono
thf(fact_1850_power__strict__mono,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ) ).
% power_strict_mono
thf(fact_1851_power__strict__mono,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ) ).
% power_strict_mono
thf(fact_1852_power2__less__0,axiom,
! [A: real] :
~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).
% power2_less_0
thf(fact_1853_power2__less__0,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).
% power2_less_0
thf(fact_1854_power2__less__0,axiom,
! [A: int] :
~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).
% power2_less_0
thf(fact_1855_power2__less__imp__less,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_real @ X3 @ Y ) ) ) ).
% power2_less_imp_less
thf(fact_1856_power2__less__imp__less,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ord_less_rat @ X3 @ Y ) ) ) ).
% power2_less_imp_less
thf(fact_1857_power2__less__imp__less,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_nat @ ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ord_less_nat @ X3 @ Y ) ) ) ).
% power2_less_imp_less
thf(fact_1858_power2__less__imp__less,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ord_less_int @ X3 @ Y ) ) ) ).
% power2_less_imp_less
thf(fact_1859_sum__power2__ge__zero,axiom,
! [X3: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1860_sum__power2__ge__zero,axiom,
! [X3: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1861_sum__power2__ge__zero,axiom,
! [X3: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1862_sum__power2__le__zero__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1863_sum__power2__le__zero__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
= ( ( X3 = zero_zero_rat )
& ( Y = zero_zero_rat ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1864_sum__power2__le__zero__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1865_not__sum__power2__lt__zero,axiom,
! [X3: real,Y: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).
% not_sum_power2_lt_zero
thf(fact_1866_not__sum__power2__lt__zero,axiom,
! [X3: rat,Y: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).
% not_sum_power2_lt_zero
thf(fact_1867_not__sum__power2__lt__zero,axiom,
! [X3: int,Y: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).
% not_sum_power2_lt_zero
thf(fact_1868_sum__power2__gt__zero__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X3 != zero_zero_real )
| ( Y != zero_zero_real ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_1869_sum__power2__gt__zero__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X3 != zero_zero_rat )
| ( Y != zero_zero_rat ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_1870_sum__power2__gt__zero__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X3 != zero_zero_int )
| ( Y != zero_zero_int ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_1871_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
! [X3: nat,N2: nat,M: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(1)
thf(fact_1872_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
! [X3: nat,N2: nat,M: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_low @ X3 @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(2)
thf(fact_1873_both__member__options__from__chilf__to__complete__tree,axiom,
! [X3: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 ) ) ) ) ).
% both_member_options_from_chilf_to_complete_tree
thf(fact_1874_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_1875_both__member__options__from__complete__tree__to__child,axiom,
! [Deg: nat,Mi: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
| ( X3 = Mi )
| ( X3 = Ma ) ) ) ) ).
% both_member_options_from_complete_tree_to_child
thf(fact_1876_semiring__norm_I76_J,axiom,
! [N2: num] : ( ord_less_num @ one @ ( bit0 @ N2 ) ) ).
% semiring_norm(76)
thf(fact_1877_div__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ( divide_divide_nat @ M @ N2 )
= zero_zero_nat ) ) ).
% div_less
thf(fact_1878_set__n__deg__not__0,axiom,
! [TreeList2: list_VEBT_VEBT,N2: nat,M: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ord_less_eq_nat @ one_one_nat @ N2 ) ) ) ).
% set_n_deg_not_0
thf(fact_1879_div__exp__eq,axiom,
! [A: code_integer,M: nat,N2: nat] :
( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).
% div_exp_eq
thf(fact_1880_div__exp__eq,axiom,
! [A: nat,M: nat,N2: nat] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).
% div_exp_eq
thf(fact_1881_div__exp__eq,axiom,
! [A: int,M: nat,N2: nat] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).
% div_exp_eq
thf(fact_1882_exp__add__not__zero__imp__left,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_left
thf(fact_1883_exp__add__not__zero__imp__left,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_left
thf(fact_1884_exp__add__not__zero__imp__left,axiom,
! [M: nat,N2: nat] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_z3403309356797280102nteger )
=> ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
!= zero_z3403309356797280102nteger ) ) ).
% exp_add_not_zero_imp_left
thf(fact_1885_exp__add__not__zero__imp__right,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_right
thf(fact_1886_exp__add__not__zero__imp__right,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_right
thf(fact_1887_exp__add__not__zero__imp__right,axiom,
! [M: nat,N2: nat] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_z3403309356797280102nteger )
=> ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
!= zero_z3403309356797280102nteger ) ) ).
% exp_add_not_zero_imp_right
thf(fact_1888_bit__concat__def,axiom,
( vEBT_VEBT_bit_concat
= ( ^ [H: nat,L2: nat,D4: nat] : ( plus_plus_nat @ ( times_times_nat @ H @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ D4 ) ) @ L2 ) ) ) ).
% bit_concat_def
thf(fact_1889_mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1890_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1891_mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1892_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1893_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1894_mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1895_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1896_mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1897_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1898_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1899_mult__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% mult_eq_0_iff
thf(fact_1900_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_1901_mult__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% mult_eq_0_iff
thf(fact_1902_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_1903_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_1904_mult__zero__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% mult_zero_right
thf(fact_1905_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_1906_mult__zero__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% mult_zero_right
thf(fact_1907_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_1908_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_1909_mult__zero__left,axiom,
! [A: complex] :
( ( times_times_complex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% mult_zero_left
thf(fact_1910_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_1911_mult__zero__left,axiom,
! [A: rat] :
( ( times_times_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% mult_zero_left
thf(fact_1912_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_1913_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_1914_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_1915_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_1916_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_1917_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( numera1916890842035813515d_enat @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_1918_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_1919_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_1920_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W2: num,Z2: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ Z2 ) )
= ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W2 ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_1921_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W2: num,Z2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W2 ) @ Z2 ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W2 ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_1922_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W2: num,Z2: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W2 ) @ Z2 ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W2 ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_1923_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W2: num,Z2: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ W2 ) @ Z2 ) )
= ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( times_times_num @ V @ W2 ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_1924_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W2: num,Z2: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ Z2 ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W2 ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_1925_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W2: num,Z2: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W2 ) @ Z2 ) )
= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W2 ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_1926_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_1927_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_1928_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_1929_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_1930_mult_Oright__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.right_neutral
thf(fact_1931_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_1932_mult_Oright__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.right_neutral
thf(fact_1933_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_1934_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_1935_mult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% mult_1
thf(fact_1936_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_1937_mult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% mult_1
thf(fact_1938_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_1939_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_1940_high__inv,axiom,
! [X3: nat,N2: nat,Y: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ X3 ) @ N2 )
= Y ) ) ).
% high_inv
thf(fact_1941_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_1942_low__inv,axiom,
! [X3: nat,N2: nat,Y: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ X3 ) @ N2 )
= X3 ) ) ).
% low_inv
thf(fact_1943_times__divide__eq__left,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_1944_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_1945_divide__divide__eq__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_1946_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_1947_divide__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_1948_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_1949_times__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_1950_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_1951_div__by__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ one_one_complex )
= A ) ).
% div_by_1
thf(fact_1952_div__by__1,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ one_one_rat )
= A ) ).
% div_by_1
thf(fact_1953_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_1954_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_1955_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_1956_mult__is__0,axiom,
! [M: nat,N2: nat] :
( ( ( times_times_nat @ M @ N2 )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N2 = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_1957_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_1958_mult__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N2 ) )
= ( ( M = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_1959_mult__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N2 @ K ) )
= ( ( M = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_1960_nat__1__eq__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N2 ) )
= ( ( M = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_1961_nat__mult__eq__1__iff,axiom,
! [M: nat,N2: nat] :
( ( ( times_times_nat @ M @ N2 )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_1962_semiring__norm_I78_J,axiom,
! [M: num,N2: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% semiring_norm(78)
thf(fact_1963_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_1964_mult__cancel__left1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_left1
thf(fact_1965_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_1966_mult__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_left1
thf(fact_1967_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_1968_mult__cancel__left2,axiom,
! [C: complex,A: complex] :
( ( ( times_times_complex @ C @ A )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_left2
thf(fact_1969_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_1970_mult__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ( times_times_rat @ C @ A )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_left2
thf(fact_1971_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_1972_mult__cancel__right1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_right1
thf(fact_1973_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_1974_mult__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_right1
thf(fact_1975_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_1976_mult__cancel__right2,axiom,
! [A: complex,C: complex] :
( ( ( times_times_complex @ A @ C )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_right2
thf(fact_1977_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_1978_mult__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ( times_times_rat @ A @ C )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_right2
thf(fact_1979_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_1980_sum__squares__eq__zero__iff,axiom,
! [X3: real,Y: real] :
( ( ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y @ Y ) )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1981_sum__squares__eq__zero__iff,axiom,
! [X3: rat,Y: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y @ Y ) )
= zero_zero_rat )
= ( ( X3 = zero_zero_rat )
& ( Y = zero_zero_rat ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1982_sum__squares__eq__zero__iff,axiom,
! [X3: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1983_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_1984_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_1985_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_1986_div__mult__mult2,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_1987_div__mult__mult1,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_1988_div__mult__mult1,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_1989_mult__divide__mult__cancel__left__if,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( C = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= zero_zero_complex ) )
& ( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1990_mult__divide__mult__cancel__left__if,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( C = zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= zero_zero_rat ) )
& ( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1991_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1992_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1993_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1994_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1995_nonzero__mult__div__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1996_nonzero__mult__div__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1997_nonzero__mult__div__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1998_nonzero__mult__div__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1999_nonzero__mult__div__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_2000_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_2001_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_2002_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_2003_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_2004_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_2005_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_2006_nonzero__mult__div__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_2007_nonzero__mult__div__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_2008_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_2009_nonzero__mult__div__cancel__right,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_2010_nonzero__mult__div__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_2011_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_2012_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_2013_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_2014_distrib__right__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_2015_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_2016_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_2017_distrib__right__numeral,axiom,
! [A: extended_enat,B: extended_enat,V: num] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( numera1916890842035813515d_enat @ V ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ V ) ) @ ( times_7803423173614009249d_enat @ B @ ( numera1916890842035813515d_enat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_2018_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_2019_distrib__right__numeral,axiom,
! [A: code_integer,B: code_integer,V: num] :
( ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( numera6620942414471956472nteger @ V ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ B @ ( numera6620942414471956472nteger @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_2020_distrib__left__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_2021_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_2022_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_2023_distrib__left__numeral,axiom,
! [V: num,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ B ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_2024_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_2025_distrib__left__numeral,axiom,
! [V: num,B: code_integer,C: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( plus_p5714425477246183910nteger @ B @ C ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ B ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_2026_divide__eq__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_2027_divide__eq__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_2028_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_2029_div__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% div_self
thf(fact_2030_div__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% div_self
thf(fact_2031_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_2032_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_2033_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_2034_one__eq__divide__iff,axiom,
! [A: complex,B: complex] :
( ( one_one_complex
= ( divide1717551699836669952omplex @ A @ B ) )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_2035_one__eq__divide__iff,axiom,
! [A: rat,B: rat] :
( ( one_one_rat
= ( divide_divide_rat @ A @ B ) )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_2036_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_2037_divide__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% divide_self
thf(fact_2038_divide__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% divide_self
thf(fact_2039_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_2040_divide__self__if,axiom,
! [A: complex] :
( ( ( A = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= zero_zero_complex ) )
& ( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ) ).
% divide_self_if
thf(fact_2041_divide__self__if,axiom,
! [A: rat] :
( ( ( A = zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= zero_zero_rat ) )
& ( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ) ).
% divide_self_if
thf(fact_2042_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_2043_divide__eq__eq__1,axiom,
! [B: rat,A: rat] :
( ( ( divide_divide_rat @ B @ A )
= one_one_rat )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_2044_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_2045_eq__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( one_one_rat
= ( divide_divide_rat @ B @ A ) )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_2046_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_2047_one__divide__eq__0__iff,axiom,
! [A: rat] :
( ( ( divide_divide_rat @ one_one_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% one_divide_eq_0_iff
thf(fact_2048_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_2049_zero__eq__1__divide__iff,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( divide_divide_rat @ one_one_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% zero_eq_1_divide_iff
thf(fact_2050_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_2051_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numera6690914467698888265omplex @ N2 )
= one_one_complex )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_2052_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numeral_numeral_rat @ N2 )
= one_one_rat )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_2053_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numeral_numeral_nat @ N2 )
= one_one_nat )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_2054_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numeral_numeral_int @ N2 )
= one_one_int )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_2055_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numera1916890842035813515d_enat @ N2 )
= one_on7984719198319812577d_enat )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_2056_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numeral_numeral_real @ N2 )
= one_one_real )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_2057_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numera6620942414471956472nteger @ N2 )
= one_one_Code_integer )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_2058_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_complex
= ( numera6690914467698888265omplex @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_2059_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_rat
= ( numeral_numeral_rat @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_2060_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_2061_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_int
= ( numeral_numeral_int @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_2062_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_on7984719198319812577d_enat
= ( numera1916890842035813515d_enat @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_2063_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_real
= ( numeral_numeral_real @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_2064_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_Code_integer
= ( numera6620942414471956472nteger @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_2065_power__inject__exp,axiom,
! [A: real,M: nat,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N2 ) )
= ( M = N2 ) ) ) ).
% power_inject_exp
thf(fact_2066_power__inject__exp,axiom,
! [A: rat,M: nat,N2: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ( power_power_rat @ A @ M )
= ( power_power_rat @ A @ N2 ) )
= ( M = N2 ) ) ) ).
% power_inject_exp
thf(fact_2067_power__inject__exp,axiom,
! [A: nat,M: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N2 ) )
= ( M = N2 ) ) ) ).
% power_inject_exp
thf(fact_2068_power__inject__exp,axiom,
! [A: int,M: nat,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N2 ) )
= ( M = N2 ) ) ) ).
% power_inject_exp
thf(fact_2069_max__0__1_I2_J,axiom,
( ( ord_max_real @ one_one_real @ zero_zero_real )
= one_one_real ) ).
% max_0_1(2)
thf(fact_2070_max__0__1_I2_J,axiom,
( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
= one_one_rat ) ).
% max_0_1(2)
thf(fact_2071_max__0__1_I2_J,axiom,
( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
= one_one_nat ) ).
% max_0_1(2)
thf(fact_2072_max__0__1_I2_J,axiom,
( ( ord_max_int @ one_one_int @ zero_zero_int )
= one_one_int ) ).
% max_0_1(2)
thf(fact_2073_max__0__1_I1_J,axiom,
( ( ord_max_real @ zero_zero_real @ one_one_real )
= one_one_real ) ).
% max_0_1(1)
thf(fact_2074_max__0__1_I1_J,axiom,
( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
= one_one_rat ) ).
% max_0_1(1)
thf(fact_2075_max__0__1_I1_J,axiom,
( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
= one_one_nat ) ).
% max_0_1(1)
thf(fact_2076_max__0__1_I1_J,axiom,
( ( ord_max_int @ zero_zero_int @ one_one_int )
= one_one_int ) ).
% max_0_1(1)
thf(fact_2077_max__0__1_I6_J,axiom,
! [X3: num] :
( ( ord_max_rat @ ( numeral_numeral_rat @ X3 ) @ one_one_rat )
= ( numeral_numeral_rat @ X3 ) ) ).
% max_0_1(6)
thf(fact_2078_max__0__1_I6_J,axiom,
! [X3: num] :
( ( ord_max_nat @ ( numeral_numeral_nat @ X3 ) @ one_one_nat )
= ( numeral_numeral_nat @ X3 ) ) ).
% max_0_1(6)
thf(fact_2079_max__0__1_I6_J,axiom,
! [X3: num] :
( ( ord_max_int @ ( numeral_numeral_int @ X3 ) @ one_one_int )
= ( numeral_numeral_int @ X3 ) ) ).
% max_0_1(6)
thf(fact_2080_max__0__1_I6_J,axiom,
! [X3: num] :
( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X3 ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ X3 ) ) ).
% max_0_1(6)
thf(fact_2081_max__0__1_I6_J,axiom,
! [X3: num] :
( ( ord_max_real @ ( numeral_numeral_real @ X3 ) @ one_one_real )
= ( numeral_numeral_real @ X3 ) ) ).
% max_0_1(6)
thf(fact_2082_max__0__1_I6_J,axiom,
! [X3: num] :
( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X3 ) @ one_one_Code_integer )
= ( numera6620942414471956472nteger @ X3 ) ) ).
% max_0_1(6)
thf(fact_2083_max__0__1_I5_J,axiom,
! [X3: num] :
( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X3 ) )
= ( numeral_numeral_rat @ X3 ) ) ).
% max_0_1(5)
thf(fact_2084_max__0__1_I5_J,axiom,
! [X3: num] :
( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X3 ) )
= ( numeral_numeral_nat @ X3 ) ) ).
% max_0_1(5)
thf(fact_2085_max__0__1_I5_J,axiom,
! [X3: num] :
( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X3 ) )
= ( numeral_numeral_int @ X3 ) ) ).
% max_0_1(5)
thf(fact_2086_max__0__1_I5_J,axiom,
! [X3: num] :
( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X3 ) )
= ( numera1916890842035813515d_enat @ X3 ) ) ).
% max_0_1(5)
thf(fact_2087_max__0__1_I5_J,axiom,
! [X3: num] :
( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X3 ) )
= ( numeral_numeral_real @ X3 ) ) ).
% max_0_1(5)
thf(fact_2088_max__0__1_I5_J,axiom,
! [X3: num] :
( ( ord_max_Code_integer @ one_one_Code_integer @ ( numera6620942414471956472nteger @ X3 ) )
= ( numera6620942414471956472nteger @ X3 ) ) ).
% max_0_1(5)
thf(fact_2089_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N2 ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_2090_mult__less__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N2 ) ) ) ).
% mult_less_cancel2
thf(fact_2091_nat__0__less__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% nat_0_less_mult_iff
thf(fact_2092_less__one,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ one_one_nat )
= ( N2 = zero_zero_nat ) ) ).
% less_one
thf(fact_2093_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( divide_divide_nat @ M @ N2 ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_2094_zero__le__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_2095_zero__le__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_2096_divide__le__0__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% divide_le_0_1_iff
thf(fact_2097_divide__le__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% divide_le_0_1_iff
thf(fact_2098_zero__less__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_2099_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_2100_less__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_2101_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_2102_less__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_2103_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_2104_divide__less__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_2105_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_2106_divide__less__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_2107_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_2108_divide__less__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% divide_less_0_1_iff
thf(fact_2109_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_2110_le__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W2: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W2 ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W2 ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_2111_le__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W2: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W2 ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W2 ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_2112_divide__le__eq__numeral1_I1_J,axiom,
! [B: real,W2: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W2 ) ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W2 ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_2113_divide__le__eq__numeral1_I1_J,axiom,
! [B: rat,W2: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W2 ) ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W2 ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_2114_eq__divide__eq__numeral1_I1_J,axiom,
! [A: complex,B: complex,W2: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W2 ) ) )
= ( ( ( ( numera6690914467698888265omplex @ W2 )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W2 ) )
= B ) )
& ( ( ( numera6690914467698888265omplex @ W2 )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_2115_eq__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W2: num] :
( ( A
= ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W2 ) ) )
= ( ( ( ( numeral_numeral_rat @ W2 )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W2 ) )
= B ) )
& ( ( ( numeral_numeral_rat @ W2 )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_2116_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W2: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W2 ) ) )
= ( ( ( ( numeral_numeral_real @ W2 )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W2 ) )
= B ) )
& ( ( ( numeral_numeral_real @ W2 )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_2117_divide__eq__eq__numeral1_I1_J,axiom,
! [B: complex,W2: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W2 ) )
= A )
= ( ( ( ( numera6690914467698888265omplex @ W2 )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W2 ) ) ) )
& ( ( ( numera6690914467698888265omplex @ W2 )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_2118_divide__eq__eq__numeral1_I1_J,axiom,
! [B: rat,W2: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W2 ) )
= A )
= ( ( ( ( numeral_numeral_rat @ W2 )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( numeral_numeral_rat @ W2 ) ) ) )
& ( ( ( numeral_numeral_rat @ W2 )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_2119_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W2: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W2 ) )
= A )
= ( ( ( ( numeral_numeral_real @ W2 )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W2 ) ) ) )
& ( ( ( numeral_numeral_real @ W2 )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_2120_less__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W2: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W2 ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W2 ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_2121_less__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W2: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W2 ) ) )
= ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W2 ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_2122_divide__less__eq__numeral1_I1_J,axiom,
! [B: rat,W2: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W2 ) ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W2 ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_2123_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W2: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W2 ) ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W2 ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_2124_nonzero__divide__mult__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_2125_nonzero__divide__mult__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_2126_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_2127_nonzero__divide__mult__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_2128_nonzero__divide__mult__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_2129_nonzero__divide__mult__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_2130_div__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_2131_div__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_2132_div__mult__self3,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_2133_div__mult__self3,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_2134_div__mult__self2,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_2135_div__mult__self2,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_2136_div__mult__self1,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_2137_div__mult__self1,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_2138_power__strict__increasing__iff,axiom,
! [B: real,X3: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_nat @ X3 @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_2139_power__strict__increasing__iff,axiom,
! [B: rat,X3: nat,Y: nat] :
( ( ord_less_rat @ one_one_rat @ B )
=> ( ( ord_less_rat @ ( power_power_rat @ B @ X3 ) @ ( power_power_rat @ B @ Y ) )
= ( ord_less_nat @ X3 @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_2140_power__strict__increasing__iff,axiom,
! [B: nat,X3: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_nat @ X3 @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_2141_power__strict__increasing__iff,axiom,
! [B: int,X3: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_nat @ X3 @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_2142_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_2143_mult__le__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% mult_le_cancel2
thf(fact_2144_div__mult__self1__is__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( divide_divide_nat @ ( times_times_nat @ N2 @ M ) @ N2 )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_2145_div__mult__self__is__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N2 ) @ N2 )
= M ) ) ).
% div_mult_self_is_m
thf(fact_2146_le__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_2147_le__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_2148_le__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_2149_le__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_2150_divide__le__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_2151_divide__le__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_2152_divide__le__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_2153_divide__le__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_2154_one__add__one,axiom,
( ( plus_plus_complex @ one_one_complex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_2155_one__add__one,axiom,
( ( plus_plus_rat @ one_one_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_2156_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_2157_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_2158_one__add__one,axiom,
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_2159_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_2160_one__add__one,axiom,
( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ one_one_Code_integer )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_2161_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N2: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2162_power__strict__decreasing__iff,axiom,
! [B: rat,M: nat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2163_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2164_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2165_power__increasing__iff,axiom,
! [B: real,X3: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power_increasing_iff
thf(fact_2166_power__increasing__iff,axiom,
! [B: rat,X3: nat,Y: nat] :
( ( ord_less_rat @ one_one_rat @ B )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X3 ) @ ( power_power_rat @ B @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power_increasing_iff
thf(fact_2167_power__increasing__iff,axiom,
! [B: nat,X3: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power_increasing_iff
thf(fact_2168_power__increasing__iff,axiom,
! [B: int,X3: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power_increasing_iff
thf(fact_2169_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ one_one_complex )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_2170_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat )
= ( numeral_numeral_rat @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_2171_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_2172_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_2173_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_2174_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_2175_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ N2 ) @ one_one_Code_integer )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_2176_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N2 ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_2177_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_2178_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_2179_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N2 ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_2180_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N2 ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_2181_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N2 ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_2182_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ N2 ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_2183_numeral__le__one__iff,axiom,
! [N2: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ one_on7984719198319812577d_enat )
= ( ord_less_eq_num @ N2 @ one ) ) ).
% numeral_le_one_iff
thf(fact_2184_numeral__le__one__iff,axiom,
! [N2: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ one_one_real )
= ( ord_less_eq_num @ N2 @ one ) ) ).
% numeral_le_one_iff
thf(fact_2185_numeral__le__one__iff,axiom,
! [N2: num] :
( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ N2 ) @ one_one_Code_integer )
= ( ord_less_eq_num @ N2 @ one ) ) ).
% numeral_le_one_iff
thf(fact_2186_numeral__le__one__iff,axiom,
! [N2: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat )
= ( ord_less_eq_num @ N2 @ one ) ) ).
% numeral_le_one_iff
thf(fact_2187_numeral__le__one__iff,axiom,
! [N2: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat )
= ( ord_less_eq_num @ N2 @ one ) ) ).
% numeral_le_one_iff
thf(fact_2188_numeral__le__one__iff,axiom,
! [N2: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ one_one_int )
= ( ord_less_eq_num @ N2 @ one ) ) ).
% numeral_le_one_iff
thf(fact_2189_one__less__numeral__iff,axiom,
! [N2: num] :
( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) )
= ( ord_less_num @ one @ N2 ) ) ).
% one_less_numeral_iff
thf(fact_2190_one__less__numeral__iff,axiom,
! [N2: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) )
= ( ord_less_num @ one @ N2 ) ) ).
% one_less_numeral_iff
thf(fact_2191_one__less__numeral__iff,axiom,
! [N2: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N2 ) )
= ( ord_less_num @ one @ N2 ) ) ).
% one_less_numeral_iff
thf(fact_2192_one__less__numeral__iff,axiom,
! [N2: num] :
( ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N2 ) )
= ( ord_less_num @ one @ N2 ) ) ).
% one_less_numeral_iff
thf(fact_2193_one__less__numeral__iff,axiom,
! [N2: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N2 ) )
= ( ord_less_num @ one @ N2 ) ) ).
% one_less_numeral_iff
thf(fact_2194_one__less__numeral__iff,axiom,
! [N2: num] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ N2 ) )
= ( ord_less_num @ one @ N2 ) ) ).
% one_less_numeral_iff
thf(fact_2195_one__div__two__eq__zero,axiom,
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ).
% one_div_two_eq_zero
thf(fact_2196_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_2197_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_2198_bits__1__div__2,axiom,
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ).
% bits_1_div_2
thf(fact_2199_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_2200_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_2201_power__decreasing__iff,axiom,
! [B: real,M: nat,N2: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2202_power__decreasing__iff,axiom,
! [B: rat,M: nat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2203_power__decreasing__iff,axiom,
! [B: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2204_power__decreasing__iff,axiom,
! [B: int,M: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2205_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2206_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2207_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2208_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2209_comm__monoid__mult__class_Omult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_2210_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_2211_comm__monoid__mult__class_Omult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_2212_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_2213_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_2214_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_2215_mult_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_2216_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_2217_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_2218_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B3: real] : ( times_times_real @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_2219_mult_Ocommute,axiom,
( times_times_rat
= ( ^ [A3: rat,B3: rat] : ( times_times_rat @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_2220_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_2221_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B3: int] : ( times_times_int @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_2222_mult_Ocomm__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.comm_neutral
thf(fact_2223_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_2224_mult_Ocomm__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.comm_neutral
thf(fact_2225_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_2226_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_2227_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_2228_mult_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_2229_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_2230_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_2231_nat__mult__1,axiom,
! [N2: nat] :
( ( times_times_nat @ one_one_nat @ N2 )
= N2 ) ).
% nat_mult_1
thf(fact_2232_one__reorient,axiom,
! [X3: complex] :
( ( one_one_complex = X3 )
= ( X3 = one_one_complex ) ) ).
% one_reorient
thf(fact_2233_one__reorient,axiom,
! [X3: real] :
( ( one_one_real = X3 )
= ( X3 = one_one_real ) ) ).
% one_reorient
thf(fact_2234_one__reorient,axiom,
! [X3: rat] :
( ( one_one_rat = X3 )
= ( X3 = one_one_rat ) ) ).
% one_reorient
thf(fact_2235_one__reorient,axiom,
! [X3: nat] :
( ( one_one_nat = X3 )
= ( X3 = one_one_nat ) ) ).
% one_reorient
thf(fact_2236_one__reorient,axiom,
! [X3: int] :
( ( one_one_int = X3 )
= ( X3 = one_one_int ) ) ).
% one_reorient
thf(fact_2237_nat__mult__1__right,axiom,
! [N2: nat] :
( ( times_times_nat @ N2 @ one_one_nat )
= N2 ) ).
% nat_mult_1_right
thf(fact_2238_less__1__mult,axiom,
! [M: real,N2: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N2 )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_2239_less__1__mult,axiom,
! [M: rat,N2: rat] :
( ( ord_less_rat @ one_one_rat @ M )
=> ( ( ord_less_rat @ one_one_rat @ N2 )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_2240_less__1__mult,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N2 )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_2241_less__1__mult,axiom,
! [M: int,N2: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N2 )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_2242_mult__eq__self__implies__10,axiom,
! [M: nat,N2: nat] :
( ( M
= ( times_times_nat @ M @ N2 ) )
=> ( ( N2 = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_2243_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N2 ) )
= ( ( K = zero_zero_nat )
| ( M = N2 ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_2244_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_2245_mult__left__le,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ C @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2246_mult__left__le,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ C @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2247_mult__left__le,axiom,
! [C: nat,A: nat] :
( ( ord_less_eq_nat @ C @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2248_mult__left__le,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ C @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2249_mult__le__one,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).
% mult_le_one
thf(fact_2250_mult__le__one,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ B @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).
% mult_le_one
thf(fact_2251_mult__le__one,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).
% mult_le_one
thf(fact_2252_mult__le__one,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).
% mult_le_one
thf(fact_2253_mult__right__le__one__le,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ Y @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ X3 @ Y ) @ X3 ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2254_mult__right__le__one__le,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_eq_rat @ Y @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ X3 @ Y ) @ X3 ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2255_mult__right__le__one__le,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ord_less_eq_int @ Y @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ X3 @ Y ) @ X3 ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2256_mult__left__le__one__le,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ Y @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Y @ X3 ) @ X3 ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2257_mult__left__le__one__le,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_eq_rat @ Y @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Y @ X3 ) @ X3 ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2258_mult__left__le__one__le,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ord_less_eq_int @ Y @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ Y @ X3 ) @ X3 ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2259_power__less__power__Suc,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_2260_power__less__power__Suc,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_2261_power__less__power__Suc,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_2262_power__less__power__Suc,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_2263_power__gt1__lemma,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_2264_power__gt1__lemma,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_2265_power__gt1__lemma,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_2266_power__gt1__lemma,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_2267_mult__right__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_2268_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_2269_mult__right__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_2270_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_2271_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_2272_mult__left__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_2273_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_2274_mult__left__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_2275_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_2276_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_2277_no__zero__divisors,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( times_times_complex @ A @ B )
!= zero_zero_complex ) ) ) ).
% no_zero_divisors
thf(fact_2278_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_2279_no__zero__divisors,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( times_times_rat @ A @ B )
!= zero_zero_rat ) ) ) ).
% no_zero_divisors
thf(fact_2280_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_2281_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_2282_divisors__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
=> ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divisors_zero
thf(fact_2283_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_2284_divisors__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
=> ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divisors_zero
thf(fact_2285_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_2286_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_2287_mult__not__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
!= zero_zero_complex )
=> ( ( A != zero_zero_complex )
& ( B != zero_zero_complex ) ) ) ).
% mult_not_zero
thf(fact_2288_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_2289_mult__not__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
!= zero_zero_rat )
=> ( ( A != zero_zero_rat )
& ( B != zero_zero_rat ) ) ) ).
% mult_not_zero
thf(fact_2290_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_2291_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_2292_crossproduct__noteq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
!= ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_2293_crossproduct__noteq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) )
!= ( plus_plus_rat @ ( times_times_rat @ A @ D ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_2294_crossproduct__noteq,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
!= ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_2295_crossproduct__noteq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
!= ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_2296_crossproduct__eq,axiom,
! [W2: real,Y: real,X3: real,Z2: real] :
( ( ( plus_plus_real @ ( times_times_real @ W2 @ Y ) @ ( times_times_real @ X3 @ Z2 ) )
= ( plus_plus_real @ ( times_times_real @ W2 @ Z2 ) @ ( times_times_real @ X3 @ Y ) ) )
= ( ( W2 = X3 )
| ( Y = Z2 ) ) ) ).
% crossproduct_eq
thf(fact_2297_crossproduct__eq,axiom,
! [W2: rat,Y: rat,X3: rat,Z2: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ W2 @ Y ) @ ( times_times_rat @ X3 @ Z2 ) )
= ( plus_plus_rat @ ( times_times_rat @ W2 @ Z2 ) @ ( times_times_rat @ X3 @ Y ) ) )
= ( ( W2 = X3 )
| ( Y = Z2 ) ) ) ).
% crossproduct_eq
thf(fact_2298_crossproduct__eq,axiom,
! [W2: nat,Y: nat,X3: nat,Z2: nat] :
( ( ( plus_plus_nat @ ( times_times_nat @ W2 @ Y ) @ ( times_times_nat @ X3 @ Z2 ) )
= ( plus_plus_nat @ ( times_times_nat @ W2 @ Z2 ) @ ( times_times_nat @ X3 @ Y ) ) )
= ( ( W2 = X3 )
| ( Y = Z2 ) ) ) ).
% crossproduct_eq
thf(fact_2299_crossproduct__eq,axiom,
! [W2: int,Y: int,X3: int,Z2: int] :
( ( ( plus_plus_int @ ( times_times_int @ W2 @ Y ) @ ( times_times_int @ X3 @ Z2 ) )
= ( plus_plus_int @ ( times_times_int @ W2 @ Z2 ) @ ( times_times_int @ X3 @ Y ) ) )
= ( ( W2 = X3 )
| ( Y = Z2 ) ) ) ).
% crossproduct_eq
thf(fact_2300_combine__common__factor,axiom,
! [A: real,E2: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_2301_combine__common__factor,axiom,
! [A: rat,E2: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_2302_combine__common__factor,axiom,
! [A: nat,E2: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E2 ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E2 ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_2303_combine__common__factor,axiom,
! [A: int,E2: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_2304_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_2305_distrib__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% distrib_right
thf(fact_2306_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_2307_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_2308_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_2309_distrib__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% distrib_left
thf(fact_2310_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_2311_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_2312_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_2313_comm__semiring__class_Odistrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_2314_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_2315_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_2316_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_2317_ring__class_Oring__distribs_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_2318_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_2319_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_2320_ring__class_Oring__distribs_I2_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_2321_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_2322_times__divide__times__eq,axiom,
! [X3: rat,Y: rat,Z2: rat,W2: rat] :
( ( times_times_rat @ ( divide_divide_rat @ X3 @ Y ) @ ( divide_divide_rat @ Z2 @ W2 ) )
= ( divide_divide_rat @ ( times_times_rat @ X3 @ Z2 ) @ ( times_times_rat @ Y @ W2 ) ) ) ).
% times_divide_times_eq
thf(fact_2323_times__divide__times__eq,axiom,
! [X3: real,Y: real,Z2: real,W2: real] :
( ( times_times_real @ ( divide_divide_real @ X3 @ Y ) @ ( divide_divide_real @ Z2 @ W2 ) )
= ( divide_divide_real @ ( times_times_real @ X3 @ Z2 ) @ ( times_times_real @ Y @ W2 ) ) ) ).
% times_divide_times_eq
thf(fact_2324_divide__divide__times__eq,axiom,
! [X3: rat,Y: rat,Z2: rat,W2: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ X3 @ Y ) @ ( divide_divide_rat @ Z2 @ W2 ) )
= ( divide_divide_rat @ ( times_times_rat @ X3 @ W2 ) @ ( times_times_rat @ Y @ Z2 ) ) ) ).
% divide_divide_times_eq
thf(fact_2325_divide__divide__times__eq,axiom,
! [X3: real,Y: real,Z2: real,W2: real] :
( ( divide_divide_real @ ( divide_divide_real @ X3 @ Y ) @ ( divide_divide_real @ Z2 @ W2 ) )
= ( divide_divide_real @ ( times_times_real @ X3 @ W2 ) @ ( times_times_real @ Y @ Z2 ) ) ) ).
% divide_divide_times_eq
thf(fact_2326_divide__divide__eq__left_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_2327_divide__divide__eq__left_H,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_2328_mult__0,axiom,
! [N2: nat] :
( ( times_times_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% mult_0
thf(fact_2329_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_2330_le__numeral__extra_I4_J,axiom,
ord_less_eq_rat @ one_one_rat @ one_one_rat ).
% le_numeral_extra(4)
thf(fact_2331_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_2332_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_2333_zero__neq__one,axiom,
zero_zero_complex != one_one_complex ).
% zero_neq_one
thf(fact_2334_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_2335_zero__neq__one,axiom,
zero_zero_rat != one_one_rat ).
% zero_neq_one
thf(fact_2336_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_2337_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_2338_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_2339_less__numeral__extra_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).
% less_numeral_extra(4)
thf(fact_2340_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_2341_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_2342_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_2343_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_2344_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_2345_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_2346_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_2347_add__mult__distrib2,axiom,
! [K: nat,M: nat,N2: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% add_mult_distrib2
thf(fact_2348_add__mult__distrib,axiom,
! [M: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N2 ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% add_mult_distrib
thf(fact_2349_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ) ).
% nat_mult_less_cancel1
thf(fact_2350_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N2 ) )
= ( M = N2 ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_2351_nat__mult__max__left,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( times_times_nat @ ( ord_max_nat @ M @ N2 ) @ Q2 )
= ( ord_max_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N2 @ Q2 ) ) ) ).
% nat_mult_max_left
thf(fact_2352_nat__mult__max__right,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( times_times_nat @ M @ ( ord_max_nat @ N2 @ Q2 ) )
= ( ord_max_nat @ ( times_times_nat @ M @ N2 ) @ ( times_times_nat @ M @ Q2 ) ) ) ).
% nat_mult_max_right
thf(fact_2353_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N2: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I @ N2 ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_2354_times__div__less__eq__dividend,axiom,
! [N2: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N2 @ ( divide_divide_nat @ M @ N2 ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_2355_div__times__less__eq__dividend,axiom,
! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N2 ) @ N2 ) @ M ) ).
% div_times_less_eq_dividend
thf(fact_2356_field__le__mult__one__interval,axiom,
! [X3: real,Y: real] :
( ! [Z3: real] :
( ( ord_less_real @ zero_zero_real @ Z3 )
=> ( ( ord_less_real @ Z3 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Z3 @ X3 ) @ Y ) ) )
=> ( ord_less_eq_real @ X3 @ Y ) ) ).
% field_le_mult_one_interval
thf(fact_2357_field__le__mult__one__interval,axiom,
! [X3: rat,Y: rat] :
( ! [Z3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z3 )
=> ( ( ord_less_rat @ Z3 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Z3 @ X3 ) @ Y ) ) )
=> ( ord_less_eq_rat @ X3 @ Y ) ) ).
% field_le_mult_one_interval
thf(fact_2358_mult__less__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2359_mult__less__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2360_mult__less__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2361_mult__less__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2362_mult__less__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2363_mult__less__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2364_mult__less__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2365_mult__less__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2366_mult__less__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2367_mult__less__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2368_mult__less__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2369_mult__less__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2370_mult__le__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2371_mult__le__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2372_mult__le__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2373_mult__le__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2374_mult__le__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2375_mult__le__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2376_mult__le__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2377_mult__le__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2378_mult__le__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2379_mult__le__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2380_mult__le__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2381_mult__le__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2382_convex__bound__le,axiom,
! [X3: real,A: real,Y: real,U: real,V: real] :
( ( ord_less_eq_real @ X3 @ A )
=> ( ( ord_less_eq_real @ Y @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X3 ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_2383_convex__bound__le,axiom,
! [X3: rat,A: rat,Y: rat,U: rat,V: rat] :
( ( ord_less_eq_rat @ X3 @ A )
=> ( ( ord_less_eq_rat @ Y @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U @ V )
= one_one_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X3 ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_2384_convex__bound__le,axiom,
! [X3: int,A: int,Y: int,U: int,V: int] :
( ( ord_less_eq_int @ X3 @ A )
=> ( ( ord_less_eq_int @ Y @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X3 ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_2385_power__Suc__less,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) @ ( power_power_real @ A @ N2 ) ) ) ) ).
% power_Suc_less
thf(fact_2386_power__Suc__less,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) @ ( power_power_rat @ A @ N2 ) ) ) ) ).
% power_Suc_less
thf(fact_2387_power__Suc__less,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_Suc_less
thf(fact_2388_power__Suc__less,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_Suc_less
thf(fact_2389_convex__bound__lt,axiom,
! [X3: real,A: real,Y: real,U: real,V: real] :
( ( ord_less_real @ X3 @ A )
=> ( ( ord_less_real @ Y @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X3 ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_2390_convex__bound__lt,axiom,
! [X3: rat,A: rat,Y: rat,U: rat,V: rat] :
( ( ord_less_rat @ X3 @ A )
=> ( ( ord_less_rat @ Y @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U @ V )
= one_one_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X3 ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_2391_convex__bound__lt,axiom,
! [X3: int,A: int,Y: int,U: int,V: int] :
( ( ord_less_int @ X3 @ A )
=> ( ( ord_less_int @ Y @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X3 ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_2392_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2393_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2394_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2395_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2396_zero__le__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_mult_iff
thf(fact_2397_zero__le__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_mult_iff
thf(fact_2398_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_2399_mult__nonneg__nonpos2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2400_mult__nonneg__nonpos2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2401_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2402_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_2403_mult__nonpos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2404_mult__nonpos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2405_mult__nonpos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2406_mult__nonpos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonpos_nonneg
thf(fact_2407_mult__nonneg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2408_mult__nonneg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2409_mult__nonneg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2410_mult__nonneg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos
thf(fact_2411_mult__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2412_mult__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2413_mult__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2414_mult__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_2415_split__mult__neg__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).
% split_mult_neg_le
thf(fact_2416_split__mult__neg__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).
% split_mult_neg_le
thf(fact_2417_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_2418_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_2419_mult__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_2420_mult__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_2421_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_2422_mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2423_mult__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2424_mult__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2425_mult__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_2426_mult__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_2427_mult__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_2428_mult__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_2429_mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2430_mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2431_mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2432_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_2433_mult__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_2434_mult__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_2435_mult__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_2436_mult__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_2437_mult__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_2438_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_2439_split__mult__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_2440_split__mult__pos__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_2441_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_2442_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_2443_zero__le__square,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).
% zero_le_square
thf(fact_2444_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_2445_mult__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2446_mult__mono_H,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2447_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2448_mult__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_2449_mult__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2450_mult__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2451_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2452_mult__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_2453_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2454_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2455_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2456_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2457_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2458_mult__less__cancel__right__disj,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2459_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2460_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2461_mult__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2462_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2463_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2464_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2465_mult__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2466_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2467_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2468_mult__less__cancel__left__disj,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2469_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2470_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2471_mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2472_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2473_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2474_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2475_mult__strict__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2476_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2477_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2478_mult__less__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2479_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2480_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2481_mult__less__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2482_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2483_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2484_zero__less__mult__pos2,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2485_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2486_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2487_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2488_zero__less__mult__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2489_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2490_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2491_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2492_zero__less__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2493_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2494_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_2495_mult__pos__neg2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg2
thf(fact_2496_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_2497_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_2498_mult__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2499_mult__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2500_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2501_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2502_mult__pos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_2503_mult__pos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg
thf(fact_2504_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_2505_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_2506_mult__neg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_2507_mult__neg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_neg_pos
thf(fact_2508_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_2509_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_2510_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2511_mult__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2512_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2513_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_2514_not__square__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).
% not_square_less_zero
thf(fact_2515_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_2516_mult__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2517_mult__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2518_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2519_add__scale__eq__noteq,axiom,
! [R2: complex,A: complex,B: complex,C: complex,D: complex] :
( ( R2 != zero_zero_complex )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_complex @ A @ ( times_times_complex @ R2 @ C ) )
!= ( plus_plus_complex @ B @ ( times_times_complex @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_2520_add__scale__eq__noteq,axiom,
! [R2: real,A: real,B: real,C: real,D: real] :
( ( R2 != zero_zero_real )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_real @ A @ ( times_times_real @ R2 @ C ) )
!= ( plus_plus_real @ B @ ( times_times_real @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_2521_add__scale__eq__noteq,axiom,
! [R2: rat,A: rat,B: rat,C: rat,D: rat] :
( ( R2 != zero_zero_rat )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_rat @ A @ ( times_times_rat @ R2 @ C ) )
!= ( plus_plus_rat @ B @ ( times_times_rat @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_2522_add__scale__eq__noteq,axiom,
! [R2: nat,A: nat,B: nat,C: nat,D: nat] :
( ( R2 != zero_zero_nat )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_nat @ A @ ( times_times_nat @ R2 @ C ) )
!= ( plus_plus_nat @ B @ ( times_times_nat @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_2523_add__scale__eq__noteq,axiom,
! [R2: int,A: int,B: int,C: int,D: int] :
( ( R2 != zero_zero_int )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_int @ A @ ( times_times_int @ R2 @ C ) )
!= ( plus_plus_int @ B @ ( times_times_int @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_2524_frac__eq__eq,axiom,
! [Y: complex,Z2: complex,X3: complex,W2: complex] :
( ( Y != zero_zero_complex )
=> ( ( Z2 != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ X3 @ Y )
= ( divide1717551699836669952omplex @ W2 @ Z2 ) )
= ( ( times_times_complex @ X3 @ Z2 )
= ( times_times_complex @ W2 @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_2525_frac__eq__eq,axiom,
! [Y: rat,Z2: rat,X3: rat,W2: rat] :
( ( Y != zero_zero_rat )
=> ( ( Z2 != zero_zero_rat )
=> ( ( ( divide_divide_rat @ X3 @ Y )
= ( divide_divide_rat @ W2 @ Z2 ) )
= ( ( times_times_rat @ X3 @ Z2 )
= ( times_times_rat @ W2 @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_2526_frac__eq__eq,axiom,
! [Y: real,Z2: real,X3: real,W2: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( ( divide_divide_real @ X3 @ Y )
= ( divide_divide_real @ W2 @ Z2 ) )
= ( ( times_times_real @ X3 @ Z2 )
= ( times_times_real @ W2 @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_2527_divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq
thf(fact_2528_divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( divide_divide_rat @ B @ C )
= A )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq
thf(fact_2529_divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( divide_divide_real @ B @ C )
= A )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_2530_eq__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq
thf(fact_2531_eq__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq
thf(fact_2532_eq__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_2533_divide__eq__imp,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( B
= ( times_times_complex @ A @ C ) )
=> ( ( divide1717551699836669952omplex @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_2534_divide__eq__imp,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( B
= ( times_times_rat @ A @ C ) )
=> ( ( divide_divide_rat @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_2535_divide__eq__imp,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_2536_eq__divide__imp,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= B )
=> ( A
= ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_2537_eq__divide__imp,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= B )
=> ( A
= ( divide_divide_rat @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_2538_eq__divide__imp,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= B )
=> ( A
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_2539_nonzero__divide__eq__eq,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( B
= ( times_times_complex @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_2540_nonzero__divide__eq__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( ( divide_divide_rat @ B @ C )
= A )
= ( B
= ( times_times_rat @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_2541_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A )
= ( B
= ( times_times_real @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_2542_nonzero__eq__divide__eq,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( times_times_complex @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_2543_nonzero__eq__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( times_times_rat @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_2544_nonzero__eq__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_2545_mult__numeral__1,axiom,
! [A: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_2546_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_2547_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_2548_mult__numeral__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_2549_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_2550_mult__numeral__1,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_2551_mult__numeral__1__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_2552_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_2553_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_2554_mult__numeral__1__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_2555_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_2556_mult__numeral__1__right,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ A @ ( numera6620942414471956472nteger @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_2557_div__add__self2,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self2
thf(fact_2558_div__add__self2,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self2
thf(fact_2559_div__add__self1,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self1
thf(fact_2560_div__add__self1,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self1
thf(fact_2561_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% nat_mult_le_cancel1
thf(fact_2562_div__less__iff__less__mult,axiom,
! [Q2: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N2 )
= ( ord_less_nat @ M @ ( times_times_nat @ N2 @ Q2 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_2563_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( divide_divide_nat @ M @ N2 ) ) ) ).
% nat_mult_div_cancel1
thf(fact_2564_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_2565_not__one__le__zero,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_le_zero
thf(fact_2566_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_2567_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_2568_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2569_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2570_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2571_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2572_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_2573_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one_class.zero_le_one
thf(fact_2574_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_2575_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_2576_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_2577_not__one__less__zero,axiom,
~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_less_zero
thf(fact_2578_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_2579_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_2580_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_2581_zero__less__one,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one
thf(fact_2582_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_2583_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_2584_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_2585_less__numeral__extra_I1_J,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% less_numeral_extra(1)
thf(fact_2586_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_2587_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_2588_power__add,axiom,
! [A: complex,M: nat,N2: nat] :
( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ).
% power_add
thf(fact_2589_power__add,axiom,
! [A: real,M: nat,N2: nat] :
( ( power_power_real @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ).
% power_add
thf(fact_2590_power__add,axiom,
! [A: rat,M: nat,N2: nat] :
( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) ) ) ).
% power_add
thf(fact_2591_power__add,axiom,
! [A: nat,M: nat,N2: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_add
thf(fact_2592_power__add,axiom,
! [A: int,M: nat,N2: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ).
% power_add
thf(fact_2593_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_2594_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_2595_one__le__numeral,axiom,
! [N2: num] : ( ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N2 ) ) ).
% one_le_numeral
thf(fact_2596_one__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N2 ) ) ).
% one_le_numeral
thf(fact_2597_one__le__numeral,axiom,
! [N2: num] : ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ N2 ) ) ).
% one_le_numeral
thf(fact_2598_one__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) ) ).
% one_le_numeral
thf(fact_2599_one__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) ) ).
% one_le_numeral
thf(fact_2600_one__le__numeral,axiom,
! [N2: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N2 ) ) ).
% one_le_numeral
thf(fact_2601_not__numeral__less__one,axiom,
! [N2: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat ) ).
% not_numeral_less_one
thf(fact_2602_not__numeral__less__one,axiom,
! [N2: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_2603_not__numeral__less__one,axiom,
! [N2: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_2604_not__numeral__less__one,axiom,
! [N2: num] :
~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ one_on7984719198319812577d_enat ) ).
% not_numeral_less_one
thf(fact_2605_not__numeral__less__one,axiom,
! [N2: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_2606_not__numeral__less__one,axiom,
! [N2: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ N2 ) @ one_one_Code_integer ) ).
% not_numeral_less_one
thf(fact_2607_add__mono1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).
% add_mono1
thf(fact_2608_add__mono1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).
% add_mono1
thf(fact_2609_add__mono1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).
% add_mono1
thf(fact_2610_add__mono1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).
% add_mono1
thf(fact_2611_less__add__one,axiom,
! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).
% less_add_one
thf(fact_2612_less__add__one,axiom,
! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).
% less_add_one
thf(fact_2613_less__add__one,axiom,
! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).
% less_add_one
thf(fact_2614_less__add__one,axiom,
! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).
% less_add_one
thf(fact_2615_right__inverse__eq,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_2616_right__inverse__eq,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_2617_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_2618_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X3 ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ X3 ) @ one_one_complex ) ) ).
% one_plus_numeral_commute
thf(fact_2619_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X3 ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ X3 ) @ one_one_rat ) ) ).
% one_plus_numeral_commute
thf(fact_2620_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X3 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X3 ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_2621_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X3 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X3 ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_2622_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X3 ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ X3 ) @ one_on7984719198319812577d_enat ) ) ).
% one_plus_numeral_commute
thf(fact_2623_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X3 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X3 ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_2624_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ X3 ) )
= ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ X3 ) @ one_one_Code_integer ) ) ).
% one_plus_numeral_commute
thf(fact_2625_numeral__One,axiom,
( ( numera6690914467698888265omplex @ one )
= one_one_complex ) ).
% numeral_One
thf(fact_2626_numeral__One,axiom,
( ( numeral_numeral_rat @ one )
= one_one_rat ) ).
% numeral_One
thf(fact_2627_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_2628_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_2629_numeral__One,axiom,
( ( numera1916890842035813515d_enat @ one )
= one_on7984719198319812577d_enat ) ).
% numeral_One
thf(fact_2630_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_2631_numeral__One,axiom,
( ( numera6620942414471956472nteger @ one )
= one_one_Code_integer ) ).
% numeral_One
thf(fact_2632_one__le__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_2633_one__le__power,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_2634_one__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_2635_one__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_2636_div__eq__dividend__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N2 )
= M )
= ( N2 = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_2637_div__less__dividend,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ M ) ) ) ).
% div_less_dividend
thf(fact_2638_power__0,axiom,
! [A: rat] :
( ( power_power_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% power_0
thf(fact_2639_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_2640_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_2641_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_2642_power__0,axiom,
! [A: complex] :
( ( power_power_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% power_0
thf(fact_2643_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_2644_less__eq__div__iff__mult__less__eq,axiom,
! [Q2: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N2 @ Q2 ) )
= ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N2 ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_2645_dividend__less__times__div,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ N2 @ ( divide_divide_nat @ M @ N2 ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_2646_dividend__less__div__times,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( divide_divide_nat @ M @ N2 ) @ N2 ) ) ) ) ).
% dividend_less_div_times
thf(fact_2647_split__div,axiom,
! [P: nat > $o,M: nat,N2: nat] :
( ( P @ ( divide_divide_nat @ M @ N2 ) )
= ( ( ( N2 = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N2 != zero_zero_nat )
=> ! [I5: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N2 )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N2 @ I5 ) @ J3 ) )
=> ( P @ I5 ) ) ) ) ) ) ).
% split_div
thf(fact_2648_mult__less__le__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2649_mult__less__le__imp__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2650_mult__less__le__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2651_mult__less__le__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2652_mult__le__less__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2653_mult__le__less__imp__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2654_mult__le__less__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2655_mult__le__less__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2656_mult__right__le__imp__le,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2657_mult__right__le__imp__le,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2658_mult__right__le__imp__le,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2659_mult__right__le__imp__le,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2660_mult__left__le__imp__le,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2661_mult__left__le__imp__le,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2662_mult__left__le__imp__le,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2663_mult__left__le__imp__le,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2664_mult__le__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2665_mult__le__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2666_mult__le__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2667_mult__le__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2668_mult__le__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2669_mult__le__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2670_mult__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2671_mult__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2672_mult__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2673_mult__strict__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2674_mult__strict__mono_H,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2675_mult__strict__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2676_mult__strict__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2677_mult__right__less__imp__less,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2678_mult__right__less__imp__less,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2679_mult__right__less__imp__less,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2680_mult__right__less__imp__less,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2681_mult__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2682_mult__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2683_mult__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2684_mult__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2685_mult__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2686_mult__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2687_mult__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2688_mult__left__less__imp__less,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2689_mult__left__less__imp__less,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2690_mult__left__less__imp__less,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2691_mult__left__less__imp__less,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2692_mult__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2693_mult__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2694_mult__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2695_mult__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2696_mult__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2697_mult__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2698_sum__squares__ge__zero,axiom,
! [X3: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y @ Y ) ) ) ).
% sum_squares_ge_zero
thf(fact_2699_sum__squares__ge__zero,axiom,
! [X3: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y @ Y ) ) ) ).
% sum_squares_ge_zero
thf(fact_2700_sum__squares__ge__zero,axiom,
! [X3: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y @ Y ) ) ) ).
% sum_squares_ge_zero
thf(fact_2701_sum__squares__le__zero__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_2702_sum__squares__le__zero__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat )
= ( ( X3 = zero_zero_rat )
& ( Y = zero_zero_rat ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_2703_sum__squares__le__zero__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_2704_not__sum__squares__lt__zero,axiom,
! [X3: real,Y: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real ) ).
% not_sum_squares_lt_zero
thf(fact_2705_not__sum__squares__lt__zero,axiom,
! [X3: rat,Y: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat ) ).
% not_sum_squares_lt_zero
thf(fact_2706_not__sum__squares__lt__zero,axiom,
! [X3: int,Y: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int ) ).
% not_sum_squares_lt_zero
thf(fact_2707_sum__squares__gt__zero__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y @ Y ) ) )
= ( ( X3 != zero_zero_real )
| ( Y != zero_zero_real ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2708_sum__squares__gt__zero__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y @ Y ) ) )
= ( ( X3 != zero_zero_rat )
| ( Y != zero_zero_rat ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2709_sum__squares__gt__zero__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y @ Y ) ) )
= ( ( X3 != zero_zero_int )
| ( Y != zero_zero_int ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2710_divide__strict__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2711_divide__strict__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2712_divide__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2713_divide__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2714_mult__imp__less__div__pos,axiom,
! [Y: rat,Z2: rat,X3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_rat @ ( times_times_rat @ Z2 @ Y ) @ X3 )
=> ( ord_less_rat @ Z2 @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2715_mult__imp__less__div__pos,axiom,
! [Y: real,Z2: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( times_times_real @ Z2 @ Y ) @ X3 )
=> ( ord_less_real @ Z2 @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2716_mult__imp__div__pos__less,axiom,
! [Y: rat,X3: rat,Z2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_rat @ X3 @ ( times_times_rat @ Z2 @ Y ) )
=> ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y ) @ Z2 ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2717_mult__imp__div__pos__less,axiom,
! [Y: real,X3: real,Z2: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X3 @ ( times_times_real @ Z2 @ Y ) )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Y ) @ Z2 ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2718_pos__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2719_pos__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2720_pos__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2721_pos__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2722_neg__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2723_neg__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2724_neg__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2725_neg__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2726_less__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2727_less__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2728_divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2729_divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2730_eq__divide__eq__numeral_I1_J,axiom,
! [W2: num,B: complex,C: complex] :
( ( ( numera6690914467698888265omplex @ W2 )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ W2 ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W2 )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_2731_eq__divide__eq__numeral_I1_J,axiom,
! [W2: num,B: rat,C: rat] :
( ( ( numeral_numeral_rat @ W2 )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W2 )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_2732_eq__divide__eq__numeral_I1_J,axiom,
! [W2: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W2 )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W2 )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_2733_divide__eq__eq__numeral_I1_J,axiom,
! [B: complex,C: complex,W2: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( numera6690914467698888265omplex @ W2 ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( numera6690914467698888265omplex @ W2 ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W2 )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_2734_divide__eq__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W2: num] :
( ( ( divide_divide_rat @ B @ C )
= ( numeral_numeral_rat @ W2 ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W2 )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_2735_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W2: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W2 ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W2 )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_2736_divide__add__eq__iff,axiom,
! [Z2: complex,X3: complex,Y: complex] :
( ( Z2 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X3 @ Z2 ) @ Y )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X3 @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% divide_add_eq_iff
thf(fact_2737_divide__add__eq__iff,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( Z2 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ Z2 ) @ Y )
= ( divide_divide_rat @ ( plus_plus_rat @ X3 @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% divide_add_eq_iff
thf(fact_2738_divide__add__eq__iff,axiom,
! [Z2: real,X3: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X3 @ Z2 ) @ Y )
= ( divide_divide_real @ ( plus_plus_real @ X3 @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% divide_add_eq_iff
thf(fact_2739_add__divide__eq__iff,axiom,
! [Z2: complex,X3: complex,Y: complex] :
( ( Z2 != zero_zero_complex )
=> ( ( plus_plus_complex @ X3 @ ( divide1717551699836669952omplex @ Y @ Z2 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X3 @ Z2 ) @ Y ) @ Z2 ) ) ) ).
% add_divide_eq_iff
thf(fact_2740_add__divide__eq__iff,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( Z2 != zero_zero_rat )
=> ( ( plus_plus_rat @ X3 @ ( divide_divide_rat @ Y @ Z2 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ Z2 ) @ Y ) @ Z2 ) ) ) ).
% add_divide_eq_iff
thf(fact_2741_add__divide__eq__iff,axiom,
! [Z2: real,X3: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( plus_plus_real @ X3 @ ( divide_divide_real @ Y @ Z2 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X3 @ Z2 ) @ Y ) @ Z2 ) ) ) ).
% add_divide_eq_iff
thf(fact_2742_add__num__frac,axiom,
! [Y: complex,Z2: complex,X3: complex] :
( ( Y != zero_zero_complex )
=> ( ( plus_plus_complex @ Z2 @ ( divide1717551699836669952omplex @ X3 @ Y ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X3 @ ( times_times_complex @ Z2 @ Y ) ) @ Y ) ) ) ).
% add_num_frac
thf(fact_2743_add__num__frac,axiom,
! [Y: rat,Z2: rat,X3: rat] :
( ( Y != zero_zero_rat )
=> ( ( plus_plus_rat @ Z2 @ ( divide_divide_rat @ X3 @ Y ) )
= ( divide_divide_rat @ ( plus_plus_rat @ X3 @ ( times_times_rat @ Z2 @ Y ) ) @ Y ) ) ) ).
% add_num_frac
thf(fact_2744_add__num__frac,axiom,
! [Y: real,Z2: real,X3: real] :
( ( Y != zero_zero_real )
=> ( ( plus_plus_real @ Z2 @ ( divide_divide_real @ X3 @ Y ) )
= ( divide_divide_real @ ( plus_plus_real @ X3 @ ( times_times_real @ Z2 @ Y ) ) @ Y ) ) ) ).
% add_num_frac
thf(fact_2745_add__frac__num,axiom,
! [Y: complex,X3: complex,Z2: complex] :
( ( Y != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X3 @ Y ) @ Z2 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X3 @ ( times_times_complex @ Z2 @ Y ) ) @ Y ) ) ) ).
% add_frac_num
thf(fact_2746_add__frac__num,axiom,
! [Y: rat,X3: rat,Z2: rat] :
( ( Y != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ Y ) @ Z2 )
= ( divide_divide_rat @ ( plus_plus_rat @ X3 @ ( times_times_rat @ Z2 @ Y ) ) @ Y ) ) ) ).
% add_frac_num
thf(fact_2747_add__frac__num,axiom,
! [Y: real,X3: real,Z2: real] :
( ( Y != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X3 @ Y ) @ Z2 )
= ( divide_divide_real @ ( plus_plus_real @ X3 @ ( times_times_real @ Z2 @ Y ) ) @ Y ) ) ) ).
% add_frac_num
thf(fact_2748_add__frac__eq,axiom,
! [Y: complex,Z2: complex,X3: complex,W2: complex] :
( ( Y != zero_zero_complex )
=> ( ( Z2 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X3 @ Y ) @ ( divide1717551699836669952omplex @ W2 @ Z2 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X3 @ Z2 ) @ ( times_times_complex @ W2 @ Y ) ) @ ( times_times_complex @ Y @ Z2 ) ) ) ) ) ).
% add_frac_eq
thf(fact_2749_add__frac__eq,axiom,
! [Y: rat,Z2: rat,X3: rat,W2: rat] :
( ( Y != zero_zero_rat )
=> ( ( Z2 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ Y ) @ ( divide_divide_rat @ W2 @ Z2 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ Z2 ) @ ( times_times_rat @ W2 @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) ) ) ) ).
% add_frac_eq
thf(fact_2750_add__frac__eq,axiom,
! [Y: real,Z2: real,X3: real,W2: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X3 @ Y ) @ ( divide_divide_real @ W2 @ Z2 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X3 @ Z2 ) @ ( times_times_real @ W2 @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) ) ) ) ).
% add_frac_eq
thf(fact_2751_add__divide__eq__if__simps_I1_J,axiom,
! [Z2: complex,A: complex,B: complex] :
( ( ( Z2 = zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
= A ) )
& ( ( Z2 != zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_2752_add__divide__eq__if__simps_I1_J,axiom,
! [Z2: rat,A: rat,B: rat] :
( ( ( Z2 = zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
= A ) )
& ( ( Z2 != zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_2753_add__divide__eq__if__simps_I1_J,axiom,
! [Z2: real,A: real,B: real] :
( ( ( Z2 = zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
= A ) )
& ( ( Z2 != zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_2754_add__divide__eq__if__simps_I2_J,axiom,
! [Z2: complex,A: complex,B: complex] :
( ( ( Z2 = zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
= B ) )
& ( ( Z2 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_2755_add__divide__eq__if__simps_I2_J,axiom,
! [Z2: rat,A: rat,B: rat] :
( ( ( Z2 = zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
= B ) )
& ( ( Z2 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_2756_add__divide__eq__if__simps_I2_J,axiom,
! [Z2: real,A: real,B: real] :
( ( ( Z2 = zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
= B ) )
& ( ( Z2 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_2757_zero__less__two,axiom,
ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).
% zero_less_two
thf(fact_2758_zero__less__two,axiom,
ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).
% zero_less_two
thf(fact_2759_zero__less__two,axiom,
ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).
% zero_less_two
thf(fact_2760_zero__less__two,axiom,
ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).
% zero_less_two
thf(fact_2761_less__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_2762_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_2763_divide__less__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_less_eq_1
thf(fact_2764_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_2765_power__le__one,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_2766_power__le__one,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ one_one_rat ) ) ) ).
% power_le_one
thf(fact_2767_power__le__one,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_2768_power__le__one,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_2769_less__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).
% less_half_sum
thf(fact_2770_less__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).
% less_half_sum
thf(fact_2771_gt__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).
% gt_half_sum
thf(fact_2772_gt__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).
% gt_half_sum
thf(fact_2773_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N2 )
= one_one_rat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N2 )
= zero_zero_rat ) ) ) ).
% power_0_left
thf(fact_2774_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= one_one_nat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_2775_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N2 )
= one_one_real ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N2 )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_2776_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= one_one_int ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_2777_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N2 )
= one_one_complex ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N2 )
= zero_zero_complex ) ) ) ).
% power_0_left
thf(fact_2778_power__strict__increasing,axiom,
! [N2: nat,N5: nat,A: real] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2779_power__strict__increasing,axiom,
! [N2: nat,N5: nat,A: rat] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2780_power__strict__increasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2781_power__strict__increasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2782_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% power_less_imp_less_exp
thf(fact_2783_power__less__imp__less__exp,axiom,
! [A: rat,M: nat,N2: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% power_less_imp_less_exp
thf(fact_2784_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% power_less_imp_less_exp
thf(fact_2785_power__less__imp__less__exp,axiom,
! [A: int,M: nat,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% power_less_imp_less_exp
thf(fact_2786_power__increasing,axiom,
! [N2: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2787_power__increasing,axiom,
! [N2: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2788_power__increasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2789_power__increasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2790_divide__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2791_divide__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2792_mult__imp__le__div__pos,axiom,
! [Y: real,Z2: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z2 @ Y ) @ X3 )
=> ( ord_less_eq_real @ Z2 @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2793_mult__imp__le__div__pos,axiom,
! [Y: rat,Z2: rat,X3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z2 @ Y ) @ X3 )
=> ( ord_less_eq_rat @ Z2 @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2794_mult__imp__div__pos__le,axiom,
! [Y: real,X3: real,Z2: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ X3 @ ( times_times_real @ Z2 @ Y ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ Z2 ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2795_mult__imp__div__pos__le,axiom,
! [Y: rat,X3: rat,Z2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_eq_rat @ X3 @ ( times_times_rat @ Z2 @ Y ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y ) @ Z2 ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2796_pos__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2797_pos__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2798_pos__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2799_pos__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2800_neg__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2801_neg__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2802_neg__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2803_neg__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2804_divide__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2805_divide__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2806_le__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2807_le__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2808_divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2809_divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2810_divide__less__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W2: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W2 ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W2 ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2811_divide__less__eq__numeral_I1_J,axiom,
! [B: real,C: real,W2: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W2 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W2 ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2812_less__divide__eq__numeral_I1_J,axiom,
! [W2: num,B: rat,C: rat] :
( ( ord_less_rat @ ( numeral_numeral_rat @ W2 ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( numeral_numeral_rat @ W2 ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2813_less__divide__eq__numeral_I1_J,axiom,
! [W2: num,B: real,C: real] :
( ( ord_less_real @ ( numeral_numeral_real @ W2 ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( numeral_numeral_real @ W2 ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2814_mult__2,axiom,
! [Z2: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z2 )
= ( plus_plus_rat @ Z2 @ Z2 ) ) ).
% mult_2
thf(fact_2815_mult__2,axiom,
! [Z2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z2 )
= ( plus_plus_nat @ Z2 @ Z2 ) ) ).
% mult_2
thf(fact_2816_mult__2,axiom,
! [Z2: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z2 )
= ( plus_plus_int @ Z2 @ Z2 ) ) ).
% mult_2
thf(fact_2817_mult__2,axiom,
! [Z2: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ Z2 )
= ( plus_p3455044024723400733d_enat @ Z2 @ Z2 ) ) ).
% mult_2
thf(fact_2818_mult__2,axiom,
! [Z2: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z2 )
= ( plus_plus_real @ Z2 @ Z2 ) ) ).
% mult_2
thf(fact_2819_mult__2,axiom,
! [Z2: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Z2 )
= ( plus_p5714425477246183910nteger @ Z2 @ Z2 ) ) ).
% mult_2
thf(fact_2820_mult__2__right,axiom,
! [Z2: rat] :
( ( times_times_rat @ Z2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ Z2 @ Z2 ) ) ).
% mult_2_right
thf(fact_2821_mult__2__right,axiom,
! [Z2: nat] :
( ( times_times_nat @ Z2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z2 @ Z2 ) ) ).
% mult_2_right
thf(fact_2822_mult__2__right,axiom,
! [Z2: int] :
( ( times_times_int @ Z2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z2 @ Z2 ) ) ).
% mult_2_right
thf(fact_2823_mult__2__right,axiom,
! [Z2: extended_enat] :
( ( times_7803423173614009249d_enat @ Z2 @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ Z2 @ Z2 ) ) ).
% mult_2_right
thf(fact_2824_mult__2__right,axiom,
! [Z2: real] :
( ( times_times_real @ Z2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z2 @ Z2 ) ) ).
% mult_2_right
thf(fact_2825_mult__2__right,axiom,
! [Z2: code_integer] :
( ( times_3573771949741848930nteger @ Z2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( plus_p5714425477246183910nteger @ Z2 @ Z2 ) ) ).
% mult_2_right
thf(fact_2826_left__add__twice,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_2827_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_2828_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_2829_left__add__twice,axiom,
! [A: extended_enat,B: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ A @ B ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_2830_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_2831_left__add__twice,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_2832_le__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_2833_le__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_2834_divide__le__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_le_eq_1
thf(fact_2835_divide__le__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_le_eq_1
thf(fact_2836_power__strict__decreasing,axiom,
! [N2: nat,N5: nat,A: real] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2837_power__strict__decreasing,axiom,
! [N2: nat,N5: nat,A: rat] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2838_power__strict__decreasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2839_power__strict__decreasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2840_power__decreasing,axiom,
! [N2: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).
% power_decreasing
thf(fact_2841_power__decreasing,axiom,
! [N2: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).
% power_decreasing
thf(fact_2842_power__decreasing,axiom,
! [N2: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).
% power_decreasing
thf(fact_2843_power__decreasing,axiom,
! [N2: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).
% power_decreasing
thf(fact_2844_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) )
=> ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% power_le_imp_le_exp
thf(fact_2845_power__le__imp__le__exp,axiom,
! [A: rat,M: nat,N2: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) )
=> ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% power_le_imp_le_exp
thf(fact_2846_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
=> ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% power_le_imp_le_exp
thf(fact_2847_power__le__imp__le__exp,axiom,
! [A: int,M: nat,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
=> ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% power_le_imp_le_exp
thf(fact_2848_self__le__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).
% self_le_power
thf(fact_2849_self__le__power,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).
% self_le_power
thf(fact_2850_self__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% self_le_power
thf(fact_2851_self__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% self_le_power
thf(fact_2852_one__less__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ) ).
% one_less_power
thf(fact_2853_one__less__power,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ) ).
% one_less_power
thf(fact_2854_one__less__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% one_less_power
thf(fact_2855_one__less__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ) ).
% one_less_power
thf(fact_2856_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_2857_le__divide__eq__numeral_I1_J,axiom,
! [W2: num,B: real,C: real] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ W2 ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ W2 ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_2858_le__divide__eq__numeral_I1_J,axiom,
! [W2: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W2 ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( numeral_numeral_rat @ W2 ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_2859_divide__le__eq__numeral_I1_J,axiom,
! [B: real,C: real,W2: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W2 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W2 ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_2860_divide__le__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W2: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W2 ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W2 ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W2 ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_2861_power2__sum,axiom,
! [X3: complex,Y: complex] :
( ( power_power_complex @ ( plus_plus_complex @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_sum
thf(fact_2862_power2__sum,axiom,
! [X3: rat,Y: rat] :
( ( power_power_rat @ ( plus_plus_rat @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_sum
thf(fact_2863_power2__sum,axiom,
! [X3: nat,Y: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_sum
thf(fact_2864_power2__sum,axiom,
! [X3: int,Y: int] :
( ( power_power_int @ ( plus_plus_int @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_sum
thf(fact_2865_power2__sum,axiom,
! [X3: extended_enat,Y: extended_enat] :
( ( power_8040749407984259932d_enat @ ( plus_p3455044024723400733d_enat @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ ( power_8040749407984259932d_enat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8040749407984259932d_enat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_sum
thf(fact_2866_power2__sum,axiom,
! [X3: real,Y: real] :
( ( power_power_real @ ( plus_plus_real @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_sum
thf(fact_2867_power2__sum,axiom,
! [X3: code_integer,Y: code_integer] :
( ( power_8256067586552552935nteger @ ( plus_p5714425477246183910nteger @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_sum
thf(fact_2868_zero__le__even__power_H,axiom,
! [A: real,N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% zero_le_even_power'
thf(fact_2869_zero__le__even__power_H,axiom,
! [A: rat,N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% zero_le_even_power'
thf(fact_2870_zero__le__even__power_H,axiom,
! [A: int,N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% zero_le_even_power'
thf(fact_2871_div__le__dividend,axiom,
! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N2 ) @ M ) ).
% div_le_dividend
thf(fact_2872_div__le__mono,axiom,
! [M: nat,N2: nat,K: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N2 @ K ) ) ) ).
% div_le_mono
thf(fact_2873_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_2874_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_2875_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N2: nat] :
( ( ( divide_divide_nat @ M @ N2 )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N2 )
| ( N2 = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_2876_div__greater__zero__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N2 ) )
= ( ( ord_less_eq_nat @ N2 @ M )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% div_greater_zero_iff
thf(fact_2877_div__le__mono2,axiom,
! [M: nat,N2: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N2 ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_2878_arith__geo__mean,axiom,
! [U: real,X3: real,Y: real] :
( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ X3 @ Y ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X3 @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_2879_arith__geo__mean,axiom,
! [U: rat,X3: rat,Y: rat] :
( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_rat @ X3 @ Y ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X3 @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_2880_sum__squares__bound,axiom,
! [X3: real,Y: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y ) @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_2881_sum__squares__bound,axiom,
! [X3: rat,Y: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X3 ) @ Y ) @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_2882_nat__induct2,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct2
thf(fact_2883_set__bit__0,axiom,
! [A: code_integer] :
( ( bit_se2793503036327961859nteger @ zero_zero_nat @ A )
= ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_2884_set__bit__0,axiom,
! [A: nat] :
( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_2885_set__bit__0,axiom,
! [A: int] :
( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_2886_invar__vebt_Ointros_I5_J,axiom,
! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N2 ) )
=> ( ( Deg
= ( plus_plus_nat @ N2 @ M ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(5)
thf(fact_2887_max__less__iff__conj,axiom,
! [X3: real,Y: real,Z2: real] :
( ( ord_less_real @ ( ord_max_real @ X3 @ Y ) @ Z2 )
= ( ( ord_less_real @ X3 @ Z2 )
& ( ord_less_real @ Y @ Z2 ) ) ) ).
% max_less_iff_conj
thf(fact_2888_max__less__iff__conj,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( ord_less_rat @ ( ord_max_rat @ X3 @ Y ) @ Z2 )
= ( ( ord_less_rat @ X3 @ Z2 )
& ( ord_less_rat @ Y @ Z2 ) ) ) ).
% max_less_iff_conj
thf(fact_2889_max__less__iff__conj,axiom,
! [X3: num,Y: num,Z2: num] :
( ( ord_less_num @ ( ord_max_num @ X3 @ Y ) @ Z2 )
= ( ( ord_less_num @ X3 @ Z2 )
& ( ord_less_num @ Y @ Z2 ) ) ) ).
% max_less_iff_conj
thf(fact_2890_max__less__iff__conj,axiom,
! [X3: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ ( ord_max_nat @ X3 @ Y ) @ Z2 )
= ( ( ord_less_nat @ X3 @ Z2 )
& ( ord_less_nat @ Y @ Z2 ) ) ) ).
% max_less_iff_conj
thf(fact_2891_max__less__iff__conj,axiom,
! [X3: int,Y: int,Z2: int] :
( ( ord_less_int @ ( ord_max_int @ X3 @ Y ) @ Z2 )
= ( ( ord_less_int @ X3 @ Z2 )
& ( ord_less_int @ Y @ Z2 ) ) ) ).
% max_less_iff_conj
thf(fact_2892_max_Oabsorb4,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_max_real @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_2893_max_Oabsorb4,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_max_rat @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_2894_max_Oabsorb4,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_max_num @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_2895_max_Oabsorb4,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_max_nat @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_2896_max_Oabsorb4,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_max_int @ A @ B )
= B ) ) ).
% max.absorb4
thf(fact_2897_max_Oabsorb3,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_max_real @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_2898_max_Oabsorb3,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_max_rat @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_2899_max_Oabsorb3,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_max_num @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_2900_max_Oabsorb3,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_max_nat @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_2901_max_Oabsorb3,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_max_int @ A @ B )
= A ) ) ).
% max.absorb3
thf(fact_2902_max_Obounded__iff,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
= ( ( ord_less_eq_rat @ B @ A )
& ( ord_less_eq_rat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_2903_max_Obounded__iff,axiom,
! [B: num,C: num,A: num] :
( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
= ( ( ord_less_eq_num @ B @ A )
& ( ord_less_eq_num @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_2904_max_Obounded__iff,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
= ( ( ord_less_eq_nat @ B @ A )
& ( ord_less_eq_nat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_2905_max_Obounded__iff,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_eq_int @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_2906_max_Oabsorb2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_max_rat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_2907_max_Oabsorb2,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_max_num @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_2908_max_Oabsorb2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_max_nat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_2909_max_Oabsorb2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_max_int @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_2910_even__odd__cases,axiom,
! [X3: nat] :
( ! [N3: nat] :
( X3
!= ( plus_plus_nat @ N3 @ N3 ) )
=> ~ ! [N3: nat] :
( X3
!= ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) ) ) ).
% even_odd_cases
thf(fact_2911_deg__SUcn__Node,axiom,
! [Tree: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N2 ) ) )
=> ? [Info2: option4927543243414619207at_nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
( Tree
= ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N2 ) ) @ TreeList3 @ S3 ) ) ) ).
% deg_SUcn_Node
thf(fact_2912_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_2913_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_2914_zle__add1__eq__le,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_2915_lessI,axiom,
! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).
% lessI
thf(fact_2916_Suc__mono,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).
% Suc_mono
thf(fact_2917_Suc__less__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% Suc_less_eq
thf(fact_2918_Suc__le__mono,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N2 @ M ) ) ).
% Suc_le_mono
thf(fact_2919_add__Suc__right,axiom,
! [M: nat,N2: nat] :
( ( plus_plus_nat @ M @ ( suc @ N2 ) )
= ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).
% add_Suc_right
thf(fact_2920_max_Oabsorb1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_max_rat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_2921_max_Oabsorb1,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_max_num @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_2922_max_Oabsorb1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_max_nat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_2923_max_Oabsorb1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_max_int @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_2924_set__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N2 @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% set_bit_negative_int_iff
thf(fact_2925_max__Suc__Suc,axiom,
! [M: nat,N2: nat] :
( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( suc @ ( ord_max_nat @ M @ N2 ) ) ) ).
% max_Suc_Suc
thf(fact_2926_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_rat @ zero_zero_rat @ ( suc @ N2 ) )
= zero_zero_rat ) ).
% power_0_Suc
thf(fact_2927_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N2 ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_2928_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N2 ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_2929_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N2 ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_2930_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_complex @ zero_zero_complex @ ( suc @ N2 ) )
= zero_zero_complex ) ).
% power_0_Suc
thf(fact_2931_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2932_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2933_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2934_power__Suc0__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2935_zero__less__Suc,axiom,
! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).
% zero_less_Suc
thf(fact_2936_less__Suc0,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( N2 = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_2937_one__eq__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N2 ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_2938_mult__eq__1__iff,axiom,
! [M: nat,N2: nat] :
( ( ( times_times_nat @ M @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_2939_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
= M ) ).
% div_by_Suc_0
thf(fact_2940_mult__Suc__right,axiom,
! [M: nat,N2: nat] :
( ( times_times_nat @ M @ ( suc @ N2 ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N2 ) ) ) ).
% mult_Suc_right
thf(fact_2941_power__Suc__0,axiom,
! [N2: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_2942_nat__power__eq__Suc__0__iff,axiom,
! [X3: nat,M: nat] :
( ( ( power_power_nat @ X3 @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X3
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_2943_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_2944_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_2945_num__double,axiom,
! [N2: num] :
( ( times_times_num @ ( bit0 @ one ) @ N2 )
= ( bit0 @ N2 ) ) ).
% num_double
thf(fact_2946_one__le__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) ) ).
% one_le_mult_iff
thf(fact_2947_Suc__numeral,axiom,
! [N2: num] :
( ( suc @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).
% Suc_numeral
thf(fact_2948_add__2__eq__Suc_H,axiom,
! [N2: nat] :
( ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N2 ) ) ) ).
% add_2_eq_Suc'
thf(fact_2949_add__2__eq__Suc,axiom,
! [N2: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
= ( suc @ ( suc @ N2 ) ) ) ).
% add_2_eq_Suc
thf(fact_2950_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_2951_incr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X: int] :
( ( P @ X )
=> ( P @ ( plus_plus_int @ X @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_2952_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_2953_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_2954_zless__add1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W2 @ Z2 )
| ( W2 = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_2955_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_2956_zless__imp__add1__zle,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_2957_pos__zmult__eq__1__iff,axiom,
! [M: int,N2: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N2 )
= one_one_int )
= ( ( M = one_one_int )
& ( N2 = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_2958_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_2959_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_2960_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_2961_add1__zle__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% add1_zle_eq
thf(fact_2962_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_2963_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_2964_n__not__Suc__n,axiom,
! [N2: nat] :
( N2
!= ( suc @ N2 ) ) ).
% n_not_Suc_n
thf(fact_2965_Suc__inject,axiom,
! [X3: nat,Y: nat] :
( ( ( suc @ X3 )
= ( suc @ Y ) )
=> ( X3 = Y ) ) ).
% Suc_inject
thf(fact_2966_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_2967_realpow__pos__nth2,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ( ( power_power_real @ R3 @ ( suc @ N2 ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_2968_vebt__buildup_Ocases,axiom,
! [X3: nat] :
( ( X3 != zero_zero_nat )
=> ( ( X3
!= ( suc @ zero_zero_nat ) )
=> ~ ! [Va2: nat] :
( X3
!= ( suc @ ( suc @ Va2 ) ) ) ) ) ).
% vebt_buildup.cases
thf(fact_2969_not0__implies__Suc,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ? [M4: nat] :
( N2
= ( suc @ M4 ) ) ) ).
% not0_implies_Suc
thf(fact_2970_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_2971_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_2972_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_2973_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_2974_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N2: nat] :
( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
=> ( ! [Y2: nat] : ( P @ zero_zero_nat @ ( suc @ Y2 ) )
=> ( ! [X4: nat,Y2: nat] :
( ( P @ X4 @ Y2 )
=> ( P @ ( suc @ X4 ) @ ( suc @ Y2 ) ) )
=> ( P @ M @ N2 ) ) ) ) ).
% diff_induct
thf(fact_2975_nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) )
=> ( P @ N2 ) ) ) ).
% nat_induct
thf(fact_2976_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_2977_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_2978_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_2979_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_2980_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_2981_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_2982_Suc__lessD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N2 )
=> ( ord_less_nat @ M @ N2 ) ) ).
% Suc_lessD
thf(fact_2983_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_2984_Suc__lessI,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ( ( suc @ M )
!= N2 )
=> ( ord_less_nat @ ( suc @ M ) @ N2 ) ) ) ).
% Suc_lessI
thf(fact_2985_less__SucE,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( suc @ N2 ) )
=> ( ~ ( ord_less_nat @ M @ N2 )
=> ( M = N2 ) ) ) ).
% less_SucE
thf(fact_2986_less__SucI,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).
% less_SucI
thf(fact_2987_Ex__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
& ( P @ I5 ) ) )
= ( ( P @ N2 )
| ? [I5: nat] :
( ( ord_less_nat @ I5 @ N2 )
& ( P @ I5 ) ) ) ) ).
% Ex_less_Suc
thf(fact_2988_less__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( suc @ N2 ) )
= ( ( ord_less_nat @ M @ N2 )
| ( M = N2 ) ) ) ).
% less_Suc_eq
thf(fact_2989_not__less__eq,axiom,
! [M: nat,N2: nat] :
( ( ~ ( ord_less_nat @ M @ N2 ) )
= ( ord_less_nat @ N2 @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_2990_All__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
=> ( P @ I5 ) ) )
= ( ( P @ N2 )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ N2 )
=> ( P @ I5 ) ) ) ) ).
% All_less_Suc
thf(fact_2991_Suc__less__eq2,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N2 ) @ M )
= ( ? [M6: nat] :
( ( M
= ( suc @ M6 ) )
& ( ord_less_nat @ N2 @ M6 ) ) ) ) ).
% Suc_less_eq2
thf(fact_2992_less__antisym,axiom,
! [N2: nat,M: nat] :
( ~ ( ord_less_nat @ N2 @ M )
=> ( ( ord_less_nat @ N2 @ ( suc @ M ) )
=> ( M = N2 ) ) ) ).
% less_antisym
thf(fact_2993_Suc__less__SucD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ).
% Suc_less_SucD
thf(fact_2994_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_2995_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J2: nat,K3: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ K3 )
=> ( ( P @ I3 @ J2 )
=> ( ( P @ J2 @ K3 )
=> ( P @ I3 @ K3 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_2996_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] :
( ( J
= ( suc @ I3 ) )
=> ( P @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( P @ ( suc @ I3 ) )
=> ( P @ I3 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_2997_not__less__less__Suc__eq,axiom,
! [N2: nat,M: nat] :
( ~ ( ord_less_nat @ N2 @ M )
=> ( ( ord_less_nat @ N2 @ ( suc @ M ) )
= ( N2 = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_2998_Suc__leD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
=> ( ord_less_eq_nat @ M @ N2 ) ) ).
% Suc_leD
thf(fact_2999_le__SucE,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ~ ( ord_less_eq_nat @ M @ N2 )
=> ( M
= ( suc @ N2 ) ) ) ) ).
% le_SucE
thf(fact_3000_le__SucI,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_nat @ M @ ( suc @ N2 ) ) ) ).
% le_SucI
thf(fact_3001_Suc__le__D,axiom,
! [N2: nat,M7: nat] :
( ( ord_less_eq_nat @ ( suc @ N2 ) @ M7 )
=> ? [M4: nat] :
( M7
= ( suc @ M4 ) ) ) ).
% Suc_le_D
thf(fact_3002_le__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
= ( ( ord_less_eq_nat @ M @ N2 )
| ( M
= ( suc @ N2 ) ) ) ) ).
% le_Suc_eq
thf(fact_3003_Suc__n__not__le__n,axiom,
! [N2: nat] :
~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).
% Suc_n_not_le_n
thf(fact_3004_not__less__eq__eq,axiom,
! [M: nat,N2: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N2 ) )
= ( ord_less_eq_nat @ ( suc @ N2 ) @ M ) ) ).
% not_less_eq_eq
thf(fact_3005_full__nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N3: nat] :
( ! [M2: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N2 ) ) ).
% full_nat_induct
thf(fact_3006_nat__induct__at__least,axiom,
! [M: nat,N2: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( P @ M )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_at_least
thf(fact_3007_transitive__stepwise__le,axiom,
! [M: nat,N2: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ! [X4: nat] : ( R @ X4 @ X4 )
=> ( ! [X4: nat,Y2: nat,Z3: nat] :
( ( R @ X4 @ Y2 )
=> ( ( R @ Y2 @ Z3 )
=> ( R @ X4 @ Z3 ) ) )
=> ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
=> ( R @ M @ N2 ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_3008_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_3009_add__Suc,axiom,
! [M: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N2 )
= ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).
% add_Suc
thf(fact_3010_add__Suc__shift,axiom,
! [M: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N2 )
= ( plus_plus_nat @ M @ ( suc @ N2 ) ) ) ).
% add_Suc_shift
thf(fact_3011_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( M = N2 ) ) ).
% Suc_mult_cancel1
thf(fact_3012_lift__Suc__mono__less,axiom,
! [F: nat > real,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N2 @ N7 )
=> ( ord_less_real @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_3013_lift__Suc__mono__less,axiom,
! [F: nat > rat,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N2 @ N7 )
=> ( ord_less_rat @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_3014_lift__Suc__mono__less,axiom,
! [F: nat > num,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N2 @ N7 )
=> ( ord_less_num @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_3015_lift__Suc__mono__less,axiom,
! [F: nat > nat,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N2 @ N7 )
=> ( ord_less_nat @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_3016_lift__Suc__mono__less,axiom,
! [F: nat > int,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N2 @ N7 )
=> ( ord_less_int @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_3017_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N2: nat,M: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_real @ ( F @ N2 ) @ ( F @ M ) )
= ( ord_less_nat @ N2 @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_3018_lift__Suc__mono__less__iff,axiom,
! [F: nat > rat,N2: nat,M: nat] :
( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_rat @ ( F @ N2 ) @ ( F @ M ) )
= ( ord_less_nat @ N2 @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_3019_lift__Suc__mono__less__iff,axiom,
! [F: nat > num,N2: nat,M: nat] :
( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_num @ ( F @ N2 ) @ ( F @ M ) )
= ( ord_less_nat @ N2 @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_3020_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N2: nat,M: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ ( F @ N2 ) @ ( F @ M ) )
= ( ord_less_nat @ N2 @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_3021_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N2: nat,M: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_int @ ( F @ N2 ) @ ( F @ M ) )
= ( ord_less_nat @ N2 @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_3022_lift__Suc__mono__le,axiom,
! [F: nat > set_int,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_set_int @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_3023_lift__Suc__mono__le,axiom,
! [F: nat > rat,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_rat @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_3024_lift__Suc__mono__le,axiom,
! [F: nat > num,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_3025_lift__Suc__mono__le,axiom,
! [F: nat > nat,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_3026_lift__Suc__mono__le,axiom,
! [F: nat > int,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ N7 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_3027_lift__Suc__antimono__le,axiom,
! [F: nat > set_int,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_set_int @ ( F @ N7 ) @ ( F @ N2 ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_3028_lift__Suc__antimono__le,axiom,
! [F: nat > rat,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_rat @ ( F @ N7 ) @ ( F @ N2 ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_3029_lift__Suc__antimono__le,axiom,
! [F: nat > num,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_num @ ( F @ N7 ) @ ( F @ N2 ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_3030_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_nat @ ( F @ N7 ) @ ( F @ N2 ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_3031_lift__Suc__antimono__le,axiom,
! [F: nat > int,N2: nat,N7: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N2 @ N7 )
=> ( ord_less_eq_int @ ( F @ N7 ) @ ( F @ N2 ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_3032_less__Suc__eq__0__disj,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( suc @ N2 ) )
= ( ( M = zero_zero_nat )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N2 ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_3033_gr0__implies__Suc,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ? [M4: nat] :
( N2
= ( suc @ M4 ) ) ) ).
% gr0_implies_Suc
thf(fact_3034_All__less__Suc2,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
=> ( P @ I5 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ N2 )
=> ( P @ ( suc @ I5 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_3035_gr0__conv__Suc,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
= ( ? [M3: nat] :
( N2
= ( suc @ M3 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_3036_Ex__less__Suc2,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I5: nat] :
( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
& ( P @ I5 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I5: nat] :
( ( ord_less_nat @ I5 @ N2 )
& ( P @ ( suc @ I5 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_3037_Suc__leI,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_leI
thf(fact_3038_Suc__le__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
= ( ord_less_nat @ M @ N2 ) ) ).
% Suc_le_eq
thf(fact_3039_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_3040_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_3041_Suc__le__lessD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
=> ( ord_less_nat @ M @ N2 ) ) ).
% Suc_le_lessD
thf(fact_3042_le__less__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( ord_less_nat @ N2 @ ( suc @ M ) )
= ( N2 = M ) ) ) ).
% le_less_Suc_eq
thf(fact_3043_less__Suc__eq__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( suc @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% less_Suc_eq_le
thf(fact_3044_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N: nat] : ( ord_less_eq_nat @ ( suc @ N ) ) ) ) ).
% less_eq_Suc_le
thf(fact_3045_le__imp__less__Suc,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).
% le_imp_less_Suc
thf(fact_3046_one__is__add,axiom,
! [M: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N2 ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_3047_add__is__1,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus_nat @ M @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_3048_less__natE,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ~ ! [Q4: nat] :
( N2
!= ( suc @ ( plus_plus_nat @ M @ Q4 ) ) ) ) ).
% less_natE
thf(fact_3049_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_3050_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_3051_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M3: nat,N: nat] :
? [K2: nat] :
( N
= ( suc @ ( plus_plus_nat @ M3 @ K2 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_3052_less__imp__Suc__add,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ? [K3: nat] :
( N2
= ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_3053_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% Suc_mult_less_cancel1
thf(fact_3054_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_3055_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% Suc_mult_le_cancel1
thf(fact_3056_mult__Suc,axiom,
! [M: nat,N2: nat] :
( ( times_times_nat @ ( suc @ M ) @ N2 )
= ( plus_plus_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ).
% mult_Suc
thf(fact_3057_Suc__div__le__mono,axiom,
! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N2 ) @ ( divide_divide_nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_div_le_mono
thf(fact_3058_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_3059_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_3060_Suc__eq__plus1,axiom,
( suc
= ( ^ [N: nat] : ( plus_plus_nat @ N @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_3061_power__inject__base,axiom,
! [A: real,N2: nat,B: real] :
( ( ( power_power_real @ A @ ( suc @ N2 ) )
= ( power_power_real @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_3062_power__inject__base,axiom,
! [A: rat,N2: nat,B: rat] :
( ( ( power_power_rat @ A @ ( suc @ N2 ) )
= ( power_power_rat @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_3063_power__inject__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N2 ) )
= ( power_power_nat @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_3064_power__inject__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N2 ) )
= ( power_power_int @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_3065_power__le__imp__le__base,axiom,
! [A: real,N2: nat,B: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ ( power_power_real @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_3066_power__le__imp__le__base,axiom,
! [A: rat,N2: nat,B: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ ( power_power_rat @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_3067_power__le__imp__le__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ ( power_power_nat @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_3068_power__le__imp__le__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ ( power_power_int @ B @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_3069_power__gt1,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N2 ) ) ) ) ).
% power_gt1
thf(fact_3070_power__gt1,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) ) ) ).
% power_gt1
thf(fact_3071_power__gt1,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) ) ) ).
% power_gt1
thf(fact_3072_power__gt1,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N2 ) ) ) ) ).
% power_gt1
thf(fact_3073_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_3074_ex__least__nat__less,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_nat @ K3 @ N2 )
& ! [I4: nat] :
( ( ord_less_eq_nat @ I4 @ K3 )
=> ~ ( P @ I4 ) )
& ( P @ ( suc @ K3 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_3075_one__less__mult,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) ) ) ) ).
% one_less_mult
thf(fact_3076_n__less__m__mult__n,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ) ).
% n_less_m_mult_n
thf(fact_3077_n__less__n__mult__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N2 @ ( times_times_nat @ N2 @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_3078_nat__induct__non__zero,axiom,
! [N2: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_non_zero
thf(fact_3079_power__gt__expt,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ord_less_nat @ K @ ( power_power_nat @ N2 @ K ) ) ) ).
% power_gt_expt
thf(fact_3080_nat__one__le__power,axiom,
! [I: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N2 ) ) ) ).
% nat_one_le_power
thf(fact_3081_power__Suc__le__self,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_3082_power__Suc__le__self,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_3083_power__Suc__le__self,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_3084_power__Suc__le__self,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_3085_power__Suc__less__one,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_3086_power__Suc__less__one,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ one_one_rat ) ) ) ).
% power_Suc_less_one
thf(fact_3087_power__Suc__less__one,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_3088_power__Suc__less__one,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_3089_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_3090_div__nat__eqI,axiom,
! [N2: nat,Q2: nat,M: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N2 @ Q2 ) @ M )
=> ( ( ord_less_nat @ M @ ( times_times_nat @ N2 @ ( suc @ Q2 ) ) )
=> ( ( divide_divide_nat @ M @ N2 )
= Q2 ) ) ) ).
% div_nat_eqI
thf(fact_3091_Suc__nat__number__of__add,axiom,
! [V: num,N2: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N2 ) ) ).
% Suc_nat_number_of_add
thf(fact_3092_num_Osize_I5_J,axiom,
! [X22: num] :
( ( size_size_num @ ( bit0 @ X22 ) )
= ( plus_plus_nat @ ( size_size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(5)
thf(fact_3093_less__2__cases__iff,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N2 = zero_zero_nat )
| ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_3094_less__2__cases,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N2 = zero_zero_nat )
| ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_3095_split__div_H,axiom,
! [P: nat > $o,M: nat,N2: nat] :
( ( P @ ( divide_divide_nat @ M @ N2 ) )
= ( ( ( N2 = zero_zero_nat )
& ( P @ zero_zero_nat ) )
| ? [Q5: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N2 @ Q5 ) @ M )
& ( ord_less_nat @ M @ ( times_times_nat @ N2 @ ( suc @ Q5 ) ) )
& ( P @ Q5 ) ) ) ) ).
% split_div'
thf(fact_3096_nat__bit__induct,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_bit_induct
thf(fact_3097_Suc__n__div__2__gt__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_3098_div__2__gt__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_3099_realpow__pos__nth,axiom,
! [N2: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ( ( power_power_real @ R3 @ N2 )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_3100_realpow__pos__nth__unique,axiom,
! [N2: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ( power_power_real @ X4 @ N2 )
= A )
& ! [Y3: real] :
( ( ( ord_less_real @ zero_zero_real @ Y3 )
& ( ( power_power_real @ Y3 @ N2 )
= A ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_3101_max_Omono,axiom,
! [C: rat,A: rat,D: rat,B: rat] :
( ( ord_less_eq_rat @ C @ A )
=> ( ( ord_less_eq_rat @ D @ B )
=> ( ord_less_eq_rat @ ( ord_max_rat @ C @ D ) @ ( ord_max_rat @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3102_max_Omono,axiom,
! [C: num,A: num,D: num,B: num] :
( ( ord_less_eq_num @ C @ A )
=> ( ( ord_less_eq_num @ D @ B )
=> ( ord_less_eq_num @ ( ord_max_num @ C @ D ) @ ( ord_max_num @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3103_max_Omono,axiom,
! [C: nat,A: nat,D: nat,B: nat] :
( ( ord_less_eq_nat @ C @ A )
=> ( ( ord_less_eq_nat @ D @ B )
=> ( ord_less_eq_nat @ ( ord_max_nat @ C @ D ) @ ( ord_max_nat @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3104_max_Omono,axiom,
! [C: int,A: int,D: int,B: int] :
( ( ord_less_eq_int @ C @ A )
=> ( ( ord_less_eq_int @ D @ B )
=> ( ord_less_eq_int @ ( ord_max_int @ C @ D ) @ ( ord_max_int @ A @ B ) ) ) ) ).
% max.mono
thf(fact_3105_max_OorderE,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( A
= ( ord_max_rat @ A @ B ) ) ) ).
% max.orderE
thf(fact_3106_max_OorderE,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( A
= ( ord_max_num @ A @ B ) ) ) ).
% max.orderE
thf(fact_3107_max_OorderE,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( A
= ( ord_max_nat @ A @ B ) ) ) ).
% max.orderE
thf(fact_3108_max_OorderE,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( A
= ( ord_max_int @ A @ B ) ) ) ).
% max.orderE
thf(fact_3109_max_OorderI,axiom,
! [A: rat,B: rat] :
( ( A
= ( ord_max_rat @ A @ B ) )
=> ( ord_less_eq_rat @ B @ A ) ) ).
% max.orderI
thf(fact_3110_max_OorderI,axiom,
! [A: num,B: num] :
( ( A
= ( ord_max_num @ A @ B ) )
=> ( ord_less_eq_num @ B @ A ) ) ).
% max.orderI
thf(fact_3111_max_OorderI,axiom,
! [A: nat,B: nat] :
( ( A
= ( ord_max_nat @ A @ B ) )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% max.orderI
thf(fact_3112_max_OorderI,axiom,
! [A: int,B: int] :
( ( A
= ( ord_max_int @ A @ B ) )
=> ( ord_less_eq_int @ B @ A ) ) ).
% max.orderI
thf(fact_3113_max_OboundedE,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_rat @ B @ A )
=> ~ ( ord_less_eq_rat @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3114_max_OboundedE,axiom,
! [B: num,C: num,A: num] :
( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_num @ B @ A )
=> ~ ( ord_less_eq_num @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3115_max_OboundedE,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_nat @ B @ A )
=> ~ ( ord_less_eq_nat @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3116_max_OboundedE,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
=> ~ ( ( ord_less_eq_int @ B @ A )
=> ~ ( ord_less_eq_int @ C @ A ) ) ) ).
% max.boundedE
thf(fact_3117_max_OboundedI,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ A )
=> ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3118_max_OboundedI,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ A )
=> ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3119_max_OboundedI,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3120_max_OboundedI,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ A )
=> ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A ) ) ) ).
% max.boundedI
thf(fact_3121_max_Oorder__iff,axiom,
( ord_less_eq_rat
= ( ^ [B3: rat,A3: rat] :
( A3
= ( ord_max_rat @ A3 @ B3 ) ) ) ) ).
% max.order_iff
thf(fact_3122_max_Oorder__iff,axiom,
( ord_less_eq_num
= ( ^ [B3: num,A3: num] :
( A3
= ( ord_max_num @ A3 @ B3 ) ) ) ) ).
% max.order_iff
thf(fact_3123_max_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A3: nat] :
( A3
= ( ord_max_nat @ A3 @ B3 ) ) ) ) ).
% max.order_iff
thf(fact_3124_max_Oorder__iff,axiom,
( ord_less_eq_int
= ( ^ [B3: int,A3: int] :
( A3
= ( ord_max_int @ A3 @ B3 ) ) ) ) ).
% max.order_iff
thf(fact_3125_max_Ocobounded1,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ A @ ( ord_max_rat @ A @ B ) ) ).
% max.cobounded1
thf(fact_3126_max_Ocobounded1,axiom,
! [A: num,B: num] : ( ord_less_eq_num @ A @ ( ord_max_num @ A @ B ) ) ).
% max.cobounded1
thf(fact_3127_max_Ocobounded1,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( ord_max_nat @ A @ B ) ) ).
% max.cobounded1
thf(fact_3128_max_Ocobounded1,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ A @ ( ord_max_int @ A @ B ) ) ).
% max.cobounded1
thf(fact_3129_max_Ocobounded2,axiom,
! [B: rat,A: rat] : ( ord_less_eq_rat @ B @ ( ord_max_rat @ A @ B ) ) ).
% max.cobounded2
thf(fact_3130_max_Ocobounded2,axiom,
! [B: num,A: num] : ( ord_less_eq_num @ B @ ( ord_max_num @ A @ B ) ) ).
% max.cobounded2
thf(fact_3131_max_Ocobounded2,axiom,
! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( ord_max_nat @ A @ B ) ) ).
% max.cobounded2
thf(fact_3132_max_Ocobounded2,axiom,
! [B: int,A: int] : ( ord_less_eq_int @ B @ ( ord_max_int @ A @ B ) ) ).
% max.cobounded2
thf(fact_3133_le__max__iff__disj,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( ord_less_eq_rat @ Z2 @ ( ord_max_rat @ X3 @ Y ) )
= ( ( ord_less_eq_rat @ Z2 @ X3 )
| ( ord_less_eq_rat @ Z2 @ Y ) ) ) ).
% le_max_iff_disj
thf(fact_3134_le__max__iff__disj,axiom,
! [Z2: num,X3: num,Y: num] :
( ( ord_less_eq_num @ Z2 @ ( ord_max_num @ X3 @ Y ) )
= ( ( ord_less_eq_num @ Z2 @ X3 )
| ( ord_less_eq_num @ Z2 @ Y ) ) ) ).
% le_max_iff_disj
thf(fact_3135_le__max__iff__disj,axiom,
! [Z2: nat,X3: nat,Y: nat] :
( ( ord_less_eq_nat @ Z2 @ ( ord_max_nat @ X3 @ Y ) )
= ( ( ord_less_eq_nat @ Z2 @ X3 )
| ( ord_less_eq_nat @ Z2 @ Y ) ) ) ).
% le_max_iff_disj
thf(fact_3136_le__max__iff__disj,axiom,
! [Z2: int,X3: int,Y: int] :
( ( ord_less_eq_int @ Z2 @ ( ord_max_int @ X3 @ Y ) )
= ( ( ord_less_eq_int @ Z2 @ X3 )
| ( ord_less_eq_int @ Z2 @ Y ) ) ) ).
% le_max_iff_disj
thf(fact_3137_max_Oabsorb__iff1,axiom,
( ord_less_eq_rat
= ( ^ [B3: rat,A3: rat] :
( ( ord_max_rat @ A3 @ B3 )
= A3 ) ) ) ).
% max.absorb_iff1
thf(fact_3138_max_Oabsorb__iff1,axiom,
( ord_less_eq_num
= ( ^ [B3: num,A3: num] :
( ( ord_max_num @ A3 @ B3 )
= A3 ) ) ) ).
% max.absorb_iff1
thf(fact_3139_max_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A3: nat] :
( ( ord_max_nat @ A3 @ B3 )
= A3 ) ) ) ).
% max.absorb_iff1
thf(fact_3140_max_Oabsorb__iff1,axiom,
( ord_less_eq_int
= ( ^ [B3: int,A3: int] :
( ( ord_max_int @ A3 @ B3 )
= A3 ) ) ) ).
% max.absorb_iff1
thf(fact_3141_max_Oabsorb__iff2,axiom,
( ord_less_eq_rat
= ( ^ [A3: rat,B3: rat] :
( ( ord_max_rat @ A3 @ B3 )
= B3 ) ) ) ).
% max.absorb_iff2
thf(fact_3142_max_Oabsorb__iff2,axiom,
( ord_less_eq_num
= ( ^ [A3: num,B3: num] :
( ( ord_max_num @ A3 @ B3 )
= B3 ) ) ) ).
% max.absorb_iff2
thf(fact_3143_max_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
( ( ord_max_nat @ A3 @ B3 )
= B3 ) ) ) ).
% max.absorb_iff2
thf(fact_3144_max_Oabsorb__iff2,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B3: int] :
( ( ord_max_int @ A3 @ B3 )
= B3 ) ) ) ).
% max.absorb_iff2
thf(fact_3145_max_OcoboundedI1,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ C @ A )
=> ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3146_max_OcoboundedI1,axiom,
! [C: num,A: num,B: num] :
( ( ord_less_eq_num @ C @ A )
=> ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3147_max_OcoboundedI1,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3148_max_OcoboundedI1,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ A )
=> ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.coboundedI1
thf(fact_3149_max_OcoboundedI2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3150_max_OcoboundedI2,axiom,
! [C: num,B: num,A: num] :
( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3151_max_OcoboundedI2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3152_max_OcoboundedI2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.coboundedI2
thf(fact_3153_less__max__iff__disj,axiom,
! [Z2: real,X3: real,Y: real] :
( ( ord_less_real @ Z2 @ ( ord_max_real @ X3 @ Y ) )
= ( ( ord_less_real @ Z2 @ X3 )
| ( ord_less_real @ Z2 @ Y ) ) ) ).
% less_max_iff_disj
thf(fact_3154_less__max__iff__disj,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( ord_less_rat @ Z2 @ ( ord_max_rat @ X3 @ Y ) )
= ( ( ord_less_rat @ Z2 @ X3 )
| ( ord_less_rat @ Z2 @ Y ) ) ) ).
% less_max_iff_disj
thf(fact_3155_less__max__iff__disj,axiom,
! [Z2: num,X3: num,Y: num] :
( ( ord_less_num @ Z2 @ ( ord_max_num @ X3 @ Y ) )
= ( ( ord_less_num @ Z2 @ X3 )
| ( ord_less_num @ Z2 @ Y ) ) ) ).
% less_max_iff_disj
thf(fact_3156_less__max__iff__disj,axiom,
! [Z2: nat,X3: nat,Y: nat] :
( ( ord_less_nat @ Z2 @ ( ord_max_nat @ X3 @ Y ) )
= ( ( ord_less_nat @ Z2 @ X3 )
| ( ord_less_nat @ Z2 @ Y ) ) ) ).
% less_max_iff_disj
thf(fact_3157_less__max__iff__disj,axiom,
! [Z2: int,X3: int,Y: int] :
( ( ord_less_int @ Z2 @ ( ord_max_int @ X3 @ Y ) )
= ( ( ord_less_int @ Z2 @ X3 )
| ( ord_less_int @ Z2 @ Y ) ) ) ).
% less_max_iff_disj
thf(fact_3158_max_Ostrict__boundedE,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( ord_max_real @ B @ C ) @ A )
=> ~ ( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3159_max_Ostrict__boundedE,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( ord_max_rat @ B @ C ) @ A )
=> ~ ( ( ord_less_rat @ B @ A )
=> ~ ( ord_less_rat @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3160_max_Ostrict__boundedE,axiom,
! [B: num,C: num,A: num] :
( ( ord_less_num @ ( ord_max_num @ B @ C ) @ A )
=> ~ ( ( ord_less_num @ B @ A )
=> ~ ( ord_less_num @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3161_max_Ostrict__boundedE,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_nat @ ( ord_max_nat @ B @ C ) @ A )
=> ~ ( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3162_max_Ostrict__boundedE,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_int @ ( ord_max_int @ B @ C ) @ A )
=> ~ ( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ C @ A ) ) ) ).
% max.strict_boundedE
thf(fact_3163_max_Ostrict__order__iff,axiom,
( ord_less_real
= ( ^ [B3: real,A3: real] :
( ( A3
= ( ord_max_real @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3164_max_Ostrict__order__iff,axiom,
( ord_less_rat
= ( ^ [B3: rat,A3: rat] :
( ( A3
= ( ord_max_rat @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3165_max_Ostrict__order__iff,axiom,
( ord_less_num
= ( ^ [B3: num,A3: num] :
( ( A3
= ( ord_max_num @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3166_max_Ostrict__order__iff,axiom,
( ord_less_nat
= ( ^ [B3: nat,A3: nat] :
( ( A3
= ( ord_max_nat @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3167_max_Ostrict__order__iff,axiom,
( ord_less_int
= ( ^ [B3: int,A3: int] :
( ( A3
= ( ord_max_int @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ).
% max.strict_order_iff
thf(fact_3168_max_Ostrict__coboundedI1,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ A )
=> ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3169_max_Ostrict__coboundedI1,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ A )
=> ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3170_max_Ostrict__coboundedI1,axiom,
! [C: num,A: num,B: num] :
( ( ord_less_num @ C @ A )
=> ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3171_max_Ostrict__coboundedI1,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ C @ A )
=> ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3172_max_Ostrict__coboundedI1,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ A )
=> ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.strict_coboundedI1
thf(fact_3173_max_Ostrict__coboundedI2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3174_max_Ostrict__coboundedI2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3175_max_Ostrict__coboundedI2,axiom,
! [C: num,B: num,A: num] :
( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3176_max_Ostrict__coboundedI2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3177_max_Ostrict__coboundedI2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).
% max.strict_coboundedI2
thf(fact_3178_odd__0__le__power__imp__0__le,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_3179_odd__0__le__power__imp__0__le,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_3180_odd__0__le__power__imp__0__le,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_3181_odd__power__less__zero,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_real ) ) ).
% odd_power_less_zero
thf(fact_3182_odd__power__less__zero,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_rat ) ) ).
% odd_power_less_zero
thf(fact_3183_odd__power__less__zero,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_int ) ) ).
% odd_power_less_zero
thf(fact_3184_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_3185_vebt__member_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc ) @ X3 ) ).
% vebt_member.simps(4)
thf(fact_3186_enat__ord__number_I1_J,axiom,
! [M: num,N2: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).
% enat_ord_number(1)
thf(fact_3187_enat__ord__number_I2_J,axiom,
! [M: num,N2: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).
% enat_ord_number(2)
thf(fact_3188_unset__bit__0,axiom,
! [A: code_integer] :
( ( bit_se8260200283734997820nteger @ zero_zero_nat @ A )
= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_3189_unset__bit__0,axiom,
! [A: nat] :
( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_3190_unset__bit__0,axiom,
! [A: int] :
( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_3191_vebt__member_Osimps_I3_J,axiom,
! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X3: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X3 ) ).
% vebt_member.simps(3)
thf(fact_3192_vebt__insert_Osimps_I3_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S ) @ X3 )
= ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S ) ) ).
% vebt_insert.simps(3)
thf(fact_3193_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3194_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3195_discrete,axiom,
( ord_less_nat
= ( ^ [A3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A3 @ one_one_nat ) ) ) ) ).
% discrete
thf(fact_3196_discrete,axiom,
( ord_less_int
= ( ^ [A3: int] : ( ord_less_eq_int @ ( plus_plus_int @ A3 @ one_one_int ) ) ) ) ).
% discrete
thf(fact_3197_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_3198_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_3199_i0__less,axiom,
! [N2: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N2 )
= ( N2 != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_3200_not__real__square__gt__zero,axiom,
! [X3: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X3 @ X3 ) ) )
= ( X3 = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_3201_unset__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% unset_bit_negative_int_iff
thf(fact_3202_real__arch__pow__inv,axiom,
! [Y: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X3 @ N3 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_3203_real__arch__pow,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ? [N3: nat] : ( ord_less_real @ Y @ ( power_power_real @ X3 @ N3 ) ) ) ).
% real_arch_pow
thf(fact_3204_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_3205_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W2 )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(1)
thf(fact_3206_int__distrib_I2_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_3207_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N2: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N2 ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N2 ) ) ) ).
% enat_0_less_mult_iff
thf(fact_3208_not__iless0,axiom,
! [N2: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N2 @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_3209_enat__less__induct,axiom,
! [P: extended_enat > $o,N2: extended_enat] :
( ! [N3: extended_enat] :
( ! [M2: extended_enat] :
( ( ord_le72135733267957522d_enat @ M2 @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N2 ) ) ).
% enat_less_induct
thf(fact_3210_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y5: real] :
( ( ord_less_real @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% less_eq_real_def
thf(fact_3211_q__pos__lemma,axiom,
! [B6: int,Q6: int,R4: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q6 ) @ R4 ) )
=> ( ( ord_less_int @ R4 @ B6 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ord_less_eq_int @ zero_zero_int @ Q6 ) ) ) ) ).
% q_pos_lemma
thf(fact_3212_zdiv__mono2__lemma,axiom,
! [B: int,Q2: int,R2: int,B6: int,Q6: int,R4: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B6 @ Q6 ) @ R4 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q6 ) @ R4 ) )
=> ( ( ord_less_int @ R4 @ B6 )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ Q2 @ Q6 ) ) ) ) ) ) ) ).
% zdiv_mono2_lemma
thf(fact_3213_zdiv__mono2__neg__lemma,axiom,
! [B: int,Q2: int,R2: int,B6: int,Q6: int,R4: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B6 @ Q6 ) @ R4 ) )
=> ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q6 ) @ R4 ) @ zero_zero_int )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ R4 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ Q6 @ Q2 ) ) ) ) ) ) ) ).
% zdiv_mono2_neg_lemma
thf(fact_3214_unique__quotient__lemma,axiom,
! [B: int,Q6: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q6 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R4 )
=> ( ( ord_less_int @ R4 @ B )
=> ( ( ord_less_int @ R2 @ B )
=> ( ord_less_eq_int @ Q6 @ Q2 ) ) ) ) ) ).
% unique_quotient_lemma
thf(fact_3215_unique__quotient__lemma__neg,axiom,
! [B: int,Q6: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q6 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( ord_less_int @ B @ R4 )
=> ( ord_less_eq_int @ Q2 @ Q6 ) ) ) ) ) ).
% unique_quotient_lemma_neg
thf(fact_3216_split__zdiv,axiom,
! [P: int > $o,N2: int,K: int] :
( ( P @ ( divide_divide_int @ N2 @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ zero_zero_int ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I5: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N2
= ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
=> ( P @ I5 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I5: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N2
= ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
=> ( P @ I5 ) ) ) ) ) ).
% split_zdiv
thf(fact_3217_zdiv__mono1,axiom,
! [A: int,A6: int,B: int] :
( ( ord_less_eq_int @ A @ A6 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A6 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_3218_zdiv__mono2,axiom,
! [A: int,B6: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B6 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_3219_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( ( divide_divide_int @ I @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_3220_int__div__neg__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_neg_eq
thf(fact_3221_int__div__pos__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_pos_eq
thf(fact_3222_zdiv__mono1__neg,axiom,
! [A: int,A6: int,B: int] :
( ( ord_less_eq_int @ A @ A6 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A6 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_3223_zdiv__mono2__neg,axiom,
! [A: int,B6: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B6 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_3224_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
= ( ( K = zero_zero_int )
| ( L = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_3225_div__positive__int,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ L @ K )
=> ( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) ) ) ) ).
% div_positive_int
thf(fact_3226_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_3227_int__div__less__self,axiom,
! [X3: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X3 )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X3 @ K ) @ X3 ) ) ) ).
% int_div_less_self
thf(fact_3228_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_3229_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_3230_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_3231_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_3232_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
= ( ord_less_eq_int @ K @ I ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_3233_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_3234_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_3235_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_3236_vebt__insert_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S ) @ X3 )
= ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S ) ) ).
% vebt_insert.simps(2)
thf(fact_3237_VEBT__internal_OminNull_Osimps_I5_J,axiom,
! [Uz: product_prod_nat_nat,Va: nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz ) @ Va @ Vb @ Vc ) ) ).
% VEBT_internal.minNull.simps(5)
thf(fact_3238_div__positive,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_positive
thf(fact_3239_div__positive,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_positive
thf(fact_3240_mult__le__cancel__iff2,axiom,
! [Z2: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z2 @ X3 ) @ ( times_times_real @ Z2 @ Y ) )
= ( ord_less_eq_real @ X3 @ Y ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3241_mult__le__cancel__iff2,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z2 )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z2 @ X3 ) @ ( times_times_rat @ Z2 @ Y ) )
= ( ord_less_eq_rat @ X3 @ Y ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3242_mult__le__cancel__iff2,axiom,
! [Z2: int,X3: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_eq_int @ ( times_times_int @ Z2 @ X3 ) @ ( times_times_int @ Z2 @ Y ) )
= ( ord_less_eq_int @ X3 @ Y ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3243_mult__le__cancel__iff1,axiom,
! [Z2: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_eq_real @ ( times_times_real @ X3 @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
= ( ord_less_eq_real @ X3 @ Y ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3244_mult__le__cancel__iff1,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z2 )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ X3 @ Z2 ) @ ( times_times_rat @ Y @ Z2 ) )
= ( ord_less_eq_rat @ X3 @ Y ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3245_mult__le__cancel__iff1,axiom,
! [Z2: int,X3: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_eq_int @ ( times_times_int @ X3 @ Z2 ) @ ( times_times_int @ Y @ Z2 ) )
= ( ord_less_eq_int @ X3 @ Y ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3246_divides__aux__eq,axiom,
! [Q2: code_integer,R2: code_integer] :
( ( unique5706413561485394159nteger @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
= ( R2 = zero_z3403309356797280102nteger ) ) ).
% divides_aux_eq
thf(fact_3247_divides__aux__eq,axiom,
! [Q2: nat,R2: nat] :
( ( unique6322359934112328802ux_nat @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
= ( R2 = zero_zero_nat ) ) ).
% divides_aux_eq
thf(fact_3248_divides__aux__eq,axiom,
! [Q2: int,R2: int] :
( ( unique6319869463603278526ux_int @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( R2 = zero_zero_int ) ) ).
% divides_aux_eq
thf(fact_3249_low__def,axiom,
( vEBT_VEBT_low
= ( ^ [X2: nat,N: nat] : ( modulo_modulo_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% low_def
thf(fact_3250_invar__vebt_Ointros_I3_J,axiom,
! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N2 ) )
=> ( ( Deg
= ( plus_plus_nat @ N2 @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(3)
thf(fact_3251_dbl__simps_I3_J,axiom,
( ( neg_nu7009210354673126013omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3252_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3253_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3254_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3255_dbl__simps_I3_J,axiom,
( ( neg_nu8804712462038260780nteger @ one_one_Code_integer )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3256_Leaf__0__not,axiom,
! [A: $o,B: $o] :
~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat ) ).
% Leaf_0_not
thf(fact_3257_deg1Leaf,axiom,
! [T: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T @ one_one_nat )
= ( ? [A3: $o,B3: $o] :
( T
= ( vEBT_Leaf @ A3 @ B3 ) ) ) ) ).
% deg1Leaf
thf(fact_3258_deg__1__Leaf,axiom,
! [T: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T @ one_one_nat )
=> ? [A4: $o,B4: $o] :
( T
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ).
% deg_1_Leaf
thf(fact_3259_deg__1__Leafy,axiom,
! [T: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ( N2 = one_one_nat )
=> ? [A4: $o,B4: $o] :
( T
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ).
% deg_1_Leafy
thf(fact_3260_mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mod_0
thf(fact_3261_mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mod_0
thf(fact_3262_mod__by__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ zero_zero_nat )
= A ) ).
% mod_by_0
thf(fact_3263_mod__by__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ zero_zero_int )
= A ) ).
% mod_by_0
thf(fact_3264_mod__self,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ A )
= zero_zero_nat ) ).
% mod_self
thf(fact_3265_mod__self,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ A )
= zero_zero_int ) ).
% mod_self
thf(fact_3266_bits__mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_mod_0
thf(fact_3267_bits__mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_mod_0
thf(fact_3268_mod__add__self1,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self1
thf(fact_3269_mod__add__self1,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self1
thf(fact_3270_mod__add__self2,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self2
thf(fact_3271_mod__add__self2,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self2
thf(fact_3272_mod__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ( modulo_modulo_nat @ M @ N2 )
= M ) ) ).
% mod_less
thf(fact_3273_dbl__simps_I2_J,axiom,
( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% dbl_simps(2)
thf(fact_3274_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_3275_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% dbl_simps(2)
thf(fact_3276_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_3277_mod__mult__self1__is__0,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
= zero_zero_nat ) ).
% mod_mult_self1_is_0
thf(fact_3278_mod__mult__self1__is__0,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
= zero_zero_int ) ).
% mod_mult_self1_is_0
thf(fact_3279_mod__mult__self2__is__0,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_mult_self2_is_0
thf(fact_3280_mod__mult__self2__is__0,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_mult_self2_is_0
thf(fact_3281_mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% mod_by_1
thf(fact_3282_mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% mod_by_1
thf(fact_3283_bits__mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% bits_mod_by_1
thf(fact_3284_bits__mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% bits_mod_by_1
thf(fact_3285_bits__mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% bits_mod_div_trivial
thf(fact_3286_bits__mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% bits_mod_div_trivial
thf(fact_3287_mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_div_trivial
thf(fact_3288_mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_div_trivial
thf(fact_3289_mod__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self4
thf(fact_3290_mod__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self4
thf(fact_3291_mod__mult__self3,axiom,
! [C: nat,B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self3
thf(fact_3292_mod__mult__self3,axiom,
! [C: int,B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self3
thf(fact_3293_mod__mult__self2,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self2
thf(fact_3294_mod__mult__self2,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self2
thf(fact_3295_mod__mult__self1,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self1
thf(fact_3296_mod__mult__self1,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self1
thf(fact_3297_mod__by__Suc__0,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% mod_by_Suc_0
thf(fact_3298_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3299_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3300_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) )
= ( numera6620942414471956472nteger @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3301_Suc__mod__mult__self4,axiom,
! [N2: nat,K: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N2 @ K ) @ M ) ) @ N2 )
= ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self4
thf(fact_3302_Suc__mod__mult__self3,axiom,
! [K: nat,N2: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N2 ) @ M ) ) @ N2 )
= ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self3
thf(fact_3303_Suc__mod__mult__self2,axiom,
! [M: nat,N2: nat,K: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N2 @ K ) ) ) @ N2 )
= ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self2
thf(fact_3304_Suc__mod__mult__self1,axiom,
! [M: nat,K: nat,N2: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N2 ) ) ) @ N2 )
= ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self1
thf(fact_3305_not__mod__2__eq__0__eq__1,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_3306_not__mod__2__eq__0__eq__1,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_3307_not__mod__2__eq__0__eq__1,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_3308_not__mod__2__eq__1__eq__0,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_3309_not__mod__2__eq__1__eq__0,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_3310_not__mod__2__eq__1__eq__0,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_3311_not__mod2__eq__Suc__0__eq__0,axiom,
! [N2: nat] :
( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= ( suc @ zero_zero_nat ) )
= ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod2_eq_Suc_0_eq_0
thf(fact_3312_add__self__mod__2,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% add_self_mod_2
thf(fact_3313_mod2__gr__0,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% mod2_gr_0
thf(fact_3314_bot__enat__def,axiom,
bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).
% bot_enat_def
thf(fact_3315_VEBT_Osize_I4_J,axiom,
! [X21: $o,X222: $o] :
( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size(4)
thf(fact_3316_VEBT__internal_OminNull_Oelims_I2_J,axiom,
! [X3: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X3 )
=> ( ( X3
!= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X3
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).
% VEBT_internal.minNull.elims(2)
thf(fact_3317_mod__add__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_3318_mod__add__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_3319_mod__add__cong,axiom,
! [A: nat,C: nat,A6: nat,B: nat,B6: nat] :
( ( ( modulo_modulo_nat @ A @ C )
= ( modulo_modulo_nat @ A6 @ C ) )
=> ( ( ( modulo_modulo_nat @ B @ C )
= ( modulo_modulo_nat @ B6 @ C ) )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_3320_mod__add__cong,axiom,
! [A: int,C: int,A6: int,B: int,B6: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A6 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B6 @ C ) )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_3321_mod__add__left__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_3322_mod__add__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_3323_mod__add__right__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_3324_mod__add__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_3325_mod__less__eq__dividend,axiom,
! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N2 ) @ M ) ).
% mod_less_eq_dividend
thf(fact_3326_fold__atLeastAtMost__nat_Ocases,axiom,
! [X3: produc4471711990508489141at_nat] :
~ ! [F2: nat > nat > nat,A4: nat,B4: nat,Acc: nat] :
( X3
!= ( produc3209952032786966637at_nat @ F2 @ ( produc487386426758144856at_nat @ A4 @ ( product_Pair_nat_nat @ B4 @ Acc ) ) ) ) ).
% fold_atLeastAtMost_nat.cases
thf(fact_3327_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,Uw: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).
% VEBT_internal.membermima.simps(1)
thf(fact_3328_VEBT__internal_OminNull_Osimps_I3_J,axiom,
! [Uu: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ Uu @ $true ) ) ).
% VEBT_internal.minNull.simps(3)
thf(fact_3329_VEBT__internal_OminNull_Osimps_I2_J,axiom,
! [Uv: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ $true @ Uv ) ) ).
% VEBT_internal.minNull.simps(2)
thf(fact_3330_VEBT__internal_OminNull_Osimps_I1_J,axiom,
vEBT_VEBT_minNull @ ( vEBT_Leaf @ $false @ $false ) ).
% VEBT_internal.minNull.simps(1)
thf(fact_3331_VEBT__internal_Onaive__member_Ocases,axiom,
! [X3: produc9072475918466114483BT_nat] :
( ! [A4: $o,B4: $o,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ X4 ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) @ X4 ) ) ) ) ).
% VEBT_internal.naive_member.cases
thf(fact_3332_VEBT__internal_Omembermima_Ocases,axiom,
! [X3: produc9072475918466114483BT_nat] :
( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ X4 ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ X4 ) )
=> ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) @ X4 ) ) ) ) ) ) ).
% VEBT_internal.membermima.cases
thf(fact_3333_vebt__insert_Ocases,axiom,
! [X3: produc9072475918466114483BT_nat] :
( ! [A4: $o,B4: $o,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ X4 ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S3 ) @ X4 ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S3 ) @ X4 ) )
=> ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) @ X4 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ).
% vebt_insert.cases
thf(fact_3334_vebt__member_Ocases,axiom,
! [X3: produc9072475918466114483BT_nat] :
( ! [A4: $o,B4: $o,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ X4 ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ X4 ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ X4 ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ X4 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X3
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ).
% vebt_member.cases
thf(fact_3335_VEBT__internal_OminNull_Oelims_I1_J,axiom,
! [X3: vEBT_VEBT,Y: $o] :
( ( ( vEBT_VEBT_minNull @ X3 )
= Y )
=> ( ( ( X3
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ Y )
=> ( ( ? [Uv2: $o] :
( X3
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> Y )
=> ( ( ? [Uu2: $o] :
( X3
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> Y )
=> ( ( ? [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ Y )
=> ~ ( ? [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
=> Y ) ) ) ) ) ) ).
% VEBT_internal.minNull.elims(1)
thf(fact_3336_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3337_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3338_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3339_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3340_mod__eq__self__iff__div__eq__0,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= A )
= ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_3341_mod__eq__self__iff__div__eq__0,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= A )
= ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_3342_mod__eqE,axiom,
! [A: int,C: int,B: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ B @ C ) )
=> ~ ! [D5: int] :
( B
!= ( plus_plus_int @ A @ ( times_times_int @ C @ D5 ) ) ) ) ).
% mod_eqE
thf(fact_3343_div__add1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_3344_div__add1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_3345_mod__Suc,axiom,
! [M: nat,N2: nat] :
( ( ( ( suc @ ( modulo_modulo_nat @ M @ N2 ) )
= N2 )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N2 )
= zero_zero_nat ) )
& ( ( ( suc @ ( modulo_modulo_nat @ M @ N2 ) )
!= N2 )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N2 )
= ( suc @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ) ).
% mod_Suc
thf(fact_3346_mod__induct,axiom,
! [P: nat > $o,N2: nat,P5: nat,M: nat] :
( ( P @ N2 )
=> ( ( ord_less_nat @ N2 @ P5 )
=> ( ( ord_less_nat @ M @ P5 )
=> ( ! [N3: nat] :
( ( ord_less_nat @ N3 @ P5 )
=> ( ( P @ N3 )
=> ( P @ ( modulo_modulo_nat @ ( suc @ N3 ) @ P5 ) ) ) )
=> ( P @ M ) ) ) ) ) ).
% mod_induct
thf(fact_3347_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N2: nat] :
( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
=> ( ! [M4: nat,N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 @ ( modulo_modulo_nat @ M4 @ N3 ) )
=> ( P @ M4 @ N3 ) ) )
=> ( P @ M @ N2 ) ) ) ).
% gcd_nat_induct
thf(fact_3348_mod__less__divisor,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ ( modulo_modulo_nat @ M @ N2 ) @ N2 ) ) ).
% mod_less_divisor
thf(fact_3349_mod__Suc__le__divisor,axiom,
! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N2 ) ) @ N2 ) ).
% mod_Suc_le_divisor
thf(fact_3350_mod__eq__0D,axiom,
! [M: nat,D: nat] :
( ( ( modulo_modulo_nat @ M @ D )
= zero_zero_nat )
=> ? [Q4: nat] :
( M
= ( times_times_nat @ D @ Q4 ) ) ) ).
% mod_eq_0D
thf(fact_3351_nat__mod__eq__iff,axiom,
! [X3: nat,N2: nat,Y: nat] :
( ( ( modulo_modulo_nat @ X3 @ N2 )
= ( modulo_modulo_nat @ Y @ N2 ) )
= ( ? [Q1: nat,Q22: nat] :
( ( plus_plus_nat @ X3 @ ( times_times_nat @ N2 @ Q1 ) )
= ( plus_plus_nat @ Y @ ( times_times_nat @ N2 @ Q22 ) ) ) ) ) ).
% nat_mod_eq_iff
thf(fact_3352_vebt__buildup_Osimps_I1_J,axiom,
( ( vEBT_vebt_buildup @ zero_zero_nat )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(1)
thf(fact_3353_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X2: real] : ( plus_plus_real @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_3354_dbl__def,axiom,
( neg_numeral_dbl_rat
= ( ^ [X2: rat] : ( plus_plus_rat @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_3355_dbl__def,axiom,
( neg_numeral_dbl_int
= ( ^ [X2: int] : ( plus_plus_int @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_3356_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,D: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D )
= ( D = one_one_nat ) ) ).
% VEBT_internal.valid'.simps(1)
thf(fact_3357_vebt__member_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X3: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X3 ) ).
% vebt_member.simps(2)
thf(fact_3358_VEBT__internal_OminNull_Osimps_I4_J,axiom,
! [Uw: nat,Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw @ Ux @ Uy ) ) ).
% VEBT_internal.minNull.simps(4)
thf(fact_3359_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( modulo_modulo_nat @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3360_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( modulo_modulo_int @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3361_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3362_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3363_cong__exp__iff__simps_I2_J,axiom,
! [N2: num,Q2: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(2)
thf(fact_3364_cong__exp__iff__simps_I2_J,axiom,
! [N2: num,Q2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= zero_zero_nat )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(2)
thf(fact_3365_cong__exp__iff__simps_I2_J,axiom,
! [N2: num,Q2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= zero_zero_int )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(2)
thf(fact_3366_cong__exp__iff__simps_I1_J,axiom,
! [N2: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ one ) )
= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(1)
thf(fact_3367_cong__exp__iff__simps_I1_J,axiom,
! [N2: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ one ) )
= zero_zero_nat ) ).
% cong_exp_iff_simps(1)
thf(fact_3368_cong__exp__iff__simps_I1_J,axiom,
! [N2: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ one ) )
= zero_zero_int ) ).
% cong_exp_iff_simps(1)
thf(fact_3369_mult__div__mod__eq,axiom,
! [B: nat,A: nat] :
( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_3370_mult__div__mod__eq,axiom,
! [B: int,A: int] :
( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_3371_mod__mult__div__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_3372_mod__mult__div__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_3373_mod__div__mult__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_3374_mod__div__mult__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_3375_div__mult__mod__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_3376_div__mult__mod__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_3377_mod__div__decomp,axiom,
! [A: nat,B: nat] :
( A
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_3378_mod__div__decomp,axiom,
! [A: int,B: int] :
( A
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_3379_cancel__div__mod__rules_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_3380_cancel__div__mod__rules_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_3381_cancel__div__mod__rules_I2_J,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_3382_cancel__div__mod__rules_I2_J,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_3383_div__mult1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_3384_div__mult1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_3385_invar__vebt_Ointros_I1_J,axiom,
! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).
% invar_vebt.intros(1)
thf(fact_3386_mod__le__divisor,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N2 ) @ N2 ) ) ).
% mod_le_divisor
thf(fact_3387_div__less__mono,axiom,
! [A2: nat,B2: nat,N2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( modulo_modulo_nat @ A2 @ N2 )
= zero_zero_nat )
=> ( ( ( modulo_modulo_nat @ B2 @ N2 )
= zero_zero_nat )
=> ( ord_less_nat @ ( divide_divide_nat @ A2 @ N2 ) @ ( divide_divide_nat @ B2 @ N2 ) ) ) ) ) ) ).
% div_less_mono
thf(fact_3388_mod__eq__nat1E,axiom,
! [M: nat,Q2: nat,N2: nat] :
( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N2 @ Q2 ) )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ~ ! [S3: nat] :
( M
!= ( plus_plus_nat @ N2 @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).
% mod_eq_nat1E
thf(fact_3389_mod__eq__nat2E,axiom,
! [M: nat,Q2: nat,N2: nat] :
( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N2 @ Q2 ) )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ~ ! [S3: nat] :
( N2
!= ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).
% mod_eq_nat2E
thf(fact_3390_nat__mod__eq__lemma,axiom,
! [X3: nat,N2: nat,Y: nat] :
( ( ( modulo_modulo_nat @ X3 @ N2 )
= ( modulo_modulo_nat @ Y @ N2 ) )
=> ( ( ord_less_eq_nat @ Y @ X3 )
=> ? [Q4: nat] :
( X3
= ( plus_plus_nat @ Y @ ( times_times_nat @ N2 @ Q4 ) ) ) ) ) ).
% nat_mod_eq_lemma
thf(fact_3391_vebt__insert_Osimps_I1_J,axiom,
! [X3: nat,A: $o,B: $o] :
( ( ( X3 = zero_zero_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X3 )
= ( vEBT_Leaf @ $true @ B ) ) )
& ( ( X3 != zero_zero_nat )
=> ( ( ( X3 = one_one_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X3 )
= ( vEBT_Leaf @ A @ $true ) ) )
& ( ( X3 != one_one_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X3 )
= ( vEBT_Leaf @ A @ B ) ) ) ) ) ) ).
% vebt_insert.simps(1)
thf(fact_3392_vebt__buildup_Osimps_I2_J,axiom,
( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(2)
thf(fact_3393_vebt__member_Osimps_I1_J,axiom,
! [A: $o,B: $o,X3: nat] :
( ( vEBT_vebt_member @ ( vEBT_Leaf @ A @ B ) @ X3 )
= ( ( ( X3 = zero_zero_nat )
=> A )
& ( ( X3 != zero_zero_nat )
=> ( ( ( X3 = one_one_nat )
=> B )
& ( X3 = one_one_nat ) ) ) ) ) ).
% vebt_member.simps(1)
thf(fact_3394_div__mod__decomp,axiom,
! [A2: nat,N2: nat] :
( A2
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N2 ) @ N2 ) @ ( modulo_modulo_nat @ A2 @ N2 ) ) ) ).
% div_mod_decomp
thf(fact_3395_mod__mult2__eq,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( modulo_modulo_nat @ M @ ( times_times_nat @ N2 @ Q2 ) )
= ( plus_plus_nat @ ( times_times_nat @ N2 @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N2 ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N2 ) ) ) ).
% mod_mult2_eq
thf(fact_3396_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
! [A: $o,B: $o,X3: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X3 )
= ( ( ( X3 = zero_zero_nat )
=> A )
& ( ( X3 != zero_zero_nat )
=> ( ( ( X3 = one_one_nat )
=> B )
& ( X3 = one_one_nat ) ) ) ) ) ).
% VEBT_internal.naive_member.simps(1)
thf(fact_3397_VEBT__internal_OminNull_Oelims_I3_J,axiom,
! [X3: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X3 )
=> ( ! [Uv2: $o] :
( X3
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu2: $o] :
( X3
!= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X3
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ).
% VEBT_internal.minNull.elims(3)
thf(fact_3398_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).
% VEBT_internal.membermima.simps(2)
thf(fact_3399_split__mod,axiom,
! [P: nat > $o,M: nat,N2: nat] :
( ( P @ ( modulo_modulo_nat @ M @ N2 ) )
= ( ( ( N2 = zero_zero_nat )
=> ( P @ M ) )
& ( ( N2 != zero_zero_nat )
=> ! [I5: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N2 )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N2 @ I5 ) @ J3 ) )
=> ( P @ J3 ) ) ) ) ) ) ).
% split_mod
thf(fact_3400_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3401_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3402_Suc__times__mod__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N2 ) ) @ M )
= one_one_nat ) ) ).
% Suc_times_mod_eq
thf(fact_3403_vebt__insert_Osimps_I4_J,axiom,
! [V: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList2 @ Summary ) @ X3 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X3 @ X3 ) ) @ ( suc @ ( suc @ V ) ) @ TreeList2 @ Summary ) ) ).
% vebt_insert.simps(4)
thf(fact_3404_divmod__digit__0_I2_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_3405_divmod__digit__0_I2_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_3406_divmod__digit__0_I2_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_3407_bits__stable__imp__add__self,axiom,
! [A: code_integer] :
( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= zero_z3403309356797280102nteger ) ) ).
% bits_stable_imp_add_self
thf(fact_3408_bits__stable__imp__add__self,axiom,
! [A: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_nat ) ) ).
% bits_stable_imp_add_self
thf(fact_3409_bits__stable__imp__add__self,axiom,
! [A: int] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= zero_zero_int ) ) ).
% bits_stable_imp_add_self
thf(fact_3410_div__exp__mod__exp__eq,axiom,
! [A: code_integer,N2: nat,M: nat] :
( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_3411_div__exp__mod__exp__eq,axiom,
! [A: nat,N2: nat,M: nat] :
( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_3412_div__exp__mod__exp__eq,axiom,
! [A: int,N2: nat,M: nat] :
( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_3413_verit__le__mono__div,axiom,
! [A2: nat,B2: nat,N2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_nat
@ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N2 )
@ ( if_nat
@ ( ( modulo_modulo_nat @ B2 @ N2 )
= zero_zero_nat )
@ one_one_nat
@ zero_zero_nat ) )
@ ( divide_divide_nat @ B2 @ N2 ) ) ) ) ).
% verit_le_mono_div
thf(fact_3414_divmod__digit__0_I1_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_3415_divmod__digit__0_I1_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_3416_divmod__digit__0_I1_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_3417_mod__double__modulus,axiom,
! [M: code_integer,X3: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X3 )
=> ( ( ( modulo364778990260209775nteger @ X3 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( modulo364778990260209775nteger @ X3 @ M ) )
| ( ( modulo364778990260209775nteger @ X3 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X3 @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_3418_mod__double__modulus,axiom,
! [M: nat,X3: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
=> ( ( ( modulo_modulo_nat @ X3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_nat @ X3 @ M ) )
| ( ( modulo_modulo_nat @ X3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_nat @ ( modulo_modulo_nat @ X3 @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_3419_mod__double__modulus,axiom,
! [M: int,X3: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ( modulo_modulo_int @ X3 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_int @ X3 @ M ) )
| ( ( modulo_modulo_int @ X3 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_int @ ( modulo_modulo_int @ X3 @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_3420_unset__bit__Suc,axiom,
! [N2: nat,A: code_integer] :
( ( bit_se8260200283734997820nteger @ ( suc @ N2 ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_3421_unset__bit__Suc,axiom,
! [N2: nat,A: nat] :
( ( bit_se4205575877204974255it_nat @ ( suc @ N2 ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_3422_unset__bit__Suc,axiom,
! [N2: nat,A: int] :
( ( bit_se4203085406695923979it_int @ ( suc @ N2 ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_3423_set__bit__Suc,axiom,
! [N2: nat,A: code_integer] :
( ( bit_se2793503036327961859nteger @ ( suc @ N2 ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_3424_set__bit__Suc,axiom,
! [N2: nat,A: nat] :
( ( bit_se7882103937844011126it_nat @ ( suc @ N2 ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_3425_set__bit__Suc,axiom,
! [N2: nat,A: int] :
( ( bit_se7879613467334960850it_int @ ( suc @ N2 ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_3426_divmod__digit__1_I1_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_3427_divmod__digit__1_I1_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
= ( divide_divide_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_3428_divmod__digit__1_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
= ( divide_divide_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_3429_invar__vebt_Ocases,axiom,
! [A1: vEBT_VEBT,A22: nat] :
( ( vEBT_invar_vebt @ A1 @ A22 )
=> ( ( ? [A4: $o,B4: $o] :
( A1
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( A22
!= ( suc @ zero_zero_nat ) ) )
=> ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4 = N3 )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M4 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4
= ( suc @ N3 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M4 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4 = N3 )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M4 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
& ! [X: nat] :
( ( ( ( vEBT_VEBT_high @ X @ N3 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ ( vEBT_VEBT_low @ X @ N3 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X )
& ( ord_less_eq_nat @ X @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4
= ( suc @ N3 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N3 @ M4 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
& ! [X: nat] :
( ( ( ( vEBT_VEBT_high @ X @ N3 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ ( vEBT_VEBT_low @ X @ N3 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X )
& ( ord_less_eq_nat @ X @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.cases
thf(fact_3430_invar__vebt_Osimps,axiom,
( vEBT_invar_vebt
= ( ^ [A12: vEBT_VEBT,A23: nat] :
( ( ? [A3: $o,B3: $o] :
( A12
= ( vEBT_Leaf @ A3 @ B3 ) )
& ( A23
= ( suc @ zero_zero_nat ) ) )
| ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
& ( vEBT_invar_vebt @ Summary3 @ N )
& ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
& ( A23
= ( plus_plus_nat @ N @ N ) )
& ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
| ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
& ( A23
= ( plus_plus_nat @ N @ ( suc @ N ) ) )
& ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
| ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
& ( vEBT_invar_vebt @ Summary3 @ N )
& ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
& ( A23
= ( plus_plus_nat @ N @ N ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N )
= I5 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I5 ) @ ( vEBT_VEBT_low @ Ma3 @ N ) ) )
& ! [X2: nat] :
( ( ( ( vEBT_VEBT_high @ X2 @ N )
= I5 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I5 ) @ ( vEBT_VEBT_low @ X2 @ N ) ) )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) )
| ? [TreeList: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary3 ) )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
& ( A23
= ( plus_plus_nat @ N @ ( suc @ N ) ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N )
= I5 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I5 ) @ ( vEBT_VEBT_low @ Ma3 @ N ) ) )
& ! [X2: nat] :
( ( ( ( vEBT_VEBT_high @ X2 @ N )
= I5 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I5 ) @ ( vEBT_VEBT_low @ X2 @ N ) ) )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.simps
thf(fact_3431_mult__less__iff1,axiom,
! [Z2: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ ( times_times_real @ X3 @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
= ( ord_less_real @ X3 @ Y ) ) ) ).
% mult_less_iff1
thf(fact_3432_mult__less__iff1,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z2 )
=> ( ( ord_less_rat @ ( times_times_rat @ X3 @ Z2 ) @ ( times_times_rat @ Y @ Z2 ) )
= ( ord_less_rat @ X3 @ Y ) ) ) ).
% mult_less_iff1
thf(fact_3433_mult__less__iff1,axiom,
! [Z2: int,X3: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_int @ ( times_times_int @ X3 @ Z2 ) @ ( times_times_int @ Y @ Z2 ) )
= ( ord_less_int @ X3 @ Y ) ) ) ).
% mult_less_iff1
thf(fact_3434_invar__vebt_Ointros_I2_J,axiom,
! [TreeList2: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N2 )
=> ( ( Deg
= ( plus_plus_nat @ N2 @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(2)
thf(fact_3435_flip__bit__Suc,axiom,
! [N2: nat,A: code_integer] :
( ( bit_se1345352211410354436nteger @ ( suc @ N2 ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_3436_flip__bit__Suc,axiom,
! [N2: nat,A: nat] :
( ( bit_se2161824704523386999it_nat @ ( suc @ N2 ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_3437_flip__bit__Suc,axiom,
! [N2: nat,A: int] :
( ( bit_se2159334234014336723it_int @ ( suc @ N2 ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_3438_product__nth,axiom,
! [N2: nat,Xs: list_Code_integer,Ys: list_Code_integer] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs ) @ ( size_s3445333598471063425nteger @ Ys ) ) )
=> ( ( nth_Pr2304437835452373666nteger @ ( produc8792966785426426881nteger @ Xs @ Ys ) @ N2 )
= ( produc1086072967326762835nteger @ ( nth_Code_integer @ Xs @ ( divide_divide_nat @ N2 @ ( size_s3445333598471063425nteger @ Ys ) ) ) @ ( nth_Code_integer @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_s3445333598471063425nteger @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3439_product__nth,axiom,
! [N2: nat,Xs: list_Code_integer,Ys: list_o] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs ) @ ( size_size_list_o @ Ys ) ) )
=> ( ( nth_Pr8522763379788166057eger_o @ ( produc3607205314601156340eger_o @ Xs @ Ys ) @ N2 )
= ( produc6677183202524767010eger_o @ ( nth_Code_integer @ Xs @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3440_product__nth,axiom,
! [N2: nat,Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
=> ( ( nth_Pr4953567300277697838T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs @ Ys ) @ N2 )
= ( produc537772716801021591T_VEBT @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3441_product__nth,axiom,
! [N2: nat,Xs: list_VEBT_VEBT,Ys: list_o] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_o @ Ys ) ) )
=> ( ( nth_Pr4606735188037164562VEBT_o @ ( product_VEBT_VEBT_o @ Xs @ Ys ) @ N2 )
= ( produc8721562602347293563VEBT_o @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3442_product__nth,axiom,
! [N2: nat,Xs: list_VEBT_VEBT,Ys: list_nat] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_nat @ Ys ) ) )
=> ( ( nth_Pr1791586995822124652BT_nat @ ( produc7295137177222721919BT_nat @ Xs @ Ys ) @ N2 )
= ( produc738532404422230701BT_nat @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3443_product__nth,axiom,
! [N2: nat,Xs: list_VEBT_VEBT,Ys: list_int] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_int @ Ys ) ) )
=> ( ( nth_Pr6837108013167703752BT_int @ ( produc7292646706713671643BT_int @ Xs @ Ys ) @ N2 )
= ( produc736041933913180425BT_int @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3444_product__nth,axiom,
! [N2: nat,Xs: list_o,Ys: list_VEBT_VEBT] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
=> ( ( nth_Pr6777367263587873994T_VEBT @ ( product_o_VEBT_VEBT @ Xs @ Ys ) @ N2 )
= ( produc2982872950893828659T_VEBT @ ( nth_o @ Xs @ ( divide_divide_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3445_product__nth,axiom,
! [N2: nat,Xs: list_o,Ys: list_o] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_o @ Ys ) ) )
=> ( ( nth_Product_prod_o_o @ ( product_o_o @ Xs @ Ys ) @ N2 )
= ( product_Pair_o_o @ ( nth_o @ Xs @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3446_product__nth,axiom,
! [N2: nat,Xs: list_o,Ys: list_nat] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_nat @ Ys ) ) )
=> ( ( nth_Pr5826913651314560976_o_nat @ ( product_o_nat @ Xs @ Ys ) @ N2 )
= ( product_Pair_o_nat @ ( nth_o @ Xs @ ( divide_divide_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3447_product__nth,axiom,
! [N2: nat,Xs: list_o,Ys: list_int] :
( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_int @ Ys ) ) )
=> ( ( nth_Pr1649062631805364268_o_int @ ( product_o_int @ Xs @ Ys ) @ N2 )
= ( product_Pair_o_int @ ( nth_o @ Xs @ ( divide_divide_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).
% product_nth
thf(fact_3448_option_Osize_I3_J,axiom,
( ( size_s170228958280169651at_nat @ none_P5556105721700978146at_nat )
= ( suc @ zero_zero_nat ) ) ).
% option.size(3)
thf(fact_3449_option_Osize_I3_J,axiom,
( ( size_size_option_num @ none_num )
= ( suc @ zero_zero_nat ) ) ).
% option.size(3)
thf(fact_3450_option_Osize_I4_J,axiom,
! [X22: product_prod_nat_nat] :
( ( size_s170228958280169651at_nat @ ( some_P7363390416028606310at_nat @ X22 ) )
= ( suc @ zero_zero_nat ) ) ).
% option.size(4)
thf(fact_3451_option_Osize_I4_J,axiom,
! [X22: num] :
( ( size_size_option_num @ ( some_num @ X22 ) )
= ( suc @ zero_zero_nat ) ) ).
% option.size(4)
thf(fact_3452_even__succ__mod__exp,axiom,
! [A: code_integer,N2: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_3453_even__succ__mod__exp,axiom,
! [A: nat,N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_3454_even__succ__mod__exp,axiom,
! [A: int,N2: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_3455_even__succ__div__exp,axiom,
! [A: code_integer,N2: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3456_even__succ__div__exp,axiom,
! [A: nat,N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3457_even__succ__div__exp,axiom,
! [A: int,N2: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3458_signed__take__bit__Suc,axiom,
! [N2: nat,A: code_integer] :
( ( bit_ri6519982836138164636nteger @ ( suc @ N2 ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_3459_signed__take__bit__Suc,axiom,
! [N2: nat,A: int] :
( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_3460_vebt__insert_Oelims,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X3 @ Xa2 )
= Y )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> ( Y
= ( vEBT_Leaf @ $true @ B4 ) ) )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> ( Y
= ( vEBT_Leaf @ A4 @ $true ) ) )
& ( ( Xa2 != one_one_nat )
=> ( Y
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S3 ) )
=> ( Y
!= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S3 ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S3 ) )
=> ( Y
!= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S3 ) ) )
=> ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
=> ( Y
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ( Y
!= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) ) ) ) ) ) ) ) ) ).
% vebt_insert.elims
thf(fact_3461_num_Osize__gen_I2_J,axiom,
! [X22: num] :
( ( size_num @ ( bit0 @ X22 ) )
= ( plus_plus_nat @ ( size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(2)
thf(fact_3462_set__vebt_H__def,axiom,
( vEBT_VEBT_set_vebt
= ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_vebt_member @ T2 ) ) ) ) ).
% set_vebt'_def
thf(fact_3463_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_3464_finite__Collect__disjI,axiom,
! [P: real > $o,Q: real > $o] :
( ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite_finite_real @ ( collect_real @ P ) )
& ( finite_finite_real @ ( collect_real @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3465_finite__Collect__disjI,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [X2: list_nat] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite8100373058378681591st_nat @ ( collect_list_nat @ P ) )
& ( finite8100373058378681591st_nat @ ( collect_list_nat @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3466_finite__Collect__disjI,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
& ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3467_finite__Collect__disjI,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite_finite_nat @ ( collect_nat @ P ) )
& ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3468_finite__Collect__disjI,axiom,
! [P: int > $o,Q: int > $o] :
( ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite_finite_int @ ( collect_int @ P ) )
& ( finite_finite_int @ ( collect_int @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3469_finite__Collect__disjI,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
( ( P @ X2 )
| ( Q @ X2 ) ) ) )
= ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
& ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_3470_finite__Collect__conjI,axiom,
! [P: real > $o,Q: real > $o] :
( ( ( finite_finite_real @ ( collect_real @ P ) )
| ( finite_finite_real @ ( collect_real @ Q ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3471_finite__Collect__conjI,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ( ( finite8100373058378681591st_nat @ ( collect_list_nat @ P ) )
| ( finite8100373058378681591st_nat @ ( collect_list_nat @ Q ) ) )
=> ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [X2: list_nat] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3472_finite__Collect__conjI,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
| ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3473_finite__Collect__conjI,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( ( finite_finite_nat @ ( collect_nat @ P ) )
| ( finite_finite_nat @ ( collect_nat @ Q ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X2: nat] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3474_finite__Collect__conjI,axiom,
! [P: int > $o,Q: int > $o] :
( ( ( finite_finite_int @ ( collect_int @ P ) )
| ( finite_finite_int @ ( collect_int @ Q ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X2: int] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3475_finite__Collect__conjI,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
| ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
( ( P @ X2 )
& ( Q @ X2 ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_3476_finite__interval__int1,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( ord_less_eq_int @ A @ I5 )
& ( ord_less_eq_int @ I5 @ B ) ) ) ) ).
% finite_interval_int1
thf(fact_3477_finite__interval__int4,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( ord_less_int @ A @ I5 )
& ( ord_less_int @ I5 @ B ) ) ) ) ).
% finite_interval_int4
thf(fact_3478_dvd__0__left__iff,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
= ( A = zero_zero_complex ) ) ).
% dvd_0_left_iff
thf(fact_3479_dvd__0__left__iff,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
= ( A = zero_zero_real ) ) ).
% dvd_0_left_iff
thf(fact_3480_dvd__0__left__iff,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
= ( A = zero_zero_rat ) ) ).
% dvd_0_left_iff
thf(fact_3481_dvd__0__left__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% dvd_0_left_iff
thf(fact_3482_dvd__0__left__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
= ( A = zero_zero_int ) ) ).
% dvd_0_left_iff
thf(fact_3483_dvd__0__right,axiom,
! [A: complex] : ( dvd_dvd_complex @ A @ zero_zero_complex ) ).
% dvd_0_right
thf(fact_3484_dvd__0__right,axiom,
! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).
% dvd_0_right
thf(fact_3485_dvd__0__right,axiom,
! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).
% dvd_0_right
thf(fact_3486_dvd__0__right,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% dvd_0_right
thf(fact_3487_dvd__0__right,axiom,
! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).
% dvd_0_right
thf(fact_3488_dvd__add__triv__right__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3489_dvd__add__triv__right__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3490_dvd__add__triv__right__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3491_dvd__add__triv__right__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3492_dvd__add__triv__left__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3493_dvd__add__triv__left__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3494_dvd__add__triv__left__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3495_dvd__add__triv__left__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3496_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).
% dvd_1_left
thf(fact_3497_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( M
= ( suc @ zero_zero_nat ) ) ) ).
% dvd_1_iff_1
thf(fact_3498_div__dvd__div,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_3499_div__dvd__div,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_3500_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N2 ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_3501_flip__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N2 @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% flip_bit_negative_int_iff
thf(fact_3502_signed__take__bit__of__0,axiom,
! [N2: nat] :
( ( bit_ri631733984087533419it_int @ N2 @ zero_zero_int )
= zero_zero_int ) ).
% signed_take_bit_of_0
thf(fact_3503_finite__Collect__subsets,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [B5: set_nat] : ( ord_less_eq_set_nat @ B5 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_3504_finite__Collect__subsets,axiom,
! [A2: set_complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite6551019134538273531omplex
@ ( collect_set_complex
@ ^ [B5: set_complex] : ( ord_le211207098394363844omplex @ B5 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_3505_finite__Collect__subsets,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ( finite6197958912794628473et_int
@ ( collect_set_int
@ ^ [B5: set_int] : ( ord_less_eq_set_int @ B5 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_3506_finite__interval__int3,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( ord_less_int @ A @ I5 )
& ( ord_less_eq_int @ I5 @ B ) ) ) ) ).
% finite_interval_int3
thf(fact_3507_finite__interval__int2,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( ord_less_eq_int @ A @ I5 )
& ( ord_less_int @ I5 @ B ) ) ) ) ).
% finite_interval_int2
thf(fact_3508_finite__Collect__less__nat,axiom,
! [K: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [N: nat] : ( ord_less_nat @ N @ K ) ) ) ).
% finite_Collect_less_nat
thf(fact_3509_finite__Collect__le__nat,axiom,
! [K: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [N: nat] : ( ord_less_eq_nat @ N @ K ) ) ) ).
% finite_Collect_le_nat
thf(fact_3510_dvd__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3511_dvd__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3512_dvd__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3513_dvd__mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_3514_dvd__mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3515_dvd__mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3516_dvd__mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3517_dvd__mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_3518_dvd__times__left__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_3519_dvd__times__left__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_3520_dvd__times__right__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_3521_dvd__times__right__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_3522_unit__prod,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_prod
thf(fact_3523_unit__prod,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_prod
thf(fact_3524_dvd__add__times__triv__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3525_dvd__add__times__triv__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3526_dvd__add__times__triv__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3527_dvd__add__times__triv__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3528_dvd__add__times__triv__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3529_dvd__add__times__triv__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3530_dvd__add__times__triv__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3531_dvd__add__times__triv__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3532_dvd__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_3533_dvd__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_3534_dvd__mult__div__cancel,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_3535_dvd__mult__div__cancel,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_3536_unit__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_div
thf(fact_3537_unit__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_div
thf(fact_3538_unit__div__1__unit,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).
% unit_div_1_unit
thf(fact_3539_unit__div__1__unit,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).
% unit_div_1_unit
thf(fact_3540_unit__div__1__div__1,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_3541_unit__div__1__div__1,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_3542_div__add,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3543_div__add,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3544_dvd__imp__mod__0,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( modulo_modulo_nat @ B @ A )
= zero_zero_nat ) ) ).
% dvd_imp_mod_0
thf(fact_3545_dvd__imp__mod__0,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( modulo_modulo_int @ B @ A )
= zero_zero_int ) ) ).
% dvd_imp_mod_0
thf(fact_3546_mod__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_3547_mod__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_3548_length__product,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
( ( size_s7466405169056248089T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs @ Ys ) )
= ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).
% length_product
thf(fact_3549_length__product,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_o] :
( ( size_s9168528473962070013VEBT_o @ ( product_VEBT_VEBT_o @ Xs @ Ys ) )
= ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).
% length_product
thf(fact_3550_length__product,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_nat] :
( ( size_s6152045936467909847BT_nat @ ( produc7295137177222721919BT_nat @ Xs @ Ys ) )
= ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_nat @ Ys ) ) ) ).
% length_product
thf(fact_3551_length__product,axiom,
! [Xs: list_VEBT_VEBT,Ys: list_int] :
( ( size_s3661962791536183091BT_int @ ( produc7292646706713671643BT_int @ Xs @ Ys ) )
= ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_int @ Ys ) ) ) ).
% length_product
thf(fact_3552_length__product,axiom,
! [Xs: list_o,Ys: list_VEBT_VEBT] :
( ( size_s4313452262239582901T_VEBT @ ( product_o_VEBT_VEBT @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).
% length_product
thf(fact_3553_length__product,axiom,
! [Xs: list_o,Ys: list_o] :
( ( size_s1515746228057227161od_o_o @ ( product_o_o @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).
% length_product
thf(fact_3554_length__product,axiom,
! [Xs: list_o,Ys: list_nat] :
( ( size_s5443766701097040955_o_nat @ ( product_o_nat @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_nat @ Ys ) ) ) ).
% length_product
thf(fact_3555_length__product,axiom,
! [Xs: list_o,Ys: list_int] :
( ( size_s2953683556165314199_o_int @ ( product_o_int @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_int @ Ys ) ) ) ).
% length_product
thf(fact_3556_length__product,axiom,
! [Xs: list_nat,Ys: list_VEBT_VEBT] :
( ( size_s4762443039079500285T_VEBT @ ( produc7156399406898700509T_VEBT @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).
% length_product
thf(fact_3557_length__product,axiom,
! [Xs: list_nat,Ys: list_o] :
( ( size_s6491369823275344609_nat_o @ ( product_nat_o @ Xs @ Ys ) )
= ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).
% length_product
thf(fact_3558_unit__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_3559_unit__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_3560_unit__mult__div__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
= ( divide_divide_nat @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_3561_unit__mult__div__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_3562_pow__divides__pow__iff,axiom,
! [N2: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_3563_pow__divides__pow__iff,axiom,
! [N2: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_3564_even__add,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3565_even__add,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3566_even__add,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3567_odd__add,axiom,
! [A: nat,B: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3568_odd__add,axiom,
! [A: int,B: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3569_odd__add,axiom,
! [A: code_integer,B: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3570_zero__le__power__eq__numeral,axiom,
! [A: real,W2: num] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_3571_zero__le__power__eq__numeral,axiom,
! [A: rat,W2: num] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W2 ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_3572_zero__le__power__eq__numeral,axiom,
! [A: int,W2: num] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_3573_power__less__zero__eq,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ ( power_power_real @ A @ N2 ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq
thf(fact_3574_power__less__zero__eq,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq
thf(fact_3575_power__less__zero__eq,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq
thf(fact_3576_power__less__zero__eq__numeral,axiom,
! [A: real,W2: num] :
( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_3577_power__less__zero__eq__numeral,axiom,
! [A: rat,W2: num] :
( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_3578_power__less__zero__eq__numeral,axiom,
! [A: int,W2: num] :
( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_3579_even__plus__one__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3580_even__plus__one__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3581_even__plus__one__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3582_zero__less__power__eq__numeral,axiom,
! [A: real,W2: num] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) )
= ( ( ( numeral_numeral_nat @ W2 )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_3583_zero__less__power__eq__numeral,axiom,
! [A: rat,W2: num] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W2 ) ) )
= ( ( ( numeral_numeral_nat @ W2 )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_3584_zero__less__power__eq__numeral,axiom,
! [A: int,W2: num] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) )
= ( ( ( numeral_numeral_nat @ W2 )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_3585_even__succ__div__2,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3586_even__succ__div__2,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3587_even__succ__div__2,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3588_even__succ__div__two,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3589_even__succ__div__two,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3590_even__succ__div__two,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3591_odd__succ__div__two,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).
% odd_succ_div_two
thf(fact_3592_odd__succ__div__two,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).
% odd_succ_div_two
thf(fact_3593_odd__succ__div__two,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% odd_succ_div_two
thf(fact_3594_even__power,axiom,
! [A: nat,N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N2 ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% even_power
thf(fact_3595_even__power,axiom,
! [A: int,N2: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N2 ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% even_power
thf(fact_3596_even__power,axiom,
! [A: code_integer,N2: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N2 ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% even_power
thf(fact_3597_odd__two__times__div__two__succ,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3598_odd__two__times__div__two__succ,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3599_odd__two__times__div__two__succ,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3600_power__le__zero__eq__numeral,axiom,
! [A: real,W2: num] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W2 ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_3601_power__le__zero__eq__numeral,axiom,
! [A: rat,W2: num] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W2 ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_3602_power__le__zero__eq__numeral,axiom,
! [A: int,W2: num] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W2 ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_3603_finite__divisors__int,axiom,
! [I: int] :
( ( I != zero_zero_int )
=> ( finite_finite_int
@ ( collect_int
@ ^ [D4: int] : ( dvd_dvd_int @ D4 @ I ) ) ) ) ).
% finite_divisors_int
thf(fact_3604_Collect__restrict,axiom,
! [X8: set_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ord_le4337996190870823476T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ X8 )
& ( P @ X2 ) ) )
@ X8 ) ).
% Collect_restrict
thf(fact_3605_Collect__restrict,axiom,
! [X8: set_real,P: real > $o] :
( ord_less_eq_set_real
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ X8 )
& ( P @ X2 ) ) )
@ X8 ) ).
% Collect_restrict
thf(fact_3606_Collect__restrict,axiom,
! [X8: set_list_nat,P: list_nat > $o] :
( ord_le6045566169113846134st_nat
@ ( collect_list_nat
@ ^ [X2: list_nat] :
( ( member_list_nat @ X2 @ X8 )
& ( P @ X2 ) ) )
@ X8 ) ).
% Collect_restrict
thf(fact_3607_Collect__restrict,axiom,
! [X8: set_set_nat,P: set_nat > $o] :
( ord_le6893508408891458716et_nat
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( member_set_nat @ X2 @ X8 )
& ( P @ X2 ) ) )
@ X8 ) ).
% Collect_restrict
thf(fact_3608_Collect__restrict,axiom,
! [X8: set_nat,P: nat > $o] :
( ord_less_eq_set_nat
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ X8 )
& ( P @ X2 ) ) )
@ X8 ) ).
% Collect_restrict
thf(fact_3609_Collect__restrict,axiom,
! [X8: set_int,P: int > $o] :
( ord_less_eq_set_int
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ X8 )
& ( P @ X2 ) ) )
@ X8 ) ).
% Collect_restrict
thf(fact_3610_prop__restrict,axiom,
! [X3: vEBT_VEBT,Z5: set_VEBT_VEBT,X8: set_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ( member_VEBT_VEBT @ X3 @ Z5 )
=> ( ( ord_le4337996190870823476T_VEBT @ Z5
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ X8 )
& ( P @ X2 ) ) ) )
=> ( P @ X3 ) ) ) ).
% prop_restrict
thf(fact_3611_prop__restrict,axiom,
! [X3: real,Z5: set_real,X8: set_real,P: real > $o] :
( ( member_real @ X3 @ Z5 )
=> ( ( ord_less_eq_set_real @ Z5
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ X8 )
& ( P @ X2 ) ) ) )
=> ( P @ X3 ) ) ) ).
% prop_restrict
thf(fact_3612_prop__restrict,axiom,
! [X3: list_nat,Z5: set_list_nat,X8: set_list_nat,P: list_nat > $o] :
( ( member_list_nat @ X3 @ Z5 )
=> ( ( ord_le6045566169113846134st_nat @ Z5
@ ( collect_list_nat
@ ^ [X2: list_nat] :
( ( member_list_nat @ X2 @ X8 )
& ( P @ X2 ) ) ) )
=> ( P @ X3 ) ) ) ).
% prop_restrict
thf(fact_3613_prop__restrict,axiom,
! [X3: set_nat,Z5: set_set_nat,X8: set_set_nat,P: set_nat > $o] :
( ( member_set_nat @ X3 @ Z5 )
=> ( ( ord_le6893508408891458716et_nat @ Z5
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( member_set_nat @ X2 @ X8 )
& ( P @ X2 ) ) ) )
=> ( P @ X3 ) ) ) ).
% prop_restrict
thf(fact_3614_prop__restrict,axiom,
! [X3: nat,Z5: set_nat,X8: set_nat,P: nat > $o] :
( ( member_nat @ X3 @ Z5 )
=> ( ( ord_less_eq_set_nat @ Z5
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ X8 )
& ( P @ X2 ) ) ) )
=> ( P @ X3 ) ) ) ).
% prop_restrict
thf(fact_3615_prop__restrict,axiom,
! [X3: int,Z5: set_int,X8: set_int,P: int > $o] :
( ( member_int @ X3 @ Z5 )
=> ( ( ord_less_eq_set_int @ Z5
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ X8 )
& ( P @ X2 ) ) ) )
=> ( P @ X3 ) ) ) ).
% prop_restrict
thf(fact_3616_subset__divisors__dvd,axiom,
! [A: real,B: real] :
( ( ord_less_eq_set_real
@ ( collect_real
@ ^ [C2: real] : ( dvd_dvd_real @ C2 @ A ) )
@ ( collect_real
@ ^ [C2: real] : ( dvd_dvd_real @ C2 @ B ) ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_3617_subset__divisors__dvd,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_set_nat
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ A ) )
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ B ) ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_3618_subset__divisors__dvd,axiom,
! [A: int,B: int] :
( ( ord_less_eq_set_int
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ A ) )
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ B ) ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_3619_Collect__subset,axiom,
! [A2: set_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ord_le4337996190870823476T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3620_Collect__subset,axiom,
! [A2: set_real,P: real > $o] :
( ord_less_eq_set_real
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3621_Collect__subset,axiom,
! [A2: set_list_nat,P: list_nat > $o] :
( ord_le6045566169113846134st_nat
@ ( collect_list_nat
@ ^ [X2: list_nat] :
( ( member_list_nat @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3622_Collect__subset,axiom,
! [A2: set_set_nat,P: set_nat > $o] :
( ord_le6893508408891458716et_nat
@ ( collect_set_nat
@ ^ [X2: set_nat] :
( ( member_set_nat @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3623_Collect__subset,axiom,
! [A2: set_nat,P: nat > $o] :
( ord_less_eq_set_nat
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3624_Collect__subset,axiom,
! [A2: set_int,P: int > $o] :
( ord_less_eq_set_int
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3625_less__eq__set__def,axiom,
( ord_less_eq_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
( ord_less_eq_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ A5 )
@ ^ [X2: nat] : ( member_nat @ X2 @ B5 ) ) ) ) ).
% less_eq_set_def
thf(fact_3626_less__eq__set__def,axiom,
( ord_le4337996190870823476T_VEBT
= ( ^ [A5: set_VEBT_VEBT,B5: set_VEBT_VEBT] :
( ord_le418104280809901481VEBT_o
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ A5 )
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ B5 ) ) ) ) ).
% less_eq_set_def
thf(fact_3627_less__eq__set__def,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
( ord_le3964352015994296041_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A5 )
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ B5 ) ) ) ) ).
% less_eq_set_def
thf(fact_3628_less__eq__set__def,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B5: set_real] :
( ord_less_eq_real_o
@ ^ [X2: real] : ( member_real @ X2 @ A5 )
@ ^ [X2: real] : ( member_real @ X2 @ B5 ) ) ) ) ).
% less_eq_set_def
thf(fact_3629_less__eq__set__def,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ord_less_eq_int_o
@ ^ [X2: int] : ( member_int @ X2 @ A5 )
@ ^ [X2: int] : ( member_int @ X2 @ B5 ) ) ) ) ).
% less_eq_set_def
thf(fact_3630_dvd__refl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% dvd_refl
thf(fact_3631_dvd__refl,axiom,
! [A: int] : ( dvd_dvd_int @ A @ A ) ).
% dvd_refl
thf(fact_3632_dvd__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_trans
thf(fact_3633_dvd__trans,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ C )
=> ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_trans
thf(fact_3634_empty__def,axiom,
( bot_bot_set_list_nat
= ( collect_list_nat
@ ^ [X2: list_nat] : $false ) ) ).
% empty_def
thf(fact_3635_empty__def,axiom,
( bot_bot_set_set_nat
= ( collect_set_nat
@ ^ [X2: set_nat] : $false ) ) ).
% empty_def
thf(fact_3636_empty__def,axiom,
( bot_bot_set_real
= ( collect_real
@ ^ [X2: real] : $false ) ) ).
% empty_def
thf(fact_3637_empty__def,axiom,
( bot_bot_set_nat
= ( collect_nat
@ ^ [X2: nat] : $false ) ) ).
% empty_def
thf(fact_3638_empty__def,axiom,
( bot_bot_set_int
= ( collect_int
@ ^ [X2: int] : $false ) ) ).
% empty_def
thf(fact_3639_not__finite__existsD,axiom,
! [P: real > $o] :
( ~ ( finite_finite_real @ ( collect_real @ P ) )
=> ? [X_1: real] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_3640_not__finite__existsD,axiom,
! [P: list_nat > $o] :
( ~ ( finite8100373058378681591st_nat @ ( collect_list_nat @ P ) )
=> ? [X_1: list_nat] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_3641_not__finite__existsD,axiom,
! [P: set_nat > $o] :
( ~ ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
=> ? [X_1: set_nat] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_3642_not__finite__existsD,axiom,
! [P: nat > $o] :
( ~ ( finite_finite_nat @ ( collect_nat @ P ) )
=> ? [X_1: nat] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_3643_not__finite__existsD,axiom,
! [P: int > $o] :
( ~ ( finite_finite_int @ ( collect_int @ P ) )
=> ? [X_1: int] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_3644_not__finite__existsD,axiom,
! [P: complex > $o] :
( ~ ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
=> ? [X_1: complex] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_3645_pigeonhole__infinite__rel,axiom,
! [A2: set_VEBT_VEBT,B2: set_nat,R: vEBT_VEBT > nat > $o] :
( ~ ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: nat] :
( ( member_nat @ X4 @ B2 )
& ~ ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [A3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3646_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B2: set_nat,R: real > nat > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: nat] :
( ( member_nat @ X4 @ B2 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A3: real] :
( ( member_real @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3647_pigeonhole__infinite__rel,axiom,
! [A2: set_VEBT_VEBT,B2: set_int,R: vEBT_VEBT > int > $o] :
( ~ ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: int] :
( ( member_int @ X4 @ B2 )
& ~ ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [A3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3648_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B2: set_int,R: real > int > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: int] :
( ( member_int @ X4 @ B2 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A3: real] :
( ( member_real @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3649_pigeonhole__infinite__rel,axiom,
! [A2: set_VEBT_VEBT,B2: set_complex,R: vEBT_VEBT > complex > $o] :
( ~ ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: complex] :
( ( member_complex @ X4 @ B2 )
& ~ ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [A3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3650_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B2: set_complex,R: real > complex > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: complex] :
( ( member_complex @ X4 @ B2 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A3: real] :
( ( member_real @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3651_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B2: set_nat,R: nat > nat > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: nat] :
( ( member_nat @ X4 @ B2 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A3: nat] :
( ( member_nat @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3652_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B2: set_int,R: nat > int > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: int] :
( ( member_int @ X4 @ B2 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A3: nat] :
( ( member_nat @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3653_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B2: set_complex,R: nat > complex > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: complex] :
( ( member_complex @ X4 @ B2 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A3: nat] :
( ( member_nat @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3654_pigeonhole__infinite__rel,axiom,
! [A2: set_int,B2: set_nat,R: int > nat > $o] :
( ~ ( finite_finite_int @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B2 )
& ( R @ X4 @ Xa ) ) )
=> ? [X4: nat] :
( ( member_nat @ X4 @ B2 )
& ~ ( finite_finite_int
@ ( collect_int
@ ^ [A3: int] :
( ( member_int @ A3 @ A2 )
& ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_3655_less__set__def,axiom,
( ord_less_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
( ord_less_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ A5 )
@ ^ [X2: nat] : ( member_nat @ X2 @ B5 ) ) ) ) ).
% less_set_def
thf(fact_3656_less__set__def,axiom,
( ord_le3480810397992357184T_VEBT
= ( ^ [A5: set_VEBT_VEBT,B5: set_VEBT_VEBT] :
( ord_less_VEBT_VEBT_o
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ A5 )
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ B5 ) ) ) ) ).
% less_set_def
thf(fact_3657_less__set__def,axiom,
( ord_less_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ord_less_int_o
@ ^ [X2: int] : ( member_int @ X2 @ A5 )
@ ^ [X2: int] : ( member_int @ X2 @ B5 ) ) ) ) ).
% less_set_def
thf(fact_3658_less__set__def,axiom,
( ord_less_set_set_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
( ord_less_set_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A5 )
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ B5 ) ) ) ) ).
% less_set_def
thf(fact_3659_less__set__def,axiom,
( ord_less_set_real
= ( ^ [A5: set_real,B5: set_real] :
( ord_less_real_o
@ ^ [X2: real] : ( member_real @ X2 @ A5 )
@ ^ [X2: real] : ( member_real @ X2 @ B5 ) ) ) ) ).
% less_set_def
thf(fact_3660_strict__subset__divisors__dvd,axiom,
! [A: real,B: real] :
( ( ord_less_set_real
@ ( collect_real
@ ^ [C2: real] : ( dvd_dvd_real @ C2 @ A ) )
@ ( collect_real
@ ^ [C2: real] : ( dvd_dvd_real @ C2 @ B ) ) )
= ( ( dvd_dvd_real @ A @ B )
& ~ ( dvd_dvd_real @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_3661_strict__subset__divisors__dvd,axiom,
! [A: nat,B: nat] :
( ( ord_less_set_nat
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ A ) )
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ B ) ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_3662_strict__subset__divisors__dvd,axiom,
! [A: int,B: int] :
( ( ord_less_set_int
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ A ) )
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ B ) ) )
= ( ( dvd_dvd_int @ A @ B )
& ~ ( dvd_dvd_int @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_3663_lambda__zero,axiom,
( ( ^ [H: complex] : zero_zero_complex )
= ( times_times_complex @ zero_zero_complex ) ) ).
% lambda_zero
thf(fact_3664_lambda__zero,axiom,
( ( ^ [H: real] : zero_zero_real )
= ( times_times_real @ zero_zero_real ) ) ).
% lambda_zero
thf(fact_3665_lambda__zero,axiom,
( ( ^ [H: rat] : zero_zero_rat )
= ( times_times_rat @ zero_zero_rat ) ) ).
% lambda_zero
thf(fact_3666_lambda__zero,axiom,
( ( ^ [H: nat] : zero_zero_nat )
= ( times_times_nat @ zero_zero_nat ) ) ).
% lambda_zero
thf(fact_3667_lambda__zero,axiom,
( ( ^ [H: int] : zero_zero_int )
= ( times_times_int @ zero_zero_int ) ) ).
% lambda_zero
thf(fact_3668_lambda__one,axiom,
( ( ^ [X2: complex] : X2 )
= ( times_times_complex @ one_one_complex ) ) ).
% lambda_one
thf(fact_3669_lambda__one,axiom,
( ( ^ [X2: real] : X2 )
= ( times_times_real @ one_one_real ) ) ).
% lambda_one
thf(fact_3670_lambda__one,axiom,
( ( ^ [X2: rat] : X2 )
= ( times_times_rat @ one_one_rat ) ) ).
% lambda_one
thf(fact_3671_lambda__one,axiom,
( ( ^ [X2: nat] : X2 )
= ( times_times_nat @ one_one_nat ) ) ).
% lambda_one
thf(fact_3672_lambda__one,axiom,
( ( ^ [X2: int] : X2 )
= ( times_times_int @ one_one_int ) ) ).
% lambda_one
thf(fact_3673_max__def__raw,axiom,
( ord_max_set_int
= ( ^ [A3: set_int,B3: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def_raw
thf(fact_3674_max__def__raw,axiom,
( ord_max_rat
= ( ^ [A3: rat,B3: rat] : ( if_rat @ ( ord_less_eq_rat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def_raw
thf(fact_3675_max__def__raw,axiom,
( ord_max_num
= ( ^ [A3: num,B3: num] : ( if_num @ ( ord_less_eq_num @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def_raw
thf(fact_3676_max__def__raw,axiom,
( ord_max_nat
= ( ^ [A3: nat,B3: nat] : ( if_nat @ ( ord_less_eq_nat @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def_raw
thf(fact_3677_max__def__raw,axiom,
( ord_max_int
= ( ^ [A3: int,B3: int] : ( if_int @ ( ord_less_eq_int @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% max_def_raw
thf(fact_3678_finite__divisors__nat,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M ) ) ) ) ).
% finite_divisors_nat
thf(fact_3679_finite__M__bounded__by__nat,axiom,
! [P: nat > $o,I: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [K2: nat] :
( ( P @ K2 )
& ( ord_less_nat @ K2 @ I ) ) ) ) ).
% finite_M_bounded_by_nat
thf(fact_3680_finite__less__ub,axiom,
! [F: nat > nat,U: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ N3 @ ( F @ N3 ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ U ) ) ) ) ).
% finite_less_ub
thf(fact_3681_dvd__0__left,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
=> ( A = zero_zero_complex ) ) ).
% dvd_0_left
thf(fact_3682_dvd__0__left,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
=> ( A = zero_zero_real ) ) ).
% dvd_0_left
thf(fact_3683_dvd__0__left,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
=> ( A = zero_zero_rat ) ) ).
% dvd_0_left
thf(fact_3684_dvd__0__left,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% dvd_0_left
thf(fact_3685_dvd__0__left,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
=> ( A = zero_zero_int ) ) ).
% dvd_0_left
thf(fact_3686_dvd__field__iff,axiom,
( dvd_dvd_complex
= ( ^ [A3: complex,B3: complex] :
( ( A3 = zero_zero_complex )
=> ( B3 = zero_zero_complex ) ) ) ) ).
% dvd_field_iff
thf(fact_3687_dvd__field__iff,axiom,
( dvd_dvd_real
= ( ^ [A3: real,B3: real] :
( ( A3 = zero_zero_real )
=> ( B3 = zero_zero_real ) ) ) ) ).
% dvd_field_iff
thf(fact_3688_dvd__field__iff,axiom,
( dvd_dvd_rat
= ( ^ [A3: rat,B3: rat] :
( ( A3 = zero_zero_rat )
=> ( B3 = zero_zero_rat ) ) ) ) ).
% dvd_field_iff
thf(fact_3689_dvdE,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ~ ! [K3: real] :
( A
!= ( times_times_real @ B @ K3 ) ) ) ).
% dvdE
thf(fact_3690_dvdE,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ~ ! [K3: rat] :
( A
!= ( times_times_rat @ B @ K3 ) ) ) ).
% dvdE
thf(fact_3691_dvdE,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ~ ! [K3: nat] :
( A
!= ( times_times_nat @ B @ K3 ) ) ) ).
% dvdE
thf(fact_3692_dvdE,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ~ ! [K3: int] :
( A
!= ( times_times_int @ B @ K3 ) ) ) ).
% dvdE
thf(fact_3693_dvdI,axiom,
! [A: real,B: real,K: real] :
( ( A
= ( times_times_real @ B @ K ) )
=> ( dvd_dvd_real @ B @ A ) ) ).
% dvdI
thf(fact_3694_dvdI,axiom,
! [A: rat,B: rat,K: rat] :
( ( A
= ( times_times_rat @ B @ K ) )
=> ( dvd_dvd_rat @ B @ A ) ) ).
% dvdI
thf(fact_3695_dvdI,axiom,
! [A: nat,B: nat,K: nat] :
( ( A
= ( times_times_nat @ B @ K ) )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% dvdI
thf(fact_3696_dvdI,axiom,
! [A: int,B: int,K: int] :
( ( A
= ( times_times_int @ B @ K ) )
=> ( dvd_dvd_int @ B @ A ) ) ).
% dvdI
thf(fact_3697_dvd__def,axiom,
( dvd_dvd_real
= ( ^ [B3: real,A3: real] :
? [K2: real] :
( A3
= ( times_times_real @ B3 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_3698_dvd__def,axiom,
( dvd_dvd_rat
= ( ^ [B3: rat,A3: rat] :
? [K2: rat] :
( A3
= ( times_times_rat @ B3 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_3699_dvd__def,axiom,
( dvd_dvd_nat
= ( ^ [B3: nat,A3: nat] :
? [K2: nat] :
( A3
= ( times_times_nat @ B3 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_3700_dvd__def,axiom,
( dvd_dvd_int
= ( ^ [B3: int,A3: int] :
? [K2: int] :
( A3
= ( times_times_int @ B3 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_3701_dvd__productE,axiom,
! [P5: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ P5 @ ( times_times_nat @ A @ B ) )
=> ~ ! [X4: nat,Y2: nat] :
( ( P5
= ( times_times_nat @ X4 @ Y2 ) )
=> ( ( dvd_dvd_nat @ X4 @ A )
=> ~ ( dvd_dvd_nat @ Y2 @ B ) ) ) ) ).
% dvd_productE
thf(fact_3702_dvd__productE,axiom,
! [P5: int,A: int,B: int] :
( ( dvd_dvd_int @ P5 @ ( times_times_int @ A @ B ) )
=> ~ ! [X4: int,Y2: int] :
( ( P5
= ( times_times_int @ X4 @ Y2 ) )
=> ( ( dvd_dvd_int @ X4 @ A )
=> ~ ( dvd_dvd_int @ Y2 @ B ) ) ) ) ).
% dvd_productE
thf(fact_3703_dvd__mult,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3704_dvd__mult,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3705_dvd__mult,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3706_dvd__mult,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult
thf(fact_3707_division__decomp,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
=> ? [B8: nat,C5: nat] :
( ( A
= ( times_times_nat @ B8 @ C5 ) )
& ( dvd_dvd_nat @ B8 @ B )
& ( dvd_dvd_nat @ C5 @ C ) ) ) ).
% division_decomp
thf(fact_3708_division__decomp,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
=> ? [B8: int,C5: int] :
( ( A
= ( times_times_int @ B8 @ C5 ) )
& ( dvd_dvd_int @ B8 @ B )
& ( dvd_dvd_int @ C5 @ C ) ) ) ).
% division_decomp
thf(fact_3709_dvd__mult2,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3710_dvd__mult2,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3711_dvd__mult2,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3712_dvd__mult2,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_3713_dvd__mult__left,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3714_dvd__mult__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3715_dvd__mult__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3716_dvd__mult__left,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ A @ C ) ) ).
% dvd_mult_left
thf(fact_3717_dvd__triv__left,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3718_dvd__triv__left,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3719_dvd__triv__left,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3720_dvd__triv__left,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).
% dvd_triv_left
thf(fact_3721_mult__dvd__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ C @ D )
=> ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_3722_mult__dvd__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ C @ D )
=> ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_3723_mult__dvd__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_3724_mult__dvd__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_3725_dvd__mult__right,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ B @ C ) ) ).
% dvd_mult_right
thf(fact_3726_dvd__mult__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_3727_dvd__mult__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_3728_dvd__mult__right,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ B @ C ) ) ).
% dvd_mult_right
thf(fact_3729_dvd__triv__right,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).
% dvd_triv_right
thf(fact_3730_dvd__triv__right,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_3731_dvd__triv__right,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_3732_dvd__triv__right,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).
% dvd_triv_right
thf(fact_3733_one__dvd,axiom,
! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).
% one_dvd
thf(fact_3734_one__dvd,axiom,
! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).
% one_dvd
thf(fact_3735_one__dvd,axiom,
! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).
% one_dvd
thf(fact_3736_one__dvd,axiom,
! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).
% one_dvd
thf(fact_3737_one__dvd,axiom,
! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).
% one_dvd
thf(fact_3738_unit__imp__dvd,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_3739_unit__imp__dvd,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_3740_dvd__unit__imp__unit,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).
% dvd_unit_imp_unit
thf(fact_3741_dvd__unit__imp__unit,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ A @ one_one_int ) ) ) ).
% dvd_unit_imp_unit
thf(fact_3742_dvd__add__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3743_dvd__add__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3744_dvd__add__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3745_dvd__add__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3746_dvd__add__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3747_dvd__add__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3748_dvd__add__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3749_dvd__add__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3750_dvd__add,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3751_dvd__add,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3752_dvd__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3753_dvd__add,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3754_dvd__div__eq__iff,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_3755_dvd__div__eq__iff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_3756_dvd__div__eq__iff,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_3757_dvd__div__eq__cancel,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
=> ( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_3758_dvd__div__eq__cancel,axiom,
! [A: int,C: int,B: int] :
( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
=> ( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_3759_dvd__div__eq__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
=> ( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_3760_div__div__div__same,axiom,
! [D: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ D @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_3761_div__div__div__same,axiom,
! [D: int,B: int,A: int] :
( ( dvd_dvd_int @ D @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_3762_gcd__nat_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_3763_gcd__nat_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ( dvd_dvd_nat @ A @ zero_zero_nat )
& ( A != zero_zero_nat ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_3764_gcd__nat_Oextremum__unique,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_unique
thf(fact_3765_gcd__nat_Oextremum__strict,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
& ( zero_zero_nat != A ) ) ).
% gcd_nat.extremum_strict
thf(fact_3766_gcd__nat_Oextremum,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% gcd_nat.extremum
thf(fact_3767_dvd__mod__iff,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
= ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_3768_dvd__mod__iff,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
= ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_3769_dvd__mod__imp__dvd,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_3770_dvd__mod__imp__dvd,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
=> ( ( dvd_dvd_int @ C @ B )
=> ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_3771_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_rat @ ( bit0 @ N2 ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_3772_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_3773_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_int @ ( bit0 @ N2 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_3774_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numera1916890842035813515d_enat @ ( bit0 @ N2 ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ ( numera1916890842035813515d_enat @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_3775_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_real @ ( bit0 @ N2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_3776_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numera6620942414471956472nteger @ ( bit0 @ N2 ) )
= ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_3777_set__vebt__def,axiom,
( vEBT_set_vebt
= ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).
% set_vebt_def
thf(fact_3778_mod__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) )
= ( ( dvd_dvd_int @ L @ K )
| ( ( L = zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ K ) )
| ( ord_less_int @ zero_zero_int @ L ) ) ) ).
% mod_int_pos_iff
thf(fact_3779_not__is__unit__0,axiom,
~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).
% not_is_unit_0
thf(fact_3780_not__is__unit__0,axiom,
~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).
% not_is_unit_0
thf(fact_3781_pinf_I9_J,axiom,
! [D: real,S: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) ) ) ) ).
% pinf(9)
thf(fact_3782_pinf_I9_J,axiom,
! [D: rat,S: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) ) ) ) ).
% pinf(9)
thf(fact_3783_pinf_I9_J,axiom,
! [D: nat,S: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) )
= ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) ) ) ) ).
% pinf(9)
thf(fact_3784_pinf_I9_J,axiom,
! [D: int,S: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) ) ) ) ).
% pinf(9)
thf(fact_3785_pinf_I10_J,axiom,
! [D: real,S: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ Z3 @ X )
=> ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) ) ) ) ) ).
% pinf(10)
thf(fact_3786_pinf_I10_J,axiom,
! [D: rat,S: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ Z3 @ X )
=> ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) ) ) ) ) ).
% pinf(10)
thf(fact_3787_pinf_I10_J,axiom,
! [D: nat,S: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ Z3 @ X )
=> ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) ) )
= ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) ) ) ) ) ).
% pinf(10)
thf(fact_3788_pinf_I10_J,axiom,
! [D: int,S: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ Z3 @ X )
=> ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) ) ) ) ) ).
% pinf(10)
thf(fact_3789_minf_I9_J,axiom,
! [D: real,S: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) ) ) ) ).
% minf(9)
thf(fact_3790_minf_I9_J,axiom,
! [D: rat,S: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) ) ) ) ).
% minf(9)
thf(fact_3791_minf_I9_J,axiom,
! [D: nat,S: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) )
= ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) ) ) ) ).
% minf(9)
thf(fact_3792_minf_I9_J,axiom,
! [D: int,S: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) ) ) ) ).
% minf(9)
thf(fact_3793_minf_I10_J,axiom,
! [D: real,S: real] :
? [Z3: real] :
! [X: real] :
( ( ord_less_real @ X @ Z3 )
=> ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ S ) ) ) ) ) ).
% minf(10)
thf(fact_3794_minf_I10_J,axiom,
! [D: rat,S: rat] :
? [Z3: rat] :
! [X: rat] :
( ( ord_less_rat @ X @ Z3 )
=> ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ S ) ) ) ) ) ).
% minf(10)
thf(fact_3795_minf_I10_J,axiom,
! [D: nat,S: nat] :
? [Z3: nat] :
! [X: nat] :
( ( ord_less_nat @ X @ Z3 )
=> ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) ) )
= ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X @ S ) ) ) ) ) ).
% minf(10)
thf(fact_3796_minf_I10_J,axiom,
! [D: int,S: int] :
? [Z3: int] :
! [X: int] :
( ( ord_less_int @ X @ Z3 )
=> ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ S ) ) ) ) ) ).
% minf(10)
thf(fact_3797_dvd__div__eq__0__iff,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_3798_dvd__div__eq__0__iff,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_3799_dvd__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_3800_dvd__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_3801_dvd__div__eq__0__iff,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( A = zero_zero_real ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_3802_is__unit__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
& ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).
% is_unit_mult_iff
thf(fact_3803_is__unit__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
& ( dvd_dvd_int @ B @ one_one_int ) ) ) ).
% is_unit_mult_iff
thf(fact_3804_dvd__mult__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_3805_dvd__mult__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_3806_mult__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_3807_mult__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_3808_dvd__mult__unit__iff_H,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_3809_dvd__mult__unit__iff_H,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_3810_mult__unit__dvd__iff_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_3811_mult__unit__dvd__iff_H,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_3812_unit__mult__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ A @ B )
= ( times_times_nat @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_3813_unit__mult__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ A @ B )
= ( times_times_int @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_3814_unit__mult__right__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ B @ A )
= ( times_times_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_3815_unit__mult__right__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ B @ A )
= ( times_times_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_3816_dvd__div__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
= ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_3817_dvd__div__mult,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
= ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_3818_div__mult__swap,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_3819_div__mult__swap,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_3820_div__div__eq__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_3821_div__div__eq__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_3822_dvd__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_3823_dvd__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_3824_dvd__mult__imp__div,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
=> ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_3825_dvd__mult__imp__div,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
=> ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_3826_div__mult__div__if__dvd,axiom,
! [B: nat,A: nat,D: nat,C: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ D @ C )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_3827_div__mult__div__if__dvd,axiom,
! [B: int,A: int,D: int,C: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ D @ C )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_3828_unit__div__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_3829_unit__div__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_3830_div__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_3831_div__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_3832_dvd__div__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_3833_dvd__div__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_3834_div__plus__div__distrib__dvd__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_3835_div__plus__div__distrib__dvd__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_3836_div__plus__div__distrib__dvd__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_3837_div__plus__div__distrib__dvd__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_3838_mod__eq__0__iff__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
= ( dvd_dvd_nat @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_3839_mod__eq__0__iff__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
= ( dvd_dvd_int @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_3840_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B3: nat] :
( ( modulo_modulo_nat @ B3 @ A3 )
= zero_zero_nat ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_3841_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_int
= ( ^ [A3: int,B3: int] :
( ( modulo_modulo_int @ B3 @ A3 )
= zero_zero_int ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_3842_mod__0__imp__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_3843_mod__0__imp__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_3844_le__imp__power__dvd,axiom,
! [M: nat,N2: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ).
% le_imp_power_dvd
thf(fact_3845_le__imp__power__dvd,axiom,
! [M: nat,N2: nat,A: real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ).
% le_imp_power_dvd
thf(fact_3846_le__imp__power__dvd,axiom,
! [M: nat,N2: nat,A: int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ).
% le_imp_power_dvd
thf(fact_3847_le__imp__power__dvd,axiom,
! [M: nat,N2: nat,A: complex] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ).
% le_imp_power_dvd
thf(fact_3848_power__le__dvd,axiom,
! [A: nat,N2: nat,B: nat,M: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ B )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_3849_power__le__dvd,axiom,
! [A: real,N2: nat,B: real,M: nat] :
( ( dvd_dvd_real @ ( power_power_real @ A @ N2 ) @ B )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_3850_power__le__dvd,axiom,
! [A: int,N2: nat,B: int,M: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ B )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_3851_power__le__dvd,axiom,
! [A: complex,N2: nat,B: complex,M: nat] :
( ( dvd_dvd_complex @ ( power_power_complex @ A @ N2 ) @ B )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_3852_dvd__power__le,axiom,
! [X3: nat,Y: nat,N2: nat,M: nat] :
( ( dvd_dvd_nat @ X3 @ Y )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( dvd_dvd_nat @ ( power_power_nat @ X3 @ N2 ) @ ( power_power_nat @ Y @ M ) ) ) ) ).
% dvd_power_le
thf(fact_3853_dvd__power__le,axiom,
! [X3: real,Y: real,N2: nat,M: nat] :
( ( dvd_dvd_real @ X3 @ Y )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( dvd_dvd_real @ ( power_power_real @ X3 @ N2 ) @ ( power_power_real @ Y @ M ) ) ) ) ).
% dvd_power_le
thf(fact_3854_dvd__power__le,axiom,
! [X3: int,Y: int,N2: nat,M: nat] :
( ( dvd_dvd_int @ X3 @ Y )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( dvd_dvd_int @ ( power_power_int @ X3 @ N2 ) @ ( power_power_int @ Y @ M ) ) ) ) ).
% dvd_power_le
thf(fact_3855_dvd__power__le,axiom,
! [X3: complex,Y: complex,N2: nat,M: nat] :
( ( dvd_dvd_complex @ X3 @ Y )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( dvd_dvd_complex @ ( power_power_complex @ X3 @ N2 ) @ ( power_power_complex @ Y @ M ) ) ) ) ).
% dvd_power_le
thf(fact_3856_neg__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_int @ L @ ( modulo_modulo_int @ K @ L ) ) ) ).
% neg_mod_bound
thf(fact_3857_Euclidean__Division_Opos__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_int @ ( modulo_modulo_int @ K @ L ) @ L ) ) ).
% Euclidean_Division.pos_mod_bound
thf(fact_3858_dvd__pos__nat,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( dvd_dvd_nat @ M @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_3859_nat__dvd__not__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N2 )
=> ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_3860_zdvd__antisym__nonneg,axiom,
! [M: int,N2: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ N2 )
=> ( ( dvd_dvd_int @ M @ N2 )
=> ( ( dvd_dvd_int @ N2 @ M )
=> ( M = N2 ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_3861_zdvd__not__zless,axiom,
! [M: int,N2: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_int @ M @ N2 )
=> ~ ( dvd_dvd_int @ N2 @ M ) ) ) ).
% zdvd_not_zless
thf(fact_3862_zdvd__mult__cancel,axiom,
! [K: int,M: int,N2: int] :
( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N2 ) )
=> ( ( K != zero_zero_int )
=> ( dvd_dvd_int @ M @ N2 ) ) ) ).
% zdvd_mult_cancel
thf(fact_3863_bezout__lemma__nat,axiom,
! [D: nat,A: nat,B: nat,X3: nat,Y: nat] :
( ( dvd_dvd_nat @ D @ A )
=> ( ( dvd_dvd_nat @ D @ B )
=> ( ( ( ( times_times_nat @ A @ X3 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D ) )
| ( ( times_times_nat @ B @ X3 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D ) ) )
=> ? [X4: nat,Y2: nat] :
( ( dvd_dvd_nat @ D @ A )
& ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
& ( ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y2 ) @ D ) )
| ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y2 ) @ D ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_3864_bezout__add__nat,axiom,
! [A: nat,B: nat] :
? [D5: nat,X4: nat,Y2: nat] :
( ( dvd_dvd_nat @ D5 @ A )
& ( dvd_dvd_nat @ D5 @ B )
& ( ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y2 ) @ D5 ) )
| ( ( times_times_nat @ B @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y2 ) @ D5 ) ) ) ) ).
% bezout_add_nat
thf(fact_3865_zdvd__reduce,axiom,
! [K: int,N2: int,M: int] :
( ( dvd_dvd_int @ K @ ( plus_plus_int @ N2 @ ( times_times_int @ K @ M ) ) )
= ( dvd_dvd_int @ K @ N2 ) ) ).
% zdvd_reduce
thf(fact_3866_zdvd__period,axiom,
! [A: int,D: int,X3: int,T: int,C: int] :
( ( dvd_dvd_int @ A @ D )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X3 @ T ) )
= ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X3 @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).
% zdvd_period
thf(fact_3867_finite__lists__length__eq,axiom,
! [A2: set_complex,N2: nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite8712137658972009173omplex
@ ( collect_list_complex
@ ^ [Xs3: list_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs3 ) @ A2 )
& ( ( size_s3451745648224563538omplex @ Xs3 )
= N2 ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3868_finite__lists__length__eq,axiom,
! [A2: set_VEBT_VEBT,N2: nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( finite3004134309566078307T_VEBT
@ ( collec5608196760682091941T_VEBT
@ ^ [Xs3: list_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs3 ) @ A2 )
& ( ( size_s6755466524823107622T_VEBT @ Xs3 )
= N2 ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3869_finite__lists__length__eq,axiom,
! [A2: set_o,N2: nat] :
( ( finite_finite_o @ A2 )
=> ( finite_finite_list_o
@ ( collect_list_o
@ ^ [Xs3: list_o] :
( ( ord_less_eq_set_o @ ( set_o2 @ Xs3 ) @ A2 )
& ( ( size_size_list_o @ Xs3 )
= N2 ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3870_finite__lists__length__eq,axiom,
! [A2: set_nat,N2: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [Xs3: list_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs3 ) @ A2 )
& ( ( size_size_list_nat @ Xs3 )
= N2 ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3871_finite__lists__length__eq,axiom,
! [A2: set_int,N2: nat] :
( ( finite_finite_int @ A2 )
=> ( finite3922522038869484883st_int
@ ( collect_list_int
@ ^ [Xs3: list_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs3 ) @ A2 )
& ( ( size_size_list_int @ Xs3 )
= N2 ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_3872_even__flip__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_3873_even__flip__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_3874_even__flip__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_3875_vebt__buildup_Osimps_I3_J,axiom,
! [Va: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.simps(3)
thf(fact_3876_finite__lists__length__le,axiom,
! [A2: set_complex,N2: nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite8712137658972009173omplex
@ ( collect_list_complex
@ ^ [Xs3: list_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs3 ) @ A2 )
& ( ord_less_eq_nat @ ( size_s3451745648224563538omplex @ Xs3 ) @ N2 ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3877_finite__lists__length__le,axiom,
! [A2: set_VEBT_VEBT,N2: nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( finite3004134309566078307T_VEBT
@ ( collec5608196760682091941T_VEBT
@ ^ [Xs3: list_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs3 ) @ A2 )
& ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs3 ) @ N2 ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3878_finite__lists__length__le,axiom,
! [A2: set_o,N2: nat] :
( ( finite_finite_o @ A2 )
=> ( finite_finite_list_o
@ ( collect_list_o
@ ^ [Xs3: list_o] :
( ( ord_less_eq_set_o @ ( set_o2 @ Xs3 ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_o @ Xs3 ) @ N2 ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3879_finite__lists__length__le,axiom,
! [A2: set_nat,N2: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [Xs3: list_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs3 ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_nat @ Xs3 ) @ N2 ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3880_finite__lists__length__le,axiom,
! [A2: set_int,N2: nat] :
( ( finite_finite_int @ A2 )
=> ( finite3922522038869484883st_int
@ ( collect_list_int
@ ^ [Xs3: list_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs3 ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_int @ Xs3 ) @ N2 ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_3881_unit__dvdE,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [C3: nat] :
( B
!= ( times_times_nat @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_3882_unit__dvdE,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [C3: int] :
( B
!= ( times_times_int @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_3883_unity__coeff__ex,axiom,
! [P: complex > $o,L: complex] :
( ( ? [X2: complex] : ( P @ ( times_times_complex @ L @ X2 ) ) )
= ( ? [X2: complex] :
( ( dvd_dvd_complex @ L @ ( plus_plus_complex @ X2 @ zero_zero_complex ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3884_unity__coeff__ex,axiom,
! [P: real > $o,L: real] :
( ( ? [X2: real] : ( P @ ( times_times_real @ L @ X2 ) ) )
= ( ? [X2: real] :
( ( dvd_dvd_real @ L @ ( plus_plus_real @ X2 @ zero_zero_real ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3885_unity__coeff__ex,axiom,
! [P: rat > $o,L: rat] :
( ( ? [X2: rat] : ( P @ ( times_times_rat @ L @ X2 ) ) )
= ( ? [X2: rat] :
( ( dvd_dvd_rat @ L @ ( plus_plus_rat @ X2 @ zero_zero_rat ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3886_unity__coeff__ex,axiom,
! [P: nat > $o,L: nat] :
( ( ? [X2: nat] : ( P @ ( times_times_nat @ L @ X2 ) ) )
= ( ? [X2: nat] :
( ( dvd_dvd_nat @ L @ ( plus_plus_nat @ X2 @ zero_zero_nat ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3887_unity__coeff__ex,axiom,
! [P: int > $o,L: int] :
( ( ? [X2: int] : ( P @ ( times_times_int @ L @ X2 ) ) )
= ( ? [X2: int] :
( ( dvd_dvd_int @ L @ ( plus_plus_int @ X2 @ zero_zero_int ) )
& ( P @ X2 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3888_dvd__div__div__eq__mult,axiom,
! [A: nat,C: nat,B: nat,D: nat] :
( ( A != zero_zero_nat )
=> ( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ D @ C ) )
= ( ( times_times_nat @ B @ C )
= ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_3889_dvd__div__div__eq__mult,axiom,
! [A: int,C: int,B: int,D: int] :
( ( A != zero_zero_int )
=> ( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ D @ C ) )
= ( ( times_times_int @ B @ C )
= ( times_times_int @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_3890_dvd__div__iff__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_3891_dvd__div__iff__mult,axiom,
! [C: int,B: int,A: int] :
( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
= ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_3892_div__dvd__iff__mult,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_3893_div__dvd__iff__mult,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_3894_dvd__div__eq__mult,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( ( divide_divide_nat @ B @ A )
= C )
= ( B
= ( times_times_nat @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_3895_dvd__div__eq__mult,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( ( divide_divide_int @ B @ A )
= C )
= ( B
= ( times_times_int @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_3896_unit__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% unit_div_eq_0_iff
thf(fact_3897_unit__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% unit_div_eq_0_iff
thf(fact_3898_is__unit__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_3899_is__unit__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_3900_unit__div__mult__swap,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_3901_unit__div__mult__swap,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_3902_unit__div__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_3903_unit__div__commute,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_3904_div__mult__unit2,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_3905_div__mult__unit2,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_3906_unit__eq__div2,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( A
= ( divide_divide_nat @ C @ B ) )
= ( ( times_times_nat @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_3907_unit__eq__div2,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( A
= ( divide_divide_int @ C @ B ) )
= ( ( times_times_int @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_3908_unit__eq__div1,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= C )
= ( A
= ( times_times_nat @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_3909_unit__eq__div1,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= C )
= ( A
= ( times_times_int @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_3910_unit__imp__mod__eq__0,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat ) ) ).
% unit_imp_mod_eq_0
thf(fact_3911_unit__imp__mod__eq__0,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( modulo_modulo_int @ A @ B )
= zero_zero_int ) ) ).
% unit_imp_mod_eq_0
thf(fact_3912_is__unit__power__iff,axiom,
! [A: nat,N2: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
| ( N2 = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_3913_is__unit__power__iff,axiom,
! [A: int,N2: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
| ( N2 = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_3914_zmod__trivial__iff,axiom,
! [I: int,K: int] :
( ( ( modulo_modulo_int @ I @ K )
= I )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zmod_trivial_iff
thf(fact_3915_pos__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
& ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).
% pos_mod_conj
thf(fact_3916_neg__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
& ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% neg_mod_conj
thf(fact_3917_neg__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L ) @ zero_zero_int ) ) ).
% neg_mod_sign
thf(fact_3918_Euclidean__Division_Opos__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_3919_dvd__imp__le,axiom,
! [K: nat,N2: nat] :
( ( dvd_dvd_nat @ K @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_nat @ K @ N2 ) ) ) ).
% dvd_imp_le
thf(fact_3920_zdiv__mono__strict,axiom,
! [A2: int,B2: int,N2: int] :
( ( ord_less_int @ A2 @ B2 )
=> ( ( ord_less_int @ zero_zero_int @ N2 )
=> ( ( ( modulo_modulo_int @ A2 @ N2 )
= zero_zero_int )
=> ( ( ( modulo_modulo_int @ B2 @ N2 )
= zero_zero_int )
=> ( ord_less_int @ ( divide_divide_int @ A2 @ N2 ) @ ( divide_divide_int @ B2 @ N2 ) ) ) ) ) ) ).
% zdiv_mono_strict
thf(fact_3921_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( dvd_dvd_nat @ M @ N2 ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_3922_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N2 ) ) ) ).
% dvd_mult_cancel
thf(fact_3923_bezout__add__strong__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [D5: nat,X4: nat,Y2: nat] :
( ( dvd_dvd_nat @ D5 @ A )
& ( dvd_dvd_nat @ D5 @ B )
& ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y2 ) @ D5 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_3924_zdvd__imp__le,axiom,
! [Z2: int,N2: int] :
( ( dvd_dvd_int @ Z2 @ N2 )
=> ( ( ord_less_int @ zero_zero_int @ N2 )
=> ( ord_less_eq_int @ Z2 @ N2 ) ) ) ).
% zdvd_imp_le
thf(fact_3925_div__mod__decomp__int,axiom,
! [A2: int,N2: int] :
( A2
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N2 ) @ N2 ) @ ( modulo_modulo_int @ A2 @ N2 ) ) ) ).
% div_mod_decomp_int
thf(fact_3926_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N2 ) )
= ( ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ).
% mod_greater_zero_iff_not_dvd
thf(fact_3927_vebt__buildup_Oelims,axiom,
! [X3: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X3 )
= Y )
=> ( ( ( X3 = zero_zero_nat )
=> ( Y
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ( ( ( X3
= ( suc @ zero_zero_nat ) )
=> ( Y
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Va2: nat] :
( ( X3
= ( suc @ ( suc @ Va2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.elims
thf(fact_3928_even__zero,axiom,
dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).
% even_zero
thf(fact_3929_even__zero,axiom,
dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).
% even_zero
thf(fact_3930_even__zero,axiom,
dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).
% even_zero
thf(fact_3931_is__unit__div__mult__cancel__right,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_3932_is__unit__div__mult__cancel__right,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_3933_is__unit__div__mult__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_3934_is__unit__div__mult__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_3935_is__unitE,axiom,
! [A: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [B4: nat] :
( ( B4 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B4 @ one_one_nat )
=> ( ( ( divide_divide_nat @ one_one_nat @ A )
= B4 )
=> ( ( ( divide_divide_nat @ one_one_nat @ B4 )
= A )
=> ( ( ( times_times_nat @ A @ B4 )
= one_one_nat )
=> ( ( divide_divide_nat @ C @ A )
!= ( times_times_nat @ C @ B4 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_3936_is__unitE,axiom,
! [A: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [B4: int] :
( ( B4 != zero_zero_int )
=> ( ( dvd_dvd_int @ B4 @ one_one_int )
=> ( ( ( divide_divide_int @ one_one_int @ A )
= B4 )
=> ( ( ( divide_divide_int @ one_one_int @ B4 )
= A )
=> ( ( ( times_times_int @ A @ B4 )
= one_one_int )
=> ( ( divide_divide_int @ C @ A )
!= ( times_times_int @ C @ B4 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_3937_odd__even__add,axiom,
! [A: nat,B: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_3938_odd__even__add,axiom,
! [A: int,B: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_3939_odd__even__add,axiom,
! [A: code_integer,B: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_3940_dvd__power__iff,axiom,
! [X3: nat,M: nat,N2: nat] :
( ( X3 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ X3 @ M ) @ ( power_power_nat @ X3 @ N2 ) )
= ( ( dvd_dvd_nat @ X3 @ one_one_nat )
| ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).
% dvd_power_iff
thf(fact_3941_dvd__power__iff,axiom,
! [X3: int,M: nat,N2: nat] :
( ( X3 != zero_zero_int )
=> ( ( dvd_dvd_int @ ( power_power_int @ X3 @ M ) @ ( power_power_int @ X3 @ N2 ) )
= ( ( dvd_dvd_int @ X3 @ one_one_int )
| ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).
% dvd_power_iff
thf(fact_3942_dvd__power,axiom,
! [N2: nat,X3: rat] :
( ( ( ord_less_nat @ zero_zero_nat @ N2 )
| ( X3 = one_one_rat ) )
=> ( dvd_dvd_rat @ X3 @ ( power_power_rat @ X3 @ N2 ) ) ) ).
% dvd_power
thf(fact_3943_dvd__power,axiom,
! [N2: nat,X3: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N2 )
| ( X3 = one_one_nat ) )
=> ( dvd_dvd_nat @ X3 @ ( power_power_nat @ X3 @ N2 ) ) ) ).
% dvd_power
thf(fact_3944_dvd__power,axiom,
! [N2: nat,X3: real] :
( ( ( ord_less_nat @ zero_zero_nat @ N2 )
| ( X3 = one_one_real ) )
=> ( dvd_dvd_real @ X3 @ ( power_power_real @ X3 @ N2 ) ) ) ).
% dvd_power
thf(fact_3945_dvd__power,axiom,
! [N2: nat,X3: int] :
( ( ( ord_less_nat @ zero_zero_nat @ N2 )
| ( X3 = one_one_int ) )
=> ( dvd_dvd_int @ X3 @ ( power_power_int @ X3 @ N2 ) ) ) ).
% dvd_power
thf(fact_3946_dvd__power,axiom,
! [N2: nat,X3: complex] :
( ( ( ord_less_nat @ zero_zero_nat @ N2 )
| ( X3 = one_one_complex ) )
=> ( dvd_dvd_complex @ X3 @ ( power_power_complex @ X3 @ N2 ) ) ) ).
% dvd_power
thf(fact_3947_signed__take__bit__int__less__exp,axiom,
! [N2: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).
% signed_take_bit_int_less_exp
thf(fact_3948_mod__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
= ( plus_plus_int @ K @ L ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_3949_dvd__mult__cancel2,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N2 @ M ) @ M )
= ( N2 = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_3950_dvd__mult__cancel1,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N2 ) @ M )
= ( N2 = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_3951_power__dvd__imp__le,axiom,
! [I: nat,M: nat,N2: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N2 ) )
=> ( ( ord_less_nat @ one_one_nat @ I )
=> ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% power_dvd_imp_le
thf(fact_3952_even__iff__mod__2__eq__zero,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_3953_even__iff__mod__2__eq__zero,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_3954_even__iff__mod__2__eq__zero,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_3955_power__mono__odd,axiom,
! [N2: nat,A: real,B: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).
% power_mono_odd
thf(fact_3956_power__mono__odd,axiom,
! [N2: nat,A: rat,B: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).
% power_mono_odd
thf(fact_3957_power__mono__odd,axiom,
! [N2: nat,A: int,B: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).
% power_mono_odd
thf(fact_3958_odd__pos,axiom,
! [N2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% odd_pos
thf(fact_3959_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% signed_take_bit_int_greater_eq_self_iff
thf(fact_3960_signed__take__bit__int__less__self__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ).
% signed_take_bit_int_less_self_iff
thf(fact_3961_split__zmod,axiom,
! [P: int > $o,N2: int,K: int] :
( ( P @ ( modulo_modulo_int @ N2 @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ N2 ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I5: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N2
= ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
=> ( P @ J3 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I5: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N2
= ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
=> ( P @ J3 ) ) ) ) ) ).
% split_zmod
thf(fact_3962_int__mod__neg__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_neg_eq
thf(fact_3963_int__mod__pos__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_pos_eq
thf(fact_3964_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% dvd_power_iff_le
thf(fact_3965_even__unset__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_3966_even__unset__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_3967_even__unset__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_3968_even__set__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_3969_even__set__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_3970_even__set__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_3971_num_Osize__gen_I1_J,axiom,
( ( size_num @ one )
= zero_zero_nat ) ).
% num.size_gen(1)
thf(fact_3972_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
! [Uy: option4927543243414619207at_nat,V: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList2 @ S ) @ X3 )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).
% VEBT_internal.naive_member.simps(3)
thf(fact_3973_oddE,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: nat] :
( A
!= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) @ one_one_nat ) ) ) ).
% oddE
thf(fact_3974_oddE,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: int] :
( A
!= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) @ one_one_int ) ) ) ).
% oddE
thf(fact_3975_oddE,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ~ ! [B4: code_integer] :
( A
!= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) @ one_one_Code_integer ) ) ) ).
% oddE
thf(fact_3976_parity__cases,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger ) )
=> ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer ) ) ) ).
% parity_cases
thf(fact_3977_parity__cases,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat ) )
=> ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat ) ) ) ).
% parity_cases
thf(fact_3978_parity__cases,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int ) )
=> ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int ) ) ) ).
% parity_cases
thf(fact_3979_mod2__eq__if,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) )
& ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ) ).
% mod2_eq_if
thf(fact_3980_mod2__eq__if,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ) ).
% mod2_eq_if
thf(fact_3981_mod2__eq__if,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ) ).
% mod2_eq_if
thf(fact_3982_zero__le__even__power,axiom,
! [N2: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).
% zero_le_even_power
thf(fact_3983_zero__le__even__power,axiom,
! [N2: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).
% zero_le_even_power
thf(fact_3984_zero__le__even__power,axiom,
! [N2: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).
% zero_le_even_power
thf(fact_3985_zero__le__odd__power,axiom,
! [N2: nat,A: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).
% zero_le_odd_power
thf(fact_3986_zero__le__odd__power,axiom,
! [N2: nat,A: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).
% zero_le_odd_power
thf(fact_3987_zero__le__odd__power,axiom,
! [N2: nat,A: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% zero_le_odd_power
thf(fact_3988_zero__le__power__eq,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_3989_zero__le__power__eq,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_3990_zero__le__power__eq,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_3991_verit__le__mono__div__int,axiom,
! [A2: int,B2: int,N2: int] :
( ( ord_less_int @ A2 @ B2 )
=> ( ( ord_less_int @ zero_zero_int @ N2 )
=> ( ord_less_eq_int
@ ( plus_plus_int @ ( divide_divide_int @ A2 @ N2 )
@ ( if_int
@ ( ( modulo_modulo_int @ B2 @ N2 )
= zero_zero_int )
@ one_one_int
@ zero_zero_int ) )
@ ( divide_divide_int @ B2 @ N2 ) ) ) ) ).
% verit_le_mono_div_int
thf(fact_3992_split__neg__lemma,axiom,
! [K: int,P: int > int > $o,N2: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ( P @ ( divide_divide_int @ N2 @ K ) @ ( modulo_modulo_int @ N2 @ K ) )
= ( ! [I5: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N2
= ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
=> ( P @ I5 @ J3 ) ) ) ) ) ).
% split_neg_lemma
thf(fact_3993_split__pos__lemma,axiom,
! [K: int,P: int > int > $o,N2: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( P @ ( divide_divide_int @ N2 @ K ) @ ( modulo_modulo_int @ N2 @ K ) )
= ( ! [I5: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N2
= ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
=> ( P @ I5 @ J3 ) ) ) ) ) ).
% split_pos_lemma
thf(fact_3994_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
! [V: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT,X3: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList2 @ Vd2 ) @ X3 )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).
% VEBT_internal.membermima.simps(5)
thf(fact_3995_vebt__member_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) @ X3 )
= ( ( X3 != Mi )
=> ( ( X3 != Ma )
=> ( ~ ( ord_less_nat @ X3 @ Mi )
& ( ~ ( ord_less_nat @ X3 @ Mi )
=> ( ~ ( ord_less_nat @ Ma @ X3 )
& ( ~ ( ord_less_nat @ Ma @ X3 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.simps(5)
thf(fact_3996_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
! [Mi: nat,Ma: nat,V: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList2 @ Vc ) @ X3 )
= ( ( X3 = Mi )
| ( X3 = Ma )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ).
% VEBT_internal.membermima.simps(4)
thf(fact_3997_zero__less__power__eq,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
= ( ( N2 = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_3998_zero__less__power__eq,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
= ( ( N2 = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_3999_zero__less__power__eq,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
= ( ( N2 = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_4000_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_V5719532721284313246member @ X3 @ Xa2 )
= Y )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( Y
= ( ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> Y )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [S3: vEBT_VEBT] :
( X3
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) )
=> ( Y
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(1)
thf(fact_4001_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X3 @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [S3: vEBT_VEBT] :
( X3
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(2)
thf(fact_4002_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X3 @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X3
!= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [S3: vEBT_VEBT] :
( X3
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(3)
thf(fact_4003_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X3 @ Xa2 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
=> ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Vd: vEBT_VEBT] :
( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(2)
thf(fact_4004_power__le__zero__eq,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_4005_power__le__zero__eq,axiom,
! [A: rat,N2: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_4006_power__le__zero__eq,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_4007_vebt__member_Oelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X3 @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(2)
thf(fact_4008_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X3 @ Xa2 )
=> ( ! [Uu2: $o,Uv2: $o] :
( X3
!= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X3
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
=> ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Vd: vEBT_VEBT] :
( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(3)
thf(fact_4009_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_membermima @ X3 @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> Y )
=> ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> Y )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( Y
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
=> ( Y
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Vd: vEBT_VEBT] :
( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) )
=> ( Y
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(1)
thf(fact_4010_vebt__insert_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) @ X3 )
= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( X3 = Mi )
| ( X3 = Ma ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ X3 @ Mi ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ Ma ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList2 @ Summary ) ) ) ).
% vebt_insert.simps(5)
thf(fact_4011_vebt__member_Oelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X3 @ Xa2 )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X3
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X3
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X3
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(3)
thf(fact_4012_vebt__member_Oelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_vebt_member @ X3 @ Xa2 )
= Y )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( Y
= ( ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> Y )
=> ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> Y )
=> ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> Y )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ( Y
= ( ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(1)
thf(fact_4013_finite__nth__roots,axiom,
! [N2: nat,C: complex] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= C ) ) ) ) ).
% finite_nth_roots
thf(fact_4014_finite__roots__unity,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Z6: real] :
( ( power_power_real @ Z6 @ N2 )
= one_one_real ) ) ) ) ).
% finite_roots_unity
thf(fact_4015_finite__roots__unity,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= one_one_complex ) ) ) ) ).
% finite_roots_unity
thf(fact_4016_vebt__insert_Opelims,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X3 @ Xa2 )
= Y )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( ( ( Xa2 = zero_zero_nat )
=> ( Y
= ( vEBT_Leaf @ $true @ B4 ) ) )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> ( Y
= ( vEBT_Leaf @ A4 @ $true ) ) )
& ( ( Xa2 != one_one_nat )
=> ( Y
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S3 ) )
=> ( ( Y
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S3 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S3 ) @ Xa2 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S3 ) )
=> ( ( Y
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S3 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S3 ) @ Xa2 ) ) ) )
=> ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
=> ( ( Y
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ( ( Y
= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_insert.pelims
thf(fact_4017_prod_Ofinite__Collect__op,axiom,
! [I6: set_VEBT_VEBT,X3: vEBT_VEBT > complex,Y: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_complex ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_complex ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( times_times_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4018_prod_Ofinite__Collect__op,axiom,
! [I6: set_real,X3: real > complex,Y: real > complex] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_complex ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( times_times_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4019_prod_Ofinite__Collect__op,axiom,
! [I6: set_nat,X3: nat > complex,Y: nat > complex] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_complex ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( times_times_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4020_prod_Ofinite__Collect__op,axiom,
! [I6: set_int,X3: int > complex,Y: int > complex] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_complex ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( times_times_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4021_prod_Ofinite__Collect__op,axiom,
! [I6: set_complex,X3: complex > complex,Y: complex > complex] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_complex ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_complex ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( times_times_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4022_prod_Ofinite__Collect__op,axiom,
! [I6: set_VEBT_VEBT,X3: vEBT_VEBT > real,Y: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_real ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_real ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( times_times_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4023_prod_Ofinite__Collect__op,axiom,
! [I6: set_real,X3: real > real,Y: real > real] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_real ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( times_times_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4024_prod_Ofinite__Collect__op,axiom,
! [I6: set_nat,X3: nat > real,Y: nat > real] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_real ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( times_times_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4025_prod_Ofinite__Collect__op,axiom,
! [I6: set_int,X3: int > real,Y: int > real] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_real ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( times_times_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4026_prod_Ofinite__Collect__op,axiom,
! [I6: set_complex,X3: complex > real,Y: complex > real] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( X3 @ I5 )
!= one_one_real ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( Y @ I5 )
!= one_one_real ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( times_times_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4027_sum_Ofinite__Collect__op,axiom,
! [I6: set_VEBT_VEBT,X3: vEBT_VEBT > complex,Y: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_complex ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_complex ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( plus_plus_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4028_sum_Ofinite__Collect__op,axiom,
! [I6: set_real,X3: real > complex,Y: real > complex] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( plus_plus_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4029_sum_Ofinite__Collect__op,axiom,
! [I6: set_nat,X3: nat > complex,Y: nat > complex] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( plus_plus_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4030_sum_Ofinite__Collect__op,axiom,
! [I6: set_int,X3: int > complex,Y: int > complex] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( plus_plus_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4031_sum_Ofinite__Collect__op,axiom,
! [I6: set_complex,X3: complex > complex,Y: complex > complex] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_complex ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_complex ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( plus_plus_complex @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4032_sum_Ofinite__Collect__op,axiom,
! [I6: set_VEBT_VEBT,X3: vEBT_VEBT > real,Y: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_real ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_real ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I5 @ I6 )
& ( ( plus_plus_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4033_sum_Ofinite__Collect__op,axiom,
! [I6: set_real,X3: real > real,Y: real > real] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I5: real] :
( ( member_real @ I5 @ I6 )
& ( ( plus_plus_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4034_sum_Ofinite__Collect__op,axiom,
! [I6: set_nat,X3: nat > real,Y: nat > real] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I5: nat] :
( ( member_nat @ I5 @ I6 )
& ( ( plus_plus_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4035_sum_Ofinite__Collect__op,axiom,
! [I6: set_int,X3: int > real,Y: int > real] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I5: int] :
( ( member_int @ I5 @ I6 )
& ( ( plus_plus_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4036_sum_Ofinite__Collect__op,axiom,
! [I6: set_complex,X3: complex > real,Y: complex > real] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( X3 @ I5 )
!= zero_zero_real ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( Y @ I5 )
!= zero_zero_real ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I5: complex] :
( ( member_complex @ I5 @ I6 )
& ( ( plus_plus_real @ ( X3 @ I5 ) @ ( Y @ I5 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_4037_vebt__member_Opelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(3)
thf(fact_4038_vebt__member_Opelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_vebt_member @ X3 @ Xa2 )
= Y )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( Y
= ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ~ Y
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ~ Y
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
=> ( ~ Y
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ( ( Y
= ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(1)
thf(fact_4039_vebt__member_Opelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(2)
thf(fact_4040_dvd__antisym,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_nat @ M @ N2 )
=> ( ( dvd_dvd_nat @ N2 @ M )
=> ( M = N2 ) ) ) ).
% dvd_antisym
thf(fact_4041_gcd__nat_Oasym,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ~ ( ( dvd_dvd_nat @ B @ A )
& ( B != A ) ) ) ).
% gcd_nat.asym
thf(fact_4042_gcd__nat_Orefl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% gcd_nat.refl
thf(fact_4043_gcd__nat_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% gcd_nat.trans
thf(fact_4044_gcd__nat_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( dvd_dvd_nat @ A3 @ B3 )
& ( dvd_dvd_nat @ B3 @ A3 ) ) ) ) ).
% gcd_nat.eq_iff
thf(fact_4045_gcd__nat_Oirrefl,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ A @ A )
& ( A != A ) ) ).
% gcd_nat.irrefl
thf(fact_4046_gcd__nat_Oantisym,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( A = B ) ) ) ).
% gcd_nat.antisym
thf(fact_4047_gcd__nat_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans
thf(fact_4048_gcd__nat_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans1
thf(fact_4049_gcd__nat_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans2
thf(fact_4050_gcd__nat_Ostrict__iff__not,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% gcd_nat.strict_iff_not
thf(fact_4051_gcd__nat_Oorder__iff__strict,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B3: nat] :
( ( ( dvd_dvd_nat @ A3 @ B3 )
& ( A3 != B3 ) )
| ( A3 = B3 ) ) ) ) ).
% gcd_nat.order_iff_strict
thf(fact_4052_gcd__nat_Ostrict__iff__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ).
% gcd_nat.strict_iff_order
thf(fact_4053_gcd__nat_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( dvd_dvd_nat @ A @ B ) ) ).
% gcd_nat.strict_implies_order
thf(fact_4054_gcd__nat_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( A != B ) ) ).
% gcd_nat.strict_implies_not_eq
thf(fact_4055_gcd__nat_Onot__eq__order__implies__strict,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ) ).
% gcd_nat.not_eq_order_implies_strict
thf(fact_4056_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_V5719532721284313246member @ X3 @ Xa2 )
= Y )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( Y
= ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ( ~ Y
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) )
=> ( ( Y
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) @ Xa2 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(1)
thf(fact_4057_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ~ ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) @ Xa2 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(2)
thf(fact_4058_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [A4: $o,B4: $o] :
( ( X3
= ( vEBT_Leaf @ A4 @ B4 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa2 ) )
=> ( ( ( Xa2 = zero_zero_nat )
=> A4 )
& ( ( Xa2 != zero_zero_nat )
=> ( ( ( Xa2 = one_one_nat )
=> B4 )
& ( Xa2 = one_one_nat ) ) ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S3 ) @ Xa2 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(3)
thf(fact_4059_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_membermima @ X3 @ Xa2 )
= Y )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ~ Y
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ~ Y
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( Y
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
=> ( ( Y
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) )
=> ( ( Y
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(1)
thf(fact_4060_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) @ Xa2 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(3)
thf(fact_4061_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd ) @ Xa2 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(2)
thf(fact_4062_arcosh__1,axiom,
( ( arcosh_real @ one_one_real )
= zero_zero_real ) ).
% arcosh_1
thf(fact_4063_arsinh__0,axiom,
( ( arsinh_real @ zero_zero_real )
= zero_zero_real ) ).
% arsinh_0
thf(fact_4064_artanh__0,axiom,
( ( artanh_real @ zero_zero_real )
= zero_zero_real ) ).
% artanh_0
thf(fact_4065_vebt__buildup_Opelims,axiom,
! [X3: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X3 )
= Y )
=> ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X3 )
=> ( ( ( X3 = zero_zero_nat )
=> ( ( Y
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
=> ( ( ( X3
= ( suc @ zero_zero_nat ) )
=> ( ( Y
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va2: nat] :
( ( X3
= ( suc @ ( suc @ Va2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.pelims
thf(fact_4066_option_Osize__gen_I2_J,axiom,
! [X3: product_prod_nat_nat > nat,X22: product_prod_nat_nat] :
( ( size_o8335143837870341156at_nat @ X3 @ ( some_P7363390416028606310at_nat @ X22 ) )
= ( plus_plus_nat @ ( X3 @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% option.size_gen(2)
thf(fact_4067_option_Osize__gen_I2_J,axiom,
! [X3: num > nat,X22: num] :
( ( size_option_num @ X3 @ ( some_num @ X22 ) )
= ( plus_plus_nat @ ( X3 @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% option.size_gen(2)
thf(fact_4068_flip__bit__0,axiom,
! [A: code_integer] :
( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
= ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4069_flip__bit__0,axiom,
! [A: nat] :
( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
= ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4070_flip__bit__0,axiom,
! [A: int] :
( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
= ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4071_even__mult__exp__div__exp__iff,axiom,
! [A: code_integer,M: nat,N2: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ( ord_less_nat @ N2 @ M )
| ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
= zero_z3403309356797280102nteger )
| ( ( ord_less_eq_nat @ M @ N2 )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_4072_even__mult__exp__div__exp__iff,axiom,
! [A: nat,M: nat,N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ( ord_less_nat @ N2 @ M )
| ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
= zero_zero_nat )
| ( ( ord_less_eq_nat @ M @ N2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_4073_even__mult__exp__div__exp__iff,axiom,
! [A: int,M: nat,N2: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ( ord_less_nat @ N2 @ M )
| ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
= zero_zero_int )
| ( ( ord_less_eq_nat @ M @ N2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_4074_signed__take__bit__int__greater__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) ) @ ( bit_ri631733984087533419it_int @ N2 @ K ) ) ) ).
% signed_take_bit_int_greater_eq
thf(fact_4075_one__mod__2__pow__eq,axiom,
! [N2: nat] :
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% one_mod_2_pow_eq
thf(fact_4076_one__mod__2__pow__eq,axiom,
! [N2: nat] :
( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% one_mod_2_pow_eq
thf(fact_4077_one__mod__2__pow__eq,axiom,
! [N2: nat] :
( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% one_mod_2_pow_eq
thf(fact_4078_pred__subset__eq,axiom,
! [R: set_nat,S2: set_nat] :
( ( ord_less_eq_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ R )
@ ^ [X2: nat] : ( member_nat @ X2 @ S2 ) )
= ( ord_less_eq_set_nat @ R @ S2 ) ) ).
% pred_subset_eq
thf(fact_4079_pred__subset__eq,axiom,
! [R: set_VEBT_VEBT,S2: set_VEBT_VEBT] :
( ( ord_le418104280809901481VEBT_o
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ R )
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ S2 ) )
= ( ord_le4337996190870823476T_VEBT @ R @ S2 ) ) ).
% pred_subset_eq
thf(fact_4080_pred__subset__eq,axiom,
! [R: set_set_nat,S2: set_set_nat] :
( ( ord_le3964352015994296041_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ R )
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ S2 ) )
= ( ord_le6893508408891458716et_nat @ R @ S2 ) ) ).
% pred_subset_eq
thf(fact_4081_pred__subset__eq,axiom,
! [R: set_real,S2: set_real] :
( ( ord_less_eq_real_o
@ ^ [X2: real] : ( member_real @ X2 @ R )
@ ^ [X2: real] : ( member_real @ X2 @ S2 ) )
= ( ord_less_eq_set_real @ R @ S2 ) ) ).
% pred_subset_eq
thf(fact_4082_pred__subset__eq,axiom,
! [R: set_int,S2: set_int] :
( ( ord_less_eq_int_o
@ ^ [X2: int] : ( member_int @ X2 @ R )
@ ^ [X2: int] : ( member_int @ X2 @ S2 ) )
= ( ord_less_eq_set_int @ R @ S2 ) ) ).
% pred_subset_eq
thf(fact_4083_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4084_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4085_verit__minus__simplify_I4_J,axiom,
! [B: rat] :
( ( uminus_uminus_rat @ ( uminus_uminus_rat @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4086_verit__minus__simplify_I4_J,axiom,
! [B: code_integer] :
( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4087_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4088_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4089_neg__equal__iff__equal,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= ( uminus_uminus_rat @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4090_neg__equal__iff__equal,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= ( uminus1351360451143612070nteger @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4091_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4092_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4093_add_Oinverse__inverse,axiom,
! [A: rat] :
( ( uminus_uminus_rat @ ( uminus_uminus_rat @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4094_add_Oinverse__inverse,axiom,
! [A: code_integer] :
( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4095_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_4096_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_4097_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_4098_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_4099_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_4100_diff__zero,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_zero
thf(fact_4101_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_4102_diff__zero,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_zero
thf(fact_4103_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_4104_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_4105_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_4106_diff__0__right,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_0_right
thf(fact_4107_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_4108_diff__0__right,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_0_right
thf(fact_4109_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_4110_diff__self,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% diff_self
thf(fact_4111_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_4112_diff__self,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% diff_self
thf(fact_4113_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_4114_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4115_neg__le__iff__le,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4116_neg__le__iff__le,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4117_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4118_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_4119_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_4120_neg__equal__zero,axiom,
! [A: rat] :
( ( ( uminus_uminus_rat @ A )
= A )
= ( A = zero_zero_rat ) ) ).
% neg_equal_zero
thf(fact_4121_neg__equal__zero,axiom,
! [A: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= A )
= ( A = zero_z3403309356797280102nteger ) ) ).
% neg_equal_zero
thf(fact_4122_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_4123_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_4124_equal__neg__zero,axiom,
! [A: rat] :
( ( A
= ( uminus_uminus_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% equal_neg_zero
thf(fact_4125_equal__neg__zero,axiom,
! [A: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ A ) )
= ( A = zero_z3403309356797280102nteger ) ) ).
% equal_neg_zero
thf(fact_4126_neg__equal__0__iff__equal,axiom,
! [A: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% neg_equal_0_iff_equal
thf(fact_4127_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_4128_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_4129_neg__equal__0__iff__equal,axiom,
! [A: rat] :
( ( ( uminus_uminus_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% neg_equal_0_iff_equal
thf(fact_4130_neg__equal__0__iff__equal,axiom,
! [A: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% neg_equal_0_iff_equal
thf(fact_4131_neg__0__equal__iff__equal,axiom,
! [A: complex] :
( ( zero_zero_complex
= ( uminus1482373934393186551omplex @ A ) )
= ( zero_zero_complex = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4132_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4133_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4134_neg__0__equal__iff__equal,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( uminus_uminus_rat @ A ) )
= ( zero_zero_rat = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4135_neg__0__equal__iff__equal,axiom,
! [A: code_integer] :
( ( zero_z3403309356797280102nteger
= ( uminus1351360451143612070nteger @ A ) )
= ( zero_z3403309356797280102nteger = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4136_add_Oinverse__neutral,axiom,
( ( uminus1482373934393186551omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% add.inverse_neutral
thf(fact_4137_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_4138_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_4139_add_Oinverse__neutral,axiom,
( ( uminus_uminus_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% add.inverse_neutral
thf(fact_4140_add_Oinverse__neutral,axiom,
( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% add.inverse_neutral
thf(fact_4141_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4142_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4143_neg__less__iff__less,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4144_neg__less__iff__less,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4145_neg__numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( M = N2 ) ) ).
% neg_numeral_eq_iff
thf(fact_4146_neg__numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( M = N2 ) ) ).
% neg_numeral_eq_iff
thf(fact_4147_neg__numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( M = N2 ) ) ).
% neg_numeral_eq_iff
thf(fact_4148_neg__numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( M = N2 ) ) ).
% neg_numeral_eq_iff
thf(fact_4149_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_4150_add__diff__cancel,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_4151_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_4152_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_4153_diff__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_4154_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_4155_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_4156_add__diff__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_4157_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_4158_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_4159_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_4160_add__diff__cancel__left_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_4161_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_4162_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_4163_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_4164_add__diff__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_4165_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_4166_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_4167_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_4168_add__diff__cancel__right_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_4169_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_4170_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_4171_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4172_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4173_mult__minus__right,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4174_mult__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4175_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4176_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4177_minus__mult__minus,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( times_times_rat @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4178_minus__mult__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( times_3573771949741848930nteger @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4179_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4180_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4181_mult__minus__left,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4182_mult__minus__left,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4183_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4184_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4185_add__minus__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4186_add__minus__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4187_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4188_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4189_minus__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4190_minus__add__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4191_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_4192_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_4193_minus__add__distrib,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_add_distrib
thf(fact_4194_minus__add__distrib,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_add_distrib
thf(fact_4195_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4196_minus__diff__eq,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
= ( minus_minus_real @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4197_minus__diff__eq,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
= ( minus_minus_rat @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4198_minus__diff__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4199_minus__dvd__iff,axiom,
! [X3: int,Y: int] :
( ( dvd_dvd_int @ ( uminus_uminus_int @ X3 ) @ Y )
= ( dvd_dvd_int @ X3 @ Y ) ) ).
% minus_dvd_iff
thf(fact_4200_minus__dvd__iff,axiom,
! [X3: real,Y: real] :
( ( dvd_dvd_real @ ( uminus_uminus_real @ X3 ) @ Y )
= ( dvd_dvd_real @ X3 @ Y ) ) ).
% minus_dvd_iff
thf(fact_4201_minus__dvd__iff,axiom,
! [X3: rat,Y: rat] :
( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X3 ) @ Y )
= ( dvd_dvd_rat @ X3 @ Y ) ) ).
% minus_dvd_iff
thf(fact_4202_minus__dvd__iff,axiom,
! [X3: code_integer,Y: code_integer] :
( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X3 ) @ Y )
= ( dvd_dvd_Code_integer @ X3 @ Y ) ) ).
% minus_dvd_iff
thf(fact_4203_dvd__minus__iff,axiom,
! [X3: int,Y: int] :
( ( dvd_dvd_int @ X3 @ ( uminus_uminus_int @ Y ) )
= ( dvd_dvd_int @ X3 @ Y ) ) ).
% dvd_minus_iff
thf(fact_4204_dvd__minus__iff,axiom,
! [X3: real,Y: real] :
( ( dvd_dvd_real @ X3 @ ( uminus_uminus_real @ Y ) )
= ( dvd_dvd_real @ X3 @ Y ) ) ).
% dvd_minus_iff
thf(fact_4205_dvd__minus__iff,axiom,
! [X3: rat,Y: rat] :
( ( dvd_dvd_rat @ X3 @ ( uminus_uminus_rat @ Y ) )
= ( dvd_dvd_rat @ X3 @ Y ) ) ).
% dvd_minus_iff
thf(fact_4206_dvd__minus__iff,axiom,
! [X3: code_integer,Y: code_integer] :
( ( dvd_dvd_Code_integer @ X3 @ ( uminus1351360451143612070nteger @ Y ) )
= ( dvd_dvd_Code_integer @ X3 @ Y ) ) ).
% dvd_minus_iff
thf(fact_4207_Suc__diff__diff,axiom,
! [M: nat,N2: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N2 ) @ K ) ) ).
% Suc_diff_diff
thf(fact_4208_diff__Suc__Suc,axiom,
! [M: nat,N2: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( minus_minus_nat @ M @ N2 ) ) ).
% diff_Suc_Suc
thf(fact_4209_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_4210_diff__0__eq__0,axiom,
! [N2: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_4211_diff__diff__cancel,axiom,
! [I: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_4212_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_4213_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4214_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4215_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4216_of__bool__eq_I1_J,axiom,
( ( zero_n1201886186963655149omplex @ $false )
= zero_zero_complex ) ).
% of_bool_eq(1)
thf(fact_4217_of__bool__eq_I1_J,axiom,
( ( zero_n3304061248610475627l_real @ $false )
= zero_zero_real ) ).
% of_bool_eq(1)
thf(fact_4218_of__bool__eq_I1_J,axiom,
( ( zero_n2052037380579107095ol_rat @ $false )
= zero_zero_rat ) ).
% of_bool_eq(1)
thf(fact_4219_of__bool__eq_I1_J,axiom,
( ( zero_n2687167440665602831ol_nat @ $false )
= zero_zero_nat ) ).
% of_bool_eq(1)
thf(fact_4220_of__bool__eq_I1_J,axiom,
( ( zero_n2684676970156552555ol_int @ $false )
= zero_zero_int ) ).
% of_bool_eq(1)
thf(fact_4221_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n1201886186963655149omplex @ P )
= zero_zero_complex )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4222_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n3304061248610475627l_real @ P )
= zero_zero_real )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4223_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2052037380579107095ol_rat @ P )
= zero_zero_rat )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4224_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P )
= zero_zero_nat )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4225_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2684676970156552555ol_int @ P )
= zero_zero_int )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4226_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4227_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4228_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4229_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4230_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n1201886186963655149omplex @ P )
= one_one_complex )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4231_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n3304061248610475627l_real @ P )
= one_one_real )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4232_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2052037380579107095ol_rat @ P )
= one_one_rat )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4233_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P )
= one_one_nat )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4234_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2684676970156552555ol_int @ P )
= one_one_int )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4235_of__bool__eq_I2_J,axiom,
( ( zero_n1201886186963655149omplex @ $true )
= one_one_complex ) ).
% of_bool_eq(2)
thf(fact_4236_of__bool__eq_I2_J,axiom,
( ( zero_n3304061248610475627l_real @ $true )
= one_one_real ) ).
% of_bool_eq(2)
thf(fact_4237_of__bool__eq_I2_J,axiom,
( ( zero_n2052037380579107095ol_rat @ $true )
= one_one_rat ) ).
% of_bool_eq(2)
thf(fact_4238_of__bool__eq_I2_J,axiom,
( ( zero_n2687167440665602831ol_nat @ $true )
= one_one_nat ) ).
% of_bool_eq(2)
thf(fact_4239_of__bool__eq_I2_J,axiom,
( ( zero_n2684676970156552555ol_int @ $true )
= one_one_int ) ).
% of_bool_eq(2)
thf(fact_4240_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n2687167440665602831ol_nat
@ ( P
| Q ) )
= ( ord_max_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_4241_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n2684676970156552555ol_int
@ ( P
| Q ) )
= ( ord_max_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_4242_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_4243_diff__ge__0__iff__ge,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_4244_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_4245_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_4246_diff__gt__0__iff__gt,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_rat @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_4247_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_4248_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4249_neg__less__eq__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4250_neg__less__eq__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4251_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4252_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_4253_less__eq__neg__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_eq_neg_nonpos
thf(fact_4254_less__eq__neg__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% less_eq_neg_nonpos
thf(fact_4255_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_4256_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4257_neg__le__0__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4258_neg__le__0__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4259_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4260_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_4261_neg__0__le__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_le_iff_le
thf(fact_4262_neg__0__le__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% neg_0_le_iff_le
thf(fact_4263_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_4264_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4265_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4266_neg__less__0__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4267_neg__less__0__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4268_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_4269_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_4270_neg__0__less__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% neg_0_less_iff_less
thf(fact_4271_neg__0__less__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_less_iff_less
thf(fact_4272_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_4273_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_4274_neg__less__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_pos
thf(fact_4275_neg__less__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_pos
thf(fact_4276_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_4277_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_4278_less__neg__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% less_neg_neg
thf(fact_4279_less__neg__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_neg_neg
thf(fact_4280_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_4281_le__add__diff__inverse,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_4282_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_4283_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_4284_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_4285_le__add__diff__inverse2,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_4286_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_4287_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_4288_diff__numeral__special_I9_J,axiom,
( ( minus_minus_complex @ one_one_complex @ one_one_complex )
= zero_zero_complex ) ).
% diff_numeral_special(9)
thf(fact_4289_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_4290_diff__numeral__special_I9_J,axiom,
( ( minus_minus_rat @ one_one_rat @ one_one_rat )
= zero_zero_rat ) ).
% diff_numeral_special(9)
thf(fact_4291_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_4292_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_4293_ab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_left_minus
thf(fact_4294_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_4295_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_4296_ab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_left_minus
thf(fact_4297_ab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_left_minus
thf(fact_4298_add_Oright__inverse,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
= zero_zero_complex ) ).
% add.right_inverse
thf(fact_4299_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_4300_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_4301_add_Oright__inverse,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
= zero_zero_rat ) ).
% add.right_inverse
thf(fact_4302_add_Oright__inverse,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= zero_z3403309356797280102nteger ) ).
% add.right_inverse
thf(fact_4303_right__diff__distrib__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_4304_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_4305_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_4306_right__diff__distrib__numeral,axiom,
! [V: num,B: code_integer,C: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( minus_8373710615458151222nteger @ B @ C ) )
= ( minus_8373710615458151222nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ B ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_4307_left__diff__distrib__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_4308_left__diff__distrib__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_4309_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_4310_left__diff__distrib__numeral,axiom,
! [A: code_integer,B: code_integer,V: num] :
( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ ( numera6620942414471956472nteger @ V ) )
= ( minus_8373710615458151222nteger @ ( times_3573771949741848930nteger @ A @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ B @ ( numera6620942414471956472nteger @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_4311_verit__minus__simplify_I3_J,axiom,
! [B: complex] :
( ( minus_minus_complex @ zero_zero_complex @ B )
= ( uminus1482373934393186551omplex @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4312_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4313_verit__minus__simplify_I3_J,axiom,
! [B: real] :
( ( minus_minus_real @ zero_zero_real @ B )
= ( uminus_uminus_real @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4314_verit__minus__simplify_I3_J,axiom,
! [B: rat] :
( ( minus_minus_rat @ zero_zero_rat @ B )
= ( uminus_uminus_rat @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4315_verit__minus__simplify_I3_J,axiom,
! [B: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4316_diff__0,axiom,
! [A: complex] :
( ( minus_minus_complex @ zero_zero_complex @ A )
= ( uminus1482373934393186551omplex @ A ) ) ).
% diff_0
thf(fact_4317_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_4318_diff__0,axiom,
! [A: real] :
( ( minus_minus_real @ zero_zero_real @ A )
= ( uminus_uminus_real @ A ) ) ).
% diff_0
thf(fact_4319_diff__0,axiom,
! [A: rat] :
( ( minus_minus_rat @ zero_zero_rat @ A )
= ( uminus_uminus_rat @ A ) ) ).
% diff_0
thf(fact_4320_diff__0,axiom,
! [A: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
= ( uminus1351360451143612070nteger @ A ) ) ).
% diff_0
thf(fact_4321_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4322_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4323_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4324_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4325_mult__minus1__right,axiom,
! [Z2: complex] :
( ( times_times_complex @ Z2 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ Z2 ) ) ).
% mult_minus1_right
thf(fact_4326_mult__minus1__right,axiom,
! [Z2: int] :
( ( times_times_int @ Z2 @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z2 ) ) ).
% mult_minus1_right
thf(fact_4327_mult__minus1__right,axiom,
! [Z2: real] :
( ( times_times_real @ Z2 @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z2 ) ) ).
% mult_minus1_right
thf(fact_4328_mult__minus1__right,axiom,
! [Z2: rat] :
( ( times_times_rat @ Z2 @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ Z2 ) ) ).
% mult_minus1_right
thf(fact_4329_mult__minus1__right,axiom,
! [Z2: code_integer] :
( ( times_3573771949741848930nteger @ Z2 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ Z2 ) ) ).
% mult_minus1_right
thf(fact_4330_mult__minus1,axiom,
! [Z2: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z2 )
= ( uminus1482373934393186551omplex @ Z2 ) ) ).
% mult_minus1
thf(fact_4331_mult__minus1,axiom,
! [Z2: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z2 )
= ( uminus_uminus_int @ Z2 ) ) ).
% mult_minus1
thf(fact_4332_mult__minus1,axiom,
! [Z2: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z2 )
= ( uminus_uminus_real @ Z2 ) ) ).
% mult_minus1
thf(fact_4333_mult__minus1,axiom,
! [Z2: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z2 )
= ( uminus_uminus_rat @ Z2 ) ) ).
% mult_minus1
thf(fact_4334_mult__minus1,axiom,
! [Z2: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z2 )
= ( uminus1351360451143612070nteger @ Z2 ) ) ).
% mult_minus1
thf(fact_4335_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4336_uminus__add__conv__diff,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
= ( minus_minus_real @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4337_uminus__add__conv__diff,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( minus_minus_rat @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4338_uminus__add__conv__diff,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4339_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4340_diff__minus__eq__add,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
= ( plus_plus_real @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4341_diff__minus__eq__add,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( plus_plus_rat @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4342_diff__minus__eq__add,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( plus_p5714425477246183910nteger @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4343_divide__minus1,axiom,
! [X3: complex] :
( ( divide1717551699836669952omplex @ X3 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ X3 ) ) ).
% divide_minus1
thf(fact_4344_divide__minus1,axiom,
! [X3: real] :
( ( divide_divide_real @ X3 @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ X3 ) ) ).
% divide_minus1
thf(fact_4345_divide__minus1,axiom,
! [X3: rat] :
( ( divide_divide_rat @ X3 @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ X3 ) ) ).
% divide_minus1
thf(fact_4346_div__diff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_4347_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4348_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4349_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4350_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4351_zero__less__diff,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% zero_less_diff
thf(fact_4352_diff__is__0__eq_H,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( minus_minus_nat @ M @ N2 )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_4353_diff__is__0__eq,axiom,
! [M: nat,N2: nat] :
( ( ( minus_minus_nat @ M @ N2 )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% diff_is_0_eq
thf(fact_4354_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4355_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4356_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4357_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4358_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n1201886186963655149omplex @ ~ P )
= ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4359_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n3304061248610475627l_real @ ~ P )
= ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4360_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n2052037380579107095ol_rat @ ~ P )
= ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4361_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n2684676970156552555ol_int @ ~ P )
= ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4362_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_4363_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_4364_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_4365_diff__Suc__1,axiom,
! [N2: nat] :
( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
= N2 ) ).
% diff_Suc_1
thf(fact_4366_Suc__0__mod__eq,axiom,
! [N2: nat] :
( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( zero_n2687167440665602831ol_nat
@ ( N2
!= ( suc @ zero_zero_nat ) ) ) ) ).
% Suc_0_mod_eq
thf(fact_4367_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_4368_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_4369_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_4370_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_4371_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= zero_zero_complex ) ).
% add_neg_numeral_special(8)
thf(fact_4372_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_4373_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_4374_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= zero_zero_rat ) ).
% add_neg_numeral_special(8)
thf(fact_4375_add__neg__numeral__special_I8_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(8)
thf(fact_4376_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% add_neg_numeral_special(7)
thf(fact_4377_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_4378_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_4379_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% add_neg_numeral_special(7)
thf(fact_4380_add__neg__numeral__special_I7_J,axiom,
( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(7)
thf(fact_4381_diff__numeral__special_I12_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% diff_numeral_special(12)
thf(fact_4382_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_4383_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_4384_diff__numeral__special_I12_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% diff_numeral_special(12)
thf(fact_4385_diff__numeral__special_I12_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% diff_numeral_special(12)
thf(fact_4386_numeral__eq__neg__one__iff,axiom,
! [N2: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( N2 = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_4387_numeral__eq__neg__one__iff,axiom,
! [N2: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N2 = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_4388_numeral__eq__neg__one__iff,axiom,
! [N2: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N2 = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_4389_numeral__eq__neg__one__iff,axiom,
! [N2: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( N2 = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_4390_numeral__eq__neg__one__iff,axiom,
! [N2: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( N2 = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_4391_neg__one__eq__numeral__iff,axiom,
! [N2: num] :
( ( ( uminus1482373934393186551omplex @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
= ( N2 = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_4392_neg__one__eq__numeral__iff,axiom,
! [N2: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( N2 = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_4393_neg__one__eq__numeral__iff,axiom,
! [N2: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( N2 = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_4394_neg__one__eq__numeral__iff,axiom,
! [N2: num] :
( ( ( uminus_uminus_rat @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( N2 = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_4395_neg__one__eq__numeral__iff,axiom,
! [N2: num] :
( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( N2 = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_4396_mod__minus1__right,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% mod_minus1_right
thf(fact_4397_mod__minus1__right,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% mod_minus1_right
thf(fact_4398_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
& ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_4399_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_4400_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
& ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_4401_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_4402_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ V ) ) )
& ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_4403_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
= ( numera6620942414471956472nteger @ V ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_4404_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ V ) ) )
& ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_4405_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ V ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_4406_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
& ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( numeral_numeral_real @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_4407_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( numera6620942414471956472nteger @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_4408_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
& ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( numeral_numeral_rat @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_4409_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( numeral_numeral_int @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_4410_Suc__pred,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
= N2 ) ) ).
% Suc_pred
thf(fact_4411_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_4412_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_4413_semiring__norm_I168_J,axiom,
! [V: num,W2: num,Y: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W2 ) ) @ Y ) )
= ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W2 ) ) ) @ Y ) ) ).
% semiring_norm(168)
thf(fact_4414_semiring__norm_I168_J,axiom,
! [V: num,W2: num,Y: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ Y ) )
= ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W2 ) ) ) @ Y ) ) ).
% semiring_norm(168)
thf(fact_4415_semiring__norm_I168_J,axiom,
! [V: num,W2: num,Y: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ Y ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W2 ) ) ) @ Y ) ) ).
% semiring_norm(168)
thf(fact_4416_semiring__norm_I168_J,axiom,
! [V: num,W2: num,Y: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W2 ) ) @ Y ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W2 ) ) ) @ Y ) ) ).
% semiring_norm(168)
thf(fact_4417_diff__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ).
% diff_numeral_simps(2)
thf(fact_4418_diff__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ).
% diff_numeral_simps(2)
thf(fact_4419_diff__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ).
% diff_numeral_simps(2)
thf(fact_4420_diff__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N2 ) ) ) ).
% diff_numeral_simps(2)
thf(fact_4421_diff__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_4422_diff__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_4423_diff__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_4424_diff__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_4425_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N2: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_4426_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N2: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_4427_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N2: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_4428_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N2: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_4429_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_4430_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_4431_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_4432_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N2: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_4433_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_4434_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_4435_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_4436_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N2: num] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_4437_neg__numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( ord_less_eq_num @ N2 @ M ) ) ).
% neg_numeral_le_iff
thf(fact_4438_neg__numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( ord_less_eq_num @ N2 @ M ) ) ).
% neg_numeral_le_iff
thf(fact_4439_neg__numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( ord_less_eq_num @ N2 @ M ) ) ).
% neg_numeral_le_iff
thf(fact_4440_neg__numeral__le__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( ord_less_eq_num @ N2 @ M ) ) ).
% neg_numeral_le_iff
thf(fact_4441_neg__numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( ord_less_num @ N2 @ M ) ) ).
% neg_numeral_less_iff
thf(fact_4442_neg__numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( ord_less_num @ N2 @ M ) ) ).
% neg_numeral_less_iff
thf(fact_4443_neg__numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( ord_less_num @ N2 @ M ) ) ).
% neg_numeral_less_iff
thf(fact_4444_neg__numeral__less__iff,axiom,
! [M: num,N2: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( ord_less_num @ N2 @ M ) ) ).
% neg_numeral_less_iff
thf(fact_4445_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_4446_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_4447_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_4448_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_4449_divide__le__eq__numeral1_I2_J,axiom,
! [B: real,W2: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_4450_divide__le__eq__numeral1_I2_J,axiom,
! [B: rat,W2: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_4451_le__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W2: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_4452_le__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W2: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_4453_divide__eq__eq__numeral1_I2_J,axiom,
! [B: complex,W2: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) ) )
= A )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) ) ) ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_4454_divide__eq__eq__numeral1_I2_J,axiom,
! [B: real,W2: num,A: real] :
( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) )
= A )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_4455_divide__eq__eq__numeral1_I2_J,axiom,
! [B: rat,W2: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) )
= A )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_4456_eq__divide__eq__numeral1_I2_J,axiom,
! [A: complex,B: complex,W2: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) ) ) )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) ) )
= B ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_4457_eq__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W2: num] :
( ( A
= ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) )
= B ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_4458_eq__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W2: num] :
( ( A
= ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) )
= B ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_4459_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_4460_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_4461_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_4462_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_4463_divide__less__eq__numeral1_I2_J,axiom,
! [B: real,W2: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_4464_divide__less__eq__numeral1_I2_J,axiom,
! [B: rat,W2: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_4465_less__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W2: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_4466_less__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W2: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_4467_Suc__diff__1,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
= N2 ) ) ).
% Suc_diff_1
thf(fact_4468_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_4469_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_4470_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_4471_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_4472_add__neg__numeral__special_I9_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_4473_diff__numeral__special_I10_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_4474_diff__numeral__special_I10_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_4475_diff__numeral__special_I10_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_4476_diff__numeral__special_I10_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_4477_diff__numeral__special_I10_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_4478_diff__numeral__special_I11_J,axiom,
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_4479_diff__numeral__special_I11_J,axiom,
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_4480_diff__numeral__special_I11_J,axiom,
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_4481_diff__numeral__special_I11_J,axiom,
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_4482_diff__numeral__special_I11_J,axiom,
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_4483_even__diff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).
% even_diff
thf(fact_4484_even__diff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).
% even_diff
thf(fact_4485_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ).
% of_bool_half_eq_0
thf(fact_4486_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% of_bool_half_eq_0
thf(fact_4487_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% of_bool_half_eq_0
thf(fact_4488_diff__numeral__special_I3_J,axiom,
! [N2: num] :
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N2 ) ) ) ).
% diff_numeral_special(3)
thf(fact_4489_diff__numeral__special_I3_J,axiom,
! [N2: num] :
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N2 ) ) ) ).
% diff_numeral_special(3)
thf(fact_4490_diff__numeral__special_I3_J,axiom,
! [N2: num] :
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N2 ) ) ) ).
% diff_numeral_special(3)
thf(fact_4491_diff__numeral__special_I3_J,axiom,
! [N2: num] :
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N2 ) ) ) ).
% diff_numeral_special(3)
thf(fact_4492_diff__numeral__special_I3_J,axiom,
! [N2: num] :
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N2 ) ) ) ).
% diff_numeral_special(3)
thf(fact_4493_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_4494_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_4495_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_4496_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_4497_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_4498_dbl__simps_I4_J,axiom,
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_4499_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_4500_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_4501_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_4502_dbl__simps_I4_J,axiom,
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_4503_odd__Suc__minus__one,axiom,
! [N2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
= N2 ) ) ).
% odd_Suc_minus_one
thf(fact_4504_even__diff__nat,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) )
= ( ( ord_less_nat @ M @ N2 )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).
% even_diff_nat
thf(fact_4505_signed__take__bit__0,axiom,
! [A: code_integer] :
( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_4506_signed__take__bit__0,axiom,
! [A: int] :
( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_4507_semiring__parity__class_Oeven__mask__iff,axiom,
! [N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) )
= ( N2 = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_4508_semiring__parity__class_Oeven__mask__iff,axiom,
! [N2: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) )
= ( N2 = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_4509_semiring__parity__class_Oeven__mask__iff,axiom,
! [N2: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) @ one_one_Code_integer ) )
= ( N2 = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_4510_bits__1__div__exp,axiom,
! [N2: nat] :
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n356916108424825756nteger @ ( N2 = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_4511_bits__1__div__exp,axiom,
! [N2: nat] :
( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_4512_bits__1__div__exp,axiom,
! [N2: nat] :
( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n2684676970156552555ol_int @ ( N2 = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_4513_one__div__2__pow__eq,axiom,
! [N2: nat] :
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n356916108424825756nteger @ ( N2 = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_4514_one__div__2__pow__eq,axiom,
! [N2: nat] :
( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_4515_one__div__2__pow__eq,axiom,
! [N2: nat] :
( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( zero_n2684676970156552555ol_int @ ( N2 = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_4516_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_4517_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B3 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_4518_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A3: rat,B3: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_4519_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A3: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_4520_diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_4521_diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B3 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_4522_diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A3: rat,B3: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_4523_diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A3: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_4524_group__cancel_Osub2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( minus_minus_int @ A @ B2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_4525_group__cancel_Osub2,axiom,
! [B2: real,K: real,B: real,A: real] :
( ( B2
= ( plus_plus_real @ K @ B ) )
=> ( ( minus_minus_real @ A @ B2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_4526_group__cancel_Osub2,axiom,
! [B2: rat,K: rat,B: rat,A: rat] :
( ( B2
= ( plus_plus_rat @ K @ B ) )
=> ( ( minus_minus_rat @ A @ B2 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_4527_group__cancel_Osub2,axiom,
! [B2: code_integer,K: code_integer,B: code_integer,A: code_integer] :
( ( B2
= ( plus_p5714425477246183910nteger @ K @ B ) )
=> ( ( minus_8373710615458151222nteger @ A @ B2 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_4528_of__bool__eq__iff,axiom,
! [P5: $o,Q2: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P5 )
= ( zero_n2687167440665602831ol_nat @ Q2 ) )
= ( P5 = Q2 ) ) ).
% of_bool_eq_iff
thf(fact_4529_of__bool__eq__iff,axiom,
! [P5: $o,Q2: $o] :
( ( ( zero_n2684676970156552555ol_int @ P5 )
= ( zero_n2684676970156552555ol_int @ Q2 ) )
= ( P5 = Q2 ) ) ).
% of_bool_eq_iff
thf(fact_4530_verit__negate__coefficient_I3_J,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_4531_verit__negate__coefficient_I3_J,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_4532_verit__negate__coefficient_I3_J,axiom,
! [A: rat,B: rat] :
( ( A = B )
=> ( ( uminus_uminus_rat @ A )
= ( uminus_uminus_rat @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_4533_verit__negate__coefficient_I3_J,axiom,
! [A: code_integer,B: code_integer] :
( ( A = B )
=> ( ( uminus1351360451143612070nteger @ A )
= ( uminus1351360451143612070nteger @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_4534_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_4535_diff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_4536_diff__right__commute,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_4537_diff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_4538_diff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_4539_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_4540_minus__diff__commute,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
= ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_4541_minus__diff__commute,axiom,
! [B: rat,A: rat] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
= ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_4542_minus__diff__commute,axiom,
! [B: code_integer,A: code_integer] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
= ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_4543_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_4544_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_4545_minus__equation__iff,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= B )
= ( ( uminus_uminus_rat @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_4546_minus__equation__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= B )
= ( ( uminus1351360451143612070nteger @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_4547_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_4548_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_4549_equation__minus__iff,axiom,
! [A: rat,B: rat] :
( ( A
= ( uminus_uminus_rat @ B ) )
= ( B
= ( uminus_uminus_rat @ A ) ) ) ).
% equation_minus_iff
thf(fact_4550_equation__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ B ) )
= ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% equation_minus_iff
thf(fact_4551_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_4552_diff__eq__diff__eq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_4553_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_4554_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n3304061248610475627l_real
@ ( P
& Q ) )
= ( times_times_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) ) ) ).
% of_bool_conj
thf(fact_4555_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2052037380579107095ol_rat
@ ( P
& Q ) )
= ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) ) ) ).
% of_bool_conj
thf(fact_4556_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2687167440665602831ol_nat
@ ( P
& Q ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).
% of_bool_conj
thf(fact_4557_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2684676970156552555ol_int
@ ( P
& Q ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).
% of_bool_conj
thf(fact_4558_diff__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_4559_diff__mono,axiom,
! [A: rat,B: rat,D: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ D @ C )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_4560_diff__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_4561_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_4562_diff__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_4563_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_4564_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_4565_diff__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_4566_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_4567_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_4568_diff__eq__diff__less__eq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( ord_less_eq_rat @ A @ B )
= ( ord_less_eq_rat @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_4569_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_4570_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: complex,Z: complex] : ( Y4 = Z ) )
= ( ^ [A3: complex,B3: complex] :
( ( minus_minus_complex @ A3 @ B3 )
= zero_zero_complex ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_4571_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [A3: real,B3: real] :
( ( minus_minus_real @ A3 @ B3 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_4572_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: rat,Z: rat] : ( Y4 = Z ) )
= ( ^ [A3: rat,B3: rat] :
( ( minus_minus_rat @ A3 @ B3 )
= zero_zero_rat ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_4573_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( minus_minus_int @ A3 @ B3 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_4574_diff__strict__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_4575_diff__strict__mono,axiom,
! [A: rat,B: rat,D: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ D @ C )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_4576_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_4577_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_4578_diff__eq__diff__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( ord_less_rat @ A @ B )
= ( ord_less_rat @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_4579_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_4580_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_4581_diff__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_4582_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_4583_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_4584_diff__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_4585_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_4586_le__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% le_minus_iff
thf(fact_4587_le__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_minus_iff
thf(fact_4588_le__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% le_minus_iff
thf(fact_4589_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_4590_minus__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_4591_minus__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_4592_minus__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_4593_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_4594_le__imp__neg__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% le_imp_neg_le
thf(fact_4595_le__imp__neg__le,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_imp_neg_le
thf(fact_4596_le__imp__neg__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% le_imp_neg_le
thf(fact_4597_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_4598_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_4599_right__diff__distrib_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_4600_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_4601_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_4602_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_4603_left__diff__distrib_H,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
= ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_4604_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_4605_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_4606_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_4607_right__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_4608_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_4609_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_4610_left__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_4611_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_4612_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_4613_less__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% less_minus_iff
thf(fact_4614_less__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% less_minus_iff
thf(fact_4615_less__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% less_minus_iff
thf(fact_4616_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_4617_minus__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_4618_minus__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_4619_minus__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_4620_verit__negate__coefficient_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_4621_verit__negate__coefficient_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_4622_verit__negate__coefficient_I2_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_4623_verit__negate__coefficient_I2_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ B )
=> ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_4624_group__cancel_Osub1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( minus_minus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_4625_group__cancel_Osub1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( minus_minus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_4626_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_4627_diff__eq__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( minus_minus_real @ A @ B )
= C )
= ( A
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_4628_diff__eq__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( minus_minus_rat @ A @ B )
= C )
= ( A
= ( plus_plus_rat @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_4629_diff__eq__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( minus_minus_int @ A @ B )
= C )
= ( A
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_4630_eq__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( A
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_4631_eq__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( A
= ( minus_minus_rat @ C @ B ) )
= ( ( plus_plus_rat @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_4632_eq__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( A
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_4633_add__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_4634_add__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_4635_add__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_4636_diff__diff__eq2,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_4637_diff__diff__eq2,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_4638_diff__diff__eq2,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_4639_diff__add__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_4640_diff__add__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_4641_diff__add__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_4642_diff__add__eq__diff__diff__swap,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_4643_diff__add__eq__diff__diff__swap,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_4644_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_4645_add__implies__diff,axiom,
! [C: real,B: real,A: real] :
( ( ( plus_plus_real @ C @ B )
= A )
=> ( C
= ( minus_minus_real @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_4646_add__implies__diff,axiom,
! [C: rat,B: rat,A: rat] :
( ( ( plus_plus_rat @ C @ B )
= A )
=> ( C
= ( minus_minus_rat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_4647_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_4648_add__implies__diff,axiom,
! [C: int,B: int,A: int] :
( ( ( plus_plus_int @ C @ B )
= A )
=> ( C
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_4649_diff__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_4650_diff__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_4651_diff__diff__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_4652_diff__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_4653_add__diff__add,axiom,
! [A: real,C: real,B: real,D: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
= ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).
% add_diff_add
thf(fact_4654_add__diff__add,axiom,
! [A: rat,C: rat,B: rat,D: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) )
= ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D ) ) ) ).
% add_diff_add
thf(fact_4655_add__diff__add,axiom,
! [A: int,C: int,B: int,D: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
= ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).
% add_diff_add
thf(fact_4656_numeral__neq__neg__numeral,axiom,
! [M: num,N2: num] :
( ( numeral_numeral_int @ M )
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_4657_numeral__neq__neg__numeral,axiom,
! [M: num,N2: num] :
( ( numeral_numeral_real @ M )
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_4658_numeral__neq__neg__numeral,axiom,
! [M: num,N2: num] :
( ( numeral_numeral_rat @ M )
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_4659_numeral__neq__neg__numeral,axiom,
! [M: num,N2: num] :
( ( numera6620942414471956472nteger @ M )
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_4660_neg__numeral__neq__numeral,axiom,
! [M: num,N2: num] :
( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
!= ( numeral_numeral_int @ N2 ) ) ).
% neg_numeral_neq_numeral
thf(fact_4661_neg__numeral__neq__numeral,axiom,
! [M: num,N2: num] :
( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
!= ( numeral_numeral_real @ N2 ) ) ).
% neg_numeral_neq_numeral
thf(fact_4662_neg__numeral__neq__numeral,axiom,
! [M: num,N2: num] :
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
!= ( numeral_numeral_rat @ N2 ) ) ).
% neg_numeral_neq_numeral
thf(fact_4663_neg__numeral__neq__numeral,axiom,
! [M: num,N2: num] :
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
!= ( numera6620942414471956472nteger @ N2 ) ) ).
% neg_numeral_neq_numeral
thf(fact_4664_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_4665_minus__mult__commute,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_mult_commute
thf(fact_4666_minus__mult__commute,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_mult_commute
thf(fact_4667_minus__mult__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_mult_commute
thf(fact_4668_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_4669_square__eq__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ A )
= ( times_times_real @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% square_eq_iff
thf(fact_4670_square__eq__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ A )
= ( times_times_rat @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% square_eq_iff
thf(fact_4671_square__eq__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( times_3573771949741848930nteger @ A @ A )
= ( times_3573771949741848930nteger @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ).
% square_eq_iff
thf(fact_4672_diff__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_4673_diff__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_4674_one__neq__neg__one,axiom,
( one_one_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% one_neq_neg_one
thf(fact_4675_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_4676_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_4677_one__neq__neg__one,axiom,
( one_one_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% one_neq_neg_one
thf(fact_4678_one__neq__neg__one,axiom,
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% one_neq_neg_one
thf(fact_4679_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_4680_group__cancel_Oneg1,axiom,
! [A2: real,K: real,A: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( uminus_uminus_real @ A2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_4681_group__cancel_Oneg1,axiom,
! [A2: rat,K: rat,A: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( uminus_uminus_rat @ A2 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_4682_group__cancel_Oneg1,axiom,
! [A2: code_integer,K: code_integer,A: code_integer] :
( ( A2
= ( plus_p5714425477246183910nteger @ K @ A ) )
=> ( ( uminus1351360451143612070nteger @ A2 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_4683_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_4684_add_Oinverse__distrib__swap,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_4685_add_Oinverse__distrib__swap,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_4686_add_Oinverse__distrib__swap,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_4687_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_4688_is__num__normalize_I8_J,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_4689_is__num__normalize_I8_J,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_4690_is__num__normalize_I8_J,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_4691_minus__divide__left,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_4692_minus__divide__left,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_4693_minus__divide__divide,axiom,
! [A: real,B: real] :
( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ).
% minus_divide_divide
thf(fact_4694_minus__divide__divide,axiom,
! [A: rat,B: rat] :
( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ).
% minus_divide_divide
thf(fact_4695_minus__divide__right,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_divide_right
thf(fact_4696_minus__divide__right,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_divide_right
thf(fact_4697_dvd__diff,axiom,
! [X3: real,Y: real,Z2: real] :
( ( dvd_dvd_real @ X3 @ Y )
=> ( ( dvd_dvd_real @ X3 @ Z2 )
=> ( dvd_dvd_real @ X3 @ ( minus_minus_real @ Y @ Z2 ) ) ) ) ).
% dvd_diff
thf(fact_4698_dvd__diff,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( dvd_dvd_rat @ X3 @ Y )
=> ( ( dvd_dvd_rat @ X3 @ Z2 )
=> ( dvd_dvd_rat @ X3 @ ( minus_minus_rat @ Y @ Z2 ) ) ) ) ).
% dvd_diff
thf(fact_4699_dvd__diff,axiom,
! [X3: int,Y: int,Z2: int] :
( ( dvd_dvd_int @ X3 @ Y )
=> ( ( dvd_dvd_int @ X3 @ Z2 )
=> ( dvd_dvd_int @ X3 @ ( minus_minus_int @ Y @ Z2 ) ) ) ) ).
% dvd_diff
thf(fact_4700_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_4701_diffs0__imp__equal,axiom,
! [M: nat,N2: nat] :
( ( ( minus_minus_nat @ M @ N2 )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N2 @ M )
= zero_zero_nat )
=> ( M = N2 ) ) ) ).
% diffs0_imp_equal
thf(fact_4702_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_4703_diff__less__mono2,axiom,
! [M: nat,N2: nat,L: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_4704_less__imp__diff__less,axiom,
! [J: nat,K: nat,N2: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).
% less_imp_diff_less
thf(fact_4705_eq__diff__iff,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N2 @ K ) )
= ( M = N2 ) ) ) ) ).
% eq_diff_iff
thf(fact_4706_le__diff__iff,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).
% le_diff_iff
thf(fact_4707_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M @ N2 ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_4708_diff__le__mono,axiom,
! [M: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).
% diff_le_mono
thf(fact_4709_diff__le__self,axiom,
! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ).
% diff_le_self
thf(fact_4710_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_4711_diff__le__mono2,axiom,
! [M: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_4712_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_4713_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
= ( minus_minus_nat @ M @ N2 ) ) ).
% Nat.diff_cancel
thf(fact_4714_diff__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M @ N2 ) ) ).
% diff_cancel2
thf(fact_4715_diff__add__inverse,axiom,
! [N2: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M ) @ N2 )
= M ) ).
% diff_add_inverse
thf(fact_4716_diff__add__inverse2,axiom,
! [M: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ N2 )
= M ) ).
% diff_add_inverse2
thf(fact_4717_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N2: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% diff_mult_distrib2
thf(fact_4718_diff__mult__distrib,axiom,
! [M: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N2 ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% diff_mult_distrib
thf(fact_4719_max__diff__distrib__left,axiom,
! [X3: real,Y: real,Z2: real] :
( ( minus_minus_real @ ( ord_max_real @ X3 @ Y ) @ Z2 )
= ( ord_max_real @ ( minus_minus_real @ X3 @ Z2 ) @ ( minus_minus_real @ Y @ Z2 ) ) ) ).
% max_diff_distrib_left
thf(fact_4720_max__diff__distrib__left,axiom,
! [X3: rat,Y: rat,Z2: rat] :
( ( minus_minus_rat @ ( ord_max_rat @ X3 @ Y ) @ Z2 )
= ( ord_max_rat @ ( minus_minus_rat @ X3 @ Z2 ) @ ( minus_minus_rat @ Y @ Z2 ) ) ) ).
% max_diff_distrib_left
thf(fact_4721_max__diff__distrib__left,axiom,
! [X3: int,Y: int,Z2: int] :
( ( minus_minus_int @ ( ord_max_int @ X3 @ Y ) @ Z2 )
= ( ord_max_int @ ( minus_minus_int @ X3 @ Z2 ) @ ( minus_minus_int @ Y @ Z2 ) ) ) ).
% max_diff_distrib_left
thf(fact_4722_dvd__diff__nat,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N2 )
=> ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).
% dvd_diff_nat
thf(fact_4723_add__divide__eq__if__simps_I6_J,axiom,
! [Z2: complex,A: complex,B: complex] :
( ( ( Z2 = zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_4724_add__divide__eq__if__simps_I6_J,axiom,
! [Z2: real,A: real,B: real] :
( ( ( Z2 = zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_4725_add__divide__eq__if__simps_I6_J,axiom,
! [Z2: rat,A: rat,B: rat] :
( ( ( Z2 = zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_4726_add__divide__eq__if__simps_I5_J,axiom,
! [Z2: complex,A: complex,B: complex] :
( ( ( Z2 = zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_4727_add__divide__eq__if__simps_I5_J,axiom,
! [Z2: real,A: real,B: real] :
( ( ( Z2 = zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_4728_add__divide__eq__if__simps_I5_J,axiom,
! [Z2: rat,A: rat,B: rat] :
( ( ( Z2 = zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_4729_minus__divide__diff__eq__iff,axiom,
! [Z2: complex,X3: complex,Y: complex] :
( ( Z2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X3 @ Z2 ) ) @ Y )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X3 ) @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_4730_minus__divide__diff__eq__iff,axiom,
! [Z2: real,X3: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X3 @ Z2 ) ) @ Y )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X3 ) @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_4731_minus__divide__diff__eq__iff,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( Z2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X3 @ Z2 ) ) @ Y )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X3 ) @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_4732_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N2 @ K ) )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_4733_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N2 @ K ) )
= ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_4734_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N2 @ K ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_4735_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N2 @ K ) )
= ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_4736_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N2 @ K ) )
= ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_4737_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4738_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4739_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4740_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4741_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real ) ).
% of_bool_less_eq_one
thf(fact_4742_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat ) ).
% of_bool_less_eq_one
thf(fact_4743_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat ) ).
% of_bool_less_eq_one
thf(fact_4744_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int ) ).
% of_bool_less_eq_one
thf(fact_4745_of__bool__def,axiom,
( zero_n1201886186963655149omplex
= ( ^ [P6: $o] : ( if_complex @ P6 @ one_one_complex @ zero_zero_complex ) ) ) ).
% of_bool_def
thf(fact_4746_of__bool__def,axiom,
( zero_n3304061248610475627l_real
= ( ^ [P6: $o] : ( if_real @ P6 @ one_one_real @ zero_zero_real ) ) ) ).
% of_bool_def
thf(fact_4747_of__bool__def,axiom,
( zero_n2052037380579107095ol_rat
= ( ^ [P6: $o] : ( if_rat @ P6 @ one_one_rat @ zero_zero_rat ) ) ) ).
% of_bool_def
thf(fact_4748_of__bool__def,axiom,
( zero_n2687167440665602831ol_nat
= ( ^ [P6: $o] : ( if_nat @ P6 @ one_one_nat @ zero_zero_nat ) ) ) ).
% of_bool_def
thf(fact_4749_of__bool__def,axiom,
( zero_n2684676970156552555ol_int
= ( ^ [P6: $o] : ( if_int @ P6 @ one_one_int @ zero_zero_int ) ) ) ).
% of_bool_def
thf(fact_4750_split__of__bool,axiom,
! [P: complex > $o,P5: $o] :
( ( P @ ( zero_n1201886186963655149omplex @ P5 ) )
= ( ( P5
=> ( P @ one_one_complex ) )
& ( ~ P5
=> ( P @ zero_zero_complex ) ) ) ) ).
% split_of_bool
thf(fact_4751_split__of__bool,axiom,
! [P: real > $o,P5: $o] :
( ( P @ ( zero_n3304061248610475627l_real @ P5 ) )
= ( ( P5
=> ( P @ one_one_real ) )
& ( ~ P5
=> ( P @ zero_zero_real ) ) ) ) ).
% split_of_bool
thf(fact_4752_split__of__bool,axiom,
! [P: rat > $o,P5: $o] :
( ( P @ ( zero_n2052037380579107095ol_rat @ P5 ) )
= ( ( P5
=> ( P @ one_one_rat ) )
& ( ~ P5
=> ( P @ zero_zero_rat ) ) ) ) ).
% split_of_bool
thf(fact_4753_split__of__bool,axiom,
! [P: nat > $o,P5: $o] :
( ( P @ ( zero_n2687167440665602831ol_nat @ P5 ) )
= ( ( P5
=> ( P @ one_one_nat ) )
& ( ~ P5
=> ( P @ zero_zero_nat ) ) ) ) ).
% split_of_bool
thf(fact_4754_split__of__bool,axiom,
! [P: int > $o,P5: $o] :
( ( P @ ( zero_n2684676970156552555ol_int @ P5 ) )
= ( ( P5
=> ( P @ one_one_int ) )
& ( ~ P5
=> ( P @ zero_zero_int ) ) ) ) ).
% split_of_bool
thf(fact_4755_split__of__bool__asm,axiom,
! [P: complex > $o,P5: $o] :
( ( P @ ( zero_n1201886186963655149omplex @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_complex ) )
| ( ~ P5
& ~ ( P @ zero_zero_complex ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4756_split__of__bool__asm,axiom,
! [P: real > $o,P5: $o] :
( ( P @ ( zero_n3304061248610475627l_real @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_real ) )
| ( ~ P5
& ~ ( P @ zero_zero_real ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4757_split__of__bool__asm,axiom,
! [P: rat > $o,P5: $o] :
( ( P @ ( zero_n2052037380579107095ol_rat @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_rat ) )
| ( ~ P5
& ~ ( P @ zero_zero_rat ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4758_split__of__bool__asm,axiom,
! [P: nat > $o,P5: $o] :
( ( P @ ( zero_n2687167440665602831ol_nat @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_nat ) )
| ( ~ P5
& ~ ( P @ zero_zero_nat ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4759_split__of__bool__asm,axiom,
! [P: int > $o,P5: $o] :
( ( P @ ( zero_n2684676970156552555ol_int @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_int ) )
| ( ~ P5
& ~ ( P @ zero_zero_int ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4760_le__iff__diff__le__0,axiom,
( ord_less_eq_real
= ( ^ [A3: real,B3: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B3 ) @ zero_zero_real ) ) ) ).
% le_iff_diff_le_0
thf(fact_4761_le__iff__diff__le__0,axiom,
( ord_less_eq_rat
= ( ^ [A3: rat,B3: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A3 @ B3 ) @ zero_zero_rat ) ) ) ).
% le_iff_diff_le_0
thf(fact_4762_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B3: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_4763_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A3: real,B3: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B3 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_4764_less__iff__diff__less__0,axiom,
( ord_less_rat
= ( ^ [A3: rat,B3: rat] : ( ord_less_rat @ ( minus_minus_rat @ A3 @ B3 ) @ zero_zero_rat ) ) ) ).
% less_iff_diff_less_0
thf(fact_4765_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A3: int,B3: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_4766_diff__le__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_4767_diff__le__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_4768_diff__le__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_4769_le__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_4770_le__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_4771_le__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_4772_diff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% diff_add
thf(fact_4773_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_4774_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_4775_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_4776_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_4777_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_4778_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_4779_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_4780_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_4781_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_4782_add__le__imp__le__diff,axiom,
! [I: real,K: real,N2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N2 )
=> ( ord_less_eq_real @ I @ ( minus_minus_real @ N2 @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_4783_add__le__imp__le__diff,axiom,
! [I: rat,K: rat,N2: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N2 )
=> ( ord_less_eq_rat @ I @ ( minus_minus_rat @ N2 @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_4784_add__le__imp__le__diff,axiom,
! [I: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N2 )
=> ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N2 @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_4785_add__le__imp__le__diff,axiom,
! [I: int,K: int,N2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N2 )
=> ( ord_less_eq_int @ I @ ( minus_minus_int @ N2 @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_4786_add__le__add__imp__diff__le,axiom,
! [I: real,K: real,N2: real,J: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N2 )
=> ( ( ord_less_eq_real @ N2 @ ( plus_plus_real @ J @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N2 )
=> ( ( ord_less_eq_real @ N2 @ ( plus_plus_real @ J @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N2 @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_4787_add__le__add__imp__diff__le,axiom,
! [I: rat,K: rat,N2: rat,J: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N2 )
=> ( ( ord_less_eq_rat @ N2 @ ( plus_plus_rat @ J @ K ) )
=> ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N2 )
=> ( ( ord_less_eq_rat @ N2 @ ( plus_plus_rat @ J @ K ) )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ N2 @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_4788_add__le__add__imp__diff__le,axiom,
! [I: nat,K: nat,N2: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N2 @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_4789_add__le__add__imp__diff__le,axiom,
! [I: int,K: int,N2: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N2 )
=> ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N2 )
=> ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N2 @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_4790_diff__less__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_4791_diff__less__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_4792_diff__less__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_4793_less__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_4794_less__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_4795_less__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_4796_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: real,B: real] :
( ~ ( ord_less_real @ A @ B )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_4797_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: rat,B: rat] :
( ~ ( ord_less_rat @ A @ B )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_4798_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ~ ( ord_less_nat @ A @ B )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_4799_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: int,B: int] :
( ~ ( ord_less_int @ A @ B )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_4800_not__numeral__le__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_4801_not__numeral__le__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_4802_not__numeral__le__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_4803_not__numeral__le__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_4804_neg__numeral__le__numeral,axiom,
! [M: num,N2: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) ) ).
% neg_numeral_le_numeral
thf(fact_4805_neg__numeral__le__numeral,axiom,
! [M: num,N2: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) ) ).
% neg_numeral_le_numeral
thf(fact_4806_neg__numeral__le__numeral,axiom,
! [M: num,N2: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) ) ).
% neg_numeral_le_numeral
thf(fact_4807_neg__numeral__le__numeral,axiom,
! [M: num,N2: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) ) ).
% neg_numeral_le_numeral
thf(fact_4808_zero__neq__neg__numeral,axiom,
! [N2: num] :
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).
% zero_neq_neg_numeral
thf(fact_4809_zero__neq__neg__numeral,axiom,
! [N2: num] :
( zero_zero_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).
% zero_neq_neg_numeral
thf(fact_4810_zero__neq__neg__numeral,axiom,
! [N2: num] :
( zero_zero_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).
% zero_neq_neg_numeral
thf(fact_4811_zero__neq__neg__numeral,axiom,
! [N2: num] :
( zero_zero_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).
% zero_neq_neg_numeral
thf(fact_4812_zero__neq__neg__numeral,axiom,
! [N2: num] :
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% zero_neq_neg_numeral
thf(fact_4813_eq__add__iff1,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_4814_eq__add__iff1,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_4815_eq__add__iff1,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_4816_eq__add__iff2,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( C
= ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_4817_eq__add__iff2,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( C
= ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_4818_eq__add__iff2,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( C
= ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_4819_square__diff__square__factored,axiom,
! [X3: real,Y: real] :
( ( minus_minus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y @ Y ) )
= ( times_times_real @ ( plus_plus_real @ X3 @ Y ) @ ( minus_minus_real @ X3 @ Y ) ) ) ).
% square_diff_square_factored
thf(fact_4820_square__diff__square__factored,axiom,
! [X3: rat,Y: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y @ Y ) )
= ( times_times_rat @ ( plus_plus_rat @ X3 @ Y ) @ ( minus_minus_rat @ X3 @ Y ) ) ) ).
% square_diff_square_factored
thf(fact_4821_square__diff__square__factored,axiom,
! [X3: int,Y: int] :
( ( minus_minus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y @ Y ) )
= ( times_times_int @ ( plus_plus_int @ X3 @ Y ) @ ( minus_minus_int @ X3 @ Y ) ) ) ).
% square_diff_square_factored
thf(fact_4822_mult__diff__mult,axiom,
! [X3: real,Y: real,A: real,B: real] :
( ( minus_minus_real @ ( times_times_real @ X3 @ Y ) @ ( times_times_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ X3 @ ( minus_minus_real @ Y @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X3 @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_4823_mult__diff__mult,axiom,
! [X3: rat,Y: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X3 @ Y ) @ ( times_times_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ X3 @ ( minus_minus_rat @ Y @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X3 @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_4824_mult__diff__mult,axiom,
! [X3: int,Y: int,A: int,B: int] :
( ( minus_minus_int @ ( times_times_int @ X3 @ Y ) @ ( times_times_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ X3 @ ( minus_minus_int @ Y @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X3 @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_4825_neg__numeral__less__numeral,axiom,
! [M: num,N2: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) ) ).
% neg_numeral_less_numeral
thf(fact_4826_neg__numeral__less__numeral,axiom,
! [M: num,N2: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) ) ).
% neg_numeral_less_numeral
thf(fact_4827_neg__numeral__less__numeral,axiom,
! [M: num,N2: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) ) ).
% neg_numeral_less_numeral
thf(fact_4828_neg__numeral__less__numeral,axiom,
! [M: num,N2: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) ) ).
% neg_numeral_less_numeral
thf(fact_4829_not__numeral__less__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_4830_not__numeral__less__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_4831_not__numeral__less__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_4832_not__numeral__less__neg__numeral,axiom,
! [M: num,N2: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_4833_le__minus__one__simps_I2_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% le_minus_one_simps(2)
thf(fact_4834_le__minus__one__simps_I2_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% le_minus_one_simps(2)
thf(fact_4835_le__minus__one__simps_I2_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% le_minus_one_simps(2)
thf(fact_4836_le__minus__one__simps_I2_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% le_minus_one_simps(2)
thf(fact_4837_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(4)
thf(fact_4838_le__minus__one__simps_I4_J,axiom,
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(4)
thf(fact_4839_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(4)
thf(fact_4840_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(4)
thf(fact_4841_zero__neq__neg__one,axiom,
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% zero_neq_neg_one
thf(fact_4842_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_4843_zero__neq__neg__one,axiom,
( zero_zero_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% zero_neq_neg_one
thf(fact_4844_zero__neq__neg__one,axiom,
( zero_zero_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% zero_neq_neg_one
thf(fact_4845_zero__neq__neg__one,axiom,
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% zero_neq_neg_one
thf(fact_4846_neg__eq__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= B )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_4847_neg__eq__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_4848_neg__eq__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_4849_neg__eq__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= B )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_4850_neg__eq__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= B )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_4851_eq__neg__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( A
= ( uminus1482373934393186551omplex @ B ) )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_4852_eq__neg__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_4853_eq__neg__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_4854_eq__neg__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( A
= ( uminus_uminus_rat @ B ) )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_4855_eq__neg__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ B ) )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_4856_add_Oinverse__unique,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_4857_add_Oinverse__unique,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
=> ( ( uminus_uminus_int @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_4858_add_Oinverse__unique,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
=> ( ( uminus_uminus_real @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_4859_add_Oinverse__unique,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
=> ( ( uminus_uminus_rat @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_4860_add_Oinverse__unique,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
=> ( ( uminus1351360451143612070nteger @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_4861_ab__group__add__class_Oab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_group_add_class.ab_left_minus
thf(fact_4862_ab__group__add__class_Oab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_group_add_class.ab_left_minus
thf(fact_4863_ab__group__add__class_Oab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_group_add_class.ab_left_minus
thf(fact_4864_ab__group__add__class_Oab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_group_add_class.ab_left_minus
thf(fact_4865_ab__group__add__class_Oab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_group_add_class.ab_left_minus
thf(fact_4866_add__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
= ( B
= ( uminus1482373934393186551omplex @ A ) ) ) ).
% add_eq_0_iff
thf(fact_4867_add__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% add_eq_0_iff
thf(fact_4868_add__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% add_eq_0_iff
thf(fact_4869_add__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
= ( B
= ( uminus_uminus_rat @ A ) ) ) ).
% add_eq_0_iff
thf(fact_4870_add__eq__0__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% add_eq_0_iff
thf(fact_4871_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_4872_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_4873_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(4)
thf(fact_4874_less__minus__one__simps_I4_J,axiom,
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(4)
thf(fact_4875_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_4876_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_4877_less__minus__one__simps_I2_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% less_minus_one_simps(2)
thf(fact_4878_less__minus__one__simps_I2_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% less_minus_one_simps(2)
thf(fact_4879_nonzero__minus__divide__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_4880_nonzero__minus__divide__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_4881_nonzero__minus__divide__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_4882_nonzero__minus__divide__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_4883_nonzero__minus__divide__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_4884_nonzero__minus__divide__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_4885_one__neq__neg__numeral,axiom,
! [N2: num] :
( one_one_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).
% one_neq_neg_numeral
thf(fact_4886_one__neq__neg__numeral,axiom,
! [N2: num] :
( one_one_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).
% one_neq_neg_numeral
thf(fact_4887_one__neq__neg__numeral,axiom,
! [N2: num] :
( one_one_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).
% one_neq_neg_numeral
thf(fact_4888_one__neq__neg__numeral,axiom,
! [N2: num] :
( one_one_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).
% one_neq_neg_numeral
thf(fact_4889_one__neq__neg__numeral,axiom,
! [N2: num] :
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% one_neq_neg_numeral
thf(fact_4890_numeral__neq__neg__one,axiom,
! [N2: num] :
( ( numera6690914467698888265omplex @ N2 )
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% numeral_neq_neg_one
thf(fact_4891_numeral__neq__neg__one,axiom,
! [N2: num] :
( ( numeral_numeral_int @ N2 )
!= ( uminus_uminus_int @ one_one_int ) ) ).
% numeral_neq_neg_one
thf(fact_4892_numeral__neq__neg__one,axiom,
! [N2: num] :
( ( numeral_numeral_real @ N2 )
!= ( uminus_uminus_real @ one_one_real ) ) ).
% numeral_neq_neg_one
thf(fact_4893_numeral__neq__neg__one,axiom,
! [N2: num] :
( ( numeral_numeral_rat @ N2 )
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% numeral_neq_neg_one
thf(fact_4894_numeral__neq__neg__one,axiom,
! [N2: num] :
( ( numera6620942414471956472nteger @ N2 )
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% numeral_neq_neg_one
thf(fact_4895_square__eq__1__iff,axiom,
! [X3: complex] :
( ( ( times_times_complex @ X3 @ X3 )
= one_one_complex )
= ( ( X3 = one_one_complex )
| ( X3
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% square_eq_1_iff
thf(fact_4896_square__eq__1__iff,axiom,
! [X3: int] :
( ( ( times_times_int @ X3 @ X3 )
= one_one_int )
= ( ( X3 = one_one_int )
| ( X3
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_4897_square__eq__1__iff,axiom,
! [X3: real] :
( ( ( times_times_real @ X3 @ X3 )
= one_one_real )
= ( ( X3 = one_one_real )
| ( X3
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_4898_square__eq__1__iff,axiom,
! [X3: rat] :
( ( ( times_times_rat @ X3 @ X3 )
= one_one_rat )
= ( ( X3 = one_one_rat )
| ( X3
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% square_eq_1_iff
thf(fact_4899_square__eq__1__iff,axiom,
! [X3: code_integer] :
( ( ( times_3573771949741848930nteger @ X3 @ X3 )
= one_one_Code_integer )
= ( ( X3 = one_one_Code_integer )
| ( X3
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% square_eq_1_iff
thf(fact_4900_dvd__neg__div,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_4901_dvd__neg__div,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_4902_dvd__neg__div,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_4903_dvd__neg__div,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_4904_dvd__div__neg,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_4905_dvd__div__neg,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_4906_dvd__div__neg,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_4907_dvd__div__neg,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_4908_dvd__minus__mod,axiom,
! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4909_dvd__minus__mod,axiom,
! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4910_diff__less__Suc,axiom,
! [M: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_4911_Suc__diff__Suc,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ N2 @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N2 ) ) )
= ( minus_minus_nat @ M @ N2 ) ) ) ).
% Suc_diff_Suc
thf(fact_4912_diff__less,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ) ) ).
% diff_less
thf(fact_4913_Suc__diff__le,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
= ( suc @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).
% Suc_diff_le
thf(fact_4914_less__diff__iff,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_nat @ M @ N2 ) ) ) ) ).
% less_diff_iff
thf(fact_4915_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_4916_diff__add__0,axiom,
! [N2: nat,M: nat] :
( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_4917_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_4918_add__diff__inverse__nat,axiom,
! [M: nat,N2: nat] :
( ~ ( ord_less_nat @ M @ N2 )
=> ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M @ N2 ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_4919_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_4920_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_4921_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_4922_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_4923_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_4924_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N2: nat] :
( ( minus_minus_nat @ M @ ( suc @ N2 ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_4925_dvd__minus__self,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ M ) )
= ( ( ord_less_nat @ N2 @ M )
| ( dvd_dvd_nat @ M @ N2 ) ) ) ).
% dvd_minus_self
thf(fact_4926_dvd__diffD,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
=> ( ( dvd_dvd_nat @ K @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( dvd_dvd_nat @ K @ M ) ) ) ) ).
% dvd_diffD
thf(fact_4927_dvd__diffD1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
=> ( ( dvd_dvd_nat @ K @ M )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( dvd_dvd_nat @ K @ N2 ) ) ) ) ).
% dvd_diffD1
thf(fact_4928_less__eq__dvd__minus,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( dvd_dvd_nat @ M @ N2 )
= ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_4929_bezout1__nat,axiom,
! [A: nat,B: nat] :
? [D5: nat,X4: nat,Y2: nat] :
( ( dvd_dvd_nat @ D5 @ A )
& ( dvd_dvd_nat @ D5 @ B )
& ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y2 ) )
= D5 )
| ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y2 ) )
= D5 ) ) ) ).
% bezout1_nat
thf(fact_4930_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N2: int] :
( ( ( times_times_int @ M @ N2 )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_4931_zmult__eq__1__iff,axiom,
! [M: int,N2: int] :
( ( ( times_times_int @ M @ N2 )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N2 = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N2
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_4932_mod__if,axiom,
( modulo_modulo_nat
= ( ^ [M3: nat,N: nat] : ( if_nat @ ( ord_less_nat @ M3 @ N ) @ M3 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M3 @ N ) @ N ) ) ) ) ).
% mod_if
thf(fact_4933_mod__geq,axiom,
! [M: nat,N2: nat] :
( ~ ( ord_less_nat @ M @ N2 )
=> ( ( modulo_modulo_nat @ M @ N2 )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ).
% mod_geq
thf(fact_4934_le__mod__geq,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( modulo_modulo_nat @ M @ N2 )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ).
% le_mod_geq
thf(fact_4935_nat__minus__add__max,axiom,
! [N2: nat,M: nat] :
( ( plus_plus_nat @ ( minus_minus_nat @ N2 @ M ) @ M )
= ( ord_max_nat @ N2 @ M ) ) ).
% nat_minus_add_max
thf(fact_4936_ordered__ring__class_Ole__add__iff1,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_4937_ordered__ring__class_Ole__add__iff1,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_4938_ordered__ring__class_Ole__add__iff1,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_4939_ordered__ring__class_Ole__add__iff2,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_4940_ordered__ring__class_Ole__add__iff2,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_4941_ordered__ring__class_Ole__add__iff2,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_4942_neg__numeral__le__zero,axiom,
! [N2: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) @ zero_zero_real ) ).
% neg_numeral_le_zero
thf(fact_4943_neg__numeral__le__zero,axiom,
! [N2: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_le_zero
thf(fact_4944_neg__numeral__le__zero,axiom,
! [N2: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) @ zero_zero_rat ) ).
% neg_numeral_le_zero
thf(fact_4945_neg__numeral__le__zero,axiom,
! [N2: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ zero_zero_int ) ).
% neg_numeral_le_zero
thf(fact_4946_not__zero__le__neg__numeral,axiom,
! [N2: num] :
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_4947_not__zero__le__neg__numeral,axiom,
! [N2: num] :
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_4948_not__zero__le__neg__numeral,axiom,
! [N2: num] :
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_4949_not__zero__le__neg__numeral,axiom,
! [N2: num] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_4950_less__add__iff1,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_4951_less__add__iff1,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_4952_less__add__iff1,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_4953_less__add__iff2,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D ) ) ) ).
% less_add_iff2
thf(fact_4954_less__add__iff2,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D ) ) ) ).
% less_add_iff2
thf(fact_4955_less__add__iff2,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).
% less_add_iff2
thf(fact_4956_neg__numeral__less__zero,axiom,
! [N2: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ zero_zero_int ) ).
% neg_numeral_less_zero
thf(fact_4957_neg__numeral__less__zero,axiom,
! [N2: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) @ zero_zero_real ) ).
% neg_numeral_less_zero
thf(fact_4958_neg__numeral__less__zero,axiom,
! [N2: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) @ zero_zero_rat ) ).
% neg_numeral_less_zero
thf(fact_4959_neg__numeral__less__zero,axiom,
! [N2: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_less_zero
thf(fact_4960_not__zero__less__neg__numeral,axiom,
! [N2: num] :
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_4961_not__zero__less__neg__numeral,axiom,
! [N2: num] :
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_4962_not__zero__less__neg__numeral,axiom,
! [N2: num] :
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_4963_not__zero__less__neg__numeral,axiom,
! [N2: num] :
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_4964_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(3)
thf(fact_4965_le__minus__one__simps_I3_J,axiom,
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(3)
thf(fact_4966_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(3)
thf(fact_4967_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(3)
thf(fact_4968_le__minus__one__simps_I1_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% le_minus_one_simps(1)
thf(fact_4969_le__minus__one__simps_I1_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% le_minus_one_simps(1)
thf(fact_4970_le__minus__one__simps_I1_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% le_minus_one_simps(1)
thf(fact_4971_le__minus__one__simps_I1_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% le_minus_one_simps(1)
thf(fact_4972_add__divide__eq__if__simps_I4_J,axiom,
! [Z2: complex,A: complex,B: complex] :
( ( ( Z2 = zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
= A ) )
& ( ( Z2 != zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_4973_add__divide__eq__if__simps_I4_J,axiom,
! [Z2: rat,A: rat,B: rat] :
( ( ( Z2 = zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
= A ) )
& ( ( Z2 != zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_4974_add__divide__eq__if__simps_I4_J,axiom,
! [Z2: real,A: real,B: real] :
( ( ( Z2 = zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
= A ) )
& ( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_4975_diff__frac__eq,axiom,
! [Y: complex,Z2: complex,X3: complex,W2: complex] :
( ( Y != zero_zero_complex )
=> ( ( Z2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X3 @ Y ) @ ( divide1717551699836669952omplex @ W2 @ Z2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X3 @ Z2 ) @ ( times_times_complex @ W2 @ Y ) ) @ ( times_times_complex @ Y @ Z2 ) ) ) ) ) ).
% diff_frac_eq
thf(fact_4976_diff__frac__eq,axiom,
! [Y: rat,Z2: rat,X3: rat,W2: rat] :
( ( Y != zero_zero_rat )
=> ( ( Z2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X3 @ Y ) @ ( divide_divide_rat @ W2 @ Z2 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z2 ) @ ( times_times_rat @ W2 @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) ) ) ) ).
% diff_frac_eq
thf(fact_4977_diff__frac__eq,axiom,
! [Y: real,Z2: real,X3: real,W2: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X3 @ Y ) @ ( divide_divide_real @ W2 @ Z2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z2 ) @ ( times_times_real @ W2 @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) ) ) ) ).
% diff_frac_eq
thf(fact_4978_diff__divide__eq__iff,axiom,
! [Z2: complex,X3: complex,Y: complex] :
( ( Z2 != zero_zero_complex )
=> ( ( minus_minus_complex @ X3 @ ( divide1717551699836669952omplex @ Y @ Z2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X3 @ Z2 ) @ Y ) @ Z2 ) ) ) ).
% diff_divide_eq_iff
thf(fact_4979_diff__divide__eq__iff,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( Z2 != zero_zero_rat )
=> ( ( minus_minus_rat @ X3 @ ( divide_divide_rat @ Y @ Z2 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z2 ) @ Y ) @ Z2 ) ) ) ).
% diff_divide_eq_iff
thf(fact_4980_diff__divide__eq__iff,axiom,
! [Z2: real,X3: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ X3 @ ( divide_divide_real @ Y @ Z2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z2 ) @ Y ) @ Z2 ) ) ) ).
% diff_divide_eq_iff
thf(fact_4981_divide__diff__eq__iff,axiom,
! [Z2: complex,X3: complex,Y: complex] :
( ( Z2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X3 @ Z2 ) @ Y )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ X3 @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% divide_diff_eq_iff
thf(fact_4982_divide__diff__eq__iff,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( Z2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X3 @ Z2 ) @ Y )
= ( divide_divide_rat @ ( minus_minus_rat @ X3 @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% divide_diff_eq_iff
thf(fact_4983_divide__diff__eq__iff,axiom,
! [Z2: real,X3: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X3 @ Z2 ) @ Y )
= ( divide_divide_real @ ( minus_minus_real @ X3 @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% divide_diff_eq_iff
thf(fact_4984_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_4985_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(3)
thf(fact_4986_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(3)
thf(fact_4987_less__minus__one__simps_I3_J,axiom,
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(3)
thf(fact_4988_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_4989_less__minus__one__simps_I1_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% less_minus_one_simps(1)
thf(fact_4990_less__minus__one__simps_I1_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% less_minus_one_simps(1)
thf(fact_4991_less__minus__one__simps_I1_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% less_minus_one_simps(1)
thf(fact_4992_square__diff__one__factored,axiom,
! [X3: complex] :
( ( minus_minus_complex @ ( times_times_complex @ X3 @ X3 ) @ one_one_complex )
= ( times_times_complex @ ( plus_plus_complex @ X3 @ one_one_complex ) @ ( minus_minus_complex @ X3 @ one_one_complex ) ) ) ).
% square_diff_one_factored
thf(fact_4993_square__diff__one__factored,axiom,
! [X3: real] :
( ( minus_minus_real @ ( times_times_real @ X3 @ X3 ) @ one_one_real )
= ( times_times_real @ ( plus_plus_real @ X3 @ one_one_real ) @ ( minus_minus_real @ X3 @ one_one_real ) ) ) ).
% square_diff_one_factored
thf(fact_4994_square__diff__one__factored,axiom,
! [X3: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X3 @ X3 ) @ one_one_rat )
= ( times_times_rat @ ( plus_plus_rat @ X3 @ one_one_rat ) @ ( minus_minus_rat @ X3 @ one_one_rat ) ) ) ).
% square_diff_one_factored
thf(fact_4995_square__diff__one__factored,axiom,
! [X3: int] :
( ( minus_minus_int @ ( times_times_int @ X3 @ X3 ) @ one_one_int )
= ( times_times_int @ ( plus_plus_int @ X3 @ one_one_int ) @ ( minus_minus_int @ X3 @ one_one_int ) ) ) ).
% square_diff_one_factored
thf(fact_4996_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_le_one
thf(fact_4997_neg__numeral__le__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_le_one
thf(fact_4998_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_le_one
thf(fact_4999_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_le_one
thf(fact_5000_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_le_numeral
thf(fact_5001_neg__one__le__numeral,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_le_numeral
thf(fact_5002_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_le_numeral
thf(fact_5003_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_le_numeral
thf(fact_5004_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% neg_numeral_le_neg_one
thf(fact_5005_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% neg_numeral_le_neg_one
thf(fact_5006_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% neg_numeral_le_neg_one
thf(fact_5007_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% neg_numeral_le_neg_one
thf(fact_5008_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_le_neg_one
thf(fact_5009_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_le_neg_one
thf(fact_5010_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_le_neg_one
thf(fact_5011_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_le_neg_one
thf(fact_5012_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5013_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5014_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5015_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5016_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_less_one
thf(fact_5017_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_less_one
thf(fact_5018_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_less_one
thf(fact_5019_neg__numeral__less__one,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_less_one
thf(fact_5020_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_less_numeral
thf(fact_5021_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_less_numeral
thf(fact_5022_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_less_numeral
thf(fact_5023_neg__one__less__numeral,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_less_numeral
thf(fact_5024_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_less_neg_one
thf(fact_5025_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_less_neg_one
thf(fact_5026_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_less_neg_one
thf(fact_5027_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_less_neg_one
thf(fact_5028_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5029_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5030_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5031_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5032_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5033_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5034_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5035_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5036_eq__minus__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5037_eq__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= ( uminus_uminus_real @ B ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5038_eq__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= ( uminus_uminus_rat @ B ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5039_minus__divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
= A )
= ( ( ( C != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ B )
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5040_minus__divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
= A )
= ( ( ( C != zero_zero_real )
=> ( ( uminus_uminus_real @ B )
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5041_minus__divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
= A )
= ( ( ( C != zero_zero_rat )
=> ( ( uminus_uminus_rat @ B )
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5042_nonzero__neg__divide__eq__eq,axiom,
! [B: complex,A: complex,C: complex] :
( ( B != zero_zero_complex )
=> ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= C )
= ( ( uminus1482373934393186551omplex @ A )
= ( times_times_complex @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5043_nonzero__neg__divide__eq__eq,axiom,
! [B: real,A: real,C: real] :
( ( B != zero_zero_real )
=> ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= C )
= ( ( uminus_uminus_real @ A )
= ( times_times_real @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5044_nonzero__neg__divide__eq__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( B != zero_zero_rat )
=> ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= C )
= ( ( uminus_uminus_rat @ A )
= ( times_times_rat @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5045_nonzero__neg__divide__eq__eq2,axiom,
! [B: complex,C: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( C
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ( times_times_complex @ C @ B )
= ( uminus1482373934393186551omplex @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5046_nonzero__neg__divide__eq__eq2,axiom,
! [B: real,C: real,A: real] :
( ( B != zero_zero_real )
=> ( ( C
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
= ( ( times_times_real @ C @ B )
= ( uminus_uminus_real @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5047_nonzero__neg__divide__eq__eq2,axiom,
! [B: rat,C: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( C
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
= ( ( times_times_rat @ C @ B )
= ( uminus_uminus_rat @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5048_divide__eq__minus__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( ( B != zero_zero_complex )
& ( A
= ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5049_divide__eq__minus__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= ( uminus_uminus_real @ one_one_real ) )
= ( ( B != zero_zero_real )
& ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5050_divide__eq__minus__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( ( B != zero_zero_rat )
& ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5051_mult__1s__ring__1_I1_J,axiom,
! [B: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5052_mult__1s__ring__1_I1_J,axiom,
! [B: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5053_mult__1s__ring__1_I1_J,axiom,
! [B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5054_mult__1s__ring__1_I1_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5055_mult__1s__ring__1_I2_J,axiom,
! [B: int] :
( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5056_mult__1s__ring__1_I2_J,axiom,
! [B: real] :
( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5057_mult__1s__ring__1_I2_J,axiom,
! [B: rat] :
( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5058_mult__1s__ring__1_I2_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5059_uminus__numeral__One,axiom,
( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% uminus_numeral_One
thf(fact_5060_uminus__numeral__One,axiom,
( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% uminus_numeral_One
thf(fact_5061_uminus__numeral__One,axiom,
( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% uminus_numeral_One
thf(fact_5062_uminus__numeral__One,axiom,
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% uminus_numeral_One
thf(fact_5063_uminus__numeral__One,axiom,
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% uminus_numeral_One
thf(fact_5064_inf__period_I4_J,axiom,
! [D: real,D6: real,T: real] :
( ( dvd_dvd_real @ D @ D6 )
=> ! [X: real,K4: real] :
( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ T ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X @ ( times_times_real @ K4 @ D6 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_5065_inf__period_I4_J,axiom,
! [D: rat,D6: rat,T: rat] :
( ( dvd_dvd_rat @ D @ D6 )
=> ! [X: rat,K4: rat] :
( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ T ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X @ ( times_times_rat @ K4 @ D6 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_5066_inf__period_I4_J,axiom,
! [D: int,D6: int,T: int] :
( ( dvd_dvd_int @ D @ D6 )
=> ! [X: int,K4: int] :
( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ T ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X @ ( times_times_int @ K4 @ D6 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_5067_inf__period_I3_J,axiom,
! [D: real,D6: real,T: real] :
( ( dvd_dvd_real @ D @ D6 )
=> ! [X: real,K4: real] :
( ( dvd_dvd_real @ D @ ( plus_plus_real @ X @ T ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X @ ( times_times_real @ K4 @ D6 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_5068_inf__period_I3_J,axiom,
! [D: rat,D6: rat,T: rat] :
( ( dvd_dvd_rat @ D @ D6 )
=> ! [X: rat,K4: rat] :
( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X @ T ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X @ ( times_times_rat @ K4 @ D6 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_5069_inf__period_I3_J,axiom,
! [D: int,D6: int,T: int] :
( ( dvd_dvd_int @ D @ D6 )
=> ! [X: int,K4: int] :
( ( dvd_dvd_int @ D @ ( plus_plus_int @ X @ T ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X @ ( times_times_int @ K4 @ D6 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_5070_minus__div__mult__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_5071_minus__div__mult__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_5072_minus__mod__eq__div__mult,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_5073_minus__mod__eq__div__mult,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_5074_minus__mod__eq__mult__div,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_5075_minus__mod__eq__mult__div,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_5076_minus__mult__div__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_5077_minus__mult__div__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_5078_diff__Suc__less,axiom,
! [N2: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I ) ) @ N2 ) ) ).
% diff_Suc_less
thf(fact_5079_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
=> ( P @ D4 ) ) ) ) ).
% nat_diff_split
thf(fact_5080_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
& ~ ( P @ D4 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_5081_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_5082_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
= N2 ) ) ) ).
% nat_eq_add_iff1
thf(fact_5083_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_5084_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).
% nat_le_add_iff1
thf(fact_5085_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_le_add_iff2
thf(fact_5086_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).
% nat_diff_add_eq1
thf(fact_5087_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_5088_mod__eq__dvd__iff__nat,axiom,
! [N2: nat,M: nat,Q2: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N2 @ Q2 ) )
= ( dvd_dvd_nat @ Q2 @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).
% mod_eq_dvd_iff_nat
thf(fact_5089_exp__div__exp__eq,axiom,
! [M: nat,N2: nat] :
( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( times_3573771949741848930nteger
@ ( zero_n356916108424825756nteger
@ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
!= zero_z3403309356797280102nteger )
& ( ord_less_eq_nat @ N2 @ M ) ) )
@ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).
% exp_div_exp_eq
thf(fact_5090_exp__div__exp__eq,axiom,
! [M: nat,N2: nat] :
( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat )
& ( ord_less_eq_nat @ N2 @ M ) ) )
@ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).
% exp_div_exp_eq
thf(fact_5091_exp__div__exp__eq,axiom,
! [M: nat,N2: nat] :
( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_int
@ ( zero_n2684676970156552555ol_int
@ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int )
& ( ord_less_eq_nat @ N2 @ M ) ) )
@ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).
% exp_div_exp_eq
thf(fact_5092_frac__le__eq,axiom,
! [Y: real,Z2: real,X3: real,W2: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ ( divide_divide_real @ W2 @ Z2 ) )
= ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z2 ) @ ( times_times_real @ W2 @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) @ zero_zero_real ) ) ) ) ).
% frac_le_eq
thf(fact_5093_frac__le__eq,axiom,
! [Y: rat,Z2: rat,X3: rat,W2: rat] :
( ( Y != zero_zero_rat )
=> ( ( Z2 != zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y ) @ ( divide_divide_rat @ W2 @ Z2 ) )
= ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z2 ) @ ( times_times_rat @ W2 @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) @ zero_zero_rat ) ) ) ) ).
% frac_le_eq
thf(fact_5094_frac__less__eq,axiom,
! [Y: rat,Z2: rat,X3: rat,W2: rat] :
( ( Y != zero_zero_rat )
=> ( ( Z2 != zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y ) @ ( divide_divide_rat @ W2 @ Z2 ) )
= ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z2 ) @ ( times_times_rat @ W2 @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) @ zero_zero_rat ) ) ) ) ).
% frac_less_eq
thf(fact_5095_frac__less__eq,axiom,
! [Y: real,Z2: real,X3: real,W2: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ X3 @ Y ) @ ( divide_divide_real @ W2 @ Z2 ) )
= ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z2 ) @ ( times_times_real @ W2 @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) @ zero_zero_real ) ) ) ) ).
% frac_less_eq
thf(fact_5096_pos__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_5097_pos__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_5098_pos__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_5099_pos__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_5100_neg__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_5101_neg__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_5102_neg__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_5103_neg__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_5104_minus__divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_5105_minus__divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_5106_less__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_5107_less__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_5108_divide__eq__eq__numeral_I2_J,axiom,
! [B: complex,C: complex,W2: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5109_divide__eq__eq__numeral_I2_J,axiom,
! [B: real,C: real,W2: num] :
( ( ( divide_divide_real @ B @ C )
= ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5110_divide__eq__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W2: num] :
( ( ( divide_divide_rat @ B @ C )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5111_eq__divide__eq__numeral_I2_J,axiom,
! [W2: num,B: complex,C: complex] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W2 ) )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5112_eq__divide__eq__numeral_I2_J,axiom,
! [W2: num,B: real,C: real] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5113_eq__divide__eq__numeral_I2_J,axiom,
! [W2: num,B: rat,C: rat] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5114_minus__divide__add__eq__iff,axiom,
! [Z2: complex,X3: complex,Y: complex] :
( ( Z2 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X3 @ Z2 ) ) @ Y )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X3 ) @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5115_minus__divide__add__eq__iff,axiom,
! [Z2: real,X3: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X3 @ Z2 ) ) @ Y )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X3 ) @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5116_minus__divide__add__eq__iff,axiom,
! [Z2: rat,X3: rat,Y: rat] :
( ( Z2 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X3 @ Z2 ) ) @ Y )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X3 ) @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5117_add__divide__eq__if__simps_I3_J,axiom,
! [Z2: complex,A: complex,B: complex] :
( ( ( Z2 = zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
= B ) )
& ( ( Z2 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5118_add__divide__eq__if__simps_I3_J,axiom,
! [Z2: real,A: real,B: real] :
( ( ( Z2 = zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
= B ) )
& ( ( Z2 != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5119_add__divide__eq__if__simps_I3_J,axiom,
! [Z2: rat,A: rat,B: rat] :
( ( ( Z2 = zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
= B ) )
& ( ( Z2 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5120_power__diff,axiom,
! [A: rat,N2: nat,M: nat] :
( ( A != zero_zero_rat )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N2 ) )
= ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).
% power_diff
thf(fact_5121_power__diff,axiom,
! [A: complex,N2: nat,M: nat] :
( ( A != zero_zero_complex )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N2 ) )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ) ) ).
% power_diff
thf(fact_5122_power__diff,axiom,
! [A: nat,N2: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N2 ) )
= ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).
% power_diff
thf(fact_5123_power__diff,axiom,
! [A: int,N2: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N2 ) )
= ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).
% power_diff
thf(fact_5124_power__diff,axiom,
! [A: real,N2: nat,M: nat] :
( ( A != zero_zero_real )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N2 ) )
= ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).
% power_diff
thf(fact_5125_Suc__pred_H,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( N2
= ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_5126_Suc__diff__eq__diff__pred,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_5127_div__if,axiom,
( divide_divide_nat
= ( ^ [M3: nat,N: nat] :
( if_nat
@ ( ( ord_less_nat @ M3 @ N )
| ( N = zero_zero_nat ) )
@ zero_zero_nat
@ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M3 @ N ) @ N ) ) ) ) ) ).
% div_if
thf(fact_5128_div__geq,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( ord_less_nat @ M @ N2 )
=> ( ( divide_divide_nat @ M @ N2 )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).
% div_geq
thf(fact_5129_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N ) ) ) ) ) ).
% add_eq_if
thf(fact_5130_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).
% nat_less_add_iff1
thf(fact_5131_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_less_add_iff2
thf(fact_5132_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N ) ) ) ) ) ).
% mult_eq_if
thf(fact_5133_dvd__minus__add,axiom,
! [Q2: nat,N2: nat,R2: nat,M: nat] :
( ( ord_less_eq_nat @ Q2 @ N2 )
=> ( ( ord_less_eq_nat @ Q2 @ ( times_times_nat @ R2 @ M ) )
=> ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ Q2 ) )
= ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N2 @ ( minus_minus_nat @ ( times_times_nat @ R2 @ M ) @ Q2 ) ) ) ) ) ) ).
% dvd_minus_add
thf(fact_5134_mod__nat__eqI,axiom,
! [R2: nat,N2: nat,M: nat] :
( ( ord_less_nat @ R2 @ N2 )
=> ( ( ord_less_eq_nat @ R2 @ M )
=> ( ( dvd_dvd_nat @ N2 @ ( minus_minus_nat @ M @ R2 ) )
=> ( ( modulo_modulo_nat @ M @ N2 )
= R2 ) ) ) ) ).
% mod_nat_eqI
thf(fact_5135_verit__less__mono__div__int2,axiom,
! [A2: int,B2: int,N2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
=> ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N2 ) )
=> ( ord_less_eq_int @ ( divide_divide_int @ B2 @ N2 ) @ ( divide_divide_int @ A2 @ N2 ) ) ) ) ).
% verit_less_mono_div_int2
thf(fact_5136_div__eq__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% div_eq_minus1
thf(fact_5137_bot__empty__eq2,axiom,
( bot_bot_nat_nat_o
= ( ^ [X2: nat,Y5: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X2 @ Y5 ) @ bot_bo2099793752762293965at_nat ) ) ) ).
% bot_empty_eq2
thf(fact_5138_bot__empty__eq2,axiom,
( bot_bo1565574316222977092_nat_o
= ( ^ [X2: vEBT_VEBT,Y5: nat] : ( member373505688050248522BT_nat @ ( produc738532404422230701BT_nat @ X2 @ Y5 ) @ bot_bo1642239108664514429BT_nat ) ) ) ).
% bot_empty_eq2
thf(fact_5139_bot__empty__eq2,axiom,
( bot_bot_int_int_o
= ( ^ [X2: int,Y5: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X2 @ Y5 ) @ bot_bo1796632182523588997nt_int ) ) ) ).
% bot_empty_eq2
thf(fact_5140_bot__empty__eq2,axiom,
( bot_bo4731626569425807221er_o_o
= ( ^ [X2: code_integer,Y5: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X2 @ Y5 ) @ bot_bo5379713665208646970eger_o ) ) ) ).
% bot_empty_eq2
thf(fact_5141_bot__empty__eq2,axiom,
( bot_bo8134993004553108152eger_o
= ( ^ [X2: code_integer,Y5: code_integer] : ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X2 @ Y5 ) @ bot_bo4276436098303576167nteger ) ) ) ).
% bot_empty_eq2
thf(fact_5142_scaling__mono,axiom,
! [U: real,V: real,R2: real,S: real] :
( ( ord_less_eq_real @ U @ V )
=> ( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ( ord_less_eq_real @ R2 @ S )
=> ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R2 @ ( minus_minus_real @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_5143_scaling__mono,axiom,
! [U: rat,V: rat,R2: rat,S: rat] :
( ( ord_less_eq_rat @ U @ V )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
=> ( ( ord_less_eq_rat @ R2 @ S )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R2 @ ( minus_minus_rat @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_5144_le__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_5145_le__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_5146_minus__divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_5147_minus__divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_5148_neg__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_5149_neg__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_5150_neg__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_5151_neg__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_5152_pos__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_5153_pos__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_5154_pos__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_5155_pos__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_5156_less__divide__eq__numeral_I2_J,axiom,
! [W2: num,B: real,C: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_5157_less__divide__eq__numeral_I2_J,axiom,
! [W2: num,B: rat,C: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_5158_divide__less__eq__numeral_I2_J,axiom,
! [B: real,C: real,W2: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_5159_divide__less__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W2: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_5160_signed__take__bit__rec,axiom,
( bit_ri6519982836138164636nteger
= ( ^ [N: nat,A3: code_integer] : ( if_Code_integer @ ( N = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_5161_signed__take__bit__rec,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N: nat,A3: int] : ( if_int @ ( N = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_5162_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N2: nat,M: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
!= zero_zero_nat ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_5163_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N2: nat,M: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
!= zero_zero_int ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_5164_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N2: nat,M: nat] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
!= zero_z3403309356797280102nteger )
=> ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
!= zero_z3403309356797280102nteger ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_5165_power__diff__power__eq,axiom,
! [A: nat,N2: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
= ( power_power_nat @ A @ ( minus_minus_nat @ M @ N2 ) ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
= ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_5166_power__diff__power__eq,axiom,
! [A: int,N2: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
= ( power_power_int @ A @ ( minus_minus_nat @ M @ N2 ) ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
= ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_5167_power__eq__if,axiom,
( power_power_complex
= ( ^ [P6: complex,M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P6 @ ( power_power_complex @ P6 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_5168_power__eq__if,axiom,
( power_power_real
= ( ^ [P6: real,M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P6 @ ( power_power_real @ P6 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_5169_power__eq__if,axiom,
( power_power_rat
= ( ^ [P6: rat,M3: nat] : ( if_rat @ ( M3 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P6 @ ( power_power_rat @ P6 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_5170_power__eq__if,axiom,
( power_power_nat
= ( ^ [P6: nat,M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P6 @ ( power_power_nat @ P6 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_5171_power__eq__if,axiom,
( power_power_int
= ( ^ [P6: int,M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P6 @ ( power_power_int @ P6 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_5172_power__minus__mult,axiom,
! [N2: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
= ( power_power_complex @ A @ N2 ) ) ) ).
% power_minus_mult
thf(fact_5173_power__minus__mult,axiom,
! [N2: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
= ( power_power_real @ A @ N2 ) ) ) ).
% power_minus_mult
thf(fact_5174_power__minus__mult,axiom,
! [N2: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
= ( power_power_rat @ A @ N2 ) ) ) ).
% power_minus_mult
thf(fact_5175_power__minus__mult,axiom,
! [N2: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N2 ) ) ) ).
% power_minus_mult
thf(fact_5176_power__minus__mult,axiom,
! [N2: nat,A: int] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
= ( power_power_int @ A @ N2 ) ) ) ).
% power_minus_mult
thf(fact_5177_diff__le__diff__pow,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N2 ) ) ) ) ).
% diff_le_diff_pow
thf(fact_5178_le__div__geq,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( divide_divide_nat @ M @ N2 )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).
% le_div_geq
thf(fact_5179_bits__induct,axiom,
! [P: code_integer > $o,A: code_integer] :
( ! [A4: code_integer] :
( ( ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: code_integer,B4: $o] :
( ( P @ A4 )
=> ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B4 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B4 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_5180_bits__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [A4: nat] :
( ( ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: nat,B4: $o] :
( ( P @ A4 )
=> ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_5181_bits__induct,axiom,
! [P: int > $o,A: int] :
( ! [A4: int] :
( ( ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: int,B4: $o] :
( ( P @ A4 )
=> ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B4 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B4 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_5182_divide__le__eq__numeral_I2_J,axiom,
! [B: real,C: real,W2: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_5183_divide__le__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W2: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_5184_le__divide__eq__numeral_I2_J,axiom,
! [W2: num,B: real,C: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W2 ) ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_5185_le__divide__eq__numeral_I2_J,axiom,
! [W2: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W2 ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_5186_square__le__1,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_eq_real @ X3 @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).
% square_le_1
thf(fact_5187_square__le__1,axiom,
! [X3: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X3 )
=> ( ( ord_le3102999989581377725nteger @ X3 @ one_one_Code_integer )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).
% square_le_1
thf(fact_5188_square__le__1,axiom,
! [X3: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X3 )
=> ( ( ord_less_eq_rat @ X3 @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).
% square_le_1
thf(fact_5189_square__le__1,axiom,
! [X3: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X3 )
=> ( ( ord_less_eq_int @ X3 @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% square_le_1
thf(fact_5190_div__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( divide_divide_int @ K @ L )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% div_pos_neg_trivial
thf(fact_5191_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
= ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% signed_take_bit_int_greater_self_iff
thf(fact_5192_exp__mod__exp,axiom,
! [M: nat,N2: nat] :
( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N2 ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_5193_exp__mod__exp,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_5194_exp__mod__exp,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_5195_power2__diff,axiom,
! [X3: complex,Y: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_diff
thf(fact_5196_power2__diff,axiom,
! [X3: rat,Y: rat] :
( ( power_power_rat @ ( minus_minus_rat @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_diff
thf(fact_5197_power2__diff,axiom,
! [X3: int,Y: int] :
( ( power_power_int @ ( minus_minus_int @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_diff
thf(fact_5198_power2__diff,axiom,
! [X3: real,Y: real] :
( ( power_power_real @ ( minus_minus_real @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_diff
thf(fact_5199_power2__diff,axiom,
! [X3: code_integer,Y: code_integer] :
( ( power_8256067586552552935nteger @ ( minus_8373710615458151222nteger @ X3 @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ X3 ) @ Y ) ) ) ).
% power2_diff
thf(fact_5200_mult__exp__mod__exp__eq,axiom,
! [M: nat,N2: nat,A: code_integer] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_5201_mult__exp__mod__exp__eq,axiom,
! [M: nat,N2: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_5202_mult__exp__mod__exp__eq,axiom,
! [M: nat,N2: nat,A: int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_5203_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
= ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_5204_signed__take__bit__int__eq__self,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( bit_ri631733984087533419it_int @ N2 @ K )
= K ) ) ) ).
% signed_take_bit_int_eq_self
thf(fact_5205_signed__take__bit__int__eq__self__iff,axiom,
! [N2: nat,K: int] :
( ( ( bit_ri631733984087533419it_int @ N2 @ K )
= K )
= ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% signed_take_bit_int_eq_self_iff
thf(fact_5206_divmod__digit__1_I2_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_5207_divmod__digit__1_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_5208_divmod__digit__1_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_5209_even__mask__div__iff_H,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% even_mask_div_iff'
thf(fact_5210_even__mask__div__iff_H,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% even_mask_div_iff'
thf(fact_5211_even__mask__div__iff_H,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% even_mask_div_iff'
thf(fact_5212_option_Osize__gen_I1_J,axiom,
! [X3: product_prod_nat_nat > nat] :
( ( size_o8335143837870341156at_nat @ X3 @ none_P5556105721700978146at_nat )
= ( suc @ zero_zero_nat ) ) ).
% option.size_gen(1)
thf(fact_5213_option_Osize__gen_I1_J,axiom,
! [X3: num > nat] :
( ( size_option_num @ X3 @ none_num )
= ( suc @ zero_zero_nat ) ) ).
% option.size_gen(1)
thf(fact_5214_even__mod__4__div__2,axiom,
! [N2: nat] :
( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suc @ zero_zero_nat ) )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_mod_4_div_2
thf(fact_5215_bot__empty__eq,axiom,
( bot_bot_VEBT_VEBT_o
= ( ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ).
% bot_empty_eq
thf(fact_5216_bot__empty__eq,axiom,
( bot_bot_set_nat_o
= ( ^ [X2: set_nat] : ( member_set_nat @ X2 @ bot_bot_set_set_nat ) ) ) ).
% bot_empty_eq
thf(fact_5217_bot__empty__eq,axiom,
( bot_bot_real_o
= ( ^ [X2: real] : ( member_real @ X2 @ bot_bot_set_real ) ) ) ).
% bot_empty_eq
thf(fact_5218_bot__empty__eq,axiom,
( bot_bot_nat_o
= ( ^ [X2: nat] : ( member_nat @ X2 @ bot_bot_set_nat ) ) ) ).
% bot_empty_eq
thf(fact_5219_bot__empty__eq,axiom,
( bot_bot_int_o
= ( ^ [X2: int] : ( member_int @ X2 @ bot_bot_set_int ) ) ) ).
% bot_empty_eq
thf(fact_5220_even__mask__div__iff,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
= zero_z3403309356797280102nteger )
| ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% even_mask_div_iff
thf(fact_5221_even__mask__div__iff,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
= zero_zero_nat )
| ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% even_mask_div_iff
thf(fact_5222_even__mask__div__iff,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
= ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
= zero_zero_int )
| ( ord_less_eq_nat @ M @ N2 ) ) ) ).
% even_mask_div_iff
thf(fact_5223_divmod__step__eq,axiom,
! [L: num,R2: code_integer,Q2: code_integer] :
( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
=> ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
= ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R2 @ ( numera6620942414471956472nteger @ L ) ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
=> ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
= ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).
% divmod_step_eq
thf(fact_5224_divmod__step__eq,axiom,
! [L: num,R2: int,Q2: int] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
=> ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ one_one_int ) @ ( minus_minus_int @ R2 @ ( numeral_numeral_int @ L ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
=> ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).
% divmod_step_eq
thf(fact_5225_divmod__step__eq,axiom,
! [L: num,R2: nat,Q2: nat] :
( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
=> ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
= ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ one_one_nat ) @ ( minus_minus_nat @ R2 @ ( numeral_numeral_nat @ L ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
=> ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
= ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).
% divmod_step_eq
thf(fact_5226_inrange,axiom,
! [T: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T @ N2 )
=> ( ord_less_eq_set_nat @ ( vEBT_VEBT_set_vebt @ T ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).
% inrange
thf(fact_5227_artanh__def,axiom,
( artanh_real
= ( ^ [X2: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% artanh_def
thf(fact_5228_compl__le__compl__iff,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X3 ) @ ( uminus1532241313380277803et_int @ Y ) )
= ( ord_less_eq_set_int @ Y @ X3 ) ) ).
% compl_le_compl_iff
thf(fact_5229_Diff__cancel,axiom,
! [A2: set_real] :
( ( minus_minus_set_real @ A2 @ A2 )
= bot_bot_set_real ) ).
% Diff_cancel
thf(fact_5230_Diff__cancel,axiom,
! [A2: set_int] :
( ( minus_minus_set_int @ A2 @ A2 )
= bot_bot_set_int ) ).
% Diff_cancel
thf(fact_5231_Diff__cancel,axiom,
! [A2: set_nat] :
( ( minus_minus_set_nat @ A2 @ A2 )
= bot_bot_set_nat ) ).
% Diff_cancel
thf(fact_5232_empty__Diff,axiom,
! [A2: set_real] :
( ( minus_minus_set_real @ bot_bot_set_real @ A2 )
= bot_bot_set_real ) ).
% empty_Diff
thf(fact_5233_empty__Diff,axiom,
! [A2: set_int] :
( ( minus_minus_set_int @ bot_bot_set_int @ A2 )
= bot_bot_set_int ) ).
% empty_Diff
thf(fact_5234_empty__Diff,axiom,
! [A2: set_nat] :
( ( minus_minus_set_nat @ bot_bot_set_nat @ A2 )
= bot_bot_set_nat ) ).
% empty_Diff
thf(fact_5235_Diff__empty,axiom,
! [A2: set_real] :
( ( minus_minus_set_real @ A2 @ bot_bot_set_real )
= A2 ) ).
% Diff_empty
thf(fact_5236_Diff__empty,axiom,
! [A2: set_int] :
( ( minus_minus_set_int @ A2 @ bot_bot_set_int )
= A2 ) ).
% Diff_empty
thf(fact_5237_Diff__empty,axiom,
! [A2: set_nat] :
( ( minus_minus_set_nat @ A2 @ bot_bot_set_nat )
= A2 ) ).
% Diff_empty
thf(fact_5238_finite__Diff2,axiom,
! [B2: set_int,A2: set_int] :
( ( finite_finite_int @ B2 )
=> ( ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( finite_finite_int @ A2 ) ) ) ).
% finite_Diff2
thf(fact_5239_finite__Diff2,axiom,
! [B2: set_complex,A2: set_complex] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( finite3207457112153483333omplex @ A2 ) ) ) ).
% finite_Diff2
thf(fact_5240_finite__Diff2,axiom,
! [B2: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B2 )
=> ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( finite_finite_nat @ A2 ) ) ) ).
% finite_Diff2
thf(fact_5241_finite__Diff,axiom,
! [A2: set_int,B2: set_int] :
( ( finite_finite_int @ A2 )
=> ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ).
% finite_Diff
thf(fact_5242_finite__Diff,axiom,
! [A2: set_complex,B2: set_complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) ) ).
% finite_Diff
thf(fact_5243_finite__Diff,axiom,
! [A2: set_nat,B2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).
% finite_Diff
thf(fact_5244_Compl__subset__Compl__iff,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( uminus1532241313380277803et_int @ B2 ) )
= ( ord_less_eq_set_int @ B2 @ A2 ) ) ).
% Compl_subset_Compl_iff
thf(fact_5245_Compl__anti__mono,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ B2 ) @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).
% Compl_anti_mono
thf(fact_5246_Diff__eq__empty__iff,axiom,
! [A2: set_real,B2: set_real] :
( ( ( minus_minus_set_real @ A2 @ B2 )
= bot_bot_set_real )
= ( ord_less_eq_set_real @ A2 @ B2 ) ) ).
% Diff_eq_empty_iff
thf(fact_5247_Diff__eq__empty__iff,axiom,
! [A2: set_nat,B2: set_nat] :
( ( ( minus_minus_set_nat @ A2 @ B2 )
= bot_bot_set_nat )
= ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).
% Diff_eq_empty_iff
thf(fact_5248_Diff__eq__empty__iff,axiom,
! [A2: set_int,B2: set_int] :
( ( ( minus_minus_set_int @ A2 @ B2 )
= bot_bot_set_int )
= ( ord_less_eq_set_int @ A2 @ B2 ) ) ).
% Diff_eq_empty_iff
thf(fact_5249_atLeastAtMost__iff,axiom,
! [I: set_nat,L: set_nat,U: set_nat] :
( ( member_set_nat @ I @ ( set_or4548717258645045905et_nat @ L @ U ) )
= ( ( ord_less_eq_set_nat @ L @ I )
& ( ord_less_eq_set_nat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_5250_atLeastAtMost__iff,axiom,
! [I: set_int,L: set_int,U: set_int] :
( ( member_set_int @ I @ ( set_or370866239135849197et_int @ L @ U ) )
= ( ( ord_less_eq_set_int @ L @ I )
& ( ord_less_eq_set_int @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_5251_atLeastAtMost__iff,axiom,
! [I: rat,L: rat,U: rat] :
( ( member_rat @ I @ ( set_or633870826150836451st_rat @ L @ U ) )
= ( ( ord_less_eq_rat @ L @ I )
& ( ord_less_eq_rat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_5252_atLeastAtMost__iff,axiom,
! [I: num,L: num,U: num] :
( ( member_num @ I @ ( set_or7049704709247886629st_num @ L @ U ) )
= ( ( ord_less_eq_num @ L @ I )
& ( ord_less_eq_num @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_5253_atLeastAtMost__iff,axiom,
! [I: nat,L: nat,U: nat] :
( ( member_nat @ I @ ( set_or1269000886237332187st_nat @ L @ U ) )
= ( ( ord_less_eq_nat @ L @ I )
& ( ord_less_eq_nat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_5254_atLeastAtMost__iff,axiom,
! [I: int,L: int,U: int] :
( ( member_int @ I @ ( set_or1266510415728281911st_int @ L @ U ) )
= ( ( ord_less_eq_int @ L @ I )
& ( ord_less_eq_int @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_5255_atLeastAtMost__iff,axiom,
! [I: real,L: real,U: real] :
( ( member_real @ I @ ( set_or1222579329274155063t_real @ L @ U ) )
= ( ( ord_less_eq_real @ L @ I )
& ( ord_less_eq_real @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_5256_Icc__eq__Icc,axiom,
! [L: set_int,H2: set_int,L3: set_int,H3: set_int] :
( ( ( set_or370866239135849197et_int @ L @ H2 )
= ( set_or370866239135849197et_int @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_set_int @ L @ H2 )
& ~ ( ord_less_eq_set_int @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_5257_Icc__eq__Icc,axiom,
! [L: rat,H2: rat,L3: rat,H3: rat] :
( ( ( set_or633870826150836451st_rat @ L @ H2 )
= ( set_or633870826150836451st_rat @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_rat @ L @ H2 )
& ~ ( ord_less_eq_rat @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_5258_Icc__eq__Icc,axiom,
! [L: num,H2: num,L3: num,H3: num] :
( ( ( set_or7049704709247886629st_num @ L @ H2 )
= ( set_or7049704709247886629st_num @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_num @ L @ H2 )
& ~ ( ord_less_eq_num @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_5259_Icc__eq__Icc,axiom,
! [L: nat,H2: nat,L3: nat,H3: nat] :
( ( ( set_or1269000886237332187st_nat @ L @ H2 )
= ( set_or1269000886237332187st_nat @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_nat @ L @ H2 )
& ~ ( ord_less_eq_nat @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_5260_Icc__eq__Icc,axiom,
! [L: int,H2: int,L3: int,H3: int] :
( ( ( set_or1266510415728281911st_int @ L @ H2 )
= ( set_or1266510415728281911st_int @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_int @ L @ H2 )
& ~ ( ord_less_eq_int @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_5261_Icc__eq__Icc,axiom,
! [L: real,H2: real,L3: real,H3: real] :
( ( ( set_or1222579329274155063t_real @ L @ H2 )
= ( set_or1222579329274155063t_real @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_real @ L @ H2 )
& ~ ( ord_less_eq_real @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_5262_ln__inj__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ( ln_ln_real @ X3 )
= ( ln_ln_real @ Y ) )
= ( X3 = Y ) ) ) ) ).
% ln_inj_iff
thf(fact_5263_ln__less__cancel__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ) ) ).
% ln_less_cancel_iff
thf(fact_5264_finite__atLeastAtMost,axiom,
! [L: nat,U: nat] : ( finite_finite_nat @ ( set_or1269000886237332187st_nat @ L @ U ) ) ).
% finite_atLeastAtMost
thf(fact_5265_atLeastatMost__empty__iff,axiom,
! [A: set_int,B: set_int] :
( ( ( set_or370866239135849197et_int @ A @ B )
= bot_bot_set_set_int )
= ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_5266_atLeastatMost__empty__iff,axiom,
! [A: rat,B: rat] :
( ( ( set_or633870826150836451st_rat @ A @ B )
= bot_bot_set_rat )
= ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_5267_atLeastatMost__empty__iff,axiom,
! [A: num,B: num] :
( ( ( set_or7049704709247886629st_num @ A @ B )
= bot_bot_set_num )
= ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_5268_atLeastatMost__empty__iff,axiom,
! [A: nat,B: nat] :
( ( ( set_or1269000886237332187st_nat @ A @ B )
= bot_bot_set_nat )
= ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_5269_atLeastatMost__empty__iff,axiom,
! [A: int,B: int] :
( ( ( set_or1266510415728281911st_int @ A @ B )
= bot_bot_set_int )
= ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_5270_atLeastatMost__empty__iff,axiom,
! [A: real,B: real] :
( ( ( set_or1222579329274155063t_real @ A @ B )
= bot_bot_set_real )
= ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_5271_atLeastatMost__empty__iff2,axiom,
! [A: set_int,B: set_int] :
( ( bot_bot_set_set_int
= ( set_or370866239135849197et_int @ A @ B ) )
= ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_5272_atLeastatMost__empty__iff2,axiom,
! [A: rat,B: rat] :
( ( bot_bot_set_rat
= ( set_or633870826150836451st_rat @ A @ B ) )
= ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_5273_atLeastatMost__empty__iff2,axiom,
! [A: num,B: num] :
( ( bot_bot_set_num
= ( set_or7049704709247886629st_num @ A @ B ) )
= ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_5274_atLeastatMost__empty__iff2,axiom,
! [A: nat,B: nat] :
( ( bot_bot_set_nat
= ( set_or1269000886237332187st_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_5275_atLeastatMost__empty__iff2,axiom,
! [A: int,B: int] :
( ( bot_bot_set_int
= ( set_or1266510415728281911st_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_5276_atLeastatMost__empty__iff2,axiom,
! [A: real,B: real] :
( ( bot_bot_set_real
= ( set_or1222579329274155063t_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_5277_atLeastatMost__subset__iff,axiom,
! [A: set_int,B: set_int,C: set_int,D: set_int] :
( ( ord_le4403425263959731960et_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
= ( ~ ( ord_less_eq_set_int @ A @ B )
| ( ( ord_less_eq_set_int @ C @ A )
& ( ord_less_eq_set_int @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_5278_atLeastatMost__subset__iff,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
= ( ~ ( ord_less_eq_rat @ A @ B )
| ( ( ord_less_eq_rat @ C @ A )
& ( ord_less_eq_rat @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_5279_atLeastatMost__subset__iff,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_5280_atLeastatMost__subset__iff,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_5281_atLeastatMost__subset__iff,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_5282_atLeastatMost__subset__iff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_5283_atLeastatMost__empty,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( set_or633870826150836451st_rat @ A @ B )
= bot_bot_set_rat ) ) ).
% atLeastatMost_empty
thf(fact_5284_atLeastatMost__empty,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ( set_or7049704709247886629st_num @ A @ B )
= bot_bot_set_num ) ) ).
% atLeastatMost_empty
thf(fact_5285_atLeastatMost__empty,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( set_or1269000886237332187st_nat @ A @ B )
= bot_bot_set_nat ) ) ).
% atLeastatMost_empty
thf(fact_5286_atLeastatMost__empty,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ( set_or1266510415728281911st_int @ A @ B )
= bot_bot_set_int ) ) ).
% atLeastatMost_empty
thf(fact_5287_atLeastatMost__empty,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ( set_or1222579329274155063t_real @ A @ B )
= bot_bot_set_real ) ) ).
% atLeastatMost_empty
thf(fact_5288_infinite__Icc__iff,axiom,
! [A: rat,B: rat] :
( ( ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) )
= ( ord_less_rat @ A @ B ) ) ).
% infinite_Icc_iff
thf(fact_5289_infinite__Icc__iff,axiom,
! [A: real,B: real] :
( ( ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) )
= ( ord_less_real @ A @ B ) ) ).
% infinite_Icc_iff
thf(fact_5290_ln__le__cancel__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y ) )
= ( ord_less_eq_real @ X3 @ Y ) ) ) ) ).
% ln_le_cancel_iff
thf(fact_5291_ln__less__zero__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ ( ln_ln_real @ X3 ) @ zero_zero_real )
= ( ord_less_real @ X3 @ one_one_real ) ) ) ).
% ln_less_zero_iff
thf(fact_5292_ln__gt__zero__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
= ( ord_less_real @ one_one_real @ X3 ) ) ) ).
% ln_gt_zero_iff
thf(fact_5293_ln__eq__zero__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ( ln_ln_real @ X3 )
= zero_zero_real )
= ( X3 = one_one_real ) ) ) ).
% ln_eq_zero_iff
thf(fact_5294_ln__one,axiom,
( ( ln_ln_real @ one_one_real )
= zero_zero_real ) ).
% ln_one
thf(fact_5295_zle__diff1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z2 @ one_one_int ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% zle_diff1_eq
thf(fact_5296_ln__le__zero__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ zero_zero_real )
= ( ord_less_eq_real @ X3 @ one_one_real ) ) ) ).
% ln_le_zero_iff
thf(fact_5297_ln__ge__zero__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
= ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ).
% ln_ge_zero_iff
thf(fact_5298_ln__div,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ln_ln_real @ ( divide_divide_real @ X3 @ Y ) )
= ( minus_minus_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y ) ) ) ) ) ).
% ln_div
thf(fact_5299_Diff__infinite__finite,axiom,
! [T3: set_int,S2: set_int] :
( ( finite_finite_int @ T3 )
=> ( ~ ( finite_finite_int @ S2 )
=> ~ ( finite_finite_int @ ( minus_minus_set_int @ S2 @ T3 ) ) ) ) ).
% Diff_infinite_finite
thf(fact_5300_Diff__infinite__finite,axiom,
! [T3: set_complex,S2: set_complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ~ ( finite3207457112153483333omplex @ S2 )
=> ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ S2 @ T3 ) ) ) ) ).
% Diff_infinite_finite
thf(fact_5301_Diff__infinite__finite,axiom,
! [T3: set_nat,S2: set_nat] :
( ( finite_finite_nat @ T3 )
=> ( ~ ( finite_finite_nat @ S2 )
=> ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S2 @ T3 ) ) ) ) ).
% Diff_infinite_finite
thf(fact_5302_double__diff,axiom,
! [A2: set_nat,B2: set_nat,C4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( ord_less_eq_set_nat @ B2 @ C4 )
=> ( ( minus_minus_set_nat @ B2 @ ( minus_minus_set_nat @ C4 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_5303_double__diff,axiom,
! [A2: set_int,B2: set_int,C4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ C4 )
=> ( ( minus_minus_set_int @ B2 @ ( minus_minus_set_int @ C4 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_5304_Diff__subset,axiom,
! [A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ A2 ) ).
% Diff_subset
thf(fact_5305_Diff__subset,axiom,
! [A2: set_int,B2: set_int] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B2 ) @ A2 ) ).
% Diff_subset
thf(fact_5306_Diff__mono,axiom,
! [A2: set_nat,C4: set_nat,D6: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ C4 )
=> ( ( ord_less_eq_set_nat @ D6 @ B2 )
=> ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ ( minus_minus_set_nat @ C4 @ D6 ) ) ) ) ).
% Diff_mono
thf(fact_5307_Diff__mono,axiom,
! [A2: set_int,C4: set_int,D6: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ C4 )
=> ( ( ord_less_eq_set_int @ D6 @ B2 )
=> ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B2 ) @ ( minus_minus_set_int @ C4 @ D6 ) ) ) ) ).
% Diff_mono
thf(fact_5308_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_5309_ln__one__minus__pos__upper__bound,axiom,
! [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X3 ) ) @ ( uminus_uminus_real @ X3 ) ) ) ) ).
% ln_one_minus_pos_upper_bound
thf(fact_5310_int__distrib_I4_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_5311_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W2 )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(3)
thf(fact_5312_psubset__imp__ex__mem,axiom,
! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( ord_le3480810397992357184T_VEBT @ A2 @ B2 )
=> ? [B4: vEBT_VEBT] : ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_5313_psubset__imp__ex__mem,axiom,
! [A2: set_int,B2: set_int] :
( ( ord_less_set_int @ A2 @ B2 )
=> ? [B4: int] : ( member_int @ B4 @ ( minus_minus_set_int @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_5314_psubset__imp__ex__mem,axiom,
! [A2: set_set_nat,B2: set_set_nat] :
( ( ord_less_set_set_nat @ A2 @ B2 )
=> ? [B4: set_nat] : ( member_set_nat @ B4 @ ( minus_2163939370556025621et_nat @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_5315_psubset__imp__ex__mem,axiom,
! [A2: set_real,B2: set_real] :
( ( ord_less_set_real @ A2 @ B2 )
=> ? [B4: real] : ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_5316_psubset__imp__ex__mem,axiom,
! [A2: set_nat,B2: set_nat] :
( ( ord_less_set_nat @ A2 @ B2 )
=> ? [B4: nat] : ( member_nat @ B4 @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_5317_zdvd__zdiffD,axiom,
! [K: int,M: int,N2: int] :
( ( dvd_dvd_int @ K @ ( minus_minus_int @ M @ N2 ) )
=> ( ( dvd_dvd_int @ K @ N2 )
=> ( dvd_dvd_int @ K @ M ) ) ) ).
% zdvd_zdiffD
thf(fact_5318_ln__diff__le,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y ) ) @ ( divide_divide_real @ ( minus_minus_real @ X3 @ Y ) @ Y ) ) ) ) ).
% ln_diff_le
thf(fact_5319_ln__eq__minus__one,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ( ln_ln_real @ X3 )
= ( minus_minus_real @ X3 @ one_one_real ) )
=> ( X3 = one_one_real ) ) ) ).
% ln_eq_minus_one
thf(fact_5320_ln__add__one__self__le__self2,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X3 ) ) @ X3 ) ) ).
% ln_add_one_self_le_self2
thf(fact_5321_ln__le__minus__one,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ ( minus_minus_real @ X3 @ one_one_real ) ) ) ).
% ln_le_minus_one
thf(fact_5322_infinite__Icc,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) ) ).
% infinite_Icc
thf(fact_5323_infinite__Icc,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).
% infinite_Icc
thf(fact_5324_ln__less__self,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_real @ ( ln_ln_real @ X3 ) @ X3 ) ) ).
% ln_less_self
thf(fact_5325_ex__nat__less,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [M3: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
& ( P @ M3 ) ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
& ( P @ X2 ) ) ) ) ).
% ex_nat_less
thf(fact_5326_all__nat__less,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [M3: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( P @ M3 ) ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
=> ( P @ X2 ) ) ) ) ).
% all_nat_less
thf(fact_5327_subset__Compl__self__eq,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( uminus612125837232591019t_real @ A2 ) )
= ( A2 = bot_bot_set_real ) ) ).
% subset_Compl_self_eq
thf(fact_5328_subset__Compl__self__eq,axiom,
! [A2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ ( uminus5710092332889474511et_nat @ A2 ) )
= ( A2 = bot_bot_set_nat ) ) ).
% subset_Compl_self_eq
thf(fact_5329_subset__Compl__self__eq,axiom,
! [A2: set_int] :
( ( ord_less_eq_set_int @ A2 @ ( uminus1532241313380277803et_int @ A2 ) )
= ( A2 = bot_bot_set_int ) ) ).
% subset_Compl_self_eq
thf(fact_5330_real__add__less__0__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X3 @ Y ) @ zero_zero_real )
= ( ord_less_real @ Y @ ( uminus_uminus_real @ X3 ) ) ) ).
% real_add_less_0_iff
thf(fact_5331_real__0__less__add__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X3 @ Y ) )
= ( ord_less_real @ ( uminus_uminus_real @ X3 ) @ Y ) ) ).
% real_0_less_add_iff
thf(fact_5332_subset__eq__atLeast0__atMost__finite,axiom,
! [N5: set_nat,N2: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_atMost_finite
thf(fact_5333_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus_int @ zero_zero_int @ L )
= ( uminus_uminus_int @ L ) ) ).
% minus_int_code(2)
thf(fact_5334_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_5335_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_5336_ln__bound,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ X3 ) ) ).
% ln_bound
thf(fact_5337_ln__gt__zero__imp__gt__one,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_real @ one_one_real @ X3 ) ) ) ).
% ln_gt_zero_imp_gt_one
thf(fact_5338_ln__less__zero,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( ord_less_real @ ( ln_ln_real @ X3 ) @ zero_zero_real ) ) ) ).
% ln_less_zero
thf(fact_5339_ln__gt__zero,axiom,
! [X3: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X3 ) ) ) ).
% ln_gt_zero
thf(fact_5340_ln__mult,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ln_ln_real @ ( times_times_real @ X3 @ Y ) )
= ( plus_plus_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y ) ) ) ) ) ).
% ln_mult
thf(fact_5341_atLeastatMost__psubset__iff,axiom,
! [A: set_int,B: set_int,C: set_int,D: set_int] :
( ( ord_less_set_set_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
= ( ( ~ ( ord_less_eq_set_int @ A @ B )
| ( ( ord_less_eq_set_int @ C @ A )
& ( ord_less_eq_set_int @ B @ D )
& ( ( ord_less_set_int @ C @ A )
| ( ord_less_set_int @ B @ D ) ) ) )
& ( ord_less_eq_set_int @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_5342_atLeastatMost__psubset__iff,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
= ( ( ~ ( ord_less_eq_rat @ A @ B )
| ( ( ord_less_eq_rat @ C @ A )
& ( ord_less_eq_rat @ B @ D )
& ( ( ord_less_rat @ C @ A )
| ( ord_less_rat @ B @ D ) ) ) )
& ( ord_less_eq_rat @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_5343_atLeastatMost__psubset__iff,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
= ( ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D )
& ( ( ord_less_num @ C @ A )
| ( ord_less_num @ B @ D ) ) ) )
& ( ord_less_eq_num @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_5344_atLeastatMost__psubset__iff,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
= ( ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D )
& ( ( ord_less_nat @ C @ A )
| ( ord_less_nat @ B @ D ) ) ) )
& ( ord_less_eq_nat @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_5345_atLeastatMost__psubset__iff,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
= ( ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D )
& ( ( ord_less_int @ C @ A )
| ( ord_less_int @ B @ D ) ) ) )
& ( ord_less_eq_int @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_5346_atLeastatMost__psubset__iff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
= ( ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D )
& ( ( ord_less_real @ C @ A )
| ( ord_less_real @ B @ D ) ) ) )
& ( ord_less_eq_real @ C @ D ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_5347_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int,K3: int] :
( ( P1 @ X4 )
= ( P1 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P1 @ X4 ) ) )
=> ( ? [X_12: int] : ( P1 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% minusinfinity
thf(fact_5348_plusinfinity,axiom,
! [D: int,P4: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int,K3: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [X_12: int] : ( P4 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% plusinfinity
thf(fact_5349_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_5350_ln__ge__zero__imp__ge__one,axiom,
! [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ).
% ln_ge_zero_imp_ge_one
thf(fact_5351_decr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X: int] :
( ( P @ X )
=> ( P @ ( minus_minus_int @ X @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_5352_mod__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ L @ K )
=> ( ( modulo_modulo_int @ K @ L )
= ( modulo_modulo_int @ ( minus_minus_int @ K @ L ) @ L ) ) ) ) ).
% mod_pos_geq
thf(fact_5353_zmod__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( minus_minus_int @ B @ one_one_int ) ) ) ).
% zmod_minus1
thf(fact_5354_div__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).
% div_pos_geq
thf(fact_5355_compl__le__swap2,axiom,
! [Y: set_int,X3: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y ) @ X3 )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X3 ) @ Y ) ) ).
% compl_le_swap2
thf(fact_5356_compl__le__swap1,axiom,
! [Y: set_int,X3: set_int] :
( ( ord_less_eq_set_int @ Y @ ( uminus1532241313380277803et_int @ X3 ) )
=> ( ord_less_eq_set_int @ X3 @ ( uminus1532241313380277803et_int @ Y ) ) ) ).
% compl_le_swap1
thf(fact_5357_compl__mono,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y ) @ ( uminus1532241313380277803et_int @ X3 ) ) ) ).
% compl_mono
thf(fact_5358_list__decode_Ocases,axiom,
! [X3: nat] :
( ( X3 != zero_zero_nat )
=> ~ ! [N3: nat] :
( X3
!= ( suc @ N3 ) ) ) ).
% list_decode.cases
thf(fact_5359_diff__shunt__var,axiom,
! [X3: set_real,Y: set_real] :
( ( ( minus_minus_set_real @ X3 @ Y )
= bot_bot_set_real )
= ( ord_less_eq_set_real @ X3 @ Y ) ) ).
% diff_shunt_var
thf(fact_5360_diff__shunt__var,axiom,
! [X3: set_nat,Y: set_nat] :
( ( ( minus_minus_set_nat @ X3 @ Y )
= bot_bot_set_nat )
= ( ord_less_eq_set_nat @ X3 @ Y ) ) ).
% diff_shunt_var
thf(fact_5361_diff__shunt__var,axiom,
! [X3: set_int,Y: set_int] :
( ( ( minus_minus_set_int @ X3 @ Y )
= bot_bot_set_int )
= ( ord_less_eq_set_int @ X3 @ Y ) ) ).
% diff_shunt_var
thf(fact_5362_ln__2__less__1,axiom,
ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).
% ln_2_less_1
thf(fact_5363_of__int__code__if,axiom,
( ring_17405671764205052669omplex
= ( ^ [K2: int] :
( if_complex @ ( K2 = zero_zero_int ) @ zero_zero_complex
@ ( if_complex @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_complex
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_complex ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5364_of__int__code__if,axiom,
( ring_1_of_int_int
= ( ^ [K2: int] :
( if_int @ ( K2 = zero_zero_int ) @ zero_zero_int
@ ( if_int @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_int @ ( ring_1_of_int_int @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_int
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_int ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5365_of__int__code__if,axiom,
( ring_1_of_int_real
= ( ^ [K2: int] :
( if_real @ ( K2 = zero_zero_int ) @ zero_zero_real
@ ( if_real @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_real @ ( ring_1_of_int_real @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_real
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_real ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5366_of__int__code__if,axiom,
( ring_1_of_int_rat
= ( ^ [K2: int] :
( if_rat @ ( K2 = zero_zero_int ) @ zero_zero_rat
@ ( if_rat @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_rat
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_rat ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5367_of__int__code__if,axiom,
( ring_18347121197199848620nteger
= ( ^ [K2: int] :
( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
@ ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_Code_integer
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5368_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A4: real,B4: real,C3: real] :
( ( P @ A4 @ B4 )
=> ( ( P @ B4 @ C3 )
=> ( ( ord_less_eq_real @ A4 @ B4 )
=> ( ( ord_less_eq_real @ B4 @ C3 )
=> ( P @ A4 @ C3 ) ) ) ) )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [A4: real,B4: real] :
( ( ( ord_less_eq_real @ A4 @ X4 )
& ( ord_less_eq_real @ X4 @ B4 )
& ( ord_less_real @ ( minus_minus_real @ B4 @ A4 ) @ D3 ) )
=> ( P @ A4 @ B4 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_5369_set__decode__0,axiom,
! [X3: nat] :
( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X3 ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X3 ) ) ) ).
% set_decode_0
thf(fact_5370_divmod__step__def,axiom,
( unique4921790084139445826nteger
= ( ^ [L2: num] :
( produc6916734918728496179nteger
@ ^ [Q5: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L2 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).
% divmod_step_def
thf(fact_5371_divmod__step__def,axiom,
( unique5024387138958732305ep_int
= ( ^ [L2: num] :
( produc4245557441103728435nt_int
@ ^ [Q5: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L2 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).
% divmod_step_def
thf(fact_5372_divmod__step__def,axiom,
( unique5026877609467782581ep_nat
= ( ^ [L2: num] :
( produc2626176000494625587at_nat
@ ^ [Q5: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).
% divmod_step_def
thf(fact_5373_even__set__encode__iff,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
= ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).
% even_set_encode_iff
thf(fact_5374_Diff__idemp,axiom,
! [A2: set_nat,B2: set_nat] :
( ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ B2 )
= ( minus_minus_set_nat @ A2 @ B2 ) ) ).
% Diff_idemp
thf(fact_5375_Diff__iff,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
= ( ( member_VEBT_VEBT @ C @ A2 )
& ~ ( member_VEBT_VEBT @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_5376_Diff__iff,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( ( member_int @ C @ A2 )
& ~ ( member_int @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_5377_Diff__iff,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
= ( ( member_set_nat @ C @ A2 )
& ~ ( member_set_nat @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_5378_Diff__iff,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
= ( ( member_real @ C @ A2 )
& ~ ( member_real @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_5379_Diff__iff,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( ( member_nat @ C @ A2 )
& ~ ( member_nat @ C @ B2 ) ) ) ).
% Diff_iff
thf(fact_5380_DiffI,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ C @ A2 )
=> ( ~ ( member_VEBT_VEBT @ C @ B2 )
=> ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_5381_DiffI,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ A2 )
=> ( ~ ( member_int @ C @ B2 )
=> ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_5382_DiffI,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ A2 )
=> ( ~ ( member_set_nat @ C @ B2 )
=> ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_5383_DiffI,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ A2 )
=> ( ~ ( member_real @ C @ B2 )
=> ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_5384_DiffI,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ A2 )
=> ( ~ ( member_nat @ C @ B2 )
=> ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_5385_of__int__eq__iff,axiom,
! [W2: int,Z2: int] :
( ( ( ring_1_of_int_real @ W2 )
= ( ring_1_of_int_real @ Z2 ) )
= ( W2 = Z2 ) ) ).
% of_int_eq_iff
thf(fact_5386_of__int__eq__iff,axiom,
! [W2: int,Z2: int] :
( ( ( ring_1_of_int_rat @ W2 )
= ( ring_1_of_int_rat @ Z2 ) )
= ( W2 = Z2 ) ) ).
% of_int_eq_iff
thf(fact_5387_Compl__iff,axiom,
! [C: nat,A2: set_nat] :
( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
= ( ~ ( member_nat @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_5388_Compl__iff,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ C @ ( uminus8041839845116263051T_VEBT @ A2 ) )
= ( ~ ( member_VEBT_VEBT @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_5389_Compl__iff,axiom,
! [C: int,A2: set_int] :
( ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) )
= ( ~ ( member_int @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_5390_Compl__iff,axiom,
! [C: set_nat,A2: set_set_nat] :
( ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) )
= ( ~ ( member_set_nat @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_5391_Compl__iff,axiom,
! [C: real,A2: set_real] :
( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
= ( ~ ( member_real @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_5392_ComplI,axiom,
! [C: nat,A2: set_nat] :
( ~ ( member_nat @ C @ A2 )
=> ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) ) ) ).
% ComplI
thf(fact_5393_ComplI,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ~ ( member_VEBT_VEBT @ C @ A2 )
=> ( member_VEBT_VEBT @ C @ ( uminus8041839845116263051T_VEBT @ A2 ) ) ) ).
% ComplI
thf(fact_5394_ComplI,axiom,
! [C: int,A2: set_int] :
( ~ ( member_int @ C @ A2 )
=> ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).
% ComplI
thf(fact_5395_ComplI,axiom,
! [C: set_nat,A2: set_set_nat] :
( ~ ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) ) ) ).
% ComplI
thf(fact_5396_ComplI,axiom,
! [C: real,A2: set_real] :
( ~ ( member_real @ C @ A2 )
=> ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) ) ) ).
% ComplI
thf(fact_5397_finite__atLeastAtMost__int,axiom,
! [L: int,U: int] : ( finite_finite_int @ ( set_or1266510415728281911st_int @ L @ U ) ) ).
% finite_atLeastAtMost_int
thf(fact_5398_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_1_of_int_real @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% of_int_of_bool
thf(fact_5399_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_1_of_int_rat @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2052037380579107095ol_rat @ P ) ) ).
% of_int_of_bool
thf(fact_5400_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_1_of_int_int @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% of_int_of_bool
thf(fact_5401_of__int__0,axiom,
( ( ring_17405671764205052669omplex @ zero_zero_int )
= zero_zero_complex ) ).
% of_int_0
thf(fact_5402_of__int__0,axiom,
( ( ring_1_of_int_int @ zero_zero_int )
= zero_zero_int ) ).
% of_int_0
thf(fact_5403_of__int__0,axiom,
( ( ring_1_of_int_real @ zero_zero_int )
= zero_zero_real ) ).
% of_int_0
thf(fact_5404_of__int__0,axiom,
( ( ring_1_of_int_rat @ zero_zero_int )
= zero_zero_rat ) ).
% of_int_0
thf(fact_5405_of__int__0__eq__iff,axiom,
! [Z2: int] :
( ( zero_zero_complex
= ( ring_17405671764205052669omplex @ Z2 ) )
= ( Z2 = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_5406_of__int__0__eq__iff,axiom,
! [Z2: int] :
( ( zero_zero_int
= ( ring_1_of_int_int @ Z2 ) )
= ( Z2 = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_5407_of__int__0__eq__iff,axiom,
! [Z2: int] :
( ( zero_zero_real
= ( ring_1_of_int_real @ Z2 ) )
= ( Z2 = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_5408_of__int__0__eq__iff,axiom,
! [Z2: int] :
( ( zero_zero_rat
= ( ring_1_of_int_rat @ Z2 ) )
= ( Z2 = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_5409_of__int__eq__0__iff,axiom,
! [Z2: int] :
( ( ( ring_17405671764205052669omplex @ Z2 )
= zero_zero_complex )
= ( Z2 = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_5410_of__int__eq__0__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_int @ Z2 )
= zero_zero_int )
= ( Z2 = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_5411_of__int__eq__0__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_real @ Z2 )
= zero_zero_real )
= ( Z2 = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_5412_of__int__eq__0__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_rat @ Z2 )
= zero_zero_rat )
= ( Z2 = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_5413_of__int__le__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ W2 ) @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% of_int_le_iff
thf(fact_5414_of__int__le__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W2 ) @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% of_int_le_iff
thf(fact_5415_of__int__le__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ W2 ) @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% of_int_le_iff
thf(fact_5416_of__int__eq__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ( ring_1_of_int_rat @ Z2 )
= ( numeral_numeral_rat @ N2 ) )
= ( Z2
= ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_5417_of__int__eq__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ( ring_1_of_int_int @ Z2 )
= ( numeral_numeral_int @ N2 ) )
= ( Z2
= ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_5418_of__int__eq__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ( ring_1_of_int_real @ Z2 )
= ( numeral_numeral_real @ N2 ) )
= ( Z2
= ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_5419_of__int__eq__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ( ring_18347121197199848620nteger @ Z2 )
= ( numera6620942414471956472nteger @ N2 ) )
= ( Z2
= ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_5420_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_rat @ K ) ) ).
% of_int_numeral
thf(fact_5421_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ K ) ) ).
% of_int_numeral
thf(fact_5422_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_real @ K ) ) ).
% of_int_numeral
thf(fact_5423_of__int__numeral,axiom,
! [K: num] :
( ( ring_18347121197199848620nteger @ ( numeral_numeral_int @ K ) )
= ( numera6620942414471956472nteger @ K ) ) ).
% of_int_numeral
thf(fact_5424_of__int__less__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ W2 ) @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% of_int_less_iff
thf(fact_5425_of__int__less__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ W2 ) @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% of_int_less_iff
thf(fact_5426_of__int__less__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ W2 ) @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% of_int_less_iff
thf(fact_5427_of__int__eq__1__iff,axiom,
! [Z2: int] :
( ( ( ring_17405671764205052669omplex @ Z2 )
= one_one_complex )
= ( Z2 = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_5428_of__int__eq__1__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_int @ Z2 )
= one_one_int )
= ( Z2 = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_5429_of__int__eq__1__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_real @ Z2 )
= one_one_real )
= ( Z2 = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_5430_of__int__eq__1__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_rat @ Z2 )
= one_one_rat )
= ( Z2 = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_5431_of__int__1,axiom,
( ( ring_17405671764205052669omplex @ one_one_int )
= one_one_complex ) ).
% of_int_1
thf(fact_5432_of__int__1,axiom,
( ( ring_1_of_int_int @ one_one_int )
= one_one_int ) ).
% of_int_1
thf(fact_5433_of__int__1,axiom,
( ( ring_1_of_int_real @ one_one_int )
= one_one_real ) ).
% of_int_1
thf(fact_5434_of__int__1,axiom,
( ( ring_1_of_int_rat @ one_one_int )
= one_one_rat ) ).
% of_int_1
thf(fact_5435_of__int__mult,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_real @ ( times_times_int @ W2 @ Z2 ) )
= ( times_times_real @ ( ring_1_of_int_real @ W2 ) @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_mult
thf(fact_5436_of__int__mult,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_rat @ ( times_times_int @ W2 @ Z2 ) )
= ( times_times_rat @ ( ring_1_of_int_rat @ W2 ) @ ( ring_1_of_int_rat @ Z2 ) ) ) ).
% of_int_mult
thf(fact_5437_of__int__mult,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_int @ ( times_times_int @ W2 @ Z2 ) )
= ( times_times_int @ ( ring_1_of_int_int @ W2 ) @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_mult
thf(fact_5438_of__int__add,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_int @ ( plus_plus_int @ W2 @ Z2 ) )
= ( plus_plus_int @ ( ring_1_of_int_int @ W2 ) @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_add
thf(fact_5439_of__int__add,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_real @ ( plus_plus_int @ W2 @ Z2 ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ W2 ) @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_add
thf(fact_5440_of__int__add,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_rat @ ( plus_plus_int @ W2 @ Z2 ) )
= ( plus_plus_rat @ ( ring_1_of_int_rat @ W2 ) @ ( ring_1_of_int_rat @ Z2 ) ) ) ).
% of_int_add
thf(fact_5441_of__int__minus,axiom,
! [Z2: int] :
( ( ring_1_of_int_int @ ( uminus_uminus_int @ Z2 ) )
= ( uminus_uminus_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_minus
thf(fact_5442_of__int__minus,axiom,
! [Z2: int] :
( ( ring_1_of_int_real @ ( uminus_uminus_int @ Z2 ) )
= ( uminus_uminus_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_minus
thf(fact_5443_of__int__minus,axiom,
! [Z2: int] :
( ( ring_1_of_int_rat @ ( uminus_uminus_int @ Z2 ) )
= ( uminus_uminus_rat @ ( ring_1_of_int_rat @ Z2 ) ) ) ).
% of_int_minus
thf(fact_5444_of__int__minus,axiom,
! [Z2: int] :
( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ Z2 ) )
= ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ Z2 ) ) ) ).
% of_int_minus
thf(fact_5445_of__int__diff,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_real @ ( minus_minus_int @ W2 @ Z2 ) )
= ( minus_minus_real @ ( ring_1_of_int_real @ W2 ) @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_diff
thf(fact_5446_of__int__diff,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_rat @ ( minus_minus_int @ W2 @ Z2 ) )
= ( minus_minus_rat @ ( ring_1_of_int_rat @ W2 ) @ ( ring_1_of_int_rat @ Z2 ) ) ) ).
% of_int_diff
thf(fact_5447_of__int__diff,axiom,
! [W2: int,Z2: int] :
( ( ring_1_of_int_int @ ( minus_minus_int @ W2 @ Z2 ) )
= ( minus_minus_int @ ( ring_1_of_int_int @ W2 ) @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_diff
thf(fact_5448_of__int__power__eq__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ( ring_1_of_int_rat @ X3 )
= ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W2 ) )
= ( X3
= ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_5449_of__int__power__eq__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ( ring_1_of_int_real @ X3 )
= ( power_power_real @ ( ring_1_of_int_real @ B ) @ W2 ) )
= ( X3
= ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_5450_of__int__power__eq__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ( ring_1_of_int_int @ X3 )
= ( power_power_int @ ( ring_1_of_int_int @ B ) @ W2 ) )
= ( X3
= ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_5451_of__int__power__eq__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ( ring_17405671764205052669omplex @ X3 )
= ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W2 ) )
= ( X3
= ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_5452_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W2 )
= ( ring_1_of_int_rat @ X3 ) )
= ( ( power_power_int @ B @ W2 )
= X3 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_5453_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W2 )
= ( ring_1_of_int_real @ X3 ) )
= ( ( power_power_int @ B @ W2 )
= X3 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_5454_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W2 )
= ( ring_1_of_int_int @ X3 ) )
= ( ( power_power_int @ B @ W2 )
= X3 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_5455_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W2 )
= ( ring_17405671764205052669omplex @ X3 ) )
= ( ( power_power_int @ B @ W2 )
= X3 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_5456_of__int__power,axiom,
! [Z2: int,N2: nat] :
( ( ring_1_of_int_rat @ ( power_power_int @ Z2 @ N2 ) )
= ( power_power_rat @ ( ring_1_of_int_rat @ Z2 ) @ N2 ) ) ).
% of_int_power
thf(fact_5457_of__int__power,axiom,
! [Z2: int,N2: nat] :
( ( ring_1_of_int_real @ ( power_power_int @ Z2 @ N2 ) )
= ( power_power_real @ ( ring_1_of_int_real @ Z2 ) @ N2 ) ) ).
% of_int_power
thf(fact_5458_of__int__power,axiom,
! [Z2: int,N2: nat] :
( ( ring_1_of_int_int @ ( power_power_int @ Z2 @ N2 ) )
= ( power_power_int @ ( ring_1_of_int_int @ Z2 ) @ N2 ) ) ).
% of_int_power
thf(fact_5459_of__int__power,axiom,
! [Z2: int,N2: nat] :
( ( ring_17405671764205052669omplex @ ( power_power_int @ Z2 @ N2 ) )
= ( power_power_complex @ ( ring_17405671764205052669omplex @ Z2 ) @ N2 ) ) ).
% of_int_power
thf(fact_5460_set__decode__zero,axiom,
( ( nat_set_decode @ zero_zero_nat )
= bot_bot_set_nat ) ).
% set_decode_zero
thf(fact_5461_set__encode__empty,axiom,
( ( nat_set_encode @ bot_bot_set_nat )
= zero_zero_nat ) ).
% set_encode_empty
thf(fact_5462_set__encode__inverse,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( nat_set_decode @ ( nat_set_encode @ A2 ) )
= A2 ) ) ).
% set_encode_inverse
thf(fact_5463_of__int__0__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_le_iff
thf(fact_5464_of__int__0__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_le_iff
thf(fact_5465_of__int__0__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_le_iff
thf(fact_5466_of__int__le__0__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
= ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_5467_of__int__le__0__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ zero_zero_rat )
= ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_5468_of__int__le__0__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
= ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_5469_of__int__0__less__iff,axiom,
! [Z2: int] :
( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_less_iff
thf(fact_5470_of__int__0__less__iff,axiom,
! [Z2: int] :
( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_less_iff
thf(fact_5471_of__int__0__less__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_less_iff
thf(fact_5472_of__int__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_5473_of__int__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z2 ) @ zero_zero_rat )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_5474_of__int__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_5475_of__int__le__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ ( numeral_numeral_real @ N2 ) )
= ( ord_less_eq_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_le_numeral_iff
thf(fact_5476_of__int__le__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ Z2 ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( ord_less_eq_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_le_numeral_iff
thf(fact_5477_of__int__le__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ ( numeral_numeral_rat @ N2 ) )
= ( ord_less_eq_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_le_numeral_iff
thf(fact_5478_of__int__le__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ ( numeral_numeral_int @ N2 ) )
= ( ord_less_eq_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_le_numeral_iff
thf(fact_5479_of__int__numeral__le__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_le_iff
thf(fact_5480_of__int__numeral__le__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( ring_18347121197199848620nteger @ Z2 ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_le_iff
thf(fact_5481_of__int__numeral__le__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_le_iff
thf(fact_5482_of__int__numeral__le__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_le_iff
thf(fact_5483_of__int__less__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z2 ) @ ( numeral_numeral_rat @ N2 ) )
= ( ord_less_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_less_numeral_iff
thf(fact_5484_of__int__less__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ ( numeral_numeral_int @ N2 ) )
= ( ord_less_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_less_numeral_iff
thf(fact_5485_of__int__less__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ ( numeral_numeral_real @ N2 ) )
= ( ord_less_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_less_numeral_iff
thf(fact_5486_of__int__less__numeral__iff,axiom,
! [Z2: int,N2: num] :
( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ Z2 ) @ ( numera6620942414471956472nteger @ N2 ) )
= ( ord_less_int @ Z2 @ ( numeral_numeral_int @ N2 ) ) ) ).
% of_int_less_numeral_iff
thf(fact_5487_of__int__numeral__less__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_less_iff
thf(fact_5488_of__int__numeral__less__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_less_iff
thf(fact_5489_of__int__numeral__less__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_less_iff
thf(fact_5490_of__int__numeral__less__iff,axiom,
! [N2: num,Z2: int] :
( ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( ring_18347121197199848620nteger @ Z2 ) )
= ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ Z2 ) ) ).
% of_int_numeral_less_iff
thf(fact_5491_of__int__le__1__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real )
= ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_5492_of__int__le__1__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat )
= ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_5493_of__int__le__1__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ one_one_int )
= ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_5494_of__int__1__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).
% of_int_1_le_iff
thf(fact_5495_of__int__1__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).
% of_int_1_le_iff
thf(fact_5496_of__int__1__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).
% of_int_1_le_iff
thf(fact_5497_of__int__less__1__iff,axiom,
! [Z2: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real )
= ( ord_less_int @ Z2 @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_5498_of__int__less__1__iff,axiom,
! [Z2: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat )
= ( ord_less_int @ Z2 @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_5499_of__int__less__1__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ one_one_int )
= ( ord_less_int @ Z2 @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_5500_of__int__1__less__iff,axiom,
! [Z2: int] :
( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_int @ one_one_int @ Z2 ) ) ).
% of_int_1_less_iff
thf(fact_5501_of__int__1__less__iff,axiom,
! [Z2: int] :
( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z2 ) )
= ( ord_less_int @ one_one_int @ Z2 ) ) ).
% of_int_1_less_iff
thf(fact_5502_of__int__1__less__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_int @ one_one_int @ Z2 ) ) ).
% of_int_1_less_iff
thf(fact_5503_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W2 ) @ ( ring_1_of_int_real @ X3 ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W2 ) @ X3 ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_5504_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W2 ) @ ( ring_1_of_int_rat @ X3 ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W2 ) @ X3 ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_5505_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W2 ) @ ( ring_1_of_int_int @ X3 ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W2 ) @ X3 ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_5506_of__int__power__le__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ X3 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W2 ) )
= ( ord_less_eq_int @ X3 @ ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_5507_of__int__power__le__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X3 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W2 ) )
= ( ord_less_eq_int @ X3 @ ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_5508_of__int__power__le__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ X3 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W2 ) )
= ( ord_less_eq_int @ X3 @ ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_5509_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_1_of_int_rat @ Y )
= ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N2 ) )
= ( Y
= ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_5510_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_17405671764205052669omplex @ Y )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X3 ) @ N2 ) )
= ( Y
= ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_5511_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_1_of_int_int @ Y )
= ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) )
= ( Y
= ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_5512_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_1_of_int_real @ Y )
= ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N2 ) )
= ( Y
= ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_5513_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_18347121197199848620nteger @ Y )
= ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X3 ) @ N2 ) )
= ( Y
= ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_5514_numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N2 )
= ( ring_1_of_int_rat @ Y ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_5515_numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X3 ) @ N2 )
= ( ring_17405671764205052669omplex @ Y ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_5516_numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 )
= ( ring_1_of_int_int @ Y ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_5517_numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N2 )
= ( ring_1_of_int_real @ Y ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_5518_numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X3 ) @ N2 )
= ( ring_18347121197199848620nteger @ Y ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_5519_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W2 ) @ ( ring_1_of_int_real @ X3 ) )
= ( ord_less_int @ ( power_power_int @ B @ W2 ) @ X3 ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_5520_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W2 ) @ ( ring_1_of_int_rat @ X3 ) )
= ( ord_less_int @ ( power_power_int @ B @ W2 ) @ X3 ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_5521_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W2: nat,X3: int] :
( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W2 ) @ ( ring_1_of_int_int @ X3 ) )
= ( ord_less_int @ ( power_power_int @ B @ W2 ) @ X3 ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_5522_of__int__power__less__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ X3 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W2 ) )
= ( ord_less_int @ X3 @ ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_5523_of__int__power__less__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ X3 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W2 ) )
= ( ord_less_int @ X3 @ ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_5524_of__int__power__less__of__int__cancel__iff,axiom,
! [X3: int,B: int,W2: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ X3 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W2 ) )
= ( ord_less_int @ X3 @ ( power_power_int @ B @ W2 ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_5525_numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_5526_numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X3 ) @ N2 ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_5527_numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_5528_numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_5529_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_5530_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X3 ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_5531_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_5532_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_5533_numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_5534_numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_5535_numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_5536_numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X3 ) @ N2 ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_5537_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_5538_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_5539_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_5540_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X3 ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_5541_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_17405671764205052669omplex @ Y )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X3 ) ) @ N2 ) )
= ( Y
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5542_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_1_of_int_int @ Y )
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) )
= ( Y
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5543_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_1_of_int_real @ Y )
= ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N2 ) )
= ( Y
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5544_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_1_of_int_rat @ Y )
= ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N2 ) )
= ( Y
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5545_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( ring_18347121197199848620nteger @ Y )
= ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N2 ) )
= ( Y
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5546_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X3 ) ) @ N2 )
= ( ring_17405671764205052669omplex @ Y ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 )
= Y ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5547_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 )
= ( ring_1_of_int_int @ Y ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 )
= Y ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5548_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N2 )
= ( ring_1_of_int_real @ Y ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 )
= Y ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5549_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N2 )
= ( ring_1_of_int_rat @ Y ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 )
= Y ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5550_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N2 )
= ( ring_18347121197199848620nteger @ Y ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 )
= Y ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5551_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5552_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N2 ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5553_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5554_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5555_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5556_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5557_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5558_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5559_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5560_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N2 ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5561_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N2 ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5562_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N2 ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5563_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5564_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5565_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5566_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N2 ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5567_Compl__eq,axiom,
( uminus8041839845116263051T_VEBT
= ( ^ [A5: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
~ ( member_VEBT_VEBT @ X2 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_5568_Compl__eq,axiom,
( uminus612125837232591019t_real
= ( ^ [A5: set_real] :
( collect_real
@ ^ [X2: real] :
~ ( member_real @ X2 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_5569_Compl__eq,axiom,
( uminus3195874150345416415st_nat
= ( ^ [A5: set_list_nat] :
( collect_list_nat
@ ^ [X2: list_nat] :
~ ( member_list_nat @ X2 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_5570_Compl__eq,axiom,
( uminus613421341184616069et_nat
= ( ^ [A5: set_set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] :
~ ( member_set_nat @ X2 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_5571_Compl__eq,axiom,
( uminus5710092332889474511et_nat
= ( ^ [A5: set_nat] :
( collect_nat
@ ^ [X2: nat] :
~ ( member_nat @ X2 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_5572_Compl__eq,axiom,
( uminus1532241313380277803et_int
= ( ^ [A5: set_int] :
( collect_int
@ ^ [X2: int] :
~ ( member_int @ X2 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_5573_set__diff__eq,axiom,
( minus_5127226145743854075T_VEBT
= ( ^ [A5: set_VEBT_VEBT,B5: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A5 )
& ~ ( member_VEBT_VEBT @ X2 @ B5 ) ) ) ) ) ).
% set_diff_eq
thf(fact_5574_set__diff__eq,axiom,
( minus_minus_set_real
= ( ^ [A5: set_real,B5: set_real] :
( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A5 )
& ~ ( member_real @ X2 @ B5 ) ) ) ) ) ).
% set_diff_eq
thf(fact_5575_set__diff__eq,axiom,
( minus_7954133019191499631st_nat
= ( ^ [A5: set_list_nat,B5: set_list_nat] :
( collect_list_nat
@ ^ [X2: list_nat] :
( ( member_list_nat @ X2 @ A5 )
& ~ ( member_list_nat @ X2 @ B5 ) ) ) ) ) ).
% set_diff_eq
thf(fact_5576_set__diff__eq,axiom,
( minus_2163939370556025621et_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] :
( ( member_set_nat @ X2 @ A5 )
& ~ ( member_set_nat @ X2 @ B5 ) ) ) ) ) ).
% set_diff_eq
thf(fact_5577_set__diff__eq,axiom,
( minus_minus_set_int
= ( ^ [A5: set_int,B5: set_int] :
( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A5 )
& ~ ( member_int @ X2 @ B5 ) ) ) ) ) ).
% set_diff_eq
thf(fact_5578_set__diff__eq,axiom,
( minus_minus_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A5 )
& ~ ( member_nat @ X2 @ B5 ) ) ) ) ) ).
% set_diff_eq
thf(fact_5579_minus__set__def,axiom,
( minus_5127226145743854075T_VEBT
= ( ^ [A5: set_VEBT_VEBT,B5: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ( minus_2794559001203777698VEBT_o
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ A5 )
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ B5 ) ) ) ) ) ).
% minus_set_def
thf(fact_5580_minus__set__def,axiom,
( minus_minus_set_real
= ( ^ [A5: set_real,B5: set_real] :
( collect_real
@ ( minus_minus_real_o
@ ^ [X2: real] : ( member_real @ X2 @ A5 )
@ ^ [X2: real] : ( member_real @ X2 @ B5 ) ) ) ) ) ).
% minus_set_def
thf(fact_5581_minus__set__def,axiom,
( minus_7954133019191499631st_nat
= ( ^ [A5: set_list_nat,B5: set_list_nat] :
( collect_list_nat
@ ( minus_1139252259498527702_nat_o
@ ^ [X2: list_nat] : ( member_list_nat @ X2 @ A5 )
@ ^ [X2: list_nat] : ( member_list_nat @ X2 @ B5 ) ) ) ) ) ).
% minus_set_def
thf(fact_5582_minus__set__def,axiom,
( minus_2163939370556025621et_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
( collect_set_nat
@ ( minus_6910147592129066416_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A5 )
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ B5 ) ) ) ) ) ).
% minus_set_def
thf(fact_5583_minus__set__def,axiom,
( minus_minus_set_int
= ( ^ [A5: set_int,B5: set_int] :
( collect_int
@ ( minus_minus_int_o
@ ^ [X2: int] : ( member_int @ X2 @ A5 )
@ ^ [X2: int] : ( member_int @ X2 @ B5 ) ) ) ) ) ).
% minus_set_def
thf(fact_5584_minus__set__def,axiom,
( minus_minus_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
( collect_nat
@ ( minus_minus_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ A5 )
@ ^ [X2: nat] : ( member_nat @ X2 @ B5 ) ) ) ) ) ).
% minus_set_def
thf(fact_5585_Collect__neg__eq,axiom,
! [P: real > $o] :
( ( collect_real
@ ^ [X2: real] :
~ ( P @ X2 ) )
= ( uminus612125837232591019t_real @ ( collect_real @ P ) ) ) ).
% Collect_neg_eq
thf(fact_5586_Collect__neg__eq,axiom,
! [P: list_nat > $o] :
( ( collect_list_nat
@ ^ [X2: list_nat] :
~ ( P @ X2 ) )
= ( uminus3195874150345416415st_nat @ ( collect_list_nat @ P ) ) ) ).
% Collect_neg_eq
thf(fact_5587_Collect__neg__eq,axiom,
! [P: set_nat > $o] :
( ( collect_set_nat
@ ^ [X2: set_nat] :
~ ( P @ X2 ) )
= ( uminus613421341184616069et_nat @ ( collect_set_nat @ P ) ) ) ).
% Collect_neg_eq
thf(fact_5588_Collect__neg__eq,axiom,
! [P: nat > $o] :
( ( collect_nat
@ ^ [X2: nat] :
~ ( P @ X2 ) )
= ( uminus5710092332889474511et_nat @ ( collect_nat @ P ) ) ) ).
% Collect_neg_eq
thf(fact_5589_Collect__neg__eq,axiom,
! [P: int > $o] :
( ( collect_int
@ ^ [X2: int] :
~ ( P @ X2 ) )
= ( uminus1532241313380277803et_int @ ( collect_int @ P ) ) ) ).
% Collect_neg_eq
thf(fact_5590_uminus__set__def,axiom,
( uminus8041839845116263051T_VEBT
= ( ^ [A5: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ( uminus2746543603091002386VEBT_o
@ ^ [X2: vEBT_VEBT] : ( member_VEBT_VEBT @ X2 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_5591_uminus__set__def,axiom,
( uminus612125837232591019t_real
= ( ^ [A5: set_real] :
( collect_real
@ ( uminus_uminus_real_o
@ ^ [X2: real] : ( member_real @ X2 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_5592_uminus__set__def,axiom,
( uminus3195874150345416415st_nat
= ( ^ [A5: set_list_nat] :
( collect_list_nat
@ ( uminus5770388063884162150_nat_o
@ ^ [X2: list_nat] : ( member_list_nat @ X2 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_5593_uminus__set__def,axiom,
( uminus613421341184616069et_nat
= ( ^ [A5: set_set_nat] :
( collect_set_nat
@ ( uminus6401447641752708672_nat_o
@ ^ [X2: set_nat] : ( member_set_nat @ X2 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_5594_uminus__set__def,axiom,
( uminus5710092332889474511et_nat
= ( ^ [A5: set_nat] :
( collect_nat
@ ( uminus_uminus_nat_o
@ ^ [X2: nat] : ( member_nat @ X2 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_5595_uminus__set__def,axiom,
( uminus1532241313380277803et_int
= ( ^ [A5: set_int] :
( collect_int
@ ( uminus_uminus_int_o
@ ^ [X2: int] : ( member_int @ X2 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_5596_DiffD2,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
=> ~ ( member_VEBT_VEBT @ C @ B2 ) ) ).
% DiffD2
thf(fact_5597_DiffD2,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
=> ~ ( member_int @ C @ B2 ) ) ).
% DiffD2
thf(fact_5598_DiffD2,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
=> ~ ( member_set_nat @ C @ B2 ) ) ).
% DiffD2
thf(fact_5599_DiffD2,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
=> ~ ( member_real @ C @ B2 ) ) ).
% DiffD2
thf(fact_5600_DiffD2,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
=> ~ ( member_nat @ C @ B2 ) ) ).
% DiffD2
thf(fact_5601_DiffD1,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
=> ( member_VEBT_VEBT @ C @ A2 ) ) ).
% DiffD1
thf(fact_5602_DiffD1,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
=> ( member_int @ C @ A2 ) ) ).
% DiffD1
thf(fact_5603_DiffD1,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
=> ( member_set_nat @ C @ A2 ) ) ).
% DiffD1
thf(fact_5604_DiffD1,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
=> ( member_real @ C @ A2 ) ) ).
% DiffD1
thf(fact_5605_DiffD1,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
=> ( member_nat @ C @ A2 ) ) ).
% DiffD1
thf(fact_5606_ComplD,axiom,
! [C: nat,A2: set_nat] :
( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
=> ~ ( member_nat @ C @ A2 ) ) ).
% ComplD
thf(fact_5607_ComplD,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ C @ ( uminus8041839845116263051T_VEBT @ A2 ) )
=> ~ ( member_VEBT_VEBT @ C @ A2 ) ) ).
% ComplD
thf(fact_5608_ComplD,axiom,
! [C: int,A2: set_int] :
( ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) )
=> ~ ( member_int @ C @ A2 ) ) ).
% ComplD
thf(fact_5609_ComplD,axiom,
! [C: set_nat,A2: set_set_nat] :
( ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) )
=> ~ ( member_set_nat @ C @ A2 ) ) ).
% ComplD
thf(fact_5610_ComplD,axiom,
! [C: real,A2: set_real] :
( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
=> ~ ( member_real @ C @ A2 ) ) ).
% ComplD
thf(fact_5611_DiffE,axiom,
! [C: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ C @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) )
=> ~ ( ( member_VEBT_VEBT @ C @ A2 )
=> ( member_VEBT_VEBT @ C @ B2 ) ) ) ).
% DiffE
thf(fact_5612_DiffE,axiom,
! [C: int,A2: set_int,B2: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B2 ) )
=> ~ ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B2 ) ) ) ).
% DiffE
thf(fact_5613_DiffE,axiom,
! [C: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) )
=> ~ ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B2 ) ) ) ).
% DiffE
thf(fact_5614_DiffE,axiom,
! [C: real,A2: set_real,B2: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B2 ) )
=> ~ ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B2 ) ) ) ).
% DiffE
thf(fact_5615_DiffE,axiom,
! [C: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
=> ~ ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B2 ) ) ) ).
% DiffE
thf(fact_5616_mult__of__int__commute,axiom,
! [X3: int,Y: real] :
( ( times_times_real @ ( ring_1_of_int_real @ X3 ) @ Y )
= ( times_times_real @ Y @ ( ring_1_of_int_real @ X3 ) ) ) ).
% mult_of_int_commute
thf(fact_5617_mult__of__int__commute,axiom,
! [X3: int,Y: rat] :
( ( times_times_rat @ ( ring_1_of_int_rat @ X3 ) @ Y )
= ( times_times_rat @ Y @ ( ring_1_of_int_rat @ X3 ) ) ) ).
% mult_of_int_commute
thf(fact_5618_mult__of__int__commute,axiom,
! [X3: int,Y: int] :
( ( times_times_int @ ( ring_1_of_int_int @ X3 ) @ Y )
= ( times_times_int @ Y @ ( ring_1_of_int_int @ X3 ) ) ) ).
% mult_of_int_commute
thf(fact_5619_of__int__max,axiom,
! [X3: int,Y: int] :
( ( ring_1_of_int_real @ ( ord_max_int @ X3 @ Y ) )
= ( ord_max_real @ ( ring_1_of_int_real @ X3 ) @ ( ring_1_of_int_real @ Y ) ) ) ).
% of_int_max
thf(fact_5620_of__int__max,axiom,
! [X3: int,Y: int] :
( ( ring_1_of_int_rat @ ( ord_max_int @ X3 @ Y ) )
= ( ord_max_rat @ ( ring_1_of_int_rat @ X3 ) @ ( ring_1_of_int_rat @ Y ) ) ) ).
% of_int_max
thf(fact_5621_of__int__max,axiom,
! [X3: int,Y: int] :
( ( ring_1_of_int_int @ ( ord_max_int @ X3 @ Y ) )
= ( ord_max_int @ ( ring_1_of_int_int @ X3 ) @ ( ring_1_of_int_int @ Y ) ) ) ).
% of_int_max
thf(fact_5622_split__cong,axiom,
! [Q2: product_prod_nat_nat,F: nat > nat > $o,G: nat > nat > $o,P5: product_prod_nat_nat] :
( ! [X4: nat,Y2: nat] :
( ( ( product_Pair_nat_nat @ X4 @ Y2 )
= Q2 )
=> ( ( F @ X4 @ Y2 )
= ( G @ X4 @ Y2 ) ) )
=> ( ( P5 = Q2 )
=> ( ( produc6081775807080527818_nat_o @ F @ P5 )
= ( produc6081775807080527818_nat_o @ G @ Q2 ) ) ) ) ).
% split_cong
thf(fact_5623_split__cong,axiom,
! [Q2: product_prod_nat_nat,F: nat > nat > nat,G: nat > nat > nat,P5: product_prod_nat_nat] :
( ! [X4: nat,Y2: nat] :
( ( ( product_Pair_nat_nat @ X4 @ Y2 )
= Q2 )
=> ( ( F @ X4 @ Y2 )
= ( G @ X4 @ Y2 ) ) )
=> ( ( P5 = Q2 )
=> ( ( produc6842872674320459806at_nat @ F @ P5 )
= ( produc6842872674320459806at_nat @ G @ Q2 ) ) ) ) ).
% split_cong
thf(fact_5624_split__cong,axiom,
! [Q2: product_prod_nat_nat,F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,G: nat > nat > product_prod_nat_nat > product_prod_nat_nat,P5: product_prod_nat_nat] :
( ! [X4: nat,Y2: nat] :
( ( ( product_Pair_nat_nat @ X4 @ Y2 )
= Q2 )
=> ( ( F @ X4 @ Y2 )
= ( G @ X4 @ Y2 ) ) )
=> ( ( P5 = Q2 )
=> ( ( produc27273713700761075at_nat @ F @ P5 )
= ( produc27273713700761075at_nat @ G @ Q2 ) ) ) ) ).
% split_cong
thf(fact_5625_split__cong,axiom,
! [Q2: product_prod_nat_nat,F: nat > nat > product_prod_nat_nat > $o,G: nat > nat > product_prod_nat_nat > $o,P5: product_prod_nat_nat] :
( ! [X4: nat,Y2: nat] :
( ( ( product_Pair_nat_nat @ X4 @ Y2 )
= Q2 )
=> ( ( F @ X4 @ Y2 )
= ( G @ X4 @ Y2 ) ) )
=> ( ( P5 = Q2 )
=> ( ( produc8739625826339149834_nat_o @ F @ P5 )
= ( produc8739625826339149834_nat_o @ G @ Q2 ) ) ) ) ).
% split_cong
thf(fact_5626_split__cong,axiom,
! [Q2: product_prod_int_int,F: int > int > $o,G: int > int > $o,P5: product_prod_int_int] :
( ! [X4: int,Y2: int] :
( ( ( product_Pair_int_int @ X4 @ Y2 )
= Q2 )
=> ( ( F @ X4 @ Y2 )
= ( G @ X4 @ Y2 ) ) )
=> ( ( P5 = Q2 )
=> ( ( produc4947309494688390418_int_o @ F @ P5 )
= ( produc4947309494688390418_int_o @ G @ Q2 ) ) ) ) ).
% split_cong
thf(fact_5627_finite__set__decode,axiom,
! [N2: nat] : ( finite_finite_nat @ ( nat_set_decode @ N2 ) ) ).
% finite_set_decode
thf(fact_5628_set__encode__eq,axiom,
! [A2: set_nat,B2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( ( nat_set_encode @ A2 )
= ( nat_set_encode @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% set_encode_eq
thf(fact_5629_int__le__real__less,axiom,
( ord_less_eq_int
= ( ^ [N: int,M3: int] : ( ord_less_real @ ( ring_1_of_int_real @ N ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M3 ) @ one_one_real ) ) ) ) ).
% int_le_real_less
thf(fact_5630_int__less__real__le,axiom,
( ord_less_int
= ( ^ [N: int,M3: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) @ ( ring_1_of_int_real @ M3 ) ) ) ) ).
% int_less_real_le
thf(fact_5631_set__encode__inf,axiom,
! [A2: set_nat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( nat_set_encode @ A2 )
= zero_zero_nat ) ) ).
% set_encode_inf
thf(fact_5632_of__int__nonneg,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_nonneg
thf(fact_5633_of__int__nonneg,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) ) ) ).
% of_int_nonneg
thf(fact_5634_of__int__nonneg,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_nonneg
thf(fact_5635_of__int__pos,axiom,
! [Z2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_pos
thf(fact_5636_of__int__pos,axiom,
! [Z2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) ) ) ).
% of_int_pos
thf(fact_5637_of__int__pos,axiom,
! [Z2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_pos
thf(fact_5638_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5639_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5640_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5641_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5642_periodic__finite__ex,axiom,
! [D: int,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int,K3: int] :
( ( P @ X4 )
= ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ( ? [X6: int] : ( P @ X6 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
& ( P @ X2 ) ) ) ) ) ) ).
% periodic_finite_ex
thf(fact_5643_aset_I7_J,axiom,
! [D6: int,A2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X
!= ( minus_minus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_int @ T @ X )
=> ( ord_less_int @ T @ ( plus_plus_int @ X @ D6 ) ) ) ) ) ).
% aset(7)
thf(fact_5644_aset_I5_J,axiom,
! [D6: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ T @ A2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X
!= ( minus_minus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_int @ X @ T )
=> ( ord_less_int @ ( plus_plus_int @ X @ D6 ) @ T ) ) ) ) ) ).
% aset(5)
thf(fact_5645_aset_I4_J,axiom,
! [D6: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ T @ A2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X
!= ( minus_minus_int @ Xb @ Xa3 ) ) ) )
=> ( ( X != T )
=> ( ( plus_plus_int @ X @ D6 )
!= T ) ) ) ) ) ).
% aset(4)
thf(fact_5646_aset_I3_J,axiom,
! [D6: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X
!= ( minus_minus_int @ Xb @ Xa3 ) ) ) )
=> ( ( X = T )
=> ( ( plus_plus_int @ X @ D6 )
= T ) ) ) ) ) ).
% aset(3)
thf(fact_5647_bset_I7_J,axiom,
! [D6: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ T @ B2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X
!= ( plus_plus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_int @ T @ X )
=> ( ord_less_int @ T @ ( minus_minus_int @ X @ D6 ) ) ) ) ) ) ).
% bset(7)
thf(fact_5648_bset_I5_J,axiom,
! [D6: int,B2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X
!= ( plus_plus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_int @ X @ T )
=> ( ord_less_int @ ( minus_minus_int @ X @ D6 ) @ T ) ) ) ) ).
% bset(5)
thf(fact_5649_bset_I4_J,axiom,
! [D6: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ T @ B2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X
!= ( plus_plus_int @ Xb @ Xa3 ) ) ) )
=> ( ( X != T )
=> ( ( minus_minus_int @ X @ D6 )
!= T ) ) ) ) ) ).
% bset(4)
thf(fact_5650_bset_I3_J,axiom,
! [D6: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X
!= ( plus_plus_int @ Xb @ Xa3 ) ) ) )
=> ( ( X = T )
=> ( ( minus_minus_int @ X @ D6 )
= T ) ) ) ) ) ).
% bset(3)
thf(fact_5651_subset__decode__imp__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N2 ) )
=> ( ord_less_eq_nat @ M @ N2 ) ) ).
% subset_decode_imp_le
thf(fact_5652_aset_I8_J,axiom,
! [D6: int,A2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X
!= ( minus_minus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ T @ X )
=> ( ord_less_eq_int @ T @ ( plus_plus_int @ X @ D6 ) ) ) ) ) ).
% aset(8)
thf(fact_5653_aset_I6_J,axiom,
! [D6: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X
!= ( minus_minus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ X @ T )
=> ( ord_less_eq_int @ ( plus_plus_int @ X @ D6 ) @ T ) ) ) ) ) ).
% aset(6)
thf(fact_5654_bset_I8_J,axiom,
! [D6: int,T: int,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B2 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X
!= ( plus_plus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ T @ X )
=> ( ord_less_eq_int @ T @ ( minus_minus_int @ X @ D6 ) ) ) ) ) ) ).
% bset(8)
thf(fact_5655_bset_I6_J,axiom,
! [D6: int,B2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ! [X: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B2 )
=> ( X
!= ( plus_plus_int @ Xb @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ X @ T )
=> ( ord_less_eq_int @ ( minus_minus_int @ X @ D6 ) @ T ) ) ) ) ).
% bset(6)
thf(fact_5656_cpmi,axiom,
! [D6: int,P: int > $o,P4: int > $o,B2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B2 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ D6 ) ) ) )
=> ( ! [X4: int,K3: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D6 ) ) ) )
=> ( ( ? [X6: int] : ( P @ X6 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
& ( P4 @ X2 ) )
| ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
& ? [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( P @ ( plus_plus_int @ Y5 @ X2 ) ) ) ) ) ) ) ) ) ) ).
% cpmi
thf(fact_5657_cppi,axiom,
! [D6: int,P: int > $o,P4: int > $o,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D6 )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ D6 ) ) ) )
=> ( ! [X4: int,K3: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D6 ) ) ) )
=> ( ( ? [X6: int] : ( P @ X6 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
& ( P4 @ X2 ) )
| ? [X2: int] :
( ( member_int @ X2 @ ( set_or1266510415728281911st_int @ one_one_int @ D6 ) )
& ? [Y5: int] :
( ( member_int @ Y5 @ A2 )
& ( P @ ( minus_minus_int @ Y5 @ X2 ) ) ) ) ) ) ) ) ) ) ).
% cppi
thf(fact_5658_divmod__step__nat__def,axiom,
( unique5026877609467782581ep_nat
= ( ^ [L2: num] :
( produc2626176000494625587at_nat
@ ^ [Q5: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).
% divmod_step_nat_def
thf(fact_5659_floor__exists,axiom,
! [X3: real] :
? [Z3: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ X3 )
& ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z3 @ one_one_int ) ) ) ) ).
% floor_exists
thf(fact_5660_floor__exists,axiom,
! [X3: rat] :
? [Z3: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ X3 )
& ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z3 @ one_one_int ) ) ) ) ).
% floor_exists
thf(fact_5661_floor__exists1,axiom,
! [X3: real] :
? [X4: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ X4 ) @ X3 )
& ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ X4 @ one_one_int ) ) )
& ! [Y3: int] :
( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y3 ) @ X3 )
& ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ Y3 @ one_one_int ) ) ) )
=> ( Y3 = X4 ) ) ) ).
% floor_exists1
thf(fact_5662_floor__exists1,axiom,
! [X3: rat] :
? [X4: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X4 ) @ X3 )
& ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ X4 @ one_one_int ) ) )
& ! [Y3: int] :
( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y3 ) @ X3 )
& ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y3 @ one_one_int ) ) ) )
=> ( Y3 = X4 ) ) ) ).
% floor_exists1
thf(fact_5663_tanh__ln__real,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( tanh_real @ ( ln_ln_real @ X3 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% tanh_ln_real
thf(fact_5664_divmod__nat__if,axiom,
( divmod_nat
= ( ^ [M3: nat,N: nat] :
( if_Pro6206227464963214023at_nat
@ ( ( N = zero_zero_nat )
| ( ord_less_nat @ M3 @ N ) )
@ ( product_Pair_nat_nat @ zero_zero_nat @ M3 )
@ ( produc2626176000494625587at_nat
@ ^ [Q5: nat] : ( product_Pair_nat_nat @ ( suc @ Q5 ) )
@ ( divmod_nat @ ( minus_minus_nat @ M3 @ N ) @ N ) ) ) ) ) ).
% divmod_nat_if
thf(fact_5665_take__bit__rec,axiom,
( bit_se1745604003318907178nteger
= ( ^ [N: nat,A3: code_integer] : ( if_Code_integer @ ( N = zero_zero_nat ) @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ ( minus_minus_nat @ N @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_5666_take__bit__rec,axiom,
( bit_se2925701944663578781it_nat
= ( ^ [N: nat,A3: nat] : ( if_nat @ ( N = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_5667_take__bit__rec,axiom,
( bit_se2923211474154528505it_int
= ( ^ [N: nat,A3: int] : ( if_int @ ( N = zero_zero_nat ) @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_5668_round__unique,axiom,
! [X3: real,Y: int] :
( ( ord_less_real @ ( minus_minus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y ) )
=> ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y ) @ ( plus_plus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( archim8280529875227126926d_real @ X3 )
= Y ) ) ) ).
% round_unique
thf(fact_5669_round__unique,axiom,
! [X3: rat,Y: int] :
( ( ord_less_rat @ ( minus_minus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y ) )
=> ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y ) @ ( plus_plus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
=> ( ( archim7778729529865785530nd_rat @ X3 )
= Y ) ) ) ).
% round_unique
thf(fact_5670_sqrt__sum__squares__half__less,axiom,
! [X3: real,U: real,Y: real] :
( ( ord_less_real @ X3 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).
% sqrt_sum_squares_half_less
thf(fact_5671_take__bit__of__0,axiom,
! [N2: nat] :
( ( bit_se2925701944663578781it_nat @ N2 @ zero_zero_nat )
= zero_zero_nat ) ).
% take_bit_of_0
thf(fact_5672_take__bit__of__0,axiom,
! [N2: nat] :
( ( bit_se2923211474154528505it_int @ N2 @ zero_zero_int )
= zero_zero_int ) ).
% take_bit_of_0
thf(fact_5673_real__sqrt__less__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( sqrt @ X3 ) @ ( sqrt @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ).
% real_sqrt_less_iff
thf(fact_5674_tanh__0,axiom,
( ( tanh_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% tanh_0
thf(fact_5675_tanh__0,axiom,
( ( tanh_real @ zero_zero_real )
= zero_zero_real ) ).
% tanh_0
thf(fact_5676_tanh__real__less__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( tanh_real @ X3 ) @ ( tanh_real @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ).
% tanh_real_less_iff
thf(fact_5677_take__bit__0,axiom,
! [A: nat] :
( ( bit_se2925701944663578781it_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% take_bit_0
thf(fact_5678_take__bit__0,axiom,
! [A: int] :
( ( bit_se2923211474154528505it_int @ zero_zero_nat @ A )
= zero_zero_int ) ).
% take_bit_0
thf(fact_5679_real__sqrt__gt__0__iff,axiom,
! [Y: real] :
( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y ) )
= ( ord_less_real @ zero_zero_real @ Y ) ) ).
% real_sqrt_gt_0_iff
thf(fact_5680_real__sqrt__lt__0__iff,axiom,
! [X3: real] :
( ( ord_less_real @ ( sqrt @ X3 ) @ zero_zero_real )
= ( ord_less_real @ X3 @ zero_zero_real ) ) ).
% real_sqrt_lt_0_iff
thf(fact_5681_real__sqrt__gt__1__iff,axiom,
! [Y: real] :
( ( ord_less_real @ one_one_real @ ( sqrt @ Y ) )
= ( ord_less_real @ one_one_real @ Y ) ) ).
% real_sqrt_gt_1_iff
thf(fact_5682_real__sqrt__lt__1__iff,axiom,
! [X3: real] :
( ( ord_less_real @ ( sqrt @ X3 ) @ one_one_real )
= ( ord_less_real @ X3 @ one_one_real ) ) ).
% real_sqrt_lt_1_iff
thf(fact_5683_round__0,axiom,
( ( archim8280529875227126926d_real @ zero_zero_real )
= zero_zero_int ) ).
% round_0
thf(fact_5684_round__0,axiom,
( ( archim7778729529865785530nd_rat @ zero_zero_rat )
= zero_zero_int ) ).
% round_0
thf(fact_5685_tanh__real__neg__iff,axiom,
! [X3: real] :
( ( ord_less_real @ ( tanh_real @ X3 ) @ zero_zero_real )
= ( ord_less_real @ X3 @ zero_zero_real ) ) ).
% tanh_real_neg_iff
thf(fact_5686_tanh__real__pos__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ ( tanh_real @ X3 ) )
= ( ord_less_real @ zero_zero_real @ X3 ) ) ).
% tanh_real_pos_iff
thf(fact_5687_take__bit__of__1__eq__0__iff,axiom,
! [N2: nat] :
( ( ( bit_se2925701944663578781it_nat @ N2 @ one_one_nat )
= zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% take_bit_of_1_eq_0_iff
thf(fact_5688_take__bit__of__1__eq__0__iff,axiom,
! [N2: nat] :
( ( ( bit_se2923211474154528505it_int @ N2 @ one_one_int )
= zero_zero_int )
= ( N2 = zero_zero_nat ) ) ).
% take_bit_of_1_eq_0_iff
thf(fact_5689_take__bit__of__Suc__0,axiom,
! [N2: nat] :
( ( bit_se2925701944663578781it_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% take_bit_of_Suc_0
thf(fact_5690_take__bit__of__1,axiom,
! [N2: nat] :
( ( bit_se2925701944663578781it_nat @ N2 @ one_one_nat )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% take_bit_of_1
thf(fact_5691_take__bit__of__1,axiom,
! [N2: nat] :
( ( bit_se2923211474154528505it_int @ N2 @ one_one_int )
= ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% take_bit_of_1
thf(fact_5692_even__take__bit__eq,axiom,
! [N2: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1745604003318907178nteger @ N2 @ A ) )
= ( ( N2 = zero_zero_nat )
| ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_take_bit_eq
thf(fact_5693_even__take__bit__eq,axiom,
! [N2: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2925701944663578781it_nat @ N2 @ A ) )
= ( ( N2 = zero_zero_nat )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_take_bit_eq
thf(fact_5694_even__take__bit__eq,axiom,
! [N2: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2923211474154528505it_int @ N2 @ A ) )
= ( ( N2 = zero_zero_nat )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_take_bit_eq
thf(fact_5695_take__bit__Suc__0,axiom,
! [A: code_integer] :
( ( bit_se1745604003318907178nteger @ ( suc @ zero_zero_nat ) @ A )
= ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_0
thf(fact_5696_take__bit__Suc__0,axiom,
! [A: nat] :
( ( bit_se2925701944663578781it_nat @ ( suc @ zero_zero_nat ) @ A )
= ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_0
thf(fact_5697_take__bit__Suc__0,axiom,
! [A: int] :
( ( bit_se2923211474154528505it_int @ ( suc @ zero_zero_nat ) @ A )
= ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_0
thf(fact_5698_take__bit__of__exp,axiom,
! [M: nat,N2: nat] :
( ( bit_se1745604003318907178nteger @ M @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ N2 @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% take_bit_of_exp
thf(fact_5699_take__bit__of__exp,axiom,
! [M: nat,N2: nat] :
( ( bit_se2925701944663578781it_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ N2 @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% take_bit_of_exp
thf(fact_5700_take__bit__of__exp,axiom,
! [M: nat,N2: nat] :
( ( bit_se2923211474154528505it_int @ M @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ N2 @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% take_bit_of_exp
thf(fact_5701_take__bit__of__2,axiom,
! [N2: nat] :
( ( bit_se1745604003318907178nteger @ N2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% take_bit_of_2
thf(fact_5702_take__bit__of__2,axiom,
! [N2: nat] :
( ( bit_se2925701944663578781it_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% take_bit_of_2
thf(fact_5703_take__bit__of__2,axiom,
! [N2: nat] :
( ( bit_se2923211474154528505it_int @ N2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_of_2
thf(fact_5704_take__bit__add,axiom,
! [N2: nat,A: nat,B: nat] :
( ( bit_se2925701944663578781it_nat @ N2 @ ( plus_plus_nat @ ( bit_se2925701944663578781it_nat @ N2 @ A ) @ ( bit_se2925701944663578781it_nat @ N2 @ B ) ) )
= ( bit_se2925701944663578781it_nat @ N2 @ ( plus_plus_nat @ A @ B ) ) ) ).
% take_bit_add
thf(fact_5705_take__bit__add,axiom,
! [N2: nat,A: int,B: int] :
( ( bit_se2923211474154528505it_int @ N2 @ ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N2 @ A ) @ ( bit_se2923211474154528505it_int @ N2 @ B ) ) )
= ( bit_se2923211474154528505it_int @ N2 @ ( plus_plus_int @ A @ B ) ) ) ).
% take_bit_add
thf(fact_5706_take__bit__tightened,axiom,
! [N2: nat,A: nat,B: nat,M: nat] :
( ( ( bit_se2925701944663578781it_nat @ N2 @ A )
= ( bit_se2925701944663578781it_nat @ N2 @ B ) )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( bit_se2925701944663578781it_nat @ M @ A )
= ( bit_se2925701944663578781it_nat @ M @ B ) ) ) ) ).
% take_bit_tightened
thf(fact_5707_take__bit__tightened,axiom,
! [N2: nat,A: int,B: int,M: nat] :
( ( ( bit_se2923211474154528505it_int @ N2 @ A )
= ( bit_se2923211474154528505it_int @ N2 @ B ) )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( bit_se2923211474154528505it_int @ M @ A )
= ( bit_se2923211474154528505it_int @ M @ B ) ) ) ) ).
% take_bit_tightened
thf(fact_5708_take__bit__tightened__less__eq__nat,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q2 ) @ ( bit_se2925701944663578781it_nat @ N2 @ Q2 ) ) ) ).
% take_bit_tightened_less_eq_nat
thf(fact_5709_take__bit__nat__less__eq__self,axiom,
! [N2: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ M ) ).
% take_bit_nat_less_eq_self
thf(fact_5710_real__sqrt__less__mono,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( sqrt @ X3 ) @ ( sqrt @ Y ) ) ) ).
% real_sqrt_less_mono
thf(fact_5711_round__mono,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ X3 @ Y )
=> ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X3 ) @ ( archim7778729529865785530nd_rat @ Y ) ) ) ).
% round_mono
thf(fact_5712_real__sqrt__gt__zero,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_real @ zero_zero_real @ ( sqrt @ X3 ) ) ) ).
% real_sqrt_gt_zero
thf(fact_5713_take__bit__tightened__less__eq__int,axiom,
! [M: nat,N2: nat,K: int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).
% take_bit_tightened_less_eq_int
thf(fact_5714_not__take__bit__negative,axiom,
! [N2: nat,K: int] :
~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ zero_zero_int ) ).
% not_take_bit_negative
thf(fact_5715_take__bit__int__greater__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% take_bit_int_greater_self_iff
thf(fact_5716_signed__take__bit__take__bit,axiom,
! [M: nat,N2: nat,A: int] :
( ( bit_ri631733984087533419it_int @ M @ ( bit_se2923211474154528505it_int @ N2 @ A ) )
= ( if_int_int @ ( ord_less_eq_nat @ N2 @ M ) @ ( bit_se2923211474154528505it_int @ N2 ) @ ( bit_ri631733984087533419it_int @ M ) @ A ) ) ).
% signed_take_bit_take_bit
thf(fact_5717_take__bit__unset__bit__eq,axiom,
! [N2: nat,M: nat,A: nat] :
( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( bit_se2925701944663578781it_nat @ N2 @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( bit_se4205575877204974255it_nat @ M @ ( bit_se2925701944663578781it_nat @ N2 @ A ) ) ) ) ) ).
% take_bit_unset_bit_eq
thf(fact_5718_take__bit__unset__bit__eq,axiom,
! [N2: nat,M: nat,A: int] :
( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2923211474154528505it_int @ N2 @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( bit_se2923211474154528505it_int @ N2 @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2923211474154528505it_int @ N2 @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( bit_se4203085406695923979it_int @ M @ ( bit_se2923211474154528505it_int @ N2 @ A ) ) ) ) ) ).
% take_bit_unset_bit_eq
thf(fact_5719_take__bit__set__bit__eq,axiom,
! [N2: nat,M: nat,A: nat] :
( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( bit_se2925701944663578781it_nat @ N2 @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( bit_se7882103937844011126it_nat @ M @ ( bit_se2925701944663578781it_nat @ N2 @ A ) ) ) ) ) ).
% take_bit_set_bit_eq
thf(fact_5720_take__bit__set__bit__eq,axiom,
! [N2: nat,M: nat,A: int] :
( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2923211474154528505it_int @ N2 @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( bit_se2923211474154528505it_int @ N2 @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2923211474154528505it_int @ N2 @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( bit_se7879613467334960850it_int @ M @ ( bit_se2923211474154528505it_int @ N2 @ A ) ) ) ) ) ).
% take_bit_set_bit_eq
thf(fact_5721_take__bit__flip__bit__eq,axiom,
! [N2: nat,M: nat,A: nat] :
( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( bit_se2925701944663578781it_nat @ N2 @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( bit_se2161824704523386999it_nat @ M @ ( bit_se2925701944663578781it_nat @ N2 @ A ) ) ) ) ) ).
% take_bit_flip_bit_eq
thf(fact_5722_take__bit__flip__bit__eq,axiom,
! [N2: nat,M: nat,A: int] :
( ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2923211474154528505it_int @ N2 @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( bit_se2923211474154528505it_int @ N2 @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N2 @ M )
=> ( ( bit_se2923211474154528505it_int @ N2 @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( bit_se2159334234014336723it_int @ M @ ( bit_se2923211474154528505it_int @ N2 @ A ) ) ) ) ) ).
% take_bit_flip_bit_eq
thf(fact_5723_tanh__real__lt__1,axiom,
! [X3: real] : ( ord_less_real @ ( tanh_real @ X3 ) @ one_one_real ) ).
% tanh_real_lt_1
thf(fact_5724_take__bit__signed__take__bit,axiom,
! [M: nat,N2: nat,A: int] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri631733984087533419it_int @ N2 @ A ) )
= ( bit_se2923211474154528505it_int @ M @ A ) ) ) ).
% take_bit_signed_take_bit
thf(fact_5725_tanh__real__gt__neg1,axiom,
! [X3: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X3 ) ) ).
% tanh_real_gt_neg1
thf(fact_5726_sqrt2__less__2,axiom,
ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% sqrt2_less_2
thf(fact_5727_take__bit__nat__eq__self__iff,axiom,
! [N2: nat,M: nat] :
( ( ( bit_se2925701944663578781it_nat @ N2 @ M )
= M )
= ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% take_bit_nat_eq_self_iff
thf(fact_5728_take__bit__nat__less__exp,axiom,
! [N2: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).
% take_bit_nat_less_exp
thf(fact_5729_take__bit__nat__eq__self,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ M )
= M ) ) ).
% take_bit_nat_eq_self
thf(fact_5730_real__less__rsqrt,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
=> ( ord_less_real @ X3 @ ( sqrt @ Y ) ) ) ).
% real_less_rsqrt
thf(fact_5731_take__bit__int__less__exp,axiom,
! [N2: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).
% take_bit_int_less_exp
thf(fact_5732_take__bit__eq__0__iff,axiom,
! [N2: nat,A: code_integer] :
( ( ( bit_se1745604003318907178nteger @ N2 @ A )
= zero_z3403309356797280102nteger )
= ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) @ A ) ) ).
% take_bit_eq_0_iff
thf(fact_5733_take__bit__eq__0__iff,axiom,
! [N2: nat,A: nat] :
( ( ( bit_se2925701944663578781it_nat @ N2 @ A )
= zero_zero_nat )
= ( dvd_dvd_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ A ) ) ).
% take_bit_eq_0_iff
thf(fact_5734_take__bit__eq__0__iff,axiom,
! [N2: nat,A: int] :
( ( ( bit_se2923211474154528505it_int @ N2 @ A )
= zero_zero_int )
= ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ A ) ) ).
% take_bit_eq_0_iff
thf(fact_5735_take__bit__nat__less__self__iff,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ M )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M ) ) ).
% take_bit_nat_less_self_iff
thf(fact_5736_lemma__real__divide__sqrt__less,axiom,
! [U: real] :
( ( ord_less_real @ zero_zero_real @ U )
=> ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).
% lemma_real_divide_sqrt_less
thf(fact_5737_take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% take_bit_int_greater_eq_self_iff
thf(fact_5738_take__bit__int__less__self__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ).
% take_bit_int_less_self_iff
thf(fact_5739_real__less__lsqrt,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X3 @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sqrt @ X3 ) @ Y ) ) ) ) ).
% real_less_lsqrt
thf(fact_5740_ln__sqrt,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ln_ln_real @ ( sqrt @ X3 ) )
= ( divide_divide_real @ ( ln_ln_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% ln_sqrt
thf(fact_5741_take__bit__int__eq__self__iff,axiom,
! [N2: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N2 @ K )
= K )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% take_bit_int_eq_self_iff
thf(fact_5742_take__bit__int__eq__self,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( bit_se2923211474154528505it_int @ N2 @ K )
= K ) ) ) ).
% take_bit_int_eq_self
thf(fact_5743_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_12: nat] : ( P @ X_12 )
=> ? [N3: nat] :
( ~ ( P @ N3 )
& ( P @ ( suc @ N3 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_5744_ex__le__of__int,axiom,
! [X3: real] :
? [Z3: int] : ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ Z3 ) ) ).
% ex_le_of_int
thf(fact_5745_ex__le__of__int,axiom,
! [X3: rat] :
? [Z3: int] : ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ Z3 ) ) ).
% ex_le_of_int
thf(fact_5746_ex__less__of__int,axiom,
! [X3: real] :
? [Z3: int] : ( ord_less_real @ X3 @ ( ring_1_of_int_real @ Z3 ) ) ).
% ex_less_of_int
thf(fact_5747_ex__less__of__int,axiom,
! [X3: rat] :
? [Z3: int] : ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ Z3 ) ) ).
% ex_less_of_int
thf(fact_5748_ex__of__int__less,axiom,
! [X3: real] :
? [Z3: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ X3 ) ).
% ex_of_int_less
thf(fact_5749_ex__of__int__less,axiom,
! [X3: rat] :
? [Z3: int] : ( ord_less_rat @ ( ring_1_of_int_rat @ Z3 ) @ X3 ) ).
% ex_of_int_less
thf(fact_5750_take__bit__Suc,axiom,
! [N2: nat,A: code_integer] :
( ( bit_se1745604003318907178nteger @ ( suc @ N2 ) @ A )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% take_bit_Suc
thf(fact_5751_take__bit__Suc,axiom,
! [N2: nat,A: nat] :
( ( bit_se2925701944663578781it_nat @ ( suc @ N2 ) @ A )
= ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% take_bit_Suc
thf(fact_5752_take__bit__Suc,axiom,
! [N2: nat,A: int] :
( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ A )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% take_bit_Suc
thf(fact_5753_arsinh__real__aux,axiom,
! [X3: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% arsinh_real_aux
thf(fact_5754_of__int__round__le,axiom,
! [X3: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) @ ( plus_plus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% of_int_round_le
thf(fact_5755_of__int__round__le,axiom,
! [X3: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) @ ( plus_plus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% of_int_round_le
thf(fact_5756_of__int__round__ge,axiom,
! [X3: real] : ( ord_less_eq_real @ ( minus_minus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) ) ).
% of_int_round_ge
thf(fact_5757_of__int__round__ge,axiom,
! [X3: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) ) ).
% of_int_round_ge
thf(fact_5758_of__int__round__gt,axiom,
! [X3: rat] : ( ord_less_rat @ ( minus_minus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) ) ).
% of_int_round_gt
thf(fact_5759_of__int__round__gt,axiom,
! [X3: real] : ( ord_less_real @ ( minus_minus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) ) ).
% of_int_round_gt
thf(fact_5760_take__bit__int__less__eq,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% take_bit_int_less_eq
thf(fact_5761_take__bit__int__greater__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).
% take_bit_int_greater_eq
thf(fact_5762_stable__imp__take__bit__eq,axiom,
! [A: code_integer,N2: nat] :
( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A )
=> ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1745604003318907178nteger @ N2 @ A )
= zero_z3403309356797280102nteger ) )
& ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1745604003318907178nteger @ N2 @ A )
= ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) @ one_one_Code_integer ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_5763_stable__imp__take__bit__eq,axiom,
! [A: nat,N2: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ A )
= zero_zero_nat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2925701944663578781it_nat @ N2 @ A )
= ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_5764_stable__imp__take__bit__eq,axiom,
! [A: int,N2: nat] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2923211474154528505it_int @ N2 @ A )
= zero_zero_int ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2923211474154528505it_int @ N2 @ A )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_5765_take__bit__minus__small__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ K ) )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ) ) ).
% take_bit_minus_small_eq
thf(fact_5766_int__ge__less__than__def,axiom,
( int_ge_less_than
= ( ^ [D4: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z7: int,Z6: int] :
( ( ord_less_eq_int @ D4 @ Z7 )
& ( ord_less_int @ Z7 @ Z6 ) ) ) ) ) ) ).
% int_ge_less_than_def
thf(fact_5767_int__ge__less__than2__def,axiom,
( int_ge_less_than2
= ( ^ [D4: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z7: int,Z6: int] :
( ( ord_less_eq_int @ D4 @ Z6 )
& ( ord_less_int @ Z7 @ Z6 ) ) ) ) ) ) ).
% int_ge_less_than2_def
thf(fact_5768_Sum__Icc__int,axiom,
! [M: int,N2: int] :
( ( ord_less_eq_int @ M @ N2 )
=> ( ( groups4538972089207619220nt_int
@ ^ [X2: int] : X2
@ ( set_or1266510415728281911st_int @ M @ N2 ) )
= ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N2 @ ( plus_plus_int @ N2 @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% Sum_Icc_int
thf(fact_5769_odd__mod__4__div__2,axiom,
! [N2: nat] :
( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% odd_mod_4_div_2
thf(fact_5770_divmod__divmod__step,axiom,
( unique5052692396658037445od_int
= ( ^ [M3: num,N: num] : ( if_Pro3027730157355071871nt_int @ ( ord_less_num @ M3 @ N ) @ ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ M3 ) ) @ ( unique5024387138958732305ep_int @ N @ ( unique5052692396658037445od_int @ M3 @ ( bit0 @ N ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_5771_divmod__divmod__step,axiom,
( unique3479559517661332726nteger
= ( ^ [M3: num,N: num] : ( if_Pro6119634080678213985nteger @ ( ord_less_num @ M3 @ N ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ M3 ) ) @ ( unique4921790084139445826nteger @ N @ ( unique3479559517661332726nteger @ M3 @ ( bit0 @ N ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_5772_divmod__divmod__step,axiom,
( unique5055182867167087721od_nat
= ( ^ [M3: num,N: num] : ( if_Pro6206227464963214023at_nat @ ( ord_less_num @ M3 @ N ) @ ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ M3 ) ) @ ( unique5026877609467782581ep_nat @ N @ ( unique5055182867167087721od_nat @ M3 @ ( bit0 @ N ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_5773_set__encode__insert,axiom,
! [A2: set_nat,N2: nat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ N2 @ A2 )
=> ( ( nat_set_encode @ ( insert_nat @ N2 @ A2 ) )
= ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).
% set_encode_insert
thf(fact_5774_Sum__Icc__nat,axiom,
! [M: nat,N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N2 @ ( plus_plus_nat @ N2 @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Icc_nat
thf(fact_5775_insert__absorb2,axiom,
! [X3: nat,A2: set_nat] :
( ( insert_nat @ X3 @ ( insert_nat @ X3 @ A2 ) )
= ( insert_nat @ X3 @ A2 ) ) ).
% insert_absorb2
thf(fact_5776_insert__absorb2,axiom,
! [X3: int,A2: set_int] :
( ( insert_int @ X3 @ ( insert_int @ X3 @ A2 ) )
= ( insert_int @ X3 @ A2 ) ) ).
% insert_absorb2
thf(fact_5777_insert__absorb2,axiom,
! [X3: real,A2: set_real] :
( ( insert_real @ X3 @ ( insert_real @ X3 @ A2 ) )
= ( insert_real @ X3 @ A2 ) ) ).
% insert_absorb2
thf(fact_5778_insert__iff,axiom,
! [A: nat,B: nat,A2: set_nat] :
( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
= ( ( A = B )
| ( member_nat @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_5779_insert__iff,axiom,
! [A: vEBT_VEBT,B: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ A2 ) )
= ( ( A = B )
| ( member_VEBT_VEBT @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_5780_insert__iff,axiom,
! [A: int,B: int,A2: set_int] :
( ( member_int @ A @ ( insert_int @ B @ A2 ) )
= ( ( A = B )
| ( member_int @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_5781_insert__iff,axiom,
! [A: set_nat,B: set_nat,A2: set_set_nat] :
( ( member_set_nat @ A @ ( insert_set_nat @ B @ A2 ) )
= ( ( A = B )
| ( member_set_nat @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_5782_insert__iff,axiom,
! [A: real,B: real,A2: set_real] :
( ( member_real @ A @ ( insert_real @ B @ A2 ) )
= ( ( A = B )
| ( member_real @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_5783_insertCI,axiom,
! [A: nat,B2: set_nat,B: nat] :
( ( ~ ( member_nat @ A @ B2 )
=> ( A = B ) )
=> ( member_nat @ A @ ( insert_nat @ B @ B2 ) ) ) ).
% insertCI
thf(fact_5784_insertCI,axiom,
! [A: vEBT_VEBT,B2: set_VEBT_VEBT,B: vEBT_VEBT] :
( ( ~ ( member_VEBT_VEBT @ A @ B2 )
=> ( A = B ) )
=> ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ B2 ) ) ) ).
% insertCI
thf(fact_5785_insertCI,axiom,
! [A: int,B2: set_int,B: int] :
( ( ~ ( member_int @ A @ B2 )
=> ( A = B ) )
=> ( member_int @ A @ ( insert_int @ B @ B2 ) ) ) ).
% insertCI
thf(fact_5786_insertCI,axiom,
! [A: set_nat,B2: set_set_nat,B: set_nat] :
( ( ~ ( member_set_nat @ A @ B2 )
=> ( A = B ) )
=> ( member_set_nat @ A @ ( insert_set_nat @ B @ B2 ) ) ) ).
% insertCI
thf(fact_5787_insertCI,axiom,
! [A: real,B2: set_real,B: real] :
( ( ~ ( member_real @ A @ B2 )
=> ( A = B ) )
=> ( member_real @ A @ ( insert_real @ B @ B2 ) ) ) ).
% insertCI
thf(fact_5788_verit__eq__simplify_I9_J,axiom,
! [X32: num,Y32: num] :
( ( ( bit1 @ X32 )
= ( bit1 @ Y32 ) )
= ( X32 = Y32 ) ) ).
% verit_eq_simplify(9)
thf(fact_5789_singletonI,axiom,
! [A: vEBT_VEBT] : ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ).
% singletonI
thf(fact_5790_singletonI,axiom,
! [A: set_nat] : ( member_set_nat @ A @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) ).
% singletonI
thf(fact_5791_singletonI,axiom,
! [A: real] : ( member_real @ A @ ( insert_real @ A @ bot_bot_set_real ) ) ).
% singletonI
thf(fact_5792_singletonI,axiom,
! [A: nat] : ( member_nat @ A @ ( insert_nat @ A @ bot_bot_set_nat ) ) ).
% singletonI
thf(fact_5793_singletonI,axiom,
! [A: int] : ( member_int @ A @ ( insert_int @ A @ bot_bot_set_int ) ) ).
% singletonI
thf(fact_5794_finite__insert,axiom,
! [A: real,A2: set_real] :
( ( finite_finite_real @ ( insert_real @ A @ A2 ) )
= ( finite_finite_real @ A2 ) ) ).
% finite_insert
thf(fact_5795_finite__insert,axiom,
! [A: nat,A2: set_nat] :
( ( finite_finite_nat @ ( insert_nat @ A @ A2 ) )
= ( finite_finite_nat @ A2 ) ) ).
% finite_insert
thf(fact_5796_finite__insert,axiom,
! [A: int,A2: set_int] :
( ( finite_finite_int @ ( insert_int @ A @ A2 ) )
= ( finite_finite_int @ A2 ) ) ).
% finite_insert
thf(fact_5797_finite__insert,axiom,
! [A: complex,A2: set_complex] :
( ( finite3207457112153483333omplex @ ( insert_complex @ A @ A2 ) )
= ( finite3207457112153483333omplex @ A2 ) ) ).
% finite_insert
thf(fact_5798_insert__subset,axiom,
! [X3: nat,A2: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ ( insert_nat @ X3 @ A2 ) @ B2 )
= ( ( member_nat @ X3 @ B2 )
& ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ).
% insert_subset
thf(fact_5799_insert__subset,axiom,
! [X3: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( insert_VEBT_VEBT @ X3 @ A2 ) @ B2 )
= ( ( member_VEBT_VEBT @ X3 @ B2 )
& ( ord_le4337996190870823476T_VEBT @ A2 @ B2 ) ) ) ).
% insert_subset
thf(fact_5800_insert__subset,axiom,
! [X3: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ( ord_le6893508408891458716et_nat @ ( insert_set_nat @ X3 @ A2 ) @ B2 )
= ( ( member_set_nat @ X3 @ B2 )
& ( ord_le6893508408891458716et_nat @ A2 @ B2 ) ) ) ).
% insert_subset
thf(fact_5801_insert__subset,axiom,
! [X3: real,A2: set_real,B2: set_real] :
( ( ord_less_eq_set_real @ ( insert_real @ X3 @ A2 ) @ B2 )
= ( ( member_real @ X3 @ B2 )
& ( ord_less_eq_set_real @ A2 @ B2 ) ) ) ).
% insert_subset
thf(fact_5802_insert__subset,axiom,
! [X3: int,A2: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ ( insert_int @ X3 @ A2 ) @ B2 )
= ( ( member_int @ X3 @ B2 )
& ( ord_less_eq_set_int @ A2 @ B2 ) ) ) ).
% insert_subset
thf(fact_5803_insert__Diff1,axiom,
! [X3: vEBT_VEBT,B2: set_VEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ B2 )
=> ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X3 @ A2 ) @ B2 )
= ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) ) ) ).
% insert_Diff1
thf(fact_5804_insert__Diff1,axiom,
! [X3: int,B2: set_int,A2: set_int] :
( ( member_int @ X3 @ B2 )
=> ( ( minus_minus_set_int @ ( insert_int @ X3 @ A2 ) @ B2 )
= ( minus_minus_set_int @ A2 @ B2 ) ) ) ).
% insert_Diff1
thf(fact_5805_insert__Diff1,axiom,
! [X3: set_nat,B2: set_set_nat,A2: set_set_nat] :
( ( member_set_nat @ X3 @ B2 )
=> ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X3 @ A2 ) @ B2 )
= ( minus_2163939370556025621et_nat @ A2 @ B2 ) ) ) ).
% insert_Diff1
thf(fact_5806_insert__Diff1,axiom,
! [X3: real,B2: set_real,A2: set_real] :
( ( member_real @ X3 @ B2 )
=> ( ( minus_minus_set_real @ ( insert_real @ X3 @ A2 ) @ B2 )
= ( minus_minus_set_real @ A2 @ B2 ) ) ) ).
% insert_Diff1
thf(fact_5807_insert__Diff1,axiom,
! [X3: nat,B2: set_nat,A2: set_nat] :
( ( member_nat @ X3 @ B2 )
=> ( ( minus_minus_set_nat @ ( insert_nat @ X3 @ A2 ) @ B2 )
= ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).
% insert_Diff1
thf(fact_5808_Diff__insert0,axiom,
! [X3: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ B2 ) )
= ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) ) ) ).
% Diff_insert0
thf(fact_5809_Diff__insert0,axiom,
! [X3: int,A2: set_int,B2: set_int] :
( ~ ( member_int @ X3 @ A2 )
=> ( ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ B2 ) )
= ( minus_minus_set_int @ A2 @ B2 ) ) ) ).
% Diff_insert0
thf(fact_5810_Diff__insert0,axiom,
! [X3: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ~ ( member_set_nat @ X3 @ A2 )
=> ( ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ X3 @ B2 ) )
= ( minus_2163939370556025621et_nat @ A2 @ B2 ) ) ) ).
% Diff_insert0
thf(fact_5811_Diff__insert0,axiom,
! [X3: real,A2: set_real,B2: set_real] :
( ~ ( member_real @ X3 @ A2 )
=> ( ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ B2 ) )
= ( minus_minus_set_real @ A2 @ B2 ) ) ) ).
% Diff_insert0
thf(fact_5812_Diff__insert0,axiom,
! [X3: nat,A2: set_nat,B2: set_nat] :
( ~ ( member_nat @ X3 @ A2 )
=> ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ B2 ) )
= ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).
% Diff_insert0
thf(fact_5813_semiring__norm_I80_J,axiom,
! [M: num,N2: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% semiring_norm(80)
thf(fact_5814_sum_Oneutral__const,axiom,
! [A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [Uu3: int] : zero_zero_int
@ A2 )
= zero_zero_int ) ).
% sum.neutral_const
thf(fact_5815_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [Uu3: nat] : zero_zero_nat
@ A2 )
= zero_zero_nat ) ).
% sum.neutral_const
thf(fact_5816_sum_Oneutral__const,axiom,
! [A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [Uu3: complex] : zero_zero_complex
@ A2 )
= zero_zero_complex ) ).
% sum.neutral_const
thf(fact_5817_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [Uu3: nat] : zero_zero_real
@ A2 )
= zero_zero_real ) ).
% sum.neutral_const
thf(fact_5818_singleton__conv2,axiom,
! [A: list_nat] :
( ( collect_list_nat
@ ( ^ [Y4: list_nat,Z: list_nat] : ( Y4 = Z )
@ A ) )
= ( insert_list_nat @ A @ bot_bot_set_list_nat ) ) ).
% singleton_conv2
thf(fact_5819_singleton__conv2,axiom,
! [A: set_nat] :
( ( collect_set_nat
@ ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z )
@ A ) )
= ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) ).
% singleton_conv2
thf(fact_5820_singleton__conv2,axiom,
! [A: real] :
( ( collect_real
@ ( ^ [Y4: real,Z: real] : ( Y4 = Z )
@ A ) )
= ( insert_real @ A @ bot_bot_set_real ) ) ).
% singleton_conv2
thf(fact_5821_singleton__conv2,axiom,
! [A: nat] :
( ( collect_nat
@ ( ^ [Y4: nat,Z: nat] : ( Y4 = Z )
@ A ) )
= ( insert_nat @ A @ bot_bot_set_nat ) ) ).
% singleton_conv2
thf(fact_5822_singleton__conv2,axiom,
! [A: int] :
( ( collect_int
@ ( ^ [Y4: int,Z: int] : ( Y4 = Z )
@ A ) )
= ( insert_int @ A @ bot_bot_set_int ) ) ).
% singleton_conv2
thf(fact_5823_singleton__conv,axiom,
! [A: list_nat] :
( ( collect_list_nat
@ ^ [X2: list_nat] : ( X2 = A ) )
= ( insert_list_nat @ A @ bot_bot_set_list_nat ) ) ).
% singleton_conv
thf(fact_5824_singleton__conv,axiom,
! [A: set_nat] :
( ( collect_set_nat
@ ^ [X2: set_nat] : ( X2 = A ) )
= ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) ).
% singleton_conv
thf(fact_5825_singleton__conv,axiom,
! [A: real] :
( ( collect_real
@ ^ [X2: real] : ( X2 = A ) )
= ( insert_real @ A @ bot_bot_set_real ) ) ).
% singleton_conv
thf(fact_5826_singleton__conv,axiom,
! [A: nat] :
( ( collect_nat
@ ^ [X2: nat] : ( X2 = A ) )
= ( insert_nat @ A @ bot_bot_set_nat ) ) ).
% singleton_conv
thf(fact_5827_singleton__conv,axiom,
! [A: int] :
( ( collect_int
@ ^ [X2: int] : ( X2 = A ) )
= ( insert_int @ A @ bot_bot_set_int ) ) ).
% singleton_conv
thf(fact_5828_sum_Oempty,axiom,
! [G: real > complex] :
( ( groups5754745047067104278omplex @ G @ bot_bot_set_real )
= zero_zero_complex ) ).
% sum.empty
thf(fact_5829_sum_Oempty,axiom,
! [G: real > real] :
( ( groups8097168146408367636l_real @ G @ bot_bot_set_real )
= zero_zero_real ) ).
% sum.empty
thf(fact_5830_sum_Oempty,axiom,
! [G: real > rat] :
( ( groups1300246762558778688al_rat @ G @ bot_bot_set_real )
= zero_zero_rat ) ).
% sum.empty
thf(fact_5831_sum_Oempty,axiom,
! [G: real > nat] :
( ( groups1935376822645274424al_nat @ G @ bot_bot_set_real )
= zero_zero_nat ) ).
% sum.empty
thf(fact_5832_sum_Oempty,axiom,
! [G: real > int] :
( ( groups1932886352136224148al_int @ G @ bot_bot_set_real )
= zero_zero_int ) ).
% sum.empty
thf(fact_5833_sum_Oempty,axiom,
! [G: nat > complex] :
( ( groups2073611262835488442omplex @ G @ bot_bot_set_nat )
= zero_zero_complex ) ).
% sum.empty
thf(fact_5834_sum_Oempty,axiom,
! [G: nat > rat] :
( ( groups2906978787729119204at_rat @ G @ bot_bot_set_nat )
= zero_zero_rat ) ).
% sum.empty
thf(fact_5835_sum_Oempty,axiom,
! [G: nat > int] :
( ( groups3539618377306564664at_int @ G @ bot_bot_set_nat )
= zero_zero_int ) ).
% sum.empty
thf(fact_5836_sum_Oempty,axiom,
! [G: int > complex] :
( ( groups3049146728041665814omplex @ G @ bot_bot_set_int )
= zero_zero_complex ) ).
% sum.empty
thf(fact_5837_sum_Oempty,axiom,
! [G: int > real] :
( ( groups8778361861064173332t_real @ G @ bot_bot_set_int )
= zero_zero_real ) ).
% sum.empty
thf(fact_5838_sum__eq__0__iff,axiom,
! [F3: set_int,F: int > nat] :
( ( finite_finite_int @ F3 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ F3 )
= zero_zero_nat )
= ( ! [X2: int] :
( ( member_int @ X2 @ F3 )
=> ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_5839_sum__eq__0__iff,axiom,
! [F3: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ F3 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ F3 )
= zero_zero_nat )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ F3 )
=> ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_5840_sum__eq__0__iff,axiom,
! [F3: set_nat,F: nat > nat] :
( ( finite_finite_nat @ F3 )
=> ( ( ( groups3542108847815614940at_nat @ F @ F3 )
= zero_zero_nat )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ F3 )
=> ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_5841_sum_Oinfinite,axiom,
! [A2: set_nat,G: nat > complex] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups2073611262835488442omplex @ G @ A2 )
= zero_zero_complex ) ) ).
% sum.infinite
thf(fact_5842_sum_Oinfinite,axiom,
! [A2: set_int,G: int > complex] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G @ A2 )
= zero_zero_complex ) ) ).
% sum.infinite
thf(fact_5843_sum_Oinfinite,axiom,
! [A2: set_int,G: int > real] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ A2 )
= zero_zero_real ) ) ).
% sum.infinite
thf(fact_5844_sum_Oinfinite,axiom,
! [A2: set_complex,G: complex > real] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= zero_zero_real ) ) ).
% sum.infinite
thf(fact_5845_sum_Oinfinite,axiom,
! [A2: set_nat,G: nat > rat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups2906978787729119204at_rat @ G @ A2 )
= zero_zero_rat ) ) ).
% sum.infinite
thf(fact_5846_sum_Oinfinite,axiom,
! [A2: set_int,G: int > rat] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ A2 )
= zero_zero_rat ) ) ).
% sum.infinite
thf(fact_5847_sum_Oinfinite,axiom,
! [A2: set_complex,G: complex > rat] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= zero_zero_rat ) ) ).
% sum.infinite
thf(fact_5848_sum_Oinfinite,axiom,
! [A2: set_int,G: int > nat] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups4541462559716669496nt_nat @ G @ A2 )
= zero_zero_nat ) ) ).
% sum.infinite
thf(fact_5849_sum_Oinfinite,axiom,
! [A2: set_complex,G: complex > nat] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5693394587270226106ex_nat @ G @ A2 )
= zero_zero_nat ) ) ).
% sum.infinite
thf(fact_5850_sum_Oinfinite,axiom,
! [A2: set_nat,G: nat > int] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups3539618377306564664at_int @ G @ A2 )
= zero_zero_int ) ) ).
% sum.infinite
thf(fact_5851_singleton__insert__inj__eq_H,axiom,
! [A: real,A2: set_real,B: real] :
( ( ( insert_real @ A @ A2 )
= ( insert_real @ B @ bot_bot_set_real ) )
= ( ( A = B )
& ( ord_less_eq_set_real @ A2 @ ( insert_real @ B @ bot_bot_set_real ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_5852_singleton__insert__inj__eq_H,axiom,
! [A: nat,A2: set_nat,B: nat] :
( ( ( insert_nat @ A @ A2 )
= ( insert_nat @ B @ bot_bot_set_nat ) )
= ( ( A = B )
& ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B @ bot_bot_set_nat ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_5853_singleton__insert__inj__eq_H,axiom,
! [A: int,A2: set_int,B: int] :
( ( ( insert_int @ A @ A2 )
= ( insert_int @ B @ bot_bot_set_int ) )
= ( ( A = B )
& ( ord_less_eq_set_int @ A2 @ ( insert_int @ B @ bot_bot_set_int ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_5854_singleton__insert__inj__eq,axiom,
! [B: real,A: real,A2: set_real] :
( ( ( insert_real @ B @ bot_bot_set_real )
= ( insert_real @ A @ A2 ) )
= ( ( A = B )
& ( ord_less_eq_set_real @ A2 @ ( insert_real @ B @ bot_bot_set_real ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_5855_singleton__insert__inj__eq,axiom,
! [B: nat,A: nat,A2: set_nat] :
( ( ( insert_nat @ B @ bot_bot_set_nat )
= ( insert_nat @ A @ A2 ) )
= ( ( A = B )
& ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B @ bot_bot_set_nat ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_5856_singleton__insert__inj__eq,axiom,
! [B: int,A: int,A2: set_int] :
( ( ( insert_int @ B @ bot_bot_set_int )
= ( insert_int @ A @ A2 ) )
= ( ( A = B )
& ( ord_less_eq_set_int @ A2 @ ( insert_int @ B @ bot_bot_set_int ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_5857_atLeastAtMost__singleton__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( set_or1269000886237332187st_nat @ A @ B )
= ( insert_nat @ C @ bot_bot_set_nat ) )
= ( ( A = B )
& ( B = C ) ) ) ).
% atLeastAtMost_singleton_iff
thf(fact_5858_atLeastAtMost__singleton__iff,axiom,
! [A: int,B: int,C: int] :
( ( ( set_or1266510415728281911st_int @ A @ B )
= ( insert_int @ C @ bot_bot_set_int ) )
= ( ( A = B )
& ( B = C ) ) ) ).
% atLeastAtMost_singleton_iff
thf(fact_5859_atLeastAtMost__singleton__iff,axiom,
! [A: real,B: real,C: real] :
( ( ( set_or1222579329274155063t_real @ A @ B )
= ( insert_real @ C @ bot_bot_set_real ) )
= ( ( A = B )
& ( B = C ) ) ) ).
% atLeastAtMost_singleton_iff
thf(fact_5860_atLeastAtMost__singleton,axiom,
! [A: nat] :
( ( set_or1269000886237332187st_nat @ A @ A )
= ( insert_nat @ A @ bot_bot_set_nat ) ) ).
% atLeastAtMost_singleton
thf(fact_5861_atLeastAtMost__singleton,axiom,
! [A: int] :
( ( set_or1266510415728281911st_int @ A @ A )
= ( insert_int @ A @ bot_bot_set_int ) ) ).
% atLeastAtMost_singleton
thf(fact_5862_atLeastAtMost__singleton,axiom,
! [A: real] :
( ( set_or1222579329274155063t_real @ A @ A )
= ( insert_real @ A @ bot_bot_set_real ) ) ).
% atLeastAtMost_singleton
thf(fact_5863_insert__Diff__single,axiom,
! [A: real,A2: set_real] :
( ( insert_real @ A @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( insert_real @ A @ A2 ) ) ).
% insert_Diff_single
thf(fact_5864_insert__Diff__single,axiom,
! [A: int,A2: set_int] :
( ( insert_int @ A @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( insert_int @ A @ A2 ) ) ).
% insert_Diff_single
thf(fact_5865_insert__Diff__single,axiom,
! [A: nat,A2: set_nat] :
( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( insert_nat @ A @ A2 ) ) ).
% insert_Diff_single
thf(fact_5866_finite__Diff__insert,axiom,
! [A2: set_real,A: real,B2: set_real] :
( ( finite_finite_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ B2 ) ) )
= ( finite_finite_real @ ( minus_minus_set_real @ A2 @ B2 ) ) ) ).
% finite_Diff_insert
thf(fact_5867_finite__Diff__insert,axiom,
! [A2: set_int,A: int,B2: set_int] :
( ( finite_finite_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ B2 ) ) )
= ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ).
% finite_Diff_insert
thf(fact_5868_finite__Diff__insert,axiom,
! [A2: set_complex,A: complex,B2: set_complex] :
( ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ B2 ) ) )
= ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) ) ).
% finite_Diff_insert
thf(fact_5869_finite__Diff__insert,axiom,
! [A2: set_nat,A: nat,B2: set_nat] :
( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B2 ) ) )
= ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).
% finite_Diff_insert
thf(fact_5870_semiring__norm_I81_J,axiom,
! [M: num,N2: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% semiring_norm(81)
thf(fact_5871_semiring__norm_I77_J,axiom,
! [N2: num] : ( ord_less_num @ one @ ( bit1 @ N2 ) ) ).
% semiring_norm(77)
thf(fact_5872_sum_Odelta_H,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_5873_sum_Odelta_H,axiom,
! [S2: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_5874_sum_Odelta_H,axiom,
! [S2: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_5875_sum_Odelta_H,axiom,
! [S2: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_5876_sum_Odelta_H,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_5877_sum_Odelta_H,axiom,
! [S2: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_5878_sum_Odelta_H,axiom,
! [S2: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_5879_sum_Odelta_H,axiom,
! [S2: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_5880_sum_Odelta_H,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups136491112297645522BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups136491112297645522BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= zero_zero_rat ) ) ) ) ).
% sum.delta'
thf(fact_5881_sum_Odelta_H,axiom,
! [S2: set_real,A: real,B: real > rat] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K2: real] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K2: real] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= zero_zero_rat ) ) ) ) ).
% sum.delta'
thf(fact_5882_sum_Odelta,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_5883_sum_Odelta,axiom,
! [S2: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_5884_sum_Odelta,axiom,
! [S2: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_5885_sum_Odelta,axiom,
! [S2: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S2 )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_5886_sum_Odelta,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_5887_sum_Odelta,axiom,
! [S2: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_5888_sum_Odelta,axiom,
! [S2: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_5889_sum_Odelta,axiom,
! [S2: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S2 )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_5890_sum_Odelta,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups136491112297645522BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups136491112297645522BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= zero_zero_rat ) ) ) ) ).
% sum.delta
thf(fact_5891_sum_Odelta,axiom,
! [S2: set_real,A: real,B: real > rat] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
@ S2 )
= zero_zero_rat ) ) ) ) ).
% sum.delta
thf(fact_5892_sum_Oinsert,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2240296850493347238T_real @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups2240296850493347238T_real @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5893_sum_Oinsert,axiom,
! [A2: set_real,X3: real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5894_sum_Oinsert,axiom,
! [A2: set_int,X3: int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5895_sum_Oinsert,axiom,
! [A2: set_complex,X3: complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5896_sum_Oinsert,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups136491112297645522BT_rat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups136491112297645522BT_rat @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5897_sum_Oinsert,axiom,
! [A2: set_real,X3: real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5898_sum_Oinsert,axiom,
! [A2: set_nat,X3: nat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ X3 @ A2 )
=> ( ( groups2906978787729119204at_rat @ G @ ( insert_nat @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5899_sum_Oinsert,axiom,
! [A2: set_int,X3: int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5900_sum_Oinsert,axiom,
! [A2: set_complex,X3: complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5901_sum_Oinsert,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups771621172384141258BT_nat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( plus_plus_nat @ ( G @ X3 ) @ ( groups771621172384141258BT_nat @ G @ A2 ) ) ) ) ) ).
% sum.insert
thf(fact_5902_subset__Compl__singleton,axiom,
! [A2: set_VEBT_VEBT,B: vEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ A2 @ ( uminus8041839845116263051T_VEBT @ ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT ) ) )
= ( ~ ( member_VEBT_VEBT @ B @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_5903_subset__Compl__singleton,axiom,
! [A2: set_set_nat,B: set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ ( uminus613421341184616069et_nat @ ( insert_set_nat @ B @ bot_bot_set_set_nat ) ) )
= ( ~ ( member_set_nat @ B @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_5904_subset__Compl__singleton,axiom,
! [A2: set_real,B: real] :
( ( ord_less_eq_set_real @ A2 @ ( uminus612125837232591019t_real @ ( insert_real @ B @ bot_bot_set_real ) ) )
= ( ~ ( member_real @ B @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_5905_subset__Compl__singleton,axiom,
! [A2: set_nat,B: nat] :
( ( ord_less_eq_set_nat @ A2 @ ( uminus5710092332889474511et_nat @ ( insert_nat @ B @ bot_bot_set_nat ) ) )
= ( ~ ( member_nat @ B @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_5906_subset__Compl__singleton,axiom,
! [A2: set_int,B: int] :
( ( ord_less_eq_set_int @ A2 @ ( uminus1532241313380277803et_int @ ( insert_int @ B @ bot_bot_set_int ) ) )
= ( ~ ( member_int @ B @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_5907_of__int__sum,axiom,
! [F: complex > int,A2: set_complex] :
( ( ring_17405671764205052669omplex @ ( groups5690904116761175830ex_int @ F @ A2 ) )
= ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( ring_17405671764205052669omplex @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_5908_of__int__sum,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_real @ ( groups3539618377306564664at_int @ F @ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( ring_1_of_int_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_5909_of__int__sum,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_real @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups8778361861064173332t_real
@ ^ [X2: int] : ( ring_1_of_int_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_5910_of__int__sum,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_rat @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups3906332499630173760nt_rat
@ ^ [X2: int] : ( ring_1_of_int_rat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_5911_of__int__sum,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( ring_1_of_int_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_5912_semiring__norm_I74_J,axiom,
! [M: num,N2: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% semiring_norm(74)
thf(fact_5913_semiring__norm_I79_J,axiom,
! [M: num,N2: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( ord_less_eq_num @ M @ N2 ) ) ).
% semiring_norm(79)
thf(fact_5914_divmod__algorithm__code_I2_J,axiom,
! [M: num] :
( ( unique5055182867167087721od_nat @ M @ one )
= ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).
% divmod_algorithm_code(2)
thf(fact_5915_divmod__algorithm__code_I2_J,axiom,
! [M: num] :
( ( unique5052692396658037445od_int @ M @ one )
= ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).
% divmod_algorithm_code(2)
thf(fact_5916_divmod__algorithm__code_I2_J,axiom,
! [M: num] :
( ( unique3479559517661332726nteger @ M @ one )
= ( produc1086072967326762835nteger @ ( numera6620942414471956472nteger @ M ) @ zero_z3403309356797280102nteger ) ) ).
% divmod_algorithm_code(2)
thf(fact_5917_set__replicate,axiom,
! [N2: nat,X3: vEBT_VEBT] :
( ( N2 != zero_zero_nat )
=> ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ X3 ) )
= ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ).
% set_replicate
thf(fact_5918_set__replicate,axiom,
! [N2: nat,X3: real] :
( ( N2 != zero_zero_nat )
=> ( ( set_real2 @ ( replicate_real @ N2 @ X3 ) )
= ( insert_real @ X3 @ bot_bot_set_real ) ) ) ).
% set_replicate
thf(fact_5919_set__replicate,axiom,
! [N2: nat,X3: nat] :
( ( N2 != zero_zero_nat )
=> ( ( set_nat2 @ ( replicate_nat @ N2 @ X3 ) )
= ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ).
% set_replicate
thf(fact_5920_set__replicate,axiom,
! [N2: nat,X3: int] :
( ( N2 != zero_zero_nat )
=> ( ( set_int2 @ ( replicate_int @ N2 @ X3 ) )
= ( insert_int @ X3 @ bot_bot_set_int ) ) ) ).
% set_replicate
thf(fact_5921_sum_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > complex] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= zero_zero_complex ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_complex @ ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_5922_sum_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > rat] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= zero_zero_rat ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_5923_sum_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > int] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= zero_zero_int ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_5924_sum_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > nat] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= zero_zero_nat ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_5925_sum_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > real] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= zero_zero_real ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_5926_div__Suc__eq__div__add3,axiom,
! [M: nat,N2: nat] :
( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
= ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ) ).
% div_Suc_eq_div_add3
thf(fact_5927_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V: num] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_div_eq_add3_div_numeral
thf(fact_5928_divmod__algorithm__code_I3_J,axiom,
! [N2: num] :
( ( unique5055182867167087721od_nat @ one @ ( bit0 @ N2 ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_5929_divmod__algorithm__code_I3_J,axiom,
! [N2: num] :
( ( unique5052692396658037445od_int @ one @ ( bit0 @ N2 ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_5930_divmod__algorithm__code_I3_J,axiom,
! [N2: num] :
( ( unique3479559517661332726nteger @ one @ ( bit0 @ N2 ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_5931_mod__Suc__eq__mod__add3,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
= ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ) ).
% mod_Suc_eq_mod_add3
thf(fact_5932_Suc__mod__eq__add3__mod__numeral,axiom,
! [M: nat,V: num] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_mod_eq_add3_mod_numeral
thf(fact_5933_divmod__algorithm__code_I4_J,axiom,
! [N2: num] :
( ( unique5055182867167087721od_nat @ one @ ( bit1 @ N2 ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_5934_divmod__algorithm__code_I4_J,axiom,
! [N2: num] :
( ( unique5052692396658037445od_int @ one @ ( bit1 @ N2 ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_5935_divmod__algorithm__code_I4_J,axiom,
! [N2: num] :
( ( unique3479559517661332726nteger @ one @ ( bit1 @ N2 ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_5936_sum__zero__power,axiom,
! [A2: set_nat,C: nat > complex] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) )
@ A2 )
= zero_zero_complex ) ) ) ).
% sum_zero_power
thf(fact_5937_sum__zero__power,axiom,
! [A2: set_nat,C: nat > rat] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) )
@ A2 )
= zero_zero_rat ) ) ) ).
% sum_zero_power
thf(fact_5938_sum__zero__power,axiom,
! [A2: set_nat,C: nat > real] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) )
@ A2 )
= zero_zero_real ) ) ) ).
% sum_zero_power
thf(fact_5939_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > complex,D: nat > complex] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) ) @ ( D @ I5 ) )
@ A2 )
= ( divide1717551699836669952omplex @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) ) @ ( D @ I5 ) )
@ A2 )
= zero_zero_complex ) ) ) ).
% sum_zero_power'
thf(fact_5940_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > rat,D: nat > rat] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) ) @ ( D @ I5 ) )
@ A2 )
= ( divide_divide_rat @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) ) @ ( D @ I5 ) )
@ A2 )
= zero_zero_rat ) ) ) ).
% sum_zero_power'
thf(fact_5941_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > real,D: nat > real] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) ) @ ( D @ I5 ) )
@ A2 )
= ( divide_divide_real @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) ) @ ( D @ I5 ) )
@ A2 )
= zero_zero_real ) ) ) ).
% sum_zero_power'
thf(fact_5942_divmod__algorithm__code_I7_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_eq_num @ M @ N2 )
=> ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq_num @ M @ N2 )
=> ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( unique5024387138958732305ep_int @ ( bit1 @ N2 ) @ ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_5943_divmod__algorithm__code_I7_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_eq_num @ M @ N2 )
=> ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq_num @ M @ N2 )
=> ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( unique4921790084139445826nteger @ ( bit1 @ N2 ) @ ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_5944_divmod__algorithm__code_I7_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_eq_num @ M @ N2 )
=> ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq_num @ M @ N2 )
=> ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( unique5026877609467782581ep_nat @ ( bit1 @ N2 ) @ ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_5945_divmod__algorithm__code_I8_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_num @ M @ N2 )
=> ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less_num @ M @ N2 )
=> ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( unique5024387138958732305ep_int @ ( bit1 @ N2 ) @ ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_5946_divmod__algorithm__code_I8_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_num @ M @ N2 )
=> ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less_num @ M @ N2 )
=> ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( unique4921790084139445826nteger @ ( bit1 @ N2 ) @ ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_5947_divmod__algorithm__code_I8_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_num @ M @ N2 )
=> ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less_num @ M @ N2 )
=> ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( unique5026877609467782581ep_nat @ ( bit1 @ N2 ) @ ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_5948_divmod__algorithm__code_I6_J,axiom,
! [M: num,N2: num] :
( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( produc2626176000494625587at_nat
@ ^ [Q5: nat,R5: nat] : ( product_Pair_nat_nat @ Q5 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) @ one_one_nat ) )
@ ( unique5055182867167087721od_nat @ M @ N2 ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_5949_divmod__algorithm__code_I6_J,axiom,
! [M: num,N2: num] :
( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( produc4245557441103728435nt_int
@ ^ [Q5: int,R5: int] : ( product_Pair_int_int @ Q5 @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) @ one_one_int ) )
@ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_5950_divmod__algorithm__code_I6_J,axiom,
! [M: num,N2: num] :
( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( produc6916734918728496179nteger
@ ^ [Q5: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q5 @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) @ one_one_Code_integer ) )
@ ( unique3479559517661332726nteger @ M @ N2 ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_5951_insert__compr,axiom,
( insert_VEBT_VEBT
= ( ^ [A3: vEBT_VEBT,B5: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( X2 = A3 )
| ( member_VEBT_VEBT @ X2 @ B5 ) ) ) ) ) ).
% insert_compr
thf(fact_5952_insert__compr,axiom,
( insert_real
= ( ^ [A3: real,B5: set_real] :
( collect_real
@ ^ [X2: real] :
( ( X2 = A3 )
| ( member_real @ X2 @ B5 ) ) ) ) ) ).
% insert_compr
thf(fact_5953_insert__compr,axiom,
( insert_list_nat
= ( ^ [A3: list_nat,B5: set_list_nat] :
( collect_list_nat
@ ^ [X2: list_nat] :
( ( X2 = A3 )
| ( member_list_nat @ X2 @ B5 ) ) ) ) ) ).
% insert_compr
thf(fact_5954_insert__compr,axiom,
( insert_set_nat
= ( ^ [A3: set_nat,B5: set_set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] :
( ( X2 = A3 )
| ( member_set_nat @ X2 @ B5 ) ) ) ) ) ).
% insert_compr
thf(fact_5955_insert__compr,axiom,
( insert_nat
= ( ^ [A3: nat,B5: set_nat] :
( collect_nat
@ ^ [X2: nat] :
( ( X2 = A3 )
| ( member_nat @ X2 @ B5 ) ) ) ) ) ).
% insert_compr
thf(fact_5956_insert__compr,axiom,
( insert_int
= ( ^ [A3: int,B5: set_int] :
( collect_int
@ ^ [X2: int] :
( ( X2 = A3 )
| ( member_int @ X2 @ B5 ) ) ) ) ) ).
% insert_compr
thf(fact_5957_insert__Collect,axiom,
! [A: real,P: real > $o] :
( ( insert_real @ A @ ( collect_real @ P ) )
= ( collect_real
@ ^ [U2: real] :
( ( U2 != A )
=> ( P @ U2 ) ) ) ) ).
% insert_Collect
thf(fact_5958_insert__Collect,axiom,
! [A: list_nat,P: list_nat > $o] :
( ( insert_list_nat @ A @ ( collect_list_nat @ P ) )
= ( collect_list_nat
@ ^ [U2: list_nat] :
( ( U2 != A )
=> ( P @ U2 ) ) ) ) ).
% insert_Collect
thf(fact_5959_insert__Collect,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( insert_set_nat @ A @ ( collect_set_nat @ P ) )
= ( collect_set_nat
@ ^ [U2: set_nat] :
( ( U2 != A )
=> ( P @ U2 ) ) ) ) ).
% insert_Collect
thf(fact_5960_insert__Collect,axiom,
! [A: nat,P: nat > $o] :
( ( insert_nat @ A @ ( collect_nat @ P ) )
= ( collect_nat
@ ^ [U2: nat] :
( ( U2 != A )
=> ( P @ U2 ) ) ) ) ).
% insert_Collect
thf(fact_5961_insert__Collect,axiom,
! [A: int,P: int > $o] :
( ( insert_int @ A @ ( collect_int @ P ) )
= ( collect_int
@ ^ [U2: int] :
( ( U2 != A )
=> ( P @ U2 ) ) ) ) ).
% insert_Collect
thf(fact_5962_mk__disjoint__insert,axiom,
! [A: nat,A2: set_nat] :
( ( member_nat @ A @ A2 )
=> ? [B9: set_nat] :
( ( A2
= ( insert_nat @ A @ B9 ) )
& ~ ( member_nat @ A @ B9 ) ) ) ).
% mk_disjoint_insert
thf(fact_5963_mk__disjoint__insert,axiom,
! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ A @ A2 )
=> ? [B9: set_VEBT_VEBT] :
( ( A2
= ( insert_VEBT_VEBT @ A @ B9 ) )
& ~ ( member_VEBT_VEBT @ A @ B9 ) ) ) ).
% mk_disjoint_insert
thf(fact_5964_mk__disjoint__insert,axiom,
! [A: int,A2: set_int] :
( ( member_int @ A @ A2 )
=> ? [B9: set_int] :
( ( A2
= ( insert_int @ A @ B9 ) )
& ~ ( member_int @ A @ B9 ) ) ) ).
% mk_disjoint_insert
thf(fact_5965_mk__disjoint__insert,axiom,
! [A: set_nat,A2: set_set_nat] :
( ( member_set_nat @ A @ A2 )
=> ? [B9: set_set_nat] :
( ( A2
= ( insert_set_nat @ A @ B9 ) )
& ~ ( member_set_nat @ A @ B9 ) ) ) ).
% mk_disjoint_insert
thf(fact_5966_mk__disjoint__insert,axiom,
! [A: real,A2: set_real] :
( ( member_real @ A @ A2 )
=> ? [B9: set_real] :
( ( A2
= ( insert_real @ A @ B9 ) )
& ~ ( member_real @ A @ B9 ) ) ) ).
% mk_disjoint_insert
thf(fact_5967_insert__commute,axiom,
! [X3: nat,Y: nat,A2: set_nat] :
( ( insert_nat @ X3 @ ( insert_nat @ Y @ A2 ) )
= ( insert_nat @ Y @ ( insert_nat @ X3 @ A2 ) ) ) ).
% insert_commute
thf(fact_5968_insert__commute,axiom,
! [X3: int,Y: int,A2: set_int] :
( ( insert_int @ X3 @ ( insert_int @ Y @ A2 ) )
= ( insert_int @ Y @ ( insert_int @ X3 @ A2 ) ) ) ).
% insert_commute
thf(fact_5969_insert__commute,axiom,
! [X3: real,Y: real,A2: set_real] :
( ( insert_real @ X3 @ ( insert_real @ Y @ A2 ) )
= ( insert_real @ Y @ ( insert_real @ X3 @ A2 ) ) ) ).
% insert_commute
thf(fact_5970_insert__eq__iff,axiom,
! [A: nat,A2: set_nat,B: nat,B2: set_nat] :
( ~ ( member_nat @ A @ A2 )
=> ( ~ ( member_nat @ B @ B2 )
=> ( ( ( insert_nat @ A @ A2 )
= ( insert_nat @ B @ B2 ) )
= ( ( ( A = B )
=> ( A2 = B2 ) )
& ( ( A != B )
=> ? [C6: set_nat] :
( ( A2
= ( insert_nat @ B @ C6 ) )
& ~ ( member_nat @ B @ C6 )
& ( B2
= ( insert_nat @ A @ C6 ) )
& ~ ( member_nat @ A @ C6 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_5971_insert__eq__iff,axiom,
! [A: vEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,B2: set_VEBT_VEBT] :
( ~ ( member_VEBT_VEBT @ A @ A2 )
=> ( ~ ( member_VEBT_VEBT @ B @ B2 )
=> ( ( ( insert_VEBT_VEBT @ A @ A2 )
= ( insert_VEBT_VEBT @ B @ B2 ) )
= ( ( ( A = B )
=> ( A2 = B2 ) )
& ( ( A != B )
=> ? [C6: set_VEBT_VEBT] :
( ( A2
= ( insert_VEBT_VEBT @ B @ C6 ) )
& ~ ( member_VEBT_VEBT @ B @ C6 )
& ( B2
= ( insert_VEBT_VEBT @ A @ C6 ) )
& ~ ( member_VEBT_VEBT @ A @ C6 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_5972_insert__eq__iff,axiom,
! [A: int,A2: set_int,B: int,B2: set_int] :
( ~ ( member_int @ A @ A2 )
=> ( ~ ( member_int @ B @ B2 )
=> ( ( ( insert_int @ A @ A2 )
= ( insert_int @ B @ B2 ) )
= ( ( ( A = B )
=> ( A2 = B2 ) )
& ( ( A != B )
=> ? [C6: set_int] :
( ( A2
= ( insert_int @ B @ C6 ) )
& ~ ( member_int @ B @ C6 )
& ( B2
= ( insert_int @ A @ C6 ) )
& ~ ( member_int @ A @ C6 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_5973_insert__eq__iff,axiom,
! [A: set_nat,A2: set_set_nat,B: set_nat,B2: set_set_nat] :
( ~ ( member_set_nat @ A @ A2 )
=> ( ~ ( member_set_nat @ B @ B2 )
=> ( ( ( insert_set_nat @ A @ A2 )
= ( insert_set_nat @ B @ B2 ) )
= ( ( ( A = B )
=> ( A2 = B2 ) )
& ( ( A != B )
=> ? [C6: set_set_nat] :
( ( A2
= ( insert_set_nat @ B @ C6 ) )
& ~ ( member_set_nat @ B @ C6 )
& ( B2
= ( insert_set_nat @ A @ C6 ) )
& ~ ( member_set_nat @ A @ C6 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_5974_insert__eq__iff,axiom,
! [A: real,A2: set_real,B: real,B2: set_real] :
( ~ ( member_real @ A @ A2 )
=> ( ~ ( member_real @ B @ B2 )
=> ( ( ( insert_real @ A @ A2 )
= ( insert_real @ B @ B2 ) )
= ( ( ( A = B )
=> ( A2 = B2 ) )
& ( ( A != B )
=> ? [C6: set_real] :
( ( A2
= ( insert_real @ B @ C6 ) )
& ~ ( member_real @ B @ C6 )
& ( B2
= ( insert_real @ A @ C6 ) )
& ~ ( member_real @ A @ C6 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_5975_insert__absorb,axiom,
! [A: nat,A2: set_nat] :
( ( member_nat @ A @ A2 )
=> ( ( insert_nat @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_5976_insert__absorb,axiom,
! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( insert_VEBT_VEBT @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_5977_insert__absorb,axiom,
! [A: int,A2: set_int] :
( ( member_int @ A @ A2 )
=> ( ( insert_int @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_5978_insert__absorb,axiom,
! [A: set_nat,A2: set_set_nat] :
( ( member_set_nat @ A @ A2 )
=> ( ( insert_set_nat @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_5979_insert__absorb,axiom,
! [A: real,A2: set_real] :
( ( member_real @ A @ A2 )
=> ( ( insert_real @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_5980_insert__ident,axiom,
! [X3: nat,A2: set_nat,B2: set_nat] :
( ~ ( member_nat @ X3 @ A2 )
=> ( ~ ( member_nat @ X3 @ B2 )
=> ( ( ( insert_nat @ X3 @ A2 )
= ( insert_nat @ X3 @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% insert_ident
thf(fact_5981_insert__ident,axiom,
! [X3: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ~ ( member_VEBT_VEBT @ X3 @ B2 )
=> ( ( ( insert_VEBT_VEBT @ X3 @ A2 )
= ( insert_VEBT_VEBT @ X3 @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% insert_ident
thf(fact_5982_insert__ident,axiom,
! [X3: int,A2: set_int,B2: set_int] :
( ~ ( member_int @ X3 @ A2 )
=> ( ~ ( member_int @ X3 @ B2 )
=> ( ( ( insert_int @ X3 @ A2 )
= ( insert_int @ X3 @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% insert_ident
thf(fact_5983_insert__ident,axiom,
! [X3: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ~ ( member_set_nat @ X3 @ A2 )
=> ( ~ ( member_set_nat @ X3 @ B2 )
=> ( ( ( insert_set_nat @ X3 @ A2 )
= ( insert_set_nat @ X3 @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% insert_ident
thf(fact_5984_insert__ident,axiom,
! [X3: real,A2: set_real,B2: set_real] :
( ~ ( member_real @ X3 @ A2 )
=> ( ~ ( member_real @ X3 @ B2 )
=> ( ( ( insert_real @ X3 @ A2 )
= ( insert_real @ X3 @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% insert_ident
thf(fact_5985_Set_Oset__insert,axiom,
! [X3: nat,A2: set_nat] :
( ( member_nat @ X3 @ A2 )
=> ~ ! [B9: set_nat] :
( ( A2
= ( insert_nat @ X3 @ B9 ) )
=> ( member_nat @ X3 @ B9 ) ) ) ).
% Set.set_insert
thf(fact_5986_Set_Oset__insert,axiom,
! [X3: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ~ ! [B9: set_VEBT_VEBT] :
( ( A2
= ( insert_VEBT_VEBT @ X3 @ B9 ) )
=> ( member_VEBT_VEBT @ X3 @ B9 ) ) ) ).
% Set.set_insert
thf(fact_5987_Set_Oset__insert,axiom,
! [X3: int,A2: set_int] :
( ( member_int @ X3 @ A2 )
=> ~ ! [B9: set_int] :
( ( A2
= ( insert_int @ X3 @ B9 ) )
=> ( member_int @ X3 @ B9 ) ) ) ).
% Set.set_insert
thf(fact_5988_Set_Oset__insert,axiom,
! [X3: set_nat,A2: set_set_nat] :
( ( member_set_nat @ X3 @ A2 )
=> ~ ! [B9: set_set_nat] :
( ( A2
= ( insert_set_nat @ X3 @ B9 ) )
=> ( member_set_nat @ X3 @ B9 ) ) ) ).
% Set.set_insert
thf(fact_5989_Set_Oset__insert,axiom,
! [X3: real,A2: set_real] :
( ( member_real @ X3 @ A2 )
=> ~ ! [B9: set_real] :
( ( A2
= ( insert_real @ X3 @ B9 ) )
=> ( member_real @ X3 @ B9 ) ) ) ).
% Set.set_insert
thf(fact_5990_insertI2,axiom,
! [A: nat,B2: set_nat,B: nat] :
( ( member_nat @ A @ B2 )
=> ( member_nat @ A @ ( insert_nat @ B @ B2 ) ) ) ).
% insertI2
thf(fact_5991_insertI2,axiom,
! [A: vEBT_VEBT,B2: set_VEBT_VEBT,B: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A @ B2 )
=> ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ B2 ) ) ) ).
% insertI2
thf(fact_5992_insertI2,axiom,
! [A: int,B2: set_int,B: int] :
( ( member_int @ A @ B2 )
=> ( member_int @ A @ ( insert_int @ B @ B2 ) ) ) ).
% insertI2
thf(fact_5993_insertI2,axiom,
! [A: set_nat,B2: set_set_nat,B: set_nat] :
( ( member_set_nat @ A @ B2 )
=> ( member_set_nat @ A @ ( insert_set_nat @ B @ B2 ) ) ) ).
% insertI2
thf(fact_5994_insertI2,axiom,
! [A: real,B2: set_real,B: real] :
( ( member_real @ A @ B2 )
=> ( member_real @ A @ ( insert_real @ B @ B2 ) ) ) ).
% insertI2
thf(fact_5995_insertI1,axiom,
! [A: nat,B2: set_nat] : ( member_nat @ A @ ( insert_nat @ A @ B2 ) ) ).
% insertI1
thf(fact_5996_insertI1,axiom,
! [A: vEBT_VEBT,B2: set_VEBT_VEBT] : ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ A @ B2 ) ) ).
% insertI1
thf(fact_5997_insertI1,axiom,
! [A: int,B2: set_int] : ( member_int @ A @ ( insert_int @ A @ B2 ) ) ).
% insertI1
thf(fact_5998_insertI1,axiom,
! [A: set_nat,B2: set_set_nat] : ( member_set_nat @ A @ ( insert_set_nat @ A @ B2 ) ) ).
% insertI1
thf(fact_5999_insertI1,axiom,
! [A: real,B2: set_real] : ( member_real @ A @ ( insert_real @ A @ B2 ) ) ).
% insertI1
thf(fact_6000_insertE,axiom,
! [A: nat,B: nat,A2: set_nat] :
( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
=> ( ( A != B )
=> ( member_nat @ A @ A2 ) ) ) ).
% insertE
thf(fact_6001_insertE,axiom,
! [A: vEBT_VEBT,B: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ A2 ) )
=> ( ( A != B )
=> ( member_VEBT_VEBT @ A @ A2 ) ) ) ).
% insertE
thf(fact_6002_insertE,axiom,
! [A: int,B: int,A2: set_int] :
( ( member_int @ A @ ( insert_int @ B @ A2 ) )
=> ( ( A != B )
=> ( member_int @ A @ A2 ) ) ) ).
% insertE
thf(fact_6003_insertE,axiom,
! [A: set_nat,B: set_nat,A2: set_set_nat] :
( ( member_set_nat @ A @ ( insert_set_nat @ B @ A2 ) )
=> ( ( A != B )
=> ( member_set_nat @ A @ A2 ) ) ) ).
% insertE
thf(fact_6004_insertE,axiom,
! [A: real,B: real,A2: set_real] :
( ( member_real @ A @ ( insert_real @ B @ A2 ) )
=> ( ( A != B )
=> ( member_real @ A @ A2 ) ) ) ).
% insertE
thf(fact_6005_sum_Oinsert__if,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2240296850493347238T_real @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( groups2240296850493347238T_real @ G @ A2 ) ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2240296850493347238T_real @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups2240296850493347238T_real @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6006_sum_Oinsert__if,axiom,
! [A2: set_real,X3: real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ X3 @ A2 )
=> ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( groups8097168146408367636l_real @ G @ A2 ) ) )
& ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6007_sum_Oinsert__if,axiom,
! [A2: set_int,X3: int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ( member_int @ X3 @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( groups8778361861064173332t_real @ G @ A2 ) ) )
& ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6008_sum_Oinsert__if,axiom,
! [A2: set_complex,X3: complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( member_complex @ X3 @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( groups5808333547571424918x_real @ G @ A2 ) ) )
& ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6009_sum_Oinsert__if,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups136491112297645522BT_rat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( groups136491112297645522BT_rat @ G @ A2 ) ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups136491112297645522BT_rat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups136491112297645522BT_rat @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6010_sum_Oinsert__if,axiom,
! [A2: set_real,X3: real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ X3 @ A2 )
=> ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( groups1300246762558778688al_rat @ G @ A2 ) ) )
& ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6011_sum_Oinsert__if,axiom,
! [A2: set_nat,X3: nat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( member_nat @ X3 @ A2 )
=> ( ( groups2906978787729119204at_rat @ G @ ( insert_nat @ X3 @ A2 ) )
= ( groups2906978787729119204at_rat @ G @ A2 ) ) )
& ( ~ ( member_nat @ X3 @ A2 )
=> ( ( groups2906978787729119204at_rat @ G @ ( insert_nat @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6012_sum_Oinsert__if,axiom,
! [A2: set_int,X3: int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ( member_int @ X3 @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( groups3906332499630173760nt_rat @ G @ A2 ) ) )
& ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6013_sum_Oinsert__if,axiom,
! [A2: set_complex,X3: complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( member_complex @ X3 @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( groups5058264527183730370ex_rat @ G @ A2 ) ) )
& ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6014_sum_Oinsert__if,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups771621172384141258BT_nat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( groups771621172384141258BT_nat @ G @ A2 ) ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups771621172384141258BT_nat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( plus_plus_nat @ ( G @ X3 ) @ ( groups771621172384141258BT_nat @ G @ A2 ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_6015_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > complex,A2: set_nat] :
( ( ( groups2073611262835488442omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6016_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: vEBT_VEBT > complex,A2: set_VEBT_VEBT] :
( ( ( groups1794756597179926696omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6017_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: int > complex,A2: set_int] :
( ( ( groups3049146728041665814omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6018_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > complex,A2: set_real] :
( ( ( groups5754745047067104278omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6019_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: vEBT_VEBT > real,A2: set_VEBT_VEBT] :
( ( ( groups2240296850493347238T_real @ G @ A2 )
!= zero_zero_real )
=> ~ ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_real ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6020_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: int > real,A2: set_int] :
( ( ( groups8778361861064173332t_real @ G @ A2 )
!= zero_zero_real )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_real ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6021_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > real,A2: set_real] :
( ( ( groups8097168146408367636l_real @ G @ A2 )
!= zero_zero_real )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_real ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6022_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > rat,A2: set_nat] :
( ( ( groups2906978787729119204at_rat @ G @ A2 )
!= zero_zero_rat )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_rat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6023_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: vEBT_VEBT > rat,A2: set_VEBT_VEBT] :
( ( ( groups136491112297645522BT_rat @ G @ A2 )
!= zero_zero_rat )
=> ~ ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_rat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6024_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: int > rat,A2: set_int] :
( ( ( groups3906332499630173760nt_rat @ G @ A2 )
!= zero_zero_rat )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_rat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6025_sum_Oneutral,axiom,
! [A2: set_int,G: int > int] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ( G @ X4 )
= zero_zero_int ) )
=> ( ( groups4538972089207619220nt_int @ G @ A2 )
= zero_zero_int ) ) ).
% sum.neutral
thf(fact_6026_sum_Oneutral,axiom,
! [A2: set_nat,G: nat > nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ( G @ X4 )
= zero_zero_nat ) )
=> ( ( groups3542108847815614940at_nat @ G @ A2 )
= zero_zero_nat ) ) ).
% sum.neutral
thf(fact_6027_sum_Oneutral,axiom,
! [A2: set_complex,G: complex > complex] :
( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ( G @ X4 )
= zero_zero_complex ) )
=> ( ( groups7754918857620584856omplex @ G @ A2 )
= zero_zero_complex ) ) ).
% sum.neutral
thf(fact_6028_sum_Oneutral,axiom,
! [A2: set_nat,G: nat > real] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ( groups6591440286371151544t_real @ G @ A2 )
= zero_zero_real ) ) ).
% sum.neutral
thf(fact_6029_verit__eq__simplify_I14_J,axiom,
! [X22: num,X32: num] :
( ( bit0 @ X22 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_6030_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_6031_singletonD,axiom,
! [B: vEBT_VEBT,A: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) )
=> ( B = A ) ) ).
% singletonD
thf(fact_6032_singletonD,axiom,
! [B: set_nat,A: set_nat] :
( ( member_set_nat @ B @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) )
=> ( B = A ) ) ).
% singletonD
thf(fact_6033_singletonD,axiom,
! [B: real,A: real] :
( ( member_real @ B @ ( insert_real @ A @ bot_bot_set_real ) )
=> ( B = A ) ) ).
% singletonD
thf(fact_6034_singletonD,axiom,
! [B: nat,A: nat] :
( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
=> ( B = A ) ) ).
% singletonD
thf(fact_6035_singletonD,axiom,
! [B: int,A: int] :
( ( member_int @ B @ ( insert_int @ A @ bot_bot_set_int ) )
=> ( B = A ) ) ).
% singletonD
thf(fact_6036_singleton__iff,axiom,
! [B: vEBT_VEBT,A: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) )
= ( B = A ) ) ).
% singleton_iff
thf(fact_6037_singleton__iff,axiom,
! [B: set_nat,A: set_nat] :
( ( member_set_nat @ B @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) )
= ( B = A ) ) ).
% singleton_iff
thf(fact_6038_singleton__iff,axiom,
! [B: real,A: real] :
( ( member_real @ B @ ( insert_real @ A @ bot_bot_set_real ) )
= ( B = A ) ) ).
% singleton_iff
thf(fact_6039_singleton__iff,axiom,
! [B: nat,A: nat] :
( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
= ( B = A ) ) ).
% singleton_iff
thf(fact_6040_singleton__iff,axiom,
! [B: int,A: int] :
( ( member_int @ B @ ( insert_int @ A @ bot_bot_set_int ) )
= ( B = A ) ) ).
% singleton_iff
thf(fact_6041_doubleton__eq__iff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( insert_real @ A @ ( insert_real @ B @ bot_bot_set_real ) )
= ( insert_real @ C @ ( insert_real @ D @ bot_bot_set_real ) ) )
= ( ( ( A = C )
& ( B = D ) )
| ( ( A = D )
& ( B = C ) ) ) ) ).
% doubleton_eq_iff
thf(fact_6042_doubleton__eq__iff,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ( insert_nat @ A @ ( insert_nat @ B @ bot_bot_set_nat ) )
= ( insert_nat @ C @ ( insert_nat @ D @ bot_bot_set_nat ) ) )
= ( ( ( A = C )
& ( B = D ) )
| ( ( A = D )
& ( B = C ) ) ) ) ).
% doubleton_eq_iff
thf(fact_6043_doubleton__eq__iff,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( insert_int @ A @ ( insert_int @ B @ bot_bot_set_int ) )
= ( insert_int @ C @ ( insert_int @ D @ bot_bot_set_int ) ) )
= ( ( ( A = C )
& ( B = D ) )
| ( ( A = D )
& ( B = C ) ) ) ) ).
% doubleton_eq_iff
thf(fact_6044_insert__not__empty,axiom,
! [A: real,A2: set_real] :
( ( insert_real @ A @ A2 )
!= bot_bot_set_real ) ).
% insert_not_empty
thf(fact_6045_insert__not__empty,axiom,
! [A: nat,A2: set_nat] :
( ( insert_nat @ A @ A2 )
!= bot_bot_set_nat ) ).
% insert_not_empty
thf(fact_6046_insert__not__empty,axiom,
! [A: int,A2: set_int] :
( ( insert_int @ A @ A2 )
!= bot_bot_set_int ) ).
% insert_not_empty
thf(fact_6047_singleton__inject,axiom,
! [A: real,B: real] :
( ( ( insert_real @ A @ bot_bot_set_real )
= ( insert_real @ B @ bot_bot_set_real ) )
=> ( A = B ) ) ).
% singleton_inject
thf(fact_6048_singleton__inject,axiom,
! [A: nat,B: nat] :
( ( ( insert_nat @ A @ bot_bot_set_nat )
= ( insert_nat @ B @ bot_bot_set_nat ) )
=> ( A = B ) ) ).
% singleton_inject
thf(fact_6049_singleton__inject,axiom,
! [A: int,B: int] :
( ( ( insert_int @ A @ bot_bot_set_int )
= ( insert_int @ B @ bot_bot_set_int ) )
=> ( A = B ) ) ).
% singleton_inject
thf(fact_6050_finite_OinsertI,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( finite_finite_real @ ( insert_real @ A @ A2 ) ) ) ).
% finite.insertI
thf(fact_6051_finite_OinsertI,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite_finite_nat @ ( insert_nat @ A @ A2 ) ) ) ).
% finite.insertI
thf(fact_6052_finite_OinsertI,axiom,
! [A2: set_int,A: int] :
( ( finite_finite_int @ A2 )
=> ( finite_finite_int @ ( insert_int @ A @ A2 ) ) ) ).
% finite.insertI
thf(fact_6053_finite_OinsertI,axiom,
! [A2: set_complex,A: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite3207457112153483333omplex @ ( insert_complex @ A @ A2 ) ) ) ).
% finite.insertI
thf(fact_6054_insert__mono,axiom,
! [C4: set_nat,D6: set_nat,A: nat] :
( ( ord_less_eq_set_nat @ C4 @ D6 )
=> ( ord_less_eq_set_nat @ ( insert_nat @ A @ C4 ) @ ( insert_nat @ A @ D6 ) ) ) ).
% insert_mono
thf(fact_6055_insert__mono,axiom,
! [C4: set_real,D6: set_real,A: real] :
( ( ord_less_eq_set_real @ C4 @ D6 )
=> ( ord_less_eq_set_real @ ( insert_real @ A @ C4 ) @ ( insert_real @ A @ D6 ) ) ) ).
% insert_mono
thf(fact_6056_insert__mono,axiom,
! [C4: set_int,D6: set_int,A: int] :
( ( ord_less_eq_set_int @ C4 @ D6 )
=> ( ord_less_eq_set_int @ ( insert_int @ A @ C4 ) @ ( insert_int @ A @ D6 ) ) ) ).
% insert_mono
thf(fact_6057_subset__insert,axiom,
! [X3: nat,A2: set_nat,B2: set_nat] :
( ~ ( member_nat @ X3 @ A2 )
=> ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X3 @ B2 ) )
= ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ).
% subset_insert
thf(fact_6058_subset__insert,axiom,
! [X3: vEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT] :
( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ B2 ) )
= ( ord_le4337996190870823476T_VEBT @ A2 @ B2 ) ) ) ).
% subset_insert
thf(fact_6059_subset__insert,axiom,
! [X3: set_nat,A2: set_set_nat,B2: set_set_nat] :
( ~ ( member_set_nat @ X3 @ A2 )
=> ( ( ord_le6893508408891458716et_nat @ A2 @ ( insert_set_nat @ X3 @ B2 ) )
= ( ord_le6893508408891458716et_nat @ A2 @ B2 ) ) ) ).
% subset_insert
thf(fact_6060_subset__insert,axiom,
! [X3: real,A2: set_real,B2: set_real] :
( ~ ( member_real @ X3 @ A2 )
=> ( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X3 @ B2 ) )
= ( ord_less_eq_set_real @ A2 @ B2 ) ) ) ).
% subset_insert
thf(fact_6061_subset__insert,axiom,
! [X3: int,A2: set_int,B2: set_int] :
( ~ ( member_int @ X3 @ A2 )
=> ( ( ord_less_eq_set_int @ A2 @ ( insert_int @ X3 @ B2 ) )
= ( ord_less_eq_set_int @ A2 @ B2 ) ) ) ).
% subset_insert
thf(fact_6062_subset__insertI,axiom,
! [B2: set_nat,A: nat] : ( ord_less_eq_set_nat @ B2 @ ( insert_nat @ A @ B2 ) ) ).
% subset_insertI
thf(fact_6063_subset__insertI,axiom,
! [B2: set_real,A: real] : ( ord_less_eq_set_real @ B2 @ ( insert_real @ A @ B2 ) ) ).
% subset_insertI
thf(fact_6064_subset__insertI,axiom,
! [B2: set_int,A: int] : ( ord_less_eq_set_int @ B2 @ ( insert_int @ A @ B2 ) ) ).
% subset_insertI
thf(fact_6065_subset__insertI2,axiom,
! [A2: set_nat,B2: set_nat,B: nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B @ B2 ) ) ) ).
% subset_insertI2
thf(fact_6066_subset__insertI2,axiom,
! [A2: set_real,B2: set_real,B: real] :
( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ord_less_eq_set_real @ A2 @ ( insert_real @ B @ B2 ) ) ) ).
% subset_insertI2
thf(fact_6067_subset__insertI2,axiom,
! [A2: set_int,B2: set_int,B: int] :
( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ord_less_eq_set_int @ A2 @ ( insert_int @ B @ B2 ) ) ) ).
% subset_insertI2
thf(fact_6068_insert__subsetI,axiom,
! [X3: nat,A2: set_nat,X8: set_nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( ord_less_eq_set_nat @ X8 @ A2 )
=> ( ord_less_eq_set_nat @ ( insert_nat @ X3 @ X8 ) @ A2 ) ) ) ).
% insert_subsetI
thf(fact_6069_insert__subsetI,axiom,
! [X3: vEBT_VEBT,A2: set_VEBT_VEBT,X8: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( ord_le4337996190870823476T_VEBT @ X8 @ A2 )
=> ( ord_le4337996190870823476T_VEBT @ ( insert_VEBT_VEBT @ X3 @ X8 ) @ A2 ) ) ) ).
% insert_subsetI
thf(fact_6070_insert__subsetI,axiom,
! [X3: set_nat,A2: set_set_nat,X8: set_set_nat] :
( ( member_set_nat @ X3 @ A2 )
=> ( ( ord_le6893508408891458716et_nat @ X8 @ A2 )
=> ( ord_le6893508408891458716et_nat @ ( insert_set_nat @ X3 @ X8 ) @ A2 ) ) ) ).
% insert_subsetI
thf(fact_6071_insert__subsetI,axiom,
! [X3: real,A2: set_real,X8: set_real] :
( ( member_real @ X3 @ A2 )
=> ( ( ord_less_eq_set_real @ X8 @ A2 )
=> ( ord_less_eq_set_real @ ( insert_real @ X3 @ X8 ) @ A2 ) ) ) ).
% insert_subsetI
thf(fact_6072_insert__subsetI,axiom,
! [X3: int,A2: set_int,X8: set_int] :
( ( member_int @ X3 @ A2 )
=> ( ( ord_less_eq_set_int @ X8 @ A2 )
=> ( ord_less_eq_set_int @ ( insert_int @ X3 @ X8 ) @ A2 ) ) ) ).
% insert_subsetI
thf(fact_6073_insert__Diff__if,axiom,
! [X3: vEBT_VEBT,B2: set_VEBT_VEBT,A2: set_VEBT_VEBT] :
( ( ( member_VEBT_VEBT @ X3 @ B2 )
=> ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X3 @ A2 ) @ B2 )
= ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ B2 )
=> ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X3 @ A2 ) @ B2 )
= ( insert_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ A2 @ B2 ) ) ) ) ) ).
% insert_Diff_if
thf(fact_6074_insert__Diff__if,axiom,
! [X3: int,B2: set_int,A2: set_int] :
( ( ( member_int @ X3 @ B2 )
=> ( ( minus_minus_set_int @ ( insert_int @ X3 @ A2 ) @ B2 )
= ( minus_minus_set_int @ A2 @ B2 ) ) )
& ( ~ ( member_int @ X3 @ B2 )
=> ( ( minus_minus_set_int @ ( insert_int @ X3 @ A2 ) @ B2 )
= ( insert_int @ X3 @ ( minus_minus_set_int @ A2 @ B2 ) ) ) ) ) ).
% insert_Diff_if
thf(fact_6075_insert__Diff__if,axiom,
! [X3: set_nat,B2: set_set_nat,A2: set_set_nat] :
( ( ( member_set_nat @ X3 @ B2 )
=> ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X3 @ A2 ) @ B2 )
= ( minus_2163939370556025621et_nat @ A2 @ B2 ) ) )
& ( ~ ( member_set_nat @ X3 @ B2 )
=> ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X3 @ A2 ) @ B2 )
= ( insert_set_nat @ X3 @ ( minus_2163939370556025621et_nat @ A2 @ B2 ) ) ) ) ) ).
% insert_Diff_if
thf(fact_6076_insert__Diff__if,axiom,
! [X3: real,B2: set_real,A2: set_real] :
( ( ( member_real @ X3 @ B2 )
=> ( ( minus_minus_set_real @ ( insert_real @ X3 @ A2 ) @ B2 )
= ( minus_minus_set_real @ A2 @ B2 ) ) )
& ( ~ ( member_real @ X3 @ B2 )
=> ( ( minus_minus_set_real @ ( insert_real @ X3 @ A2 ) @ B2 )
= ( insert_real @ X3 @ ( minus_minus_set_real @ A2 @ B2 ) ) ) ) ) ).
% insert_Diff_if
thf(fact_6077_insert__Diff__if,axiom,
! [X3: nat,B2: set_nat,A2: set_nat] :
( ( ( member_nat @ X3 @ B2 )
=> ( ( minus_minus_set_nat @ ( insert_nat @ X3 @ A2 ) @ B2 )
= ( minus_minus_set_nat @ A2 @ B2 ) ) )
& ( ~ ( member_nat @ X3 @ B2 )
=> ( ( minus_minus_set_nat @ ( insert_nat @ X3 @ A2 ) @ B2 )
= ( insert_nat @ X3 @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ) ).
% insert_Diff_if
thf(fact_6078_sum__mono,axiom,
! [K5: set_nat,F: nat > rat,G: nat > rat] :
( ! [I3: nat] :
( ( member_nat @ I3 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ K5 ) @ ( groups2906978787729119204at_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6079_sum__mono,axiom,
! [K5: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ K5 ) @ ( groups136491112297645522BT_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6080_sum__mono,axiom,
! [K5: set_int,F: int > rat,G: int > rat] :
( ! [I3: int] :
( ( member_int @ I3 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ K5 ) @ ( groups3906332499630173760nt_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6081_sum__mono,axiom,
! [K5: set_real,F: real > rat,G: real > rat] :
( ! [I3: real] :
( ( member_real @ I3 @ K5 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ K5 ) @ ( groups1300246762558778688al_rat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6082_sum__mono,axiom,
! [K5: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ K5 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_nat @ ( groups771621172384141258BT_nat @ F @ K5 ) @ ( groups771621172384141258BT_nat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6083_sum__mono,axiom,
! [K5: set_int,F: int > nat,G: int > nat] :
( ! [I3: int] :
( ( member_int @ I3 @ K5 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ K5 ) @ ( groups4541462559716669496nt_nat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6084_sum__mono,axiom,
! [K5: set_real,F: real > nat,G: real > nat] :
( ! [I3: real] :
( ( member_real @ I3 @ K5 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K5 ) @ ( groups1935376822645274424al_nat @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6085_sum__mono,axiom,
! [K5: set_nat,F: nat > int,G: nat > int] :
( ! [I3: nat] :
( ( member_nat @ I3 @ K5 )
=> ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ K5 ) @ ( groups3539618377306564664at_int @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6086_sum__mono,axiom,
! [K5: set_VEBT_VEBT,F: vEBT_VEBT > int,G: vEBT_VEBT > int] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ K5 )
=> ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_int @ ( groups769130701875090982BT_int @ F @ K5 ) @ ( groups769130701875090982BT_int @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6087_sum__mono,axiom,
! [K5: set_real,F: real > int,G: real > int] :
( ! [I3: real] :
( ( member_real @ I3 @ K5 )
=> ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K5 ) @ ( groups1932886352136224148al_int @ G @ K5 ) ) ) ).
% sum_mono
thf(fact_6088_sum_Odistrib,axiom,
! [G: int > int,H2: int > int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( plus_plus_int @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ A2 ) @ ( groups4538972089207619220nt_int @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6089_sum_Odistrib,axiom,
! [G: nat > nat,H2: nat > nat,A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( plus_plus_nat @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ A2 ) @ ( groups3542108847815614940at_nat @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6090_sum_Odistrib,axiom,
! [G: complex > complex,H2: complex > complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( plus_plus_complex @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_complex @ ( groups7754918857620584856omplex @ G @ A2 ) @ ( groups7754918857620584856omplex @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6091_sum_Odistrib,axiom,
! [G: nat > real,H2: nat > real,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( plus_plus_real @ ( G @ X2 ) @ ( H2 @ X2 ) )
@ A2 )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ A2 ) @ ( groups6591440286371151544t_real @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6092_sum_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B2: set_int,G: vEBT_VEBT > int > int,R: vEBT_VEBT > int > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups769130701875090982BT_int
@ ^ [X2: vEBT_VEBT] :
( groups4538972089207619220nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [Y5: int] :
( groups769130701875090982BT_int
@ ^ [X2: vEBT_VEBT] : ( G @ X2 @ Y5 )
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6093_sum_Oswap__restrict,axiom,
! [A2: set_real,B2: set_int,G: real > int > int,R: real > int > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups1932886352136224148al_int
@ ^ [X2: real] :
( groups4538972089207619220nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [Y5: int] :
( groups1932886352136224148al_int
@ ^ [X2: real] : ( G @ X2 @ Y5 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6094_sum_Oswap__restrict,axiom,
! [A2: set_nat,B2: set_int,G: nat > int > int,R: nat > int > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups3539618377306564664at_int
@ ^ [X2: nat] :
( groups4538972089207619220nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [Y5: int] :
( groups3539618377306564664at_int
@ ^ [X2: nat] : ( G @ X2 @ Y5 )
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6095_sum_Oswap__restrict,axiom,
! [A2: set_complex,B2: set_int,G: complex > int > int,R: complex > int > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups5690904116761175830ex_int
@ ^ [X2: complex] :
( groups4538972089207619220nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [Y5: int] :
( groups5690904116761175830ex_int
@ ^ [X2: complex] : ( G @ X2 @ Y5 )
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6096_sum_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B2: set_nat,G: vEBT_VEBT > nat > nat,R: vEBT_VEBT > nat > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups771621172384141258BT_nat
@ ^ [X2: vEBT_VEBT] :
( groups3542108847815614940at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y5: nat] :
( groups771621172384141258BT_nat
@ ^ [X2: vEBT_VEBT] : ( G @ X2 @ Y5 )
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6097_sum_Oswap__restrict,axiom,
! [A2: set_real,B2: set_nat,G: real > nat > nat,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups1935376822645274424al_nat
@ ^ [X2: real] :
( groups3542108847815614940at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y5: nat] :
( groups1935376822645274424al_nat
@ ^ [X2: real] : ( G @ X2 @ Y5 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6098_sum_Oswap__restrict,axiom,
! [A2: set_int,B2: set_nat,G: int > nat > nat,R: int > nat > $o] :
( ( finite_finite_int @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups4541462559716669496nt_nat
@ ^ [X2: int] :
( groups3542108847815614940at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y5: nat] :
( groups4541462559716669496nt_nat
@ ^ [X2: int] : ( G @ X2 @ Y5 )
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6099_sum_Oswap__restrict,axiom,
! [A2: set_complex,B2: set_nat,G: complex > nat > nat,R: complex > nat > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups5693394587270226106ex_nat
@ ^ [X2: complex] :
( groups3542108847815614940at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y5: nat] :
( groups5693394587270226106ex_nat
@ ^ [X2: complex] : ( G @ X2 @ Y5 )
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6100_sum_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B2: set_complex,G: vEBT_VEBT > complex > complex,R: vEBT_VEBT > complex > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ( groups1794756597179926696omplex
@ ^ [X2: vEBT_VEBT] :
( groups7754918857620584856omplex @ ( G @ X2 )
@ ( collect_complex
@ ^ [Y5: complex] :
( ( member_complex @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y5: complex] :
( groups1794756597179926696omplex
@ ^ [X2: vEBT_VEBT] : ( G @ X2 @ Y5 )
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6101_sum_Oswap__restrict,axiom,
! [A2: set_real,B2: set_complex,G: real > complex > complex,R: real > complex > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite3207457112153483333omplex @ B2 )
=> ( ( groups5754745047067104278omplex
@ ^ [X2: real] :
( groups7754918857620584856omplex @ ( G @ X2 )
@ ( collect_complex
@ ^ [Y5: complex] :
( ( member_complex @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y5: complex] :
( groups5754745047067104278omplex
@ ^ [X2: real] : ( G @ X2 @ Y5 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6102_sum__diff1__nat,axiom,
! [A: vEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups771621172384141258BT_nat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( minus_minus_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups771621172384141258BT_nat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( groups771621172384141258BT_nat @ F @ A2 ) ) ) ) ).
% sum_diff1_nat
thf(fact_6103_sum__diff1__nat,axiom,
! [A: set_nat,A2: set_set_nat,F: set_nat > nat] :
( ( ( member_set_nat @ A @ A2 )
=> ( ( groups8294997508430121362at_nat @ F @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
= ( minus_minus_nat @ ( groups8294997508430121362at_nat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_set_nat @ A @ A2 )
=> ( ( groups8294997508430121362at_nat @ F @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
= ( groups8294997508430121362at_nat @ F @ A2 ) ) ) ) ).
% sum_diff1_nat
thf(fact_6104_sum__diff1__nat,axiom,
! [A: real,A2: set_real,F: real > nat] :
( ( ( member_real @ A @ A2 )
=> ( ( groups1935376822645274424al_nat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_real @ A @ A2 )
=> ( ( groups1935376822645274424al_nat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ) ).
% sum_diff1_nat
thf(fact_6105_sum__diff1__nat,axiom,
! [A: int,A2: set_int,F: int > nat] :
( ( ( member_int @ A @ A2 )
=> ( ( groups4541462559716669496nt_nat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_int @ A @ A2 )
=> ( ( groups4541462559716669496nt_nat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( groups4541462559716669496nt_nat @ F @ A2 ) ) ) ) ).
% sum_diff1_nat
thf(fact_6106_sum__diff1__nat,axiom,
! [A: nat,A2: set_nat,F: nat > nat] :
( ( ( member_nat @ A @ A2 )
=> ( ( groups3542108847815614940at_nat @ F @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_nat @ A @ A2 )
=> ( ( groups3542108847815614940at_nat @ F @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( groups3542108847815614940at_nat @ F @ A2 ) ) ) ) ).
% sum_diff1_nat
thf(fact_6107_Collect__conv__if2,axiom,
! [P: list_nat > $o,A: list_nat] :
( ( ( P @ A )
=> ( ( collect_list_nat
@ ^ [X2: list_nat] :
( ( A = X2 )
& ( P @ X2 ) ) )
= ( insert_list_nat @ A @ bot_bot_set_list_nat ) ) )
& ( ~ ( P @ A )
=> ( ( collect_list_nat
@ ^ [X2: list_nat] :
( ( A = X2 )
& ( P @ X2 ) ) )
= bot_bot_set_list_nat ) ) ) ).
% Collect_conv_if2
thf(fact_6108_Collect__conv__if2,axiom,
! [P: set_nat > $o,A: set_nat] :
( ( ( P @ A )
=> ( ( collect_set_nat
@ ^ [X2: set_nat] :
( ( A = X2 )
& ( P @ X2 ) ) )
= ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
& ( ~ ( P @ A )
=> ( ( collect_set_nat
@ ^ [X2: set_nat] :
( ( A = X2 )
& ( P @ X2 ) ) )
= bot_bot_set_set_nat ) ) ) ).
% Collect_conv_if2
thf(fact_6109_Collect__conv__if2,axiom,
! [P: real > $o,A: real] :
( ( ( P @ A )
=> ( ( collect_real
@ ^ [X2: real] :
( ( A = X2 )
& ( P @ X2 ) ) )
= ( insert_real @ A @ bot_bot_set_real ) ) )
& ( ~ ( P @ A )
=> ( ( collect_real
@ ^ [X2: real] :
( ( A = X2 )
& ( P @ X2 ) ) )
= bot_bot_set_real ) ) ) ).
% Collect_conv_if2
thf(fact_6110_Collect__conv__if2,axiom,
! [P: nat > $o,A: nat] :
( ( ( P @ A )
=> ( ( collect_nat
@ ^ [X2: nat] :
( ( A = X2 )
& ( P @ X2 ) ) )
= ( insert_nat @ A @ bot_bot_set_nat ) ) )
& ( ~ ( P @ A )
=> ( ( collect_nat
@ ^ [X2: nat] :
( ( A = X2 )
& ( P @ X2 ) ) )
= bot_bot_set_nat ) ) ) ).
% Collect_conv_if2
thf(fact_6111_Collect__conv__if2,axiom,
! [P: int > $o,A: int] :
( ( ( P @ A )
=> ( ( collect_int
@ ^ [X2: int] :
( ( A = X2 )
& ( P @ X2 ) ) )
= ( insert_int @ A @ bot_bot_set_int ) ) )
& ( ~ ( P @ A )
=> ( ( collect_int
@ ^ [X2: int] :
( ( A = X2 )
& ( P @ X2 ) ) )
= bot_bot_set_int ) ) ) ).
% Collect_conv_if2
thf(fact_6112_Collect__conv__if,axiom,
! [P: list_nat > $o,A: list_nat] :
( ( ( P @ A )
=> ( ( collect_list_nat
@ ^ [X2: list_nat] :
( ( X2 = A )
& ( P @ X2 ) ) )
= ( insert_list_nat @ A @ bot_bot_set_list_nat ) ) )
& ( ~ ( P @ A )
=> ( ( collect_list_nat
@ ^ [X2: list_nat] :
( ( X2 = A )
& ( P @ X2 ) ) )
= bot_bot_set_list_nat ) ) ) ).
% Collect_conv_if
thf(fact_6113_Collect__conv__if,axiom,
! [P: set_nat > $o,A: set_nat] :
( ( ( P @ A )
=> ( ( collect_set_nat
@ ^ [X2: set_nat] :
( ( X2 = A )
& ( P @ X2 ) ) )
= ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
& ( ~ ( P @ A )
=> ( ( collect_set_nat
@ ^ [X2: set_nat] :
( ( X2 = A )
& ( P @ X2 ) ) )
= bot_bot_set_set_nat ) ) ) ).
% Collect_conv_if
thf(fact_6114_Collect__conv__if,axiom,
! [P: real > $o,A: real] :
( ( ( P @ A )
=> ( ( collect_real
@ ^ [X2: real] :
( ( X2 = A )
& ( P @ X2 ) ) )
= ( insert_real @ A @ bot_bot_set_real ) ) )
& ( ~ ( P @ A )
=> ( ( collect_real
@ ^ [X2: real] :
( ( X2 = A )
& ( P @ X2 ) ) )
= bot_bot_set_real ) ) ) ).
% Collect_conv_if
thf(fact_6115_Collect__conv__if,axiom,
! [P: nat > $o,A: nat] :
( ( ( P @ A )
=> ( ( collect_nat
@ ^ [X2: nat] :
( ( X2 = A )
& ( P @ X2 ) ) )
= ( insert_nat @ A @ bot_bot_set_nat ) ) )
& ( ~ ( P @ A )
=> ( ( collect_nat
@ ^ [X2: nat] :
( ( X2 = A )
& ( P @ X2 ) ) )
= bot_bot_set_nat ) ) ) ).
% Collect_conv_if
thf(fact_6116_Collect__conv__if,axiom,
! [P: int > $o,A: int] :
( ( ( P @ A )
=> ( ( collect_int
@ ^ [X2: int] :
( ( X2 = A )
& ( P @ X2 ) ) )
= ( insert_int @ A @ bot_bot_set_int ) ) )
& ( ~ ( P @ A )
=> ( ( collect_int
@ ^ [X2: int] :
( ( X2 = A )
& ( P @ X2 ) ) )
= bot_bot_set_int ) ) ) ).
% Collect_conv_if
thf(fact_6117_sum_Oremove,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2240296850493347238T_real @ G @ A2 )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups2240296850493347238T_real @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6118_sum_Oremove,axiom,
! [A2: set_complex,X3: complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ X3 @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6119_sum_Oremove,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups136491112297645522BT_rat @ G @ A2 )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups136491112297645522BT_rat @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6120_sum_Oremove,axiom,
! [A2: set_complex,X3: complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ X3 @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6121_sum_Oremove,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups771621172384141258BT_nat @ G @ A2 )
= ( plus_plus_nat @ ( G @ X3 ) @ ( groups771621172384141258BT_nat @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6122_sum_Oremove,axiom,
! [A2: set_complex,X3: complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ X3 @ A2 )
=> ( ( groups5693394587270226106ex_nat @ G @ A2 )
= ( plus_plus_nat @ ( G @ X3 ) @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6123_sum_Oremove,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups769130701875090982BT_int @ G @ A2 )
= ( plus_plus_int @ ( G @ X3 ) @ ( groups769130701875090982BT_int @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6124_sum_Oremove,axiom,
! [A2: set_complex,X3: complex,G: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ X3 @ A2 )
=> ( ( groups5690904116761175830ex_int @ G @ A2 )
= ( plus_plus_int @ ( G @ X3 ) @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6125_sum_Oremove,axiom,
! [A2: set_real,X3: real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X3 @ A2 )
=> ( ( groups8097168146408367636l_real @ G @ A2 )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups8097168146408367636l_real @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6126_sum_Oremove,axiom,
! [A2: set_real,X3: real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X3 @ A2 )
=> ( ( groups1300246762558778688al_rat @ G @ A2 )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups1300246762558778688al_rat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_6127_sum_Oinsert__remove,axiom,
! [A2: set_complex,G: complex > real,X3: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6128_sum_Oinsert__remove,axiom,
! [A2: set_complex,G: complex > rat,X3: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6129_sum_Oinsert__remove,axiom,
! [A2: set_complex,G: complex > nat,X3: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5693394587270226106ex_nat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_nat @ ( G @ X3 ) @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6130_sum_Oinsert__remove,axiom,
! [A2: set_complex,G: complex > int,X3: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5690904116761175830ex_int @ G @ ( insert_complex @ X3 @ A2 ) )
= ( plus_plus_int @ ( G @ X3 ) @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6131_sum_Oinsert__remove,axiom,
! [A2: set_real,G: real > real,X3: real] :
( ( finite_finite_real @ A2 )
=> ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups8097168146408367636l_real @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6132_sum_Oinsert__remove,axiom,
! [A2: set_real,G: real > rat,X3: real] :
( ( finite_finite_real @ A2 )
=> ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups1300246762558778688al_rat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6133_sum_Oinsert__remove,axiom,
! [A2: set_real,G: real > nat,X3: real] :
( ( finite_finite_real @ A2 )
=> ( ( groups1935376822645274424al_nat @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_nat @ ( G @ X3 ) @ ( groups1935376822645274424al_nat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6134_sum_Oinsert__remove,axiom,
! [A2: set_real,G: real > int,X3: real] :
( ( finite_finite_real @ A2 )
=> ( ( groups1932886352136224148al_int @ G @ ( insert_real @ X3 @ A2 ) )
= ( plus_plus_int @ ( G @ X3 ) @ ( groups1932886352136224148al_int @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6135_sum_Oinsert__remove,axiom,
! [A2: set_int,G: int > real,X3: int] :
( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( plus_plus_real @ ( G @ X3 ) @ ( groups8778361861064173332t_real @ G @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6136_sum_Oinsert__remove,axiom,
! [A2: set_int,G: int > rat,X3: int] :
( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( plus_plus_rat @ ( G @ X3 ) @ ( groups3906332499630173760nt_rat @ G @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_6137_sum__diff1,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups2240296850493347238T_real @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( minus_minus_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups2240296850493347238T_real @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( groups2240296850493347238T_real @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6138_sum__diff1,axiom,
! [A2: set_complex,A: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( member_complex @ A @ A2 )
=> ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_complex @ A @ A2 )
=> ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( groups5808333547571424918x_real @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6139_sum__diff1,axiom,
! [A2: set_real,A: real,F: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ A @ A2 )
=> ( ( groups8097168146408367636l_real @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( minus_minus_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_real @ A @ A2 )
=> ( ( groups8097168146408367636l_real @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( groups8097168146408367636l_real @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6140_sum__diff1,axiom,
! [A2: set_int,A: int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ( member_int @ A @ A2 )
=> ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_int @ A @ A2 )
=> ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( groups8778361861064173332t_real @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6141_sum__diff1,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups136491112297645522BT_rat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( minus_minus_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups136491112297645522BT_rat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( groups136491112297645522BT_rat @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6142_sum__diff1,axiom,
! [A2: set_complex,A: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( member_complex @ A @ A2 )
=> ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_complex @ A @ A2 )
=> ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6143_sum__diff1,axiom,
! [A2: set_real,A: real,F: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ A @ A2 )
=> ( ( groups1300246762558778688al_rat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( minus_minus_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_real @ A @ A2 )
=> ( ( groups1300246762558778688al_rat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6144_sum__diff1,axiom,
! [A2: set_int,A: int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ( member_int @ A @ A2 )
=> ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_int @ A @ A2 )
=> ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6145_sum__diff1,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups769130701875090982BT_int @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( minus_minus_int @ ( groups769130701875090982BT_int @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups769130701875090982BT_int @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( groups769130701875090982BT_int @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6146_sum__diff1,axiom,
! [A2: set_complex,A: complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( member_complex @ A @ A2 )
=> ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( minus_minus_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_complex @ A @ A2 )
=> ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( groups5690904116761175830ex_int @ F @ A2 ) ) ) ) ) ).
% sum_diff1
thf(fact_6147_sum__nonneg,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6148_sum__nonneg,axiom,
! [A2: set_int,F: int > real] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6149_sum__nonneg,axiom,
! [A2: set_real,F: real > real] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6150_sum__nonneg,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6151_sum__nonneg,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6152_sum__nonneg,axiom,
! [A2: set_int,F: int > rat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6153_sum__nonneg,axiom,
! [A2: set_real,F: real > rat] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6154_sum__nonneg,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6155_sum__nonneg,axiom,
! [A2: set_int,F: int > nat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6156_sum__nonneg,axiom,
! [A2: set_real,F: real > nat] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6157_sum__nonpos,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_6158_sum__nonpos,axiom,
! [A2: set_int,F: int > real] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_6159_sum__nonpos,axiom,
! [A2: set_real,F: real > real] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_6160_sum__nonpos,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6161_sum__nonpos,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6162_sum__nonpos,axiom,
! [A2: set_int,F: int > rat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6163_sum__nonpos,axiom,
! [A2: set_real,F: real > rat] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6164_sum__nonpos,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_6165_sum__nonpos,axiom,
! [A2: set_int,F: int > nat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_6166_sum__nonpos,axiom,
! [A2: set_real,F: real > nat] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_6167_sum__mono__inv,axiom,
! [F: vEBT_VEBT > rat,I6: set_VEBT_VEBT,G: vEBT_VEBT > rat,I: vEBT_VEBT] :
( ( ( groups136491112297645522BT_rat @ F @ I6 )
= ( groups136491112297645522BT_rat @ G @ I6 ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6168_sum__mono__inv,axiom,
! [F: real > rat,I6: set_real,G: real > rat,I: real] :
( ( ( groups1300246762558778688al_rat @ F @ I6 )
= ( groups1300246762558778688al_rat @ G @ I6 ) )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_real @ I @ I6 )
=> ( ( finite_finite_real @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6169_sum__mono__inv,axiom,
! [F: nat > rat,I6: set_nat,G: nat > rat,I: nat] :
( ( ( groups2906978787729119204at_rat @ F @ I6 )
= ( groups2906978787729119204at_rat @ G @ I6 ) )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_nat @ I @ I6 )
=> ( ( finite_finite_nat @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6170_sum__mono__inv,axiom,
! [F: int > rat,I6: set_int,G: int > rat,I: int] :
( ( ( groups3906332499630173760nt_rat @ F @ I6 )
= ( groups3906332499630173760nt_rat @ G @ I6 ) )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_int @ I @ I6 )
=> ( ( finite_finite_int @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6171_sum__mono__inv,axiom,
! [F: complex > rat,I6: set_complex,G: complex > rat,I: complex] :
( ( ( groups5058264527183730370ex_rat @ F @ I6 )
= ( groups5058264527183730370ex_rat @ G @ I6 ) )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_complex @ I @ I6 )
=> ( ( finite3207457112153483333omplex @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6172_sum__mono__inv,axiom,
! [F: vEBT_VEBT > nat,I6: set_VEBT_VEBT,G: vEBT_VEBT > nat,I: vEBT_VEBT] :
( ( ( groups771621172384141258BT_nat @ F @ I6 )
= ( groups771621172384141258BT_nat @ G @ I6 ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6173_sum__mono__inv,axiom,
! [F: real > nat,I6: set_real,G: real > nat,I: real] :
( ( ( groups1935376822645274424al_nat @ F @ I6 )
= ( groups1935376822645274424al_nat @ G @ I6 ) )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_real @ I @ I6 )
=> ( ( finite_finite_real @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6174_sum__mono__inv,axiom,
! [F: int > nat,I6: set_int,G: int > nat,I: int] :
( ( ( groups4541462559716669496nt_nat @ F @ I6 )
= ( groups4541462559716669496nt_nat @ G @ I6 ) )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_int @ I @ I6 )
=> ( ( finite_finite_int @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6175_sum__mono__inv,axiom,
! [F: complex > nat,I6: set_complex,G: complex > nat,I: complex] :
( ( ( groups5693394587270226106ex_nat @ F @ I6 )
= ( groups5693394587270226106ex_nat @ G @ I6 ) )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_complex @ I @ I6 )
=> ( ( finite3207457112153483333omplex @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6176_sum__mono__inv,axiom,
! [F: vEBT_VEBT > int,I6: set_VEBT_VEBT,G: vEBT_VEBT > int,I: vEBT_VEBT] :
( ( ( groups769130701875090982BT_int @ F @ I6 )
= ( groups769130701875090982BT_int @ G @ I6 ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6177_sum__cong__Suc,axiom,
! [A2: set_nat,F: nat > nat,G: nat > nat] :
( ~ ( member_nat @ zero_zero_nat @ A2 )
=> ( ! [X4: nat] :
( ( member_nat @ ( suc @ X4 ) @ A2 )
=> ( ( F @ ( suc @ X4 ) )
= ( G @ ( suc @ X4 ) ) ) )
=> ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).
% sum_cong_Suc
thf(fact_6178_sum__cong__Suc,axiom,
! [A2: set_nat,F: nat > real,G: nat > real] :
( ~ ( member_nat @ zero_zero_nat @ A2 )
=> ( ! [X4: nat] :
( ( member_nat @ ( suc @ X4 ) @ A2 )
=> ( ( F @ ( suc @ X4 ) )
= ( G @ ( suc @ X4 ) ) ) )
=> ( ( groups6591440286371151544t_real @ F @ A2 )
= ( groups6591440286371151544t_real @ G @ A2 ) ) ) ) ).
% sum_cong_Suc
thf(fact_6179_sum_Odelta__remove,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real,C: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_real @ ( B @ A ) @ ( groups2240296850493347238T_real @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups2240296850493347238T_real @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6180_sum_Odelta__remove,axiom,
! [S2: set_complex,A: complex,B: complex > real,C: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_real @ ( B @ A ) @ ( groups5808333547571424918x_real @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups5808333547571424918x_real @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6181_sum_Odelta__remove,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > rat,C: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups136491112297645522BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_rat @ ( B @ A ) @ ( groups136491112297645522BT_rat @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups136491112297645522BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups136491112297645522BT_rat @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6182_sum_Odelta__remove,axiom,
! [S2: set_complex,A: complex,B: complex > rat,C: complex > rat] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups5058264527183730370ex_rat
@ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_rat @ ( B @ A ) @ ( groups5058264527183730370ex_rat @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups5058264527183730370ex_rat
@ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups5058264527183730370ex_rat @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6183_sum_Odelta__remove,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > nat,C: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups771621172384141258BT_nat
@ ^ [K2: vEBT_VEBT] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_nat @ ( B @ A ) @ ( groups771621172384141258BT_nat @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups771621172384141258BT_nat
@ ^ [K2: vEBT_VEBT] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups771621172384141258BT_nat @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6184_sum_Odelta__remove,axiom,
! [S2: set_complex,A: complex,B: complex > nat,C: complex > nat] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups5693394587270226106ex_nat
@ ^ [K2: complex] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_nat @ ( B @ A ) @ ( groups5693394587270226106ex_nat @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups5693394587270226106ex_nat
@ ^ [K2: complex] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups5693394587270226106ex_nat @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6185_sum_Odelta__remove,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > int,C: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups769130701875090982BT_int
@ ^ [K2: vEBT_VEBT] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_int @ ( B @ A ) @ ( groups769130701875090982BT_int @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups769130701875090982BT_int
@ ^ [K2: vEBT_VEBT] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups769130701875090982BT_int @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6186_sum_Odelta__remove,axiom,
! [S2: set_complex,A: complex,B: complex > int,C: complex > int] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups5690904116761175830ex_int
@ ^ [K2: complex] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_int @ ( B @ A ) @ ( groups5690904116761175830ex_int @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups5690904116761175830ex_int
@ ^ [K2: complex] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups5690904116761175830ex_int @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6187_sum_Odelta__remove,axiom,
! [S2: set_real,A: real,B: real > real,C: real > real] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_real @ ( B @ A ) @ ( groups8097168146408367636l_real @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups8097168146408367636l_real @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6188_sum_Odelta__remove,axiom,
! [S2: set_real,A: real,B: real > rat,C: real > rat] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( plus_plus_rat @ ( B @ A ) @ ( groups1300246762558778688al_rat @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups1300246762558778688al_rat
@ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups1300246762558778688al_rat @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_6189_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one )
=> ( ! [X23: num] :
( Y
!= ( bit0 @ X23 ) )
=> ~ ! [X33: num] :
( Y
!= ( bit1 @ X33 ) ) ) ) ).
% num.exhaust
thf(fact_6190_finite_Ocases,axiom,
! [A: set_complex] :
( ( finite3207457112153483333omplex @ A )
=> ( ( A != bot_bot_set_complex )
=> ~ ! [A7: set_complex] :
( ? [A4: complex] :
( A
= ( insert_complex @ A4 @ A7 ) )
=> ~ ( finite3207457112153483333omplex @ A7 ) ) ) ) ).
% finite.cases
thf(fact_6191_finite_Ocases,axiom,
! [A: set_real] :
( ( finite_finite_real @ A )
=> ( ( A != bot_bot_set_real )
=> ~ ! [A7: set_real] :
( ? [A4: real] :
( A
= ( insert_real @ A4 @ A7 ) )
=> ~ ( finite_finite_real @ A7 ) ) ) ) ).
% finite.cases
thf(fact_6192_finite_Ocases,axiom,
! [A: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ~ ! [A7: set_nat] :
( ? [A4: nat] :
( A
= ( insert_nat @ A4 @ A7 ) )
=> ~ ( finite_finite_nat @ A7 ) ) ) ) ).
% finite.cases
thf(fact_6193_finite_Ocases,axiom,
! [A: set_int] :
( ( finite_finite_int @ A )
=> ( ( A != bot_bot_set_int )
=> ~ ! [A7: set_int] :
( ? [A4: int] :
( A
= ( insert_int @ A4 @ A7 ) )
=> ~ ( finite_finite_int @ A7 ) ) ) ) ).
% finite.cases
thf(fact_6194_finite_Osimps,axiom,
( finite3207457112153483333omplex
= ( ^ [A3: set_complex] :
( ( A3 = bot_bot_set_complex )
| ? [A5: set_complex,B3: complex] :
( ( A3
= ( insert_complex @ B3 @ A5 ) )
& ( finite3207457112153483333omplex @ A5 ) ) ) ) ) ).
% finite.simps
thf(fact_6195_finite_Osimps,axiom,
( finite_finite_real
= ( ^ [A3: set_real] :
( ( A3 = bot_bot_set_real )
| ? [A5: set_real,B3: real] :
( ( A3
= ( insert_real @ B3 @ A5 ) )
& ( finite_finite_real @ A5 ) ) ) ) ) ).
% finite.simps
thf(fact_6196_finite_Osimps,axiom,
( finite_finite_nat
= ( ^ [A3: set_nat] :
( ( A3 = bot_bot_set_nat )
| ? [A5: set_nat,B3: nat] :
( ( A3
= ( insert_nat @ B3 @ A5 ) )
& ( finite_finite_nat @ A5 ) ) ) ) ) ).
% finite.simps
thf(fact_6197_finite_Osimps,axiom,
( finite_finite_int
= ( ^ [A3: set_int] :
( ( A3 = bot_bot_set_int )
| ? [A5: set_int,B3: int] :
( ( A3
= ( insert_int @ B3 @ A5 ) )
& ( finite_finite_int @ A5 ) ) ) ) ) ).
% finite.simps
thf(fact_6198_finite__induct,axiom,
! [F3: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ F3 )
=> ( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT,F4: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ F4 )
=> ( ~ ( member_VEBT_VEBT @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_VEBT_VEBT @ X4 @ F4 ) ) ) ) )
=> ( P @ F3 ) ) ) ) ).
% finite_induct
thf(fact_6199_finite__induct,axiom,
! [F3: set_set_nat,P: set_set_nat > $o] :
( ( finite1152437895449049373et_nat @ F3 )
=> ( ( P @ bot_bot_set_set_nat )
=> ( ! [X4: set_nat,F4: set_set_nat] :
( ( finite1152437895449049373et_nat @ F4 )
=> ( ~ ( member_set_nat @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_set_nat @ X4 @ F4 ) ) ) ) )
=> ( P @ F3 ) ) ) ) ).
% finite_induct
thf(fact_6200_finite__induct,axiom,
! [F3: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ F3 )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [X4: complex,F4: set_complex] :
( ( finite3207457112153483333omplex @ F4 )
=> ( ~ ( member_complex @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_complex @ X4 @ F4 ) ) ) ) )
=> ( P @ F3 ) ) ) ) ).
% finite_induct
thf(fact_6201_finite__induct,axiom,
! [F3: set_real,P: set_real > $o] :
( ( finite_finite_real @ F3 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [X4: real,F4: set_real] :
( ( finite_finite_real @ F4 )
=> ( ~ ( member_real @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_real @ X4 @ F4 ) ) ) ) )
=> ( P @ F3 ) ) ) ) ).
% finite_induct
thf(fact_6202_finite__induct,axiom,
! [F3: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F3 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X4: nat,F4: set_nat] :
( ( finite_finite_nat @ F4 )
=> ( ~ ( member_nat @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_nat @ X4 @ F4 ) ) ) ) )
=> ( P @ F3 ) ) ) ) ).
% finite_induct
thf(fact_6203_finite__induct,axiom,
! [F3: set_int,P: set_int > $o] :
( ( finite_finite_int @ F3 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [X4: int,F4: set_int] :
( ( finite_finite_int @ F4 )
=> ( ~ ( member_int @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_int @ X4 @ F4 ) ) ) ) )
=> ( P @ F3 ) ) ) ) ).
% finite_induct
thf(fact_6204_finite__ne__induct,axiom,
! [F3: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ F3 )
=> ( ( F3 != bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT] : ( P @ ( insert_VEBT_VEBT @ X4 @ bot_bo8194388402131092736T_VEBT ) )
=> ( ! [X4: vEBT_VEBT,F4: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ F4 )
=> ( ( F4 != bot_bo8194388402131092736T_VEBT )
=> ( ~ ( member_VEBT_VEBT @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_VEBT_VEBT @ X4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_6205_finite__ne__induct,axiom,
! [F3: set_set_nat,P: set_set_nat > $o] :
( ( finite1152437895449049373et_nat @ F3 )
=> ( ( F3 != bot_bot_set_set_nat )
=> ( ! [X4: set_nat] : ( P @ ( insert_set_nat @ X4 @ bot_bot_set_set_nat ) )
=> ( ! [X4: set_nat,F4: set_set_nat] :
( ( finite1152437895449049373et_nat @ F4 )
=> ( ( F4 != bot_bot_set_set_nat )
=> ( ~ ( member_set_nat @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_set_nat @ X4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_6206_finite__ne__induct,axiom,
! [F3: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ F3 )
=> ( ( F3 != bot_bot_set_complex )
=> ( ! [X4: complex] : ( P @ ( insert_complex @ X4 @ bot_bot_set_complex ) )
=> ( ! [X4: complex,F4: set_complex] :
( ( finite3207457112153483333omplex @ F4 )
=> ( ( F4 != bot_bot_set_complex )
=> ( ~ ( member_complex @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_complex @ X4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_6207_finite__ne__induct,axiom,
! [F3: set_real,P: set_real > $o] :
( ( finite_finite_real @ F3 )
=> ( ( F3 != bot_bot_set_real )
=> ( ! [X4: real] : ( P @ ( insert_real @ X4 @ bot_bot_set_real ) )
=> ( ! [X4: real,F4: set_real] :
( ( finite_finite_real @ F4 )
=> ( ( F4 != bot_bot_set_real )
=> ( ~ ( member_real @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_real @ X4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_6208_finite__ne__induct,axiom,
! [F3: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F3 )
=> ( ( F3 != bot_bot_set_nat )
=> ( ! [X4: nat] : ( P @ ( insert_nat @ X4 @ bot_bot_set_nat ) )
=> ( ! [X4: nat,F4: set_nat] :
( ( finite_finite_nat @ F4 )
=> ( ( F4 != bot_bot_set_nat )
=> ( ~ ( member_nat @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_nat @ X4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_6209_finite__ne__induct,axiom,
! [F3: set_int,P: set_int > $o] :
( ( finite_finite_int @ F3 )
=> ( ( F3 != bot_bot_set_int )
=> ( ! [X4: int] : ( P @ ( insert_int @ X4 @ bot_bot_set_int ) )
=> ( ! [X4: int,F4: set_int] :
( ( finite_finite_int @ F4 )
=> ( ( F4 != bot_bot_set_int )
=> ( ~ ( member_int @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_int @ X4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_6210_infinite__finite__induct,axiom,
! [P: set_VEBT_VEBT > $o,A2: set_VEBT_VEBT] :
( ! [A7: set_VEBT_VEBT] :
( ~ ( finite5795047828879050333T_VEBT @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT,F4: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ F4 )
=> ( ~ ( member_VEBT_VEBT @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_VEBT_VEBT @ X4 @ F4 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_6211_infinite__finite__induct,axiom,
! [P: set_set_nat > $o,A2: set_set_nat] :
( ! [A7: set_set_nat] :
( ~ ( finite1152437895449049373et_nat @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_set_nat )
=> ( ! [X4: set_nat,F4: set_set_nat] :
( ( finite1152437895449049373et_nat @ F4 )
=> ( ~ ( member_set_nat @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_set_nat @ X4 @ F4 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_6212_infinite__finite__induct,axiom,
! [P: set_complex > $o,A2: set_complex] :
( ! [A7: set_complex] :
( ~ ( finite3207457112153483333omplex @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [X4: complex,F4: set_complex] :
( ( finite3207457112153483333omplex @ F4 )
=> ( ~ ( member_complex @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_complex @ X4 @ F4 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_6213_infinite__finite__induct,axiom,
! [P: set_real > $o,A2: set_real] :
( ! [A7: set_real] :
( ~ ( finite_finite_real @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_real )
=> ( ! [X4: real,F4: set_real] :
( ( finite_finite_real @ F4 )
=> ( ~ ( member_real @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_real @ X4 @ F4 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_6214_infinite__finite__induct,axiom,
! [P: set_nat > $o,A2: set_nat] :
( ! [A7: set_nat] :
( ~ ( finite_finite_nat @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X4: nat,F4: set_nat] :
( ( finite_finite_nat @ F4 )
=> ( ~ ( member_nat @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_nat @ X4 @ F4 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_6215_infinite__finite__induct,axiom,
! [P: set_int > $o,A2: set_int] :
( ! [A7: set_int] :
( ~ ( finite_finite_int @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_int )
=> ( ! [X4: int,F4: set_int] :
( ( finite_finite_int @ F4 )
=> ( ~ ( member_int @ X4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_int @ X4 @ F4 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_6216_subset__singleton__iff,axiom,
! [X8: set_real,A: real] :
( ( ord_less_eq_set_real @ X8 @ ( insert_real @ A @ bot_bot_set_real ) )
= ( ( X8 = bot_bot_set_real )
| ( X8
= ( insert_real @ A @ bot_bot_set_real ) ) ) ) ).
% subset_singleton_iff
thf(fact_6217_subset__singleton__iff,axiom,
! [X8: set_nat,A: nat] :
( ( ord_less_eq_set_nat @ X8 @ ( insert_nat @ A @ bot_bot_set_nat ) )
= ( ( X8 = bot_bot_set_nat )
| ( X8
= ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).
% subset_singleton_iff
thf(fact_6218_subset__singleton__iff,axiom,
! [X8: set_int,A: int] :
( ( ord_less_eq_set_int @ X8 @ ( insert_int @ A @ bot_bot_set_int ) )
= ( ( X8 = bot_bot_set_int )
| ( X8
= ( insert_int @ A @ bot_bot_set_int ) ) ) ) ).
% subset_singleton_iff
thf(fact_6219_subset__singletonD,axiom,
! [A2: set_real,X3: real] :
( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) )
=> ( ( A2 = bot_bot_set_real )
| ( A2
= ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ).
% subset_singletonD
thf(fact_6220_subset__singletonD,axiom,
! [A2: set_nat,X3: nat] :
( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) )
=> ( ( A2 = bot_bot_set_nat )
| ( A2
= ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ).
% subset_singletonD
thf(fact_6221_subset__singletonD,axiom,
! [A2: set_int,X3: int] :
( ( ord_less_eq_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) )
=> ( ( A2 = bot_bot_set_int )
| ( A2
= ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ).
% subset_singletonD
thf(fact_6222_atLeastAtMost__singleton_H,axiom,
! [A: nat,B: nat] :
( ( A = B )
=> ( ( set_or1269000886237332187st_nat @ A @ B )
= ( insert_nat @ A @ bot_bot_set_nat ) ) ) ).
% atLeastAtMost_singleton'
thf(fact_6223_atLeastAtMost__singleton_H,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( set_or1266510415728281911st_int @ A @ B )
= ( insert_int @ A @ bot_bot_set_int ) ) ) ).
% atLeastAtMost_singleton'
thf(fact_6224_atLeastAtMost__singleton_H,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( set_or1222579329274155063t_real @ A @ B )
= ( insert_real @ A @ bot_bot_set_real ) ) ) ).
% atLeastAtMost_singleton'
thf(fact_6225_Diff__insert__absorb,axiom,
! [X3: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X3 @ A2 ) @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_6226_Diff__insert__absorb,axiom,
! [X3: set_nat,A2: set_set_nat] :
( ~ ( member_set_nat @ X3 @ A2 )
=> ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X3 @ A2 ) @ ( insert_set_nat @ X3 @ bot_bot_set_set_nat ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_6227_Diff__insert__absorb,axiom,
! [X3: real,A2: set_real] :
( ~ ( member_real @ X3 @ A2 )
=> ( ( minus_minus_set_real @ ( insert_real @ X3 @ A2 ) @ ( insert_real @ X3 @ bot_bot_set_real ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_6228_Diff__insert__absorb,axiom,
! [X3: int,A2: set_int] :
( ~ ( member_int @ X3 @ A2 )
=> ( ( minus_minus_set_int @ ( insert_int @ X3 @ A2 ) @ ( insert_int @ X3 @ bot_bot_set_int ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_6229_Diff__insert__absorb,axiom,
! [X3: nat,A2: set_nat] :
( ~ ( member_nat @ X3 @ A2 )
=> ( ( minus_minus_set_nat @ ( insert_nat @ X3 @ A2 ) @ ( insert_nat @ X3 @ bot_bot_set_nat ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_6230_Diff__insert2,axiom,
! [A2: set_real,A: real,B2: set_real] :
( ( minus_minus_set_real @ A2 @ ( insert_real @ A @ B2 ) )
= ( minus_minus_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) @ B2 ) ) ).
% Diff_insert2
thf(fact_6231_Diff__insert2,axiom,
! [A2: set_int,A: int,B2: set_int] :
( ( minus_minus_set_int @ A2 @ ( insert_int @ A @ B2 ) )
= ( minus_minus_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) @ B2 ) ) ).
% Diff_insert2
thf(fact_6232_Diff__insert2,axiom,
! [A2: set_nat,A: nat,B2: set_nat] :
( ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
= ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) @ B2 ) ) ).
% Diff_insert2
thf(fact_6233_insert__Diff,axiom,
! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( insert_VEBT_VEBT @ A @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_6234_insert__Diff,axiom,
! [A: set_nat,A2: set_set_nat] :
( ( member_set_nat @ A @ A2 )
=> ( ( insert_set_nat @ A @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_6235_insert__Diff,axiom,
! [A: real,A2: set_real] :
( ( member_real @ A @ A2 )
=> ( ( insert_real @ A @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_6236_insert__Diff,axiom,
! [A: int,A2: set_int] :
( ( member_int @ A @ A2 )
=> ( ( insert_int @ A @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_6237_insert__Diff,axiom,
! [A: nat,A2: set_nat] :
( ( member_nat @ A @ A2 )
=> ( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_6238_Diff__insert,axiom,
! [A2: set_real,A: real,B2: set_real] :
( ( minus_minus_set_real @ A2 @ ( insert_real @ A @ B2 ) )
= ( minus_minus_set_real @ ( minus_minus_set_real @ A2 @ B2 ) @ ( insert_real @ A @ bot_bot_set_real ) ) ) ).
% Diff_insert
thf(fact_6239_Diff__insert,axiom,
! [A2: set_int,A: int,B2: set_int] :
( ( minus_minus_set_int @ A2 @ ( insert_int @ A @ B2 ) )
= ( minus_minus_set_int @ ( minus_minus_set_int @ A2 @ B2 ) @ ( insert_int @ A @ bot_bot_set_int ) ) ) ).
% Diff_insert
thf(fact_6240_Diff__insert,axiom,
! [A2: set_nat,A: nat,B2: set_nat] :
( ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
= ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B2 ) @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ).
% Diff_insert
thf(fact_6241_subset__Diff__insert,axiom,
! [A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,X3: vEBT_VEBT,C4: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ A2 @ ( minus_5127226145743854075T_VEBT @ B2 @ ( insert_VEBT_VEBT @ X3 @ C4 ) ) )
= ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( minus_5127226145743854075T_VEBT @ B2 @ C4 ) )
& ~ ( member_VEBT_VEBT @ X3 @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_6242_subset__Diff__insert,axiom,
! [A2: set_set_nat,B2: set_set_nat,X3: set_nat,C4: set_set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ ( minus_2163939370556025621et_nat @ B2 @ ( insert_set_nat @ X3 @ C4 ) ) )
= ( ( ord_le6893508408891458716et_nat @ A2 @ ( minus_2163939370556025621et_nat @ B2 @ C4 ) )
& ~ ( member_set_nat @ X3 @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_6243_subset__Diff__insert,axiom,
! [A2: set_real,B2: set_real,X3: real,C4: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( minus_minus_set_real @ B2 @ ( insert_real @ X3 @ C4 ) ) )
= ( ( ord_less_eq_set_real @ A2 @ ( minus_minus_set_real @ B2 @ C4 ) )
& ~ ( member_real @ X3 @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_6244_subset__Diff__insert,axiom,
! [A2: set_nat,B2: set_nat,X3: nat,C4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B2 @ ( insert_nat @ X3 @ C4 ) ) )
= ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B2 @ C4 ) )
& ~ ( member_nat @ X3 @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_6245_subset__Diff__insert,axiom,
! [A2: set_int,B2: set_int,X3: int,C4: set_int] :
( ( ord_less_eq_set_int @ A2 @ ( minus_minus_set_int @ B2 @ ( insert_int @ X3 @ C4 ) ) )
= ( ( ord_less_eq_set_int @ A2 @ ( minus_minus_set_int @ B2 @ C4 ) )
& ~ ( member_int @ X3 @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_6246_sum_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > complex,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups1794756597179926696omplex @ G
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups1794756597179926696omplex
@ ^ [X2: vEBT_VEBT] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6247_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > complex,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups5754745047067104278omplex @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups5754745047067104278omplex
@ ^ [X2: real] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6248_sum_Ointer__filter,axiom,
! [A2: set_nat,G: nat > complex,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups2073611262835488442omplex @ G
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups2073611262835488442omplex
@ ^ [X2: nat] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6249_sum_Ointer__filter,axiom,
! [A2: set_int,G: int > complex,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups3049146728041665814omplex
@ ^ [X2: int] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6250_sum_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > real,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups2240296850493347238T_real @ G
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups2240296850493347238T_real
@ ^ [X2: vEBT_VEBT] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6251_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > real,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups8097168146408367636l_real @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups8097168146408367636l_real
@ ^ [X2: real] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6252_sum_Ointer__filter,axiom,
! [A2: set_int,G: int > real,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups8778361861064173332t_real
@ ^ [X2: int] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6253_sum_Ointer__filter,axiom,
! [A2: set_complex,G: complex > real,P: complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups5808333547571424918x_real
@ ^ [X2: complex] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6254_sum_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > rat,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups136491112297645522BT_rat @ G
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups136491112297645522BT_rat
@ ^ [X2: vEBT_VEBT] : ( if_rat @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_rat )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6255_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > rat,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups1300246762558778688al_rat @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups1300246762558778688al_rat
@ ^ [X2: real] : ( if_rat @ ( P @ X2 ) @ ( G @ X2 ) @ zero_zero_rat )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6256_member__le__sum,axiom,
! [I: vEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( member_VEBT_VEBT @ I @ A2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ I @ bot_bo8194388402131092736T_VEBT ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ord_less_eq_real @ ( F @ I ) @ ( groups2240296850493347238T_real @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6257_member__le__sum,axiom,
! [I: complex,A2: set_complex,F: complex > real] :
( ( member_complex @ I @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ I @ bot_bot_set_complex ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ord_less_eq_real @ ( F @ I ) @ ( groups5808333547571424918x_real @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6258_member__le__sum,axiom,
! [I: real,A2: set_real,F: real > real] :
( ( member_real @ I @ A2 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ A2 @ ( insert_real @ I @ bot_bot_set_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( finite_finite_real @ A2 )
=> ( ord_less_eq_real @ ( F @ I ) @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6259_member__le__sum,axiom,
! [I: int,A2: set_int,F: int > real] :
( ( member_int @ I @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ A2 @ ( insert_int @ I @ bot_bot_set_int ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( finite_finite_int @ A2 )
=> ( ord_less_eq_real @ ( F @ I ) @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6260_member__le__sum,axiom,
! [I: vEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( member_VEBT_VEBT @ I @ A2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ I @ bot_bo8194388402131092736T_VEBT ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ord_less_eq_rat @ ( F @ I ) @ ( groups136491112297645522BT_rat @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6261_member__le__sum,axiom,
! [I: complex,A2: set_complex,F: complex > rat] :
( ( member_complex @ I @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ I @ bot_bot_set_complex ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ord_less_eq_rat @ ( F @ I ) @ ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6262_member__le__sum,axiom,
! [I: real,A2: set_real,F: real > rat] :
( ( member_real @ I @ A2 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ A2 @ ( insert_real @ I @ bot_bot_set_real ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( finite_finite_real @ A2 )
=> ( ord_less_eq_rat @ ( F @ I ) @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6263_member__le__sum,axiom,
! [I: int,A2: set_int,F: int > rat] :
( ( member_int @ I @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ A2 @ ( insert_int @ I @ bot_bot_set_int ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( finite_finite_int @ A2 )
=> ( ord_less_eq_rat @ ( F @ I ) @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6264_member__le__sum,axiom,
! [I: nat,A2: set_nat,F: nat > rat] :
( ( member_nat @ I @ A2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ I @ bot_bot_set_nat ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( finite_finite_nat @ A2 )
=> ( ord_less_eq_rat @ ( F @ I ) @ ( groups2906978787729119204at_rat @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6265_member__le__sum,axiom,
! [I: vEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ( member_VEBT_VEBT @ I @ A2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ I @ bot_bo8194388402131092736T_VEBT ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( groups771621172384141258BT_nat @ F @ A2 ) ) ) ) ) ).
% member_le_sum
thf(fact_6266_sum__subtractf__nat,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > nat,F: vEBT_VEBT > nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
=> ( ( groups771621172384141258BT_nat
@ ^ [X2: vEBT_VEBT] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6267_sum__subtractf__nat,axiom,
! [A2: set_int,G: int > nat,F: int > nat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
=> ( ( groups4541462559716669496nt_nat
@ ^ [X2: int] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6268_sum__subtractf__nat,axiom,
! [A2: set_set_nat,G: set_nat > nat,F: set_nat > nat] :
( ! [X4: set_nat] :
( ( member_set_nat @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
=> ( ( groups8294997508430121362at_nat
@ ^ [X2: set_nat] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups8294997508430121362at_nat @ F @ A2 ) @ ( groups8294997508430121362at_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6269_sum__subtractf__nat,axiom,
! [A2: set_real,G: real > nat,F: real > nat] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
=> ( ( groups1935376822645274424al_nat
@ ^ [X2: real] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6270_sum__subtractf__nat,axiom,
! [A2: set_nat,G: nat > nat,F: nat > nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
=> ( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_6271_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > nat,M: nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_6272_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > real,M: nat,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_6273_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > nat,M: nat,K: nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( plus_plus_nat @ I5 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_6274_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > real,M: nat,K: nat,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
= ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( plus_plus_nat @ I5 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_6275_sum__le__included,axiom,
! [S: set_int,T: set_int,G: int > real,I: int > int,F: int > real] :
( ( finite_finite_int @ S )
=> ( ( finite_finite_int @ T )
=> ( ! [X4: int] :
( ( member_int @ X4 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6276_sum__le__included,axiom,
! [S: set_int,T: set_complex,G: complex > real,I: complex > int,F: int > real] :
( ( finite_finite_int @ S )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6277_sum__le__included,axiom,
! [S: set_complex,T: set_int,G: int > real,I: int > complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S )
=> ( ( finite_finite_int @ T )
=> ( ! [X4: int] :
( ( member_int @ X4 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6278_sum__le__included,axiom,
! [S: set_complex,T: set_complex,G: complex > real,I: complex > complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ T )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6279_sum__le__included,axiom,
! [S: set_nat,T: set_nat,G: nat > rat,I: nat > nat,F: nat > rat] :
( ( finite_finite_nat @ S )
=> ( ( finite_finite_nat @ T )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6280_sum__le__included,axiom,
! [S: set_nat,T: set_int,G: int > rat,I: int > nat,F: nat > rat] :
( ( finite_finite_nat @ S )
=> ( ( finite_finite_int @ T )
=> ( ! [X4: int] :
( ( member_int @ X4 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6281_sum__le__included,axiom,
! [S: set_nat,T: set_complex,G: complex > rat,I: complex > nat,F: nat > rat] :
( ( finite_finite_nat @ S )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6282_sum__le__included,axiom,
! [S: set_int,T: set_nat,G: nat > rat,I: nat > int,F: int > rat] :
( ( finite_finite_int @ S )
=> ( ( finite_finite_nat @ T )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6283_sum__le__included,axiom,
! [S: set_int,T: set_int,G: int > rat,I: int > int,F: int > rat] :
( ( finite_finite_int @ S )
=> ( ( finite_finite_int @ T )
=> ( ! [X4: int] :
( ( member_int @ X4 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S )
=> ? [Xa: int] :
( ( member_int @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6284_sum__le__included,axiom,
! [S: set_int,T: set_complex,G: complex > rat,I: complex > int,F: int > rat] :
( ( finite_finite_int @ S )
=> ( ( finite3207457112153483333omplex @ T )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ T )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6285_sum__nonneg__eq__0__iff,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( ( groups2240296850493347238T_real @ F @ A2 )
= zero_zero_real )
= ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6286_sum__nonneg__eq__0__iff,axiom,
! [A2: set_real,F: real > real] :
( ( finite_finite_real @ A2 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ A2 )
= zero_zero_real )
= ( ! [X2: real] :
( ( member_real @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6287_sum__nonneg__eq__0__iff,axiom,
! [A2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ A2 )
= zero_zero_real )
= ( ! [X2: int] :
( ( member_int @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6288_sum__nonneg__eq__0__iff,axiom,
! [A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ A2 )
= zero_zero_real )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6289_sum__nonneg__eq__0__iff,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( ( groups136491112297645522BT_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6290_sum__nonneg__eq__0__iff,axiom,
! [A2: set_real,F: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: real] :
( ( member_real @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6291_sum__nonneg__eq__0__iff,axiom,
! [A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6292_sum__nonneg__eq__0__iff,axiom,
! [A2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: int] :
( ( member_int @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6293_sum__nonneg__eq__0__iff,axiom,
! [A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6294_sum__nonneg__eq__0__iff,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ( ( groups771621172384141258BT_nat @ F @ A2 )
= zero_zero_nat )
= ( ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
=> ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6295_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ord_less_real @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6296_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ord_less_real @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6297_sum__strict__mono__ex1,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ord_less_rat @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6298_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ord_less_rat @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6299_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ord_less_rat @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6300_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > nat,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ord_less_nat @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6301_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > nat,G: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ord_less_nat @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6302_sum__strict__mono__ex1,axiom,
! [A2: set_nat,F: nat > int,G: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ord_less_int @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6303_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > int,G: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ord_less_int @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6304_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > int,G: int > int] :
( ( finite_finite_int @ A2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ord_less_int @ ( F @ X ) @ ( G @ X ) ) )
=> ( ord_less_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6305_sum_Orelated,axiom,
! [R: complex > complex > $o,S2: set_nat,H2: nat > complex,G: nat > complex] :
( ( R @ zero_zero_complex @ zero_zero_complex )
=> ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_complex @ X1 @ Y1 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups2073611262835488442omplex @ H2 @ S2 ) @ ( groups2073611262835488442omplex @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6306_sum_Orelated,axiom,
! [R: complex > complex > $o,S2: set_int,H2: int > complex,G: int > complex] :
( ( R @ zero_zero_complex @ zero_zero_complex )
=> ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_complex @ X1 @ Y1 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups3049146728041665814omplex @ H2 @ S2 ) @ ( groups3049146728041665814omplex @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6307_sum_Orelated,axiom,
! [R: real > real > $o,S2: set_int,H2: int > real,G: int > real] :
( ( R @ zero_zero_real @ zero_zero_real )
=> ( ! [X1: real,Y1: real,X23: real,Y23: real] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups8778361861064173332t_real @ H2 @ S2 ) @ ( groups8778361861064173332t_real @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6308_sum_Orelated,axiom,
! [R: real > real > $o,S2: set_complex,H2: complex > real,G: complex > real] :
( ( R @ zero_zero_real @ zero_zero_real )
=> ( ! [X1: real,Y1: real,X23: real,Y23: real] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups5808333547571424918x_real @ H2 @ S2 ) @ ( groups5808333547571424918x_real @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6309_sum_Orelated,axiom,
! [R: rat > rat > $o,S2: set_nat,H2: nat > rat,G: nat > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups2906978787729119204at_rat @ H2 @ S2 ) @ ( groups2906978787729119204at_rat @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6310_sum_Orelated,axiom,
! [R: rat > rat > $o,S2: set_int,H2: int > rat,G: int > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups3906332499630173760nt_rat @ H2 @ S2 ) @ ( groups3906332499630173760nt_rat @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6311_sum_Orelated,axiom,
! [R: rat > rat > $o,S2: set_complex,H2: complex > rat,G: complex > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups5058264527183730370ex_rat @ H2 @ S2 ) @ ( groups5058264527183730370ex_rat @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6312_sum_Orelated,axiom,
! [R: nat > nat > $o,S2: set_int,H2: int > nat,G: int > nat] :
( ( R @ zero_zero_nat @ zero_zero_nat )
=> ( ! [X1: nat,Y1: nat,X23: nat,Y23: nat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_nat @ X1 @ Y1 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups4541462559716669496nt_nat @ H2 @ S2 ) @ ( groups4541462559716669496nt_nat @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6313_sum_Orelated,axiom,
! [R: nat > nat > $o,S2: set_complex,H2: complex > nat,G: complex > nat] :
( ( R @ zero_zero_nat @ zero_zero_nat )
=> ( ! [X1: nat,Y1: nat,X23: nat,Y23: nat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_nat @ X1 @ Y1 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups5693394587270226106ex_nat @ H2 @ S2 ) @ ( groups5693394587270226106ex_nat @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6314_sum_Orelated,axiom,
! [R: int > int > $o,S2: set_nat,H2: nat > int,G: nat > int] :
( ( R @ zero_zero_int @ zero_zero_int )
=> ( ! [X1: int,Y1: int,X23: int,Y23: int] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_int @ X1 @ Y1 ) @ ( plus_plus_int @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups3539618377306564664at_int @ H2 @ S2 ) @ ( groups3539618377306564664at_int @ G @ S2 ) ) ) ) ) ) ).
% sum.related
thf(fact_6315_sum__strict__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( A2 != bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6316_sum__strict__mono,axiom,
! [A2: set_complex,F: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( A2 != bot_bot_set_complex )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6317_sum__strict__mono,axiom,
! [A2: set_real,F: real > real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6318_sum__strict__mono,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6319_sum__strict__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( A2 != bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6320_sum__strict__mono,axiom,
! [A2: set_complex,F: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( A2 != bot_bot_set_complex )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6321_sum__strict__mono,axiom,
! [A2: set_real,F: real > rat,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6322_sum__strict__mono,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6323_sum__strict__mono,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( A2 != bot_bot_set_int )
=> ( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6324_sum__strict__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( A2 != bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono
thf(fact_6325_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_VEBT_VEBT,S2: set_VEBT_VEBT,I: vEBT_VEBT > vEBT_VEBT,J: vEBT_VEBT > vEBT_VEBT,T3: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S2 )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6326_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_real,S2: set_VEBT_VEBT,I: real > vEBT_VEBT,J: vEBT_VEBT > real,T3: set_real,G: vEBT_VEBT > complex,H2: real > complex] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S2 )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6327_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_VEBT_VEBT,S2: set_real,I: vEBT_VEBT > real,J: real > vEBT_VEBT,T3: set_VEBT_VEBT,G: real > complex,H2: vEBT_VEBT > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S2 )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6328_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_real,S2: set_real,I: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S2 )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6329_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_int,S2: set_VEBT_VEBT,I: int > vEBT_VEBT,J: vEBT_VEBT > int,T3: set_int,G: vEBT_VEBT > complex,H2: int > complex] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S2 )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6330_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_int,S2: set_real,I: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S2 )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6331_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_VEBT_VEBT,S2: set_int,I: vEBT_VEBT > int,J: int > vEBT_VEBT,T3: set_VEBT_VEBT,G: int > complex,H2: vEBT_VEBT > complex] :
( ( finite_finite_int @ S4 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S2 )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6332_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_real,S2: set_int,I: real > int,J: int > real,T3: set_real,G: int > complex,H2: real > complex] :
( ( finite_finite_int @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S2 )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6333_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_int,S2: set_int,I: int > int,J: int > int,T3: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S2 )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6334_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_VEBT_VEBT,S2: set_VEBT_VEBT,I: vEBT_VEBT > vEBT_VEBT,J: vEBT_VEBT > vEBT_VEBT,T3: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ T4 )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups2240296850493347238T_real @ G @ S2 )
= ( groups2240296850493347238T_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6335_sum__eq__Suc0__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= ( suc @ zero_zero_nat ) )
& ! [Y5: int] :
( ( member_int @ Y5 @ A2 )
=> ( ( X2 != Y5 )
=> ( ( F @ Y5 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_6336_sum__eq__Suc0__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( ( F @ X2 )
= ( suc @ zero_zero_nat ) )
& ! [Y5: complex] :
( ( member_complex @ Y5 @ A2 )
=> ( ( X2 != Y5 )
=> ( ( F @ Y5 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_6337_sum__eq__Suc0__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( ( F @ X2 )
= ( suc @ zero_zero_nat ) )
& ! [Y5: nat] :
( ( member_nat @ Y5 @ A2 )
=> ( ( X2 != Y5 )
=> ( ( F @ Y5 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_6338_sum__SucD,axiom,
! [F: nat > nat,A2: set_nat,N2: nat] :
( ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( suc @ N2 ) )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ord_less_nat @ zero_zero_nat @ ( F @ X4 ) ) ) ) ).
% sum_SucD
thf(fact_6339_sum__eq__1__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
= one_one_nat )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= one_one_nat )
& ! [Y5: int] :
( ( member_int @ Y5 @ A2 )
=> ( ( X2 != Y5 )
=> ( ( F @ Y5 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_6340_sum__eq__1__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
= one_one_nat )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( ( F @ X2 )
= one_one_nat )
& ! [Y5: complex] :
( ( member_complex @ Y5 @ A2 )
=> ( ( X2 != Y5 )
=> ( ( F @ Y5 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_6341_sum__eq__1__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups3542108847815614940at_nat @ F @ A2 )
= one_one_nat )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( ( F @ X2 )
= one_one_nat )
& ! [Y5: nat] :
( ( member_nat @ Y5 @ A2 )
=> ( ( X2 != Y5 )
=> ( ( F @ Y5 )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_6342_numeral__Bit1,axiom,
! [N2: num] :
( ( numera6690914467698888265omplex @ ( bit1 @ N2 ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) @ one_one_complex ) ) ).
% numeral_Bit1
thf(fact_6343_numeral__Bit1,axiom,
! [N2: num] :
( ( numeral_numeral_rat @ ( bit1 @ N2 ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) @ one_one_rat ) ) ).
% numeral_Bit1
thf(fact_6344_numeral__Bit1,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) @ one_one_nat ) ) ).
% numeral_Bit1
thf(fact_6345_numeral__Bit1,axiom,
! [N2: num] :
( ( numeral_numeral_int @ ( bit1 @ N2 ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) @ one_one_int ) ) ).
% numeral_Bit1
thf(fact_6346_numeral__Bit1,axiom,
! [N2: num] :
( ( numera1916890842035813515d_enat @ ( bit1 @ N2 ) )
= ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ ( numera1916890842035813515d_enat @ N2 ) ) @ one_on7984719198319812577d_enat ) ) ).
% numeral_Bit1
thf(fact_6347_numeral__Bit1,axiom,
! [N2: num] :
( ( numeral_numeral_real @ ( bit1 @ N2 ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) @ one_one_real ) ) ).
% numeral_Bit1
thf(fact_6348_numeral__Bit1,axiom,
! [N2: num] :
( ( numera6620942414471956472nteger @ ( bit1 @ N2 ) )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ one_one_Code_integer ) ) ).
% numeral_Bit1
thf(fact_6349_finite__ranking__induct,axiom,
! [S2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT,S5: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S5 )
=> ( ! [Y3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ Y3 @ S5 )
=> ( ord_less_eq_rat @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_VEBT_VEBT @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6350_finite__ranking__induct,axiom,
! [S2: set_complex,P: set_complex > $o,F: complex > rat] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [X4: complex,S5: set_complex] :
( ( finite3207457112153483333omplex @ S5 )
=> ( ! [Y3: complex] :
( ( member_complex @ Y3 @ S5 )
=> ( ord_less_eq_rat @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_complex @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6351_finite__ranking__induct,axiom,
! [S2: set_real,P: set_real > $o,F: real > rat] :
( ( finite_finite_real @ S2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [X4: real,S5: set_real] :
( ( finite_finite_real @ S5 )
=> ( ! [Y3: real] :
( ( member_real @ Y3 @ S5 )
=> ( ord_less_eq_rat @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_real @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6352_finite__ranking__induct,axiom,
! [S2: set_nat,P: set_nat > $o,F: nat > rat] :
( ( finite_finite_nat @ S2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X4: nat,S5: set_nat] :
( ( finite_finite_nat @ S5 )
=> ( ! [Y3: nat] :
( ( member_nat @ Y3 @ S5 )
=> ( ord_less_eq_rat @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_nat @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6353_finite__ranking__induct,axiom,
! [S2: set_int,P: set_int > $o,F: int > rat] :
( ( finite_finite_int @ S2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [X4: int,S5: set_int] :
( ( finite_finite_int @ S5 )
=> ( ! [Y3: int] :
( ( member_int @ Y3 @ S5 )
=> ( ord_less_eq_rat @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_int @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6354_finite__ranking__induct,axiom,
! [S2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o,F: vEBT_VEBT > num] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ! [X4: vEBT_VEBT,S5: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S5 )
=> ( ! [Y3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ Y3 @ S5 )
=> ( ord_less_eq_num @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_VEBT_VEBT @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6355_finite__ranking__induct,axiom,
! [S2: set_complex,P: set_complex > $o,F: complex > num] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [X4: complex,S5: set_complex] :
( ( finite3207457112153483333omplex @ S5 )
=> ( ! [Y3: complex] :
( ( member_complex @ Y3 @ S5 )
=> ( ord_less_eq_num @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_complex @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6356_finite__ranking__induct,axiom,
! [S2: set_real,P: set_real > $o,F: real > num] :
( ( finite_finite_real @ S2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [X4: real,S5: set_real] :
( ( finite_finite_real @ S5 )
=> ( ! [Y3: real] :
( ( member_real @ Y3 @ S5 )
=> ( ord_less_eq_num @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_real @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6357_finite__ranking__induct,axiom,
! [S2: set_nat,P: set_nat > $o,F: nat > num] :
( ( finite_finite_nat @ S2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X4: nat,S5: set_nat] :
( ( finite_finite_nat @ S5 )
=> ( ! [Y3: nat] :
( ( member_nat @ Y3 @ S5 )
=> ( ord_less_eq_num @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_nat @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6358_finite__ranking__induct,axiom,
! [S2: set_int,P: set_int > $o,F: int > num] :
( ( finite_finite_int @ S2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [X4: int,S5: set_int] :
( ( finite_finite_int @ S5 )
=> ( ! [Y3: int] :
( ( member_int @ Y3 @ S5 )
=> ( ord_less_eq_num @ ( F @ Y3 ) @ ( F @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert_int @ X4 @ S5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_ranking_induct
thf(fact_6359_finite__linorder__min__induct,axiom,
! [A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [B4: real,A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ! [X: real] :
( ( member_real @ X @ A7 )
=> ( ord_less_real @ B4 @ X ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_real @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_6360_finite__linorder__min__induct,axiom,
! [A2: set_rat,P: set_rat > $o] :
( ( finite_finite_rat @ A2 )
=> ( ( P @ bot_bot_set_rat )
=> ( ! [B4: rat,A7: set_rat] :
( ( finite_finite_rat @ A7 )
=> ( ! [X: rat] :
( ( member_rat @ X @ A7 )
=> ( ord_less_rat @ B4 @ X ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_rat @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_6361_finite__linorder__min__induct,axiom,
! [A2: set_num,P: set_num > $o] :
( ( finite_finite_num @ A2 )
=> ( ( P @ bot_bot_set_num )
=> ( ! [B4: num,A7: set_num] :
( ( finite_finite_num @ A7 )
=> ( ! [X: num] :
( ( member_num @ X @ A7 )
=> ( ord_less_num @ B4 @ X ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_num @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_6362_finite__linorder__min__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [B4: nat,A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ! [X: nat] :
( ( member_nat @ X @ A7 )
=> ( ord_less_nat @ B4 @ X ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_nat @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_6363_finite__linorder__min__induct,axiom,
! [A2: set_int,P: set_int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [B4: int,A7: set_int] :
( ( finite_finite_int @ A7 )
=> ( ! [X: int] :
( ( member_int @ X @ A7 )
=> ( ord_less_int @ B4 @ X ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_int @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_6364_finite__linorder__max__induct,axiom,
! [A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [B4: real,A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ! [X: real] :
( ( member_real @ X @ A7 )
=> ( ord_less_real @ X @ B4 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_real @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_6365_finite__linorder__max__induct,axiom,
! [A2: set_rat,P: set_rat > $o] :
( ( finite_finite_rat @ A2 )
=> ( ( P @ bot_bot_set_rat )
=> ( ! [B4: rat,A7: set_rat] :
( ( finite_finite_rat @ A7 )
=> ( ! [X: rat] :
( ( member_rat @ X @ A7 )
=> ( ord_less_rat @ X @ B4 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_rat @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_6366_finite__linorder__max__induct,axiom,
! [A2: set_num,P: set_num > $o] :
( ( finite_finite_num @ A2 )
=> ( ( P @ bot_bot_set_num )
=> ( ! [B4: num,A7: set_num] :
( ( finite_finite_num @ A7 )
=> ( ! [X: num] :
( ( member_num @ X @ A7 )
=> ( ord_less_num @ X @ B4 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_num @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_6367_finite__linorder__max__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [B4: nat,A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ! [X: nat] :
( ( member_nat @ X @ A7 )
=> ( ord_less_nat @ X @ B4 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_nat @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_6368_finite__linorder__max__induct,axiom,
! [A2: set_int,P: set_int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [B4: int,A7: set_int] :
( ( finite_finite_int @ A7 )
=> ( ! [X: int] :
( ( member_int @ X @ A7 )
=> ( ord_less_int @ X @ B4 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_int @ B4 @ A7 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_6369_eval__nat__numeral_I3_J,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
= ( suc @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) ) ) ).
% eval_nat_numeral(3)
thf(fact_6370_finite__subset__induct_H,axiom,
! [F3: set_VEBT_VEBT,A2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ F3 )
=> ( ( ord_le4337996190870823476T_VEBT @ F3 @ A2 )
=> ( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ! [A4: vEBT_VEBT,F4: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ F4 )
=> ( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( ord_le4337996190870823476T_VEBT @ F4 @ A2 )
=> ( ~ ( member_VEBT_VEBT @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_VEBT_VEBT @ A4 @ F4 ) ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_6371_finite__subset__induct_H,axiom,
! [F3: set_set_nat,A2: set_set_nat,P: set_set_nat > $o] :
( ( finite1152437895449049373et_nat @ F3 )
=> ( ( ord_le6893508408891458716et_nat @ F3 @ A2 )
=> ( ( P @ bot_bot_set_set_nat )
=> ( ! [A4: set_nat,F4: set_set_nat] :
( ( finite1152437895449049373et_nat @ F4 )
=> ( ( member_set_nat @ A4 @ A2 )
=> ( ( ord_le6893508408891458716et_nat @ F4 @ A2 )
=> ( ~ ( member_set_nat @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_set_nat @ A4 @ F4 ) ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_6372_finite__subset__induct_H,axiom,
! [F3: set_complex,A2: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ F3 )
=> ( ( ord_le211207098394363844omplex @ F3 @ A2 )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [A4: complex,F4: set_complex] :
( ( finite3207457112153483333omplex @ F4 )
=> ( ( member_complex @ A4 @ A2 )
=> ( ( ord_le211207098394363844omplex @ F4 @ A2 )
=> ( ~ ( member_complex @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_complex @ A4 @ F4 ) ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_6373_finite__subset__induct_H,axiom,
! [F3: set_real,A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ F3 )
=> ( ( ord_less_eq_set_real @ F3 @ A2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [A4: real,F4: set_real] :
( ( finite_finite_real @ F4 )
=> ( ( member_real @ A4 @ A2 )
=> ( ( ord_less_eq_set_real @ F4 @ A2 )
=> ( ~ ( member_real @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_real @ A4 @ F4 ) ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_6374_finite__subset__induct_H,axiom,
! [F3: set_nat,A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F3 )
=> ( ( ord_less_eq_set_nat @ F3 @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A4: nat,F4: set_nat] :
( ( finite_finite_nat @ F4 )
=> ( ( member_nat @ A4 @ A2 )
=> ( ( ord_less_eq_set_nat @ F4 @ A2 )
=> ( ~ ( member_nat @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_nat @ A4 @ F4 ) ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_6375_finite__subset__induct_H,axiom,
! [F3: set_int,A2: set_int,P: set_int > $o] :
( ( finite_finite_int @ F3 )
=> ( ( ord_less_eq_set_int @ F3 @ A2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [A4: int,F4: set_int] :
( ( finite_finite_int @ F4 )
=> ( ( member_int @ A4 @ A2 )
=> ( ( ord_less_eq_set_int @ F4 @ A2 )
=> ( ~ ( member_int @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_int @ A4 @ F4 ) ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_6376_finite__subset__induct,axiom,
! [F3: set_VEBT_VEBT,A2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ F3 )
=> ( ( ord_le4337996190870823476T_VEBT @ F3 @ A2 )
=> ( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ! [A4: vEBT_VEBT,F4: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ F4 )
=> ( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ~ ( member_VEBT_VEBT @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_VEBT_VEBT @ A4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_6377_finite__subset__induct,axiom,
! [F3: set_set_nat,A2: set_set_nat,P: set_set_nat > $o] :
( ( finite1152437895449049373et_nat @ F3 )
=> ( ( ord_le6893508408891458716et_nat @ F3 @ A2 )
=> ( ( P @ bot_bot_set_set_nat )
=> ( ! [A4: set_nat,F4: set_set_nat] :
( ( finite1152437895449049373et_nat @ F4 )
=> ( ( member_set_nat @ A4 @ A2 )
=> ( ~ ( member_set_nat @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_set_nat @ A4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_6378_finite__subset__induct,axiom,
! [F3: set_complex,A2: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ F3 )
=> ( ( ord_le211207098394363844omplex @ F3 @ A2 )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [A4: complex,F4: set_complex] :
( ( finite3207457112153483333omplex @ F4 )
=> ( ( member_complex @ A4 @ A2 )
=> ( ~ ( member_complex @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_complex @ A4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_6379_finite__subset__induct,axiom,
! [F3: set_real,A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ F3 )
=> ( ( ord_less_eq_set_real @ F3 @ A2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [A4: real,F4: set_real] :
( ( finite_finite_real @ F4 )
=> ( ( member_real @ A4 @ A2 )
=> ( ~ ( member_real @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_real @ A4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_6380_finite__subset__induct,axiom,
! [F3: set_nat,A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F3 )
=> ( ( ord_less_eq_set_nat @ F3 @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A4: nat,F4: set_nat] :
( ( finite_finite_nat @ F4 )
=> ( ( member_nat @ A4 @ A2 )
=> ( ~ ( member_nat @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_nat @ A4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_6381_finite__subset__induct,axiom,
! [F3: set_int,A2: set_int,P: set_int > $o] :
( ( finite_finite_int @ F3 )
=> ( ( ord_less_eq_set_int @ F3 @ A2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [A4: int,F4: set_int] :
( ( finite_finite_int @ F4 )
=> ( ( member_int @ A4 @ A2 )
=> ( ~ ( member_int @ A4 @ F4 )
=> ( ( P @ F4 )
=> ( P @ ( insert_int @ A4 @ F4 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_6382_sum__nonneg__leq__bound,axiom,
! [S: set_VEBT_VEBT,F: vEBT_VEBT > real,B2: real,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups2240296850493347238T_real @ F @ S )
= B2 )
=> ( ( member_VEBT_VEBT @ I @ S )
=> ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6383_sum__nonneg__leq__bound,axiom,
! [S: set_real,F: real > real,B2: real,I: real] :
( ( finite_finite_real @ S )
=> ( ! [I3: real] :
( ( member_real @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ S )
= B2 )
=> ( ( member_real @ I @ S )
=> ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6384_sum__nonneg__leq__bound,axiom,
! [S: set_int,F: int > real,B2: real,I: int] :
( ( finite_finite_int @ S )
=> ( ! [I3: int] :
( ( member_int @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ S )
= B2 )
=> ( ( member_int @ I @ S )
=> ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6385_sum__nonneg__leq__bound,axiom,
! [S: set_complex,F: complex > real,B2: real,I: complex] :
( ( finite3207457112153483333omplex @ S )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ S )
= B2 )
=> ( ( member_complex @ I @ S )
=> ( ord_less_eq_real @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6386_sum__nonneg__leq__bound,axiom,
! [S: set_VEBT_VEBT,F: vEBT_VEBT > rat,B2: rat,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups136491112297645522BT_rat @ F @ S )
= B2 )
=> ( ( member_VEBT_VEBT @ I @ S )
=> ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6387_sum__nonneg__leq__bound,axiom,
! [S: set_real,F: real > rat,B2: rat,I: real] :
( ( finite_finite_real @ S )
=> ( ! [I3: real] :
( ( member_real @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ S )
= B2 )
=> ( ( member_real @ I @ S )
=> ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6388_sum__nonneg__leq__bound,axiom,
! [S: set_nat,F: nat > rat,B2: rat,I: nat] :
( ( finite_finite_nat @ S )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ S )
= B2 )
=> ( ( member_nat @ I @ S )
=> ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6389_sum__nonneg__leq__bound,axiom,
! [S: set_int,F: int > rat,B2: rat,I: int] :
( ( finite_finite_int @ S )
=> ( ! [I3: int] :
( ( member_int @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ S )
= B2 )
=> ( ( member_int @ I @ S )
=> ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6390_sum__nonneg__leq__bound,axiom,
! [S: set_complex,F: complex > rat,B2: rat,I: complex] :
( ( finite3207457112153483333omplex @ S )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ S )
= B2 )
=> ( ( member_complex @ I @ S )
=> ( ord_less_eq_rat @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6391_sum__nonneg__leq__bound,axiom,
! [S: set_VEBT_VEBT,F: vEBT_VEBT > nat,B2: nat,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ S )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
=> ( ( ( groups771621172384141258BT_nat @ F @ S )
= B2 )
=> ( ( member_VEBT_VEBT @ I @ S )
=> ( ord_less_eq_nat @ ( F @ I ) @ B2 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6392_sum__nonneg__0,axiom,
! [S: set_VEBT_VEBT,F: vEBT_VEBT > real,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups2240296850493347238T_real @ F @ S )
= zero_zero_real )
=> ( ( member_VEBT_VEBT @ I @ S )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6393_sum__nonneg__0,axiom,
! [S: set_real,F: real > real,I: real] :
( ( finite_finite_real @ S )
=> ( ! [I3: real] :
( ( member_real @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ S )
= zero_zero_real )
=> ( ( member_real @ I @ S )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6394_sum__nonneg__0,axiom,
! [S: set_int,F: int > real,I: int] :
( ( finite_finite_int @ S )
=> ( ! [I3: int] :
( ( member_int @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ S )
= zero_zero_real )
=> ( ( member_int @ I @ S )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6395_sum__nonneg__0,axiom,
! [S: set_complex,F: complex > real,I: complex] :
( ( finite3207457112153483333omplex @ S )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ S )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ S )
= zero_zero_real )
=> ( ( member_complex @ I @ S )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6396_sum__nonneg__0,axiom,
! [S: set_VEBT_VEBT,F: vEBT_VEBT > rat,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups136491112297645522BT_rat @ F @ S )
= zero_zero_rat )
=> ( ( member_VEBT_VEBT @ I @ S )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6397_sum__nonneg__0,axiom,
! [S: set_real,F: real > rat,I: real] :
( ( finite_finite_real @ S )
=> ( ! [I3: real] :
( ( member_real @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ S )
= zero_zero_rat )
=> ( ( member_real @ I @ S )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6398_sum__nonneg__0,axiom,
! [S: set_nat,F: nat > rat,I: nat] :
( ( finite_finite_nat @ S )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ S )
= zero_zero_rat )
=> ( ( member_nat @ I @ S )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6399_sum__nonneg__0,axiom,
! [S: set_int,F: int > rat,I: int] :
( ( finite_finite_int @ S )
=> ( ! [I3: int] :
( ( member_int @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ S )
= zero_zero_rat )
=> ( ( member_int @ I @ S )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6400_sum__nonneg__0,axiom,
! [S: set_complex,F: complex > rat,I: complex] :
( ( finite3207457112153483333omplex @ S )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ S )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ S )
= zero_zero_rat )
=> ( ( member_complex @ I @ S )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6401_sum__nonneg__0,axiom,
! [S: set_VEBT_VEBT,F: vEBT_VEBT > nat,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ S )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
=> ( ( ( groups771621172384141258BT_nat @ F @ S )
= zero_zero_nat )
=> ( ( member_VEBT_VEBT @ I @ S )
=> ( ( F @ I )
= zero_zero_nat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6402_infinite__remove,axiom,
! [S2: set_complex,A: complex] :
( ~ ( finite3207457112153483333omplex @ S2 )
=> ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ).
% infinite_remove
thf(fact_6403_infinite__remove,axiom,
! [S2: set_real,A: real] :
( ~ ( finite_finite_real @ S2 )
=> ~ ( finite_finite_real @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ).
% infinite_remove
thf(fact_6404_infinite__remove,axiom,
! [S2: set_int,A: int] :
( ~ ( finite_finite_int @ S2 )
=> ~ ( finite_finite_int @ ( minus_minus_set_int @ S2 @ ( insert_int @ A @ bot_bot_set_int ) ) ) ) ).
% infinite_remove
thf(fact_6405_infinite__remove,axiom,
! [S2: set_nat,A: nat] :
( ~ ( finite_finite_nat @ S2 )
=> ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).
% infinite_remove
thf(fact_6406_infinite__coinduct,axiom,
! [X8: set_complex > $o,A2: set_complex] :
( ( X8 @ A2 )
=> ( ! [A7: set_complex] :
( ( X8 @ A7 )
=> ? [X: complex] :
( ( member_complex @ X @ A7 )
& ( ( X8 @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X @ bot_bot_set_complex ) ) )
| ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X @ bot_bot_set_complex ) ) ) ) ) )
=> ~ ( finite3207457112153483333omplex @ A2 ) ) ) ).
% infinite_coinduct
thf(fact_6407_infinite__coinduct,axiom,
! [X8: set_real > $o,A2: set_real] :
( ( X8 @ A2 )
=> ( ! [A7: set_real] :
( ( X8 @ A7 )
=> ? [X: real] :
( ( member_real @ X @ A7 )
& ( ( X8 @ ( minus_minus_set_real @ A7 @ ( insert_real @ X @ bot_bot_set_real ) ) )
| ~ ( finite_finite_real @ ( minus_minus_set_real @ A7 @ ( insert_real @ X @ bot_bot_set_real ) ) ) ) ) )
=> ~ ( finite_finite_real @ A2 ) ) ) ).
% infinite_coinduct
thf(fact_6408_infinite__coinduct,axiom,
! [X8: set_int > $o,A2: set_int] :
( ( X8 @ A2 )
=> ( ! [A7: set_int] :
( ( X8 @ A7 )
=> ? [X: int] :
( ( member_int @ X @ A7 )
& ( ( X8 @ ( minus_minus_set_int @ A7 @ ( insert_int @ X @ bot_bot_set_int ) ) )
| ~ ( finite_finite_int @ ( minus_minus_set_int @ A7 @ ( insert_int @ X @ bot_bot_set_int ) ) ) ) ) )
=> ~ ( finite_finite_int @ A2 ) ) ) ).
% infinite_coinduct
thf(fact_6409_infinite__coinduct,axiom,
! [X8: set_nat > $o,A2: set_nat] :
( ( X8 @ A2 )
=> ( ! [A7: set_nat] :
( ( X8 @ A7 )
=> ? [X: nat] :
( ( member_nat @ X @ A7 )
& ( ( X8 @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X @ bot_bot_set_nat ) ) )
| ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) )
=> ~ ( finite_finite_nat @ A2 ) ) ) ).
% infinite_coinduct
thf(fact_6410_finite__empty__induct,axiom,
! [A2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( P @ A2 )
=> ( ! [A4: vEBT_VEBT,A7: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ A7 )
=> ( ( member_VEBT_VEBT @ A4 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ A4 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
=> ( P @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).
% finite_empty_induct
thf(fact_6411_finite__empty__induct,axiom,
! [A2: set_set_nat,P: set_set_nat > $o] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ( P @ A2 )
=> ( ! [A4: set_nat,A7: set_set_nat] :
( ( finite1152437895449049373et_nat @ A7 )
=> ( ( member_set_nat @ A4 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_2163939370556025621et_nat @ A7 @ ( insert_set_nat @ A4 @ bot_bot_set_set_nat ) ) ) ) ) )
=> ( P @ bot_bot_set_set_nat ) ) ) ) ).
% finite_empty_induct
thf(fact_6412_finite__empty__induct,axiom,
! [A2: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( P @ A2 )
=> ( ! [A4: complex,A7: set_complex] :
( ( finite3207457112153483333omplex @ A7 )
=> ( ( member_complex @ A4 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ A4 @ bot_bot_set_complex ) ) ) ) ) )
=> ( P @ bot_bot_set_complex ) ) ) ) ).
% finite_empty_induct
thf(fact_6413_finite__empty__induct,axiom,
! [A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( P @ A2 )
=> ( ! [A4: real,A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ( member_real @ A4 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ A4 @ bot_bot_set_real ) ) ) ) ) )
=> ( P @ bot_bot_set_real ) ) ) ) ).
% finite_empty_induct
thf(fact_6414_finite__empty__induct,axiom,
! [A2: set_int,P: set_int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( P @ A2 )
=> ( ! [A4: int,A7: set_int] :
( ( finite_finite_int @ A7 )
=> ( ( member_int @ A4 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_minus_set_int @ A7 @ ( insert_int @ A4 @ bot_bot_set_int ) ) ) ) ) )
=> ( P @ bot_bot_set_int ) ) ) ) ).
% finite_empty_induct
thf(fact_6415_finite__empty__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( P @ A2 )
=> ( ! [A4: nat,A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ( member_nat @ A4 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ A4 @ bot_bot_set_nat ) ) ) ) ) )
=> ( P @ bot_bot_set_nat ) ) ) ) ).
% finite_empty_induct
thf(fact_6416_Diff__single__insert,axiom,
! [A2: set_real,X3: real,B2: set_real] :
( ( ord_less_eq_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) @ B2 )
=> ( ord_less_eq_set_real @ A2 @ ( insert_real @ X3 @ B2 ) ) ) ).
% Diff_single_insert
thf(fact_6417_Diff__single__insert,axiom,
! [A2: set_nat,X3: nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) @ B2 )
=> ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X3 @ B2 ) ) ) ).
% Diff_single_insert
thf(fact_6418_Diff__single__insert,axiom,
! [A2: set_int,X3: int,B2: set_int] :
( ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) @ B2 )
=> ( ord_less_eq_set_int @ A2 @ ( insert_int @ X3 @ B2 ) ) ) ).
% Diff_single_insert
thf(fact_6419_subset__insert__iff,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,B2: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ B2 ) )
= ( ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_le4337996190870823476T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) @ B2 ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_le4337996190870823476T_VEBT @ A2 @ B2 ) ) ) ) ).
% subset_insert_iff
thf(fact_6420_subset__insert__iff,axiom,
! [A2: set_set_nat,X3: set_nat,B2: set_set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ ( insert_set_nat @ X3 @ B2 ) )
= ( ( ( member_set_nat @ X3 @ A2 )
=> ( ord_le6893508408891458716et_nat @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ X3 @ bot_bot_set_set_nat ) ) @ B2 ) )
& ( ~ ( member_set_nat @ X3 @ A2 )
=> ( ord_le6893508408891458716et_nat @ A2 @ B2 ) ) ) ) ).
% subset_insert_iff
thf(fact_6421_subset__insert__iff,axiom,
! [A2: set_real,X3: real,B2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X3 @ B2 ) )
= ( ( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) @ B2 ) )
& ( ~ ( member_real @ X3 @ A2 )
=> ( ord_less_eq_set_real @ A2 @ B2 ) ) ) ) ).
% subset_insert_iff
thf(fact_6422_subset__insert__iff,axiom,
! [A2: set_nat,X3: nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X3 @ B2 ) )
= ( ( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) @ B2 ) )
& ( ~ ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ) ).
% subset_insert_iff
thf(fact_6423_subset__insert__iff,axiom,
! [A2: set_int,X3: int,B2: set_int] :
( ( ord_less_eq_set_int @ A2 @ ( insert_int @ X3 @ B2 ) )
= ( ( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) @ B2 ) )
& ( ~ ( member_int @ X3 @ A2 )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ) ) ).
% subset_insert_iff
thf(fact_6424_atLeast0__atMost__Suc,axiom,
! [N2: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) )
= ( insert_nat @ ( suc @ N2 ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% atLeast0_atMost_Suc
thf(fact_6425_Icc__eq__insert__lb__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( set_or1269000886237332187st_nat @ M @ N2 )
= ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ).
% Icc_eq_insert_lb_nat
thf(fact_6426_atLeastAtMostSuc__conv,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) )
= ( insert_nat @ ( suc @ N2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ).
% atLeastAtMostSuc_conv
thf(fact_6427_atLeastAtMost__insertL,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
= ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% atLeastAtMost_insertL
thf(fact_6428_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > complex] :
( ( finite_finite_real @ A2 )
=> ( ( groups5754745047067104278omplex @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_complex ) ) ) )
= ( groups5754745047067104278omplex @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6429_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_complex ) ) ) )
= ( groups3049146728041665814omplex @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6430_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( groups8097168146408367636l_real @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_real ) ) ) )
= ( groups8097168146408367636l_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6431_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_real ) ) ) )
= ( groups8778361861064173332t_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6432_sum_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X2: complex] :
( ( G @ X2 )
= zero_zero_real ) ) ) )
= ( groups5808333547571424918x_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6433_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( groups1300246762558778688al_rat @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_rat ) ) ) )
= ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6434_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_rat ) ) ) )
= ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6435_sum_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X2: complex] :
( ( G @ X2 )
= zero_zero_rat ) ) ) )
= ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6436_sum_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( groups1935376822645274424al_nat @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= zero_zero_nat ) ) ) )
= ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6437_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( groups4541462559716669496nt_nat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= zero_zero_nat ) ) ) )
= ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6438_set__update__subset__insert,axiom,
! [Xs: list_real,I: nat,X3: real] : ( ord_less_eq_set_real @ ( set_real2 @ ( list_update_real @ Xs @ I @ X3 ) ) @ ( insert_real @ X3 @ ( set_real2 @ Xs ) ) ) ).
% set_update_subset_insert
thf(fact_6439_set__update__subset__insert,axiom,
! [Xs: list_nat,I: nat,X3: nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ ( list_update_nat @ Xs @ I @ X3 ) ) @ ( insert_nat @ X3 @ ( set_nat2 @ Xs ) ) ) ).
% set_update_subset_insert
thf(fact_6440_set__update__subset__insert,axiom,
! [Xs: list_VEBT_VEBT,I: nat,X3: vEBT_VEBT] : ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs @ I @ X3 ) ) @ ( insert_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs ) ) ) ).
% set_update_subset_insert
thf(fact_6441_set__update__subset__insert,axiom,
! [Xs: list_int,I: nat,X3: int] : ( ord_less_eq_set_int @ ( set_int2 @ ( list_update_int @ Xs @ I @ X3 ) ) @ ( insert_int @ X3 @ ( set_int2 @ Xs ) ) ) ).
% set_update_subset_insert
thf(fact_6442_Compl__insert,axiom,
! [X3: real,A2: set_real] :
( ( uminus612125837232591019t_real @ ( insert_real @ X3 @ A2 ) )
= ( minus_minus_set_real @ ( uminus612125837232591019t_real @ A2 ) @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ).
% Compl_insert
thf(fact_6443_Compl__insert,axiom,
! [X3: int,A2: set_int] :
( ( uminus1532241313380277803et_int @ ( insert_int @ X3 @ A2 ) )
= ( minus_minus_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ).
% Compl_insert
thf(fact_6444_Compl__insert,axiom,
! [X3: nat,A2: set_nat] :
( ( uminus5710092332889474511et_nat @ ( insert_nat @ X3 @ A2 ) )
= ( minus_minus_set_nat @ ( uminus5710092332889474511et_nat @ A2 ) @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ).
% Compl_insert
thf(fact_6445_sum__power__add,axiom,
! [X3: complex,M: nat,I6: set_nat] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( power_power_complex @ X3 @ ( plus_plus_nat @ M @ I5 ) )
@ I6 )
= ( times_times_complex @ ( power_power_complex @ X3 @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ I6 ) ) ) ).
% sum_power_add
thf(fact_6446_sum__power__add,axiom,
! [X3: rat,M: nat,I6: set_nat] :
( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( power_power_rat @ X3 @ ( plus_plus_nat @ M @ I5 ) )
@ I6 )
= ( times_times_rat @ ( power_power_rat @ X3 @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ I6 ) ) ) ).
% sum_power_add
thf(fact_6447_sum__power__add,axiom,
! [X3: int,M: nat,I6: set_nat] :
( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( power_power_int @ X3 @ ( plus_plus_nat @ M @ I5 ) )
@ I6 )
= ( times_times_int @ ( power_power_int @ X3 @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ I6 ) ) ) ).
% sum_power_add
thf(fact_6448_sum__power__add,axiom,
! [X3: real,M: nat,I6: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( power_power_real @ X3 @ ( plus_plus_nat @ M @ I5 ) )
@ I6 )
= ( times_times_real @ ( power_power_real @ X3 @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ I6 ) ) ) ).
% sum_power_add
thf(fact_6449_sum_OatLeastAtMost__rev,axiom,
! [G: nat > nat,N2: nat,M: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
= ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I5 ) )
@ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_6450_sum_OatLeastAtMost__rev,axiom,
! [G: nat > real,N2: nat,M: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
= ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I5 ) )
@ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_6451_numeral__code_I3_J,axiom,
! [N2: num] :
( ( numera6690914467698888265omplex @ ( bit1 @ N2 ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) @ one_one_complex ) ) ).
% numeral_code(3)
thf(fact_6452_numeral__code_I3_J,axiom,
! [N2: num] :
( ( numeral_numeral_rat @ ( bit1 @ N2 ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) @ one_one_rat ) ) ).
% numeral_code(3)
thf(fact_6453_numeral__code_I3_J,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) @ one_one_nat ) ) ).
% numeral_code(3)
thf(fact_6454_numeral__code_I3_J,axiom,
! [N2: num] :
( ( numeral_numeral_int @ ( bit1 @ N2 ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) @ one_one_int ) ) ).
% numeral_code(3)
thf(fact_6455_numeral__code_I3_J,axiom,
! [N2: num] :
( ( numera1916890842035813515d_enat @ ( bit1 @ N2 ) )
= ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ ( numera1916890842035813515d_enat @ N2 ) ) @ one_on7984719198319812577d_enat ) ) ).
% numeral_code(3)
thf(fact_6456_numeral__code_I3_J,axiom,
! [N2: num] :
( ( numeral_numeral_real @ ( bit1 @ N2 ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) @ one_one_real ) ) ).
% numeral_code(3)
thf(fact_6457_numeral__code_I3_J,axiom,
! [N2: num] :
( ( numera6620942414471956472nteger @ ( bit1 @ N2 ) )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ one_one_Code_integer ) ) ).
% numeral_code(3)
thf(fact_6458_sum__pos2,axiom,
! [I6: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6459_sum__pos2,axiom,
! [I6: set_real,I: real,F: real > real] :
( ( finite_finite_real @ I6 )
=> ( ( member_real @ I @ I6 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6460_sum__pos2,axiom,
! [I6: set_int,I: int,F: int > real] :
( ( finite_finite_int @ I6 )
=> ( ( member_int @ I @ I6 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6461_sum__pos2,axiom,
! [I6: set_complex,I: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( member_complex @ I @ I6 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6462_sum__pos2,axiom,
! [I6: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6463_sum__pos2,axiom,
! [I6: set_real,I: real,F: real > rat] :
( ( finite_finite_real @ I6 )
=> ( ( member_real @ I @ I6 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6464_sum__pos2,axiom,
! [I6: set_nat,I: nat,F: nat > rat] :
( ( finite_finite_nat @ I6 )
=> ( ( member_nat @ I @ I6 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6465_sum__pos2,axiom,
! [I6: set_int,I: int,F: int > rat] :
( ( finite_finite_int @ I6 )
=> ( ( member_int @ I @ I6 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6466_sum__pos2,axiom,
! [I6: set_complex,I: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( member_complex @ I @ I6 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6467_sum__pos2,axiom,
! [I6: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups771621172384141258BT_nat @ F @ I6 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6468_sum__pos,axiom,
! [I6: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( I6 != bot_bo8194388402131092736T_VEBT )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6469_sum__pos,axiom,
! [I6: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( I6 != bot_bot_set_complex )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6470_sum__pos,axiom,
! [I6: set_real,F: real > real] :
( ( finite_finite_real @ I6 )
=> ( ( I6 != bot_bot_set_real )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6471_sum__pos,axiom,
! [I6: set_int,F: int > real] :
( ( finite_finite_int @ I6 )
=> ( ( I6 != bot_bot_set_int )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6472_sum__pos,axiom,
! [I6: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( I6 != bot_bo8194388402131092736T_VEBT )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6473_sum__pos,axiom,
! [I6: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( I6 != bot_bot_set_complex )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6474_sum__pos,axiom,
! [I6: set_real,F: real > rat] :
( ( finite_finite_real @ I6 )
=> ( ( I6 != bot_bot_set_real )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6475_sum__pos,axiom,
! [I6: set_nat,F: nat > rat] :
( ( finite_finite_nat @ I6 )
=> ( ( I6 != bot_bot_set_nat )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6476_sum__pos,axiom,
! [I6: set_int,F: int > rat] :
( ( finite_finite_int @ I6 )
=> ( ( I6 != bot_bot_set_int )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6477_sum__pos,axiom,
! [I6: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( I6 != bot_bo8194388402131092736T_VEBT )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups771621172384141258BT_nat @ F @ I6 ) ) ) ) ) ).
% sum_pos
thf(fact_6478_sum_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_complex ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ T3 )
= ( groups1794756597179926696omplex @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6479_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_complex ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ T3 )
= ( groups5754745047067104278omplex @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6480_sum_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups2240296850493347238T_real @ G @ T3 )
= ( groups2240296850493347238T_real @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6481_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ T3 )
= ( groups8097168146408367636l_real @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6482_sum_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5808333547571424918x_real @ G @ T3 )
= ( groups5808333547571424918x_real @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6483_sum_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups136491112297645522BT_rat @ G @ T3 )
= ( groups136491112297645522BT_rat @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6484_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1300246762558778688al_rat @ G @ T3 )
= ( groups1300246762558778688al_rat @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6485_sum_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5058264527183730370ex_rat @ G @ T3 )
= ( groups5058264527183730370ex_rat @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6486_sum_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > nat,H2: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_nat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups771621172384141258BT_nat @ G @ T3 )
= ( groups771621172384141258BT_nat @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6487_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S2: set_real,G: real > nat,H2: real > nat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_nat ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1935376822645274424al_nat @ G @ T3 )
= ( groups1935376822645274424al_nat @ H2 @ S2 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6488_sum_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > complex,G: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_complex ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S2 )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6489_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S2: set_real,H2: real > complex,G: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_complex ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S2 )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6490_sum_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_real ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups2240296850493347238T_real @ G @ S2 )
= ( groups2240296850493347238T_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6491_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S2: set_real,H2: real > real,G: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_real ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ S2 )
= ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6492_sum_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S2: set_complex,H2: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_real ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5808333547571424918x_real @ G @ S2 )
= ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6493_sum_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_rat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups136491112297645522BT_rat @ G @ S2 )
= ( groups136491112297645522BT_rat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6494_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S2: set_real,H2: real > rat,G: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_rat ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1300246762558778688al_rat @ G @ S2 )
= ( groups1300246762558778688al_rat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6495_sum_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S2: set_complex,H2: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_rat ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5058264527183730370ex_rat @ G @ S2 )
= ( groups5058264527183730370ex_rat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6496_sum_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_nat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups771621172384141258BT_nat @ G @ S2 )
= ( groups771621172384141258BT_nat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6497_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S2: set_real,H2: real > nat,G: real > nat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= zero_zero_nat ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1935376822645274424al_nat @ G @ S2 )
= ( groups1935376822645274424al_nat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6498_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ( groups5808333547571424918x_real @ G @ T3 )
= ( groups5808333547571424918x_real @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6499_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ( groups5058264527183730370ex_rat @ G @ T3 )
= ( groups5058264527183730370ex_rat @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6500_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_nat ) )
=> ( ( groups5693394587270226106ex_nat @ G @ T3 )
= ( groups5693394587270226106ex_nat @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6501_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_int ) )
=> ( ( groups5690904116761175830ex_int @ G @ T3 )
= ( groups5690904116761175830ex_int @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6502_sum_Omono__neutral__right,axiom,
! [T3: set_nat,S2: set_nat,G: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_complex ) )
=> ( ( groups2073611262835488442omplex @ G @ T3 )
= ( groups2073611262835488442omplex @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6503_sum_Omono__neutral__right,axiom,
! [T3: set_nat,S2: set_nat,G: nat > rat] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ( groups2906978787729119204at_rat @ G @ T3 )
= ( groups2906978787729119204at_rat @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6504_sum_Omono__neutral__right,axiom,
! [T3: set_nat,S2: set_nat,G: nat > int] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_int ) )
=> ( ( groups3539618377306564664at_int @ G @ T3 )
= ( groups3539618377306564664at_int @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6505_sum_Omono__neutral__right,axiom,
! [T3: set_int,S2: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_complex ) )
=> ( ( groups3049146728041665814omplex @ G @ T3 )
= ( groups3049146728041665814omplex @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6506_sum_Omono__neutral__right,axiom,
! [T3: set_int,S2: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ( groups8778361861064173332t_real @ G @ T3 )
= ( groups8778361861064173332t_real @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6507_sum_Omono__neutral__right,axiom,
! [T3: set_int,S2: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ( groups3906332499630173760nt_rat @ G @ T3 )
= ( groups3906332499630173760nt_rat @ G @ S2 ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6508_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ( groups5808333547571424918x_real @ G @ S2 )
= ( groups5808333547571424918x_real @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6509_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ( groups5058264527183730370ex_rat @ G @ S2 )
= ( groups5058264527183730370ex_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6510_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_nat ) )
=> ( ( groups5693394587270226106ex_nat @ G @ S2 )
= ( groups5693394587270226106ex_nat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6511_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_int ) )
=> ( ( groups5690904116761175830ex_int @ G @ S2 )
= ( groups5690904116761175830ex_int @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6512_sum_Omono__neutral__left,axiom,
! [T3: set_nat,S2: set_nat,G: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_complex ) )
=> ( ( groups2073611262835488442omplex @ G @ S2 )
= ( groups2073611262835488442omplex @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6513_sum_Omono__neutral__left,axiom,
! [T3: set_nat,S2: set_nat,G: nat > rat] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ( groups2906978787729119204at_rat @ G @ S2 )
= ( groups2906978787729119204at_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6514_sum_Omono__neutral__left,axiom,
! [T3: set_nat,S2: set_nat,G: nat > int] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_int ) )
=> ( ( groups3539618377306564664at_int @ G @ S2 )
= ( groups3539618377306564664at_int @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6515_sum_Omono__neutral__left,axiom,
! [T3: set_int,S2: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_complex ) )
=> ( ( groups3049146728041665814omplex @ G @ S2 )
= ( groups3049146728041665814omplex @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6516_sum_Omono__neutral__left,axiom,
! [T3: set_int,S2: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_real ) )
=> ( ( groups8778361861064173332t_real @ G @ S2 )
= ( groups8778361861064173332t_real @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6517_sum_Omono__neutral__left,axiom,
! [T3: set_int,S2: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= zero_zero_rat ) )
=> ( ( groups3906332499630173760nt_rat @ G @ S2 )
= ( groups3906332499630173760nt_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6518_sum_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups1794756597179926696omplex @ G @ C4 )
= ( groups1794756597179926696omplex @ H2 @ C4 ) )
=> ( ( groups1794756597179926696omplex @ G @ A2 )
= ( groups1794756597179926696omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6519_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups5754745047067104278omplex @ G @ C4 )
= ( groups5754745047067104278omplex @ H2 @ C4 ) )
=> ( ( groups5754745047067104278omplex @ G @ A2 )
= ( groups5754745047067104278omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6520_sum_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups2240296850493347238T_real @ G @ C4 )
= ( groups2240296850493347238T_real @ H2 @ C4 ) )
=> ( ( groups2240296850493347238T_real @ G @ A2 )
= ( groups2240296850493347238T_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6521_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups8097168146408367636l_real @ G @ C4 )
= ( groups8097168146408367636l_real @ H2 @ C4 ) )
=> ( ( groups8097168146408367636l_real @ G @ A2 )
= ( groups8097168146408367636l_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6522_sum_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups5808333547571424918x_real @ G @ C4 )
= ( groups5808333547571424918x_real @ H2 @ C4 ) )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= ( groups5808333547571424918x_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6523_sum_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups136491112297645522BT_rat @ G @ C4 )
= ( groups136491112297645522BT_rat @ H2 @ C4 ) )
=> ( ( groups136491112297645522BT_rat @ G @ A2 )
= ( groups136491112297645522BT_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6524_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups1300246762558778688al_rat @ G @ C4 )
= ( groups1300246762558778688al_rat @ H2 @ C4 ) )
=> ( ( groups1300246762558778688al_rat @ G @ A2 )
= ( groups1300246762558778688al_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6525_sum_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups5058264527183730370ex_rat @ G @ C4 )
= ( groups5058264527183730370ex_rat @ H2 @ C4 ) )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( groups5058264527183730370ex_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6526_sum_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > nat,H2: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups771621172384141258BT_nat @ G @ C4 )
= ( groups771621172384141258BT_nat @ H2 @ C4 ) )
=> ( ( groups771621172384141258BT_nat @ G @ A2 )
= ( groups771621172384141258BT_nat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6527_sum_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > nat,H2: real > nat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups1935376822645274424al_nat @ G @ C4 )
= ( groups1935376822645274424al_nat @ H2 @ C4 ) )
=> ( ( groups1935376822645274424al_nat @ G @ A2 )
= ( groups1935376822645274424al_nat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6528_sum_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups1794756597179926696omplex @ G @ A2 )
= ( groups1794756597179926696omplex @ H2 @ B2 ) )
= ( ( groups1794756597179926696omplex @ G @ C4 )
= ( groups1794756597179926696omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6529_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_complex ) )
=> ( ( ( groups5754745047067104278omplex @ G @ A2 )
= ( groups5754745047067104278omplex @ H2 @ B2 ) )
= ( ( groups5754745047067104278omplex @ G @ C4 )
= ( groups5754745047067104278omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6530_sum_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups2240296850493347238T_real @ G @ A2 )
= ( groups2240296850493347238T_real @ H2 @ B2 ) )
= ( ( groups2240296850493347238T_real @ G @ C4 )
= ( groups2240296850493347238T_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6531_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups8097168146408367636l_real @ G @ A2 )
= ( groups8097168146408367636l_real @ H2 @ B2 ) )
= ( ( groups8097168146408367636l_real @ G @ C4 )
= ( groups8097168146408367636l_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6532_sum_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_real ) )
=> ( ( ( groups5808333547571424918x_real @ G @ A2 )
= ( groups5808333547571424918x_real @ H2 @ B2 ) )
= ( ( groups5808333547571424918x_real @ G @ C4 )
= ( groups5808333547571424918x_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6533_sum_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups136491112297645522BT_rat @ G @ A2 )
= ( groups136491112297645522BT_rat @ H2 @ B2 ) )
= ( ( groups136491112297645522BT_rat @ G @ C4 )
= ( groups136491112297645522BT_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6534_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups1300246762558778688al_rat @ G @ A2 )
= ( groups1300246762558778688al_rat @ H2 @ B2 ) )
= ( ( groups1300246762558778688al_rat @ G @ C4 )
= ( groups1300246762558778688al_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6535_sum_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_rat ) )
=> ( ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( groups5058264527183730370ex_rat @ H2 @ B2 ) )
= ( ( groups5058264527183730370ex_rat @ G @ C4 )
= ( groups5058264527183730370ex_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6536_sum_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > nat,H2: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups771621172384141258BT_nat @ G @ A2 )
= ( groups771621172384141258BT_nat @ H2 @ B2 ) )
= ( ( groups771621172384141258BT_nat @ G @ C4 )
= ( groups771621172384141258BT_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6537_sum_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > nat,H2: real > nat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_nat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= zero_zero_nat ) )
=> ( ( ( groups1935376822645274424al_nat @ G @ A2 )
= ( groups1935376822645274424al_nat @ H2 @ B2 ) )
= ( ( groups1935376822645274424al_nat @ G @ C4 )
= ( groups1935376822645274424al_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6538_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > real] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= ( plus_plus_real @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5808333547571424918x_real @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6539_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > rat] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5058264527183730370ex_rat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6540_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > nat] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5693394587270226106ex_nat @ G @ A2 )
= ( plus_plus_nat @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5693394587270226106ex_nat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6541_sum_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > int] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5690904116761175830ex_int @ G @ A2 )
= ( plus_plus_int @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups5690904116761175830ex_int @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6542_sum_Osubset__diff,axiom,
! [B2: set_nat,A2: set_nat,G: nat > rat] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( groups2906978787729119204at_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups2906978787729119204at_rat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6543_sum_Osubset__diff,axiom,
! [B2: set_nat,A2: set_nat,G: nat > int] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( groups3539618377306564664at_int @ G @ A2 )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups3539618377306564664at_int @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6544_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > real] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ A2 )
= ( plus_plus_real @ ( groups8778361861064173332t_real @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups8778361861064173332t_real @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6545_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > rat] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups3906332499630173760nt_rat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups3906332499630173760nt_rat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6546_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > nat] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups4541462559716669496nt_nat @ G @ A2 )
= ( plus_plus_nat @ ( groups4541462559716669496nt_nat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups4541462559716669496nt_nat @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6547_sum_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > int] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups4538972089207619220nt_int @ G @ A2 )
= ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups4538972089207619220nt_int @ G @ B2 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6548_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6549_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6550_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6551_sum__diff,axiom,
! [A2: set_nat,B2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups2906978787729119204at_rat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6552_sum__diff,axiom,
! [A2: set_nat,B2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups3539618377306564664at_int @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6553_sum__diff,axiom,
! [A2: set_int,B2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6554_sum__diff,axiom,
! [A2: set_int,B2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6555_sum__diff,axiom,
! [A2: set_int,B2: set_int,F: int > int] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups4538972089207619220nt_int @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6556_sum__diff,axiom,
! [A2: set_complex,B2: set_complex,F: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups7754918857620584856omplex @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6557_sum__diff,axiom,
! [A2: set_nat,B2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups6591440286371151544t_real @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ F @ B2 ) ) ) ) ) ).
% sum_diff
thf(fact_6558_sum__diff__nat,axiom,
! [B2: set_complex,A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( groups5693394587270226106ex_nat @ F @ ( minus_811609699411566653omplex @ A2 @ B2 ) )
= ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B2 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_6559_sum__diff__nat,axiom,
! [B2: set_int,A2: set_int,F: int > nat] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( groups4541462559716669496nt_nat @ F @ ( minus_minus_set_int @ A2 @ B2 ) )
= ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ F @ B2 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_6560_sum__diff__nat,axiom,
! [B2: set_nat,A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( groups3542108847815614940at_nat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ F @ B2 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_6561_sum__shift__lb__Suc0__0,axiom,
! [F: nat > complex,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_complex )
=> ( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6562_sum__shift__lb__Suc0__0,axiom,
! [F: nat > rat,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_rat )
=> ( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6563_sum__shift__lb__Suc0__0,axiom,
! [F: nat > int,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_int )
=> ( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6564_sum__shift__lb__Suc0__0,axiom,
! [F: nat > nat,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_nat )
=> ( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6565_sum__shift__lb__Suc0__0,axiom,
! [F: nat > real,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_real )
=> ( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6566_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > rat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6567_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > int,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6568_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6569_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6570_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( G @ ( suc @ N2 ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6571_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( G @ ( suc @ N2 ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6572_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( G @ ( suc @ N2 ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6573_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( G @ ( suc @ N2 ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6574_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( plus_plus_rat @ ( G @ M ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6575_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( plus_plus_int @ ( G @ M ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6576_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( plus_plus_nat @ ( G @ M ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6577_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( plus_plus_real @ ( G @ M ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6578_cong__exp__iff__simps_I3_J,axiom,
! [N2: num,Q2: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(3)
thf(fact_6579_cong__exp__iff__simps_I3_J,axiom,
! [N2: num,Q2: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= zero_zero_nat ) ).
% cong_exp_iff_simps(3)
thf(fact_6580_cong__exp__iff__simps_I3_J,axiom,
! [N2: num,Q2: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= zero_zero_int ) ).
% cong_exp_iff_simps(3)
thf(fact_6581_numeral__3__eq__3,axiom,
( ( numeral_numeral_nat @ ( bit1 @ one ) )
= ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).
% numeral_3_eq_3
thf(fact_6582_Suc3__eq__add__3,axiom,
! [N2: nat] :
( ( suc @ ( suc @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ).
% Suc3_eq_add_3
thf(fact_6583_finite__remove__induct,axiom,
! [B2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ! [A7: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ A7 )
=> ( ( A7 != bot_bo8194388402131092736T_VEBT )
=> ( ( ord_le4337996190870823476T_VEBT @ A7 @ B2 )
=> ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A7 )
=> ( P @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ X @ bot_bo8194388402131092736T_VEBT ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% finite_remove_induct
thf(fact_6584_finite__remove__induct,axiom,
! [B2: set_set_nat,P: set_set_nat > $o] :
( ( finite1152437895449049373et_nat @ B2 )
=> ( ( P @ bot_bot_set_set_nat )
=> ( ! [A7: set_set_nat] :
( ( finite1152437895449049373et_nat @ A7 )
=> ( ( A7 != bot_bot_set_set_nat )
=> ( ( ord_le6893508408891458716et_nat @ A7 @ B2 )
=> ( ! [X: set_nat] :
( ( member_set_nat @ X @ A7 )
=> ( P @ ( minus_2163939370556025621et_nat @ A7 @ ( insert_set_nat @ X @ bot_bot_set_set_nat ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% finite_remove_induct
thf(fact_6585_finite__remove__induct,axiom,
! [B2: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [A7: set_complex] :
( ( finite3207457112153483333omplex @ A7 )
=> ( ( A7 != bot_bot_set_complex )
=> ( ( ord_le211207098394363844omplex @ A7 @ B2 )
=> ( ! [X: complex] :
( ( member_complex @ X @ A7 )
=> ( P @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X @ bot_bot_set_complex ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% finite_remove_induct
thf(fact_6586_finite__remove__induct,axiom,
! [B2: set_real,P: set_real > $o] :
( ( finite_finite_real @ B2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ( A7 != bot_bot_set_real )
=> ( ( ord_less_eq_set_real @ A7 @ B2 )
=> ( ! [X: real] :
( ( member_real @ X @ A7 )
=> ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ X @ bot_bot_set_real ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% finite_remove_induct
thf(fact_6587_finite__remove__induct,axiom,
! [B2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ B2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ( A7 != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ A7 @ B2 )
=> ( ! [X: nat] :
( ( member_nat @ X @ A7 )
=> ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% finite_remove_induct
thf(fact_6588_finite__remove__induct,axiom,
! [B2: set_int,P: set_int > $o] :
( ( finite_finite_int @ B2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [A7: set_int] :
( ( finite_finite_int @ A7 )
=> ( ( A7 != bot_bot_set_int )
=> ( ( ord_less_eq_set_int @ A7 @ B2 )
=> ( ! [X: int] :
( ( member_int @ X @ A7 )
=> ( P @ ( minus_minus_set_int @ A7 @ ( insert_int @ X @ bot_bot_set_int ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% finite_remove_induct
thf(fact_6589_remove__induct,axiom,
! [P: set_VEBT_VEBT > $o,B2: set_VEBT_VEBT] :
( ( P @ bot_bo8194388402131092736T_VEBT )
=> ( ( ~ ( finite5795047828879050333T_VEBT @ B2 )
=> ( P @ B2 ) )
=> ( ! [A7: set_VEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ A7 )
=> ( ( A7 != bot_bo8194388402131092736T_VEBT )
=> ( ( ord_le4337996190870823476T_VEBT @ A7 @ B2 )
=> ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A7 )
=> ( P @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ X @ bot_bo8194388402131092736T_VEBT ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% remove_induct
thf(fact_6590_remove__induct,axiom,
! [P: set_set_nat > $o,B2: set_set_nat] :
( ( P @ bot_bot_set_set_nat )
=> ( ( ~ ( finite1152437895449049373et_nat @ B2 )
=> ( P @ B2 ) )
=> ( ! [A7: set_set_nat] :
( ( finite1152437895449049373et_nat @ A7 )
=> ( ( A7 != bot_bot_set_set_nat )
=> ( ( ord_le6893508408891458716et_nat @ A7 @ B2 )
=> ( ! [X: set_nat] :
( ( member_set_nat @ X @ A7 )
=> ( P @ ( minus_2163939370556025621et_nat @ A7 @ ( insert_set_nat @ X @ bot_bot_set_set_nat ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% remove_induct
thf(fact_6591_remove__induct,axiom,
! [P: set_complex > $o,B2: set_complex] :
( ( P @ bot_bot_set_complex )
=> ( ( ~ ( finite3207457112153483333omplex @ B2 )
=> ( P @ B2 ) )
=> ( ! [A7: set_complex] :
( ( finite3207457112153483333omplex @ A7 )
=> ( ( A7 != bot_bot_set_complex )
=> ( ( ord_le211207098394363844omplex @ A7 @ B2 )
=> ( ! [X: complex] :
( ( member_complex @ X @ A7 )
=> ( P @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X @ bot_bot_set_complex ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% remove_induct
thf(fact_6592_remove__induct,axiom,
! [P: set_real > $o,B2: set_real] :
( ( P @ bot_bot_set_real )
=> ( ( ~ ( finite_finite_real @ B2 )
=> ( P @ B2 ) )
=> ( ! [A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ( A7 != bot_bot_set_real )
=> ( ( ord_less_eq_set_real @ A7 @ B2 )
=> ( ! [X: real] :
( ( member_real @ X @ A7 )
=> ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ X @ bot_bot_set_real ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% remove_induct
thf(fact_6593_remove__induct,axiom,
! [P: set_nat > $o,B2: set_nat] :
( ( P @ bot_bot_set_nat )
=> ( ( ~ ( finite_finite_nat @ B2 )
=> ( P @ B2 ) )
=> ( ! [A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ( A7 != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ A7 @ B2 )
=> ( ! [X: nat] :
( ( member_nat @ X @ A7 )
=> ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% remove_induct
thf(fact_6594_remove__induct,axiom,
! [P: set_int > $o,B2: set_int] :
( ( P @ bot_bot_set_int )
=> ( ( ~ ( finite_finite_int @ B2 )
=> ( P @ B2 ) )
=> ( ! [A7: set_int] :
( ( finite_finite_int @ A7 )
=> ( ( A7 != bot_bot_set_int )
=> ( ( ord_less_eq_set_int @ A7 @ B2 )
=> ( ! [X: int] :
( ( member_int @ X @ A7 )
=> ( P @ ( minus_minus_set_int @ A7 @ ( insert_int @ X @ bot_bot_set_int ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B2 ) ) ) ) ).
% remove_induct
thf(fact_6595_finite__induct__select,axiom,
! [S2: set_complex,P: set_complex > $o] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( P @ bot_bot_set_complex )
=> ( ! [T5: set_complex] :
( ( ord_less_set_complex @ T5 @ S2 )
=> ( ( P @ T5 )
=> ? [X: complex] :
( ( member_complex @ X @ ( minus_811609699411566653omplex @ S2 @ T5 ) )
& ( P @ ( insert_complex @ X @ T5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_induct_select
thf(fact_6596_finite__induct__select,axiom,
! [S2: set_real,P: set_real > $o] :
( ( finite_finite_real @ S2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [T5: set_real] :
( ( ord_less_set_real @ T5 @ S2 )
=> ( ( P @ T5 )
=> ? [X: real] :
( ( member_real @ X @ ( minus_minus_set_real @ S2 @ T5 ) )
& ( P @ ( insert_real @ X @ T5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_induct_select
thf(fact_6597_finite__induct__select,axiom,
! [S2: set_int,P: set_int > $o] :
( ( finite_finite_int @ S2 )
=> ( ( P @ bot_bot_set_int )
=> ( ! [T5: set_int] :
( ( ord_less_set_int @ T5 @ S2 )
=> ( ( P @ T5 )
=> ? [X: int] :
( ( member_int @ X @ ( minus_minus_set_int @ S2 @ T5 ) )
& ( P @ ( insert_int @ X @ T5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_induct_select
thf(fact_6598_finite__induct__select,axiom,
! [S2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ S2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [T5: set_nat] :
( ( ord_less_set_nat @ T5 @ S2 )
=> ( ( P @ T5 )
=> ? [X: nat] :
( ( member_nat @ X @ ( minus_minus_set_nat @ S2 @ T5 ) )
& ( P @ ( insert_nat @ X @ T5 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_induct_select
thf(fact_6599_psubset__insert__iff,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,B2: set_VEBT_VEBT] :
( ( ord_le3480810397992357184T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ B2 ) )
= ( ( ( member_VEBT_VEBT @ X3 @ B2 )
=> ( ord_le3480810397992357184T_VEBT @ A2 @ B2 ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ B2 )
=> ( ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_le3480810397992357184T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) @ B2 ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_le4337996190870823476T_VEBT @ A2 @ B2 ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_6600_psubset__insert__iff,axiom,
! [A2: set_set_nat,X3: set_nat,B2: set_set_nat] :
( ( ord_less_set_set_nat @ A2 @ ( insert_set_nat @ X3 @ B2 ) )
= ( ( ( member_set_nat @ X3 @ B2 )
=> ( ord_less_set_set_nat @ A2 @ B2 ) )
& ( ~ ( member_set_nat @ X3 @ B2 )
=> ( ( ( member_set_nat @ X3 @ A2 )
=> ( ord_less_set_set_nat @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ X3 @ bot_bot_set_set_nat ) ) @ B2 ) )
& ( ~ ( member_set_nat @ X3 @ A2 )
=> ( ord_le6893508408891458716et_nat @ A2 @ B2 ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_6601_psubset__insert__iff,axiom,
! [A2: set_real,X3: real,B2: set_real] :
( ( ord_less_set_real @ A2 @ ( insert_real @ X3 @ B2 ) )
= ( ( ( member_real @ X3 @ B2 )
=> ( ord_less_set_real @ A2 @ B2 ) )
& ( ~ ( member_real @ X3 @ B2 )
=> ( ( ( member_real @ X3 @ A2 )
=> ( ord_less_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) @ B2 ) )
& ( ~ ( member_real @ X3 @ A2 )
=> ( ord_less_eq_set_real @ A2 @ B2 ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_6602_psubset__insert__iff,axiom,
! [A2: set_nat,X3: nat,B2: set_nat] :
( ( ord_less_set_nat @ A2 @ ( insert_nat @ X3 @ B2 ) )
= ( ( ( member_nat @ X3 @ B2 )
=> ( ord_less_set_nat @ A2 @ B2 ) )
& ( ~ ( member_nat @ X3 @ B2 )
=> ( ( ( member_nat @ X3 @ A2 )
=> ( ord_less_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) @ B2 ) )
& ( ~ ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_6603_psubset__insert__iff,axiom,
! [A2: set_int,X3: int,B2: set_int] :
( ( ord_less_set_int @ A2 @ ( insert_int @ X3 @ B2 ) )
= ( ( ( member_int @ X3 @ B2 )
=> ( ord_less_set_int @ A2 @ B2 ) )
& ( ~ ( member_int @ X3 @ B2 )
=> ( ( ( member_int @ X3 @ A2 )
=> ( ord_less_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) @ B2 ) )
& ( ~ ( member_int @ X3 @ A2 )
=> ( ord_less_eq_set_int @ A2 @ B2 ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_6604_set__replicate__Suc,axiom,
! [N2: nat,X3: vEBT_VEBT] :
( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ ( suc @ N2 ) @ X3 ) )
= ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ).
% set_replicate_Suc
thf(fact_6605_set__replicate__Suc,axiom,
! [N2: nat,X3: real] :
( ( set_real2 @ ( replicate_real @ ( suc @ N2 ) @ X3 ) )
= ( insert_real @ X3 @ bot_bot_set_real ) ) ).
% set_replicate_Suc
thf(fact_6606_set__replicate__Suc,axiom,
! [N2: nat,X3: nat] :
( ( set_nat2 @ ( replicate_nat @ ( suc @ N2 ) @ X3 ) )
= ( insert_nat @ X3 @ bot_bot_set_nat ) ) ).
% set_replicate_Suc
thf(fact_6607_set__replicate__Suc,axiom,
! [N2: nat,X3: int] :
( ( set_int2 @ ( replicate_int @ ( suc @ N2 ) @ X3 ) )
= ( insert_int @ X3 @ bot_bot_set_int ) ) ).
% set_replicate_Suc
thf(fact_6608_set__replicate__conv__if,axiom,
! [N2: nat,X3: vEBT_VEBT] :
( ( ( N2 = zero_zero_nat )
=> ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ X3 ) )
= bot_bo8194388402131092736T_VEBT ) )
& ( ( N2 != zero_zero_nat )
=> ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ X3 ) )
= ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).
% set_replicate_conv_if
thf(fact_6609_set__replicate__conv__if,axiom,
! [N2: nat,X3: real] :
( ( ( N2 = zero_zero_nat )
=> ( ( set_real2 @ ( replicate_real @ N2 @ X3 ) )
= bot_bot_set_real ) )
& ( ( N2 != zero_zero_nat )
=> ( ( set_real2 @ ( replicate_real @ N2 @ X3 ) )
= ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ).
% set_replicate_conv_if
thf(fact_6610_set__replicate__conv__if,axiom,
! [N2: nat,X3: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( set_nat2 @ ( replicate_nat @ N2 @ X3 ) )
= bot_bot_set_nat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( set_nat2 @ ( replicate_nat @ N2 @ X3 ) )
= ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ).
% set_replicate_conv_if
thf(fact_6611_set__replicate__conv__if,axiom,
! [N2: nat,X3: int] :
( ( ( N2 = zero_zero_nat )
=> ( ( set_int2 @ ( replicate_int @ N2 @ X3 ) )
= bot_bot_set_int ) )
& ( ( N2 != zero_zero_nat )
=> ( ( set_int2 @ ( replicate_int @ N2 @ X3 ) )
= ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ).
% set_replicate_conv_if
thf(fact_6612_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( G @ M )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6613_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( G @ M )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6614_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( G @ M )
@ ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6615_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( G @ M )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6616_sum__Suc__diff,axiom,
! [M: nat,N2: nat,F: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( minus_minus_rat @ ( F @ ( suc @ I5 ) ) @ ( F @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( minus_minus_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6617_sum__Suc__diff,axiom,
! [M: nat,N2: nat,F: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( minus_minus_int @ ( F @ ( suc @ I5 ) ) @ ( F @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( minus_minus_int @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6618_sum__Suc__diff,axiom,
! [M: nat,N2: nat,F: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( minus_minus_real @ ( F @ ( suc @ I5 ) ) @ ( F @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( minus_minus_real @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6619_sum__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
=> ( ord_less_eq_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6620_sum__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > real] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
=> ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6621_sum__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6622_sum__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
=> ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6623_sum__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > rat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6624_sum__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
=> ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6625_sum__mono2,axiom,
! [B2: set_nat,A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6626_sum__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B4 ) ) )
=> ( ord_less_eq_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6627_sum__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > nat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B4 ) ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6628_sum__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B4 ) ) )
=> ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B2 ) ) ) ) ) ).
% sum_mono2
thf(fact_6629_num_Osize_I6_J,axiom,
! [X32: num] :
( ( size_size_num @ ( bit1 @ X32 ) )
= ( plus_plus_nat @ ( size_size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(6)
thf(fact_6630_num_Osize__gen_I3_J,axiom,
! [X32: num] :
( ( size_num @ ( bit1 @ X32 ) )
= ( plus_plus_nat @ ( size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(3)
thf(fact_6631_sum_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > rat,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6632_sum_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > int,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6633_sum_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > nat,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6634_sum_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > real,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6635_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(11)
thf(fact_6636_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(11)
thf(fact_6637_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(11)
thf(fact_6638_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N2: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(7)
thf(fact_6639_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(7)
thf(fact_6640_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(7)
thf(fact_6641_Suc__div__eq__add3__div,axiom,
! [M: nat,N2: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N2 ) ) ).
% Suc_div_eq_add3_div
thf(fact_6642_sum__count__set,axiom,
! [Xs: list_complex,X8: set_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ X8 )
=> ( ( finite3207457112153483333omplex @ X8 )
=> ( ( groups5693394587270226106ex_nat @ ( count_list_complex @ Xs ) @ X8 )
= ( size_s3451745648224563538omplex @ Xs ) ) ) ) ).
% sum_count_set
thf(fact_6643_sum__count__set,axiom,
! [Xs: list_VEBT_VEBT,X8: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ X8 )
=> ( ( finite5795047828879050333T_VEBT @ X8 )
=> ( ( groups771621172384141258BT_nat @ ( count_list_VEBT_VEBT @ Xs ) @ X8 )
= ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ) ).
% sum_count_set
thf(fact_6644_sum__count__set,axiom,
! [Xs: list_o,X8: set_o] :
( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ X8 )
=> ( ( finite_finite_o @ X8 )
=> ( ( groups8507830703676809646_o_nat @ ( count_list_o @ Xs ) @ X8 )
= ( size_size_list_o @ Xs ) ) ) ) ).
% sum_count_set
thf(fact_6645_sum__count__set,axiom,
! [Xs: list_int,X8: set_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ X8 )
=> ( ( finite_finite_int @ X8 )
=> ( ( groups4541462559716669496nt_nat @ ( count_list_int @ Xs ) @ X8 )
= ( size_size_list_int @ Xs ) ) ) ) ).
% sum_count_set
thf(fact_6646_sum__count__set,axiom,
! [Xs: list_nat,X8: set_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ X8 )
=> ( ( finite_finite_nat @ X8 )
=> ( ( groups3542108847815614940at_nat @ ( count_list_nat @ Xs ) @ X8 )
= ( size_size_list_nat @ Xs ) ) ) ) ).
% sum_count_set
thf(fact_6647_Suc__mod__eq__add3__mod,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N2 ) ) ).
% Suc_mod_eq_add3_mod
thf(fact_6648_sum__strict__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ B2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6649_sum__strict__mono2,axiom,
! [B2: set_real,A2: set_real,B: real,F: real > real] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ B2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6650_sum__strict__mono2,axiom,
! [B2: set_complex,A2: set_complex,B: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ B2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6651_sum__strict__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ B2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6652_sum__strict__mono2,axiom,
! [B2: set_real,A2: set_real,B: real,F: real > rat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ B2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6653_sum__strict__mono2,axiom,
! [B2: set_complex,A2: set_complex,B: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ B2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6654_sum__strict__mono2,axiom,
! [B2: set_nat,A2: set_nat,B: nat,F: nat > rat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ( member_nat @ B @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ B2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
=> ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6655_sum__strict__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ B2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6656_sum__strict__mono2,axiom,
! [B2: set_real,A2: set_real,B: real,F: real > nat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ B2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6657_sum__strict__mono2,axiom,
! [B2: set_complex,A2: set_complex,B: complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ B2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B2 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6658_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= zero_zero_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= one_one_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).
% mod_exhaust_less_4
thf(fact_6659_sum__natinterval__diff,axiom,
! [M: nat,N2: nat,F: nat > complex] :
( ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( minus_minus_complex @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( minus_minus_complex @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( minus_minus_complex @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= zero_zero_complex ) ) ) ).
% sum_natinterval_diff
thf(fact_6660_sum__natinterval__diff,axiom,
! [M: nat,N2: nat,F: nat > rat] :
( ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( minus_minus_rat @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= zero_zero_rat ) ) ) ).
% sum_natinterval_diff
thf(fact_6661_sum__natinterval__diff,axiom,
! [M: nat,N2: nat,F: nat > int] :
( ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( minus_minus_int @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= zero_zero_int ) ) ) ).
% sum_natinterval_diff
thf(fact_6662_sum__natinterval__diff,axiom,
! [M: nat,N2: nat,F: nat > real] :
( ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( minus_minus_real @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= zero_zero_real ) ) ) ).
% sum_natinterval_diff
thf(fact_6663_sum__telescope_H_H,axiom,
! [M: nat,N2: nat,F: nat > rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
= ( minus_minus_rat @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6664_sum__telescope_H_H,axiom,
! [M: nat,N2: nat,F: nat > int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
= ( minus_minus_int @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6665_sum__telescope_H_H,axiom,
! [M: nat,N2: nat,F: nat > real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
= ( minus_minus_real @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6666_set__decode__plus__power__2,axiom,
! [N2: nat,Z2: nat] :
( ~ ( member_nat @ N2 @ ( nat_set_decode @ Z2 ) )
=> ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ Z2 ) )
= ( insert_nat @ N2 @ ( nat_set_decode @ Z2 ) ) ) ) ).
% set_decode_plus_power_2
thf(fact_6667_mask__eq__sum__exp,axiom,
! [N2: nat] :
( ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int )
= ( groups3539618377306564664at_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N2 ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6668_mask__eq__sum__exp,axiom,
! [N2: nat] :
( ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) @ one_one_Code_integer )
= ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N2 ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6669_mask__eq__sum__exp,axiom,
! [N2: nat] :
( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat )
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N2 ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6670_sum__gp__multiplied,axiom,
! [M: nat,N2: nat,X3: complex] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
= ( minus_minus_complex @ ( power_power_complex @ X3 @ M ) @ ( power_power_complex @ X3 @ ( suc @ N2 ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6671_sum__gp__multiplied,axiom,
! [M: nat,N2: nat,X3: rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
= ( minus_minus_rat @ ( power_power_rat @ X3 @ M ) @ ( power_power_rat @ X3 @ ( suc @ N2 ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6672_sum__gp__multiplied,axiom,
! [M: nat,N2: nat,X3: int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
= ( minus_minus_int @ ( power_power_int @ X3 @ M ) @ ( power_power_int @ X3 @ ( suc @ N2 ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6673_sum__gp__multiplied,axiom,
! [M: nat,N2: nat,X3: real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
= ( minus_minus_real @ ( power_power_real @ X3 @ M ) @ ( power_power_real @ X3 @ ( suc @ N2 ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6674_sum_Oin__pairs,axiom,
! [G: nat > rat,M: nat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.in_pairs
thf(fact_6675_sum_Oin__pairs,axiom,
! [G: nat > int,M: nat,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.in_pairs
thf(fact_6676_sum_Oin__pairs,axiom,
! [G: nat > nat,M: nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.in_pairs
thf(fact_6677_sum_Oin__pairs,axiom,
! [G: nat > real,M: nat,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% sum.in_pairs
thf(fact_6678_take__bit__Suc__bit1,axiom,
! [N2: nat,K: num] :
( ( bit_se1745604003318907178nteger @ ( suc @ N2 ) @ ( numera6620942414471956472nteger @ ( bit1 @ K ) ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ N2 @ ( numera6620942414471956472nteger @ K ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ).
% take_bit_Suc_bit1
thf(fact_6679_take__bit__Suc__bit1,axiom,
! [N2: nat,K: num] :
( ( bit_se2925701944663578781it_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N2 @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).
% take_bit_Suc_bit1
thf(fact_6680_take__bit__Suc__bit1,axiom,
! [N2: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_Suc_bit1
thf(fact_6681_mask__eq__sum__exp__nat,axiom,
! [N2: nat] :
( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( suc @ zero_zero_nat ) )
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N2 ) ) ) ) ).
% mask_eq_sum_exp_nat
thf(fact_6682_gauss__sum__nat,axiom,
! [N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide_divide_nat @ ( times_times_nat @ N2 @ ( suc @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_nat
thf(fact_6683_arith__series__nat,axiom,
! [A: nat,D: nat,N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I5 @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide_divide_nat @ ( times_times_nat @ ( suc @ N2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N2 @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% arith_series_nat
thf(fact_6684_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6685_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6686_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6687_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6688_dbl__dec__simps_I4_J,axiom,
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6689_sum__gp,axiom,
! [N2: nat,M: nat,X3: complex] :
( ( ( ord_less_nat @ N2 @ M )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= zero_zero_complex ) )
& ( ~ ( ord_less_nat @ N2 @ M )
=> ( ( ( X3 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( semiri8010041392384452111omplex @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
& ( ( X3 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X3 @ M ) @ ( power_power_complex @ X3 @ ( suc @ N2 ) ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6690_sum__gp,axiom,
! [N2: nat,M: nat,X3: rat] :
( ( ( ord_less_nat @ N2 @ M )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= zero_zero_rat ) )
& ( ~ ( ord_less_nat @ N2 @ M )
=> ( ( ( X3 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( semiri681578069525770553at_rat @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
& ( ( X3 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X3 @ M ) @ ( power_power_rat @ X3 @ ( suc @ N2 ) ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6691_sum__gp,axiom,
! [N2: nat,M: nat,X3: real] :
( ( ( ord_less_nat @ N2 @ M )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= zero_zero_real ) )
& ( ~ ( ord_less_nat @ N2 @ M )
=> ( ( ( X3 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( semiri5074537144036343181t_real @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
& ( ( X3 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X3 @ M ) @ ( power_power_real @ X3 @ ( suc @ N2 ) ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6692_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8557863876264182079omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6693_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6694_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5851722552734809277nc_int @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6695_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8295874005876285629c_real @ one_one_real )
= ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6696_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5831290666863070958nteger @ one_one_Code_integer )
= ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6697_gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_6698_gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_6699_gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_6700_sum__gp__offset,axiom,
! [X3: complex,M: nat,N2: nat] :
( ( ( X3 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
= ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) )
& ( ( X3 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ X3 @ M ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ ( suc @ N2 ) ) ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ).
% sum_gp_offset
thf(fact_6701_sum__gp__offset,axiom,
! [X3: rat,M: nat,N2: nat] :
( ( ( X3 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
= ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) )
& ( ( X3 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
= ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ X3 @ M ) @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ ( suc @ N2 ) ) ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ).
% sum_gp_offset
thf(fact_6702_sum__gp__offset,axiom,
! [X3: real,M: nat,N2: nat] :
( ( ( X3 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) )
& ( ( X3 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
= ( divide_divide_real @ ( times_times_real @ ( power_power_real @ X3 @ M ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( suc @ N2 ) ) ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ).
% sum_gp_offset
thf(fact_6703_double__gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6704_double__gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6705_double__gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ ( groups7108830773950497114d_enat @ semiri4216267220026989637d_enat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
= ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ N2 ) @ ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ N2 ) @ one_on7984719198319812577d_enat ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6706_double__gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
= ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6707_double__gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6708_double__gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6709_double__gauss__sum__from__Suc__0,axiom,
! [N2: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6710_gauss__sum,axiom,
! [N2: nat] :
( ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% gauss_sum
thf(fact_6711_gauss__sum,axiom,
! [N2: nat] :
( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% gauss_sum
thf(fact_6712_gauss__sum,axiom,
! [N2: nat] :
( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum
thf(fact_6713_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_6714_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_6715_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_6716_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiri1314217659103216013at_int @ M )
= ( numeral_numeral_int @ V ) )
= ( M
= ( numeral_numeral_nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_6717_negative__eq__positive,axiom,
! [N2: nat,M: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri1314217659103216013at_int @ M ) )
= ( ( N2 = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_6718_of__int__of__nat__eq,axiom,
! [N2: nat] :
( ( ring_1_of_int_rat @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri681578069525770553at_rat @ N2 ) ) ).
% of_int_of_nat_eq
thf(fact_6719_of__int__of__nat__eq,axiom,
! [N2: nat] :
( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri1314217659103216013at_int @ N2 ) ) ).
% of_int_of_nat_eq
thf(fact_6720_of__int__of__nat__eq,axiom,
! [N2: nat] :
( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri5074537144036343181t_real @ N2 ) ) ).
% of_int_of_nat_eq
thf(fact_6721_negative__zle,axiom,
! [N2: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zle
thf(fact_6722_int__dvd__int__iff,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( dvd_dvd_nat @ M @ N2 ) ) ).
% int_dvd_int_iff
thf(fact_6723_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6511756317524482435omplex @ one_one_complex )
= one_one_complex ) ).
% dbl_dec_simps(3)
thf(fact_6724_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6075765906172075777c_real @ one_one_real )
= one_one_real ) ).
% dbl_dec_simps(3)
thf(fact_6725_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
= one_one_rat ) ).
% dbl_dec_simps(3)
thf(fact_6726_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3811975205180677377ec_int @ one_one_int )
= one_one_int ) ).
% dbl_dec_simps(3)
thf(fact_6727_of__nat__0,axiom,
( ( semiri8010041392384452111omplex @ zero_zero_nat )
= zero_zero_complex ) ).
% of_nat_0
thf(fact_6728_of__nat__0,axiom,
( ( semiri681578069525770553at_rat @ zero_zero_nat )
= zero_zero_rat ) ).
% of_nat_0
thf(fact_6729_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_6730_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_6731_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_6732_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_complex
= ( semiri8010041392384452111omplex @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_6733_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_rat
= ( semiri681578069525770553at_rat @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_6734_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_6735_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_6736_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_6737_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= zero_zero_complex )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_6738_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri681578069525770553at_rat @ M )
= zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_6739_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_6740_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_6741_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_6742_of__nat__less__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_iff
thf(fact_6743_of__nat__less__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_iff
thf(fact_6744_of__nat__less__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_iff
thf(fact_6745_of__nat__less__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_iff
thf(fact_6746_of__nat__le__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% of_nat_le_iff
thf(fact_6747_of__nat__le__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% of_nat_le_iff
thf(fact_6748_of__nat__le__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% of_nat_le_iff
thf(fact_6749_of__nat__le__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% of_nat_le_iff
thf(fact_6750_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri4216267220026989637d_enat @ ( numeral_numeral_nat @ N2 ) )
= ( numera1916890842035813515d_enat @ N2 ) ) ).
% of_nat_numeral
thf(fact_6751_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri4939895301339042750nteger @ ( numeral_numeral_nat @ N2 ) )
= ( numera6620942414471956472nteger @ N2 ) ) ).
% of_nat_numeral
thf(fact_6752_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_int @ N2 ) ) ).
% of_nat_numeral
thf(fact_6753_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_real @ N2 ) ) ).
% of_nat_numeral
thf(fact_6754_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ N2 ) ) ).
% of_nat_numeral
thf(fact_6755_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).
% of_nat_add
thf(fact_6756_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% of_nat_add
thf(fact_6757_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).
% of_nat_add
thf(fact_6758_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% of_nat_add
thf(fact_6759_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N2 ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).
% of_nat_mult
thf(fact_6760_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N2 ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% of_nat_mult
thf(fact_6761_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N2 ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).
% of_nat_mult
thf(fact_6762_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N2 ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% of_nat_mult
thf(fact_6763_of__nat__1,axiom,
( ( semiri8010041392384452111omplex @ one_one_nat )
= one_one_complex ) ).
% of_nat_1
thf(fact_6764_of__nat__1,axiom,
( ( semiri681578069525770553at_rat @ one_one_nat )
= one_one_rat ) ).
% of_nat_1
thf(fact_6765_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_6766_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_6767_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_6768_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_complex
= ( semiri8010041392384452111omplex @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_6769_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_rat
= ( semiri681578069525770553at_rat @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_6770_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_6771_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_6772_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_6773_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri8010041392384452111omplex @ N2 )
= one_one_complex )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_6774_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri681578069525770553at_rat @ N2 )
= one_one_rat )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_6775_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1314217659103216013at_int @ N2 )
= one_one_int )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_6776_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri5074537144036343181t_real @ N2 )
= one_one_real )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_6777_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1316708129612266289at_nat @ N2 )
= one_one_nat )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_6778_negative__zless,axiom,
! [N2: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zless
thf(fact_6779_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
= one_one_complex ) ).
% dbl_inc_simps(2)
thf(fact_6780_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_6781_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
= one_one_rat ) ).
% dbl_inc_simps(2)
thf(fact_6782_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_6783_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri5074537144036343181t_real @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% of_nat_of_bool
thf(fact_6784_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri1316708129612266289at_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2687167440665602831ol_nat @ P ) ) ).
% of_nat_of_bool
thf(fact_6785_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri1314217659103216013at_int @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% of_nat_of_bool
thf(fact_6786_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_inc_simps(4)
thf(fact_6787_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_inc_simps(4)
thf(fact_6788_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_inc_simps(4)
thf(fact_6789_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_inc_simps(4)
thf(fact_6790_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_inc_simps(4)
thf(fact_6791_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_6792_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_6793_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) )
= ( numera6620942414471956472nteger @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_6794_of__nat__sum,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6795_of__nat__sum,axiom,
! [F: complex > nat,A2: set_complex] :
( ( semiri8010041392384452111omplex @ ( groups5693394587270226106ex_nat @ F @ A2 ) )
= ( groups7754918857620584856omplex
@ ^ [X2: complex] : ( semiri8010041392384452111omplex @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6796_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3539618377306564664at_int
@ ^ [X2: nat] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6797_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1316708129612266289at_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( semiri1316708129612266289at_nat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6798_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri5074537144036343181t_real @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( semiri5074537144036343181t_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6799_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_6800_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_6801_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_6802_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_6803_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ M ) )
= ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).
% of_nat_Suc
thf(fact_6804_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ M ) )
= ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).
% of_nat_Suc
thf(fact_6805_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% of_nat_Suc
thf(fact_6806_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ M ) )
= ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).
% of_nat_Suc
thf(fact_6807_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).
% of_nat_Suc
thf(fact_6808_real__of__nat__less__numeral__iff,axiom,
! [N2: nat,W2: num] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( numeral_numeral_real @ W2 ) )
= ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ W2 ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_6809_numeral__less__real__of__nat__iff,axiom,
! [W2: num,N2: nat] :
( ( ord_less_real @ ( numeral_numeral_real @ W2 ) @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ W2 ) @ N2 ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_6810_numeral__le__real__of__nat__iff,axiom,
! [N2: num,M: nat] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ ( semiri5074537144036343181t_real @ M ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_6811_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_dec_simps(2)
thf(fact_6812_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_dec_simps(2)
thf(fact_6813_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6075765906172075777c_real @ zero_zero_real )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_dec_simps(2)
thf(fact_6814_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_dec_simps(2)
thf(fact_6815_dbl__dec__simps_I2_J,axiom,
( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_dec_simps(2)
thf(fact_6816_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6817_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6818_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6819_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6820_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6821_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6822_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6823_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6824_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_6825_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_6826_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_6827_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_6828_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_6829_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_6830_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_6831_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_6832_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W2 ) @ ( semiri681578069525770553at_rat @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_6833_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) @ ( semiri1314217659103216013at_int @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_6834_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) @ ( semiri5074537144036343181t_real @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_6835_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) @ ( semiri1316708129612266289at_nat @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_6836_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) @ ( semiri5074537144036343181t_real @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_6837_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W2 ) @ ( semiri681578069525770553at_rat @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_6838_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) @ ( semiri1316708129612266289at_nat @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_6839_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X3: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) @ ( semiri1314217659103216013at_int @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X3 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_6840_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_6841_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_6842_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_6843_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_6844_of__nat__zero__less__power__iff,axiom,
! [X3: nat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X3 ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_6845_of__nat__zero__less__power__iff,axiom,
! [X3: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X3 ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_6846_of__nat__zero__less__power__iff,axiom,
! [X3: nat,N2: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X3 ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_6847_of__nat__zero__less__power__iff,axiom,
! [X3: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_6848_of__nat__less__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_6849_of__nat__less__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ X3 ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_6850_of__nat__less__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_6851_of__nat__less__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_6852_of__nat__less__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_6853_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) @ ( semiri681578069525770553at_rat @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_6854_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N2 ) @ ( semiri4939895301339042750nteger @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_6855_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) @ ( semiri1314217659103216013at_int @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_6856_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) @ ( semiri5074537144036343181t_real @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_6857_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ ( semiri1316708129612266289at_nat @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_6858_of__nat__le__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ X3 ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_6859_of__nat__le__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_6860_of__nat__le__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_6861_of__nat__le__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_6862_of__nat__le__numeral__power__cancel__iff,axiom,
! [X3: nat,I: num,N2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_6863_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N2 ) @ ( semiri4939895301339042750nteger @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_6864_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N2 ) @ ( semiri5074537144036343181t_real @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_6865_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N2 ) @ ( semiri681578069525770553at_rat @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_6866_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ ( semiri1316708129612266289at_nat @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_6867_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N2: nat,X3: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N2 ) @ ( semiri1314217659103216013at_int @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N2 ) @ X3 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_6868_real__arch__simple,axiom,
! [X3: real] :
? [N3: nat] : ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ N3 ) ) ).
% real_arch_simple
thf(fact_6869_real__arch__simple,axiom,
! [X3: rat] :
? [N3: nat] : ( ord_less_eq_rat @ X3 @ ( semiri681578069525770553at_rat @ N3 ) ) ).
% real_arch_simple
thf(fact_6870_reals__Archimedean2,axiom,
! [X3: rat] :
? [N3: nat] : ( ord_less_rat @ X3 @ ( semiri681578069525770553at_rat @ N3 ) ) ).
% reals_Archimedean2
thf(fact_6871_reals__Archimedean2,axiom,
! [X3: real] :
? [N3: nat] : ( ord_less_real @ X3 @ ( semiri5074537144036343181t_real @ N3 ) ) ).
% reals_Archimedean2
thf(fact_6872_mult__of__nat__commute,axiom,
! [X3: nat,Y: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ X3 ) @ Y )
= ( times_times_rat @ Y @ ( semiri681578069525770553at_rat @ X3 ) ) ) ).
% mult_of_nat_commute
thf(fact_6873_mult__of__nat__commute,axiom,
! [X3: nat,Y: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X3 ) @ Y )
= ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X3 ) ) ) ).
% mult_of_nat_commute
thf(fact_6874_mult__of__nat__commute,axiom,
! [X3: nat,Y: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ Y )
= ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X3 ) ) ) ).
% mult_of_nat_commute
thf(fact_6875_mult__of__nat__commute,axiom,
! [X3: nat,Y: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ Y )
= ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X3 ) ) ) ).
% mult_of_nat_commute
thf(fact_6876_int__cases2,axiom,
! [Z2: int] :
( ! [N3: nat] :
( Z2
!= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ! [N3: nat] :
( Z2
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% int_cases2
thf(fact_6877_int__diff__cases,axiom,
! [Z2: int] :
~ ! [M4: nat,N3: nat] :
( Z2
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M4 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% int_diff_cases
thf(fact_6878_of__nat__less__of__int__iff,axiom,
! [N2: nat,X3: int] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( ring_1_of_int_rat @ X3 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ X3 ) ) ).
% of_nat_less_of_int_iff
thf(fact_6879_of__nat__less__of__int__iff,axiom,
! [N2: nat,X3: int] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( ring_1_of_int_int @ X3 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ X3 ) ) ).
% of_nat_less_of_int_iff
thf(fact_6880_of__nat__less__of__int__iff,axiom,
! [N2: nat,X3: int] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( ring_1_of_int_real @ X3 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ X3 ) ) ).
% of_nat_less_of_int_iff
thf(fact_6881_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_6882_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_6883_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_6884_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_6885_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).
% of_nat_less_0_iff
thf(fact_6886_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_6887_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_6888_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_6889_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ N2 ) )
!= zero_zero_complex ) ).
% of_nat_neq_0
thf(fact_6890_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ N2 ) )
!= zero_zero_rat ) ).
% of_nat_neq_0
thf(fact_6891_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_6892_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N2 ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_6893_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N2 ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_6894_of__nat__less__imp__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_6895_of__nat__less__imp__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_6896_of__nat__less__imp__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_6897_of__nat__less__imp__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_6898_less__imp__of__nat__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_6899_less__imp__of__nat__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_6900_less__imp__of__nat__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_6901_less__imp__of__nat__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_6902_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_6903_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).
% of_nat_mono
thf(fact_6904_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_6905_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_6906_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_6907_int__ops_I3_J,axiom,
! [N2: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_int @ N2 ) ) ).
% int_ops(3)
thf(fact_6908_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_6909_int__of__nat__induct,axiom,
! [P: int > $o,Z2: int] :
( ! [N3: nat] : ( P @ ( semiri1314217659103216013at_int @ N3 ) )
=> ( ! [N3: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) )
=> ( P @ Z2 ) ) ) ).
% int_of_nat_induct
thf(fact_6910_int__cases,axiom,
! [Z2: int] :
( ! [N3: nat] :
( Z2
!= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ! [N3: nat] :
( Z2
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).
% int_cases
thf(fact_6911_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_6912_zle__int,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_eq_nat @ M @ N2 ) ) ).
% zle_int
thf(fact_6913_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( K
!= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% nonneg_int_cases
thf(fact_6914_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_6915_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_6916_int__plus,axiom,
! [N2: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_6917_zadd__int__left,axiom,
! [M: nat,N2: nat,Z2: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ Z2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_6918_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_6919_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_6920_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W3: int,Z6: int] :
? [N: nat] :
( Z6
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_6921_not__int__zless__negative,axiom,
! [N2: nat,M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% not_int_zless_negative
thf(fact_6922_of__nat__max,axiom,
! [X3: nat,Y: nat] :
( ( semiri1314217659103216013at_int @ ( ord_max_nat @ X3 @ Y ) )
= ( ord_max_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( semiri1314217659103216013at_int @ Y ) ) ) ).
% of_nat_max
thf(fact_6923_of__nat__max,axiom,
! [X3: nat,Y: nat] :
( ( semiri5074537144036343181t_real @ ( ord_max_nat @ X3 @ Y ) )
= ( ord_max_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( semiri5074537144036343181t_real @ Y ) ) ) ).
% of_nat_max
thf(fact_6924_of__nat__max,axiom,
! [X3: nat,Y: nat] :
( ( semiri1316708129612266289at_nat @ ( ord_max_nat @ X3 @ Y ) )
= ( ord_max_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( semiri1316708129612266289at_nat @ Y ) ) ) ).
% of_nat_max
thf(fact_6925_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_less_as_int
thf(fact_6926_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_leq_as_int
thf(fact_6927_ex__less__of__nat__mult,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_rat @ zero_zero_rat @ X3 )
=> ? [N3: nat] : ( ord_less_rat @ Y @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N3 ) @ X3 ) ) ) ).
% ex_less_of_nat_mult
thf(fact_6928_ex__less__of__nat__mult,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ? [N3: nat] : ( ord_less_real @ Y @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X3 ) ) ) ).
% ex_less_of_nat_mult
thf(fact_6929_of__nat__diff,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N2 ) )
= ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ).
% of_nat_diff
thf(fact_6930_of__nat__diff,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N2 ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% of_nat_diff
thf(fact_6931_of__nat__diff,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N2 ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).
% of_nat_diff
thf(fact_6932_of__nat__diff,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N2 ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).
% of_nat_diff
thf(fact_6933_reals__Archimedean3,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ! [Y3: real] :
? [N3: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X3 ) ) ) ).
% reals_Archimedean3
thf(fact_6934_int__cases4,axiom,
! [M: int] :
( ! [N3: nat] :
( M
!= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( M
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% int_cases4
thf(fact_6935_int__zle__neg,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
= ( ( N2 = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_6936_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_6937_int__Suc,axiom,
! [N2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ).
% int_Suc
thf(fact_6938_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W3: int,Z6: int] :
? [N: nat] :
( Z6
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_6939_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N3: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% nonpos_int_cases
thf(fact_6940_negative__zle__0,axiom,
! [N2: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_6941_int__sum,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X2: int] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% int_sum
thf(fact_6942_int__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3539618377306564664at_int
@ ^ [X2: nat] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% int_sum
thf(fact_6943_sum__nth__roots,axiom,
! [N2: nat,C: complex] :
( ( ord_less_nat @ one_one_nat @ N2 )
=> ( ( groups7754918857620584856omplex
@ ^ [X2: complex] : X2
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= C ) ) )
= zero_zero_complex ) ) ).
% sum_nth_roots
thf(fact_6944_sum__roots__unity,axiom,
! [N2: nat] :
( ( ord_less_nat @ one_one_nat @ N2 )
=> ( ( groups7754918857620584856omplex
@ ^ [X2: complex] : X2
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= one_one_complex ) ) )
= zero_zero_complex ) ) ).
% sum_roots_unity
thf(fact_6945_mod__mult2__eq_H,axiom,
! [A: int,M: nat,N2: nat] :
( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_6946_mod__mult2__eq_H,axiom,
! [A: nat,M: nat,N2: nat] :
( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_6947_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
& ( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_6948_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% pos_int_cases
thf(fact_6949_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
=> ~ ! [N3: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).
% int_cases3
thf(fact_6950_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).
% nat_less_real_le
thf(fact_6951_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_6952_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_6953_not__zle__0__negative,axiom,
! [N2: nat] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ).
% not_zle_0_negative
thf(fact_6954_negative__zless__0,axiom,
! [N2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ zero_zero_int ) ).
% negative_zless_0
thf(fact_6955_negD,axiom,
! [X3: int] :
( ( ord_less_int @ X3 @ zero_zero_int )
=> ? [N3: nat] :
( X3
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).
% negD
thf(fact_6956_dbl__inc__def,axiom,
( neg_nu8557863876264182079omplex
= ( ^ [X2: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X2 @ X2 ) @ one_one_complex ) ) ) ).
% dbl_inc_def
thf(fact_6957_dbl__inc__def,axiom,
( neg_nu8295874005876285629c_real
= ( ^ [X2: real] : ( plus_plus_real @ ( plus_plus_real @ X2 @ X2 ) @ one_one_real ) ) ) ).
% dbl_inc_def
thf(fact_6958_dbl__inc__def,axiom,
( neg_nu5219082963157363817nc_rat
= ( ^ [X2: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X2 @ X2 ) @ one_one_rat ) ) ) ).
% dbl_inc_def
thf(fact_6959_dbl__inc__def,axiom,
( neg_nu5851722552734809277nc_int
= ( ^ [X2: int] : ( plus_plus_int @ ( plus_plus_int @ X2 @ X2 ) @ one_one_int ) ) ) ).
% dbl_inc_def
thf(fact_6960_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_6961_atLeastAtMostPlus1__int__conv,axiom,
! [M: int,N2: int] :
( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N2 ) )
=> ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N2 ) )
= ( insert_int @ ( plus_plus_int @ one_one_int @ N2 ) @ ( set_or1266510415728281911st_int @ M @ N2 ) ) ) ) ).
% atLeastAtMostPlus1_int_conv
thf(fact_6962_simp__from__to,axiom,
( set_or1266510415728281911st_int
= ( ^ [I5: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I5 ) @ bot_bot_set_int @ ( insert_int @ I5 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I5 @ one_one_int ) @ J3 ) ) ) ) ) ).
% simp_from_to
thf(fact_6963_nat__approx__posE,axiom,
! [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
=> ~ ! [N3: nat] :
~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) ) @ E2 ) ) ).
% nat_approx_posE
thf(fact_6964_nat__approx__posE,axiom,
! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ~ ! [N3: nat] :
~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ E2 ) ) ).
% nat_approx_posE
thf(fact_6965_of__nat__less__two__power,axiom,
! [N2: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N2 ) ) ).
% of_nat_less_two_power
thf(fact_6966_of__nat__less__two__power,axiom,
! [N2: nat] : ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ).
% of_nat_less_two_power
thf(fact_6967_of__nat__less__two__power,axiom,
! [N2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).
% of_nat_less_two_power
thf(fact_6968_of__nat__less__two__power,axiom,
! [N2: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ).
% of_nat_less_two_power
thf(fact_6969_inverse__of__nat__le,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( N2 != zero_zero_nat )
=> ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_6970_inverse__of__nat__le,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( N2 != zero_zero_nat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_6971_real__archimedian__rdiv__eq__0,axiom,
! [X3: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M4: nat] :
( ( ord_less_nat @ zero_zero_nat @ M4 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X3 ) @ C ) )
=> ( X3 = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_6972_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N3: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% neg_int_cases
thf(fact_6973_zdiff__int__split,axiom,
! [P: int > $o,X3: nat,Y: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X3 @ Y ) ) )
= ( ( ( ord_less_eq_nat @ Y @ X3 )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
& ( ( ord_less_nat @ X3 @ Y )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_6974_ln__realpow,axiom,
! [X3: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ln_ln_real @ ( power_power_real @ X3 @ N2 ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( ln_ln_real @ X3 ) ) ) ) ).
% ln_realpow
thf(fact_6975_dbl__dec__def,axiom,
( neg_nu6511756317524482435omplex
= ( ^ [X2: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X2 @ X2 ) @ one_one_complex ) ) ) ).
% dbl_dec_def
thf(fact_6976_dbl__dec__def,axiom,
( neg_nu6075765906172075777c_real
= ( ^ [X2: real] : ( minus_minus_real @ ( plus_plus_real @ X2 @ X2 ) @ one_one_real ) ) ) ).
% dbl_dec_def
thf(fact_6977_dbl__dec__def,axiom,
( neg_nu3179335615603231917ec_rat
= ( ^ [X2: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X2 @ X2 ) @ one_one_rat ) ) ) ).
% dbl_dec_def
thf(fact_6978_dbl__dec__def,axiom,
( neg_nu3811975205180677377ec_int
= ( ^ [X2: int] : ( minus_minus_int @ ( plus_plus_int @ X2 @ X2 ) @ one_one_int ) ) ) ).
% dbl_dec_def
thf(fact_6979_double__gauss__sum,axiom,
! [N2: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) ) ).
% double_gauss_sum
thf(fact_6980_double__gauss__sum,axiom,
! [N2: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) ) ).
% double_gauss_sum
thf(fact_6981_double__gauss__sum,axiom,
! [N2: nat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ ( groups7108830773950497114d_enat @ semiri4216267220026989637d_enat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ N2 ) @ ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ N2 ) @ one_on7984719198319812577d_enat ) ) ) ).
% double_gauss_sum
thf(fact_6982_double__gauss__sum,axiom,
! [N2: nat] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) ) ).
% double_gauss_sum
thf(fact_6983_double__gauss__sum,axiom,
! [N2: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ).
% double_gauss_sum
thf(fact_6984_double__gauss__sum,axiom,
! [N2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) ) ).
% double_gauss_sum
thf(fact_6985_double__gauss__sum,axiom,
! [N2: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) ) ).
% double_gauss_sum
thf(fact_6986_double__arith__series,axiom,
! [A: complex,D: complex,N2: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( plus_plus_complex @ A @ ( times_times_complex @ ( semiri8010041392384452111omplex @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_6987_double__arith__series,axiom,
! [A: rat,D: rat,N2: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( plus_plus_rat @ A @ ( times_times_rat @ ( semiri681578069525770553at_rat @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_6988_double__arith__series,axiom,
! [A: extended_enat,D: extended_enat,N2: nat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) )
@ ( groups7108830773950497114d_enat
@ ^ [I5: nat] : ( plus_p3455044024723400733d_enat @ A @ ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ N2 ) @ one_on7984719198319812577d_enat ) @ ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ A ) @ ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ N2 ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_6989_double__arith__series,axiom,
! [A: code_integer,D: code_integer,N2: nat] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
@ ( groups7501900531339628137nteger
@ ^ [I5: nat] : ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_6990_double__arith__series,axiom,
! [A: int,D: int,N2: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_6991_double__arith__series,axiom,
! [A: nat,D: nat,N2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_6992_double__arith__series,axiom,
! [A: real,D: real,N2: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( plus_plus_real @ A @ ( times_times_real @ ( semiri5074537144036343181t_real @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
= ( times_times_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ D ) ) ) ) ).
% double_arith_series
thf(fact_6993_arith__series,axiom,
! [A: code_integer,D: code_integer,N2: nat] :
( ( groups7501900531339628137nteger
@ ^ [I5: nat] : ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ D ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% arith_series
thf(fact_6994_arith__series,axiom,
! [A: int,D: int,N2: nat] :
( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide_divide_int @ ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ D ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% arith_series
thf(fact_6995_arith__series,axiom,
! [A: nat,D: nat,N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I5 ) @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( divide_divide_nat @ ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% arith_series
thf(fact_6996_of__nat__code__if,axiom,
( semiri8010041392384452111omplex
= ( ^ [N: nat] :
( if_complex @ ( N = zero_zero_nat ) @ zero_zero_complex
@ ( produc1917071388513777916omplex
@ ^ [M3: nat,Q5: nat] : ( if_complex @ ( Q5 = zero_zero_nat ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M3 ) ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M3 ) ) @ one_one_complex ) )
@ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_6997_of__nat__code__if,axiom,
( semiri681578069525770553at_rat
= ( ^ [N: nat] :
( if_rat @ ( N = zero_zero_nat ) @ zero_zero_rat
@ ( produc6207742614233964070at_rat
@ ^ [M3: nat,Q5: nat] : ( if_rat @ ( Q5 = zero_zero_nat ) @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M3 ) ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M3 ) ) @ one_one_rat ) )
@ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_6998_of__nat__code__if,axiom,
( semiri4216267220026989637d_enat
= ( ^ [N: nat] :
( if_Extended_enat @ ( N = zero_zero_nat ) @ zero_z5237406670263579293d_enat
@ ( produc2676513652042109336d_enat
@ ^ [M3: nat,Q5: nat] : ( if_Extended_enat @ ( Q5 = zero_zero_nat ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ ( semiri4216267220026989637d_enat @ M3 ) ) @ ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ ( semiri4216267220026989637d_enat @ M3 ) ) @ one_on7984719198319812577d_enat ) )
@ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_6999_of__nat__code__if,axiom,
( semiri4939895301339042750nteger
= ( ^ [N: nat] :
( if_Code_integer @ ( N = zero_zero_nat ) @ zero_z3403309356797280102nteger
@ ( produc1830744345554046123nteger
@ ^ [M3: nat,Q5: nat] : ( if_Code_integer @ ( Q5 = zero_zero_nat ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ M3 ) ) @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ M3 ) ) @ one_one_Code_integer ) )
@ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7000_of__nat__code__if,axiom,
( semiri1314217659103216013at_int
= ( ^ [N: nat] :
( if_int @ ( N = zero_zero_nat ) @ zero_zero_int
@ ( produc6840382203811409530at_int
@ ^ [M3: nat,Q5: nat] : ( if_int @ ( Q5 = zero_zero_nat ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M3 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M3 ) ) @ one_one_int ) )
@ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7001_of__nat__code__if,axiom,
( semiri5074537144036343181t_real
= ( ^ [N: nat] :
( if_real @ ( N = zero_zero_nat ) @ zero_zero_real
@ ( produc1703576794950452218t_real
@ ^ [M3: nat,Q5: nat] : ( if_real @ ( Q5 = zero_zero_nat ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M3 ) ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M3 ) ) @ one_one_real ) )
@ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7002_of__nat__code__if,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N: nat] :
( if_nat @ ( N = zero_zero_nat ) @ zero_zero_nat
@ ( produc6842872674320459806at_nat
@ ^ [M3: nat,Q5: nat] : ( if_nat @ ( Q5 = zero_zero_nat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M3 ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M3 ) ) @ one_one_nat ) )
@ ( divmod_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_7003_lemma__termdiff3,axiom,
! [H2: real,Z2: real,K5: real,N2: nat] :
( ( H2 != zero_zero_real )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z2 ) @ K5 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z2 @ H2 ) ) @ K5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z2 @ H2 ) @ N2 ) @ ( power_power_real @ Z2 @ N2 ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ Z2 @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H2 ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_7004_lemma__termdiff3,axiom,
! [H2: complex,Z2: complex,K5: real,N2: nat] :
( ( H2 != zero_zero_complex )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z2 ) @ K5 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z2 @ H2 ) ) @ K5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z2 @ H2 ) @ N2 ) @ ( power_power_complex @ Z2 @ N2 ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( power_power_complex @ Z2 @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H2 ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_7005_ln__series,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ( ln_ln_real @ X3 )
= ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X3 @ one_one_real ) @ ( suc @ N ) ) ) ) ) ) ) ).
% ln_series
thf(fact_7006_lemma__termdiff2,axiom,
! [H2: complex,Z2: complex,N2: nat] :
( ( H2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z2 @ H2 ) @ N2 ) @ ( power_power_complex @ Z2 @ N2 ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( power_power_complex @ Z2 @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_complex @ H2
@ ( groups2073611262835488442omplex
@ ^ [P6: nat] :
( groups2073611262835488442omplex
@ ^ [Q5: nat] : ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z2 @ H2 ) @ Q5 ) @ ( power_power_complex @ Z2 @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q5 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P6 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_7007_lemma__termdiff2,axiom,
! [H2: rat,Z2: rat,N2: nat] :
( ( H2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z2 @ H2 ) @ N2 ) @ ( power_power_rat @ Z2 @ N2 ) ) @ H2 ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( power_power_rat @ Z2 @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_rat @ H2
@ ( groups2906978787729119204at_rat
@ ^ [P6: nat] :
( groups2906978787729119204at_rat
@ ^ [Q5: nat] : ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z2 @ H2 ) @ Q5 ) @ ( power_power_rat @ Z2 @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q5 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P6 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_7008_lemma__termdiff2,axiom,
! [H2: real,Z2: real,N2: nat] :
( ( H2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z2 @ H2 ) @ N2 ) @ ( power_power_real @ Z2 @ N2 ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ Z2 @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_real @ H2
@ ( groups6591440286371151544t_real
@ ^ [P6: nat] :
( groups6591440286371151544t_real
@ ^ [Q5: nat] : ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z2 @ H2 ) @ Q5 ) @ ( power_power_real @ Z2 @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q5 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P6 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_7009_pochhammer__double,axiom,
! [Z2: complex,N2: nat] :
( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s2602460028002588243omplex @ Z2 @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z2 @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).
% pochhammer_double
thf(fact_7010_pochhammer__double,axiom,
! [Z2: rat,N2: nat] :
( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s4028243227959126397er_rat @ Z2 @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).
% pochhammer_double
thf(fact_7011_pochhammer__double,axiom,
! [Z2: real,N2: nat] :
( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s7457072308508201937r_real @ Z2 @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).
% pochhammer_double
thf(fact_7012_of__nat__code,axiom,
( semiri8010041392384452111omplex
= ( ^ [N: nat] :
( semiri2816024913162550771omplex
@ ^ [I5: complex] : ( plus_plus_complex @ I5 @ one_one_complex )
@ N
@ zero_zero_complex ) ) ) ).
% of_nat_code
thf(fact_7013_of__nat__code,axiom,
( semiri681578069525770553at_rat
= ( ^ [N: nat] :
( semiri7787848453975740701ux_rat
@ ^ [I5: rat] : ( plus_plus_rat @ I5 @ one_one_rat )
@ N
@ zero_zero_rat ) ) ) ).
% of_nat_code
thf(fact_7014_of__nat__code,axiom,
( semiri1314217659103216013at_int
= ( ^ [N: nat] :
( semiri8420488043553186161ux_int
@ ^ [I5: int] : ( plus_plus_int @ I5 @ one_one_int )
@ N
@ zero_zero_int ) ) ) ).
% of_nat_code
thf(fact_7015_of__nat__code,axiom,
( semiri5074537144036343181t_real
= ( ^ [N: nat] :
( semiri7260567687927622513x_real
@ ^ [I5: real] : ( plus_plus_real @ I5 @ one_one_real )
@ N
@ zero_zero_real ) ) ) ).
% of_nat_code
thf(fact_7016_of__nat__code,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N: nat] :
( semiri8422978514062236437ux_nat
@ ^ [I5: nat] : ( plus_plus_nat @ I5 @ one_one_nat )
@ N
@ zero_zero_nat ) ) ) ).
% of_nat_code
thf(fact_7017_lessThan__eq__iff,axiom,
! [X3: nat,Y: nat] :
( ( ( set_ord_lessThan_nat @ X3 )
= ( set_ord_lessThan_nat @ Y ) )
= ( X3 = Y ) ) ).
% lessThan_eq_iff
thf(fact_7018_lessThan__eq__iff,axiom,
! [X3: int,Y: int] :
( ( ( set_ord_lessThan_int @ X3 )
= ( set_ord_lessThan_int @ Y ) )
= ( X3 = Y ) ) ).
% lessThan_eq_iff
thf(fact_7019_lessThan__eq__iff,axiom,
! [X3: real,Y: real] :
( ( ( set_or5984915006950818249n_real @ X3 )
= ( set_or5984915006950818249n_real @ Y ) )
= ( X3 = Y ) ) ).
% lessThan_eq_iff
thf(fact_7020_lessThan__iff,axiom,
! [I: set_nat,K: set_nat] :
( ( member_set_nat @ I @ ( set_or890127255671739683et_nat @ K ) )
= ( ord_less_set_nat @ I @ K ) ) ).
% lessThan_iff
thf(fact_7021_lessThan__iff,axiom,
! [I: rat,K: rat] :
( ( member_rat @ I @ ( set_ord_lessThan_rat @ K ) )
= ( ord_less_rat @ I @ K ) ) ).
% lessThan_iff
thf(fact_7022_lessThan__iff,axiom,
! [I: num,K: num] :
( ( member_num @ I @ ( set_ord_lessThan_num @ K ) )
= ( ord_less_num @ I @ K ) ) ).
% lessThan_iff
thf(fact_7023_lessThan__iff,axiom,
! [I: nat,K: nat] :
( ( member_nat @ I @ ( set_ord_lessThan_nat @ K ) )
= ( ord_less_nat @ I @ K ) ) ).
% lessThan_iff
thf(fact_7024_lessThan__iff,axiom,
! [I: int,K: int] :
( ( member_int @ I @ ( set_ord_lessThan_int @ K ) )
= ( ord_less_int @ I @ K ) ) ).
% lessThan_iff
thf(fact_7025_lessThan__iff,axiom,
! [I: real,K: real] :
( ( member_real @ I @ ( set_or5984915006950818249n_real @ K ) )
= ( ord_less_real @ I @ K ) ) ).
% lessThan_iff
thf(fact_7026_finite__lessThan,axiom,
! [K: nat] : ( finite_finite_nat @ ( set_ord_lessThan_nat @ K ) ) ).
% finite_lessThan
thf(fact_7027_lessThan__subset__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_lessThan_rat @ X3 ) @ ( set_ord_lessThan_rat @ Y ) )
= ( ord_less_eq_rat @ X3 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_7028_lessThan__subset__iff,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_set_num @ ( set_ord_lessThan_num @ X3 ) @ ( set_ord_lessThan_num @ Y ) )
= ( ord_less_eq_num @ X3 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_7029_lessThan__subset__iff,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X3 ) @ ( set_ord_lessThan_nat @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_7030_lessThan__subset__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_set_int @ ( set_ord_lessThan_int @ X3 ) @ ( set_ord_lessThan_int @ Y ) )
= ( ord_less_eq_int @ X3 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_7031_lessThan__subset__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_set_real @ ( set_or5984915006950818249n_real @ X3 ) @ ( set_or5984915006950818249n_real @ Y ) )
= ( ord_less_eq_real @ X3 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_7032_pochhammer__0,axiom,
! [A: complex] :
( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
= one_one_complex ) ).
% pochhammer_0
thf(fact_7033_pochhammer__0,axiom,
! [A: real] :
( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
= one_one_real ) ).
% pochhammer_0
thf(fact_7034_pochhammer__0,axiom,
! [A: rat] :
( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% pochhammer_0
thf(fact_7035_pochhammer__0,axiom,
! [A: nat] :
( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% pochhammer_0
thf(fact_7036_pochhammer__0,axiom,
! [A: int] :
( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
= one_one_int ) ).
% pochhammer_0
thf(fact_7037_lessThan__0,axiom,
( ( set_ord_lessThan_nat @ zero_zero_nat )
= bot_bot_set_nat ) ).
% lessThan_0
thf(fact_7038_single__Diff__lessThan,axiom,
! [K: nat] :
( ( minus_minus_set_nat @ ( insert_nat @ K @ bot_bot_set_nat ) @ ( set_ord_lessThan_nat @ K ) )
= ( insert_nat @ K @ bot_bot_set_nat ) ) ).
% single_Diff_lessThan
thf(fact_7039_single__Diff__lessThan,axiom,
! [K: int] :
( ( minus_minus_set_int @ ( insert_int @ K @ bot_bot_set_int ) @ ( set_ord_lessThan_int @ K ) )
= ( insert_int @ K @ bot_bot_set_int ) ) ).
% single_Diff_lessThan
thf(fact_7040_single__Diff__lessThan,axiom,
! [K: real] :
( ( minus_minus_set_real @ ( insert_real @ K @ bot_bot_set_real ) @ ( set_or5984915006950818249n_real @ K ) )
= ( insert_real @ K @ bot_bot_set_real ) ) ).
% single_Diff_lessThan
thf(fact_7041_sum_OlessThan__Suc,axiom,
! [G: nat > rat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% sum.lessThan_Suc
thf(fact_7042_sum_OlessThan__Suc,axiom,
! [G: nat > int,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% sum.lessThan_Suc
thf(fact_7043_sum_OlessThan__Suc,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% sum.lessThan_Suc
thf(fact_7044_sum_OlessThan__Suc,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% sum.lessThan_Suc
thf(fact_7045_powser__zero,axiom,
! [F: nat > complex] :
( ( suminf_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) ) )
= ( F @ zero_zero_nat ) ) ).
% powser_zero
thf(fact_7046_powser__zero,axiom,
! [F: nat > real] :
( ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ zero_zero_real @ N ) ) )
= ( F @ zero_zero_nat ) ) ).
% powser_zero
thf(fact_7047_nat__int__comparison_I1_J,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_7048_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_7049_int__int__eq,axiom,
! [M: nat,N2: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( M = N2 ) ) ).
% int_int_eq
thf(fact_7050_lessThan__non__empty,axiom,
! [X3: int] :
( ( set_ord_lessThan_int @ X3 )
!= bot_bot_set_int ) ).
% lessThan_non_empty
thf(fact_7051_lessThan__non__empty,axiom,
! [X3: real] :
( ( set_or5984915006950818249n_real @ X3 )
!= bot_bot_set_real ) ).
% lessThan_non_empty
thf(fact_7052_infinite__Iio,axiom,
! [A: int] :
~ ( finite_finite_int @ ( set_ord_lessThan_int @ A ) ) ).
% infinite_Iio
thf(fact_7053_infinite__Iio,axiom,
! [A: real] :
~ ( finite_finite_real @ ( set_or5984915006950818249n_real @ A ) ) ).
% infinite_Iio
thf(fact_7054_lessThan__def,axiom,
( set_or890127255671739683et_nat
= ( ^ [U2: set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] : ( ord_less_set_nat @ X2 @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7055_lessThan__def,axiom,
( set_ord_lessThan_rat
= ( ^ [U2: rat] :
( collect_rat
@ ^ [X2: rat] : ( ord_less_rat @ X2 @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7056_lessThan__def,axiom,
( set_ord_lessThan_num
= ( ^ [U2: num] :
( collect_num
@ ^ [X2: num] : ( ord_less_num @ X2 @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7057_lessThan__def,axiom,
( set_ord_lessThan_nat
= ( ^ [U2: nat] :
( collect_nat
@ ^ [X2: nat] : ( ord_less_nat @ X2 @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7058_lessThan__def,axiom,
( set_ord_lessThan_int
= ( ^ [U2: int] :
( collect_int
@ ^ [X2: int] : ( ord_less_int @ X2 @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7059_lessThan__def,axiom,
( set_or5984915006950818249n_real
= ( ^ [U2: real] :
( collect_real
@ ^ [X2: real] : ( ord_less_real @ X2 @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7060_Iio__eq__empty__iff,axiom,
! [N2: nat] :
( ( ( set_ord_lessThan_nat @ N2 )
= bot_bot_set_nat )
= ( N2 = bot_bot_nat ) ) ).
% Iio_eq_empty_iff
thf(fact_7061_lessThan__strict__subset__iff,axiom,
! [M: rat,N2: rat] :
( ( ord_less_set_rat @ ( set_ord_lessThan_rat @ M ) @ ( set_ord_lessThan_rat @ N2 ) )
= ( ord_less_rat @ M @ N2 ) ) ).
% lessThan_strict_subset_iff
thf(fact_7062_lessThan__strict__subset__iff,axiom,
! [M: num,N2: num] :
( ( ord_less_set_num @ ( set_ord_lessThan_num @ M ) @ ( set_ord_lessThan_num @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% lessThan_strict_subset_iff
thf(fact_7063_lessThan__strict__subset__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_set_nat @ ( set_ord_lessThan_nat @ M ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% lessThan_strict_subset_iff
thf(fact_7064_lessThan__strict__subset__iff,axiom,
! [M: int,N2: int] :
( ( ord_less_set_int @ ( set_ord_lessThan_int @ M ) @ ( set_ord_lessThan_int @ N2 ) )
= ( ord_less_int @ M @ N2 ) ) ).
% lessThan_strict_subset_iff
thf(fact_7065_lessThan__strict__subset__iff,axiom,
! [M: real,N2: real] :
( ( ord_less_set_real @ ( set_or5984915006950818249n_real @ M ) @ ( set_or5984915006950818249n_real @ N2 ) )
= ( ord_less_real @ M @ N2 ) ) ).
% lessThan_strict_subset_iff
thf(fact_7066_pochhammer__pos,axiom,
! [X3: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X3 @ N2 ) ) ) ).
% pochhammer_pos
thf(fact_7067_pochhammer__pos,axiom,
! [X3: rat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ X3 )
=> ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X3 @ N2 ) ) ) ).
% pochhammer_pos
thf(fact_7068_pochhammer__pos,axiom,
! [X3: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ X3 )
=> ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X3 @ N2 ) ) ) ).
% pochhammer_pos
thf(fact_7069_pochhammer__pos,axiom,
! [X3: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ X3 )
=> ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X3 @ N2 ) ) ) ).
% pochhammer_pos
thf(fact_7070_pochhammer__eq__0__mono,axiom,
! [A: complex,N2: nat,M: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N2 )
= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ M )
= zero_zero_complex ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_7071_pochhammer__eq__0__mono,axiom,
! [A: real,N2: nat,M: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N2 )
= zero_zero_real )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ M )
= zero_zero_real ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_7072_pochhammer__eq__0__mono,axiom,
! [A: rat,N2: nat,M: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N2 )
= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ M )
= zero_zero_rat ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_7073_pochhammer__neq__0__mono,axiom,
! [A: complex,M: nat,N2: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ M )
!= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ N2 )
!= zero_zero_complex ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_7074_pochhammer__neq__0__mono,axiom,
! [A: real,M: nat,N2: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ M )
!= zero_zero_real )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ N2 )
!= zero_zero_real ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_7075_pochhammer__neq__0__mono,axiom,
! [A: rat,M: nat,N2: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ M )
!= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N2 @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ N2 )
!= zero_zero_rat ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_7076_lessThan__Suc,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( insert_nat @ K @ ( set_ord_lessThan_nat @ K ) ) ) ).
% lessThan_Suc
thf(fact_7077_lessThan__empty__iff,axiom,
! [N2: nat] :
( ( ( set_ord_lessThan_nat @ N2 )
= bot_bot_set_nat )
= ( N2 = zero_zero_nat ) ) ).
% lessThan_empty_iff
thf(fact_7078_finite__nat__iff__bounded,axiom,
( finite_finite_nat
= ( ^ [S6: set_nat] :
? [K2: nat] : ( ord_less_eq_set_nat @ S6 @ ( set_ord_lessThan_nat @ K2 ) ) ) ) ).
% finite_nat_iff_bounded
thf(fact_7079_finite__nat__bounded,axiom,
! [S2: set_nat] :
( ( finite_finite_nat @ S2 )
=> ? [K3: nat] : ( ord_less_eq_set_nat @ S2 @ ( set_ord_lessThan_nat @ K3 ) ) ) ).
% finite_nat_bounded
thf(fact_7080_pochhammer__nonneg,axiom,
! [X3: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X3 @ N2 ) ) ) ).
% pochhammer_nonneg
thf(fact_7081_pochhammer__nonneg,axiom,
! [X3: rat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ X3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X3 @ N2 ) ) ) ).
% pochhammer_nonneg
thf(fact_7082_pochhammer__nonneg,axiom,
! [X3: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ X3 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X3 @ N2 ) ) ) ).
% pochhammer_nonneg
thf(fact_7083_pochhammer__nonneg,axiom,
! [X3: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ X3 )
=> ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X3 @ N2 ) ) ) ).
% pochhammer_nonneg
thf(fact_7084_pochhammer__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N2 )
= one_one_complex ) )
& ( ( N2 != zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N2 )
= zero_zero_complex ) ) ) ).
% pochhammer_0_left
thf(fact_7085_pochhammer__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N2 )
= one_one_real ) )
& ( ( N2 != zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N2 )
= zero_zero_real ) ) ) ).
% pochhammer_0_left
thf(fact_7086_pochhammer__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N2 )
= one_one_rat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N2 )
= zero_zero_rat ) ) ) ).
% pochhammer_0_left
thf(fact_7087_pochhammer__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N2 )
= one_one_nat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ) ).
% pochhammer_0_left
thf(fact_7088_pochhammer__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N2 )
= one_one_int ) )
& ( ( N2 != zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ) ).
% pochhammer_0_left
thf(fact_7089_sum_Onat__diff__reindex,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) )
= ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.nat_diff_reindex
thf(fact_7090_sum_Onat__diff__reindex,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) )
= ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.nat_diff_reindex
thf(fact_7091_sum__diff__distrib,axiom,
! [Q: int > nat,P: int > nat,N2: int] :
( ! [X4: int] : ( ord_less_eq_nat @ ( Q @ X4 ) @ ( P @ X4 ) )
=> ( ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ P @ ( set_ord_lessThan_int @ N2 ) ) @ ( groups4541462559716669496nt_nat @ Q @ ( set_ord_lessThan_int @ N2 ) ) )
= ( groups4541462559716669496nt_nat
@ ^ [X2: int] : ( minus_minus_nat @ ( P @ X2 ) @ ( Q @ X2 ) )
@ ( set_ord_lessThan_int @ N2 ) ) ) ) ).
% sum_diff_distrib
thf(fact_7092_sum__diff__distrib,axiom,
! [Q: real > nat,P: real > nat,N2: real] :
( ! [X4: real] : ( ord_less_eq_nat @ ( Q @ X4 ) @ ( P @ X4 ) )
=> ( ( minus_minus_nat @ ( groups1935376822645274424al_nat @ P @ ( set_or5984915006950818249n_real @ N2 ) ) @ ( groups1935376822645274424al_nat @ Q @ ( set_or5984915006950818249n_real @ N2 ) ) )
= ( groups1935376822645274424al_nat
@ ^ [X2: real] : ( minus_minus_nat @ ( P @ X2 ) @ ( Q @ X2 ) )
@ ( set_or5984915006950818249n_real @ N2 ) ) ) ) ).
% sum_diff_distrib
thf(fact_7093_sum__diff__distrib,axiom,
! [Q: nat > nat,P: nat > nat,N2: nat] :
( ! [X4: nat] : ( ord_less_eq_nat @ ( Q @ X4 ) @ ( P @ X4 ) )
=> ( ( minus_minus_nat @ ( groups3542108847815614940at_nat @ P @ ( set_ord_lessThan_nat @ N2 ) ) @ ( groups3542108847815614940at_nat @ Q @ ( set_ord_lessThan_nat @ N2 ) ) )
= ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( minus_minus_nat @ ( P @ X2 ) @ ( Q @ X2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum_diff_distrib
thf(fact_7094_pochhammer__rec,axiom,
! [A: complex,N2: nat] :
( ( comm_s2602460028002588243omplex @ A @ ( suc @ N2 ) )
= ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N2 ) ) ) ).
% pochhammer_rec
thf(fact_7095_pochhammer__rec,axiom,
! [A: real,N2: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
= ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N2 ) ) ) ).
% pochhammer_rec
thf(fact_7096_pochhammer__rec,axiom,
! [A: rat,N2: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
= ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N2 ) ) ) ).
% pochhammer_rec
thf(fact_7097_pochhammer__rec,axiom,
! [A: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N2 ) ) ) ).
% pochhammer_rec
thf(fact_7098_pochhammer__rec,axiom,
! [A: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N2 ) ) ) ).
% pochhammer_rec
thf(fact_7099_pochhammer__Suc,axiom,
! [A: rat,N2: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N2 ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ).
% pochhammer_Suc
thf(fact_7100_pochhammer__Suc,axiom,
! [A: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N2 ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% pochhammer_Suc
thf(fact_7101_pochhammer__Suc,axiom,
! [A: real,N2: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N2 ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).
% pochhammer_Suc
thf(fact_7102_pochhammer__Suc,axiom,
! [A: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N2 ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).
% pochhammer_Suc
thf(fact_7103_pochhammer__rec_H,axiom,
! [Z2: rat,N2: nat] :
( ( comm_s4028243227959126397er_rat @ Z2 @ ( suc @ N2 ) )
= ( times_times_rat @ ( plus_plus_rat @ Z2 @ ( semiri681578069525770553at_rat @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ Z2 @ N2 ) ) ) ).
% pochhammer_rec'
thf(fact_7104_pochhammer__rec_H,axiom,
! [Z2: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ Z2 @ ( suc @ N2 ) )
= ( times_times_int @ ( plus_plus_int @ Z2 @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( comm_s4660882817536571857er_int @ Z2 @ N2 ) ) ) ).
% pochhammer_rec'
thf(fact_7105_pochhammer__rec_H,axiom,
! [Z2: real,N2: nat] :
( ( comm_s7457072308508201937r_real @ Z2 @ ( suc @ N2 ) )
= ( times_times_real @ ( plus_plus_real @ Z2 @ ( semiri5074537144036343181t_real @ N2 ) ) @ ( comm_s7457072308508201937r_real @ Z2 @ N2 ) ) ) ).
% pochhammer_rec'
thf(fact_7106_pochhammer__rec_H,axiom,
! [Z2: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ Z2 @ ( suc @ N2 ) )
= ( times_times_nat @ ( plus_plus_nat @ Z2 @ ( semiri1316708129612266289at_nat @ N2 ) ) @ ( comm_s4663373288045622133er_nat @ Z2 @ N2 ) ) ) ).
% pochhammer_rec'
thf(fact_7107_pochhammer__eq__0__iff,axiom,
! [A: complex,N2: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N2 )
= zero_zero_complex )
= ( ? [K2: nat] :
( ( ord_less_nat @ K2 @ N2 )
& ( A
= ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K2 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_7108_pochhammer__eq__0__iff,axiom,
! [A: rat,N2: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N2 )
= zero_zero_rat )
= ( ? [K2: nat] :
( ( ord_less_nat @ K2 @ N2 )
& ( A
= ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K2 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_7109_pochhammer__eq__0__iff,axiom,
! [A: real,N2: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N2 )
= zero_zero_real )
= ( ? [K2: nat] :
( ( ord_less_nat @ K2 @ N2 )
& ( A
= ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K2 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_7110_pochhammer__of__nat__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
= zero_zero_complex )
= ( ord_less_nat @ N2 @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_7111_pochhammer__of__nat__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
= zero_zero_rat )
= ( ord_less_nat @ N2 @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_7112_pochhammer__of__nat__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
= zero_z3403309356797280102nteger )
= ( ord_less_nat @ N2 @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_7113_pochhammer__of__nat__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
= zero_zero_int )
= ( ord_less_nat @ N2 @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_7114_pochhammer__of__nat__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
= zero_zero_real )
= ( ord_less_nat @ N2 @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_7115_pochhammer__of__nat__eq__0__lemma,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ N2 @ K )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_7116_pochhammer__of__nat__eq__0__lemma,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ N2 @ K )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_7117_pochhammer__of__nat__eq__0__lemma,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ N2 @ K )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_7118_pochhammer__of__nat__eq__0__lemma,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ N2 @ K )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_7119_pochhammer__of__nat__eq__0__lemma,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ N2 @ K )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_7120_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
!= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_7121_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
!= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_7122_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
!= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_7123_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
!= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_7124_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
!= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_7125_pochhammer__product_H,axiom,
! [Z2: rat,N2: nat,M: nat] :
( ( comm_s4028243227959126397er_rat @ Z2 @ ( plus_plus_nat @ N2 @ M ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z2 @ N2 ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z2 @ ( semiri681578069525770553at_rat @ N2 ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_7126_pochhammer__product_H,axiom,
! [Z2: int,N2: nat,M: nat] :
( ( comm_s4660882817536571857er_int @ Z2 @ ( plus_plus_nat @ N2 @ M ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z2 @ N2 ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z2 @ ( semiri1314217659103216013at_int @ N2 ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_7127_pochhammer__product_H,axiom,
! [Z2: real,N2: nat,M: nat] :
( ( comm_s7457072308508201937r_real @ Z2 @ ( plus_plus_nat @ N2 @ M ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z2 @ N2 ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z2 @ ( semiri5074537144036343181t_real @ N2 ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_7128_pochhammer__product_H,axiom,
! [Z2: nat,N2: nat,M: nat] :
( ( comm_s4663373288045622133er_nat @ Z2 @ ( plus_plus_nat @ N2 @ M ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z2 @ N2 ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z2 @ ( semiri1316708129612266289at_nat @ N2 ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_7129_sum_OlessThan__Suc__shift,axiom,
! [G: nat > rat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7130_sum_OlessThan__Suc__shift,axiom,
! [G: nat > int,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7131_sum_OlessThan__Suc__shift,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7132_sum_OlessThan__Suc__shift,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7133_sum__lessThan__telescope_H,axiom,
! [F: nat > rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [N: nat] : ( minus_minus_rat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7134_sum__lessThan__telescope_H,axiom,
! [F: nat > int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [N: nat] : ( minus_minus_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7135_sum__lessThan__telescope_H,axiom,
! [F: nat > real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7136_sum__lessThan__telescope,axiom,
! [F: nat > rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [N: nat] : ( minus_minus_rat @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_rat @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7137_sum__lessThan__telescope,axiom,
! [F: nat > int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [N: nat] : ( minus_minus_int @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_int @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7138_sum__lessThan__telescope,axiom,
! [F: nat > real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [N: nat] : ( minus_minus_real @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_real @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7139_sum_OatLeast1__atMost__eq,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_7140_sum_OatLeast1__atMost__eq,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_7141_one__diff__power__eq,axiom,
! [X3: complex,N2: nat] :
( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ N2 ) )
= ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq
thf(fact_7142_one__diff__power__eq,axiom,
! [X3: rat,N2: nat] :
( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ N2 ) )
= ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq
thf(fact_7143_one__diff__power__eq,axiom,
! [X3: int,N2: nat] :
( ( minus_minus_int @ one_one_int @ ( power_power_int @ X3 @ N2 ) )
= ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq
thf(fact_7144_one__diff__power__eq,axiom,
! [X3: real,N2: nat] :
( ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ N2 ) )
= ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq
thf(fact_7145_power__diff__1__eq,axiom,
! [X3: complex,N2: nat] :
( ( minus_minus_complex @ ( power_power_complex @ X3 @ N2 ) @ one_one_complex )
= ( times_times_complex @ ( minus_minus_complex @ X3 @ one_one_complex ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_1_eq
thf(fact_7146_power__diff__1__eq,axiom,
! [X3: rat,N2: nat] :
( ( minus_minus_rat @ ( power_power_rat @ X3 @ N2 ) @ one_one_rat )
= ( times_times_rat @ ( minus_minus_rat @ X3 @ one_one_rat ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_1_eq
thf(fact_7147_power__diff__1__eq,axiom,
! [X3: int,N2: nat] :
( ( minus_minus_int @ ( power_power_int @ X3 @ N2 ) @ one_one_int )
= ( times_times_int @ ( minus_minus_int @ X3 @ one_one_int ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_1_eq
thf(fact_7148_power__diff__1__eq,axiom,
! [X3: real,N2: nat] :
( ( minus_minus_real @ ( power_power_real @ X3 @ N2 ) @ one_one_real )
= ( times_times_real @ ( minus_minus_real @ X3 @ one_one_real ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_1_eq
thf(fact_7149_geometric__sum,axiom,
! [X3: complex,N2: nat] :
( ( X3 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X3 @ N2 ) @ one_one_complex ) @ ( minus_minus_complex @ X3 @ one_one_complex ) ) ) ) ).
% geometric_sum
thf(fact_7150_geometric__sum,axiom,
! [X3: rat,N2: nat] :
( ( X3 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X3 @ N2 ) @ one_one_rat ) @ ( minus_minus_rat @ X3 @ one_one_rat ) ) ) ) ).
% geometric_sum
thf(fact_7151_geometric__sum,axiom,
! [X3: real,N2: nat] :
( ( X3 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X3 @ N2 ) @ one_one_real ) @ ( minus_minus_real @ X3 @ one_one_real ) ) ) ) ).
% geometric_sum
thf(fact_7152_pochhammer__product,axiom,
! [M: nat,N2: nat,Z2: rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( comm_s4028243227959126397er_rat @ Z2 @ N2 )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z2 @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z2 @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_7153_pochhammer__product,axiom,
! [M: nat,N2: nat,Z2: int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( comm_s4660882817536571857er_int @ Z2 @ N2 )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z2 @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z2 @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_7154_pochhammer__product,axiom,
! [M: nat,N2: nat,Z2: real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( comm_s7457072308508201937r_real @ Z2 @ N2 )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z2 @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z2 @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_7155_pochhammer__product,axiom,
! [M: nat,N2: nat,Z2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( comm_s4663373288045622133er_nat @ Z2 @ N2 )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z2 @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z2 @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_7156_sum__gp__strict,axiom,
! [X3: complex,N2: nat] :
( ( ( X3 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( semiri8010041392384452111omplex @ N2 ) ) )
& ( ( X3 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ N2 ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7157_sum__gp__strict,axiom,
! [X3: rat,N2: nat] :
( ( ( X3 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( semiri681578069525770553at_rat @ N2 ) ) )
& ( ( X3 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ N2 ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7158_sum__gp__strict,axiom,
! [X3: real,N2: nat] :
( ( ( X3 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( semiri5074537144036343181t_real @ N2 ) ) )
& ( ( X3 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N2 ) )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ N2 ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7159_lemma__termdiff1,axiom,
! [Z2: complex,H2: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [P6: nat] : ( minus_minus_complex @ ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_complex @ Z2 @ P6 ) ) @ ( power_power_complex @ Z2 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [P6: nat] : ( times_times_complex @ ( power_power_complex @ Z2 @ P6 ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_complex @ Z2 @ ( minus_minus_nat @ M @ P6 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7160_lemma__termdiff1,axiom,
! [Z2: rat,H2: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [P6: nat] : ( minus_minus_rat @ ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_rat @ Z2 @ P6 ) ) @ ( power_power_rat @ Z2 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [P6: nat] : ( times_times_rat @ ( power_power_rat @ Z2 @ P6 ) @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_rat @ Z2 @ ( minus_minus_nat @ M @ P6 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7161_lemma__termdiff1,axiom,
! [Z2: int,H2: int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [P6: nat] : ( minus_minus_int @ ( times_times_int @ ( power_power_int @ ( plus_plus_int @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_int @ Z2 @ P6 ) ) @ ( power_power_int @ Z2 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups3539618377306564664at_int
@ ^ [P6: nat] : ( times_times_int @ ( power_power_int @ Z2 @ P6 ) @ ( minus_minus_int @ ( power_power_int @ ( plus_plus_int @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_int @ Z2 @ ( minus_minus_nat @ M @ P6 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7162_lemma__termdiff1,axiom,
! [Z2: real,H2: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [P6: nat] : ( minus_minus_real @ ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_real @ Z2 @ P6 ) ) @ ( power_power_real @ Z2 @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [P6: nat] : ( times_times_real @ ( power_power_real @ Z2 @ P6 ) @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z2 @ H2 ) @ ( minus_minus_nat @ M @ P6 ) ) @ ( power_power_real @ Z2 @ ( minus_minus_nat @ M @ P6 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7163_power__diff__sumr2,axiom,
! [X3: complex,N2: nat,Y: complex] :
( ( minus_minus_complex @ ( power_power_complex @ X3 @ N2 ) @ ( power_power_complex @ Y @ N2 ) )
= ( times_times_complex @ ( minus_minus_complex @ X3 @ Y )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( power_power_complex @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_complex @ X3 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_sumr2
thf(fact_7164_power__diff__sumr2,axiom,
! [X3: rat,N2: nat,Y: rat] :
( ( minus_minus_rat @ ( power_power_rat @ X3 @ N2 ) @ ( power_power_rat @ Y @ N2 ) )
= ( times_times_rat @ ( minus_minus_rat @ X3 @ Y )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( power_power_rat @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_rat @ X3 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_sumr2
thf(fact_7165_power__diff__sumr2,axiom,
! [X3: int,N2: nat,Y: int] :
( ( minus_minus_int @ ( power_power_int @ X3 @ N2 ) @ ( power_power_int @ Y @ N2 ) )
= ( times_times_int @ ( minus_minus_int @ X3 @ Y )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( power_power_int @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_int @ X3 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_sumr2
thf(fact_7166_power__diff__sumr2,axiom,
! [X3: real,N2: nat,Y: real] :
( ( minus_minus_real @ ( power_power_real @ X3 @ N2 ) @ ( power_power_real @ Y @ N2 ) )
= ( times_times_real @ ( minus_minus_real @ X3 @ Y )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_real @ X3 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% power_diff_sumr2
thf(fact_7167_diff__power__eq__sum,axiom,
! [X3: complex,N2: nat,Y: complex] :
( ( minus_minus_complex @ ( power_power_complex @ X3 @ ( suc @ N2 ) ) @ ( power_power_complex @ Y @ ( suc @ N2 ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X3 @ Y )
@ ( groups2073611262835488442omplex
@ ^ [P6: nat] : ( times_times_complex @ ( power_power_complex @ X3 @ P6 ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ N2 @ P6 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7168_diff__power__eq__sum,axiom,
! [X3: rat,N2: nat,Y: rat] :
( ( minus_minus_rat @ ( power_power_rat @ X3 @ ( suc @ N2 ) ) @ ( power_power_rat @ Y @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X3 @ Y )
@ ( groups2906978787729119204at_rat
@ ^ [P6: nat] : ( times_times_rat @ ( power_power_rat @ X3 @ P6 ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ N2 @ P6 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7169_diff__power__eq__sum,axiom,
! [X3: int,N2: nat,Y: int] :
( ( minus_minus_int @ ( power_power_int @ X3 @ ( suc @ N2 ) ) @ ( power_power_int @ Y @ ( suc @ N2 ) ) )
= ( times_times_int @ ( minus_minus_int @ X3 @ Y )
@ ( groups3539618377306564664at_int
@ ^ [P6: nat] : ( times_times_int @ ( power_power_int @ X3 @ P6 ) @ ( power_power_int @ Y @ ( minus_minus_nat @ N2 @ P6 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7170_diff__power__eq__sum,axiom,
! [X3: real,N2: nat,Y: real] :
( ( minus_minus_real @ ( power_power_real @ X3 @ ( suc @ N2 ) ) @ ( power_power_real @ Y @ ( suc @ N2 ) ) )
= ( times_times_real @ ( minus_minus_real @ X3 @ Y )
@ ( groups6591440286371151544t_real
@ ^ [P6: nat] : ( times_times_real @ ( power_power_real @ X3 @ P6 ) @ ( power_power_real @ Y @ ( minus_minus_nat @ N2 @ P6 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7171_pochhammer__absorb__comp,axiom,
! [R2: complex,K: nat] :
( ( times_times_complex @ ( minus_minus_complex @ R2 @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R2 ) @ K ) )
= ( times_times_complex @ R2 @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R2 ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_7172_pochhammer__absorb__comp,axiom,
! [R2: rat,K: nat] :
( ( times_times_rat @ ( minus_minus_rat @ R2 @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R2 ) @ K ) )
= ( times_times_rat @ R2 @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R2 ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_7173_pochhammer__absorb__comp,axiom,
! [R2: code_integer,K: nat] :
( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R2 @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R2 ) @ K ) )
= ( times_3573771949741848930nteger @ R2 @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R2 ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_7174_pochhammer__absorb__comp,axiom,
! [R2: int,K: nat] :
( ( times_times_int @ ( minus_minus_int @ R2 @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R2 ) @ K ) )
= ( times_times_int @ R2 @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R2 ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_7175_pochhammer__absorb__comp,axiom,
! [R2: real,K: nat] :
( ( times_times_real @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R2 ) @ K ) )
= ( times_times_real @ R2 @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R2 ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_7176_real__sum__nat__ivl__bounded2,axiom,
! [N2: nat,F: nat > rat,K5: rat,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N2 )
=> ( ord_less_eq_rat @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ K5 )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7177_real__sum__nat__ivl__bounded2,axiom,
! [N2: nat,F: nat > int,K5: int,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N2 )
=> ( ord_less_eq_int @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K5 )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7178_real__sum__nat__ivl__bounded2,axiom,
! [N2: nat,F: nat > nat,K5: nat,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N2 )
=> ( ord_less_eq_nat @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ K5 )
=> ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7179_real__sum__nat__ivl__bounded2,axiom,
! [N2: nat,F: nat > real,K5: real,K: nat] :
( ! [P7: nat] :
( ( ord_less_nat @ P7 @ N2 )
=> ( ord_less_eq_real @ ( F @ P7 ) @ K5 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ K5 )
=> ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ K5 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7180_one__diff__power__eq_H,axiom,
! [X3: complex,N2: nat] :
( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ N2 ) )
= ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( power_power_complex @ X3 @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7181_one__diff__power__eq_H,axiom,
! [X3: rat,N2: nat] :
( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ N2 ) )
= ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( power_power_rat @ X3 @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7182_one__diff__power__eq_H,axiom,
! [X3: int,N2: nat] :
( ( minus_minus_int @ one_one_int @ ( power_power_int @ X3 @ N2 ) )
= ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( power_power_int @ X3 @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7183_one__diff__power__eq_H,axiom,
! [X3: real,N2: nat] :
( ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ N2 ) )
= ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( power_power_real @ X3 @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7184_pochhammer__minus,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_7185_pochhammer__minus,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_7186_pochhammer__minus,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_7187_pochhammer__minus,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_7188_pochhammer__minus,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_7189_pochhammer__minus_H,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_7190_pochhammer__minus_H,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_7191_pochhammer__minus_H,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_7192_pochhammer__minus_H,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_7193_pochhammer__minus_H,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_7194_sum__split__even__odd,axiom,
! [F: nat > real,G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( F @ I5 ) @ ( G @ I5 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ one_one_nat ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum_split_even_odd
thf(fact_7195_norm__le__zero__iff,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X3 ) @ zero_zero_real )
= ( X3 = zero_zero_real ) ) ).
% norm_le_zero_iff
thf(fact_7196_norm__le__zero__iff,axiom,
! [X3: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X3 ) @ zero_zero_real )
= ( X3 = zero_zero_complex ) ) ).
% norm_le_zero_iff
thf(fact_7197_zero__less__norm__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X3 ) )
= ( X3 != zero_zero_real ) ) ).
% zero_less_norm_iff
thf(fact_7198_zero__less__norm__iff,axiom,
! [X3: complex] :
( ( ord_less_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X3 ) )
= ( X3 != zero_zero_complex ) ) ).
% zero_less_norm_iff
thf(fact_7199_suminf__geometric,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( ( suminf_real @ ( power_power_real @ C ) )
= ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).
% suminf_geometric
thf(fact_7200_suminf__geometric,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( ( suminf_complex @ ( power_power_complex @ C ) )
= ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).
% suminf_geometric
thf(fact_7201_norm__zero,axiom,
( ( real_V7735802525324610683m_real @ zero_zero_real )
= zero_zero_real ) ).
% norm_zero
thf(fact_7202_norm__zero,axiom,
( ( real_V1022390504157884413omplex @ zero_zero_complex )
= zero_zero_real ) ).
% norm_zero
thf(fact_7203_norm__eq__zero,axiom,
! [X3: real] :
( ( ( real_V7735802525324610683m_real @ X3 )
= zero_zero_real )
= ( X3 = zero_zero_real ) ) ).
% norm_eq_zero
thf(fact_7204_norm__eq__zero,axiom,
! [X3: complex] :
( ( ( real_V1022390504157884413omplex @ X3 )
= zero_zero_real )
= ( X3 = zero_zero_complex ) ) ).
% norm_eq_zero
thf(fact_7205_suminf__zero,axiom,
( ( suminf_complex
@ ^ [N: nat] : zero_zero_complex )
= zero_zero_complex ) ).
% suminf_zero
thf(fact_7206_suminf__zero,axiom,
( ( suminf_real
@ ^ [N: nat] : zero_zero_real )
= zero_zero_real ) ).
% suminf_zero
thf(fact_7207_suminf__zero,axiom,
( ( suminf_nat
@ ^ [N: nat] : zero_zero_nat )
= zero_zero_nat ) ).
% suminf_zero
thf(fact_7208_suminf__zero,axiom,
( ( suminf_int
@ ^ [N: nat] : zero_zero_int )
= zero_zero_int ) ).
% suminf_zero
thf(fact_7209_norm__not__less__zero,axiom,
! [X3: complex] :
~ ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ zero_zero_real ) ).
% norm_not_less_zero
thf(fact_7210_norm__uminus__minus,axiom,
! [X3: real,Y: real] :
( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X3 ) @ Y ) )
= ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y ) ) ) ).
% norm_uminus_minus
thf(fact_7211_norm__uminus__minus,axiom,
! [X3: complex,Y: complex] :
( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X3 ) @ Y ) )
= ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y ) ) ) ).
% norm_uminus_minus
thf(fact_7212_nonzero__norm__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_7213_nonzero__norm__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_7214_power__eq__imp__eq__norm,axiom,
! [W2: real,N2: nat,Z2: real] :
( ( ( power_power_real @ W2 @ N2 )
= ( power_power_real @ Z2 @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( real_V7735802525324610683m_real @ W2 )
= ( real_V7735802525324610683m_real @ Z2 ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_7215_power__eq__imp__eq__norm,axiom,
! [W2: complex,N2: nat,Z2: complex] :
( ( ( power_power_complex @ W2 @ N2 )
= ( power_power_complex @ Z2 @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( real_V1022390504157884413omplex @ W2 )
= ( real_V1022390504157884413omplex @ Z2 ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_7216_norm__mult__less,axiom,
! [X3: real,R2: real,Y: real,S: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ R2 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X3 @ Y ) ) @ ( times_times_real @ R2 @ S ) ) ) ) ).
% norm_mult_less
thf(fact_7217_norm__mult__less,axiom,
! [X3: complex,R2: real,Y: complex,S: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ R2 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X3 @ Y ) ) @ ( times_times_real @ R2 @ S ) ) ) ) ).
% norm_mult_less
thf(fact_7218_norm__triangle__lt,axiom,
! [X3: real,Y: real,E2: real] :
( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E2 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y ) ) @ E2 ) ) ).
% norm_triangle_lt
thf(fact_7219_norm__triangle__lt,axiom,
! [X3: complex,Y: complex,E2: real] :
( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E2 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y ) ) @ E2 ) ) ).
% norm_triangle_lt
thf(fact_7220_norm__add__less,axiom,
! [X3: real,R2: real,Y: real,S: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ R2 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).
% norm_add_less
thf(fact_7221_norm__add__less,axiom,
! [X3: complex,R2: real,Y: complex,S: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ R2 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).
% norm_add_less
thf(fact_7222_norm__add__leD,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_7223_norm__add__leD,axiom,
! [A: complex,B: complex,C: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_7224_norm__triangle__le,axiom,
! [X3: real,Y: real,E2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y ) ) @ E2 ) ) ).
% norm_triangle_le
thf(fact_7225_norm__triangle__le,axiom,
! [X3: complex,Y: complex,E2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y ) ) @ E2 ) ) ).
% norm_triangle_le
thf(fact_7226_norm__triangle__ineq,axiom,
! [X3: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).
% norm_triangle_ineq
thf(fact_7227_norm__triangle__ineq,axiom,
! [X3: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).
% norm_triangle_ineq
thf(fact_7228_norm__triangle__mono,axiom,
! [A: real,R2: real,B: real,S: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).
% norm_triangle_mono
thf(fact_7229_norm__triangle__mono,axiom,
! [A: complex,R2: real,B: complex,S: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).
% norm_triangle_mono
thf(fact_7230_norm__diff__triangle__less,axiom,
! [X3: real,Y: real,E1: real,Z2: real,E22: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Y ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y @ Z2 ) ) @ E22 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Z2 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_7231_norm__diff__triangle__less,axiom,
! [X3: complex,Y: complex,E1: real,Z2: complex,E22: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y @ Z2 ) ) @ E22 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Z2 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_7232_norm__diff__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_7233_norm__diff__ineq,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_7234_suminf__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_complex ) )
=> ( ( suminf_complex @ F )
= ( groups2073611262835488442omplex @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7235_suminf__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_int ) )
=> ( ( suminf_int @ F )
= ( groups3539618377306564664at_int @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7236_suminf__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_nat ) )
=> ( ( suminf_nat @ F )
= ( groups3542108847815614940at_nat @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7237_suminf__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_real ) )
=> ( ( suminf_real @ F )
= ( groups6591440286371151544t_real @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_7238_power__eq__1__iff,axiom,
! [W2: real,N2: nat] :
( ( ( power_power_real @ W2 @ N2 )
= one_one_real )
=> ( ( ( real_V7735802525324610683m_real @ W2 )
= one_one_real )
| ( N2 = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_7239_power__eq__1__iff,axiom,
! [W2: complex,N2: nat] :
( ( ( power_power_complex @ W2 @ N2 )
= one_one_complex )
=> ( ( ( real_V1022390504157884413omplex @ W2 )
= one_one_real )
| ( N2 = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_7240_norm__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_7241_norm__diff__triangle__ineq,axiom,
! [A: complex,B: complex,C: complex,D: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_7242_pochhammer__times__pochhammer__half,axiom,
! [Z2: complex,N2: nat] :
( ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z2 @ ( suc @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z2 @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
= ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( plus_plus_complex @ Z2 @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ K2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_7243_pochhammer__times__pochhammer__half,axiom,
! [Z2: rat,N2: nat] :
( ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z2 @ ( suc @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
= ( groups73079841787564623at_rat
@ ^ [K2: nat] : ( plus_plus_rat @ Z2 @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ K2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_7244_pochhammer__times__pochhammer__half,axiom,
! [Z2: real,N2: nat] :
( ( times_times_real @ ( comm_s7457072308508201937r_real @ Z2 @ ( suc @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
= ( groups129246275422532515t_real
@ ^ [K2: nat] : ( plus_plus_real @ Z2 @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ K2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_7245_pi__series,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suminf_real
@ ^ [K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% pi_series
thf(fact_7246_and__int_Osimps,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K2: int,L2: int] :
( if_int
@ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
@ ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
@ ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_int.simps
thf(fact_7247_and__int_Oelims,axiom,
! [X3: int,Xa2: int,Y: int] :
( ( ( bit_se725231765392027082nd_int @ X3 @ Xa2 )
= Y )
=> ( ( ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.elims
thf(fact_7248_pochhammer__code,axiom,
( comm_s2602460028002588243omplex
= ( ^ [A3: complex,N: nat] :
( if_complex @ ( N = zero_zero_nat ) @ one_one_complex
@ ( set_fo1517530859248394432omplex
@ ^ [O: nat] : ( times_times_complex @ ( plus_plus_complex @ A3 @ ( semiri8010041392384452111omplex @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N @ one_one_nat )
@ one_one_complex ) ) ) ) ).
% pochhammer_code
thf(fact_7249_pochhammer__code,axiom,
( comm_s4028243227959126397er_rat
= ( ^ [A3: rat,N: nat] :
( if_rat @ ( N = zero_zero_nat ) @ one_one_rat
@ ( set_fo1949268297981939178at_rat
@ ^ [O: nat] : ( times_times_rat @ ( plus_plus_rat @ A3 @ ( semiri681578069525770553at_rat @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N @ one_one_nat )
@ one_one_rat ) ) ) ) ).
% pochhammer_code
thf(fact_7250_pochhammer__code,axiom,
( comm_s4660882817536571857er_int
= ( ^ [A3: int,N: nat] :
( if_int @ ( N = zero_zero_nat ) @ one_one_int
@ ( set_fo2581907887559384638at_int
@ ^ [O: nat] : ( times_times_int @ ( plus_plus_int @ A3 @ ( semiri1314217659103216013at_int @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N @ one_one_nat )
@ one_one_int ) ) ) ) ).
% pochhammer_code
thf(fact_7251_pochhammer__code,axiom,
( comm_s7457072308508201937r_real
= ( ^ [A3: real,N: nat] :
( if_real @ ( N = zero_zero_nat ) @ one_one_real
@ ( set_fo3111899725591712190t_real
@ ^ [O: nat] : ( times_times_real @ ( plus_plus_real @ A3 @ ( semiri5074537144036343181t_real @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N @ one_one_nat )
@ one_one_real ) ) ) ) ).
% pochhammer_code
thf(fact_7252_pochhammer__code,axiom,
( comm_s4663373288045622133er_nat
= ( ^ [A3: nat,N: nat] :
( if_nat @ ( N = zero_zero_nat ) @ one_one_nat
@ ( set_fo2584398358068434914at_nat
@ ^ [O: nat] : ( times_times_nat @ ( plus_plus_nat @ A3 @ ( semiri1316708129612266289at_nat @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N @ one_one_nat )
@ one_one_nat ) ) ) ) ).
% pochhammer_code
thf(fact_7253_geometric__deriv__sums,axiom,
! [Z2: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z2 ) @ one_one_real )
=> ( sums_real
@ ^ [N: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( power_power_real @ Z2 @ N ) )
@ ( divide_divide_real @ one_one_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_7254_geometric__deriv__sums,axiom,
! [Z2: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z2 ) @ one_one_real )
=> ( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( power_power_complex @ Z2 @ N ) )
@ ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ ( minus_minus_complex @ one_one_complex @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_7255_and__zero__eq,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% and_zero_eq
thf(fact_7256_and__zero__eq,axiom,
! [A: nat] :
( ( bit_se727722235901077358nd_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% and_zero_eq
thf(fact_7257_zero__and__eq,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% zero_and_eq
thf(fact_7258_zero__and__eq,axiom,
! [A: nat] :
( ( bit_se727722235901077358nd_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_and_eq
thf(fact_7259_bit_Oconj__zero__left,axiom,
! [X3: int] :
( ( bit_se725231765392027082nd_int @ zero_zero_int @ X3 )
= zero_zero_int ) ).
% bit.conj_zero_left
thf(fact_7260_bit_Oconj__zero__right,axiom,
! [X3: int] :
( ( bit_se725231765392027082nd_int @ X3 @ zero_zero_int )
= zero_zero_int ) ).
% bit.conj_zero_right
thf(fact_7261_of__nat__prod,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( groups1705073143266064639nt_int
@ ^ [X2: int] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_7262_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri5074537144036343181t_real @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups129246275422532515t_real
@ ^ [X2: nat] : ( semiri5074537144036343181t_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_7263_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [X2: nat] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_7264_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1316708129612266289at_nat @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups708209901874060359at_nat
@ ^ [X2: nat] : ( semiri1316708129612266289at_nat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_7265_sums__zero,axiom,
( sums_complex
@ ^ [N: nat] : zero_zero_complex
@ zero_zero_complex ) ).
% sums_zero
thf(fact_7266_sums__zero,axiom,
( sums_real
@ ^ [N: nat] : zero_zero_real
@ zero_zero_real ) ).
% sums_zero
thf(fact_7267_sums__zero,axiom,
( sums_nat
@ ^ [N: nat] : zero_zero_nat
@ zero_zero_nat ) ).
% sums_zero
thf(fact_7268_sums__zero,axiom,
( sums_int
@ ^ [N: nat] : zero_zero_int
@ zero_zero_int ) ).
% sums_zero
thf(fact_7269_of__int__prod,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_real @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( groups129246275422532515t_real
@ ^ [X2: nat] : ( ring_1_of_int_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_7270_of__int__prod,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_rat @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( groups73079841787564623at_rat
@ ^ [X2: nat] : ( ring_1_of_int_rat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_7271_of__int__prod,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_int @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [X2: nat] : ( ring_1_of_int_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_7272_of__int__prod,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_real @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( groups2316167850115554303t_real
@ ^ [X2: int] : ( ring_1_of_int_real @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_7273_of__int__prod,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_rat @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( groups1072433553688619179nt_rat
@ ^ [X2: int] : ( ring_1_of_int_rat @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_7274_of__int__prod,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_int @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( groups1705073143266064639nt_int
@ ^ [X2: int] : ( ring_1_of_int_int @ ( F @ X2 ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_7275_prod__zero__iff,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups6464643781859351333omplex @ F @ A2 )
= zero_zero_complex )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_complex ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7276_prod__zero__iff,axiom,
! [A2: set_int,F: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups7440179247065528705omplex @ F @ A2 )
= zero_zero_complex )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_complex ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7277_prod__zero__iff,axiom,
! [A2: set_complex,F: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups3708469109370488835omplex @ F @ A2 )
= zero_zero_complex )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_complex ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7278_prod__zero__iff,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups129246275422532515t_real @ F @ A2 )
= zero_zero_real )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7279_prod__zero__iff,axiom,
! [A2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups2316167850115554303t_real @ F @ A2 )
= zero_zero_real )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7280_prod__zero__iff,axiom,
! [A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups766887009212190081x_real @ F @ A2 )
= zero_zero_real )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_real ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7281_prod__zero__iff,axiom,
! [A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups73079841787564623at_rat @ F @ A2 )
= zero_zero_rat )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7282_prod__zero__iff,axiom,
! [A2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups1072433553688619179nt_rat @ F @ A2 )
= zero_zero_rat )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7283_prod__zero__iff,axiom,
! [A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups225925009352817453ex_rat @ F @ A2 )
= zero_zero_rat )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_rat ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7284_prod__zero__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups1707563613775114915nt_nat @ F @ A2 )
= zero_zero_nat )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( ( F @ X2 )
= zero_zero_nat ) ) ) ) ) ).
% prod_zero_iff
thf(fact_7285_prod_Oempty,axiom,
! [G: real > complex] :
( ( groups713298508707869441omplex @ G @ bot_bot_set_real )
= one_one_complex ) ).
% prod.empty
thf(fact_7286_prod_Oempty,axiom,
! [G: real > real] :
( ( groups1681761925125756287l_real @ G @ bot_bot_set_real )
= one_one_real ) ).
% prod.empty
thf(fact_7287_prod_Oempty,axiom,
! [G: real > rat] :
( ( groups4061424788464935467al_rat @ G @ bot_bot_set_real )
= one_one_rat ) ).
% prod.empty
thf(fact_7288_prod_Oempty,axiom,
! [G: real > nat] :
( ( groups4696554848551431203al_nat @ G @ bot_bot_set_real )
= one_one_nat ) ).
% prod.empty
thf(fact_7289_prod_Oempty,axiom,
! [G: real > int] :
( ( groups4694064378042380927al_int @ G @ bot_bot_set_real )
= one_one_int ) ).
% prod.empty
thf(fact_7290_prod_Oempty,axiom,
! [G: nat > complex] :
( ( groups6464643781859351333omplex @ G @ bot_bot_set_nat )
= one_one_complex ) ).
% prod.empty
thf(fact_7291_prod_Oempty,axiom,
! [G: nat > real] :
( ( groups129246275422532515t_real @ G @ bot_bot_set_nat )
= one_one_real ) ).
% prod.empty
thf(fact_7292_prod_Oempty,axiom,
! [G: nat > rat] :
( ( groups73079841787564623at_rat @ G @ bot_bot_set_nat )
= one_one_rat ) ).
% prod.empty
thf(fact_7293_prod_Oempty,axiom,
! [G: int > complex] :
( ( groups7440179247065528705omplex @ G @ bot_bot_set_int )
= one_one_complex ) ).
% prod.empty
thf(fact_7294_prod_Oempty,axiom,
! [G: int > real] :
( ( groups2316167850115554303t_real @ G @ bot_bot_set_int )
= one_one_real ) ).
% prod.empty
thf(fact_7295_prod_Oinfinite,axiom,
! [A2: set_nat,G: nat > complex] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups6464643781859351333omplex @ G @ A2 )
= one_one_complex ) ) ).
% prod.infinite
thf(fact_7296_prod_Oinfinite,axiom,
! [A2: set_int,G: int > complex] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups7440179247065528705omplex @ G @ A2 )
= one_one_complex ) ) ).
% prod.infinite
thf(fact_7297_prod_Oinfinite,axiom,
! [A2: set_complex,G: complex > complex] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups3708469109370488835omplex @ G @ A2 )
= one_one_complex ) ) ).
% prod.infinite
thf(fact_7298_prod_Oinfinite,axiom,
! [A2: set_nat,G: nat > real] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups129246275422532515t_real @ G @ A2 )
= one_one_real ) ) ).
% prod.infinite
thf(fact_7299_prod_Oinfinite,axiom,
! [A2: set_int,G: int > real] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ A2 )
= one_one_real ) ) ).
% prod.infinite
thf(fact_7300_prod_Oinfinite,axiom,
! [A2: set_complex,G: complex > real] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G @ A2 )
= one_one_real ) ) ).
% prod.infinite
thf(fact_7301_prod_Oinfinite,axiom,
! [A2: set_nat,G: nat > rat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ A2 )
= one_one_rat ) ) ).
% prod.infinite
thf(fact_7302_prod_Oinfinite,axiom,
! [A2: set_int,G: int > rat] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ A2 )
= one_one_rat ) ) ).
% prod.infinite
thf(fact_7303_prod_Oinfinite,axiom,
! [A2: set_complex,G: complex > rat] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ A2 )
= one_one_rat ) ) ).
% prod.infinite
thf(fact_7304_prod_Oinfinite,axiom,
! [A2: set_int,G: int > nat] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups1707563613775114915nt_nat @ G @ A2 )
= one_one_nat ) ) ).
% prod.infinite
thf(fact_7305_dvd__prod__eqI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B: nat,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups6361806394783013919BT_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7306_dvd__prod__eqI,axiom,
! [A2: set_real,A: real,B: nat,F: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups4696554848551431203al_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7307_dvd__prod__eqI,axiom,
! [A2: set_int,A: int,B: nat,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7308_dvd__prod__eqI,axiom,
! [A2: set_complex,A: complex,B: nat,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups861055069439313189ex_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7309_dvd__prod__eqI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B: int,F: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups6359315924273963643BT_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7310_dvd__prod__eqI,axiom,
! [A2: set_real,A: real,B: int,F: real > int] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups4694064378042380927al_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7311_dvd__prod__eqI,axiom,
! [A2: set_complex,A: complex,B: int,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups858564598930262913ex_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7312_dvd__prod__eqI,axiom,
! [A2: set_nat,A: nat,B: int,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7313_dvd__prod__eqI,axiom,
! [A2: set_int,A: int,B: int,F: int > int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7314_dvd__prod__eqI,axiom,
! [A2: set_nat,A: nat,B: nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_7315_dvd__prodI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups6361806394783013919BT_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7316_dvd__prodI,axiom,
! [A2: set_real,A: real,F: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups4696554848551431203al_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7317_dvd__prodI,axiom,
! [A2: set_int,A: int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7318_dvd__prodI,axiom,
! [A2: set_complex,A: complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups861055069439313189ex_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7319_dvd__prodI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups6359315924273963643BT_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7320_dvd__prodI,axiom,
! [A2: set_real,A: real,F: real > int] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups4694064378042380927al_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7321_dvd__prodI,axiom,
! [A2: set_complex,A: complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups858564598930262913ex_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7322_dvd__prodI,axiom,
! [A2: set_nat,A: nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7323_dvd__prodI,axiom,
! [A2: set_int,A: int,F: int > int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7324_dvd__prodI,axiom,
! [A2: set_nat,A: nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_7325_and__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% and_negative_int_iff
thf(fact_7326_prod_Odelta_H,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_7327_prod_Odelta_H,axiom,
! [S2: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_7328_prod_Odelta_H,axiom,
! [S2: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_7329_prod_Odelta_H,axiom,
! [S2: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_7330_prod_Odelta_H,axiom,
! [S2: set_complex,A: complex,B: complex > complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_7331_prod_Odelta_H,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_7332_prod_Odelta_H,axiom,
! [S2: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_7333_prod_Odelta_H,axiom,
! [S2: set_nat,A: nat,B: nat > real] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_7334_prod_Odelta_H,axiom,
! [S2: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_7335_prod_Odelta_H,axiom,
! [S2: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups766887009212190081x_real
@ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups766887009212190081x_real
@ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_7336_prod_Odelta,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_7337_prod_Odelta,axiom,
! [S2: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_7338_prod_Odelta,axiom,
! [S2: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_7339_prod_Odelta,axiom,
! [S2: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_7340_prod_Odelta,axiom,
! [S2: set_complex,A: complex,B: complex > complex] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S2 )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_7341_prod_Odelta,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_7342_prod_Odelta,axiom,
! [S2: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_7343_prod_Odelta,axiom,
! [S2: set_nat,A: nat,B: nat > real] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_7344_prod_Odelta,axiom,
! [S2: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_7345_prod_Odelta,axiom,
! [S2: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups766887009212190081x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups766887009212190081x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S2 )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_7346_prod_Oinsert,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2703838992350267259T_real @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups2703838992350267259T_real @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7347_prod_Oinsert,axiom,
! [A2: set_real,X3: real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups1681761925125756287l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups1681761925125756287l_real @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7348_prod_Oinsert,axiom,
! [A2: set_nat,X3: nat,G: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ X3 @ A2 )
=> ( ( groups129246275422532515t_real @ G @ ( insert_nat @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups129246275422532515t_real @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7349_prod_Oinsert,axiom,
! [A2: set_int,X3: int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups2316167850115554303t_real @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7350_prod_Oinsert,axiom,
! [A2: set_complex,X3: complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups766887009212190081x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups766887009212190081x_real @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7351_prod_Oinsert,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups5726676334696518183BT_rat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups5726676334696518183BT_rat @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7352_prod_Oinsert,axiom,
! [A2: set_real,X3: real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups4061424788464935467al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7353_prod_Oinsert,axiom,
! [A2: set_nat,X3: nat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ X3 @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ ( insert_nat @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups73079841787564623at_rat @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7354_prod_Oinsert,axiom,
! [A2: set_int,X3: int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7355_prod_Oinsert,axiom,
! [A2: set_complex,X3: complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups225925009352817453ex_rat @ G @ A2 ) ) ) ) ) ).
% prod.insert
thf(fact_7356_prod_OlessThan__Suc,axiom,
! [G: nat > real,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% prod.lessThan_Suc
thf(fact_7357_prod_OlessThan__Suc,axiom,
! [G: nat > rat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% prod.lessThan_Suc
thf(fact_7358_prod_OlessThan__Suc,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% prod.lessThan_Suc
thf(fact_7359_prod_OlessThan__Suc,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).
% prod.lessThan_Suc
thf(fact_7360_and__numerals_I5_J,axiom,
! [X3: num] :
( ( bit_se3949692690581998587nteger @ ( numera6620942414471956472nteger @ ( bit0 @ X3 ) ) @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% and_numerals(5)
thf(fact_7361_and__numerals_I5_J,axiom,
! [X3: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X3 ) ) @ one_one_int )
= zero_zero_int ) ).
% and_numerals(5)
thf(fact_7362_and__numerals_I5_J,axiom,
! [X3: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ one_one_nat )
= zero_zero_nat ) ).
% and_numerals(5)
thf(fact_7363_and__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se3949692690581998587nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ Y ) ) )
= zero_z3403309356797280102nteger ) ).
% and_numerals(1)
thf(fact_7364_and__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
= zero_zero_int ) ).
% and_numerals(1)
thf(fact_7365_and__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= zero_zero_nat ) ).
% and_numerals(1)
thf(fact_7366_powser__sums__zero__iff,axiom,
! [A: nat > complex,X3: complex] :
( ( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( A @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) )
@ X3 )
= ( ( A @ zero_zero_nat )
= X3 ) ) ).
% powser_sums_zero_iff
thf(fact_7367_powser__sums__zero__iff,axiom,
! [A: nat > real,X3: real] :
( ( sums_real
@ ^ [N: nat] : ( times_times_real @ ( A @ N ) @ ( power_power_real @ zero_zero_real @ N ) )
@ X3 )
= ( ( A @ zero_zero_nat )
= X3 ) ) ).
% powser_sums_zero_iff
thf(fact_7368_prod_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > complex] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= one_one_complex ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_complex @ ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_7369_prod_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > real] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= one_one_real ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_7370_prod_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > rat] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= one_one_rat ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_7371_prod_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > int] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= one_one_int ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_7372_prod_Ocl__ivl__Suc,axiom,
! [N2: nat,M: nat,G: nat > nat] :
( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= one_one_nat ) )
& ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_7373_and__numerals_I7_J,axiom,
! [X3: num,Y: num] :
( ( bit_se3949692690581998587nteger @ ( numera6620942414471956472nteger @ ( bit1 @ X3 ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ Y ) ) )
= ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3949692690581998587nteger @ ( numera6620942414471956472nteger @ X3 ) @ ( numera6620942414471956472nteger @ Y ) ) ) ) ) ).
% and_numerals(7)
thf(fact_7374_and__numerals_I7_J,axiom,
! [X3: num,Y: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X3 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).
% and_numerals(7)
thf(fact_7375_and__numerals_I7_J,axiom,
! [X3: num,Y: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).
% and_numerals(7)
thf(fact_7376_sums__0,axiom,
! [F: nat > complex] :
( ! [N3: nat] :
( ( F @ N3 )
= zero_zero_complex )
=> ( sums_complex @ F @ zero_zero_complex ) ) ).
% sums_0
thf(fact_7377_sums__0,axiom,
! [F: nat > real] :
( ! [N3: nat] :
( ( F @ N3 )
= zero_zero_real )
=> ( sums_real @ F @ zero_zero_real ) ) ).
% sums_0
thf(fact_7378_sums__0,axiom,
! [F: nat > nat] :
( ! [N3: nat] :
( ( F @ N3 )
= zero_zero_nat )
=> ( sums_nat @ F @ zero_zero_nat ) ) ).
% sums_0
thf(fact_7379_sums__0,axiom,
! [F: nat > int] :
( ! [N3: nat] :
( ( F @ N3 )
= zero_zero_int )
=> ( sums_int @ F @ zero_zero_int ) ) ).
% sums_0
thf(fact_7380_sums__le,axiom,
! [F: nat > real,G: nat > real,S: real,T: real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( sums_real @ F @ S )
=> ( ( sums_real @ G @ T )
=> ( ord_less_eq_real @ S @ T ) ) ) ) ).
% sums_le
thf(fact_7381_sums__le,axiom,
! [F: nat > nat,G: nat > nat,S: nat,T: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( sums_nat @ F @ S )
=> ( ( sums_nat @ G @ T )
=> ( ord_less_eq_nat @ S @ T ) ) ) ) ).
% sums_le
thf(fact_7382_sums__le,axiom,
! [F: nat > int,G: nat > int,S: int,T: int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( sums_int @ F @ S )
=> ( ( sums_int @ G @ T )
=> ( ord_less_eq_int @ S @ T ) ) ) ) ).
% sums_le
thf(fact_7383_sums__single,axiom,
! [I: nat,F: nat > complex] :
( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7384_sums__single,axiom,
! [I: nat,F: nat > real] :
( sums_real
@ ^ [R5: nat] : ( if_real @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_real )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7385_sums__single,axiom,
! [I: nat,F: nat > nat] :
( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7386_sums__single,axiom,
! [I: nat,F: nat > int] :
( sums_int
@ ^ [R5: nat] : ( if_int @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_int )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7387_sums__add,axiom,
! [F: nat > real,A: real,G: nat > real,B: real] :
( ( sums_real @ F @ A )
=> ( ( sums_real @ G @ B )
=> ( sums_real
@ ^ [N: nat] : ( plus_plus_real @ ( F @ N ) @ ( G @ N ) )
@ ( plus_plus_real @ A @ B ) ) ) ) ).
% sums_add
thf(fact_7388_sums__add,axiom,
! [F: nat > nat,A: nat,G: nat > nat,B: nat] :
( ( sums_nat @ F @ A )
=> ( ( sums_nat @ G @ B )
=> ( sums_nat
@ ^ [N: nat] : ( plus_plus_nat @ ( F @ N ) @ ( G @ N ) )
@ ( plus_plus_nat @ A @ B ) ) ) ) ).
% sums_add
thf(fact_7389_sums__add,axiom,
! [F: nat > int,A: int,G: nat > int,B: int] :
( ( sums_int @ F @ A )
=> ( ( sums_int @ G @ B )
=> ( sums_int
@ ^ [N: nat] : ( plus_plus_int @ ( F @ N ) @ ( G @ N ) )
@ ( plus_plus_int @ A @ B ) ) ) ) ).
% sums_add
thf(fact_7390_prod_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B2: set_nat,G: vEBT_VEBT > nat > int,R: vEBT_VEBT > nat > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups6359315924273963643BT_int
@ ^ [X2: vEBT_VEBT] :
( groups705719431365010083at_int @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [Y5: nat] :
( groups6359315924273963643BT_int
@ ^ [X2: vEBT_VEBT] : ( G @ X2 @ Y5 )
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7391_prod_Oswap__restrict,axiom,
! [A2: set_real,B2: set_nat,G: real > nat > int,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups4694064378042380927al_int
@ ^ [X2: real] :
( groups705719431365010083at_int @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [Y5: nat] :
( groups4694064378042380927al_int
@ ^ [X2: real] : ( G @ X2 @ Y5 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7392_prod_Oswap__restrict,axiom,
! [A2: set_complex,B2: set_nat,G: complex > nat > int,R: complex > nat > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups858564598930262913ex_int
@ ^ [X2: complex] :
( groups705719431365010083at_int @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [Y5: nat] :
( groups858564598930262913ex_int
@ ^ [X2: complex] : ( G @ X2 @ Y5 )
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7393_prod_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B2: set_int,G: vEBT_VEBT > int > int,R: vEBT_VEBT > int > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups6359315924273963643BT_int
@ ^ [X2: vEBT_VEBT] :
( groups1705073143266064639nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups1705073143266064639nt_int
@ ^ [Y5: int] :
( groups6359315924273963643BT_int
@ ^ [X2: vEBT_VEBT] : ( G @ X2 @ Y5 )
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7394_prod_Oswap__restrict,axiom,
! [A2: set_real,B2: set_int,G: real > int > int,R: real > int > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups4694064378042380927al_int
@ ^ [X2: real] :
( groups1705073143266064639nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups1705073143266064639nt_int
@ ^ [Y5: int] :
( groups4694064378042380927al_int
@ ^ [X2: real] : ( G @ X2 @ Y5 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7395_prod_Oswap__restrict,axiom,
! [A2: set_complex,B2: set_int,G: complex > int > int,R: complex > int > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_int @ B2 )
=> ( ( groups858564598930262913ex_int
@ ^ [X2: complex] :
( groups1705073143266064639nt_int @ ( G @ X2 )
@ ( collect_int
@ ^ [Y5: int] :
( ( member_int @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups1705073143266064639nt_int
@ ^ [Y5: int] :
( groups858564598930262913ex_int
@ ^ [X2: complex] : ( G @ X2 @ Y5 )
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7396_prod_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B2: set_nat,G: vEBT_VEBT > nat > nat,R: vEBT_VEBT > nat > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups6361806394783013919BT_nat
@ ^ [X2: vEBT_VEBT] :
( groups708209901874060359at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y5: nat] :
( groups6361806394783013919BT_nat
@ ^ [X2: vEBT_VEBT] : ( G @ X2 @ Y5 )
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7397_prod_Oswap__restrict,axiom,
! [A2: set_real,B2: set_nat,G: real > nat > nat,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups4696554848551431203al_nat
@ ^ [X2: real] :
( groups708209901874060359at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y5: nat] :
( groups4696554848551431203al_nat
@ ^ [X2: real] : ( G @ X2 @ Y5 )
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7398_prod_Oswap__restrict,axiom,
! [A2: set_int,B2: set_nat,G: int > nat > nat,R: int > nat > $o] :
( ( finite_finite_int @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups1707563613775114915nt_nat
@ ^ [X2: int] :
( groups708209901874060359at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y5: nat] :
( groups1707563613775114915nt_nat
@ ^ [X2: int] : ( G @ X2 @ Y5 )
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7399_prod_Oswap__restrict,axiom,
! [A2: set_complex,B2: set_nat,G: complex > nat > nat,R: complex > nat > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B2 )
=> ( ( groups861055069439313189ex_nat
@ ^ [X2: complex] :
( groups708209901874060359at_nat @ ( G @ X2 )
@ ( collect_nat
@ ^ [Y5: nat] :
( ( member_nat @ Y5 @ B2 )
& ( R @ X2 @ Y5 ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y5: nat] :
( groups861055069439313189ex_nat
@ ^ [X2: complex] : ( G @ X2 @ Y5 )
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( R @ X2 @ Y5 ) ) ) )
@ B2 ) ) ) ) ).
% prod.swap_restrict
thf(fact_7400_prod__mono,axiom,
! [A2: set_nat,F: nat > real,G: nat > real] :
( ! [I3: nat] :
( ( member_nat @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A2 ) @ ( groups129246275422532515t_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7401_prod__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ ( groups2703838992350267259T_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7402_prod__mono,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ! [I3: int] :
( ( member_int @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ ( groups2316167850115554303t_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7403_prod__mono,axiom,
! [A2: set_real,F: real > real,G: real > real] :
( ! [I3: real] :
( ( member_real @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ ( groups1681761925125756287l_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7404_prod__mono,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ! [I3: nat] :
( ( member_nat @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ ( groups73079841787564623at_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7405_prod__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ ( groups5726676334696518183BT_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7406_prod__mono,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ! [I3: int] :
( ( member_int @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7407_prod__mono,axiom,
! [A2: set_real,F: real > rat,G: real > rat] :
( ! [I3: real] :
( ( member_real @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7408_prod__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) )
& ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_nat @ ( groups6361806394783013919BT_nat @ F @ A2 ) @ ( groups6361806394783013919BT_nat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7409_prod__mono,axiom,
! [A2: set_int,F: int > nat,G: int > nat] :
( ! [I3: int] :
( ( member_int @ I3 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) )
& ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ord_less_eq_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_7410_prod__nonneg,axiom,
! [A2: set_nat,F: nat > int] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ).
% prod_nonneg
thf(fact_7411_prod__nonneg,axiom,
! [A2: set_int,F: int > int] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ).
% prod_nonneg
thf(fact_7412_prod__nonneg,axiom,
! [A2: set_nat,F: nat > nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ).
% prod_nonneg
thf(fact_7413_prod__pos,axiom,
! [A2: set_nat,F: nat > int] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_int @ zero_zero_int @ ( F @ X4 ) ) )
=> ( ord_less_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ).
% prod_pos
thf(fact_7414_prod__pos,axiom,
! [A2: set_int,F: int > int] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_int @ zero_zero_int @ ( F @ X4 ) ) )
=> ( ord_less_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ).
% prod_pos
thf(fact_7415_prod__pos,axiom,
! [A2: set_nat,F: nat > nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X4 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ).
% prod_pos
thf(fact_7416_prod__ge__1,axiom,
! [A2: set_nat,F: nat > real] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups129246275422532515t_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7417_prod__ge__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7418_prod__ge__1,axiom,
! [A2: set_int,F: int > real] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7419_prod__ge__1,axiom,
! [A2: set_real,F: real > real] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7420_prod__ge__1,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7421_prod__ge__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7422_prod__ge__1,axiom,
! [A2: set_int,F: int > rat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7423_prod__ge__1,axiom,
! [A2: set_real,F: real > rat] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X4 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7424_prod__ge__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ord_less_eq_nat @ one_one_nat @ ( F @ X4 ) ) )
=> ( ord_less_eq_nat @ one_one_nat @ ( groups6361806394783013919BT_nat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7425_prod__ge__1,axiom,
! [A2: set_int,F: int > nat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ord_less_eq_nat @ one_one_nat @ ( F @ X4 ) ) )
=> ( ord_less_eq_nat @ one_one_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_7426_prod__zero,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= zero_zero_complex ) )
=> ( ( groups6464643781859351333omplex @ F @ A2 )
= zero_zero_complex ) ) ) ).
% prod_zero
thf(fact_7427_prod__zero,axiom,
! [A2: set_int,F: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= zero_zero_complex ) )
=> ( ( groups7440179247065528705omplex @ F @ A2 )
= zero_zero_complex ) ) ) ).
% prod_zero
thf(fact_7428_prod__zero,axiom,
! [A2: set_complex,F: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ( F @ X )
= zero_zero_complex ) )
=> ( ( groups3708469109370488835omplex @ F @ A2 )
= zero_zero_complex ) ) ) ).
% prod_zero
thf(fact_7429_prod__zero,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= zero_zero_real ) )
=> ( ( groups129246275422532515t_real @ F @ A2 )
= zero_zero_real ) ) ) ).
% prod_zero
thf(fact_7430_prod__zero,axiom,
! [A2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= zero_zero_real ) )
=> ( ( groups2316167850115554303t_real @ F @ A2 )
= zero_zero_real ) ) ) ).
% prod_zero
thf(fact_7431_prod__zero,axiom,
! [A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ( F @ X )
= zero_zero_real ) )
=> ( ( groups766887009212190081x_real @ F @ A2 )
= zero_zero_real ) ) ) ).
% prod_zero
thf(fact_7432_prod__zero,axiom,
! [A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= zero_zero_rat ) )
=> ( ( groups73079841787564623at_rat @ F @ A2 )
= zero_zero_rat ) ) ) ).
% prod_zero
thf(fact_7433_prod__zero,axiom,
! [A2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= zero_zero_rat ) )
=> ( ( groups1072433553688619179nt_rat @ F @ A2 )
= zero_zero_rat ) ) ) ).
% prod_zero
thf(fact_7434_prod__zero,axiom,
! [A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ( F @ X )
= zero_zero_rat ) )
=> ( ( groups225925009352817453ex_rat @ F @ A2 )
= zero_zero_rat ) ) ) ).
% prod_zero
thf(fact_7435_prod__zero,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= zero_zero_nat ) )
=> ( ( groups1707563613775114915nt_nat @ F @ A2 )
= zero_zero_nat ) ) ) ).
% prod_zero
thf(fact_7436_prod__atLeastAtMost__code,axiom,
! [F: nat > complex,A: nat,B: nat] :
( ( groups6464643781859351333omplex @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1517530859248394432omplex
@ ^ [A3: nat] : ( times_times_complex @ ( F @ A3 ) )
@ A
@ B
@ one_one_complex ) ) ).
% prod_atLeastAtMost_code
thf(fact_7437_prod__atLeastAtMost__code,axiom,
! [F: nat > real,A: nat,B: nat] :
( ( groups129246275422532515t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo3111899725591712190t_real
@ ^ [A3: nat] : ( times_times_real @ ( F @ A3 ) )
@ A
@ B
@ one_one_real ) ) ).
% prod_atLeastAtMost_code
thf(fact_7438_prod__atLeastAtMost__code,axiom,
! [F: nat > rat,A: nat,B: nat] :
( ( groups73079841787564623at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1949268297981939178at_rat
@ ^ [A3: nat] : ( times_times_rat @ ( F @ A3 ) )
@ A
@ B
@ one_one_rat ) ) ).
% prod_atLeastAtMost_code
thf(fact_7439_prod__atLeastAtMost__code,axiom,
! [F: nat > int,A: nat,B: nat] :
( ( groups705719431365010083at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2581907887559384638at_int
@ ^ [A3: nat] : ( times_times_int @ ( F @ A3 ) )
@ A
@ B
@ one_one_int ) ) ).
% prod_atLeastAtMost_code
thf(fact_7440_prod__atLeastAtMost__code,axiom,
! [F: nat > nat,A: nat,B: nat] :
( ( groups708209901874060359at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2584398358068434914at_nat
@ ^ [A3: nat] : ( times_times_nat @ ( F @ A3 ) )
@ A
@ B
@ one_one_nat ) ) ).
% prod_atLeastAtMost_code
thf(fact_7441_sums__mult__iff,axiom,
! [C: complex,F: nat > complex,D: complex] :
( ( C != zero_zero_complex )
=> ( ( sums_complex
@ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) )
@ ( times_times_complex @ C @ D ) )
= ( sums_complex @ F @ D ) ) ) ).
% sums_mult_iff
thf(fact_7442_sums__mult__iff,axiom,
! [C: real,F: nat > real,D: real] :
( ( C != zero_zero_real )
=> ( ( sums_real
@ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) )
@ ( times_times_real @ C @ D ) )
= ( sums_real @ F @ D ) ) ) ).
% sums_mult_iff
thf(fact_7443_sums__mult2__iff,axiom,
! [C: complex,F: nat > complex,D: complex] :
( ( C != zero_zero_complex )
=> ( ( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ C )
@ ( times_times_complex @ D @ C ) )
= ( sums_complex @ F @ D ) ) ) ).
% sums_mult2_iff
thf(fact_7444_sums__mult2__iff,axiom,
! [C: real,F: nat > real,D: real] :
( ( C != zero_zero_real )
=> ( ( sums_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ C )
@ ( times_times_real @ D @ C ) )
= ( sums_real @ F @ D ) ) ) ).
% sums_mult2_iff
thf(fact_7445_pi__not__less__zero,axiom,
~ ( ord_less_real @ pi @ zero_zero_real ) ).
% pi_not_less_zero
thf(fact_7446_pi__gt__zero,axiom,
ord_less_real @ zero_zero_real @ pi ).
% pi_gt_zero
thf(fact_7447_prod_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > complex,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups127312072573709053omplex @ G
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups127312072573709053omplex
@ ^ [X2: vEBT_VEBT] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7448_prod_Ointer__filter,axiom,
! [A2: set_real,G: real > complex,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups713298508707869441omplex @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups713298508707869441omplex
@ ^ [X2: real] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7449_prod_Ointer__filter,axiom,
! [A2: set_nat,G: nat > complex,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups6464643781859351333omplex @ G
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups6464643781859351333omplex
@ ^ [X2: nat] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7450_prod_Ointer__filter,axiom,
! [A2: set_int,G: int > complex,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups7440179247065528705omplex @ G
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups7440179247065528705omplex
@ ^ [X2: int] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7451_prod_Ointer__filter,axiom,
! [A2: set_complex,G: complex > complex,P: complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups3708469109370488835omplex @ G
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups3708469109370488835omplex
@ ^ [X2: complex] : ( if_complex @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7452_prod_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > real,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups2703838992350267259T_real @ G
@ ( collect_VEBT_VEBT
@ ^ [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups2703838992350267259T_real
@ ^ [X2: vEBT_VEBT] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7453_prod_Ointer__filter,axiom,
! [A2: set_real,G: real > real,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups1681761925125756287l_real @ G
@ ( collect_real
@ ^ [X2: real] :
( ( member_real @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups1681761925125756287l_real
@ ^ [X2: real] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7454_prod_Ointer__filter,axiom,
! [A2: set_nat,G: nat > real,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups129246275422532515t_real @ G
@ ( collect_nat
@ ^ [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups129246275422532515t_real
@ ^ [X2: nat] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7455_prod_Ointer__filter,axiom,
! [A2: set_int,G: int > real,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G
@ ( collect_int
@ ^ [X2: int] :
( ( member_int @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups2316167850115554303t_real
@ ^ [X2: int] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7456_prod_Ointer__filter,axiom,
! [A2: set_complex,G: complex > real,P: complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G
@ ( collect_complex
@ ^ [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( P @ X2 ) ) ) )
= ( groups766887009212190081x_real
@ ^ [X2: complex] : ( if_real @ ( P @ X2 ) @ ( G @ X2 ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_7457_prod_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > int,M: nat,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.shift_bounds_cl_Suc_ivl
thf(fact_7458_prod_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > nat,M: nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.shift_bounds_cl_Suc_ivl
thf(fact_7459_prod_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > int,M: nat,K: nat,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
= ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( plus_plus_nat @ I5 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.shift_bounds_cl_nat_ivl
thf(fact_7460_prod_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > nat,M: nat,K: nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
= ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( plus_plus_nat @ I5 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.shift_bounds_cl_nat_ivl
thf(fact_7461_prod__le__1,axiom,
! [A2: set_nat,F: nat > real] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
& ( ord_less_eq_real @ ( F @ X4 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_7462_prod__le__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
& ( ord_less_eq_real @ ( F @ X4 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_7463_prod__le__1,axiom,
! [A2: set_int,F: int > real] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
& ( ord_less_eq_real @ ( F @ X4 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_7464_prod__le__1,axiom,
! [A2: set_real,F: real > real] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
& ( ord_less_eq_real @ ( F @ X4 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_7465_prod__le__1,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) )
& ( ord_less_eq_rat @ ( F @ X4 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_7466_prod__le__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) )
& ( ord_less_eq_rat @ ( F @ X4 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_7467_prod__le__1,axiom,
! [A2: set_int,F: int > rat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) )
& ( ord_less_eq_rat @ ( F @ X4 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_7468_prod__le__1,axiom,
! [A2: set_real,F: real > rat] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) )
& ( ord_less_eq_rat @ ( F @ X4 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_7469_prod__le__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) )
& ( ord_less_eq_nat @ ( F @ X4 ) @ one_one_nat ) ) )
=> ( ord_less_eq_nat @ ( groups6361806394783013919BT_nat @ F @ A2 ) @ one_one_nat ) ) ).
% prod_le_1
thf(fact_7470_prod__le__1,axiom,
! [A2: set_int,F: int > nat] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) )
& ( ord_less_eq_nat @ ( F @ X4 ) @ one_one_nat ) ) )
=> ( ord_less_eq_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ one_one_nat ) ) ).
% prod_le_1
thf(fact_7471_prod_Orelated,axiom,
! [R: complex > complex > $o,S2: set_nat,H2: nat > complex,G: nat > complex] :
( ( R @ one_one_complex @ one_one_complex )
=> ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups6464643781859351333omplex @ H2 @ S2 ) @ ( groups6464643781859351333omplex @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7472_prod_Orelated,axiom,
! [R: complex > complex > $o,S2: set_int,H2: int > complex,G: int > complex] :
( ( R @ one_one_complex @ one_one_complex )
=> ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups7440179247065528705omplex @ H2 @ S2 ) @ ( groups7440179247065528705omplex @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7473_prod_Orelated,axiom,
! [R: complex > complex > $o,S2: set_complex,H2: complex > complex,G: complex > complex] :
( ( R @ one_one_complex @ one_one_complex )
=> ( ! [X1: complex,Y1: complex,X23: complex,Y23: complex] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups3708469109370488835omplex @ H2 @ S2 ) @ ( groups3708469109370488835omplex @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7474_prod_Orelated,axiom,
! [R: real > real > $o,S2: set_nat,H2: nat > real,G: nat > real] :
( ( R @ one_one_real @ one_one_real )
=> ( ! [X1: real,Y1: real,X23: real,Y23: real] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups129246275422532515t_real @ H2 @ S2 ) @ ( groups129246275422532515t_real @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7475_prod_Orelated,axiom,
! [R: real > real > $o,S2: set_int,H2: int > real,G: int > real] :
( ( R @ one_one_real @ one_one_real )
=> ( ! [X1: real,Y1: real,X23: real,Y23: real] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups2316167850115554303t_real @ H2 @ S2 ) @ ( groups2316167850115554303t_real @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7476_prod_Orelated,axiom,
! [R: real > real > $o,S2: set_complex,H2: complex > real,G: complex > real] :
( ( R @ one_one_real @ one_one_real )
=> ( ! [X1: real,Y1: real,X23: real,Y23: real] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups766887009212190081x_real @ H2 @ S2 ) @ ( groups766887009212190081x_real @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7477_prod_Orelated,axiom,
! [R: rat > rat > $o,S2: set_nat,H2: nat > rat,G: nat > rat] :
( ( R @ one_one_rat @ one_one_rat )
=> ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S2 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups73079841787564623at_rat @ H2 @ S2 ) @ ( groups73079841787564623at_rat @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7478_prod_Orelated,axiom,
! [R: rat > rat > $o,S2: set_int,H2: int > rat,G: int > rat] :
( ( R @ one_one_rat @ one_one_rat )
=> ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups1072433553688619179nt_rat @ H2 @ S2 ) @ ( groups1072433553688619179nt_rat @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7479_prod_Orelated,axiom,
! [R: rat > rat > $o,S2: set_complex,H2: complex > rat,G: complex > rat] :
( ( R @ one_one_rat @ one_one_rat )
=> ( ! [X1: rat,Y1: rat,X23: rat,Y23: rat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X23 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S2 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups225925009352817453ex_rat @ H2 @ S2 ) @ ( groups225925009352817453ex_rat @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7480_prod_Orelated,axiom,
! [R: nat > nat > $o,S2: set_int,H2: int > nat,G: int > nat] :
( ( R @ one_one_nat @ one_one_nat )
=> ( ! [X1: nat,Y1: nat,X23: nat,Y23: nat] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_nat @ X1 @ Y1 ) @ ( times_times_nat @ X23 @ Y23 ) ) )
=> ( ( finite_finite_int @ S2 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ S2 )
=> ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups1707563613775114915nt_nat @ H2 @ S2 ) @ ( groups1707563613775114915nt_nat @ G @ S2 ) ) ) ) ) ) ).
% prod.related
thf(fact_7481_prod_Oinsert__if,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2703838992350267259T_real @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( groups2703838992350267259T_real @ G @ A2 ) ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2703838992350267259T_real @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups2703838992350267259T_real @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7482_prod_Oinsert__if,axiom,
! [A2: set_real,X3: real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ X3 @ A2 )
=> ( ( groups1681761925125756287l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( groups1681761925125756287l_real @ G @ A2 ) ) )
& ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups1681761925125756287l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups1681761925125756287l_real @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7483_prod_Oinsert__if,axiom,
! [A2: set_nat,X3: nat,G: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ( ( member_nat @ X3 @ A2 )
=> ( ( groups129246275422532515t_real @ G @ ( insert_nat @ X3 @ A2 ) )
= ( groups129246275422532515t_real @ G @ A2 ) ) )
& ( ~ ( member_nat @ X3 @ A2 )
=> ( ( groups129246275422532515t_real @ G @ ( insert_nat @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups129246275422532515t_real @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7484_prod_Oinsert__if,axiom,
! [A2: set_int,X3: int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ( member_int @ X3 @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( groups2316167850115554303t_real @ G @ A2 ) ) )
& ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups2316167850115554303t_real @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7485_prod_Oinsert__if,axiom,
! [A2: set_complex,X3: complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( member_complex @ X3 @ A2 )
=> ( ( groups766887009212190081x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( groups766887009212190081x_real @ G @ A2 ) ) )
& ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups766887009212190081x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups766887009212190081x_real @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7486_prod_Oinsert__if,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups5726676334696518183BT_rat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( groups5726676334696518183BT_rat @ G @ A2 ) ) )
& ( ~ ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups5726676334696518183BT_rat @ G @ ( insert_VEBT_VEBT @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups5726676334696518183BT_rat @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7487_prod_Oinsert__if,axiom,
! [A2: set_real,X3: real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ X3 @ A2 )
=> ( ( groups4061424788464935467al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( groups4061424788464935467al_rat @ G @ A2 ) ) )
& ( ~ ( member_real @ X3 @ A2 )
=> ( ( groups4061424788464935467al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7488_prod_Oinsert__if,axiom,
! [A2: set_nat,X3: nat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( member_nat @ X3 @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ ( insert_nat @ X3 @ A2 ) )
= ( groups73079841787564623at_rat @ G @ A2 ) ) )
& ( ~ ( member_nat @ X3 @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ ( insert_nat @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups73079841787564623at_rat @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7489_prod_Oinsert__if,axiom,
! [A2: set_int,X3: int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ( member_int @ X3 @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( groups1072433553688619179nt_rat @ G @ A2 ) ) )
& ( ~ ( member_int @ X3 @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7490_prod_Oinsert__if,axiom,
! [A2: set_complex,X3: complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( member_complex @ X3 @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( groups225925009352817453ex_rat @ G @ A2 ) ) )
& ( ~ ( member_complex @ X3 @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups225925009352817453ex_rat @ G @ A2 ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_7491_prod__dvd__prod__subset,axiom,
! [B2: set_complex,A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( dvd_dvd_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) @ ( groups861055069439313189ex_nat @ F @ B2 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_7492_prod__dvd__prod__subset,axiom,
! [B2: set_complex,A2: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( dvd_dvd_int @ ( groups858564598930262913ex_int @ F @ A2 ) @ ( groups858564598930262913ex_int @ F @ B2 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_7493_prod__dvd__prod__subset,axiom,
! [B2: set_int,A2: set_int,F: int > nat] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( dvd_dvd_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ F @ B2 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_7494_prod__dvd__prod__subset,axiom,
! [B2: set_nat,A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( dvd_dvd_int @ ( groups705719431365010083at_int @ F @ A2 ) @ ( groups705719431365010083at_int @ F @ B2 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_7495_prod__dvd__prod__subset,axiom,
! [B2: set_int,A2: set_int,F: int > int] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( dvd_dvd_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ ( groups1705073143266064639nt_int @ F @ B2 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_7496_prod__dvd__prod__subset,axiom,
! [B2: set_nat,A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( dvd_dvd_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ ( groups708209901874060359at_nat @ F @ B2 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_7497_prod__dvd__prod__subset2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups6361806394783013919BT_nat @ F @ A2 ) @ ( groups6361806394783013919BT_nat @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7498_prod__dvd__prod__subset2,axiom,
! [B2: set_real,A2: set_real,F: real > nat,G: real > nat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups4696554848551431203al_nat @ F @ A2 ) @ ( groups4696554848551431203al_nat @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7499_prod__dvd__prod__subset2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > nat,G: complex > nat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) @ ( groups861055069439313189ex_nat @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7500_prod__dvd__prod__subset2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > int,G: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups6359315924273963643BT_int @ F @ A2 ) @ ( groups6359315924273963643BT_int @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7501_prod__dvd__prod__subset2,axiom,
! [B2: set_real,A2: set_real,F: real > int,G: real > int] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups4694064378042380927al_int @ F @ A2 ) @ ( groups4694064378042380927al_int @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7502_prod__dvd__prod__subset2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > int,G: complex > int] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups858564598930262913ex_int @ F @ A2 ) @ ( groups858564598930262913ex_int @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7503_prod__dvd__prod__subset2,axiom,
! [B2: set_int,A2: set_int,F: int > nat,G: int > nat] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7504_prod__dvd__prod__subset2,axiom,
! [B2: set_nat,A2: set_nat,F: nat > int,G: nat > int] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups705719431365010083at_int @ F @ A2 ) @ ( groups705719431365010083at_int @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7505_prod__dvd__prod__subset2,axiom,
! [B2: set_int,A2: set_int,F: int > int,G: int > int] :
( ( finite_finite_int @ B2 )
=> ( ( ord_less_eq_set_int @ A2 @ B2 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ ( groups1705073143266064639nt_int @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7506_prod__dvd__prod__subset2,axiom,
! [B2: set_nat,A2: set_nat,F: nat > nat,G: nat > nat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ ( groups708209901874060359at_nat @ G @ B2 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_7507_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_VEBT_VEBT,S2: set_VEBT_VEBT,I: vEBT_VEBT > vEBT_VEBT,J: vEBT_VEBT > vEBT_VEBT,T3: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S2 )
= ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7508_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_real,S2: set_VEBT_VEBT,I: real > vEBT_VEBT,J: vEBT_VEBT > real,T3: set_real,G: vEBT_VEBT > complex,H2: real > complex] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S2 )
= ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7509_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_VEBT_VEBT,S2: set_real,I: vEBT_VEBT > real,J: real > vEBT_VEBT,T3: set_VEBT_VEBT,G: real > complex,H2: vEBT_VEBT > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S2 )
= ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7510_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_real,S2: set_real,I: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S2 )
= ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7511_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_int,S2: set_VEBT_VEBT,I: int > vEBT_VEBT,J: vEBT_VEBT > int,T3: set_int,G: vEBT_VEBT > complex,H2: int > complex] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S2 )
= ( groups7440179247065528705omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7512_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_int,S2: set_real,I: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: int] :
( ( member_int @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S2 )
= ( groups7440179247065528705omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7513_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_VEBT_VEBT,T4: set_complex,S2: set_VEBT_VEBT,I: complex > vEBT_VEBT,J: vEBT_VEBT > complex,T3: set_complex,G: vEBT_VEBT > complex,H2: complex > complex] :
( ( finite5795047828879050333T_VEBT @ S4 )
=> ( ( finite3207457112153483333omplex @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) )
=> ( member_complex @ ( J @ A4 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B4 ) @ ( minus_5127226145743854075T_VEBT @ S2 @ S4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S2 )
= ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7514_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_real,T4: set_complex,S2: set_real,I: complex > real,J: real > complex,T3: set_complex,G: real > complex,H2: complex > complex] :
( ( finite_finite_real @ S4 )
=> ( ( finite3207457112153483333omplex @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S2 @ S4 ) )
=> ( member_complex @ ( J @ A4 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S2 )
= ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7515_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_VEBT_VEBT,S2: set_int,I: vEBT_VEBT > int,J: int > vEBT_VEBT,T3: set_VEBT_VEBT,G: int > complex,H2: vEBT_VEBT > complex] :
( ( finite_finite_int @ S4 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups7440179247065528705omplex @ G @ S2 )
= ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7516_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S4: set_int,T4: set_real,S2: set_int,I: real > int,J: int > real,T3: set_real,G: int > complex,H2: real > complex] :
( ( finite_finite_int @ S4 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S2 @ S4 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S4 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T4 )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S2 )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups7440179247065528705omplex @ G @ S2 )
= ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_7517_sums__mult__D,axiom,
! [C: complex,F: nat > complex,A: complex] :
( ( sums_complex
@ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) )
@ A )
=> ( ( C != zero_zero_complex )
=> ( sums_complex @ F @ ( divide1717551699836669952omplex @ A @ C ) ) ) ) ).
% sums_mult_D
thf(fact_7518_sums__mult__D,axiom,
! [C: real,F: nat > real,A: real] :
( ( sums_real
@ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) )
@ A )
=> ( ( C != zero_zero_real )
=> ( sums_real @ F @ ( divide_divide_real @ A @ C ) ) ) ) ).
% sums_mult_D
thf(fact_7519_sums__Suc__imp,axiom,
! [F: nat > complex,S: complex] :
( ( ( F @ zero_zero_nat )
= zero_zero_complex )
=> ( ( sums_complex
@ ^ [N: nat] : ( F @ ( suc @ N ) )
@ S )
=> ( sums_complex @ F @ S ) ) ) ).
% sums_Suc_imp
thf(fact_7520_sums__Suc__imp,axiom,
! [F: nat > real,S: real] :
( ( ( F @ zero_zero_nat )
= zero_zero_real )
=> ( ( sums_real
@ ^ [N: nat] : ( F @ ( suc @ N ) )
@ S )
=> ( sums_real @ F @ S ) ) ) ).
% sums_Suc_imp
thf(fact_7521_sums__Suc__iff,axiom,
! [F: nat > real,S: real] :
( ( sums_real
@ ^ [N: nat] : ( F @ ( suc @ N ) )
@ S )
= ( sums_real @ F @ ( plus_plus_real @ S @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc_iff
thf(fact_7522_sums__Suc,axiom,
! [F: nat > real,L: real] :
( ( sums_real
@ ^ [N: nat] : ( F @ ( suc @ N ) )
@ L )
=> ( sums_real @ F @ ( plus_plus_real @ L @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_7523_sums__Suc,axiom,
! [F: nat > nat,L: nat] :
( ( sums_nat
@ ^ [N: nat] : ( F @ ( suc @ N ) )
@ L )
=> ( sums_nat @ F @ ( plus_plus_nat @ L @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_7524_sums__Suc,axiom,
! [F: nat > int,L: int] :
( ( sums_int
@ ^ [N: nat] : ( F @ ( suc @ N ) )
@ L )
=> ( sums_int @ F @ ( plus_plus_int @ L @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_7525_AND__upper2_H_H,axiom,
! [Y: int,Z2: int,X3: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ X3 @ Y ) @ Z2 ) ) ) ).
% AND_upper2''
thf(fact_7526_AND__upper1_H_H,axiom,
! [Y: int,Z2: int,Ya: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y @ Ya ) @ Z2 ) ) ) ).
% AND_upper1''
thf(fact_7527_and__less__eq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ K ) ) ).
% and_less_eq
thf(fact_7528_sums__zero__iff__shift,axiom,
! [N2: nat,F: nat > complex,S: complex] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
=> ( ( F @ I3 )
= zero_zero_complex ) )
=> ( ( sums_complex
@ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
@ S )
= ( sums_complex @ F @ S ) ) ) ).
% sums_zero_iff_shift
thf(fact_7529_sums__zero__iff__shift,axiom,
! [N2: nat,F: nat > real,S: real] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
=> ( ( F @ I3 )
= zero_zero_real ) )
=> ( ( sums_real
@ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
@ S )
= ( sums_real @ F @ S ) ) ) ).
% sums_zero_iff_shift
thf(fact_7530_sums__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_complex ) )
=> ( sums_complex @ F @ ( groups2073611262835488442omplex @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7531_sums__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_int ) )
=> ( sums_int @ F @ ( groups3539618377306564664at_int @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7532_sums__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_nat ) )
=> ( sums_nat @ F @ ( groups3542108847815614940at_nat @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7533_sums__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_real ) )
=> ( sums_real @ F @ ( groups6591440286371151544t_real @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7534_sums__If__finite,axiom,
! [P: nat > $o,F: nat > complex] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( groups2073611262835488442omplex @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7535_sums__If__finite,axiom,
! [P: nat > $o,F: nat > int] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_int
@ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int )
@ ( groups3539618377306564664at_int @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7536_sums__If__finite,axiom,
! [P: nat > $o,F: nat > nat] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( groups3542108847815614940at_nat @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7537_sums__If__finite,axiom,
! [P: nat > $o,F: nat > real] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_real
@ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real )
@ ( groups6591440286371151544t_real @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7538_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( groups2073611262835488442omplex @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7539_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( sums_int
@ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int )
@ ( groups3539618377306564664at_int @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7540_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( groups3542108847815614940at_nat @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7541_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( sums_real
@ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real )
@ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7542_prod_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > complex] :
( ( finite_finite_real @ A2 )
=> ( ( groups713298508707869441omplex @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= one_one_complex ) ) ) )
= ( groups713298508707869441omplex @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7543_prod_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ( groups7440179247065528705omplex @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= one_one_complex ) ) ) )
= ( groups7440179247065528705omplex @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7544_prod_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups3708469109370488835omplex @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X2: complex] :
( ( G @ X2 )
= one_one_complex ) ) ) )
= ( groups3708469109370488835omplex @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7545_prod_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( groups1681761925125756287l_real @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= one_one_real ) ) ) )
= ( groups1681761925125756287l_real @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7546_prod_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= one_one_real ) ) ) )
= ( groups2316167850115554303t_real @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7547_prod_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X2: complex] :
( ( G @ X2 )
= one_one_real ) ) ) )
= ( groups766887009212190081x_real @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7548_prod_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( groups4061424788464935467al_rat @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= one_one_rat ) ) ) )
= ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7549_prod_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X2: int] :
( ( G @ X2 )
= one_one_rat ) ) ) )
= ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7550_prod_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups225925009352817453ex_rat @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X2: complex] :
( ( G @ X2 )
= one_one_rat ) ) ) )
= ( groups225925009352817453ex_rat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7551_prod_Osetdiff__irrelevant,axiom,
! [A2: set_real,G: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( groups4696554848551431203al_nat @ G
@ ( minus_minus_set_real @ A2
@ ( collect_real
@ ^ [X2: real] :
( ( G @ X2 )
= one_one_nat ) ) ) )
= ( groups4696554848551431203al_nat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_7552_prod_Onat__diff__reindex,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) )
= ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.nat_diff_reindex
thf(fact_7553_prod_Onat__diff__reindex,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) )
= ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.nat_diff_reindex
thf(fact_7554_prod_OatLeastAtMost__rev,axiom,
! [G: nat > int,N2: nat,M: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
= ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I5 ) )
@ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).
% prod.atLeastAtMost_rev
thf(fact_7555_prod_OatLeastAtMost__rev,axiom,
! [G: nat > nat,N2: nat,M: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
= ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I5 ) )
@ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).
% prod.atLeastAtMost_rev
thf(fact_7556_less__1__prod2,axiom,
! [I6: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7557_less__1__prod2,axiom,
! [I6: set_real,I: real,F: real > real] :
( ( finite_finite_real @ I6 )
=> ( ( member_real @ I @ I6 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7558_less__1__prod2,axiom,
! [I6: set_nat,I: nat,F: nat > real] :
( ( finite_finite_nat @ I6 )
=> ( ( member_nat @ I @ I6 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups129246275422532515t_real @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7559_less__1__prod2,axiom,
! [I6: set_int,I: int,F: int > real] :
( ( finite_finite_int @ I6 )
=> ( ( member_int @ I @ I6 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7560_less__1__prod2,axiom,
! [I6: set_complex,I: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( member_complex @ I @ I6 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups766887009212190081x_real @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7561_less__1__prod2,axiom,
! [I6: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( member_VEBT_VEBT @ I @ I6 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7562_less__1__prod2,axiom,
! [I6: set_real,I: real,F: real > rat] :
( ( finite_finite_real @ I6 )
=> ( ( member_real @ I @ I6 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7563_less__1__prod2,axiom,
! [I6: set_nat,I: nat,F: nat > rat] :
( ( finite_finite_nat @ I6 )
=> ( ( member_nat @ I @ I6 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7564_less__1__prod2,axiom,
! [I6: set_int,I: int,F: int > rat] :
( ( finite_finite_int @ I6 )
=> ( ( member_int @ I @ I6 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7565_less__1__prod2,axiom,
! [I6: set_complex,I: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( member_complex @ I @ I6 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups225925009352817453ex_rat @ F @ I6 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_7566_less__1__prod,axiom,
! [I6: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( I6 != bot_bo8194388402131092736T_VEBT )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7567_less__1__prod,axiom,
! [I6: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( I6 != bot_bot_set_complex )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups766887009212190081x_real @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7568_less__1__prod,axiom,
! [I6: set_real,F: real > real] :
( ( finite_finite_real @ I6 )
=> ( ( I6 != bot_bot_set_real )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7569_less__1__prod,axiom,
! [I6: set_nat,F: nat > real] :
( ( finite_finite_nat @ I6 )
=> ( ( I6 != bot_bot_set_nat )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups129246275422532515t_real @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7570_less__1__prod,axiom,
! [I6: set_int,F: int > real] :
( ( finite_finite_int @ I6 )
=> ( ( I6 != bot_bot_set_int )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7571_less__1__prod,axiom,
! [I6: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ( I6 != bot_bo8194388402131092736T_VEBT )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7572_less__1__prod,axiom,
! [I6: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ( I6 != bot_bot_set_complex )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups225925009352817453ex_rat @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7573_less__1__prod,axiom,
! [I6: set_real,F: real > rat] :
( ( finite_finite_real @ I6 )
=> ( ( I6 != bot_bot_set_real )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7574_less__1__prod,axiom,
! [I6: set_nat,F: nat > rat] :
( ( finite_finite_nat @ I6 )
=> ( ( I6 != bot_bot_set_nat )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7575_less__1__prod,axiom,
! [I6: set_int,F: int > rat] :
( ( finite_finite_int @ I6 )
=> ( ( I6 != bot_bot_set_int )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ I6 ) ) ) ) ) ).
% less_1_prod
thf(fact_7576_prod_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > real] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G @ A2 )
= ( times_times_real @ ( groups766887009212190081x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups766887009212190081x_real @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7577_prod_Osubset__diff,axiom,
! [B2: set_nat,A2: set_nat,G: nat > real] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( groups129246275422532515t_real @ G @ A2 )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups129246275422532515t_real @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7578_prod_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > rat] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ A2 )
= ( times_times_rat @ ( groups225925009352817453ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups225925009352817453ex_rat @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7579_prod_Osubset__diff,axiom,
! [B2: set_nat,A2: set_nat,G: nat > rat] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ A2 )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups73079841787564623at_rat @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7580_prod_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > nat] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups861055069439313189ex_nat @ G @ A2 )
= ( times_times_nat @ ( groups861055069439313189ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups861055069439313189ex_nat @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7581_prod_Osubset__diff,axiom,
! [B2: set_complex,A2: set_complex,G: complex > int] :
( ( ord_le211207098394363844omplex @ B2 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups858564598930262913ex_int @ G @ A2 )
= ( times_times_int @ ( groups858564598930262913ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B2 ) ) @ ( groups858564598930262913ex_int @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7582_prod_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > real] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ A2 )
= ( times_times_real @ ( groups2316167850115554303t_real @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups2316167850115554303t_real @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7583_prod_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > rat] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ A2 )
= ( times_times_rat @ ( groups1072433553688619179nt_rat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups1072433553688619179nt_rat @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7584_prod_Osubset__diff,axiom,
! [B2: set_int,A2: set_int,G: int > nat] :
( ( ord_less_eq_set_int @ B2 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups1707563613775114915nt_nat @ G @ A2 )
= ( times_times_nat @ ( groups1707563613775114915nt_nat @ G @ ( minus_minus_set_int @ A2 @ B2 ) ) @ ( groups1707563613775114915nt_nat @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7585_prod_Osubset__diff,axiom,
! [B2: set_nat,A2: set_nat,G: nat > int] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( groups705719431365010083at_int @ G @ A2 )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( groups705719431365010083at_int @ G @ B2 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_7586_prod_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ T3 )
= ( groups127312072573709053omplex @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7587_prod_Omono__neutral__cong__right,axiom,
! [T3: set_real,S2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ T3 )
= ( groups713298508707869441omplex @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7588_prod_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > complex,H2: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups3708469109370488835omplex @ G @ T3 )
= ( groups3708469109370488835omplex @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7589_prod_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups2703838992350267259T_real @ G @ T3 )
= ( groups2703838992350267259T_real @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7590_prod_Omono__neutral__cong__right,axiom,
! [T3: set_real,S2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1681761925125756287l_real @ G @ T3 )
= ( groups1681761925125756287l_real @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7591_prod_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups766887009212190081x_real @ G @ T3 )
= ( groups766887009212190081x_real @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7592_prod_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_rat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5726676334696518183BT_rat @ G @ T3 )
= ( groups5726676334696518183BT_rat @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7593_prod_Omono__neutral__cong__right,axiom,
! [T3: set_real,S2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_rat ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups4061424788464935467al_rat @ G @ T3 )
= ( groups4061424788464935467al_rat @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7594_prod_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_rat ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups225925009352817453ex_rat @ G @ T3 )
= ( groups225925009352817453ex_rat @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7595_prod_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,G: vEBT_VEBT > nat,H2: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_nat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups6361806394783013919BT_nat @ G @ T3 )
= ( groups6361806394783013919BT_nat @ H2 @ S2 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_7596_prod_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > complex,G: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_complex ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S2 )
= ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7597_prod_Omono__neutral__cong__left,axiom,
! [T3: set_real,S2: set_real,H2: real > complex,G: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_complex ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S2 )
= ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7598_prod_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S2: set_complex,H2: complex > complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_complex ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups3708469109370488835omplex @ G @ S2 )
= ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7599_prod_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_real ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups2703838992350267259T_real @ G @ S2 )
= ( groups2703838992350267259T_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7600_prod_Omono__neutral__cong__left,axiom,
! [T3: set_real,S2: set_real,H2: real > real,G: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_real ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups1681761925125756287l_real @ G @ S2 )
= ( groups1681761925125756287l_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7601_prod_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S2: set_complex,H2: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_real ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups766887009212190081x_real @ G @ S2 )
= ( groups766887009212190081x_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7602_prod_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_rat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups5726676334696518183BT_rat @ G @ S2 )
= ( groups5726676334696518183BT_rat @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7603_prod_Omono__neutral__cong__left,axiom,
! [T3: set_real,S2: set_real,H2: real > rat,G: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S2 @ T3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_rat ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups4061424788464935467al_rat @ G @ S2 )
= ( groups4061424788464935467al_rat @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7604_prod_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S2: set_complex,H2: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_rat ) )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups225925009352817453ex_rat @ G @ S2 )
= ( groups225925009352817453ex_rat @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7605_prod_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S2: set_VEBT_VEBT,H2: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S2 @ T3 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ T3 @ S2 ) )
=> ( ( H2 @ X4 )
= one_one_nat ) )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ S2 )
=> ( ( G @ X4 )
= ( H2 @ X4 ) ) )
=> ( ( groups6361806394783013919BT_nat @ G @ S2 )
= ( groups6361806394783013919BT_nat @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_7606_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ( groups3708469109370488835omplex @ G @ T3 )
= ( groups3708469109370488835omplex @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7607_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ( groups766887009212190081x_real @ G @ T3 )
= ( groups766887009212190081x_real @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7608_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_rat ) )
=> ( ( groups225925009352817453ex_rat @ G @ T3 )
= ( groups225925009352817453ex_rat @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7609_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_nat ) )
=> ( ( groups861055069439313189ex_nat @ G @ T3 )
= ( groups861055069439313189ex_nat @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7610_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S2: set_complex,G: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_int ) )
=> ( ( groups858564598930262913ex_int @ G @ T3 )
= ( groups858564598930262913ex_int @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7611_prod_Omono__neutral__right,axiom,
! [T3: set_nat,S2: set_nat,G: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ( groups6464643781859351333omplex @ G @ T3 )
= ( groups6464643781859351333omplex @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7612_prod_Omono__neutral__right,axiom,
! [T3: set_nat,S2: set_nat,G: nat > real] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ( groups129246275422532515t_real @ G @ T3 )
= ( groups129246275422532515t_real @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7613_prod_Omono__neutral__right,axiom,
! [T3: set_nat,S2: set_nat,G: nat > rat] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_rat ) )
=> ( ( groups73079841787564623at_rat @ G @ T3 )
= ( groups73079841787564623at_rat @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7614_prod_Omono__neutral__right,axiom,
! [T3: set_int,S2: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ( groups7440179247065528705omplex @ G @ T3 )
= ( groups7440179247065528705omplex @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7615_prod_Omono__neutral__right,axiom,
! [T3: set_int,S2: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ( groups2316167850115554303t_real @ G @ T3 )
= ( groups2316167850115554303t_real @ G @ S2 ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_7616_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ( groups3708469109370488835omplex @ G @ S2 )
= ( groups3708469109370488835omplex @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7617_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ( groups766887009212190081x_real @ G @ S2 )
= ( groups766887009212190081x_real @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7618_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_rat ) )
=> ( ( groups225925009352817453ex_rat @ G @ S2 )
= ( groups225925009352817453ex_rat @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7619_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_nat ) )
=> ( ( groups861055069439313189ex_nat @ G @ S2 )
= ( groups861055069439313189ex_nat @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7620_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S2: set_complex,G: complex > int] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S2 @ T3 )
=> ( ! [X4: complex] :
( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_int ) )
=> ( ( groups858564598930262913ex_int @ G @ S2 )
= ( groups858564598930262913ex_int @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7621_prod_Omono__neutral__left,axiom,
! [T3: set_nat,S2: set_nat,G: nat > complex] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ( groups6464643781859351333omplex @ G @ S2 )
= ( groups6464643781859351333omplex @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7622_prod_Omono__neutral__left,axiom,
! [T3: set_nat,S2: set_nat,G: nat > real] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ( groups129246275422532515t_real @ G @ S2 )
= ( groups129246275422532515t_real @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7623_prod_Omono__neutral__left,axiom,
! [T3: set_nat,S2: set_nat,G: nat > rat] :
( ( finite_finite_nat @ T3 )
=> ( ( ord_less_eq_set_nat @ S2 @ T3 )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_rat ) )
=> ( ( groups73079841787564623at_rat @ G @ S2 )
= ( groups73079841787564623at_rat @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7624_prod_Omono__neutral__left,axiom,
! [T3: set_int,S2: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_complex ) )
=> ( ( groups7440179247065528705omplex @ G @ S2 )
= ( groups7440179247065528705omplex @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7625_prod_Omono__neutral__left,axiom,
! [T3: set_int,S2: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S2 @ T3 )
=> ( ! [X4: int] :
( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S2 ) )
=> ( ( G @ X4 )
= one_one_real ) )
=> ( ( groups2316167850115554303t_real @ G @ S2 )
= ( groups2316167850115554303t_real @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_7626_prod_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ( ( groups127312072573709053omplex @ G @ C4 )
= ( groups127312072573709053omplex @ H2 @ C4 ) )
=> ( ( groups127312072573709053omplex @ G @ A2 )
= ( groups127312072573709053omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7627_prod_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ( ( groups713298508707869441omplex @ G @ C4 )
= ( groups713298508707869441omplex @ H2 @ C4 ) )
=> ( ( groups713298508707869441omplex @ G @ A2 )
= ( groups713298508707869441omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7628_prod_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > complex,H2: complex > complex] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ( ( groups3708469109370488835omplex @ G @ C4 )
= ( groups3708469109370488835omplex @ H2 @ C4 ) )
=> ( ( groups3708469109370488835omplex @ G @ A2 )
= ( groups3708469109370488835omplex @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7629_prod_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_real ) )
=> ( ( ( groups2703838992350267259T_real @ G @ C4 )
= ( groups2703838992350267259T_real @ H2 @ C4 ) )
=> ( ( groups2703838992350267259T_real @ G @ A2 )
= ( groups2703838992350267259T_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7630_prod_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_real ) )
=> ( ( ( groups1681761925125756287l_real @ G @ C4 )
= ( groups1681761925125756287l_real @ H2 @ C4 ) )
=> ( ( groups1681761925125756287l_real @ G @ A2 )
= ( groups1681761925125756287l_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7631_prod_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_real ) )
=> ( ( ( groups766887009212190081x_real @ G @ C4 )
= ( groups766887009212190081x_real @ H2 @ C4 ) )
=> ( ( groups766887009212190081x_real @ G @ A2 )
= ( groups766887009212190081x_real @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7632_prod_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_rat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_rat ) )
=> ( ( ( groups5726676334696518183BT_rat @ G @ C4 )
= ( groups5726676334696518183BT_rat @ H2 @ C4 ) )
=> ( ( groups5726676334696518183BT_rat @ G @ A2 )
= ( groups5726676334696518183BT_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7633_prod_Osame__carrierI,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_rat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_rat ) )
=> ( ( ( groups4061424788464935467al_rat @ G @ C4 )
= ( groups4061424788464935467al_rat @ H2 @ C4 ) )
=> ( ( groups4061424788464935467al_rat @ G @ A2 )
= ( groups4061424788464935467al_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7634_prod_Osame__carrierI,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_rat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_rat ) )
=> ( ( ( groups225925009352817453ex_rat @ G @ C4 )
= ( groups225925009352817453ex_rat @ H2 @ C4 ) )
=> ( ( groups225925009352817453ex_rat @ G @ A2 )
= ( groups225925009352817453ex_rat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7635_prod_Osame__carrierI,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > nat,H2: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_nat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_nat ) )
=> ( ( ( groups6361806394783013919BT_nat @ G @ C4 )
= ( groups6361806394783013919BT_nat @ H2 @ C4 ) )
=> ( ( groups6361806394783013919BT_nat @ G @ A2 )
= ( groups6361806394783013919BT_nat @ H2 @ B2 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_7636_prod_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ( ( groups127312072573709053omplex @ G @ A2 )
= ( groups127312072573709053omplex @ H2 @ B2 ) )
= ( ( groups127312072573709053omplex @ G @ C4 )
= ( groups127312072573709053omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7637_prod_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ( ( groups713298508707869441omplex @ G @ A2 )
= ( groups713298508707869441omplex @ H2 @ B2 ) )
= ( ( groups713298508707869441omplex @ G @ C4 )
= ( groups713298508707869441omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7638_prod_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > complex,H2: complex > complex] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_complex ) )
=> ( ( ( groups3708469109370488835omplex @ G @ A2 )
= ( groups3708469109370488835omplex @ H2 @ B2 ) )
= ( ( groups3708469109370488835omplex @ G @ C4 )
= ( groups3708469109370488835omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7639_prod_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_real ) )
=> ( ( ( groups2703838992350267259T_real @ G @ A2 )
= ( groups2703838992350267259T_real @ H2 @ B2 ) )
= ( ( groups2703838992350267259T_real @ G @ C4 )
= ( groups2703838992350267259T_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7640_prod_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_real ) )
=> ( ( ( groups1681761925125756287l_real @ G @ A2 )
= ( groups1681761925125756287l_real @ H2 @ B2 ) )
= ( ( groups1681761925125756287l_real @ G @ C4 )
= ( groups1681761925125756287l_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7641_prod_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_real ) )
=> ( ( ( groups766887009212190081x_real @ G @ A2 )
= ( groups766887009212190081x_real @ H2 @ B2 ) )
= ( ( groups766887009212190081x_real @ G @ C4 )
= ( groups766887009212190081x_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7642_prod_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > rat,H2: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_rat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_rat ) )
=> ( ( ( groups5726676334696518183BT_rat @ G @ A2 )
= ( groups5726676334696518183BT_rat @ H2 @ B2 ) )
= ( ( groups5726676334696518183BT_rat @ G @ C4 )
= ( groups5726676334696518183BT_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7643_prod_Osame__carrier,axiom,
! [C4: set_real,A2: set_real,B2: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C4 )
=> ( ( ord_less_eq_set_real @ A2 @ C4 )
=> ( ( ord_less_eq_set_real @ B2 @ C4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_rat ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_rat ) )
=> ( ( ( groups4061424788464935467al_rat @ G @ A2 )
= ( groups4061424788464935467al_rat @ H2 @ B2 ) )
= ( ( groups4061424788464935467al_rat @ G @ C4 )
= ( groups4061424788464935467al_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7644_prod_Osame__carrier,axiom,
! [C4: set_complex,A2: set_complex,B2: set_complex,G: complex > rat,H2: complex > rat] :
( ( finite3207457112153483333omplex @ C4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C4 )
=> ( ( ord_le211207098394363844omplex @ B2 @ C4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_rat ) )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_rat ) )
=> ( ( ( groups225925009352817453ex_rat @ G @ A2 )
= ( groups225925009352817453ex_rat @ H2 @ B2 ) )
= ( ( groups225925009352817453ex_rat @ G @ C4 )
= ( groups225925009352817453ex_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7645_prod_Osame__carrier,axiom,
! [C4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B2: set_VEBT_VEBT,G: vEBT_VEBT > nat,H2: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C4 )
=> ( ( ord_le4337996190870823476T_VEBT @ B2 @ C4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C4 @ A2 ) )
=> ( ( G @ A4 )
= one_one_nat ) )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ C4 @ B2 ) )
=> ( ( H2 @ B4 )
= one_one_nat ) )
=> ( ( ( groups6361806394783013919BT_nat @ G @ A2 )
= ( groups6361806394783013919BT_nat @ H2 @ B2 ) )
= ( ( groups6361806394783013919BT_nat @ G @ C4 )
= ( groups6361806394783013919BT_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_7646_powser__sums__if,axiom,
! [M: nat,Z2: complex] :
( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( if_complex @ ( N = M ) @ one_one_complex @ zero_zero_complex ) @ ( power_power_complex @ Z2 @ N ) )
@ ( power_power_complex @ Z2 @ M ) ) ).
% powser_sums_if
thf(fact_7647_powser__sums__if,axiom,
! [M: nat,Z2: real] :
( sums_real
@ ^ [N: nat] : ( times_times_real @ ( if_real @ ( N = M ) @ one_one_real @ zero_zero_real ) @ ( power_power_real @ Z2 @ N ) )
@ ( power_power_real @ Z2 @ M ) ) ).
% powser_sums_if
thf(fact_7648_powser__sums__if,axiom,
! [M: nat,Z2: int] :
( sums_int
@ ^ [N: nat] : ( times_times_int @ ( if_int @ ( N = M ) @ one_one_int @ zero_zero_int ) @ ( power_power_int @ Z2 @ N ) )
@ ( power_power_int @ Z2 @ M ) ) ).
% powser_sums_if
thf(fact_7649_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > real,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_7650_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > rat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_7651_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_7652_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_7653_powser__sums__zero,axiom,
! [A: nat > complex] :
( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( A @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_7654_powser__sums__zero,axiom,
! [A: nat > real] :
( sums_real
@ ^ [N: nat] : ( times_times_real @ ( A @ N ) @ ( power_power_real @ zero_zero_real @ N ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_7655_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_real @ ( G @ ( suc @ N2 ) ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_7656_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( G @ ( suc @ N2 ) ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_7657_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_int @ ( G @ ( suc @ N2 ) ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_7658_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N2: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( G @ ( suc @ N2 ) ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_7659_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_real @ ( G @ M ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_7660_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_rat @ ( G @ M ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_7661_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_int @ ( G @ M ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_7662_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N2: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_nat @ ( G @ M ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_7663_sums__iff__shift,axiom,
! [F: nat > real,N2: nat,S: real] :
( ( sums_real
@ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
@ S )
= ( sums_real @ F @ ( plus_plus_real @ S @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% sums_iff_shift
thf(fact_7664_sums__split__initial__segment,axiom,
! [F: nat > real,S: real,N2: nat] :
( ( sums_real @ F @ S )
=> ( sums_real
@ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
@ ( minus_minus_real @ S @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% sums_split_initial_segment
thf(fact_7665_sums__iff__shift_H,axiom,
! [F: nat > real,N2: nat,S: real] :
( ( sums_real
@ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
@ ( minus_minus_real @ S @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) )
= ( sums_real @ F @ S ) ) ).
% sums_iff_shift'
thf(fact_7666_sums__If__finite__set_H,axiom,
! [G: nat > real,S2: real,A2: set_nat,S4: real,F: nat > real] :
( ( sums_real @ G @ S2 )
=> ( ( finite_finite_nat @ A2 )
=> ( ( S4
= ( plus_plus_real @ S2
@ ( groups6591440286371151544t_real
@ ^ [N: nat] : ( minus_minus_real @ ( F @ N ) @ ( G @ N ) )
@ A2 ) ) )
=> ( sums_real
@ ^ [N: nat] : ( if_real @ ( member_nat @ N @ A2 ) @ ( F @ N ) @ ( G @ N ) )
@ S4 ) ) ) ) ).
% sums_If_finite_set'
thf(fact_7667_pi__less__4,axiom,
ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).
% pi_less_4
thf(fact_7668_prod_OlessThan__Suc__shift,axiom,
! [G: nat > real,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_real @ ( G @ zero_zero_nat )
@ ( groups129246275422532515t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_7669_prod_OlessThan__Suc__shift,axiom,
! [G: nat > rat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( G @ zero_zero_nat )
@ ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_7670_prod_OlessThan__Suc__shift,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_int @ ( G @ zero_zero_nat )
@ ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_7671_prod_OlessThan__Suc__shift,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( G @ zero_zero_nat )
@ ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_7672_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( times_times_real @ ( G @ M )
@ ( groups129246275422532515t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_7673_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( G @ M )
@ ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_7674_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( times_times_int @ ( G @ M )
@ ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_7675_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N2: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( G @ M )
@ ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_7676_prod_OatLeast1__atMost__eq,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( groups705719431365010083at_int
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.atLeast1_atMost_eq
thf(fact_7677_prod_OatLeast1__atMost__eq,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( groups708209901874060359at_nat
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.atLeast1_atMost_eq
thf(fact_7678_prod__mono__strict,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bo8194388402131092736T_VEBT )
=> ( ord_less_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ ( groups2703838992350267259T_real @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7679_prod__mono__strict,axiom,
! [A2: set_complex,F: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_complex )
=> ( ord_less_real @ ( groups766887009212190081x_real @ F @ A2 ) @ ( groups766887009212190081x_real @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7680_prod__mono__strict,axiom,
! [A2: set_real,F: real > real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ! [I3: real] :
( ( member_real @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_real )
=> ( ord_less_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ ( groups1681761925125756287l_real @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7681_prod__mono__strict,axiom,
! [A2: set_nat,F: nat > real,G: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_nat )
=> ( ord_less_real @ ( groups129246275422532515t_real @ F @ A2 ) @ ( groups129246275422532515t_real @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7682_prod__mono__strict,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ! [I3: int] :
( ( member_int @ I3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
& ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_int )
=> ( ord_less_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ ( groups2316167850115554303t_real @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7683_prod__mono__strict,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bo8194388402131092736T_VEBT )
=> ( ord_less_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ ( groups5726676334696518183BT_rat @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7684_prod__mono__strict,axiom,
! [A2: set_complex,F: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_complex )
=> ( ord_less_rat @ ( groups225925009352817453ex_rat @ F @ A2 ) @ ( groups225925009352817453ex_rat @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7685_prod__mono__strict,axiom,
! [A2: set_real,F: real > rat,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ! [I3: real] :
( ( member_real @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_real )
=> ( ord_less_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7686_prod__mono__strict,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_nat )
=> ( ord_less_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ ( groups73079841787564623at_rat @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7687_prod__mono__strict,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ! [I3: int] :
( ( member_int @ I3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
& ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
=> ( ( A2 != bot_bot_set_int )
=> ( ord_less_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ) ) ).
% prod_mono_strict
thf(fact_7688_even__prod__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7689_even__prod__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups861055069439313189ex_nat @ F @ A2 ) )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7690_even__prod__iff,axiom,
! [A2: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups858564598930262913ex_int @ F @ A2 ) )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7691_even__prod__iff,axiom,
! [A2: set_nat,F: nat > code_integer] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups3455450783089532116nteger @ F @ A2 ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7692_even__prod__iff,axiom,
! [A2: set_int,F: int > code_integer] :
( ( finite_finite_int @ A2 )
=> ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups3827104343326376752nteger @ F @ A2 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7693_even__prod__iff,axiom,
! [A2: set_complex,F: complex > code_integer] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups8682486955453173170nteger @ F @ A2 ) )
= ( ? [X2: complex] :
( ( member_complex @ X2 @ A2 )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7694_even__prod__iff,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7695_even__prod__iff,axiom,
! [A2: set_int,F: int > int] :
( ( finite_finite_int @ A2 )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( ? [X2: int] :
( ( member_int @ X2 @ A2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7696_even__prod__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ A2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X2 ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_7697_prod_Oinsert__remove,axiom,
! [A2: set_complex,G: complex > real,X3: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G @ ( insert_complex @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups766887009212190081x_real @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7698_prod_Oinsert__remove,axiom,
! [A2: set_real,G: real > real,X3: real] :
( ( finite_finite_real @ A2 )
=> ( ( groups1681761925125756287l_real @ G @ ( insert_real @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups1681761925125756287l_real @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7699_prod_Oinsert__remove,axiom,
! [A2: set_int,G: int > real,X3: int] :
( ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ ( insert_int @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups2316167850115554303t_real @ G @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7700_prod_Oinsert__remove,axiom,
! [A2: set_nat,G: nat > real,X3: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( groups129246275422532515t_real @ G @ ( insert_nat @ X3 @ A2 ) )
= ( times_times_real @ ( G @ X3 ) @ ( groups129246275422532515t_real @ G @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7701_prod_Oinsert__remove,axiom,
! [A2: set_complex,G: complex > rat,X3: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups225925009352817453ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7702_prod_Oinsert__remove,axiom,
! [A2: set_real,G: real > rat,X3: real] :
( ( finite_finite_real @ A2 )
=> ( ( groups4061424788464935467al_rat @ G @ ( insert_real @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups4061424788464935467al_rat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7703_prod_Oinsert__remove,axiom,
! [A2: set_int,G: int > rat,X3: int] :
( ( finite_finite_int @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ ( insert_int @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups1072433553688619179nt_rat @ G @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7704_prod_Oinsert__remove,axiom,
! [A2: set_nat,G: nat > rat,X3: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ ( insert_nat @ X3 @ A2 ) )
= ( times_times_rat @ ( G @ X3 ) @ ( groups73079841787564623at_rat @ G @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7705_prod_Oinsert__remove,axiom,
! [A2: set_complex,G: complex > nat,X3: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups861055069439313189ex_nat @ G @ ( insert_complex @ X3 @ A2 ) )
= ( times_times_nat @ ( G @ X3 ) @ ( groups861055069439313189ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7706_prod_Oinsert__remove,axiom,
! [A2: set_real,G: real > nat,X3: real] :
( ( finite_finite_real @ A2 )
=> ( ( groups4696554848551431203al_nat @ G @ ( insert_real @ X3 @ A2 ) )
= ( times_times_nat @ ( G @ X3 ) @ ( groups4696554848551431203al_nat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_7707_prod_Oremove,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups2703838992350267259T_real @ G @ A2 )
= ( times_times_real @ ( G @ X3 ) @ ( groups2703838992350267259T_real @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7708_prod_Oremove,axiom,
! [A2: set_complex,X3: complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ X3 @ A2 )
=> ( ( groups766887009212190081x_real @ G @ A2 )
= ( times_times_real @ ( G @ X3 ) @ ( groups766887009212190081x_real @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7709_prod_Oremove,axiom,
! [A2: set_real,X3: real,G: real > real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X3 @ A2 )
=> ( ( groups1681761925125756287l_real @ G @ A2 )
= ( times_times_real @ ( G @ X3 ) @ ( groups1681761925125756287l_real @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7710_prod_Oremove,axiom,
! [A2: set_int,X3: int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ X3 @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ A2 )
= ( times_times_real @ ( G @ X3 ) @ ( groups2316167850115554303t_real @ G @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7711_prod_Oremove,axiom,
! [A2: set_nat,X3: nat,G: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X3 @ A2 )
=> ( ( groups129246275422532515t_real @ G @ A2 )
= ( times_times_real @ ( G @ X3 ) @ ( groups129246275422532515t_real @ G @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7712_prod_Oremove,axiom,
! [A2: set_VEBT_VEBT,X3: vEBT_VEBT,G: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( groups5726676334696518183BT_rat @ G @ A2 )
= ( times_times_rat @ ( G @ X3 ) @ ( groups5726676334696518183BT_rat @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7713_prod_Oremove,axiom,
! [A2: set_complex,X3: complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ X3 @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ A2 )
= ( times_times_rat @ ( G @ X3 ) @ ( groups225925009352817453ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7714_prod_Oremove,axiom,
! [A2: set_real,X3: real,G: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X3 @ A2 )
=> ( ( groups4061424788464935467al_rat @ G @ A2 )
= ( times_times_rat @ ( G @ X3 ) @ ( groups4061424788464935467al_rat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7715_prod_Oremove,axiom,
! [A2: set_int,X3: int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ X3 @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ A2 )
= ( times_times_rat @ ( G @ X3 ) @ ( groups1072433553688619179nt_rat @ G @ ( minus_minus_set_int @ A2 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7716_prod_Oremove,axiom,
! [A2: set_nat,X3: nat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X3 @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ A2 )
= ( times_times_rat @ ( G @ X3 ) @ ( groups73079841787564623at_rat @ G @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_7717_prod_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > real,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_7718_prod_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > rat,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_7719_prod_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > int,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_7720_prod_Oub__add__nat,axiom,
! [M: nat,N2: nat,G: nat > nat,P5: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P5 ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P5 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_7721_prod_Odelta__remove,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real,C: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_real @ ( B @ A ) @ ( groups2703838992350267259T_real @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups2703838992350267259T_real @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7722_prod_Odelta__remove,axiom,
! [S2: set_complex,A: complex,B: complex > real,C: complex > real] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups766887009212190081x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_real @ ( B @ A ) @ ( groups766887009212190081x_real @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups766887009212190081x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups766887009212190081x_real @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7723_prod_Odelta__remove,axiom,
! [S2: set_real,A: real,B: real > real,C: real > real] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_real @ ( B @ A ) @ ( groups1681761925125756287l_real @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups1681761925125756287l_real @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7724_prod_Odelta__remove,axiom,
! [S2: set_int,A: int,B: int > real,C: int > real] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_real @ ( B @ A ) @ ( groups2316167850115554303t_real @ C @ ( minus_minus_set_int @ S2 @ ( insert_int @ A @ bot_bot_set_int ) ) ) ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups2316167850115554303t_real @ C @ ( minus_minus_set_int @ S2 @ ( insert_int @ A @ bot_bot_set_int ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7725_prod_Odelta__remove,axiom,
! [S2: set_nat,A: nat,B: nat > real,C: nat > real] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_real @ ( B @ A ) @ ( groups129246275422532515t_real @ C @ ( minus_minus_set_nat @ S2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups129246275422532515t_real @ C @ ( minus_minus_set_nat @ S2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7726_prod_Odelta__remove,axiom,
! [S2: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > rat,C: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ S2 )
=> ( ( ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups5726676334696518183BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_rat @ ( B @ A ) @ ( groups5726676334696518183BT_rat @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S2 )
=> ( ( groups5726676334696518183BT_rat
@ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups5726676334696518183BT_rat @ C @ ( minus_5127226145743854075T_VEBT @ S2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7727_prod_Odelta__remove,axiom,
! [S2: set_complex,A: complex,B: complex > rat,C: complex > rat] :
( ( finite3207457112153483333omplex @ S2 )
=> ( ( ( member_complex @ A @ S2 )
=> ( ( groups225925009352817453ex_rat
@ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_rat @ ( B @ A ) @ ( groups225925009352817453ex_rat @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
& ( ~ ( member_complex @ A @ S2 )
=> ( ( groups225925009352817453ex_rat
@ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups225925009352817453ex_rat @ C @ ( minus_811609699411566653omplex @ S2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7728_prod_Odelta__remove,axiom,
! [S2: set_real,A: real,B: real > rat,C: real > rat] :
( ( finite_finite_real @ S2 )
=> ( ( ( member_real @ A @ S2 )
=> ( ( groups4061424788464935467al_rat
@ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_rat @ ( B @ A ) @ ( groups4061424788464935467al_rat @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) )
& ( ~ ( member_real @ A @ S2 )
=> ( ( groups4061424788464935467al_rat
@ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups4061424788464935467al_rat @ C @ ( minus_minus_set_real @ S2 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7729_prod_Odelta__remove,axiom,
! [S2: set_int,A: int,B: int > rat,C: int > rat] :
( ( finite_finite_int @ S2 )
=> ( ( ( member_int @ A @ S2 )
=> ( ( groups1072433553688619179nt_rat
@ ^ [K2: int] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_rat @ ( B @ A ) @ ( groups1072433553688619179nt_rat @ C @ ( minus_minus_set_int @ S2 @ ( insert_int @ A @ bot_bot_set_int ) ) ) ) ) )
& ( ~ ( member_int @ A @ S2 )
=> ( ( groups1072433553688619179nt_rat
@ ^ [K2: int] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups1072433553688619179nt_rat @ C @ ( minus_minus_set_int @ S2 @ ( insert_int @ A @ bot_bot_set_int ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7730_prod_Odelta__remove,axiom,
! [S2: set_nat,A: nat,B: nat > rat,C: nat > rat] :
( ( finite_finite_nat @ S2 )
=> ( ( ( member_nat @ A @ S2 )
=> ( ( groups73079841787564623at_rat
@ ^ [K2: nat] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( times_times_rat @ ( B @ A ) @ ( groups73079841787564623at_rat @ C @ ( minus_minus_set_nat @ S2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ) )
& ( ~ ( member_nat @ A @ S2 )
=> ( ( groups73079841787564623at_rat
@ ^ [K2: nat] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
@ S2 )
= ( groups73079841787564623at_rat @ C @ ( minus_minus_set_nat @ S2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_7731_fold__atLeastAtMost__nat_Oelims,axiom,
! [X3: nat > nat > nat,Xa2: nat,Xb3: nat,Xc: nat,Y: nat] :
( ( ( set_fo2584398358068434914at_nat @ X3 @ Xa2 @ Xb3 @ Xc )
= Y )
=> ( ( ( ord_less_nat @ Xb3 @ Xa2 )
=> ( Y = Xc ) )
& ( ~ ( ord_less_nat @ Xb3 @ Xa2 )
=> ( Y
= ( set_fo2584398358068434914at_nat @ X3 @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb3 @ ( X3 @ Xa2 @ Xc ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.elims
thf(fact_7732_fold__atLeastAtMost__nat_Osimps,axiom,
( set_fo2584398358068434914at_nat
= ( ^ [F5: nat > nat > nat,A3: nat,B3: nat,Acc2: nat] : ( if_nat @ ( ord_less_nat @ B3 @ A3 ) @ Acc2 @ ( set_fo2584398358068434914at_nat @ F5 @ ( plus_plus_nat @ A3 @ one_one_nat ) @ B3 @ ( F5 @ A3 @ Acc2 ) ) ) ) ) ).
% fold_atLeastAtMost_nat.simps
thf(fact_7733_pi__half__less__two,axiom,
ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% pi_half_less_two
thf(fact_7734_prod__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ ( groups2703838992350267259T_real @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7735_prod__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > real] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ ( groups1681761925125756287l_real @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7736_prod__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups766887009212190081x_real @ F @ A2 ) @ ( groups766887009212190081x_real @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7737_prod__mono2,axiom,
! [B2: set_nat,A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A2 ) @ ( groups129246275422532515t_real @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7738_prod__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ ( groups5726676334696518183BT_rat @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7739_prod__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > rat] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ ( groups4061424788464935467al_rat @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7740_prod__mono2,axiom,
! [B2: set_complex,A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B2 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B2 )
=> ( ! [B4: complex] :
( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups225925009352817453ex_rat @ F @ A2 ) @ ( groups225925009352817453ex_rat @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7741_prod__mono2,axiom,
! [B2: set_nat,A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ B2 )
=> ( ( ord_less_eq_set_nat @ A2 @ B2 )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ ( minus_minus_set_nat @ B2 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ ( groups73079841787564623at_rat @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7742_prod__mono2,axiom,
! [B2: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ B2 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B2 )
=> ( ! [B4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B4 @ ( minus_5127226145743854075T_VEBT @ B2 @ A2 ) )
=> ( ord_less_eq_int @ one_one_int @ ( F @ B4 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ A4 ) ) )
=> ( ord_less_eq_int @ ( groups6359315924273963643BT_int @ F @ A2 ) @ ( groups6359315924273963643BT_int @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7743_prod__mono2,axiom,
! [B2: set_real,A2: set_real,F: real > int] :
( ( finite_finite_real @ B2 )
=> ( ( ord_less_eq_set_real @ A2 @ B2 )
=> ( ! [B4: real] :
( ( member_real @ B4 @ ( minus_minus_set_real @ B2 @ A2 ) )
=> ( ord_less_eq_int @ one_one_int @ ( F @ B4 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ A4 ) ) )
=> ( ord_less_eq_int @ ( groups4694064378042380927al_int @ F @ A2 ) @ ( groups4694064378042380927al_int @ F @ B2 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_7744_prod__diff1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > complex,A: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( F @ A )
!= zero_zero_complex )
=> ( ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups127312072573709053omplex @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( divide1717551699836669952omplex @ ( groups127312072573709053omplex @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups127312072573709053omplex @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( groups127312072573709053omplex @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7745_prod__diff1,axiom,
! [A2: set_complex,F: complex > complex,A: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( F @ A )
!= zero_zero_complex )
=> ( ( ( member_complex @ A @ A2 )
=> ( ( groups3708469109370488835omplex @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( divide1717551699836669952omplex @ ( groups3708469109370488835omplex @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_complex @ A @ A2 )
=> ( ( groups3708469109370488835omplex @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( groups3708469109370488835omplex @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7746_prod__diff1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat,A: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( ( F @ A )
!= zero_zero_rat )
=> ( ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups5726676334696518183BT_rat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( divide_divide_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ A2 )
=> ( ( groups5726676334696518183BT_rat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
= ( groups5726676334696518183BT_rat @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7747_prod__diff1,axiom,
! [A2: set_complex,F: complex > rat,A: complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( F @ A )
!= zero_zero_rat )
=> ( ( ( member_complex @ A @ A2 )
=> ( ( groups225925009352817453ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( divide_divide_rat @ ( groups225925009352817453ex_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_complex @ A @ A2 )
=> ( ( groups225925009352817453ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
= ( groups225925009352817453ex_rat @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7748_prod__diff1,axiom,
! [A2: set_real,F: real > complex,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( ( F @ A )
!= zero_zero_complex )
=> ( ( ( member_real @ A @ A2 )
=> ( ( groups713298508707869441omplex @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( divide1717551699836669952omplex @ ( groups713298508707869441omplex @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_real @ A @ A2 )
=> ( ( groups713298508707869441omplex @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( groups713298508707869441omplex @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7749_prod__diff1,axiom,
! [A2: set_real,F: real > rat,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( ( F @ A )
!= zero_zero_rat )
=> ( ( ( member_real @ A @ A2 )
=> ( ( groups4061424788464935467al_rat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( divide_divide_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_real @ A @ A2 )
=> ( ( groups4061424788464935467al_rat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( groups4061424788464935467al_rat @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7750_prod__diff1,axiom,
! [A2: set_int,F: int > complex,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( ( F @ A )
!= zero_zero_complex )
=> ( ( ( member_int @ A @ A2 )
=> ( ( groups7440179247065528705omplex @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( divide1717551699836669952omplex @ ( groups7440179247065528705omplex @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_int @ A @ A2 )
=> ( ( groups7440179247065528705omplex @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( groups7440179247065528705omplex @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7751_prod__diff1,axiom,
! [A2: set_int,F: int > rat,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( ( F @ A )
!= zero_zero_rat )
=> ( ( ( member_int @ A @ A2 )
=> ( ( groups1072433553688619179nt_rat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( divide_divide_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_int @ A @ A2 )
=> ( ( groups1072433553688619179nt_rat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
= ( groups1072433553688619179nt_rat @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7752_prod__diff1,axiom,
! [A2: set_nat,F: nat > complex,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( F @ A )
!= zero_zero_complex )
=> ( ( ( member_nat @ A @ A2 )
=> ( ( groups6464643781859351333omplex @ F @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( divide1717551699836669952omplex @ ( groups6464643781859351333omplex @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_nat @ A @ A2 )
=> ( ( groups6464643781859351333omplex @ F @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( groups6464643781859351333omplex @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7753_prod__diff1,axiom,
! [A2: set_nat,F: nat > rat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( F @ A )
!= zero_zero_rat )
=> ( ( ( member_nat @ A @ A2 )
=> ( ( groups73079841787564623at_rat @ F @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( divide_divide_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ ( F @ A ) ) ) )
& ( ~ ( member_nat @ A @ A2 )
=> ( ( groups73079841787564623at_rat @ F @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( groups73079841787564623at_rat @ F @ A2 ) ) ) ) ) ) ).
% prod_diff1
thf(fact_7754_pochhammer__Suc__prod,axiom,
! [A: rat,N2: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
= ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ I5 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod
thf(fact_7755_pochhammer__Suc__prod,axiom,
! [A: real,N2: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
= ( groups129246275422532515t_real
@ ^ [I5: nat] : ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ I5 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod
thf(fact_7756_pochhammer__Suc__prod,axiom,
! [A: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
= ( groups705719431365010083at_int
@ ^ [I5: nat] : ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ I5 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod
thf(fact_7757_pochhammer__Suc__prod,axiom,
! [A: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
= ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ I5 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod
thf(fact_7758_pi__half__gt__zero,axiom,
ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_gt_zero
thf(fact_7759_pochhammer__prod__rev,axiom,
( comm_s4028243227959126397er_rat
= ( ^ [A3: rat,N: nat] :
( groups73079841787564623at_rat
@ ^ [I5: nat] : ( plus_plus_rat @ A3 @ ( semiri681578069525770553at_rat @ ( minus_minus_nat @ N @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_7760_pochhammer__prod__rev,axiom,
( comm_s7457072308508201937r_real
= ( ^ [A3: real,N: nat] :
( groups129246275422532515t_real
@ ^ [I5: nat] : ( plus_plus_real @ A3 @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_7761_pochhammer__prod__rev,axiom,
( comm_s4660882817536571857er_int
= ( ^ [A3: int,N: nat] :
( groups705719431365010083at_int
@ ^ [I5: nat] : ( plus_plus_int @ A3 @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_7762_pochhammer__prod__rev,axiom,
( comm_s4663373288045622133er_nat
= ( ^ [A3: nat,N: nat] :
( groups708209901874060359at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ A3 @ ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ N @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_7763_m2pi__less__pi,axiom,
ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).
% m2pi_less_pi
thf(fact_7764_geometric__sums,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( sums_real @ ( power_power_real @ C ) @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).
% geometric_sums
thf(fact_7765_geometric__sums,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( sums_complex @ ( power_power_complex @ C ) @ ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).
% geometric_sums
thf(fact_7766_prod_Oin__pairs,axiom,
! [G: nat > real,M: nat,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups129246275422532515t_real
@ ^ [I5: nat] : ( times_times_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.in_pairs
thf(fact_7767_prod_Oin__pairs,axiom,
! [G: nat > rat,M: nat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.in_pairs
thf(fact_7768_prod_Oin__pairs,axiom,
! [G: nat > int,M: nat,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups705719431365010083at_int
@ ^ [I5: nat] : ( times_times_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.in_pairs
thf(fact_7769_prod_Oin__pairs,axiom,
! [G: nat > nat,M: nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( times_times_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).
% prod.in_pairs
thf(fact_7770_sum__atLeastAtMost__code,axiom,
! [F: nat > complex,A: nat,B: nat] :
( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1517530859248394432omplex
@ ^ [A3: nat] : ( plus_plus_complex @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_complex ) ) ).
% sum_atLeastAtMost_code
thf(fact_7771_sum__atLeastAtMost__code,axiom,
! [F: nat > rat,A: nat,B: nat] :
( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1949268297981939178at_rat
@ ^ [A3: nat] : ( plus_plus_rat @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_rat ) ) ).
% sum_atLeastAtMost_code
thf(fact_7772_sum__atLeastAtMost__code,axiom,
! [F: nat > int,A: nat,B: nat] :
( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2581907887559384638at_int
@ ^ [A3: nat] : ( plus_plus_int @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_int ) ) ).
% sum_atLeastAtMost_code
thf(fact_7773_sum__atLeastAtMost__code,axiom,
! [F: nat > nat,A: nat,B: nat] :
( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2584398358068434914at_nat
@ ^ [A3: nat] : ( plus_plus_nat @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_nat ) ) ).
% sum_atLeastAtMost_code
thf(fact_7774_sum__atLeastAtMost__code,axiom,
! [F: nat > real,A: nat,B: nat] :
( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo3111899725591712190t_real
@ ^ [A3: nat] : ( plus_plus_real @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_real ) ) ).
% sum_atLeastAtMost_code
thf(fact_7775_pochhammer__Suc__prod__rev,axiom,
! [A: rat,N2: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
= ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ ( minus_minus_nat @ N2 @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_7776_pochhammer__Suc__prod__rev,axiom,
! [A: real,N2: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
= ( groups129246275422532515t_real
@ ^ [I5: nat] : ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N2 @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_7777_pochhammer__Suc__prod__rev,axiom,
! [A: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
= ( groups705719431365010083at_int
@ ^ [I5: nat] : ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N2 @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_7778_pochhammer__Suc__prod__rev,axiom,
! [A: nat,N2: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
= ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ N2 @ I5 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_7779_minus__pi__half__less__zero,axiom,
ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).
% minus_pi_half_less_zero
thf(fact_7780_and__int_Opsimps,axiom,
! [K: int,L: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L ) )
=> ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L )
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ) ) )
& ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L )
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.psimps
thf(fact_7781_and__int_Opelims,axiom,
! [X3: int,Xa2: int,Y: int] :
( ( ( bit_se725231765392027082nd_int @ X3 @ Xa2 )
= Y )
=> ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X3 @ Xa2 ) )
=> ~ ( ( ( ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X3 @ Xa2 ) ) ) ) ) ).
% and_int.pelims
thf(fact_7782_central__binomial__lower__bound,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ) ) ).
% central_binomial_lower_bound
thf(fact_7783_cot__less__zero,axiom,
! [X3: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
=> ( ord_less_real @ ( cot_real @ X3 ) @ zero_zero_real ) ) ) ).
% cot_less_zero
thf(fact_7784_sum__pos__lt__pair,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ! [D5: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D5 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D5 ) @ one_one_nat ) ) ) ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).
% sum_pos_lt_pair
thf(fact_7785_polyfun__diff,axiom,
! [N2: nat,A: nat > complex,X3: complex,Y: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_complex
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X3 @ Y )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] :
( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( power_power_complex @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff
thf(fact_7786_polyfun__diff,axiom,
! [N2: nat,A: nat > rat,X3: rat,Y: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X3 @ Y )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] :
( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( power_power_rat @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff
thf(fact_7787_polyfun__diff,axiom,
! [N2: nat,A: nat > int,X3: int,Y: int] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_int
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_int @ ( minus_minus_int @ X3 @ Y )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] :
( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( power_power_int @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff
thf(fact_7788_polyfun__diff,axiom,
! [N2: nat,A: nat > real,X3: real,Y: real] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_real @ ( minus_minus_real @ X3 @ Y )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( power_power_real @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff
thf(fact_7789_atMost__eq__iff,axiom,
! [X3: nat,Y: nat] :
( ( ( set_ord_atMost_nat @ X3 )
= ( set_ord_atMost_nat @ Y ) )
= ( X3 = Y ) ) ).
% atMost_eq_iff
thf(fact_7790_atMost__eq__iff,axiom,
! [X3: int,Y: int] :
( ( ( set_ord_atMost_int @ X3 )
= ( set_ord_atMost_int @ Y ) )
= ( X3 = Y ) ) ).
% atMost_eq_iff
thf(fact_7791_atMost__iff,axiom,
! [I: set_nat,K: set_nat] :
( ( member_set_nat @ I @ ( set_or4236626031148496127et_nat @ K ) )
= ( ord_less_eq_set_nat @ I @ K ) ) ).
% atMost_iff
thf(fact_7792_atMost__iff,axiom,
! [I: real,K: real] :
( ( member_real @ I @ ( set_ord_atMost_real @ K ) )
= ( ord_less_eq_real @ I @ K ) ) ).
% atMost_iff
thf(fact_7793_atMost__iff,axiom,
! [I: set_int,K: set_int] :
( ( member_set_int @ I @ ( set_or58775011639299419et_int @ K ) )
= ( ord_less_eq_set_int @ I @ K ) ) ).
% atMost_iff
thf(fact_7794_atMost__iff,axiom,
! [I: rat,K: rat] :
( ( member_rat @ I @ ( set_ord_atMost_rat @ K ) )
= ( ord_less_eq_rat @ I @ K ) ) ).
% atMost_iff
thf(fact_7795_atMost__iff,axiom,
! [I: num,K: num] :
( ( member_num @ I @ ( set_ord_atMost_num @ K ) )
= ( ord_less_eq_num @ I @ K ) ) ).
% atMost_iff
thf(fact_7796_atMost__iff,axiom,
! [I: nat,K: nat] :
( ( member_nat @ I @ ( set_ord_atMost_nat @ K ) )
= ( ord_less_eq_nat @ I @ K ) ) ).
% atMost_iff
thf(fact_7797_atMost__iff,axiom,
! [I: int,K: int] :
( ( member_int @ I @ ( set_ord_atMost_int @ K ) )
= ( ord_less_eq_int @ I @ K ) ) ).
% atMost_iff
thf(fact_7798_cot__zero,axiom,
( ( cot_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% cot_zero
thf(fact_7799_cot__zero,axiom,
( ( cot_real @ zero_zero_real )
= zero_zero_real ) ).
% cot_zero
thf(fact_7800_finite__atMost,axiom,
! [K: nat] : ( finite_finite_nat @ ( set_ord_atMost_nat @ K ) ) ).
% finite_atMost
thf(fact_7801_summable__zero,axiom,
( summable_complex
@ ^ [N: nat] : zero_zero_complex ) ).
% summable_zero
thf(fact_7802_summable__zero,axiom,
( summable_real
@ ^ [N: nat] : zero_zero_real ) ).
% summable_zero
thf(fact_7803_summable__zero,axiom,
( summable_nat
@ ^ [N: nat] : zero_zero_nat ) ).
% summable_zero
thf(fact_7804_summable__zero,axiom,
( summable_int
@ ^ [N: nat] : zero_zero_int ) ).
% summable_zero
thf(fact_7805_summable__single,axiom,
! [I: nat,F: nat > complex] :
( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_complex ) ) ).
% summable_single
thf(fact_7806_summable__single,axiom,
! [I: nat,F: nat > real] :
( summable_real
@ ^ [R5: nat] : ( if_real @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_real ) ) ).
% summable_single
thf(fact_7807_summable__single,axiom,
! [I: nat,F: nat > nat] :
( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_nat ) ) ).
% summable_single
thf(fact_7808_summable__single,axiom,
! [I: nat,F: nat > int] :
( summable_int
@ ^ [R5: nat] : ( if_int @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_int ) ) ).
% summable_single
thf(fact_7809_summable__iff__shift,axiom,
! [F: nat > real,K: nat] :
( ( summable_real
@ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) )
= ( summable_real @ F ) ) ).
% summable_iff_shift
thf(fact_7810_atMost__subset__iff,axiom,
! [X3: set_int,Y: set_int] :
( ( ord_le4403425263959731960et_int @ ( set_or58775011639299419et_int @ X3 ) @ ( set_or58775011639299419et_int @ Y ) )
= ( ord_less_eq_set_int @ X3 @ Y ) ) ).
% atMost_subset_iff
thf(fact_7811_atMost__subset__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ X3 ) @ ( set_ord_atMost_rat @ Y ) )
= ( ord_less_eq_rat @ X3 @ Y ) ) ).
% atMost_subset_iff
thf(fact_7812_atMost__subset__iff,axiom,
! [X3: num,Y: num] :
( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ X3 ) @ ( set_ord_atMost_num @ Y ) )
= ( ord_less_eq_num @ X3 @ Y ) ) ).
% atMost_subset_iff
thf(fact_7813_atMost__subset__iff,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X3 ) @ ( set_ord_atMost_nat @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ).
% atMost_subset_iff
thf(fact_7814_atMost__subset__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X3 ) @ ( set_ord_atMost_int @ Y ) )
= ( ord_less_eq_int @ X3 @ Y ) ) ).
% atMost_subset_iff
thf(fact_7815_summable__cmult__iff,axiom,
! [C: complex,F: nat > complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) ) )
= ( ( C = zero_zero_complex )
| ( summable_complex @ F ) ) ) ).
% summable_cmult_iff
thf(fact_7816_summable__cmult__iff,axiom,
! [C: real,F: nat > real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) ) )
= ( ( C = zero_zero_real )
| ( summable_real @ F ) ) ) ).
% summable_cmult_iff
thf(fact_7817_prod__eq__1__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups1707563613775114915nt_nat @ F @ A2 )
= one_one_nat )
= ( ! [X2: int] :
( ( member_int @ X2 @ A2 )
=> ( ( F @ X2 )
= one_one_nat ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_7818_prod__eq__1__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups861055069439313189ex_nat @ F @ A2 )
= one_one_nat )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ A2 )
=> ( ( F @ X2 )
= one_one_nat ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_7819_prod__eq__1__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups708209901874060359at_nat @ F @ A2 )
= one_one_nat )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ A2 )
=> ( ( F @ X2 )
= one_one_nat ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_7820_summable__divide__iff,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex
@ ^ [N: nat] : ( divide1717551699836669952omplex @ ( F @ N ) @ C ) )
= ( ( C = zero_zero_complex )
| ( summable_complex @ F ) ) ) ).
% summable_divide_iff
thf(fact_7821_summable__divide__iff,axiom,
! [F: nat > real,C: real] :
( ( summable_real
@ ^ [N: nat] : ( divide_divide_real @ ( F @ N ) @ C ) )
= ( ( C = zero_zero_real )
| ( summable_real @ F ) ) ) ).
% summable_divide_iff
thf(fact_7822_summable__If__finite,axiom,
! [P: nat > $o,F: nat > complex] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).
% summable_If_finite
thf(fact_7823_summable__If__finite,axiom,
! [P: nat > $o,F: nat > real] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_real
@ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).
% summable_If_finite
thf(fact_7824_summable__If__finite,axiom,
! [P: nat > $o,F: nat > nat] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).
% summable_If_finite
thf(fact_7825_summable__If__finite,axiom,
! [P: nat > $o,F: nat > int] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_int
@ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).
% summable_If_finite
thf(fact_7826_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).
% summable_If_finite_set
thf(fact_7827_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( summable_real
@ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).
% summable_If_finite_set
thf(fact_7828_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).
% summable_If_finite_set
thf(fact_7829_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( summable_int
@ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).
% summable_If_finite_set
thf(fact_7830_and__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= zero_zero_nat ) ).
% and_nat_numerals(1)
thf(fact_7831_and__nat__numerals_I3_J,axiom,
! [X3: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% and_nat_numerals(3)
thf(fact_7832_Icc__subset__Iic__iff,axiom,
! [L: set_int,H2: set_int,H3: set_int] :
( ( ord_le4403425263959731960et_int @ ( set_or370866239135849197et_int @ L @ H2 ) @ ( set_or58775011639299419et_int @ H3 ) )
= ( ~ ( ord_less_eq_set_int @ L @ H2 )
| ( ord_less_eq_set_int @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_7833_Icc__subset__Iic__iff,axiom,
! [L: rat,H2: rat,H3: rat] :
( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ L @ H2 ) @ ( set_ord_atMost_rat @ H3 ) )
= ( ~ ( ord_less_eq_rat @ L @ H2 )
| ( ord_less_eq_rat @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_7834_Icc__subset__Iic__iff,axiom,
! [L: num,H2: num,H3: num] :
( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ L @ H2 ) @ ( set_ord_atMost_num @ H3 ) )
= ( ~ ( ord_less_eq_num @ L @ H2 )
| ( ord_less_eq_num @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_7835_Icc__subset__Iic__iff,axiom,
! [L: nat,H2: nat,H3: nat] :
( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ L @ H2 ) @ ( set_ord_atMost_nat @ H3 ) )
= ( ~ ( ord_less_eq_nat @ L @ H2 )
| ( ord_less_eq_nat @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_7836_Icc__subset__Iic__iff,axiom,
! [L: int,H2: int,H3: int] :
( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ L @ H2 ) @ ( set_ord_atMost_int @ H3 ) )
= ( ~ ( ord_less_eq_int @ L @ H2 )
| ( ord_less_eq_int @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_7837_Icc__subset__Iic__iff,axiom,
! [L: real,H2: real,H3: real] :
( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ L @ H2 ) @ ( set_ord_atMost_real @ H3 ) )
= ( ~ ( ord_less_eq_real @ L @ H2 )
| ( ord_less_eq_real @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_7838_sum_OatMost__Suc,axiom,
! [G: nat > rat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atMost_Suc
thf(fact_7839_sum_OatMost__Suc,axiom,
! [G: nat > int,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atMost_Suc
thf(fact_7840_sum_OatMost__Suc,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atMost_Suc
thf(fact_7841_sum_OatMost__Suc,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% sum.atMost_Suc
thf(fact_7842_prod_OatMost__Suc,axiom,
! [G: nat > real,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atMost_Suc
thf(fact_7843_prod_OatMost__Suc,axiom,
! [G: nat > rat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atMost_Suc
thf(fact_7844_prod_OatMost__Suc,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atMost_Suc
thf(fact_7845_prod_OatMost__Suc,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).
% prod.atMost_Suc
thf(fact_7846_prod__pos__nat__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( ! [X2: int] :
( ( member_int @ X2 @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X2 ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_7847_prod__pos__nat__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) )
= ( ! [X2: complex] :
( ( member_complex @ X2 @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X2 ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_7848_prod__pos__nat__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X2 ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_7849_atMost__0,axiom,
( ( set_ord_atMost_nat @ zero_zero_nat )
= ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).
% atMost_0
thf(fact_7850_and__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= one_one_nat ) ).
% and_nat_numerals(2)
thf(fact_7851_and__nat__numerals_I4_J,axiom,
! [X3: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% and_nat_numerals(4)
thf(fact_7852_summable__geometric__iff,axiom,
! [C: real] :
( ( summable_real @ ( power_power_real @ C ) )
= ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real ) ) ).
% summable_geometric_iff
thf(fact_7853_summable__geometric__iff,axiom,
! [C: complex] :
( ( summable_complex @ ( power_power_complex @ C ) )
= ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real ) ) ).
% summable_geometric_iff
thf(fact_7854_and__Suc__0__eq,axiom,
! [N2: nat] :
( ( bit_se727722235901077358nd_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% and_Suc_0_eq
thf(fact_7855_Suc__0__and__eq,axiom,
! [N2: nat] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Suc_0_and_eq
thf(fact_7856_int__prod,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( groups1705073143266064639nt_int
@ ^ [X2: int] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% int_prod
thf(fact_7857_int__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [X2: nat] : ( semiri1314217659103216013at_int @ ( F @ X2 ) )
@ A2 ) ) ).
% int_prod
thf(fact_7858_not__empty__eq__Iic__eq__empty,axiom,
! [H2: real] :
( bot_bot_set_real
!= ( set_ord_atMost_real @ H2 ) ) ).
% not_empty_eq_Iic_eq_empty
thf(fact_7859_not__empty__eq__Iic__eq__empty,axiom,
! [H2: nat] :
( bot_bot_set_nat
!= ( set_ord_atMost_nat @ H2 ) ) ).
% not_empty_eq_Iic_eq_empty
thf(fact_7860_not__empty__eq__Iic__eq__empty,axiom,
! [H2: int] :
( bot_bot_set_int
!= ( set_ord_atMost_int @ H2 ) ) ).
% not_empty_eq_Iic_eq_empty
thf(fact_7861_infinite__Iic,axiom,
! [A: int] :
~ ( finite_finite_int @ ( set_ord_atMost_int @ A ) ) ).
% infinite_Iic
thf(fact_7862_not__Iic__eq__Icc,axiom,
! [H3: int,L: int,H2: int] :
( ( set_ord_atMost_int @ H3 )
!= ( set_or1266510415728281911st_int @ L @ H2 ) ) ).
% not_Iic_eq_Icc
thf(fact_7863_not__Iic__eq__Icc,axiom,
! [H3: real,L: real,H2: real] :
( ( set_ord_atMost_real @ H3 )
!= ( set_or1222579329274155063t_real @ L @ H2 ) ) ).
% not_Iic_eq_Icc
thf(fact_7864_summable__const__iff,axiom,
! [C: complex] :
( ( summable_complex
@ ^ [Uu3: nat] : C )
= ( C = zero_zero_complex ) ) ).
% summable_const_iff
thf(fact_7865_summable__const__iff,axiom,
! [C: real] :
( ( summable_real
@ ^ [Uu3: nat] : C )
= ( C = zero_zero_real ) ) ).
% summable_const_iff
thf(fact_7866_summable__comparison__test_H,axiom,
! [G: nat > real,N5: nat,F: nat > real] :
( ( summable_real @ G )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( summable_real @ F ) ) ) ).
% summable_comparison_test'
thf(fact_7867_summable__comparison__test_H,axiom,
! [G: nat > real,N5: nat,F: nat > complex] :
( ( summable_real @ G )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( summable_complex @ F ) ) ) ).
% summable_comparison_test'
thf(fact_7868_summable__comparison__test,axiom,
! [F: nat > real,G: nat > real] :
( ? [N8: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N8 @ N3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real @ F ) ) ) ).
% summable_comparison_test
thf(fact_7869_summable__comparison__test,axiom,
! [F: nat > complex,G: nat > real] :
( ? [N8: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N8 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_complex @ F ) ) ) ).
% summable_comparison_test
thf(fact_7870_summable__add,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N: nat] : ( plus_plus_real @ ( F @ N ) @ ( G @ N ) ) ) ) ) ).
% summable_add
thf(fact_7871_summable__add,axiom,
! [F: nat > nat,G: nat > nat] :
( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( summable_nat
@ ^ [N: nat] : ( plus_plus_nat @ ( F @ N ) @ ( G @ N ) ) ) ) ) ).
% summable_add
thf(fact_7872_summable__add,axiom,
! [F: nat > int,G: nat > int] :
( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( summable_int
@ ^ [N: nat] : ( plus_plus_int @ ( F @ N ) @ ( G @ N ) ) ) ) ) ).
% summable_add
thf(fact_7873_summable__ignore__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) ) ) ).
% summable_ignore_initial_segment
thf(fact_7874_bounded__imp__summable,axiom,
! [A: nat > int,B2: int] :
( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B2 )
=> ( summable_int @ A ) ) ) ).
% bounded_imp_summable
thf(fact_7875_bounded__imp__summable,axiom,
! [A: nat > nat,B2: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B2 )
=> ( summable_nat @ A ) ) ) ).
% bounded_imp_summable
thf(fact_7876_bounded__imp__summable,axiom,
! [A: nat > real,B2: real] :
( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B2 )
=> ( summable_real @ A ) ) ) ).
% bounded_imp_summable
thf(fact_7877_atMost__def,axiom,
( set_ord_atMost_real
= ( ^ [U2: real] :
( collect_real
@ ^ [X2: real] : ( ord_less_eq_real @ X2 @ U2 ) ) ) ) ).
% atMost_def
thf(fact_7878_atMost__def,axiom,
( set_or4236626031148496127et_nat
= ( ^ [U2: set_nat] :
( collect_set_nat
@ ^ [X2: set_nat] : ( ord_less_eq_set_nat @ X2 @ U2 ) ) ) ) ).
% atMost_def
thf(fact_7879_atMost__def,axiom,
( set_or58775011639299419et_int
= ( ^ [U2: set_int] :
( collect_set_int
@ ^ [X2: set_int] : ( ord_less_eq_set_int @ X2 @ U2 ) ) ) ) ).
% atMost_def
thf(fact_7880_atMost__def,axiom,
( set_ord_atMost_rat
= ( ^ [U2: rat] :
( collect_rat
@ ^ [X2: rat] : ( ord_less_eq_rat @ X2 @ U2 ) ) ) ) ).
% atMost_def
thf(fact_7881_atMost__def,axiom,
( set_ord_atMost_num
= ( ^ [U2: num] :
( collect_num
@ ^ [X2: num] : ( ord_less_eq_num @ X2 @ U2 ) ) ) ) ).
% atMost_def
thf(fact_7882_atMost__def,axiom,
( set_ord_atMost_nat
= ( ^ [U2: nat] :
( collect_nat
@ ^ [X2: nat] : ( ord_less_eq_nat @ X2 @ U2 ) ) ) ) ).
% atMost_def
thf(fact_7883_atMost__def,axiom,
( set_ord_atMost_int
= ( ^ [U2: int] :
( collect_int
@ ^ [X2: int] : ( ord_less_eq_int @ X2 @ U2 ) ) ) ) ).
% atMost_def
thf(fact_7884_powser__insidea,axiom,
! [F: nat > real,X3: real,Z2: real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ X3 @ N ) ) )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z2 ) @ ( real_V7735802525324610683m_real @ X3 ) )
=> ( summable_real
@ ^ [N: nat] : ( real_V7735802525324610683m_real @ ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z2 @ N ) ) ) ) ) ) ).
% powser_insidea
thf(fact_7885_powser__insidea,axiom,
! [F: nat > complex,X3: complex,Z2: complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ X3 @ N ) ) )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( real_V1022390504157884413omplex @ X3 ) )
=> ( summable_real
@ ^ [N: nat] : ( real_V1022390504157884413omplex @ ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z2 @ N ) ) ) ) ) ) ).
% powser_insidea
thf(fact_7886_suminf__le,axiom,
! [F: nat > real,G: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ord_less_eq_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) ) ) ) ) ).
% suminf_le
thf(fact_7887_suminf__le,axiom,
! [F: nat > nat,G: nat > nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( ord_less_eq_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) ) ) ) ) ).
% suminf_le
thf(fact_7888_suminf__le,axiom,
! [F: nat > int,G: nat > int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
=> ( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( ord_less_eq_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) ) ) ) ) ).
% suminf_le
thf(fact_7889_summable__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_complex ) )
=> ( summable_complex @ F ) ) ) ).
% summable_finite
thf(fact_7890_summable__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_real ) )
=> ( summable_real @ F ) ) ) ).
% summable_finite
thf(fact_7891_summable__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_nat ) )
=> ( summable_nat @ F ) ) ) ).
% summable_finite
thf(fact_7892_summable__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N3: nat] :
( ~ ( member_nat @ N3 @ N5 )
=> ( ( F @ N3 )
= zero_zero_int ) )
=> ( summable_int @ F ) ) ) ).
% summable_finite
thf(fact_7893_atMost__atLeast0,axiom,
( set_ord_atMost_nat
= ( set_or1269000886237332187st_nat @ zero_zero_nat ) ) ).
% atMost_atLeast0
thf(fact_7894_lessThan__Suc__atMost,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( set_ord_atMost_nat @ K ) ) ).
% lessThan_Suc_atMost
thf(fact_7895_summable__mult__D,axiom,
! [C: complex,F: nat > complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ C @ ( F @ N ) ) )
=> ( ( C != zero_zero_complex )
=> ( summable_complex @ F ) ) ) ).
% summable_mult_D
thf(fact_7896_summable__mult__D,axiom,
! [C: real,F: nat > real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ C @ ( F @ N ) ) )
=> ( ( C != zero_zero_real )
=> ( summable_real @ F ) ) ) ).
% summable_mult_D
thf(fact_7897_summable__zero__power,axiom,
summable_real @ ( power_power_real @ zero_zero_real ) ).
% summable_zero_power
thf(fact_7898_summable__zero__power,axiom,
summable_int @ ( power_power_int @ zero_zero_int ) ).
% summable_zero_power
thf(fact_7899_summable__zero__power,axiom,
summable_complex @ ( power_power_complex @ zero_zero_complex ) ).
% summable_zero_power
thf(fact_7900_atMost__Suc,axiom,
! [K: nat] :
( ( set_ord_atMost_nat @ ( suc @ K ) )
= ( insert_nat @ ( suc @ K ) @ ( set_ord_atMost_nat @ K ) ) ) ).
% atMost_Suc
thf(fact_7901_suminf__add,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ( plus_plus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
= ( suminf_real
@ ^ [N: nat] : ( plus_plus_real @ ( F @ N ) @ ( G @ N ) ) ) ) ) ) ).
% suminf_add
thf(fact_7902_suminf__add,axiom,
! [F: nat > nat,G: nat > nat] :
( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( ( plus_plus_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) )
= ( suminf_nat
@ ^ [N: nat] : ( plus_plus_nat @ ( F @ N ) @ ( G @ N ) ) ) ) ) ) ).
% suminf_add
thf(fact_7903_suminf__add,axiom,
! [F: nat > int,G: nat > int] :
( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( ( plus_plus_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) )
= ( suminf_int
@ ^ [N: nat] : ( plus_plus_int @ ( F @ N ) @ ( G @ N ) ) ) ) ) ) ).
% suminf_add
thf(fact_7904_not__Iic__le__Icc,axiom,
! [H2: int,L3: int,H3: int] :
~ ( ord_less_eq_set_int @ ( set_ord_atMost_int @ H2 ) @ ( set_or1266510415728281911st_int @ L3 @ H3 ) ) ).
% not_Iic_le_Icc
thf(fact_7905_not__Iic__le__Icc,axiom,
! [H2: real,L3: real,H3: real] :
~ ( ord_less_eq_set_real @ ( set_ord_atMost_real @ H2 ) @ ( set_or1222579329274155063t_real @ L3 @ H3 ) ) ).
% not_Iic_le_Icc
thf(fact_7906_prod_Otriangle__reindex__eq,axiom,
! [G: nat > nat > int,N2: nat] :
( ( groups4075276357253098568at_int @ ( produc6840382203811409530at_int @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups705719431365010083at_int
@ ^ [K2: nat] :
( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% prod.triangle_reindex_eq
thf(fact_7907_prod_Otriangle__reindex__eq,axiom,
! [G: nat > nat > nat,N2: nat] :
( ( groups4077766827762148844at_nat @ ( produc6842872674320459806at_nat @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups708209901874060359at_nat
@ ^ [K2: nat] :
( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% prod.triangle_reindex_eq
thf(fact_7908_finite__nat__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [S6: set_nat] :
? [K2: nat] : ( ord_less_eq_set_nat @ S6 @ ( set_ord_atMost_nat @ K2 ) ) ) ) ).
% finite_nat_iff_bounded_le
thf(fact_7909_suminf__eq__zero__iff,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ( ( suminf_real @ F )
= zero_zero_real )
= ( ! [N: nat] :
( ( F @ N )
= zero_zero_real ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_7910_suminf__eq__zero__iff,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ( ( suminf_nat @ F )
= zero_zero_nat )
= ( ! [N: nat] :
( ( F @ N )
= zero_zero_nat ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_7911_suminf__eq__zero__iff,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ( ( suminf_int @ F )
= zero_zero_int )
= ( ! [N: nat] :
( ( F @ N )
= zero_zero_int ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_7912_suminf__nonneg,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_7913_suminf__nonneg,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_7914_suminf__nonneg,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_7915_suminf__pos,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_pos
thf(fact_7916_suminf__pos,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).
% suminf_pos
thf(fact_7917_suminf__pos,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).
% suminf_pos
thf(fact_7918_summable__zero__power_H,axiom,
! [F: nat > complex] :
( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) ) ) ).
% summable_zero_power'
thf(fact_7919_summable__zero__power_H,axiom,
! [F: nat > real] :
( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ zero_zero_real @ N ) ) ) ).
% summable_zero_power'
thf(fact_7920_summable__zero__power_H,axiom,
! [F: nat > int] :
( summable_int
@ ^ [N: nat] : ( times_times_int @ ( F @ N ) @ ( power_power_int @ zero_zero_int @ N ) ) ) ).
% summable_zero_power'
thf(fact_7921_summable__0__powser,axiom,
! [F: nat > complex] :
( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) ) ) ).
% summable_0_powser
thf(fact_7922_summable__0__powser,axiom,
! [F: nat > real] :
( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ zero_zero_real @ N ) ) ) ).
% summable_0_powser
thf(fact_7923_prod_Otriangle__reindex,axiom,
! [G: nat > nat > int,N2: nat] :
( ( groups4075276357253098568at_int @ ( produc6840382203811409530at_int @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups705719431365010083at_int
@ ^ [K2: nat] :
( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.triangle_reindex
thf(fact_7924_prod_Otriangle__reindex,axiom,
! [G: nat > nat > nat,N2: nat] :
( ( groups4077766827762148844at_nat @ ( produc6842872674320459806at_nat @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups708209901874060359at_nat
@ ^ [K2: nat] :
( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.triangle_reindex
thf(fact_7925_summable__powser__ignore__initial__segment,axiom,
! [F: nat > complex,M: nat,Z2: complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ ( plus_plus_nat @ N @ M ) ) @ ( power_power_complex @ Z2 @ N ) ) )
= ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z2 @ N ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_7926_summable__powser__ignore__initial__segment,axiom,
! [F: nat > real,M: nat,Z2: real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ ( plus_plus_nat @ N @ M ) ) @ ( power_power_real @ Z2 @ N ) ) )
= ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z2 @ N ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_7927_summable__norm__comparison__test,axiom,
! [F: nat > complex,G: nat > real] :
( ? [N8: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N8 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N: nat] : ( real_V1022390504157884413omplex @ ( F @ N ) ) ) ) ) ).
% summable_norm_comparison_test
thf(fact_7928_Iic__subset__Iio__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ A ) @ ( set_ord_lessThan_rat @ B ) )
= ( ord_less_rat @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_7929_Iic__subset__Iio__iff,axiom,
! [A: num,B: num] :
( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ A ) @ ( set_ord_lessThan_num @ B ) )
= ( ord_less_num @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_7930_Iic__subset__Iio__iff,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ A ) @ ( set_ord_lessThan_nat @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_7931_Iic__subset__Iio__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ A ) @ ( set_ord_lessThan_int @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_7932_Iic__subset__Iio__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_set_real @ ( set_ord_atMost_real @ A ) @ ( set_or5984915006950818249n_real @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_7933_prod__int__eq,axiom,
! [I: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ J ) )
= ( groups1705073143266064639nt_int
@ ^ [X2: int] : X2
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).
% prod_int_eq
thf(fact_7934_suminf__pos2,axiom,
! [F: nat > real,I: nat] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_7935_suminf__pos2,axiom,
! [F: nat > nat,I: nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
=> ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_7936_suminf__pos2,axiom,
! [F: nat > int,I: nat] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
=> ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_7937_suminf__pos__iff,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) )
= ( ? [I5: nat] : ( ord_less_real @ zero_zero_real @ ( F @ I5 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_7938_suminf__pos__iff,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) )
= ( ? [I5: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ I5 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_7939_suminf__pos__iff,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) )
= ( ? [I5: nat] : ( ord_less_int @ zero_zero_int @ ( F @ I5 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_7940_suminf__le__const,axiom,
! [F: nat > int,X3: int] :
( ( summable_int @ F )
=> ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X3 )
=> ( ord_less_eq_int @ ( suminf_int @ F ) @ X3 ) ) ) ).
% suminf_le_const
thf(fact_7941_suminf__le__const,axiom,
! [F: nat > nat,X3: nat] :
( ( summable_nat @ F )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X3 )
=> ( ord_less_eq_nat @ ( suminf_nat @ F ) @ X3 ) ) ) ).
% suminf_le_const
thf(fact_7942_suminf__le__const,axiom,
! [F: nat > real,X3: real] :
( ( summable_real @ F )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X3 )
=> ( ord_less_eq_real @ ( suminf_real @ F ) @ X3 ) ) ) ).
% suminf_le_const
thf(fact_7943_powser__inside,axiom,
! [F: nat > real,X3: real,Z2: real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ X3 @ N ) ) )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z2 ) @ ( real_V7735802525324610683m_real @ X3 ) )
=> ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z2 @ N ) ) ) ) ) ).
% powser_inside
thf(fact_7944_powser__inside,axiom,
! [F: nat > complex,X3: complex,Z2: complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ X3 @ N ) ) )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( real_V1022390504157884413omplex @ X3 ) )
=> ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z2 @ N ) ) ) ) ) ).
% powser_inside
thf(fact_7945_summableI__nonneg__bounded,axiom,
! [F: nat > int,X3: int] :
( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X3 )
=> ( summable_int @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7946_summableI__nonneg__bounded,axiom,
! [F: nat > nat,X3: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X3 )
=> ( summable_nat @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7947_summableI__nonneg__bounded,axiom,
! [F: nat > real,X3: real] :
( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N3 ) ) @ X3 )
=> ( summable_real @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7948_complete__algebra__summable__geometric,axiom,
! [X3: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ one_one_real )
=> ( summable_real @ ( power_power_real @ X3 ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_7949_complete__algebra__summable__geometric,axiom,
! [X3: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ one_one_real )
=> ( summable_complex @ ( power_power_complex @ X3 ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_7950_summable__geometric,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( summable_real @ ( power_power_real @ C ) ) ) ).
% summable_geometric
thf(fact_7951_summable__geometric,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( summable_complex @ ( power_power_complex @ C ) ) ) ).
% summable_geometric
thf(fact_7952_suminf__split__head,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N: nat] : ( F @ ( suc @ N ) ) )
= ( minus_minus_real @ ( suminf_real @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).
% suminf_split_head
thf(fact_7953_sum_OatMost__Suc__shift,axiom,
! [G: nat > rat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_7954_sum_OatMost__Suc__shift,axiom,
! [G: nat > int,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_7955_sum_OatMost__Suc__shift,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_7956_sum_OatMost__Suc__shift,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_7957_sum__telescope,axiom,
! [F: nat > rat,I: nat] :
( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( minus_minus_rat @ ( F @ I5 ) @ ( F @ ( suc @ I5 ) ) )
@ ( set_ord_atMost_nat @ I ) )
= ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).
% sum_telescope
thf(fact_7958_sum__telescope,axiom,
! [F: nat > int,I: nat] :
( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( minus_minus_int @ ( F @ I5 ) @ ( F @ ( suc @ I5 ) ) )
@ ( set_ord_atMost_nat @ I ) )
= ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).
% sum_telescope
thf(fact_7959_sum__telescope,axiom,
! [F: nat > real,I: nat] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( minus_minus_real @ ( F @ I5 ) @ ( F @ ( suc @ I5 ) ) )
@ ( set_ord_atMost_nat @ I ) )
= ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).
% sum_telescope
thf(fact_7960_polyfun__eq__coeffs,axiom,
! [C: nat > complex,N2: nat,D: nat > complex] :
( ( ! [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( D @ I5 ) @ ( power_power_complex @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) )
= ( ! [I5: nat] :
( ( ord_less_eq_nat @ I5 @ N2 )
=> ( ( C @ I5 )
= ( D @ I5 ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_7961_polyfun__eq__coeffs,axiom,
! [C: nat > real,N2: nat,D: nat > real] :
( ( ! [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( D @ I5 ) @ ( power_power_real @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) )
= ( ! [I5: nat] :
( ( ord_less_eq_nat @ I5 @ N2 )
=> ( ( C @ I5 )
= ( D @ I5 ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_7962_prod_OatMost__Suc__shift,axiom,
! [G: nat > real,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_real @ ( G @ zero_zero_nat )
@ ( groups129246275422532515t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_7963_prod_OatMost__Suc__shift,axiom,
! [G: nat > rat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_rat @ ( G @ zero_zero_nat )
@ ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_7964_prod_OatMost__Suc__shift,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_int @ ( G @ zero_zero_nat )
@ ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_7965_prod_OatMost__Suc__shift,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
= ( times_times_nat @ ( G @ zero_zero_nat )
@ ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_7966_prod__int__plus__eq,axiom,
! [I: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ ( plus_plus_nat @ I @ J ) ) )
= ( groups1705073143266064639nt_int
@ ^ [X2: int] : X2
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I @ J ) ) ) ) ) ).
% prod_int_plus_eq
thf(fact_7967_sum_Onested__swap_H,axiom,
! [A: nat > nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( groups3542108847815614940at_nat @ ( A @ I5 ) @ ( set_ord_lessThan_nat @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] :
( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( A @ I5 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.nested_swap'
thf(fact_7968_sum_Onested__swap_H,axiom,
! [A: nat > nat > real,N2: nat] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( groups6591440286371151544t_real @ ( A @ I5 ) @ ( set_ord_lessThan_nat @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [I5: nat] : ( A @ I5 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.nested_swap'
thf(fact_7969_prod_Onested__swap_H,axiom,
! [A: nat > nat > int,N2: nat] :
( ( groups705719431365010083at_int
@ ^ [I5: nat] : ( groups705719431365010083at_int @ ( A @ I5 ) @ ( set_ord_lessThan_nat @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( groups705719431365010083at_int
@ ^ [J3: nat] :
( groups705719431365010083at_int
@ ^ [I5: nat] : ( A @ I5 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.nested_swap'
thf(fact_7970_prod_Onested__swap_H,axiom,
! [A: nat > nat > nat,N2: nat] :
( ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( groups708209901874060359at_nat @ ( A @ I5 ) @ ( set_ord_lessThan_nat @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( groups708209901874060359at_nat
@ ^ [J3: nat] :
( groups708209901874060359at_nat
@ ^ [I5: nat] : ( A @ I5 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% prod.nested_swap'
thf(fact_7971_binomial__maximum_H,axiom,
! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ).
% binomial_maximum'
thf(fact_7972_binomial__mono,axiom,
! [K: nat,K6: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N2 )
=> ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K6 ) ) ) ) ).
% binomial_mono
thf(fact_7973_binomial__antimono,axiom,
! [K: nat,K6: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
=> ( ( ord_less_eq_nat @ K6 @ N2 )
=> ( ord_less_eq_nat @ ( binomial @ N2 @ K6 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).
% binomial_antimono
thf(fact_7974_binomial__maximum,axiom,
! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% binomial_maximum
thf(fact_7975_sum__le__suminf,axiom,
! [F: nat > int,I6: set_nat] :
( ( summable_int @ F )
=> ( ( finite_finite_nat @ I6 )
=> ( ! [N3: nat] :
( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I6 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) ) )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ I6 ) @ ( suminf_int @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_7976_sum__le__suminf,axiom,
! [F: nat > nat,I6: set_nat] :
( ( summable_nat @ F )
=> ( ( finite_finite_nat @ I6 )
=> ( ! [N3: nat] :
( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I6 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ I6 ) @ ( suminf_nat @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_7977_sum__le__suminf,axiom,
! [F: nat > real,I6: set_nat] :
( ( summable_real @ F )
=> ( ( finite_finite_nat @ I6 )
=> ( ! [N3: nat] :
( ( member_nat @ N3 @ ( uminus5710092332889474511et_nat @ I6 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) ) )
=> ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ I6 ) @ ( suminf_real @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_7978_suminf__split__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ( suminf_real @ F )
= ( plus_plus_real
@ ( suminf_real
@ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) )
@ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_split_initial_segment
thf(fact_7979_suminf__minus__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N: nat] : ( F @ ( plus_plus_nat @ N @ K ) ) )
= ( minus_minus_real @ ( suminf_real @ F ) @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_minus_initial_segment
thf(fact_7980_zero__polynom__imp__zero__coeffs,axiom,
! [C: nat > complex,N2: nat,K: nat] :
( ! [W: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ W @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( C @ K )
= zero_zero_complex ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_7981_zero__polynom__imp__zero__coeffs,axiom,
! [C: nat > real,N2: nat,K: nat] :
( ! [W: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ W @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( C @ K )
= zero_zero_real ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_7982_polyfun__eq__0,axiom,
! [C: nat > complex,N2: nat] :
( ( ! [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex ) )
= ( ! [I5: nat] :
( ( ord_less_eq_nat @ I5 @ N2 )
=> ( ( C @ I5 )
= zero_zero_complex ) ) ) ) ).
% polyfun_eq_0
thf(fact_7983_polyfun__eq__0,axiom,
! [C: nat > real,N2: nat] :
( ( ! [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real ) )
= ( ! [I5: nat] :
( ( ord_less_eq_nat @ I5 @ N2 )
=> ( ( C @ I5 )
= zero_zero_real ) ) ) ) ).
% polyfun_eq_0
thf(fact_7984_ln__prod,axiom,
! [I6: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I6 )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ln_ln_real @ ( groups2703838992350267259T_real @ F @ I6 ) )
= ( groups2240296850493347238T_real
@ ^ [X2: vEBT_VEBT] : ( ln_ln_real @ ( F @ X2 ) )
@ I6 ) ) ) ) ).
% ln_prod
thf(fact_7985_ln__prod,axiom,
! [I6: set_set_nat,F: set_nat > real] :
( ( finite1152437895449049373et_nat @ I6 )
=> ( ! [I3: set_nat] :
( ( member_set_nat @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ln_ln_real @ ( groups3619160379726066777t_real @ F @ I6 ) )
= ( groups5107569545109728110t_real
@ ^ [X2: set_nat] : ( ln_ln_real @ ( F @ X2 ) )
@ I6 ) ) ) ) ).
% ln_prod
thf(fact_7986_ln__prod,axiom,
! [I6: set_real,F: real > real] :
( ( finite_finite_real @ I6 )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ln_ln_real @ ( groups1681761925125756287l_real @ F @ I6 ) )
= ( groups8097168146408367636l_real
@ ^ [X2: real] : ( ln_ln_real @ ( F @ X2 ) )
@ I6 ) ) ) ) ).
% ln_prod
thf(fact_7987_ln__prod,axiom,
! [I6: set_int,F: int > real] :
( ( finite_finite_int @ I6 )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ln_ln_real @ ( groups2316167850115554303t_real @ F @ I6 ) )
= ( groups8778361861064173332t_real
@ ^ [X2: int] : ( ln_ln_real @ ( F @ X2 ) )
@ I6 ) ) ) ) ).
% ln_prod
thf(fact_7988_ln__prod,axiom,
! [I6: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I6 )
=> ( ! [I3: complex] :
( ( member_complex @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ln_ln_real @ ( groups766887009212190081x_real @ F @ I6 ) )
= ( groups5808333547571424918x_real
@ ^ [X2: complex] : ( ln_ln_real @ ( F @ X2 ) )
@ I6 ) ) ) ) ).
% ln_prod
thf(fact_7989_ln__prod,axiom,
! [I6: set_nat,F: nat > real] :
( ( finite_finite_nat @ I6 )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
=> ( ( ln_ln_real @ ( groups129246275422532515t_real @ F @ I6 ) )
= ( groups6591440286371151544t_real
@ ^ [X2: nat] : ( ln_ln_real @ ( F @ X2 ) )
@ I6 ) ) ) ) ).
% ln_prod
thf(fact_7990_sum_OatMost__shift,axiom,
! [G: nat > rat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.atMost_shift
thf(fact_7991_sum_OatMost__shift,axiom,
! [G: nat > int,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.atMost_shift
thf(fact_7992_sum_OatMost__shift,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.atMost_shift
thf(fact_7993_sum_OatMost__shift,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% sum.atMost_shift
thf(fact_7994_sum__up__index__split,axiom,
! [F: nat > rat,M: nat,N2: nat] :
( ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).
% sum_up_index_split
thf(fact_7995_sum__up__index__split,axiom,
! [F: nat > int,M: nat,N2: nat] :
( ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).
% sum_up_index_split
thf(fact_7996_sum__up__index__split,axiom,
! [F: nat > nat,M: nat,N2: nat] :
( ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).
% sum_up_index_split
thf(fact_7997_sum__up__index__split,axiom,
! [F: nat > real,M: nat,N2: nat] :
( ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).
% sum_up_index_split
thf(fact_7998_prod_OatMost__shift,axiom,
! [G: nat > real,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_real @ ( G @ zero_zero_nat )
@ ( groups129246275422532515t_real
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.atMost_shift
thf(fact_7999_prod_OatMost__shift,axiom,
! [G: nat > rat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_rat @ ( G @ zero_zero_nat )
@ ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.atMost_shift
thf(fact_8000_prod_OatMost__shift,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_int @ ( G @ zero_zero_nat )
@ ( groups705719431365010083at_int
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.atMost_shift
thf(fact_8001_prod_OatMost__shift,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_nat @ ( G @ zero_zero_nat )
@ ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% prod.atMost_shift
thf(fact_8002_atLeast1__atMost__eq__remove0,axiom,
! [N2: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N2 ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_atMost_eq_remove0
thf(fact_8003_sum_Otriangle__reindex__eq,axiom,
! [G: nat > nat > nat,N2: nat] :
( ( groups977919841031483927at_nat @ ( produc6842872674320459806at_nat @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [K2: nat] :
( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% sum.triangle_reindex_eq
thf(fact_8004_sum_Otriangle__reindex__eq,axiom,
! [G: nat > nat > real,N2: nat] :
( ( groups4567486121110086003t_real @ ( produc1703576794950452218t_real @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] :
( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% sum.triangle_reindex_eq
thf(fact_8005_sum__less__suminf,axiom,
! [F: nat > int,N2: nat] :
( ( summable_int @ F )
=> ( ! [M4: nat] :
( ( ord_less_eq_nat @ N2 @ M4 )
=> ( ord_less_int @ zero_zero_int @ ( F @ M4 ) ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_int @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_8006_sum__less__suminf,axiom,
! [F: nat > nat,N2: nat] :
( ( summable_nat @ F )
=> ( ! [M4: nat] :
( ( ord_less_eq_nat @ N2 @ M4 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ M4 ) ) )
=> ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_nat @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_8007_sum__less__suminf,axiom,
! [F: nat > real,N2: nat] :
( ( summable_real @ F )
=> ( ! [M4: nat] :
( ( ord_less_eq_nat @ N2 @ M4 )
=> ( ord_less_real @ zero_zero_real @ ( F @ M4 ) ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_real @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_8008_binomial__less__binomial__Suc,axiom,
! [K: nat,N2: nat] :
( ( ord_less_nat @ K @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).
% binomial_less_binomial_Suc
thf(fact_8009_binomial__strict__mono,axiom,
! [K: nat,K6: nat,N2: nat] :
( ( ord_less_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N2 )
=> ( ord_less_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K6 ) ) ) ) ).
% binomial_strict_mono
thf(fact_8010_binomial__strict__antimono,axiom,
! [K: nat,K6: nat,N2: nat] :
( ( ord_less_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ N2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
=> ( ( ord_less_eq_nat @ K6 @ N2 )
=> ( ord_less_nat @ ( binomial @ N2 @ K6 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).
% binomial_strict_antimono
thf(fact_8011_powser__split__head_I1_J,axiom,
! [F: nat > complex,Z2: complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z2 @ N ) ) )
=> ( ( suminf_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z2 @ N ) ) )
= ( plus_plus_complex @ ( F @ zero_zero_nat )
@ ( times_times_complex
@ ( suminf_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ ( suc @ N ) ) @ ( power_power_complex @ Z2 @ N ) ) )
@ Z2 ) ) ) ) ).
% powser_split_head(1)
thf(fact_8012_powser__split__head_I1_J,axiom,
! [F: nat > real,Z2: real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z2 @ N ) ) )
=> ( ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z2 @ N ) ) )
= ( plus_plus_real @ ( F @ zero_zero_nat )
@ ( times_times_real
@ ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( F @ ( suc @ N ) ) @ ( power_power_real @ Z2 @ N ) ) )
@ Z2 ) ) ) ) ).
% powser_split_head(1)
thf(fact_8013_powser__split__head_I2_J,axiom,
! [F: nat > complex,Z2: complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z2 @ N ) ) )
=> ( ( times_times_complex
@ ( suminf_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ ( suc @ N ) ) @ ( power_power_complex @ Z2 @ N ) ) )
@ Z2 )
= ( minus_minus_complex
@ ( suminf_complex
@ ^ [N: nat] : ( times_times_complex @ ( F @ N ) @ ( power_power_complex @ Z2 @ N ) ) )
@ ( F @ zero_zero_nat ) ) ) ) ).
% powser_split_head(2)
thf(fact_8014_powser__split__head_I2_J,axiom,
! [F: nat > real,Z2: real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z2 @ N ) ) )
=> ( ( times_times_real
@ ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( F @ ( suc @ N ) ) @ ( power_power_real @ Z2 @ N ) ) )
@ Z2 )
= ( minus_minus_real
@ ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ Z2 @ N ) ) )
@ ( F @ zero_zero_nat ) ) ) ) ).
% powser_split_head(2)
thf(fact_8015_summable__partial__sum__bound,axiom,
! [F: nat > complex,E2: real] :
( ( summable_complex @ F )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ~ ! [N9: nat] :
~ ! [M2: nat] :
( ( ord_less_eq_nat @ N9 @ M2 )
=> ! [N6: nat] : ( ord_less_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ M2 @ N6 ) ) ) @ E2 ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_8016_summable__partial__sum__bound,axiom,
! [F: nat > real,E2: real] :
( ( summable_real @ F )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ~ ! [N9: nat] :
~ ! [M2: nat] :
( ( ord_less_eq_nat @ N9 @ M2 )
=> ! [N6: nat] : ( ord_less_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ M2 @ N6 ) ) ) @ E2 ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_8017_suminf__exist__split,axiom,
! [R2: real,F: nat > real] :
( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ( summable_real @ F )
=> ? [N9: nat] :
! [N6: nat] :
( ( ord_less_eq_nat @ N9 @ N6 )
=> ( ord_less_real
@ ( real_V7735802525324610683m_real
@ ( suminf_real
@ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N6 ) ) ) )
@ R2 ) ) ) ) ).
% suminf_exist_split
thf(fact_8018_suminf__exist__split,axiom,
! [R2: real,F: nat > complex] :
( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ( summable_complex @ F )
=> ? [N9: nat] :
! [N6: nat] :
( ( ord_less_eq_nat @ N9 @ N6 )
=> ( ord_less_real
@ ( real_V1022390504157884413omplex
@ ( suminf_complex
@ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N6 ) ) ) )
@ R2 ) ) ) ) ).
% suminf_exist_split
thf(fact_8019_summable__power__series,axiom,
! [F: nat > real,Z2: real] :
( ! [I3: nat] : ( ord_less_eq_real @ ( F @ I3 ) @ one_one_real )
=> ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ Z2 @ one_one_real )
=> ( summable_real
@ ^ [I5: nat] : ( times_times_real @ ( F @ I5 ) @ ( power_power_real @ Z2 @ I5 ) ) ) ) ) ) ) ).
% summable_power_series
thf(fact_8020_Abel__lemma,axiom,
! [R2: real,R0: real,A: nat > complex,M5: real] :
( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ( ord_less_real @ R2 @ R0 )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N3 ) ) @ ( power_power_real @ R0 @ N3 ) ) @ M5 )
=> ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N ) ) @ ( power_power_real @ R2 @ N ) ) ) ) ) ) ).
% Abel_lemma
thf(fact_8021_sum__gp__basic,axiom,
! [X3: complex,N2: nat] :
( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ N2 ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ ( suc @ N2 ) ) ) ) ).
% sum_gp_basic
thf(fact_8022_sum__gp__basic,axiom,
! [X3: rat,N2: nat] :
( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ N2 ) ) )
= ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ ( suc @ N2 ) ) ) ) ).
% sum_gp_basic
thf(fact_8023_sum__gp__basic,axiom,
! [X3: int,N2: nat] :
( ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_atMost_nat @ N2 ) ) )
= ( minus_minus_int @ one_one_int @ ( power_power_int @ X3 @ ( suc @ N2 ) ) ) ) ).
% sum_gp_basic
thf(fact_8024_sum__gp__basic,axiom,
! [X3: real,N2: nat] :
( ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ N2 ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( suc @ N2 ) ) ) ) ).
% sum_gp_basic
thf(fact_8025_polyfun__finite__roots,axiom,
! [C: nat > complex,N2: nat] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex ) ) )
= ( ? [I5: nat] :
( ( ord_less_eq_nat @ I5 @ N2 )
& ( ( C @ I5 )
!= zero_zero_complex ) ) ) ) ).
% polyfun_finite_roots
thf(fact_8026_polyfun__finite__roots,axiom,
! [C: nat > real,N2: nat] :
( ( finite_finite_real
@ ( collect_real
@ ^ [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real ) ) )
= ( ? [I5: nat] :
( ( ord_less_eq_nat @ I5 @ N2 )
& ( ( C @ I5 )
!= zero_zero_real ) ) ) ) ).
% polyfun_finite_roots
thf(fact_8027_polyfun__roots__finite,axiom,
! [C: nat > complex,K: nat,N2: nat] :
( ( ( C @ K )
!= zero_zero_complex )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z6: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z6 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_8028_polyfun__roots__finite,axiom,
! [C: nat > real,K: nat,N2: nat] :
( ( ( C @ K )
!= zero_zero_real )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Z6: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z6 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_8029_polyfun__linear__factor__root,axiom,
! [C: nat > complex,A: complex,N2: nat] :
( ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex )
=> ~ ! [B4: nat > complex] :
~ ! [Z4: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_complex @ ( minus_minus_complex @ Z4 @ A )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( B4 @ I5 ) @ ( power_power_complex @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8030_polyfun__linear__factor__root,axiom,
! [C: nat > rat,A: rat,N2: nat] :
( ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_rat )
=> ~ ! [B4: nat > rat] :
~ ! [Z4: rat] :
( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_rat @ ( minus_minus_rat @ Z4 @ A )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( B4 @ I5 ) @ ( power_power_rat @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8031_polyfun__linear__factor__root,axiom,
! [C: nat > int,A: int,N2: nat] :
( ( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_int )
=> ~ ! [B4: nat > int] :
~ ! [Z4: int] :
( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_int @ ( minus_minus_int @ Z4 @ A )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( B4 @ I5 ) @ ( power_power_int @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8032_polyfun__linear__factor__root,axiom,
! [C: nat > real,A: real,N2: nat] :
( ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real )
=> ~ ! [B4: nat > real] :
~ ! [Z4: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( times_times_real @ ( minus_minus_real @ Z4 @ A )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( B4 @ I5 ) @ ( power_power_real @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8033_polyfun__linear__factor,axiom,
! [C: nat > complex,N2: nat,A: complex] :
? [B4: nat > complex] :
! [Z4: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_complex
@ ( times_times_complex @ ( minus_minus_complex @ Z4 @ A )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( B4 @ I5 ) @ ( power_power_complex @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8034_polyfun__linear__factor,axiom,
! [C: nat > rat,N2: nat,A: rat] :
? [B4: nat > rat] :
! [Z4: rat] :
( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_rat
@ ( times_times_rat @ ( minus_minus_rat @ Z4 @ A )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( B4 @ I5 ) @ ( power_power_rat @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8035_polyfun__linear__factor,axiom,
! [C: nat > int,N2: nat,A: int] :
? [B4: nat > int] :
! [Z4: int] :
( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_int
@ ( times_times_int @ ( minus_minus_int @ Z4 @ A )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( B4 @ I5 ) @ ( power_power_int @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8036_polyfun__linear__factor,axiom,
! [C: nat > real,N2: nat,A: real] :
? [B4: nat > real] :
! [Z4: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= ( plus_plus_real
@ ( times_times_real @ ( minus_minus_real @ Z4 @ A )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( B4 @ I5 ) @ ( power_power_real @ Z4 @ I5 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ A @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8037_sum__power__shift,axiom,
! [M: nat,N2: nat,X3: complex] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_complex @ ( power_power_complex @ X3 @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8038_sum__power__shift,axiom,
! [M: nat,N2: nat,X3: rat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_rat @ ( power_power_rat @ X3 @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8039_sum__power__shift,axiom,
! [M: nat,N2: nat,X3: int] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_int @ ( power_power_int @ X3 @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8040_sum__power__shift,axiom,
! [M: nat,N2: nat,X3: real] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
= ( times_times_real @ ( power_power_real @ X3 @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8041_summable__ratio__test,axiom,
! [C: real,N5: nat,F: nat > real] :
( ( ord_less_real @ C @ one_one_real )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) ) ) )
=> ( summable_real @ F ) ) ) ).
% summable_ratio_test
thf(fact_8042_summable__ratio__test,axiom,
! [C: real,N5: nat,F: nat > complex] :
( ( ord_less_real @ C @ one_one_real )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) )
=> ( summable_complex @ F ) ) ) ).
% summable_ratio_test
thf(fact_8043_sum__less__suminf2,axiom,
! [F: nat > int,N2: nat,I: nat] :
( ( summable_int @ F )
=> ( ! [M4: nat] :
( ( ord_less_eq_nat @ N2 @ M4 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ M4 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ I )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_int @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_8044_sum__less__suminf2,axiom,
! [F: nat > nat,N2: nat,I: nat] :
( ( summable_nat @ F )
=> ( ! [M4: nat] :
( ( ord_less_eq_nat @ N2 @ M4 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ M4 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ I )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
=> ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_nat @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_8045_sum__less__suminf2,axiom,
! [F: nat > real,N2: nat,I: nat] :
( ( summable_real @ F )
=> ( ! [M4: nat] :
( ( ord_less_eq_nat @ N2 @ M4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ M4 ) ) )
=> ( ( ord_less_eq_nat @ N2 @ I )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_real @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_8046_sum_Otriangle__reindex,axiom,
! [G: nat > nat > nat,N2: nat] :
( ( groups977919841031483927at_nat @ ( produc6842872674320459806at_nat @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [K2: nat] :
( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.triangle_reindex
thf(fact_8047_sum_Otriangle__reindex,axiom,
! [G: nat > nat > real,N2: nat] :
( ( groups4567486121110086003t_real @ ( produc1703576794950452218t_real @ G )
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] :
( groups6591440286371151544t_real
@ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K2 @ I5 ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ).
% sum.triangle_reindex
thf(fact_8048_sum_Oin__pairs__0,axiom,
! [G: nat > rat,N2: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% sum.in_pairs_0
thf(fact_8049_sum_Oin__pairs__0,axiom,
! [G: nat > int,N2: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% sum.in_pairs_0
thf(fact_8050_sum_Oin__pairs__0,axiom,
! [G: nat > nat,N2: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% sum.in_pairs_0
thf(fact_8051_sum_Oin__pairs__0,axiom,
! [G: nat > real,N2: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% sum.in_pairs_0
thf(fact_8052_polynomial__product,axiom,
! [M: nat,A: nat > complex,N2: nat,B: nat > complex,X3: complex] :
( ! [I3: nat] :
( ( ord_less_nat @ M @ I3 )
=> ( ( A @ I3 )
= zero_zero_complex ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N2 @ J2 )
=> ( ( B @ J2 )
= zero_zero_complex ) )
=> ( ( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( times_times_complex @ ( B @ J3 ) @ ( power_power_complex @ X3 @ J3 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( groups2073611262835488442omplex
@ ^ [R5: nat] :
( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_complex @ X3 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8053_polynomial__product,axiom,
! [M: nat,A: nat > rat,N2: nat,B: nat > rat,X3: rat] :
( ! [I3: nat] :
( ( ord_less_nat @ M @ I3 )
=> ( ( A @ I3 )
= zero_zero_rat ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N2 @ J2 )
=> ( ( B @ J2 )
= zero_zero_rat ) )
=> ( ( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( times_times_rat @ ( B @ J3 ) @ ( power_power_rat @ X3 @ J3 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( groups2906978787729119204at_rat
@ ^ [R5: nat] :
( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_rat @ X3 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8054_polynomial__product,axiom,
! [M: nat,A: nat > int,N2: nat,B: nat > int,X3: int] :
( ! [I3: nat] :
( ( ord_less_nat @ M @ I3 )
=> ( ( A @ I3 )
= zero_zero_int ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N2 @ J2 )
=> ( ( B @ J2 )
= zero_zero_int ) )
=> ( ( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( times_times_int @ ( B @ J3 ) @ ( power_power_int @ X3 @ J3 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( groups3539618377306564664at_int
@ ^ [R5: nat] :
( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( times_times_int @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_int @ X3 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8055_polynomial__product,axiom,
! [M: nat,A: nat > real,N2: nat,B: nat > real,X3: real] :
( ! [I3: nat] :
( ( ord_less_nat @ M @ I3 )
=> ( ( A @ I3 )
= zero_zero_real ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N2 @ J2 )
=> ( ( B @ J2 )
= zero_zero_real ) )
=> ( ( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( times_times_real @ ( B @ J3 ) @ ( power_power_real @ X3 @ J3 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( groups6591440286371151544t_real
@ ^ [R5: nat] :
( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_real @ X3 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8056_prod_Oin__pairs__0,axiom,
! [G: nat > real,N2: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups129246275422532515t_real
@ ^ [I5: nat] : ( times_times_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% prod.in_pairs_0
thf(fact_8057_prod_Oin__pairs__0,axiom,
! [G: nat > rat,N2: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups73079841787564623at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% prod.in_pairs_0
thf(fact_8058_prod_Oin__pairs__0,axiom,
! [G: nat > int,N2: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups705719431365010083at_int
@ ^ [I5: nat] : ( times_times_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% prod.in_pairs_0
thf(fact_8059_prod_Oin__pairs__0,axiom,
! [G: nat > nat,N2: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
= ( groups708209901874060359at_nat
@ ^ [I5: nat] : ( times_times_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% prod.in_pairs_0
thf(fact_8060_polyfun__eq__const,axiom,
! [C: nat > complex,N2: nat,K: complex] :
( ( ! [X2: complex] :
( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= K ) )
= ( ( ( C @ zero_zero_nat )
= K )
& ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ one_one_nat @ N2 ) )
=> ( ( C @ X2 )
= zero_zero_complex ) ) ) ) ).
% polyfun_eq_const
thf(fact_8061_polyfun__eq__const,axiom,
! [C: nat > real,N2: nat,K: real] :
( ( ! [X2: real] :
( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= K ) )
= ( ( ( C @ zero_zero_nat )
= K )
& ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ one_one_nat @ N2 ) )
=> ( ( C @ X2 )
= zero_zero_real ) ) ) ) ).
% polyfun_eq_const
thf(fact_8062_and__int_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [K3: int,L4: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K3 @ L4 ) )
=> ( ( ~ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L4 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( P @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
=> ( P @ K3 @ L4 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% and_int.pinduct
thf(fact_8063_polynomial__product__nat,axiom,
! [M: nat,A: nat > nat,N2: nat,B: nat > nat,X3: nat] :
( ! [I3: nat] :
( ( ord_less_nat @ M @ I3 )
=> ( ( A @ I3 )
= zero_zero_nat ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N2 @ J2 )
=> ( ( B @ J2 )
= zero_zero_nat ) )
=> ( ( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( times_times_nat @ ( A @ I5 ) @ ( power_power_nat @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X3 @ J3 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( groups3542108847815614940at_nat
@ ^ [R5: nat] :
( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( times_times_nat @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_nat @ X3 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).
% polynomial_product_nat
thf(fact_8064_and__nat__unfold,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M3: nat,N: nat] :
( if_nat
@ ( ( M3 = zero_zero_nat )
| ( N = zero_zero_nat ) )
@ zero_zero_nat
@ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_nat_unfold
thf(fact_8065_and__nat__rec,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M3: nat,N: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
& ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% and_nat_rec
thf(fact_8066_sum_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > complex,H2: nat > complex] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ zero_zero_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8067_sum_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > rat,H2: nat > rat] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ zero_zero_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8068_sum_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > int,H2: nat > int] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ zero_zero_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8069_sum_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > nat,H2: nat > nat] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ zero_zero_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8070_sum_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > real,H2: nat > real] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ zero_zero_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8071_prod_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > complex,H2: nat > complex] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups6464643781859351333omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ one_one_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups6464643781859351333omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8072_prod_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > real,H2: nat > real] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups129246275422532515t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ one_one_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups129246275422532515t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8073_prod_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > rat,H2: nat > rat] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups73079841787564623at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ one_one_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups73079841787564623at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8074_prod_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > int,H2: nat > int] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups705719431365010083at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ one_one_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups705719431365010083at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8075_prod_Ozero__middle,axiom,
! [P5: nat,K: nat,G: nat > nat,H2: nat > nat] :
( ( ord_less_eq_nat @ one_one_nat @ P5 )
=> ( ( ord_less_eq_nat @ K @ P5 )
=> ( ( groups708209901874060359at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ one_one_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P5 ) )
= ( groups708209901874060359at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8076_root__polyfun,axiom,
! [N2: nat,Z2: complex,A: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( ( power_power_complex @ Z2 @ N2 )
= A )
= ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( if_complex @ ( I5 = zero_zero_nat ) @ ( uminus1482373934393186551omplex @ A ) @ ( if_complex @ ( I5 = N2 ) @ one_one_complex @ zero_zero_complex ) ) @ ( power_power_complex @ Z2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex ) ) ) ).
% root_polyfun
thf(fact_8077_root__polyfun,axiom,
! [N2: nat,Z2: int,A: int] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( ( power_power_int @ Z2 @ N2 )
= A )
= ( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( if_int @ ( I5 = zero_zero_nat ) @ ( uminus_uminus_int @ A ) @ ( if_int @ ( I5 = N2 ) @ one_one_int @ zero_zero_int ) ) @ ( power_power_int @ Z2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_int ) ) ) ).
% root_polyfun
thf(fact_8078_root__polyfun,axiom,
! [N2: nat,Z2: rat,A: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( ( power_power_rat @ Z2 @ N2 )
= A )
= ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( if_rat @ ( I5 = zero_zero_nat ) @ ( uminus_uminus_rat @ A ) @ ( if_rat @ ( I5 = N2 ) @ one_one_rat @ zero_zero_rat ) ) @ ( power_power_rat @ Z2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_rat ) ) ) ).
% root_polyfun
thf(fact_8079_root__polyfun,axiom,
! [N2: nat,Z2: code_integer,A: code_integer] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( ( power_8256067586552552935nteger @ Z2 @ N2 )
= A )
= ( ( groups7501900531339628137nteger
@ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( if_Code_integer @ ( I5 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ A ) @ ( if_Code_integer @ ( I5 = N2 ) @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) @ ( power_8256067586552552935nteger @ Z2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_z3403309356797280102nteger ) ) ) ).
% root_polyfun
thf(fact_8080_root__polyfun,axiom,
! [N2: nat,Z2: real,A: real] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( ( power_power_real @ Z2 @ N2 )
= A )
= ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( if_real @ ( I5 = zero_zero_nat ) @ ( uminus_uminus_real @ A ) @ ( if_real @ ( I5 = N2 ) @ one_one_real @ zero_zero_real ) ) @ ( power_power_real @ Z2 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real ) ) ) ).
% root_polyfun
thf(fact_8081_sum__gp0,axiom,
! [X3: complex,N2: nat] :
( ( ( X3 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ N2 ) )
= ( semiri8010041392384452111omplex @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) )
& ( ( X3 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ N2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ ( suc @ N2 ) ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ).
% sum_gp0
thf(fact_8082_sum__gp0,axiom,
! [X3: rat,N2: nat] :
( ( ( X3 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ N2 ) )
= ( semiri681578069525770553at_rat @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) )
& ( ( X3 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ N2 ) )
= ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ ( suc @ N2 ) ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ).
% sum_gp0
thf(fact_8083_sum__gp0,axiom,
! [X3: real,N2: nat] :
( ( ( X3 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ N2 ) )
= ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) )
& ( ( X3 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ N2 ) )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( suc @ N2 ) ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ).
% sum_gp0
thf(fact_8084_polyfun__diff__alt,axiom,
! [N2: nat,A: nat > complex,X3: complex,Y: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_complex
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X3 @ Y )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] :
( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_complex @ Y @ K2 ) ) @ ( power_power_complex @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8085_polyfun__diff__alt,axiom,
! [N2: nat,A: nat > rat,X3: rat,Y: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X3 @ Y )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] :
( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_rat @ Y @ K2 ) ) @ ( power_power_rat @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8086_polyfun__diff__alt,axiom,
! [N2: nat,A: nat > int,X3: int,Y: int] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_int
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_int @ ( minus_minus_int @ X3 @ Y )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] :
( groups3539618377306564664at_int
@ ^ [K2: nat] : ( times_times_int @ ( times_times_int @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_int @ Y @ K2 ) ) @ ( power_power_int @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8087_polyfun__diff__alt,axiom,
! [N2: nat,A: nat > real,X3: real,Y: real] :
( ( ord_less_eq_nat @ one_one_nat @ N2 )
=> ( ( minus_minus_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ Y @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( times_times_real @ ( minus_minus_real @ X3 @ Y )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_real @ Y @ K2 ) ) @ ( power_power_real @ X3 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8088_cot__gt__zero,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cot_real @ X3 ) ) ) ) ).
% cot_gt_zero
thf(fact_8089_polyfun__extremal__lemma,axiom,
! [E2: real,C: nat > complex,N2: nat] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ? [M8: real] :
! [Z4: complex] :
( ( ord_less_eq_real @ M8 @ ( real_V1022390504157884413omplex @ Z4 ) )
=> ( ord_less_eq_real
@ ( real_V1022390504157884413omplex
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
@ ( times_times_real @ E2 @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( suc @ N2 ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_8090_polyfun__extremal__lemma,axiom,
! [E2: real,C: nat > real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ? [M8: real] :
! [Z4: real] :
( ( ord_less_eq_real @ M8 @ ( real_V7735802525324610683m_real @ Z4 ) )
=> ( ord_less_eq_real
@ ( real_V7735802525324610683m_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z4 @ I5 ) )
@ ( set_ord_atMost_nat @ N2 ) ) )
@ ( times_times_real @ E2 @ ( power_power_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( suc @ N2 ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_8091_choose__odd__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] :
( if_complex
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
@ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) )
@ zero_zero_complex )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_odd_sum
thf(fact_8092_choose__odd__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] :
( if_rat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
@ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) )
@ zero_zero_rat )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_odd_sum
thf(fact_8093_choose__odd__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
@ ( groups7501900531339628137nteger
@ ^ [I5: nat] :
( if_Code_integer
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
@ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) )
@ zero_z3403309356797280102nteger )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_odd_sum
thf(fact_8094_choose__odd__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] :
( if_int
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
@ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) )
@ zero_zero_int )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_odd_sum
thf(fact_8095_choose__odd__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] :
( if_real
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
@ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) )
@ zero_zero_real )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_odd_sum
thf(fact_8096_choose__even__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) ) @ zero_zero_complex )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_even_sum
thf(fact_8097_choose__even__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( if_rat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) ) @ zero_zero_rat )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_even_sum
thf(fact_8098_choose__even__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
@ ( groups7501900531339628137nteger
@ ^ [I5: nat] : ( if_Code_integer @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) ) @ zero_z3403309356797280102nteger )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_even_sum
thf(fact_8099_choose__even__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( if_int @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) ) @ zero_zero_int )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_even_sum
thf(fact_8100_choose__even__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) ) @ zero_zero_real )
@ ( set_ord_atMost_nat @ N2 ) ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% choose_even_sum
thf(fact_8101_choose__alternating__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I5 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex ) ) ).
% choose_alternating_sum
thf(fact_8102_choose__alternating__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I5 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_rat ) ) ).
% choose_alternating_sum
thf(fact_8103_choose__alternating__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( groups7501900531339628137nteger
@ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I5 ) @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_z3403309356797280102nteger ) ) ).
% choose_alternating_sum
thf(fact_8104_choose__alternating__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I5 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_int ) ) ).
% choose_alternating_sum
thf(fact_8105_choose__alternating__sum,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real ) ) ).
% choose_alternating_sum
thf(fact_8106_binomial__r__part__sum,axiom,
! [M: nat] :
( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% binomial_r_part_sum
thf(fact_8107_choose__alternating__linear__sum,axiom,
! [N2: nat] :
( ( N2 != one_one_nat )
=> ( ( groups2073611262835488442omplex
@ ^ [I5: nat] : ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I5 ) @ ( semiri8010041392384452111omplex @ I5 ) ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_complex ) ) ).
% choose_alternating_linear_sum
thf(fact_8108_choose__alternating__linear__sum,axiom,
! [N2: nat] :
( ( N2 != one_one_nat )
=> ( ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I5 ) @ ( semiri681578069525770553at_rat @ I5 ) ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_rat ) ) ).
% choose_alternating_linear_sum
thf(fact_8109_choose__alternating__linear__sum,axiom,
! [N2: nat] :
( ( N2 != one_one_nat )
=> ( ( groups7501900531339628137nteger
@ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I5 ) @ ( semiri4939895301339042750nteger @ I5 ) ) @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_z3403309356797280102nteger ) ) ).
% choose_alternating_linear_sum
thf(fact_8110_choose__alternating__linear__sum,axiom,
! [N2: nat] :
( ( N2 != one_one_nat )
=> ( ( groups3539618377306564664at_int
@ ^ [I5: nat] : ( times_times_int @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I5 ) @ ( semiri1314217659103216013at_int @ I5 ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_int ) ) ).
% choose_alternating_linear_sum
thf(fact_8111_choose__alternating__linear__sum,axiom,
! [N2: nat] :
( ( N2 != one_one_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( semiri5074537144036343181t_real @ I5 ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) ) )
@ ( set_ord_atMost_nat @ N2 ) )
= zero_zero_real ) ) ).
% choose_alternating_linear_sum
thf(fact_8112_zero__less__binomial__iff,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N2 @ K ) )
= ( ord_less_eq_nat @ K @ N2 ) ) ).
% zero_less_binomial_iff
thf(fact_8113_binomial__1,axiom,
! [N2: nat] :
( ( binomial @ N2 @ ( suc @ zero_zero_nat ) )
= N2 ) ).
% binomial_1
thf(fact_8114_binomial__0__Suc,axiom,
! [K: nat] :
( ( binomial @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% binomial_0_Suc
thf(fact_8115_binomial__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( binomial @ N2 @ K )
= zero_zero_nat )
= ( ord_less_nat @ N2 @ K ) ) ).
% binomial_eq_0_iff
thf(fact_8116_binomial__Suc__Suc,axiom,
! [N2: nat,K: nat] :
( ( binomial @ ( suc @ N2 ) @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).
% binomial_Suc_Suc
thf(fact_8117_binomial__n__0,axiom,
! [N2: nat] :
( ( binomial @ N2 @ zero_zero_nat )
= one_one_nat ) ).
% binomial_n_0
thf(fact_8118_binomial__eq__0,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ N2 @ K )
=> ( ( binomial @ N2 @ K )
= zero_zero_nat ) ) ).
% binomial_eq_0
thf(fact_8119_binomial__symmetric,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( binomial @ N2 @ K )
= ( binomial @ N2 @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% binomial_symmetric
thf(fact_8120_choose__mult__lemma,axiom,
! [M: nat,R2: nat,K: nat] :
( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
= ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R2 ) @ M ) ) ) ).
% choose_mult_lemma
thf(fact_8121_binomial__le__pow,axiom,
! [R2: nat,N2: nat] :
( ( ord_less_eq_nat @ R2 @ N2 )
=> ( ord_less_eq_nat @ ( binomial @ N2 @ R2 ) @ ( power_power_nat @ N2 @ R2 ) ) ) ).
% binomial_le_pow
thf(fact_8122_zero__less__binomial,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ ( binomial @ N2 @ K ) ) ) ).
% zero_less_binomial
thf(fact_8123_Suc__times__binomial__add,axiom,
! [A: nat,B: nat] :
( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
= ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).
% Suc_times_binomial_add
thf(fact_8124_choose__mult,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( times_times_nat @ ( binomial @ N2 @ M ) @ ( binomial @ M @ K ) )
= ( times_times_nat @ ( binomial @ N2 @ K ) @ ( binomial @ ( minus_minus_nat @ N2 @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).
% choose_mult
thf(fact_8125_sum__choose__lower,axiom,
! [R2: nat,N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( binomial @ ( plus_plus_nat @ R2 @ K2 ) @ K2 )
@ ( set_ord_atMost_nat @ N2 ) )
= ( binomial @ ( suc @ ( plus_plus_nat @ R2 @ N2 ) ) @ N2 ) ) ).
% sum_choose_lower
thf(fact_8126_choose__rising__sum_I1_J,axiom,
! [N2: nat,M: nat] :
( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N2 @ J3 ) @ N2 )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N2 @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).
% choose_rising_sum(1)
thf(fact_8127_choose__rising__sum_I2_J,axiom,
! [N2: nat,M: nat] :
( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N2 @ J3 ) @ N2 )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N2 @ M ) @ one_one_nat ) @ M ) ) ).
% choose_rising_sum(2)
thf(fact_8128_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_8129_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_8130_binomial__le__pow2,axiom,
! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).
% binomial_le_pow2
thf(fact_8131_choose__reduce__nat,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( binomial @ N2 @ K )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ) ) ).
% choose_reduce_nat
thf(fact_8132_times__binomial__minus1__eq,axiom,
! [K: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( times_times_nat @ K @ ( binomial @ N2 @ K ) )
= ( times_times_nat @ N2 @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% times_binomial_minus1_eq
thf(fact_8133_sum__choose__diagonal,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( binomial @ ( minus_minus_nat @ N2 @ K2 ) @ ( minus_minus_nat @ M @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( suc @ N2 ) @ M ) ) ) ).
% sum_choose_diagonal
thf(fact_8134_vandermonde,axiom,
! [M: nat,N2: nat,R2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( times_times_nat @ ( binomial @ M @ K2 ) @ ( binomial @ N2 @ ( minus_minus_nat @ R2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R2 ) )
= ( binomial @ ( plus_plus_nat @ M @ N2 ) @ R2 ) ) ).
% vandermonde
thf(fact_8135_binomial__addition__formula,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( binomial @ N2 @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ) ).
% binomial_addition_formula
thf(fact_8136_binomial,axiom,
! [A: nat,B: nat,N2: nat] :
( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N2 )
= ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N2 @ K2 ) ) @ ( power_power_nat @ A @ K2 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% binomial
thf(fact_8137_binomial__ring,axiom,
! [A: complex,B: complex,N2: nat] :
( ( power_power_complex @ ( plus_plus_complex @ A @ B ) @ N2 )
= ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ K2 ) ) @ ( power_power_complex @ A @ K2 ) ) @ ( power_power_complex @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% binomial_ring
thf(fact_8138_binomial__ring,axiom,
! [A: rat,B: rat,N2: nat] :
( ( power_power_rat @ ( plus_plus_rat @ A @ B ) @ N2 )
= ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K2 ) ) @ ( power_power_rat @ A @ K2 ) ) @ ( power_power_rat @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% binomial_ring
thf(fact_8139_binomial__ring,axiom,
! [A: int,B: int,N2: nat] :
( ( power_power_int @ ( plus_plus_int @ A @ B ) @ N2 )
= ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ K2 ) ) @ ( power_power_int @ A @ K2 ) ) @ ( power_power_int @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% binomial_ring
thf(fact_8140_binomial__ring,axiom,
! [A: nat,B: nat,N2: nat] :
( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N2 )
= ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N2 @ K2 ) ) @ ( power_power_nat @ A @ K2 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% binomial_ring
thf(fact_8141_binomial__ring,axiom,
! [A: real,B: real,N2: nat] :
( ( power_power_real @ ( plus_plus_real @ A @ B ) @ N2 )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K2 ) ) @ ( power_power_real @ A @ K2 ) ) @ ( power_power_real @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% binomial_ring
thf(fact_8142_pochhammer__binomial__sum,axiom,
! [A: rat,B: rat,N2: nat] :
( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ B ) @ N2 )
= ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K2 ) ) @ ( comm_s4028243227959126397er_rat @ A @ K2 ) ) @ ( comm_s4028243227959126397er_rat @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% pochhammer_binomial_sum
thf(fact_8143_pochhammer__binomial__sum,axiom,
! [A: int,B: int,N2: nat] :
( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ B ) @ N2 )
= ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ K2 ) ) @ ( comm_s4660882817536571857er_int @ A @ K2 ) ) @ ( comm_s4660882817536571857er_int @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% pochhammer_binomial_sum
thf(fact_8144_pochhammer__binomial__sum,axiom,
! [A: real,B: real,N2: nat] :
( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ B ) @ N2 )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K2 ) ) @ ( comm_s7457072308508201937r_real @ A @ K2 ) ) @ ( comm_s7457072308508201937r_real @ B @ ( minus_minus_nat @ N2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ N2 ) ) ) ).
% pochhammer_binomial_sum
thf(fact_8145_summable__arctan__series,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( summable_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).
% summable_arctan_series
thf(fact_8146_upto_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [I3: int,J2: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I3 @ J2 ) )
=> ( ( ( ord_less_eq_int @ I3 @ J2 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) @ J2 ) )
=> ( P @ I3 @ J2 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% upto.pinduct
thf(fact_8147_gbinomial__partial__row__sum,axiom,
! [A: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K2 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ one_one_complex ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8148_gbinomial__partial__row__sum,axiom,
! [A: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K2 ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ one_one_rat ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8149_gbinomial__partial__row__sum,axiom,
! [A: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( gbinomial_real @ A @ K2 ) @ ( minus_minus_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8150_diffs__equiv,axiom,
! [C: nat > complex,X3: complex] :
( ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( diffs_complex @ C @ N ) @ ( power_power_complex @ X3 @ N ) ) )
=> ( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( C @ N ) ) @ ( power_power_complex @ X3 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
@ ( suminf_complex
@ ^ [N: nat] : ( times_times_complex @ ( diffs_complex @ C @ N ) @ ( power_power_complex @ X3 @ N ) ) ) ) ) ).
% diffs_equiv
thf(fact_8151_diffs__equiv,axiom,
! [C: nat > real,X3: real] :
( ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( diffs_real @ C @ N ) @ ( power_power_real @ X3 @ N ) ) )
=> ( sums_real
@ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( C @ N ) ) @ ( power_power_real @ X3 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
@ ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( diffs_real @ C @ N ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ).
% diffs_equiv
thf(fact_8152_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups2073611262835488442omplex @ ( gbinomial_complex @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M ) ) @ one_one_complex ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8153_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups2906978787729119204at_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M ) ) @ one_one_rat ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8154_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups6591440286371151544t_real @ ( gbinomial_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8155_abs__idempotent,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_idempotent
thf(fact_8156_abs__idempotent,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_idempotent
thf(fact_8157_abs__idempotent,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_idempotent
thf(fact_8158_abs__idempotent,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_idempotent
thf(fact_8159_abs__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_abs
thf(fact_8160_abs__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_abs
thf(fact_8161_abs__abs,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_abs
thf(fact_8162_abs__abs,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_abs
thf(fact_8163_of__nat__id,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N: nat] : N ) ) ).
% of_nat_id
thf(fact_8164_abs__0,axiom,
( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% abs_0
thf(fact_8165_abs__0,axiom,
( ( abs_abs_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% abs_0
thf(fact_8166_abs__0,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_0
thf(fact_8167_abs__0,axiom,
( ( abs_abs_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% abs_0
thf(fact_8168_abs__0,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_0
thf(fact_8169_abs__0__eq,axiom,
! [A: code_integer] :
( ( zero_z3403309356797280102nteger
= ( abs_abs_Code_integer @ A ) )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_0_eq
thf(fact_8170_abs__0__eq,axiom,
! [A: real] :
( ( zero_zero_real
= ( abs_abs_real @ A ) )
= ( A = zero_zero_real ) ) ).
% abs_0_eq
thf(fact_8171_abs__0__eq,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( abs_abs_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% abs_0_eq
thf(fact_8172_abs__0__eq,axiom,
! [A: int] :
( ( zero_zero_int
= ( abs_abs_int @ A ) )
= ( A = zero_zero_int ) ) ).
% abs_0_eq
thf(fact_8173_abs__eq__0,axiom,
! [A: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_eq_0
thf(fact_8174_abs__eq__0,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0
thf(fact_8175_abs__eq__0,axiom,
! [A: rat] :
( ( ( abs_abs_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_eq_0
thf(fact_8176_abs__eq__0,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0
thf(fact_8177_abs__zero,axiom,
( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% abs_zero
thf(fact_8178_abs__zero,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_zero
thf(fact_8179_abs__zero,axiom,
( ( abs_abs_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% abs_zero
thf(fact_8180_abs__zero,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_zero
thf(fact_8181_abs__numeral,axiom,
! [N2: num] :
( ( abs_abs_rat @ ( numeral_numeral_rat @ N2 ) )
= ( numeral_numeral_rat @ N2 ) ) ).
% abs_numeral
thf(fact_8182_abs__numeral,axiom,
! [N2: num] :
( ( abs_abs_int @ ( numeral_numeral_int @ N2 ) )
= ( numeral_numeral_int @ N2 ) ) ).
% abs_numeral
thf(fact_8183_abs__numeral,axiom,
! [N2: num] :
( ( abs_abs_real @ ( numeral_numeral_real @ N2 ) )
= ( numeral_numeral_real @ N2 ) ) ).
% abs_numeral
thf(fact_8184_abs__numeral,axiom,
! [N2: num] :
( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N2 ) )
= ( numera6620942414471956472nteger @ N2 ) ) ).
% abs_numeral
thf(fact_8185_abs__mult__self__eq,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
= ( times_3573771949741848930nteger @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_8186_abs__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
= ( times_times_real @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_8187_abs__mult__self__eq,axiom,
! [A: rat] :
( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
= ( times_times_rat @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_8188_abs__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
= ( times_times_int @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_8189_abs__1,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_1
thf(fact_8190_abs__1,axiom,
( ( abs_abs_complex @ one_one_complex )
= one_one_complex ) ).
% abs_1
thf(fact_8191_abs__1,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_1
thf(fact_8192_abs__1,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_1
thf(fact_8193_abs__1,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_1
thf(fact_8194_abs__add__abs,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
= ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_add_abs
thf(fact_8195_abs__add__abs,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
= ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_add_abs
thf(fact_8196_abs__add__abs,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
= ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_add_abs
thf(fact_8197_abs__add__abs,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
= ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_add_abs
thf(fact_8198_abs__divide,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_divide
thf(fact_8199_abs__divide,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_divide
thf(fact_8200_abs__minus__cancel,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus_cancel
thf(fact_8201_abs__minus__cancel,axiom,
! [A: real] :
( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_minus_cancel
thf(fact_8202_abs__minus__cancel,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_minus_cancel
thf(fact_8203_abs__minus__cancel,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_minus_cancel
thf(fact_8204_abs__minus,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus
thf(fact_8205_abs__minus,axiom,
! [A: real] :
( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_minus
thf(fact_8206_abs__minus,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_minus
thf(fact_8207_abs__minus,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_minus
thf(fact_8208_abs__dvd__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
= ( dvd_dvd_real @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_8209_abs__dvd__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
= ( dvd_dvd_int @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_8210_abs__dvd__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
= ( dvd_dvd_rat @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_8211_abs__dvd__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_8212_dvd__abs__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
= ( dvd_dvd_real @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_8213_dvd__abs__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
= ( dvd_dvd_int @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_8214_dvd__abs__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
= ( dvd_dvd_rat @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_8215_dvd__abs__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_8216_abs__of__nat,axiom,
! [N2: nat] :
( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N2 ) )
= ( semiri681578069525770553at_rat @ N2 ) ) ).
% abs_of_nat
thf(fact_8217_abs__of__nat,axiom,
! [N2: nat] :
( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N2 ) )
= ( semiri4939895301339042750nteger @ N2 ) ) ).
% abs_of_nat
thf(fact_8218_abs__of__nat,axiom,
! [N2: nat] :
( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri1314217659103216013at_int @ N2 ) ) ).
% abs_of_nat
thf(fact_8219_abs__of__nat,axiom,
! [N2: nat] :
( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N2 ) )
= ( semiri5074537144036343181t_real @ N2 ) ) ).
% abs_of_nat
thf(fact_8220_of__int__abs,axiom,
! [X3: int] :
( ( ring_1_of_int_int @ ( abs_abs_int @ X3 ) )
= ( abs_abs_int @ ( ring_1_of_int_int @ X3 ) ) ) ).
% of_int_abs
thf(fact_8221_of__int__abs,axiom,
! [X3: int] :
( ( ring_18347121197199848620nteger @ ( abs_abs_int @ X3 ) )
= ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ X3 ) ) ) ).
% of_int_abs
thf(fact_8222_of__int__abs,axiom,
! [X3: int] :
( ( ring_1_of_int_real @ ( abs_abs_int @ X3 ) )
= ( abs_abs_real @ ( ring_1_of_int_real @ X3 ) ) ) ).
% of_int_abs
thf(fact_8223_of__int__abs,axiom,
! [X3: int] :
( ( ring_1_of_int_rat @ ( abs_abs_int @ X3 ) )
= ( abs_abs_rat @ ( ring_1_of_int_rat @ X3 ) ) ) ).
% of_int_abs
thf(fact_8224_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_real @ ( zero_n3304061248610475627l_real @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% abs_bool_eq
thf(fact_8225_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
= ( zero_n2052037380579107095ol_rat @ P ) ) ).
% abs_bool_eq
thf(fact_8226_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_Code_integer @ ( zero_n356916108424825756nteger @ P ) )
= ( zero_n356916108424825756nteger @ P ) ) ).
% abs_bool_eq
thf(fact_8227_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_int @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% abs_bool_eq
thf(fact_8228_abs__of__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_8229_abs__of__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_8230_abs__of__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_8231_abs__of__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_8232_abs__le__self__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% abs_le_self_iff
thf(fact_8233_abs__le__self__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% abs_le_self_iff
thf(fact_8234_abs__le__self__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% abs_le_self_iff
thf(fact_8235_abs__le__self__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% abs_le_self_iff
thf(fact_8236_abs__le__zero__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_le_zero_iff
thf(fact_8237_abs__le__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_le_zero_iff
thf(fact_8238_abs__le__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_le_zero_iff
thf(fact_8239_abs__le__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_le_zero_iff
thf(fact_8240_zero__less__abs__iff,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
= ( A != zero_z3403309356797280102nteger ) ) ).
% zero_less_abs_iff
thf(fact_8241_zero__less__abs__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
= ( A != zero_zero_real ) ) ).
% zero_less_abs_iff
thf(fact_8242_zero__less__abs__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_abs_iff
thf(fact_8243_zero__less__abs__iff,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
= ( A != zero_zero_int ) ) ).
% zero_less_abs_iff
thf(fact_8244_abs__neg__numeral,axiom,
! [N2: num] :
( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( numeral_numeral_int @ N2 ) ) ).
% abs_neg_numeral
thf(fact_8245_abs__neg__numeral,axiom,
! [N2: num] :
( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( numeral_numeral_real @ N2 ) ) ).
% abs_neg_numeral
thf(fact_8246_abs__neg__numeral,axiom,
! [N2: num] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
= ( numeral_numeral_rat @ N2 ) ) ).
% abs_neg_numeral
thf(fact_8247_abs__neg__numeral,axiom,
! [N2: num] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
= ( numera6620942414471956472nteger @ N2 ) ) ).
% abs_neg_numeral
thf(fact_8248_abs__neg__one,axiom,
( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
= one_one_int ) ).
% abs_neg_one
thf(fact_8249_abs__neg__one,axiom,
( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
= one_one_real ) ).
% abs_neg_one
thf(fact_8250_abs__neg__one,axiom,
( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= one_one_rat ) ).
% abs_neg_one
thf(fact_8251_abs__neg__one,axiom,
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= one_one_Code_integer ) ).
% abs_neg_one
thf(fact_8252_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_complex @ zero_zero_complex @ ( suc @ K ) )
= zero_zero_complex ) ).
% gbinomial_0(2)
thf(fact_8253_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_real @ zero_zero_real @ ( suc @ K ) )
= zero_zero_real ) ).
% gbinomial_0(2)
thf(fact_8254_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_rat @ zero_zero_rat @ ( suc @ K ) )
= zero_zero_rat ) ).
% gbinomial_0(2)
thf(fact_8255_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_nat @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% gbinomial_0(2)
thf(fact_8256_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_int @ zero_zero_int @ ( suc @ K ) )
= zero_zero_int ) ).
% gbinomial_0(2)
thf(fact_8257_gbinomial__0_I1_J,axiom,
! [A: complex] :
( ( gbinomial_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% gbinomial_0(1)
thf(fact_8258_gbinomial__0_I1_J,axiom,
! [A: real] :
( ( gbinomial_real @ A @ zero_zero_nat )
= one_one_real ) ).
% gbinomial_0(1)
thf(fact_8259_gbinomial__0_I1_J,axiom,
! [A: rat] :
( ( gbinomial_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% gbinomial_0(1)
thf(fact_8260_gbinomial__0_I1_J,axiom,
! [A: nat] :
( ( gbinomial_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% gbinomial_0(1)
thf(fact_8261_gbinomial__0_I1_J,axiom,
! [A: int] :
( ( gbinomial_int @ A @ zero_zero_nat )
= one_one_int ) ).
% gbinomial_0(1)
thf(fact_8262_sum__abs,axiom,
! [F: int > int,A2: set_int] :
( ord_less_eq_int @ ( abs_abs_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
@ ( groups4538972089207619220nt_int
@ ^ [I5: int] : ( abs_abs_int @ ( F @ I5 ) )
@ A2 ) ) ).
% sum_abs
thf(fact_8263_sum__abs,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ ( abs_abs_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( abs_abs_real @ ( F @ I5 ) )
@ A2 ) ) ).
% sum_abs
thf(fact_8264_zero__le__divide__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( B = zero_zero_real ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_8265_zero__le__divide__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( B = zero_zero_rat ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_8266_divide__le__0__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
= ( ( ord_less_eq_real @ A @ zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_le_0_abs_iff
thf(fact_8267_divide__le__0__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
= ( ( ord_less_eq_rat @ A @ zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_le_0_abs_iff
thf(fact_8268_abs__of__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_nonpos
thf(fact_8269_abs__of__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_nonpos
thf(fact_8270_abs__of__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_nonpos
thf(fact_8271_abs__of__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_nonpos
thf(fact_8272_artanh__minus__real,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( ( artanh_real @ ( uminus_uminus_real @ X3 ) )
= ( uminus_uminus_real @ ( artanh_real @ X3 ) ) ) ) ).
% artanh_minus_real
thf(fact_8273_sum__abs__ge__zero,axiom,
! [F: int > int,A2: set_int] :
( ord_less_eq_int @ zero_zero_int
@ ( groups4538972089207619220nt_int
@ ^ [I5: int] : ( abs_abs_int @ ( F @ I5 ) )
@ A2 ) ) ).
% sum_abs_ge_zero
thf(fact_8274_sum__abs__ge__zero,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ zero_zero_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( abs_abs_real @ ( F @ I5 ) )
@ A2 ) ) ).
% sum_abs_ge_zero
thf(fact_8275_zero__less__power__abs__iff,axiom,
! [A: code_integer,N2: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) )
= ( ( A != zero_z3403309356797280102nteger )
| ( N2 = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_8276_zero__less__power__abs__iff,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) )
= ( ( A != zero_zero_real )
| ( N2 = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_8277_zero__less__power__abs__iff,axiom,
! [A: rat,N2: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) )
= ( ( A != zero_zero_rat )
| ( N2 = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_8278_zero__less__power__abs__iff,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) )
= ( ( A != zero_zero_int )
| ( N2 = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_8279_abs__le__D1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% abs_le_D1
thf(fact_8280_abs__le__D1,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% abs_le_D1
thf(fact_8281_abs__le__D1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% abs_le_D1
thf(fact_8282_abs__le__D1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% abs_le_D1
thf(fact_8283_abs__ge__self,axiom,
! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).
% abs_ge_self
thf(fact_8284_abs__ge__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_self
thf(fact_8285_abs__ge__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).
% abs_ge_self
thf(fact_8286_abs__ge__self,axiom,
! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).
% abs_ge_self
thf(fact_8287_abs__eq__0__iff,axiom,
! [A: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_eq_0_iff
thf(fact_8288_abs__eq__0__iff,axiom,
! [A: complex] :
( ( ( abs_abs_complex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% abs_eq_0_iff
thf(fact_8289_abs__eq__0__iff,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0_iff
thf(fact_8290_abs__eq__0__iff,axiom,
! [A: rat] :
( ( ( abs_abs_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_eq_0_iff
thf(fact_8291_abs__eq__0__iff,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0_iff
thf(fact_8292_abs__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_mult
thf(fact_8293_abs__mult,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_mult
thf(fact_8294_abs__mult,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_mult
thf(fact_8295_abs__mult,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_mult
thf(fact_8296_abs__one,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_one
thf(fact_8297_abs__one,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_one
thf(fact_8298_abs__one,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_one
thf(fact_8299_abs__one,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_one
thf(fact_8300_abs__minus__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_8301_abs__minus__commute,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
= ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_8302_abs__minus__commute,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
= ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_8303_abs__minus__commute,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
= ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_8304_abs__eq__iff,axiom,
! [X3: int,Y: int] :
( ( ( abs_abs_int @ X3 )
= ( abs_abs_int @ Y ) )
= ( ( X3 = Y )
| ( X3
= ( uminus_uminus_int @ Y ) ) ) ) ).
% abs_eq_iff
thf(fact_8305_abs__eq__iff,axiom,
! [X3: real,Y: real] :
( ( ( abs_abs_real @ X3 )
= ( abs_abs_real @ Y ) )
= ( ( X3 = Y )
| ( X3
= ( uminus_uminus_real @ Y ) ) ) ) ).
% abs_eq_iff
thf(fact_8306_abs__eq__iff,axiom,
! [X3: rat,Y: rat] :
( ( ( abs_abs_rat @ X3 )
= ( abs_abs_rat @ Y ) )
= ( ( X3 = Y )
| ( X3
= ( uminus_uminus_rat @ Y ) ) ) ) ).
% abs_eq_iff
thf(fact_8307_abs__eq__iff,axiom,
! [X3: code_integer,Y: code_integer] :
( ( ( abs_abs_Code_integer @ X3 )
= ( abs_abs_Code_integer @ Y ) )
= ( ( X3 = Y )
| ( X3
= ( uminus1351360451143612070nteger @ Y ) ) ) ) ).
% abs_eq_iff
thf(fact_8308_dvd__if__abs__eq,axiom,
! [L: real,K: real] :
( ( ( abs_abs_real @ L )
= ( abs_abs_real @ K ) )
=> ( dvd_dvd_real @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_8309_dvd__if__abs__eq,axiom,
! [L: int,K: int] :
( ( ( abs_abs_int @ L )
= ( abs_abs_int @ K ) )
=> ( dvd_dvd_int @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_8310_dvd__if__abs__eq,axiom,
! [L: rat,K: rat] :
( ( ( abs_abs_rat @ L )
= ( abs_abs_rat @ K ) )
=> ( dvd_dvd_rat @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_8311_dvd__if__abs__eq,axiom,
! [L: code_integer,K: code_integer] :
( ( ( abs_abs_Code_integer @ L )
= ( abs_abs_Code_integer @ K ) )
=> ( dvd_dvd_Code_integer @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_8312_abs__ge__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_zero
thf(fact_8313_abs__ge__zero,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).
% abs_ge_zero
thf(fact_8314_abs__ge__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).
% abs_ge_zero
thf(fact_8315_abs__ge__zero,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).
% abs_ge_zero
thf(fact_8316_abs__of__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_pos
thf(fact_8317_abs__of__pos,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_pos
thf(fact_8318_abs__of__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_pos
thf(fact_8319_abs__of__pos,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_pos
thf(fact_8320_abs__not__less__zero,axiom,
! [A: code_integer] :
~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).
% abs_not_less_zero
thf(fact_8321_abs__not__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).
% abs_not_less_zero
thf(fact_8322_abs__not__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).
% abs_not_less_zero
thf(fact_8323_abs__not__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).
% abs_not_less_zero
thf(fact_8324_abs__triangle__ineq,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_8325_abs__triangle__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_8326_abs__triangle__ineq,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_8327_abs__triangle__ineq,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_8328_abs__mult__less,axiom,
! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
=> ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D )
=> ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_8329_abs__mult__less,axiom,
! [A: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
=> ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
=> ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_8330_abs__mult__less,axiom,
! [A: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
=> ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D )
=> ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_8331_abs__mult__less,axiom,
! [A: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
=> ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
=> ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_8332_abs__triangle__ineq2__sym,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_8333_abs__triangle__ineq2__sym,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_8334_abs__triangle__ineq2__sym,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_8335_abs__triangle__ineq2__sym,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_8336_abs__triangle__ineq3,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_8337_abs__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_8338_abs__triangle__ineq3,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_8339_abs__triangle__ineq3,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_8340_abs__triangle__ineq2,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_8341_abs__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_8342_abs__triangle__ineq2,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_8343_abs__triangle__ineq2,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_8344_nonzero__abs__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_8345_nonzero__abs__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_8346_abs__ge__minus__self,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).
% abs_ge_minus_self
thf(fact_8347_abs__ge__minus__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_minus_self
thf(fact_8348_abs__ge__minus__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).
% abs_ge_minus_self
thf(fact_8349_abs__ge__minus__self,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).
% abs_ge_minus_self
thf(fact_8350_abs__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_eq_real @ A @ B )
& ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_8351_abs__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le3102999989581377725nteger @ A @ B )
& ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_8352_abs__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_eq_rat @ A @ B )
& ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_8353_abs__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_eq_int @ A @ B )
& ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_8354_abs__le__D2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_8355_abs__le__D2,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_8356_abs__le__D2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_8357_abs__le__D2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_8358_abs__leI,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
=> ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_8359_abs__leI,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_8360_abs__leI,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_8361_abs__leI,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
=> ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_8362_abs__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_int @ A @ B )
& ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_8363_abs__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_real @ A @ B )
& ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_8364_abs__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_rat @ A @ B )
& ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_8365_abs__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le6747313008572928689nteger @ A @ B )
& ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_8366_dense__eq0__I,axiom,
! [X3: real] :
( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ E ) )
=> ( X3 = zero_zero_real ) ) ).
% dense_eq0_I
thf(fact_8367_dense__eq0__I,axiom,
! [X3: rat] :
( ! [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ E ) )
=> ( X3 = zero_zero_rat ) ) ).
% dense_eq0_I
thf(fact_8368_abs__eq__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
| ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
& ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
| ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
=> ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_8369_abs__eq__mult,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( ord_less_eq_real @ A @ zero_zero_real ) )
& ( ( ord_less_eq_real @ zero_zero_real @ B )
| ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_8370_abs__eq__mult,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( ord_less_eq_rat @ A @ zero_zero_rat ) )
& ( ( ord_less_eq_rat @ zero_zero_rat @ B )
| ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_8371_abs__eq__mult,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
| ( ord_less_eq_int @ A @ zero_zero_int ) )
& ( ( ord_less_eq_int @ zero_zero_int @ B )
| ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_8372_abs__mult__pos,axiom,
! [X3: code_integer,Y: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X3 )
=> ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y ) @ X3 )
= ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y @ X3 ) ) ) ) ).
% abs_mult_pos
thf(fact_8373_abs__mult__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( times_times_real @ ( abs_abs_real @ Y ) @ X3 )
= ( abs_abs_real @ ( times_times_real @ Y @ X3 ) ) ) ) ).
% abs_mult_pos
thf(fact_8374_abs__mult__pos,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( ( times_times_rat @ ( abs_abs_rat @ Y ) @ X3 )
= ( abs_abs_rat @ ( times_times_rat @ Y @ X3 ) ) ) ) ).
% abs_mult_pos
thf(fact_8375_abs__mult__pos,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( times_times_int @ ( abs_abs_int @ Y ) @ X3 )
= ( abs_abs_int @ ( times_times_int @ Y @ X3 ) ) ) ) ).
% abs_mult_pos
thf(fact_8376_eq__abs__iff_H,axiom,
! [A: real,B: real] :
( ( A
= ( abs_abs_real @ B ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_real @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_8377_eq__abs__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( abs_abs_Code_integer @ B ) )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
& ( ( B = A )
| ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_8378_eq__abs__iff_H,axiom,
! [A: rat,B: rat] :
( ( A
= ( abs_abs_rat @ B ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_rat @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_8379_eq__abs__iff_H,axiom,
! [A: int,B: int] :
( ( A
= ( abs_abs_int @ B ) )
= ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_int @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_8380_abs__eq__iff_H,axiom,
! [A: real,B: real] :
( ( ( abs_abs_real @ A )
= B )
= ( ( ord_less_eq_real @ zero_zero_real @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_8381_abs__eq__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= B )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
& ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_8382_abs__eq__iff_H,axiom,
! [A: rat,B: rat] :
( ( ( abs_abs_rat @ A )
= B )
= ( ( ord_less_eq_rat @ zero_zero_rat @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_8383_abs__eq__iff_H,axiom,
! [A: int,B: int] :
( ( ( abs_abs_int @ A )
= B )
= ( ( ord_less_eq_int @ zero_zero_int @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_8384_abs__minus__le__zero,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).
% abs_minus_le_zero
thf(fact_8385_abs__minus__le__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).
% abs_minus_le_zero
thf(fact_8386_abs__minus__le__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).
% abs_minus_le_zero
thf(fact_8387_abs__minus__le__zero,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).
% abs_minus_le_zero
thf(fact_8388_abs__div__pos,axiom,
! [Y: rat,X3: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y )
=> ( ( divide_divide_rat @ ( abs_abs_rat @ X3 ) @ Y )
= ( abs_abs_rat @ ( divide_divide_rat @ X3 @ Y ) ) ) ) ).
% abs_div_pos
thf(fact_8389_abs__div__pos,axiom,
! [Y: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( divide_divide_real @ ( abs_abs_real @ X3 ) @ Y )
= ( abs_abs_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% abs_div_pos
thf(fact_8390_zero__le__power__abs,axiom,
! [A: code_integer,N2: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) ) ).
% zero_le_power_abs
thf(fact_8391_zero__le__power__abs,axiom,
! [A: real,N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) ) ).
% zero_le_power_abs
thf(fact_8392_zero__le__power__abs,axiom,
! [A: rat,N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) ) ).
% zero_le_power_abs
thf(fact_8393_zero__le__power__abs,axiom,
! [A: int,N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) ) ).
% zero_le_power_abs
thf(fact_8394_abs__if__raw,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_8395_abs__if__raw,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_8396_abs__if__raw,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_8397_abs__if__raw,axiom,
( abs_abs_Code_integer
= ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_8398_abs__if,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_8399_abs__if,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_8400_abs__if,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_8401_abs__if,axiom,
( abs_abs_Code_integer
= ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_8402_abs__of__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_neg
thf(fact_8403_abs__of__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_neg
thf(fact_8404_abs__of__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_neg
thf(fact_8405_abs__of__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_neg
thf(fact_8406_abs__diff__le__iff,axiom,
! [X3: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X3 @ A ) ) @ R2 )
= ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X3 )
& ( ord_le3102999989581377725nteger @ X3 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_8407_abs__diff__le__iff,axiom,
! [X3: real,A: real,R2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ A ) ) @ R2 )
= ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R2 ) @ X3 )
& ( ord_less_eq_real @ X3 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_8408_abs__diff__le__iff,axiom,
! [X3: rat,A: rat,R2: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X3 @ A ) ) @ R2 )
= ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R2 ) @ X3 )
& ( ord_less_eq_rat @ X3 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_8409_abs__diff__le__iff,axiom,
! [X3: int,A: int,R2: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ A ) ) @ R2 )
= ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R2 ) @ X3 )
& ( ord_less_eq_int @ X3 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_8410_abs__diff__triangle__ineq,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_8411_abs__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_8412_abs__diff__triangle__ineq,axiom,
! [A: rat,B: rat,C: rat,D: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_8413_abs__diff__triangle__ineq,axiom,
! [A: int,B: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_8414_abs__triangle__ineq4,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_8415_abs__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_8416_abs__triangle__ineq4,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_8417_abs__triangle__ineq4,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_8418_abs__diff__less__iff,axiom,
! [X3: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X3 @ A ) ) @ R2 )
= ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X3 )
& ( ord_le6747313008572928689nteger @ X3 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_8419_abs__diff__less__iff,axiom,
! [X3: real,A: real,R2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ A ) ) @ R2 )
= ( ( ord_less_real @ ( minus_minus_real @ A @ R2 ) @ X3 )
& ( ord_less_real @ X3 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_8420_abs__diff__less__iff,axiom,
! [X3: rat,A: rat,R2: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X3 @ A ) ) @ R2 )
= ( ( ord_less_rat @ ( minus_minus_rat @ A @ R2 ) @ X3 )
& ( ord_less_rat @ X3 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_8421_abs__diff__less__iff,axiom,
! [X3: int,A: int,R2: int] :
( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ A ) ) @ R2 )
= ( ( ord_less_int @ ( minus_minus_int @ A @ R2 ) @ X3 )
& ( ord_less_int @ X3 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_8422_gbinomial__Suc__Suc,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8423_gbinomial__Suc__Suc,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8424_gbinomial__Suc__Suc,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8425_abs__real__def,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_real_def
thf(fact_8426_gbinomial__of__nat__symmetric,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N2 ) @ K )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_8427_summable__rabs__comparison__test,axiom,
! [F: nat > real,G: nat > real] :
( ? [N8: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N8 @ N3 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N: nat] : ( abs_abs_real @ ( F @ N ) ) ) ) ) ).
% summable_rabs_comparison_test
thf(fact_8428_abs__add__one__gt__zero,axiom,
! [X3: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X3 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_8429_abs__add__one__gt__zero,axiom,
! [X3: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X3 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_8430_abs__add__one__gt__zero,axiom,
! [X3: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X3 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_8431_abs__add__one__gt__zero,axiom,
! [X3: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X3 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_8432_of__int__leD,axiom,
! [N2: int,X3: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X3 ) ) ) ).
% of_int_leD
thf(fact_8433_of__int__leD,axiom,
! [N2: int,X3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ).
% of_int_leD
thf(fact_8434_of__int__leD,axiom,
! [N2: int,X3: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_less_eq_rat @ one_one_rat @ X3 ) ) ) ).
% of_int_leD
thf(fact_8435_of__int__leD,axiom,
! [N2: int,X3: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_less_eq_int @ one_one_int @ X3 ) ) ) ).
% of_int_leD
thf(fact_8436_of__int__lessD,axiom,
! [N2: int,X3: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X3 ) ) ) ).
% of_int_lessD
thf(fact_8437_of__int__lessD,axiom,
! [N2: int,X3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_less_real @ one_one_real @ X3 ) ) ) ).
% of_int_lessD
thf(fact_8438_of__int__lessD,axiom,
! [N2: int,X3: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_less_rat @ one_one_rat @ X3 ) ) ) ).
% of_int_lessD
thf(fact_8439_of__int__lessD,axiom,
! [N2: int,X3: int] :
( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N2 ) ) @ X3 )
=> ( ( N2 = zero_zero_int )
| ( ord_less_int @ one_one_int @ X3 ) ) ) ).
% of_int_lessD
thf(fact_8440_gbinomial__addition__formula,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ A @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8441_gbinomial__addition__formula,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ A @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8442_gbinomial__addition__formula,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ A @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8443_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_8444_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: rat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_8445_gbinomial__mult__1_H,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_8446_gbinomial__mult__1_H,axiom,
! [A: real,K: nat] :
( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_8447_gbinomial__mult__1,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_8448_gbinomial__mult__1,axiom,
! [A: real,K: nat] :
( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_8449_round__diff__minimal,axiom,
! [Z2: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z2 ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ ( ring_1_of_int_real @ M ) ) ) ) ).
% round_diff_minimal
thf(fact_8450_round__diff__minimal,axiom,
! [Z2: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z2 @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z2 ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z2 @ ( ring_1_of_int_rat @ M ) ) ) ) ).
% round_diff_minimal
thf(fact_8451_abs__le__square__iff,axiom,
! [X3: code_integer,Y: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X3 ) @ ( abs_abs_Code_integer @ Y ) )
= ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_8452_abs__le__square__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ ( abs_abs_real @ Y ) )
= ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_8453_abs__le__square__iff,axiom,
! [X3: rat,Y: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ ( abs_abs_rat @ Y ) )
= ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_8454_abs__le__square__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ X3 ) @ ( abs_abs_int @ Y ) )
= ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_8455_Suc__times__gbinomial,axiom,
! [K: nat,A: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
= ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8456_Suc__times__gbinomial,axiom,
! [K: nat,A: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
= ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8457_Suc__times__gbinomial,axiom,
! [K: nat,A: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
= ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8458_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: rat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8459_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: real] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8460_gbinomial__parallel__sum,axiom,
! [A: complex,N2: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( gbinomial_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K2 ) ) @ K2 )
@ ( set_ord_atMost_nat @ N2 ) )
= ( gbinomial_complex @ ( plus_plus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N2 ) ) @ one_one_complex ) @ N2 ) ) ).
% gbinomial_parallel_sum
thf(fact_8461_gbinomial__parallel__sum,axiom,
! [A: rat,N2: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( gbinomial_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K2 ) ) @ K2 )
@ ( set_ord_atMost_nat @ N2 ) )
= ( gbinomial_rat @ ( plus_plus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N2 ) ) @ one_one_rat ) @ N2 ) ) ).
% gbinomial_parallel_sum
thf(fact_8462_gbinomial__parallel__sum,axiom,
! [A: real,N2: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( gbinomial_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K2 ) ) @ K2 )
@ ( set_ord_atMost_nat @ N2 ) )
= ( gbinomial_real @ ( plus_plus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N2 ) ) @ one_one_real ) @ N2 ) ) ).
% gbinomial_parallel_sum
thf(fact_8463_power2__le__iff__abs__le,axiom,
! [Y: code_integer,X3: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X3 ) @ Y ) ) ) ).
% power2_le_iff_abs_le
thf(fact_8464_power2__le__iff__abs__le,axiom,
! [Y: real,X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ Y ) ) ) ).
% power2_le_iff_abs_le
thf(fact_8465_power2__le__iff__abs__le,axiom,
! [Y: rat,X3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ Y ) ) ) ).
% power2_le_iff_abs_le
thf(fact_8466_power2__le__iff__abs__le,axiom,
! [Y: int,X3: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ ( abs_abs_int @ X3 ) @ Y ) ) ) ).
% power2_le_iff_abs_le
thf(fact_8467_abs__sqrt__wlog,axiom,
! [P: code_integer > code_integer > $o,X3: code_integer] :
( ! [X4: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X4 )
=> ( P @ X4 @ ( power_8256067586552552935nteger @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_Code_integer @ X3 ) @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_8468_abs__sqrt__wlog,axiom,
! [P: real > real > $o,X3: real] :
( ! [X4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X4 )
=> ( P @ X4 @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_real @ X3 ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_8469_abs__sqrt__wlog,axiom,
! [P: rat > rat > $o,X3: rat] :
( ! [X4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X4 )
=> ( P @ X4 @ ( power_power_rat @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_rat @ X3 ) @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_8470_abs__sqrt__wlog,axiom,
! [P: int > int > $o,X3: int] :
( ! [X4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X4 )
=> ( P @ X4 @ ( power_power_int @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_int @ X3 ) @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_8471_abs__square__le__1,axiom,
! [X3: code_integer] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X3 ) @ one_one_Code_integer ) ) ).
% abs_square_le_1
thf(fact_8472_abs__square__le__1,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real ) ) ).
% abs_square_le_1
thf(fact_8473_abs__square__le__1,axiom,
! [X3: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ one_one_rat ) ) ).
% abs_square_le_1
thf(fact_8474_abs__square__le__1,axiom,
! [X3: int] :
( ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_eq_int @ ( abs_abs_int @ X3 ) @ one_one_int ) ) ).
% abs_square_le_1
thf(fact_8475_abs__square__less__1,axiom,
! [X3: code_integer] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X3 ) @ one_one_Code_integer ) ) ).
% abs_square_less_1
thf(fact_8476_abs__square__less__1,axiom,
! [X3: real] :
( ( ord_less_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real ) ) ).
% abs_square_less_1
thf(fact_8477_abs__square__less__1,axiom,
! [X3: rat] :
( ( ord_less_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_rat @ ( abs_abs_rat @ X3 ) @ one_one_rat ) ) ).
% abs_square_less_1
thf(fact_8478_abs__square__less__1,axiom,
! [X3: int] :
( ( ord_less_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_int @ ( abs_abs_int @ X3 ) @ one_one_int ) ) ).
% abs_square_less_1
thf(fact_8479_power__mono__even,axiom,
! [N2: nat,A: code_integer,B: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N2 ) @ ( power_8256067586552552935nteger @ B @ N2 ) ) ) ) ).
% power_mono_even
thf(fact_8480_power__mono__even,axiom,
! [N2: nat,A: real,B: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).
% power_mono_even
thf(fact_8481_power__mono__even,axiom,
! [N2: nat,A: rat,B: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).
% power_mono_even
thf(fact_8482_power__mono__even,axiom,
! [N2: nat,A: int,B: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).
% power_mono_even
thf(fact_8483_gbinomial__rec,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8484_gbinomial__rec,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8485_gbinomial__rec,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8486_gbinomial__factors,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8487_gbinomial__factors,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8488_gbinomial__factors,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8489_convex__sum__bound__le,axiom,
! [I6: set_nat,X3: nat > code_integer,A: nat > code_integer,B: code_integer,Delta: code_integer] :
( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X3 @ I3 ) ) )
=> ( ( ( groups7501900531339628137nteger @ X3 @ I6 )
= one_one_Code_integer )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7501900531339628137nteger
@ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8490_convex__sum__bound__le,axiom,
! [I6: set_VEBT_VEBT,X3: vEBT_VEBT > code_integer,A: vEBT_VEBT > code_integer,B: code_integer,Delta: code_integer] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X3 @ I3 ) ) )
=> ( ( ( groups5748017345553531991nteger @ X3 @ I6 )
= one_one_Code_integer )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups5748017345553531991nteger
@ ^ [I5: vEBT_VEBT] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8491_convex__sum__bound__le,axiom,
! [I6: set_int,X3: int > code_integer,A: int > code_integer,B: code_integer,Delta: code_integer] :
( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X3 @ I3 ) ) )
=> ( ( ( groups7873554091576472773nteger @ X3 @ I6 )
= one_one_Code_integer )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7873554091576472773nteger
@ ^ [I5: int] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8492_convex__sum__bound__le,axiom,
! [I6: set_real,X3: real > code_integer,A: real > code_integer,B: code_integer,Delta: code_integer] :
( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X3 @ I3 ) ) )
=> ( ( ( groups7713935264441627589nteger @ X3 @ I6 )
= one_one_Code_integer )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7713935264441627589nteger
@ ^ [I5: real] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8493_convex__sum__bound__le,axiom,
! [I6: set_VEBT_VEBT,X3: vEBT_VEBT > real,A: vEBT_VEBT > real,B: real,Delta: real] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I3 ) ) )
=> ( ( ( groups2240296850493347238T_real @ X3 @ I6 )
= one_one_real )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups2240296850493347238T_real
@ ^ [I5: vEBT_VEBT] : ( times_times_real @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8494_convex__sum__bound__le,axiom,
! [I6: set_int,X3: int > real,A: int > real,B: real,Delta: real] :
( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I3 ) ) )
=> ( ( ( groups8778361861064173332t_real @ X3 @ I6 )
= one_one_real )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups8778361861064173332t_real
@ ^ [I5: int] : ( times_times_real @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8495_convex__sum__bound__le,axiom,
! [I6: set_real,X3: real > real,A: real > real,B: real,Delta: real] :
( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I3 ) ) )
=> ( ( ( groups8097168146408367636l_real @ X3 @ I6 )
= one_one_real )
=> ( ! [I3: real] :
( ( member_real @ I3 @ I6 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups8097168146408367636l_real
@ ^ [I5: real] : ( times_times_real @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8496_convex__sum__bound__le,axiom,
! [I6: set_nat,X3: nat > rat,A: nat > rat,B: rat,Delta: rat] :
( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X3 @ I3 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ X3 @ I6 )
= one_one_rat )
=> ( ! [I3: nat] :
( ( member_nat @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8497_convex__sum__bound__le,axiom,
! [I6: set_VEBT_VEBT,X3: vEBT_VEBT > rat,A: vEBT_VEBT > rat,B: rat,Delta: rat] :
( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X3 @ I3 ) ) )
=> ( ( ( groups136491112297645522BT_rat @ X3 @ I6 )
= one_one_rat )
=> ( ! [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups136491112297645522BT_rat
@ ^ [I5: vEBT_VEBT] : ( times_times_rat @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8498_convex__sum__bound__le,axiom,
! [I6: set_int,X3: int > rat,A: int > rat,B: rat,Delta: rat] :
( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X3 @ I3 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ X3 @ I6 )
= one_one_rat )
=> ( ! [I3: int] :
( ( member_int @ I3 @ I6 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups3906332499630173760nt_rat
@ ^ [I5: int] : ( times_times_rat @ ( A @ I5 ) @ ( X3 @ I5 ) )
@ I6 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_8499_gbinomial__minus,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8500_gbinomial__minus,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8501_gbinomial__minus,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8502_gbinomial__reduce__nat,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8503_gbinomial__reduce__nat,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8504_gbinomial__reduce__nat,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8505_termdiff__converges,axiom,
! [X3: real,K5: real,C: nat > real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ K5 )
=> ( ! [X4: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X4 ) @ K5 )
=> ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( C @ N ) @ ( power_power_real @ X4 @ N ) ) ) )
=> ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( diffs_real @ C @ N ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ).
% termdiff_converges
thf(fact_8506_termdiff__converges,axiom,
! [X3: complex,K5: real,C: nat > complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ K5 )
=> ( ! [X4: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X4 ) @ K5 )
=> ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( C @ N ) @ ( power_power_complex @ X4 @ N ) ) ) )
=> ( summable_complex
@ ^ [N: nat] : ( times_times_complex @ ( diffs_complex @ C @ N ) @ ( power_power_complex @ X3 @ N ) ) ) ) ) ).
% termdiff_converges
thf(fact_8507_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: complex,X3: complex,Y: complex] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K2 ) @ ( power_power_complex @ X3 @ K2 ) ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ X3 ) @ K2 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X3 @ Y ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8508_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: rat,X3: rat,Y: rat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K2 ) @ ( power_power_rat @ X3 @ K2 ) ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K2 ) @ ( power_power_rat @ ( uminus_uminus_rat @ X3 ) @ K2 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X3 @ Y ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8509_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: real,X3: real,Y: real] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K2 ) @ ( power_power_real @ X3 @ K2 ) ) @ ( power_power_real @ Y @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K2 ) @ ( power_power_real @ ( uminus_uminus_real @ X3 ) @ K2 ) ) @ ( power_power_real @ ( plus_plus_real @ X3 @ Y ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8510_gbinomial__sum__up__index,axiom,
! [K: nat,N2: nat] :
( ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( gbinomial_complex @ ( semiri8010041392384452111omplex @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8511_gbinomial__sum__up__index,axiom,
! [K: nat,N2: nat] :
( ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( gbinomial_rat @ ( semiri681578069525770553at_rat @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8512_gbinomial__sum__up__index,axiom,
! [K: nat,N2: nat] :
( ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( gbinomial_real @ ( semiri5074537144036343181t_real @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
= ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8513_of__int__round__abs__le,axiom,
! [X3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) @ X3 ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% of_int_round_abs_le
thf(fact_8514_of__int__round__abs__le,axiom,
! [X3: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) @ X3 ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% of_int_round_abs_le
thf(fact_8515_round__unique_H,axiom,
! [X3: rat,N2: int] :
( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X3 @ ( ring_1_of_int_rat @ N2 ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
=> ( ( archim7778729529865785530nd_rat @ X3 )
= N2 ) ) ).
% round_unique'
thf(fact_8516_round__unique_H,axiom,
! [X3: real,N2: int] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ ( ring_1_of_int_real @ N2 ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( archim8280529875227126926d_real @ X3 )
= N2 ) ) ).
% round_unique'
thf(fact_8517_gbinomial__absorption_H,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8518_gbinomial__absorption_H,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8519_gbinomial__absorption_H,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8520_real__sqrt__sum__squares__less,axiom,
! [X3: real,U: real,Y: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ord_less_real @ ( abs_abs_real @ Y ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).
% real_sqrt_sum_squares_less
thf(fact_8521_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( divide1717551699836669952omplex @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ K2 ) ) @ K2 ) @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8522_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( divide_divide_real @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ K2 ) ) @ K2 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8523_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: complex,X3: complex,Y: complex] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K2 ) @ ( power_power_complex @ X3 @ K2 ) ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ K2 ) @ A ) @ one_one_complex ) @ K2 ) @ ( power_power_complex @ X3 @ K2 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X3 @ Y ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8524_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: rat,X3: rat,Y: rat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K2 ) @ ( power_power_rat @ X3 @ K2 ) ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ K2 ) @ A ) @ one_one_rat ) @ K2 ) @ ( power_power_rat @ X3 @ K2 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X3 @ Y ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8525_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: real,X3: real,Y: real] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K2 ) @ ( power_power_real @ X3 @ K2 ) ) @ ( power_power_real @ Y @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ K2 ) @ A ) @ one_one_real ) @ K2 ) @ ( power_power_real @ X3 @ K2 ) ) @ ( power_power_real @ ( plus_plus_real @ X3 @ Y ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8526_gchoose__row__sum__weighted,axiom,
! [R2: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( gbinomial_rat @ R2 @ K2 ) @ ( minus_minus_rat @ ( divide_divide_rat @ R2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K2 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ ( suc @ M ) ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_8527_gchoose__row__sum__weighted,axiom,
! [R2: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( gbinomial_real @ R2 @ K2 ) @ ( minus_minus_real @ ( divide_divide_real @ R2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_8528_lemma__interval,axiom,
! [A: real,X3: real,B: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y3 ) ) @ D5 )
=> ( ( ord_less_eq_real @ A @ Y3 )
& ( ord_less_eq_real @ Y3 @ B ) ) ) ) ) ) ).
% lemma_interval
thf(fact_8529_monoseq__arctan__series,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( topolo6980174941875973593q_real
@ ^ [N: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% monoseq_arctan_series
thf(fact_8530_arctan__series,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( ( arctan @ X3 )
= ( suminf_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).
% arctan_series
thf(fact_8531_lemma__interval__lt,axiom,
! [A: real,X3: real,B: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y3 ) ) @ D5 )
=> ( ( ord_less_real @ A @ Y3 )
& ( ord_less_real @ Y3 @ B ) ) ) ) ) ) ).
% lemma_interval_lt
thf(fact_8532_arctan__double,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X3 ) )
= ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% arctan_double
thf(fact_8533_zero__less__arctan__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ ( arctan @ X3 ) )
= ( ord_less_real @ zero_zero_real @ X3 ) ) ).
% zero_less_arctan_iff
thf(fact_8534_arctan__less__zero__iff,axiom,
! [X3: real] :
( ( ord_less_real @ ( arctan @ X3 ) @ zero_zero_real )
= ( ord_less_real @ X3 @ zero_zero_real ) ) ).
% arctan_less_zero_iff
thf(fact_8535_zdvd1__eq,axiom,
! [X3: int] :
( ( dvd_dvd_int @ X3 @ one_one_int )
= ( ( abs_abs_int @ X3 )
= one_one_int ) ) ).
% zdvd1_eq
thf(fact_8536_zabs__less__one__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( abs_abs_int @ Z2 ) @ one_one_int )
= ( Z2 = zero_zero_int ) ) ).
% zabs_less_one_iff
thf(fact_8537_zdvd__antisym__abs,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( abs_abs_int @ A )
= ( abs_abs_int @ B ) ) ) ) ).
% zdvd_antisym_abs
thf(fact_8538_arctan__monotone,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( arctan @ X3 ) @ ( arctan @ Y ) ) ) ).
% arctan_monotone
thf(fact_8539_arctan__less__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( arctan @ X3 ) @ ( arctan @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ).
% arctan_less_iff
thf(fact_8540_abs__zmult__eq__1,axiom,
! [M: int,N2: int] :
( ( ( abs_abs_int @ ( times_times_int @ M @ N2 ) )
= one_one_int )
=> ( ( abs_abs_int @ M )
= one_one_int ) ) ).
% abs_zmult_eq_1
thf(fact_8541_infinite__int__iff__unbounded__le,axiom,
! [S2: set_int] :
( ( ~ ( finite_finite_int @ S2 ) )
= ( ! [M3: int] :
? [N: int] :
( ( ord_less_eq_int @ M3 @ ( abs_abs_int @ N ) )
& ( member_int @ N @ S2 ) ) ) ) ).
% infinite_int_iff_unbounded_le
thf(fact_8542_infinite__int__iff__unbounded,axiom,
! [S2: set_int] :
( ( ~ ( finite_finite_int @ S2 ) )
= ( ! [M3: int] :
? [N: int] :
( ( ord_less_int @ M3 @ ( abs_abs_int @ N ) )
& ( member_int @ N @ S2 ) ) ) ) ).
% infinite_int_iff_unbounded
thf(fact_8543_zabs__def,axiom,
( abs_abs_int
= ( ^ [I5: int] : ( if_int @ ( ord_less_int @ I5 @ zero_zero_int ) @ ( uminus_uminus_int @ I5 ) @ I5 ) ) ) ).
% zabs_def
thf(fact_8544_dvd__imp__le__int,axiom,
! [I: int,D: int] :
( ( I != zero_zero_int )
=> ( ( dvd_dvd_int @ D @ I )
=> ( ord_less_eq_int @ ( abs_abs_int @ D ) @ ( abs_abs_int @ I ) ) ) ) ).
% dvd_imp_le_int
thf(fact_8545_abs__mod__less,axiom,
! [L: int,K: int] :
( ( L != zero_zero_int )
=> ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L ) ) @ ( abs_abs_int @ L ) ) ) ).
% abs_mod_less
thf(fact_8546_zdvd__mult__cancel1,axiom,
! [M: int,N2: int] :
( ( M != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ M @ N2 ) @ M )
= ( ( abs_abs_int @ N2 )
= one_one_int ) ) ) ).
% zdvd_mult_cancel1
thf(fact_8547_nat__intermed__int__val,axiom,
! [M: nat,N2: nat,F: nat > int,K: int] :
( ! [I3: nat] :
( ( ( ord_less_eq_nat @ M @ I3 )
& ( ord_less_nat @ I3 @ N2 ) )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( ord_less_eq_int @ ( F @ M ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
=> ? [I3: nat] :
( ( ord_less_eq_nat @ M @ I3 )
& ( ord_less_eq_nat @ I3 @ N2 )
& ( ( F @ I3 )
= K ) ) ) ) ) ) ).
% nat_intermed_int_val
thf(fact_8548_decr__lemma,axiom,
! [D: int,X3: int,Z2: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ ( minus_minus_int @ X3 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ Z2 ) ) @ one_one_int ) @ D ) ) @ Z2 ) ) ).
% decr_lemma
thf(fact_8549_incr__lemma,axiom,
! [D: int,Z2: int,X3: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ Z2 @ ( plus_plus_int @ X3 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ Z2 ) ) @ one_one_int ) @ D ) ) ) ) ).
% incr_lemma
thf(fact_8550_arctan__ubound,axiom,
! [Y: real] : ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arctan_ubound
thf(fact_8551_nat__ivt__aux,axiom,
! [N2: nat,F: nat > int,K: int] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
=> ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N2 )
& ( ( F @ I3 )
= K ) ) ) ) ) ).
% nat_ivt_aux
thf(fact_8552_arctan__lbound,axiom,
! [Y: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) ) ).
% arctan_lbound
thf(fact_8553_arctan__bounded,axiom,
! [Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
& ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% arctan_bounded
thf(fact_8554_nat0__intermed__int__val,axiom,
! [N2: nat,F: nat > int,K: int] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
=> ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N2 )
& ( ( F @ I3 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_8555_arctan__add,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( ( ord_less_real @ ( abs_abs_real @ Y ) @ one_one_real )
=> ( ( plus_plus_real @ ( arctan @ X3 ) @ ( arctan @ Y ) )
= ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X3 @ Y ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X3 @ Y ) ) ) ) ) ) ) ).
% arctan_add
thf(fact_8556_monoI1,axiom,
! [X8: nat > real] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_real @ ( X8 @ M4 ) @ ( X8 @ N3 ) ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% monoI1
thf(fact_8557_monoI1,axiom,
! [X8: nat > set_int] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_set_int @ ( X8 @ M4 ) @ ( X8 @ N3 ) ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% monoI1
thf(fact_8558_monoI1,axiom,
! [X8: nat > rat] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_rat @ ( X8 @ M4 ) @ ( X8 @ N3 ) ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% monoI1
thf(fact_8559_monoI1,axiom,
! [X8: nat > num] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_num @ ( X8 @ M4 ) @ ( X8 @ N3 ) ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% monoI1
thf(fact_8560_monoI1,axiom,
! [X8: nat > nat] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_nat @ ( X8 @ M4 ) @ ( X8 @ N3 ) ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% monoI1
thf(fact_8561_monoI1,axiom,
! [X8: nat > int] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_int @ ( X8 @ M4 ) @ ( X8 @ N3 ) ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% monoI1
thf(fact_8562_monoI2,axiom,
! [X8: nat > real] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_real @ ( X8 @ N3 ) @ ( X8 @ M4 ) ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% monoI2
thf(fact_8563_monoI2,axiom,
! [X8: nat > set_int] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_set_int @ ( X8 @ N3 ) @ ( X8 @ M4 ) ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% monoI2
thf(fact_8564_monoI2,axiom,
! [X8: nat > rat] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_rat @ ( X8 @ N3 ) @ ( X8 @ M4 ) ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% monoI2
thf(fact_8565_monoI2,axiom,
! [X8: nat > num] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_num @ ( X8 @ N3 ) @ ( X8 @ M4 ) ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% monoI2
thf(fact_8566_monoI2,axiom,
! [X8: nat > nat] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_nat @ ( X8 @ N3 ) @ ( X8 @ M4 ) ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% monoI2
thf(fact_8567_monoI2,axiom,
! [X8: nat > int] :
( ! [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_int @ ( X8 @ N3 ) @ ( X8 @ M4 ) ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% monoI2
thf(fact_8568_monoseq__def,axiom,
( topolo6980174941875973593q_real
= ( ^ [X6: nat > real] :
( ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_real @ ( X6 @ M3 ) @ ( X6 @ N ) ) )
| ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_real @ ( X6 @ N ) @ ( X6 @ M3 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8569_monoseq__def,axiom,
( topolo3100542954746470799et_int
= ( ^ [X6: nat > set_int] :
( ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_set_int @ ( X6 @ M3 ) @ ( X6 @ N ) ) )
| ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_set_int @ ( X6 @ N ) @ ( X6 @ M3 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8570_monoseq__def,axiom,
( topolo4267028734544971653eq_rat
= ( ^ [X6: nat > rat] :
( ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_rat @ ( X6 @ M3 ) @ ( X6 @ N ) ) )
| ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_rat @ ( X6 @ N ) @ ( X6 @ M3 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8571_monoseq__def,axiom,
( topolo1459490580787246023eq_num
= ( ^ [X6: nat > num] :
( ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_num @ ( X6 @ M3 ) @ ( X6 @ N ) ) )
| ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_num @ ( X6 @ N ) @ ( X6 @ M3 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8572_monoseq__def,axiom,
( topolo4902158794631467389eq_nat
= ( ^ [X6: nat > nat] :
( ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_nat @ ( X6 @ M3 ) @ ( X6 @ N ) ) )
| ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_nat @ ( X6 @ N ) @ ( X6 @ M3 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8573_monoseq__def,axiom,
( topolo4899668324122417113eq_int
= ( ^ [X6: nat > int] :
( ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_int @ ( X6 @ M3 ) @ ( X6 @ N ) ) )
| ! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_int @ ( X6 @ N ) @ ( X6 @ M3 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_8574_monoseq__Suc,axiom,
( topolo6980174941875973593q_real
= ( ^ [X6: nat > real] :
( ! [N: nat] : ( ord_less_eq_real @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
| ! [N: nat] : ( ord_less_eq_real @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8575_monoseq__Suc,axiom,
( topolo3100542954746470799et_int
= ( ^ [X6: nat > set_int] :
( ! [N: nat] : ( ord_less_eq_set_int @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
| ! [N: nat] : ( ord_less_eq_set_int @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8576_monoseq__Suc,axiom,
( topolo4267028734544971653eq_rat
= ( ^ [X6: nat > rat] :
( ! [N: nat] : ( ord_less_eq_rat @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
| ! [N: nat] : ( ord_less_eq_rat @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8577_monoseq__Suc,axiom,
( topolo1459490580787246023eq_num
= ( ^ [X6: nat > num] :
( ! [N: nat] : ( ord_less_eq_num @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
| ! [N: nat] : ( ord_less_eq_num @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8578_monoseq__Suc,axiom,
( topolo4902158794631467389eq_nat
= ( ^ [X6: nat > nat] :
( ! [N: nat] : ( ord_less_eq_nat @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
| ! [N: nat] : ( ord_less_eq_nat @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8579_monoseq__Suc,axiom,
( topolo4899668324122417113eq_int
= ( ^ [X6: nat > int] :
( ! [N: nat] : ( ord_less_eq_int @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
| ! [N: nat] : ( ord_less_eq_int @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) ) ) ) ) ).
% monoseq_Suc
thf(fact_8580_mono__SucI2,axiom,
! [X8: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% mono_SucI2
thf(fact_8581_mono__SucI2,axiom,
! [X8: nat > set_int] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% mono_SucI2
thf(fact_8582_mono__SucI2,axiom,
! [X8: nat > rat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% mono_SucI2
thf(fact_8583_mono__SucI2,axiom,
! [X8: nat > num] :
( ! [N3: nat] : ( ord_less_eq_num @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% mono_SucI2
thf(fact_8584_mono__SucI2,axiom,
! [X8: nat > nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% mono_SucI2
thf(fact_8585_mono__SucI2,axiom,
! [X8: nat > int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( X8 @ ( suc @ N3 ) ) @ ( X8 @ N3 ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% mono_SucI2
thf(fact_8586_mono__SucI1,axiom,
! [X8: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo6980174941875973593q_real @ X8 ) ) ).
% mono_SucI1
thf(fact_8587_mono__SucI1,axiom,
! [X8: nat > set_int] :
( ! [N3: nat] : ( ord_less_eq_set_int @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo3100542954746470799et_int @ X8 ) ) ).
% mono_SucI1
thf(fact_8588_mono__SucI1,axiom,
! [X8: nat > rat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo4267028734544971653eq_rat @ X8 ) ) ).
% mono_SucI1
thf(fact_8589_mono__SucI1,axiom,
! [X8: nat > num] :
( ! [N3: nat] : ( ord_less_eq_num @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo1459490580787246023eq_num @ X8 ) ) ).
% mono_SucI1
thf(fact_8590_mono__SucI1,axiom,
! [X8: nat > nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo4902158794631467389eq_nat @ X8 ) ) ).
% mono_SucI1
thf(fact_8591_mono__SucI1,axiom,
! [X8: nat > int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( X8 @ N3 ) @ ( X8 @ ( suc @ N3 ) ) )
=> ( topolo4899668324122417113eq_int @ X8 ) ) ).
% mono_SucI1
thf(fact_8592_gbinomial__code,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K2: nat] :
( if_complex @ ( K2 = zero_zero_nat ) @ one_one_complex
@ ( divide1717551699836669952omplex
@ ( set_fo1517530859248394432omplex
@ ^ [L2: nat] : ( times_times_complex @ ( minus_minus_complex @ A3 @ ( semiri8010041392384452111omplex @ L2 ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K2 @ one_one_nat )
@ one_one_complex )
@ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8593_gbinomial__code,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K2: nat] :
( if_rat @ ( K2 = zero_zero_nat ) @ one_one_rat
@ ( divide_divide_rat
@ ( set_fo1949268297981939178at_rat
@ ^ [L2: nat] : ( times_times_rat @ ( minus_minus_rat @ A3 @ ( semiri681578069525770553at_rat @ L2 ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K2 @ one_one_nat )
@ one_one_rat )
@ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8594_gbinomial__code,axiom,
( gbinomial_real
= ( ^ [A3: real,K2: nat] :
( if_real @ ( K2 = zero_zero_nat ) @ one_one_real
@ ( divide_divide_real
@ ( set_fo3111899725591712190t_real
@ ^ [L2: nat] : ( times_times_real @ ( minus_minus_real @ A3 @ ( semiri5074537144036343181t_real @ L2 ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K2 @ one_one_nat )
@ one_one_real )
@ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8595_binomial__code,axiom,
( binomial
= ( ^ [N: nat,K2: nat] : ( if_nat @ ( ord_less_nat @ N @ K2 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) ) @ ( binomial @ N @ ( minus_minus_nat @ N @ K2 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N @ K2 ) @ one_one_nat ) @ N @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K2 ) ) ) ) ) ) ).
% binomial_code
thf(fact_8596_modulo__int__unfold,axiom,
! [L: int,K: int,N2: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N2 = zero_zero_nat ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
& ( ~ ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N2 = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L )
@ ( minus_minus_int
@ ( semiri1314217659103216013at_int
@ ( times_times_nat @ N2
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N2 @ M ) ) ) )
@ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ) ) ) ) ) ).
% modulo_int_unfold
thf(fact_8597_divide__int__unfold,axiom,
! [L: int,K: int,N2: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N2 = zero_zero_nat ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= zero_zero_int ) )
& ( ~ ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N2 = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N2 ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ M @ N2 )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ) ) ) ) ) ) ) ).
% divide_int_unfold
thf(fact_8598_take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_se1745604003318907178nteger @ ( numeral_numeral_nat @ L ) @ ( numera6620942414471956472nteger @ ( bit1 @ K ) ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ ( pred_numeral @ L ) @ ( numera6620942414471956472nteger @ K ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ).
% take_bit_numeral_bit1
thf(fact_8599_take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).
% take_bit_numeral_bit1
thf(fact_8600_take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_numeral_bit1
thf(fact_8601_sgn__sgn,axiom,
! [A: int] :
( ( sgn_sgn_int @ ( sgn_sgn_int @ A ) )
= ( sgn_sgn_int @ A ) ) ).
% sgn_sgn
thf(fact_8602_sgn__sgn,axiom,
! [A: real] :
( ( sgn_sgn_real @ ( sgn_sgn_real @ A ) )
= ( sgn_sgn_real @ A ) ) ).
% sgn_sgn
thf(fact_8603_sgn__sgn,axiom,
! [A: rat] :
( ( sgn_sgn_rat @ ( sgn_sgn_rat @ A ) )
= ( sgn_sgn_rat @ A ) ) ).
% sgn_sgn
thf(fact_8604_sgn__sgn,axiom,
! [A: complex] :
( ( sgn_sgn_complex @ ( sgn_sgn_complex @ A ) )
= ( sgn_sgn_complex @ A ) ) ).
% sgn_sgn
thf(fact_8605_sgn__sgn,axiom,
! [A: code_integer] :
( ( sgn_sgn_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= ( sgn_sgn_Code_integer @ A ) ) ).
% sgn_sgn
thf(fact_8606_sgn__0,axiom,
( ( sgn_sgn_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% sgn_0
thf(fact_8607_sgn__0,axiom,
( ( sgn_sgn_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% sgn_0
thf(fact_8608_sgn__0,axiom,
( ( sgn_sgn_real @ zero_zero_real )
= zero_zero_real ) ).
% sgn_0
thf(fact_8609_sgn__0,axiom,
( ( sgn_sgn_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% sgn_0
thf(fact_8610_sgn__0,axiom,
( ( sgn_sgn_int @ zero_zero_int )
= zero_zero_int ) ).
% sgn_0
thf(fact_8611_sgn__zero,axiom,
( ( sgn_sgn_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% sgn_zero
thf(fact_8612_sgn__zero,axiom,
( ( sgn_sgn_real @ zero_zero_real )
= zero_zero_real ) ).
% sgn_zero
thf(fact_8613_sgn__1,axiom,
( ( sgn_sgn_int @ one_one_int )
= one_one_int ) ).
% sgn_1
thf(fact_8614_sgn__1,axiom,
( ( sgn_sgn_real @ one_one_real )
= one_one_real ) ).
% sgn_1
thf(fact_8615_sgn__1,axiom,
( ( sgn_sgn_rat @ one_one_rat )
= one_one_rat ) ).
% sgn_1
thf(fact_8616_sgn__1,axiom,
( ( sgn_sgn_complex @ one_one_complex )
= one_one_complex ) ).
% sgn_1
thf(fact_8617_sgn__1,axiom,
( ( sgn_sgn_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% sgn_1
thf(fact_8618_sgn__divide,axiom,
! [A: rat,B: rat] :
( ( sgn_sgn_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).
% sgn_divide
thf(fact_8619_sgn__divide,axiom,
! [A: complex,B: complex] :
( ( sgn_sgn_complex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).
% sgn_divide
thf(fact_8620_sgn__divide,axiom,
! [A: real,B: real] :
( ( sgn_sgn_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).
% sgn_divide
thf(fact_8621_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: complex] :
( ( sgn_sgn_complex @ ( uminus1482373934393186551omplex @ A ) )
= ( uminus1482373934393186551omplex @ ( sgn_sgn_complex @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_8622_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: int] :
( ( sgn_sgn_int @ ( uminus_uminus_int @ A ) )
= ( uminus_uminus_int @ ( sgn_sgn_int @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_8623_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: real] :
( ( sgn_sgn_real @ ( uminus_uminus_real @ A ) )
= ( uminus_uminus_real @ ( sgn_sgn_real @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_8624_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: rat] :
( ( sgn_sgn_rat @ ( uminus_uminus_rat @ A ) )
= ( uminus_uminus_rat @ ( sgn_sgn_rat @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_8625_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: code_integer] :
( ( sgn_sgn_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( uminus1351360451143612070nteger @ ( sgn_sgn_Code_integer @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_8626_sgn__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( sgn_sgn_Code_integer @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% sgn_less
thf(fact_8627_sgn__less,axiom,
! [A: real] :
( ( ord_less_real @ ( sgn_sgn_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% sgn_less
thf(fact_8628_sgn__less,axiom,
! [A: rat] :
( ( ord_less_rat @ ( sgn_sgn_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% sgn_less
thf(fact_8629_sgn__less,axiom,
! [A: int] :
( ( ord_less_int @ ( sgn_sgn_int @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% sgn_less
thf(fact_8630_sgn__greater,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( sgn_sgn_Code_integer @ A ) )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% sgn_greater
thf(fact_8631_sgn__greater,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( sgn_sgn_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% sgn_greater
thf(fact_8632_sgn__greater,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( sgn_sgn_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% sgn_greater
thf(fact_8633_sgn__greater,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( sgn_sgn_int @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% sgn_greater
thf(fact_8634_divide__sgn,axiom,
! [A: rat,B: rat] :
( ( divide_divide_rat @ A @ ( sgn_sgn_rat @ B ) )
= ( times_times_rat @ A @ ( sgn_sgn_rat @ B ) ) ) ).
% divide_sgn
thf(fact_8635_divide__sgn,axiom,
! [A: real,B: real] :
( ( divide_divide_real @ A @ ( sgn_sgn_real @ B ) )
= ( times_times_real @ A @ ( sgn_sgn_real @ B ) ) ) ).
% divide_sgn
thf(fact_8636_fact__0,axiom,
( ( semiri5044797733671781792omplex @ zero_zero_nat )
= one_one_complex ) ).
% fact_0
thf(fact_8637_fact__0,axiom,
( ( semiri773545260158071498ct_rat @ zero_zero_nat )
= one_one_rat ) ).
% fact_0
thf(fact_8638_fact__0,axiom,
( ( semiri1406184849735516958ct_int @ zero_zero_nat )
= one_one_int ) ).
% fact_0
thf(fact_8639_fact__0,axiom,
( ( semiri1408675320244567234ct_nat @ zero_zero_nat )
= one_one_nat ) ).
% fact_0
thf(fact_8640_fact__0,axiom,
( ( semiri2265585572941072030t_real @ zero_zero_nat )
= one_one_real ) ).
% fact_0
thf(fact_8641_pred__numeral__simps_I1_J,axiom,
( ( pred_numeral @ one )
= zero_zero_nat ) ).
% pred_numeral_simps(1)
thf(fact_8642_eq__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ( numeral_numeral_nat @ K )
= ( suc @ N2 ) )
= ( ( pred_numeral @ K )
= N2 ) ) ).
% eq_numeral_Suc
thf(fact_8643_Suc__eq__numeral,axiom,
! [N2: nat,K: num] :
( ( ( suc @ N2 )
= ( numeral_numeral_nat @ K ) )
= ( N2
= ( pred_numeral @ K ) ) ) ).
% Suc_eq_numeral
thf(fact_8644_sgn__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( sgn_sgn_Code_integer @ A )
= one_one_Code_integer ) ) ).
% sgn_pos
thf(fact_8645_sgn__pos,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( sgn_sgn_real @ A )
= one_one_real ) ) ).
% sgn_pos
thf(fact_8646_sgn__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( sgn_sgn_rat @ A )
= one_one_rat ) ) ).
% sgn_pos
thf(fact_8647_sgn__pos,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( sgn_sgn_int @ A )
= one_one_int ) ) ).
% sgn_pos
thf(fact_8648_abs__sgn__eq__1,axiom,
! [A: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= one_one_Code_integer ) ) ).
% abs_sgn_eq_1
thf(fact_8649_abs__sgn__eq__1,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
= one_one_real ) ) ).
% abs_sgn_eq_1
thf(fact_8650_abs__sgn__eq__1,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
= one_one_rat ) ) ).
% abs_sgn_eq_1
thf(fact_8651_abs__sgn__eq__1,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
= one_one_int ) ) ).
% abs_sgn_eq_1
thf(fact_8652_fact__Suc__0,axiom,
( ( semiri5044797733671781792omplex @ ( suc @ zero_zero_nat ) )
= one_one_complex ) ).
% fact_Suc_0
thf(fact_8653_fact__Suc__0,axiom,
( ( semiri773545260158071498ct_rat @ ( suc @ zero_zero_nat ) )
= one_one_rat ) ).
% fact_Suc_0
thf(fact_8654_fact__Suc__0,axiom,
( ( semiri1406184849735516958ct_int @ ( suc @ zero_zero_nat ) )
= one_one_int ) ).
% fact_Suc_0
thf(fact_8655_fact__Suc__0,axiom,
( ( semiri1408675320244567234ct_nat @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% fact_Suc_0
thf(fact_8656_fact__Suc__0,axiom,
( ( semiri2265585572941072030t_real @ ( suc @ zero_zero_nat ) )
= one_one_real ) ).
% fact_Suc_0
thf(fact_8657_sgn__mult__self__eq,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
= ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).
% sgn_mult_self_eq
thf(fact_8658_sgn__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ A ) )
= ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).
% sgn_mult_self_eq
thf(fact_8659_sgn__mult__self__eq,axiom,
! [A: rat] :
( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ A ) )
= ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).
% sgn_mult_self_eq
thf(fact_8660_sgn__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ A ) )
= ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).
% sgn_mult_self_eq
thf(fact_8661_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: code_integer] :
( ( sgn_sgn_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_8662_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: complex] :
( ( sgn_sgn_complex @ ( abs_abs_complex @ A ) )
= ( zero_n1201886186963655149omplex @ ( A != zero_zero_complex ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_8663_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: real] :
( ( sgn_sgn_real @ ( abs_abs_real @ A ) )
= ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_8664_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: rat] :
( ( sgn_sgn_rat @ ( abs_abs_rat @ A ) )
= ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_8665_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: int] :
( ( sgn_sgn_int @ ( abs_abs_int @ A ) )
= ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_8666_sgn__abs,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).
% sgn_abs
thf(fact_8667_sgn__abs,axiom,
! [A: complex] :
( ( abs_abs_complex @ ( sgn_sgn_complex @ A ) )
= ( zero_n1201886186963655149omplex @ ( A != zero_zero_complex ) ) ) ).
% sgn_abs
thf(fact_8668_sgn__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
= ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).
% sgn_abs
thf(fact_8669_sgn__abs,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
= ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).
% sgn_abs
thf(fact_8670_sgn__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
= ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).
% sgn_abs
thf(fact_8671_less__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_less_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_nat @ N2 @ ( pred_numeral @ K ) ) ) ).
% less_Suc_numeral
thf(fact_8672_less__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
= ( ord_less_nat @ ( pred_numeral @ K ) @ N2 ) ) ).
% less_numeral_Suc
thf(fact_8673_pred__numeral__simps_I3_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit1 @ K ) )
= ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).
% pred_numeral_simps(3)
thf(fact_8674_le__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_eq_nat @ N2 @ ( pred_numeral @ K ) ) ) ).
% le_Suc_numeral
thf(fact_8675_le__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
= ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N2 ) ) ).
% le_numeral_Suc
thf(fact_8676_diff__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
= ( minus_minus_nat @ ( pred_numeral @ K ) @ N2 ) ) ).
% diff_numeral_Suc
thf(fact_8677_diff__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( minus_minus_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
= ( minus_minus_nat @ N2 @ ( pred_numeral @ K ) ) ) ).
% diff_Suc_numeral
thf(fact_8678_dvd__mult__sgn__iff,axiom,
! [L: int,K: int,R2: int] :
( ( dvd_dvd_int @ L @ ( times_times_int @ K @ ( sgn_sgn_int @ R2 ) ) )
= ( ( dvd_dvd_int @ L @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_mult_sgn_iff
thf(fact_8679_dvd__sgn__mult__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd_int @ L @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ K ) )
= ( ( dvd_dvd_int @ L @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_sgn_mult_iff
thf(fact_8680_mult__sgn__dvd__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ L @ ( sgn_sgn_int @ R2 ) ) @ K )
= ( ( dvd_dvd_int @ L @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% mult_sgn_dvd_iff
thf(fact_8681_sgn__mult__dvd__iff,axiom,
! [R2: int,L: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ L ) @ K )
= ( ( dvd_dvd_int @ L @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% sgn_mult_dvd_iff
thf(fact_8682_max__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
= ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N2 ) ) ) ).
% max_numeral_Suc
thf(fact_8683_max__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_max_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
= ( suc @ ( ord_max_nat @ N2 @ ( pred_numeral @ K ) ) ) ) ).
% max_Suc_numeral
thf(fact_8684_sgn__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( sgn_sgn_int @ A )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% sgn_neg
thf(fact_8685_sgn__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( sgn_sgn_real @ A )
= ( uminus_uminus_real @ one_one_real ) ) ) ).
% sgn_neg
thf(fact_8686_sgn__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( sgn_sgn_rat @ A )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ).
% sgn_neg
thf(fact_8687_sgn__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( sgn_sgn_Code_integer @ A )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).
% sgn_neg
thf(fact_8688_sgn__of__nat,axiom,
! [N2: nat] :
( ( sgn_sgn_rat @ ( semiri681578069525770553at_rat @ N2 ) )
= ( zero_n2052037380579107095ol_rat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% sgn_of_nat
thf(fact_8689_sgn__of__nat,axiom,
! [N2: nat] :
( ( sgn_sgn_Code_integer @ ( semiri4939895301339042750nteger @ N2 ) )
= ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% sgn_of_nat
thf(fact_8690_sgn__of__nat,axiom,
! [N2: nat] :
( ( sgn_sgn_real @ ( semiri5074537144036343181t_real @ N2 ) )
= ( zero_n3304061248610475627l_real @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% sgn_of_nat
thf(fact_8691_sgn__of__nat,axiom,
! [N2: nat] :
( ( sgn_sgn_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% sgn_of_nat
thf(fact_8692_fact__nonzero,axiom,
! [N2: nat] :
( ( semiri5044797733671781792omplex @ N2 )
!= zero_zero_complex ) ).
% fact_nonzero
thf(fact_8693_fact__nonzero,axiom,
! [N2: nat] :
( ( semiri773545260158071498ct_rat @ N2 )
!= zero_zero_rat ) ).
% fact_nonzero
thf(fact_8694_fact__nonzero,axiom,
! [N2: nat] :
( ( semiri1406184849735516958ct_int @ N2 )
!= zero_zero_int ) ).
% fact_nonzero
thf(fact_8695_fact__nonzero,axiom,
! [N2: nat] :
( ( semiri1408675320244567234ct_nat @ N2 )
!= zero_zero_nat ) ).
% fact_nonzero
thf(fact_8696_fact__nonzero,axiom,
! [N2: nat] :
( ( semiri2265585572941072030t_real @ N2 )
!= zero_zero_real ) ).
% fact_nonzero
thf(fact_8697_fact__mono__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).
% fact_mono_nat
thf(fact_8698_fact__ge__self,axiom,
! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).
% fact_ge_self
thf(fact_8699_sgn__zero__iff,axiom,
! [X3: complex] :
( ( ( sgn_sgn_complex @ X3 )
= zero_zero_complex )
= ( X3 = zero_zero_complex ) ) ).
% sgn_zero_iff
thf(fact_8700_sgn__zero__iff,axiom,
! [X3: real] :
( ( ( sgn_sgn_real @ X3 )
= zero_zero_real )
= ( X3 = zero_zero_real ) ) ).
% sgn_zero_iff
thf(fact_8701_sgn__eq__0__iff,axiom,
! [A: code_integer] :
( ( ( sgn_sgn_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% sgn_eq_0_iff
thf(fact_8702_sgn__eq__0__iff,axiom,
! [A: complex] :
( ( ( sgn_sgn_complex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% sgn_eq_0_iff
thf(fact_8703_sgn__eq__0__iff,axiom,
! [A: real] :
( ( ( sgn_sgn_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% sgn_eq_0_iff
thf(fact_8704_sgn__eq__0__iff,axiom,
! [A: rat] :
( ( ( sgn_sgn_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% sgn_eq_0_iff
thf(fact_8705_sgn__eq__0__iff,axiom,
! [A: int] :
( ( ( sgn_sgn_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% sgn_eq_0_iff
thf(fact_8706_sgn__0__0,axiom,
! [A: code_integer] :
( ( ( sgn_sgn_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% sgn_0_0
thf(fact_8707_sgn__0__0,axiom,
! [A: real] :
( ( ( sgn_sgn_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% sgn_0_0
thf(fact_8708_sgn__0__0,axiom,
! [A: rat] :
( ( ( sgn_sgn_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% sgn_0_0
thf(fact_8709_sgn__0__0,axiom,
! [A: int] :
( ( ( sgn_sgn_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% sgn_0_0
thf(fact_8710_same__sgn__sgn__add,axiom,
! [B: code_integer,A: code_integer] :
( ( ( sgn_sgn_Code_integer @ B )
= ( sgn_sgn_Code_integer @ A ) )
=> ( ( sgn_sgn_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( sgn_sgn_Code_integer @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_8711_same__sgn__sgn__add,axiom,
! [B: real,A: real] :
( ( ( sgn_sgn_real @ B )
= ( sgn_sgn_real @ A ) )
=> ( ( sgn_sgn_real @ ( plus_plus_real @ A @ B ) )
= ( sgn_sgn_real @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_8712_same__sgn__sgn__add,axiom,
! [B: rat,A: rat] :
( ( ( sgn_sgn_rat @ B )
= ( sgn_sgn_rat @ A ) )
=> ( ( sgn_sgn_rat @ ( plus_plus_rat @ A @ B ) )
= ( sgn_sgn_rat @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_8713_same__sgn__sgn__add,axiom,
! [B: int,A: int] :
( ( ( sgn_sgn_int @ B )
= ( sgn_sgn_int @ A ) )
=> ( ( sgn_sgn_int @ ( plus_plus_int @ A @ B ) )
= ( sgn_sgn_int @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_8714_sgn__mult,axiom,
! [A: complex,B: complex] :
( ( sgn_sgn_complex @ ( times_times_complex @ A @ B ) )
= ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).
% sgn_mult
thf(fact_8715_sgn__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( sgn_sgn_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ B ) ) ) ).
% sgn_mult
thf(fact_8716_sgn__mult,axiom,
! [A: real,B: real] :
( ( sgn_sgn_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).
% sgn_mult
thf(fact_8717_sgn__mult,axiom,
! [A: rat,B: rat] :
( ( sgn_sgn_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).
% sgn_mult
thf(fact_8718_sgn__mult,axiom,
! [A: int,B: int] :
( ( sgn_sgn_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ).
% sgn_mult
thf(fact_8719_fact__less__mono__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N2 )
=> ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).
% fact_less_mono_nat
thf(fact_8720_sgn__not__eq__imp,axiom,
! [B: int,A: int] :
( ( ( sgn_sgn_int @ B )
!= ( sgn_sgn_int @ A ) )
=> ( ( ( sgn_sgn_int @ A )
!= zero_zero_int )
=> ( ( ( sgn_sgn_int @ B )
!= zero_zero_int )
=> ( ( sgn_sgn_int @ A )
= ( uminus_uminus_int @ ( sgn_sgn_int @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_8721_sgn__not__eq__imp,axiom,
! [B: real,A: real] :
( ( ( sgn_sgn_real @ B )
!= ( sgn_sgn_real @ A ) )
=> ( ( ( sgn_sgn_real @ A )
!= zero_zero_real )
=> ( ( ( sgn_sgn_real @ B )
!= zero_zero_real )
=> ( ( sgn_sgn_real @ A )
= ( uminus_uminus_real @ ( sgn_sgn_real @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_8722_sgn__not__eq__imp,axiom,
! [B: rat,A: rat] :
( ( ( sgn_sgn_rat @ B )
!= ( sgn_sgn_rat @ A ) )
=> ( ( ( sgn_sgn_rat @ A )
!= zero_zero_rat )
=> ( ( ( sgn_sgn_rat @ B )
!= zero_zero_rat )
=> ( ( sgn_sgn_rat @ A )
= ( uminus_uminus_rat @ ( sgn_sgn_rat @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_8723_sgn__not__eq__imp,axiom,
! [B: code_integer,A: code_integer] :
( ( ( sgn_sgn_Code_integer @ B )
!= ( sgn_sgn_Code_integer @ A ) )
=> ( ( ( sgn_sgn_Code_integer @ A )
!= zero_z3403309356797280102nteger )
=> ( ( ( sgn_sgn_Code_integer @ B )
!= zero_z3403309356797280102nteger )
=> ( ( sgn_sgn_Code_integer @ A )
= ( uminus1351360451143612070nteger @ ( sgn_sgn_Code_integer @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_8724_sgn__minus__1,axiom,
( ( sgn_sgn_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% sgn_minus_1
thf(fact_8725_sgn__minus__1,axiom,
( ( sgn_sgn_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% sgn_minus_1
thf(fact_8726_sgn__minus__1,axiom,
( ( sgn_sgn_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% sgn_minus_1
thf(fact_8727_sgn__minus__1,axiom,
( ( sgn_sgn_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% sgn_minus_1
thf(fact_8728_sgn__minus__1,axiom,
( ( sgn_sgn_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% sgn_minus_1
thf(fact_8729_fact__ge__zero,axiom,
! [N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N2 ) ) ).
% fact_ge_zero
thf(fact_8730_fact__ge__zero,axiom,
! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N2 ) ) ).
% fact_ge_zero
thf(fact_8731_fact__ge__zero,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).
% fact_ge_zero
thf(fact_8732_fact__ge__zero,axiom,
! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N2 ) ) ).
% fact_ge_zero
thf(fact_8733_mult__sgn__abs,axiom,
! [X3: code_integer] :
( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ X3 ) @ ( abs_abs_Code_integer @ X3 ) )
= X3 ) ).
% mult_sgn_abs
thf(fact_8734_mult__sgn__abs,axiom,
! [X3: real] :
( ( times_times_real @ ( sgn_sgn_real @ X3 ) @ ( abs_abs_real @ X3 ) )
= X3 ) ).
% mult_sgn_abs
thf(fact_8735_mult__sgn__abs,axiom,
! [X3: rat] :
( ( times_times_rat @ ( sgn_sgn_rat @ X3 ) @ ( abs_abs_rat @ X3 ) )
= X3 ) ).
% mult_sgn_abs
thf(fact_8736_mult__sgn__abs,axiom,
! [X3: int] :
( ( times_times_int @ ( sgn_sgn_int @ X3 ) @ ( abs_abs_int @ X3 ) )
= X3 ) ).
% mult_sgn_abs
thf(fact_8737_sgn__mult__abs,axiom,
! [A: complex] :
( ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( abs_abs_complex @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_8738_sgn__mult__abs,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_8739_sgn__mult__abs,axiom,
! [A: real] :
( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( abs_abs_real @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_8740_sgn__mult__abs,axiom,
! [A: rat] :
( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( abs_abs_rat @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_8741_sgn__mult__abs,axiom,
! [A: int] :
( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( abs_abs_int @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_8742_abs__mult__sgn,axiom,
! [A: complex] :
( ( times_times_complex @ ( abs_abs_complex @ A ) @ ( sgn_sgn_complex @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_8743_abs__mult__sgn,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_8744_abs__mult__sgn,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( sgn_sgn_real @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_8745_abs__mult__sgn,axiom,
! [A: rat] :
( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( sgn_sgn_rat @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_8746_abs__mult__sgn,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( sgn_sgn_int @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_8747_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_Code_integer
= ( ^ [K2: code_integer] : ( times_3573771949741848930nteger @ K2 @ ( sgn_sgn_Code_integer @ K2 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_8748_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_real
= ( ^ [K2: real] : ( times_times_real @ K2 @ ( sgn_sgn_real @ K2 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_8749_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_rat
= ( ^ [K2: rat] : ( times_times_rat @ K2 @ ( sgn_sgn_rat @ K2 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_8750_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_int
= ( ^ [K2: int] : ( times_times_int @ K2 @ ( sgn_sgn_int @ K2 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_8751_int__sgnE,axiom,
! [K: int] :
~ ! [N3: nat,L4: int] :
( K
!= ( times_times_int @ ( sgn_sgn_int @ L4 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% int_sgnE
thf(fact_8752_numeral__eq__Suc,axiom,
( numeral_numeral_nat
= ( ^ [K2: num] : ( suc @ ( pred_numeral @ K2 ) ) ) ) ).
% numeral_eq_Suc
thf(fact_8753_fact__ge__Suc__0__nat,axiom,
! [N2: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).
% fact_ge_Suc_0_nat
thf(fact_8754_dvd__fact,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N2 )
=> ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).
% dvd_fact
thf(fact_8755_pred__numeral__def,axiom,
( pred_numeral
= ( ^ [K2: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K2 ) @ one_one_nat ) ) ) ).
% pred_numeral_def
thf(fact_8756_lessThan__nat__numeral,axiom,
! [K: num] :
( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).
% lessThan_nat_numeral
thf(fact_8757_atMost__nat__numeral,axiom,
! [K: num] :
( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).
% atMost_nat_numeral
thf(fact_8758_fact__diff__Suc,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ N2 @ ( suc @ M ) )
=> ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) )
= ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N2 ) ) ) ) ) ).
% fact_diff_Suc
thf(fact_8759_zsgn__def,axiom,
( sgn_sgn_int
= ( ^ [I5: int] : ( if_int @ ( I5 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I5 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zsgn_def
thf(fact_8760_fact__div__fact__le__pow,axiom,
! [R2: nat,N2: nat] :
( ( ord_less_eq_nat @ R2 @ N2 )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ R2 ) ) ) @ ( power_power_nat @ N2 @ R2 ) ) ) ).
% fact_div_fact_le_pow
thf(fact_8761_binomial__fact__lemma,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( binomial @ N2 @ K ) )
= ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).
% binomial_fact_lemma
thf(fact_8762_fact__eq__fact__times,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( semiri1408675320244567234ct_nat @ M )
= ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N2 )
@ ( groups708209901874060359at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ ( suc @ N2 ) @ M ) ) ) ) ) ).
% fact_eq_fact_times
thf(fact_8763_binomial__altdef__nat,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ N2 )
=> ( ( binomial @ N2 @ K )
= ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).
% binomial_altdef_nat
thf(fact_8764_fact__div__fact,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ N2 @ M )
=> ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) )
= ( groups708209901874060359at_nat
@ ^ [X2: nat] : X2
@ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) ) ).
% fact_div_fact
thf(fact_8765_Maclaurin__lemma,axiom,
! [H2: real,F: real > real,J: nat > real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ? [B9: real] :
( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ B9 @ ( divide_divide_real @ ( power_power_real @ H2 @ N2 ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ) ) ).
% Maclaurin_lemma
thf(fact_8766_sin__coeff__def,axiom,
( sin_coeff
= ( ^ [N: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ).
% sin_coeff_def
thf(fact_8767_Maclaurin__exp__lt,axiom,
! [X3: real,N2: nat] :
( ( X3 != zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ? [T6: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T6 ) )
& ( ord_less_real @ ( abs_abs_real @ T6 ) @ ( abs_abs_real @ X3 ) )
& ( ( exp_real @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X3 @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_exp_lt
thf(fact_8768_sin__paired,axiom,
! [X3: real] :
( sums_real
@ ^ [N: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
@ ( sin_real @ X3 ) ) ).
% sin_paired
thf(fact_8769_exp__less__mono,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( exp_real @ X3 ) @ ( exp_real @ Y ) ) ) ).
% exp_less_mono
thf(fact_8770_exp__less__cancel__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( exp_real @ X3 ) @ ( exp_real @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ).
% exp_less_cancel_iff
thf(fact_8771_sin__coeff__0,axiom,
( ( sin_coeff @ zero_zero_nat )
= zero_zero_real ) ).
% sin_coeff_0
thf(fact_8772_one__less__exp__iff,axiom,
! [X3: real] :
( ( ord_less_real @ one_one_real @ ( exp_real @ X3 ) )
= ( ord_less_real @ zero_zero_real @ X3 ) ) ).
% one_less_exp_iff
thf(fact_8773_exp__less__one__iff,axiom,
! [X3: real] :
( ( ord_less_real @ ( exp_real @ X3 ) @ one_one_real )
= ( ord_less_real @ X3 @ zero_zero_real ) ) ).
% exp_less_one_iff
thf(fact_8774_exp__ln,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( exp_real @ ( ln_ln_real @ X3 ) )
= X3 ) ) ).
% exp_ln
thf(fact_8775_exp__ln__iff,axiom,
! [X3: real] :
( ( ( exp_real @ ( ln_ln_real @ X3 ) )
= X3 )
= ( ord_less_real @ zero_zero_real @ X3 ) ) ).
% exp_ln_iff
thf(fact_8776_exp__less__cancel,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( exp_real @ X3 ) @ ( exp_real @ Y ) )
=> ( ord_less_real @ X3 @ Y ) ) ).
% exp_less_cancel
thf(fact_8777_exp__total,axiom,
! [Y: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ? [X4: real] :
( ( exp_real @ X4 )
= Y ) ) ).
% exp_total
thf(fact_8778_exp__gt__zero,axiom,
! [X3: real] : ( ord_less_real @ zero_zero_real @ ( exp_real @ X3 ) ) ).
% exp_gt_zero
thf(fact_8779_not__exp__less__zero,axiom,
! [X3: real] :
~ ( ord_less_real @ ( exp_real @ X3 ) @ zero_zero_real ) ).
% not_exp_less_zero
thf(fact_8780_exp__gt__one,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_real @ one_one_real @ ( exp_real @ X3 ) ) ) ).
% exp_gt_one
thf(fact_8781_sin__gt__zero,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ pi )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X3 ) ) ) ) ).
% sin_gt_zero
thf(fact_8782_sgn__real__def,axiom,
( sgn_sgn_real
= ( ^ [A3: real] : ( if_real @ ( A3 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A3 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).
% sgn_real_def
thf(fact_8783_ln__ge__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ Y @ ( ln_ln_real @ X3 ) )
= ( ord_less_eq_real @ ( exp_real @ Y ) @ X3 ) ) ) ).
% ln_ge_iff
thf(fact_8784_sin__eq__0__pi,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X3 )
=> ( ( ord_less_real @ X3 @ pi )
=> ( ( ( sin_real @ X3 )
= zero_zero_real )
=> ( X3 = zero_zero_real ) ) ) ) ).
% sin_eq_0_pi
thf(fact_8785_sin__zero__pi__iff,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ pi )
=> ( ( ( sin_real @ X3 )
= zero_zero_real )
= ( X3 = zero_zero_real ) ) ) ).
% sin_zero_pi_iff
thf(fact_8786_sin__gt__zero__02,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X3 ) ) ) ) ).
% sin_gt_zero_02
thf(fact_8787_sgn__power__injE,axiom,
! [A: real,N2: nat,X3: real,B: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) )
= X3 )
=> ( ( X3
= ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N2 ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( A = B ) ) ) ) ).
% sgn_power_injE
thf(fact_8788_sin__pi__divide__n__ge__0,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).
% sin_pi_divide_n_ge_0
thf(fact_8789_sin__gt__zero2,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X3 ) ) ) ) ).
% sin_gt_zero2
thf(fact_8790_sin__lt__zero,axiom,
! [X3: real] :
( ( ord_less_real @ pi @ X3 )
=> ( ( ord_less_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_real @ ( sin_real @ X3 ) @ zero_zero_real ) ) ) ).
% sin_lt_zero
thf(fact_8791_sin__le__zero,axiom,
! [X3: real] :
( ( ord_less_eq_real @ pi @ X3 )
=> ( ( ord_less_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_eq_real @ ( sin_real @ X3 ) @ zero_zero_real ) ) ) ).
% sin_le_zero
thf(fact_8792_sin__less__zero,axiom,
! [X3: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
=> ( ord_less_real @ ( sin_real @ X3 ) @ zero_zero_real ) ) ) ).
% sin_less_zero
thf(fact_8793_sin__mono__less__eq,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
=> ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( sin_real @ X3 ) @ ( sin_real @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ) ) ) ) ).
% sin_mono_less_eq
thf(fact_8794_sin__monotone__2pi,axiom,
! [Y: real,X3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
=> ( ( ord_less_real @ Y @ X3 )
=> ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sin_real @ Y ) @ ( sin_real @ X3 ) ) ) ) ) ).
% sin_monotone_2pi
thf(fact_8795_exp__ge__one__plus__x__over__n__power__n,axiom,
! [N2: nat,X3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ X3 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X3 @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 ) @ ( exp_real @ X3 ) ) ) ) ).
% exp_ge_one_plus_x_over_n_power_n
thf(fact_8796_sin__pi__divide__n__gt__0,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).
% sin_pi_divide_n_gt_0
thf(fact_8797_exp__ge__one__minus__x__over__n__power__n,axiom,
! [X3: real,N2: nat] :
( ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X3 @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ).
% exp_ge_one_minus_x_over_n_power_n
thf(fact_8798_eucl__rel__int__iff,axiom,
! [K: int,L: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( ( K
= ( plus_plus_int @ ( times_times_int @ L @ Q2 ) @ R2 ) )
& ( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
& ( ord_less_int @ R2 @ L ) ) )
& ( ~ ( ord_less_int @ zero_zero_int @ L )
=> ( ( ( ord_less_int @ L @ zero_zero_int )
=> ( ( ord_less_int @ L @ R2 )
& ( ord_less_eq_int @ R2 @ zero_zero_int ) ) )
& ( ~ ( ord_less_int @ L @ zero_zero_int )
=> ( Q2 = zero_zero_int ) ) ) ) ) ) ).
% eucl_rel_int_iff
thf(fact_8799_eucl__rel__int__remainderI,axiom,
! [R2: int,L: int,K: int,Q2: int] :
( ( ( sgn_sgn_int @ R2 )
= ( sgn_sgn_int @ L ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ L ) )
=> ( ( K
= ( plus_plus_int @ ( times_times_int @ Q2 @ L ) @ R2 ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) ) ) ) ) ).
% eucl_rel_int_remainderI
thf(fact_8800_Maclaurin__sin__expansion4,axiom,
! [X3: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ? [T6: real] :
( ( ord_less_real @ zero_zero_real @ T6 )
& ( ord_less_eq_real @ T6 @ X3 )
& ( ( sin_real @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T6 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ).
% Maclaurin_sin_expansion4
thf(fact_8801_Maclaurin__sin__expansion3,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ? [T6: real] :
( ( ord_less_real @ zero_zero_real @ T6 )
& ( ord_less_real @ T6 @ X3 )
& ( ( sin_real @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T6 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_sin_expansion3
thf(fact_8802_eucl__rel__int_Ocases,axiom,
! [A1: int,A22: int,A32: product_prod_int_int] :
( ( eucl_rel_int @ A1 @ A22 @ A32 )
=> ( ( ( A22 = zero_zero_int )
=> ( A32
!= ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
=> ( ! [Q4: int] :
( ( A32
= ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
=> ( ( A22 != zero_zero_int )
=> ( A1
!= ( times_times_int @ Q4 @ A22 ) ) ) )
=> ~ ! [R3: int,Q4: int] :
( ( A32
= ( product_Pair_int_int @ Q4 @ R3 ) )
=> ( ( ( sgn_sgn_int @ R3 )
= ( sgn_sgn_int @ A22 ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R3 ) @ ( abs_abs_int @ A22 ) )
=> ( A1
!= ( plus_plus_int @ ( times_times_int @ Q4 @ A22 ) @ R3 ) ) ) ) ) ) ) ) ).
% eucl_rel_int.cases
thf(fact_8803_eucl__rel__int_Osimps,axiom,
( eucl_rel_int
= ( ^ [A12: int,A23: int,A33: product_prod_int_int] :
( ? [K2: int] :
( ( A12 = K2 )
& ( A23 = zero_zero_int )
& ( A33
= ( product_Pair_int_int @ zero_zero_int @ K2 ) ) )
| ? [L2: int,K2: int,Q5: int] :
( ( A12 = K2 )
& ( A23 = L2 )
& ( A33
= ( product_Pair_int_int @ Q5 @ zero_zero_int ) )
& ( L2 != zero_zero_int )
& ( K2
= ( times_times_int @ Q5 @ L2 ) ) )
| ? [R5: int,L2: int,K2: int,Q5: int] :
( ( A12 = K2 )
& ( A23 = L2 )
& ( A33
= ( product_Pair_int_int @ Q5 @ R5 ) )
& ( ( sgn_sgn_int @ R5 )
= ( sgn_sgn_int @ L2 ) )
& ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L2 ) )
& ( K2
= ( plus_plus_int @ ( times_times_int @ Q5 @ L2 ) @ R5 ) ) ) ) ) ) ).
% eucl_rel_int.simps
thf(fact_8804_sincos__total__2pi,axiom,
! [X3: real,Y: real] :
( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ~ ! [T6: real] :
( ( ord_less_eq_real @ zero_zero_real @ T6 )
=> ( ( ord_less_real @ T6 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ( X3
= ( cos_real @ T6 ) )
=> ( Y
!= ( sin_real @ T6 ) ) ) ) ) ) ).
% sincos_total_2pi
thf(fact_8805_sin__tan,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( sin_real @ X3 )
= ( divide_divide_real @ ( tan_real @ X3 ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_tan
thf(fact_8806_cos__monotone__0__pi,axiom,
! [Y: real,X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ Y @ X3 )
=> ( ( ord_less_eq_real @ X3 @ pi )
=> ( ord_less_real @ ( cos_real @ X3 ) @ ( cos_real @ Y ) ) ) ) ) ).
% cos_monotone_0_pi
thf(fact_8807_cos__mono__less__eq,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ X3 @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ Y @ pi )
=> ( ( ord_less_real @ ( cos_real @ X3 ) @ ( cos_real @ Y ) )
= ( ord_less_real @ Y @ X3 ) ) ) ) ) ) ).
% cos_mono_less_eq
thf(fact_8808_forall__pos__mono__1,axiom,
! [P: real > $o,E2: real] :
( ! [D5: real,E: real] :
( ( ord_less_real @ D5 @ E )
=> ( ( P @ D5 )
=> ( P @ E ) ) )
=> ( ! [N3: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono_1
thf(fact_8809_real__arch__inverse,axiom,
! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
= ( ? [N: nat] :
( ( N != zero_zero_nat )
& ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N ) ) )
& ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N ) ) @ E2 ) ) ) ) ).
% real_arch_inverse
thf(fact_8810_forall__pos__mono,axiom,
! [P: real > $o,E2: real] :
( ! [D5: real,E: real] :
( ( ord_less_real @ D5 @ E )
=> ( ( P @ D5 )
=> ( P @ E ) ) )
=> ( ! [N3: nat] :
( ( N3 != zero_zero_nat )
=> ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono
thf(fact_8811_ln__inverse,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ln_ln_real @ ( inverse_inverse_real @ X3 ) )
= ( uminus_uminus_real @ ( ln_ln_real @ X3 ) ) ) ) ).
% ln_inverse
thf(fact_8812_cos__two__less__zero,axiom,
ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).
% cos_two_less_zero
thf(fact_8813_cos__monotone__minus__pi__0,axiom,
! [Y: real,X3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y )
=> ( ( ord_less_real @ Y @ X3 )
=> ( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ord_less_real @ ( cos_real @ Y ) @ ( cos_real @ X3 ) ) ) ) ) ).
% cos_monotone_minus_pi_0
thf(fact_8814_sincos__principal__value,axiom,
! [X3: real] :
? [Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y2 )
& ( ord_less_eq_real @ Y2 @ pi )
& ( ( sin_real @ Y2 )
= ( sin_real @ X3 ) )
& ( ( cos_real @ Y2 )
= ( cos_real @ X3 ) ) ) ).
% sincos_principal_value
thf(fact_8815_cos__tan,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( cos_real @ X3 )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_tan
thf(fact_8816_lemma__tan__total,axiom,
! [Y: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ord_less_real @ Y @ ( tan_real @ X4 ) ) ) ) ).
% lemma_tan_total
thf(fact_8817_tan__gt__zero,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( tan_real @ X3 ) ) ) ) ).
% tan_gt_zero
thf(fact_8818_tan__total,axiom,
! [Y: real] :
? [X4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X4 )
= Y )
& ! [Y3: real] :
( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
& ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ Y3 )
= Y ) )
=> ( Y3 = X4 ) ) ) ).
% tan_total
thf(fact_8819_tan__monotone,axiom,
! [Y: real,X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
=> ( ( ord_less_real @ Y @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X3 ) ) ) ) ) ).
% tan_monotone
thf(fact_8820_tan__monotone_H,axiom,
! [Y: real,X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
=> ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y @ X3 )
= ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X3 ) ) ) ) ) ) ) ).
% tan_monotone'
thf(fact_8821_tan__mono__lt__eq,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
=> ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( tan_real @ X3 ) @ ( tan_real @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ) ) ) ) ).
% tan_mono_lt_eq
thf(fact_8822_lemma__tan__total1,axiom,
! [Y: real] :
? [X4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X4 )
= Y ) ) ).
% lemma_tan_total1
thf(fact_8823_cos__double__less__one,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_real ) ) ) ).
% cos_double_less_one
thf(fact_8824_cos__gt__zero,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X3 ) ) ) ) ).
% cos_gt_zero
thf(fact_8825_plus__inverse__ge__2,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X3 @ ( inverse_inverse_real @ X3 ) ) ) ) ).
% plus_inverse_ge_2
thf(fact_8826_real__inv__sqrt__pow2,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( inverse_inverse_real @ X3 ) ) ) ).
% real_inv_sqrt_pow2
thf(fact_8827_tan__pos__pi2__le,axiom,
! [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X3 ) ) ) ) ).
% tan_pos_pi2_le
thf(fact_8828_tan__total__pos,axiom,
! [Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ? [X4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X4 )
= Y ) ) ) ).
% tan_total_pos
thf(fact_8829_tan__less__zero,axiom,
! [X3: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
=> ( ord_less_real @ ( tan_real @ X3 ) @ zero_zero_real ) ) ) ).
% tan_less_zero
thf(fact_8830_tan__mono__le__eq,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
=> ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( tan_real @ X3 ) @ ( tan_real @ Y ) )
= ( ord_less_eq_real @ X3 @ Y ) ) ) ) ) ) ).
% tan_mono_le_eq
thf(fact_8831_tan__mono__le,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( tan_real @ X3 ) @ ( tan_real @ Y ) ) ) ) ) ).
% tan_mono_le
thf(fact_8832_tan__bound__pi2,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X3 ) ) @ one_one_real ) ) ).
% tan_bound_pi2
thf(fact_8833_cos__gt__zero__pi,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X3 ) ) ) ) ).
% cos_gt_zero_pi
thf(fact_8834_arctan__unique,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ( tan_real @ X3 )
= Y )
=> ( ( arctan @ Y )
= X3 ) ) ) ) ).
% arctan_unique
thf(fact_8835_arctan__tan,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( arctan @ ( tan_real @ X3 ) )
= X3 ) ) ) ).
% arctan_tan
thf(fact_8836_arctan,axiom,
! [Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
& ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ ( arctan @ Y ) )
= Y ) ) ).
% arctan
thf(fact_8837_tan__total__pi4,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ? [Z3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z3 )
& ( ord_less_real @ Z3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
& ( ( tan_real @ Z3 )
= X3 ) ) ) ).
% tan_total_pi4
thf(fact_8838_Maclaurin__minus__cos__expansion,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
=> ? [T6: real] :
( ( ord_less_real @ X3 @ T6 )
& ( ord_less_real @ T6 @ zero_zero_real )
& ( ( cos_real @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T6 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_minus_cos_expansion
thf(fact_8839_Maclaurin__cos__expansion2,axiom,
! [X3: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ? [T6: real] :
( ( ord_less_real @ zero_zero_real @ T6 )
& ( ord_less_real @ T6 @ X3 )
& ( ( cos_real @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T6 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_cos_expansion2
thf(fact_8840_complex__unimodular__polar,axiom,
! [Z2: complex] :
( ( ( real_V1022390504157884413omplex @ Z2 )
= one_one_real )
=> ~ ! [T6: real] :
( ( ord_less_eq_real @ zero_zero_real @ T6 )
=> ( ( ord_less_real @ T6 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( Z2
!= ( complex2 @ ( cos_real @ T6 ) @ ( sin_real @ T6 ) ) ) ) ) ) ).
% complex_unimodular_polar
thf(fact_8841_sinh__real__less__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( sinh_real @ X3 ) @ ( sinh_real @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ).
% sinh_real_less_iff
thf(fact_8842_sinh__real__neg__iff,axiom,
! [X3: real] :
( ( ord_less_real @ ( sinh_real @ X3 ) @ zero_zero_real )
= ( ord_less_real @ X3 @ zero_zero_real ) ) ).
% sinh_real_neg_iff
thf(fact_8843_sinh__real__pos__iff,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ ( sinh_real @ X3 ) )
= ( ord_less_real @ zero_zero_real @ X3 ) ) ).
% sinh_real_pos_iff
thf(fact_8844_cos__coeff__0,axiom,
( ( cos_coeff @ zero_zero_nat )
= one_one_real ) ).
% cos_coeff_0
thf(fact_8845_sinh__less__cosh__real,axiom,
! [X3: real] : ( ord_less_real @ ( sinh_real @ X3 ) @ ( cosh_real @ X3 ) ) ).
% sinh_less_cosh_real
thf(fact_8846_cosh__real__pos,axiom,
! [X3: real] : ( ord_less_real @ zero_zero_real @ ( cosh_real @ X3 ) ) ).
% cosh_real_pos
thf(fact_8847_cosh__real__strict__mono,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y ) ) ) ) ).
% cosh_real_strict_mono
thf(fact_8848_cosh__real__nonneg__less__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ) ) ).
% cosh_real_nonneg_less_iff
thf(fact_8849_cosh__real__nonpos__less__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ( ord_less_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y ) )
= ( ord_less_real @ Y @ X3 ) ) ) ) ).
% cosh_real_nonpos_less_iff
thf(fact_8850_cosh__ln__real,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( cosh_real @ ( ln_ln_real @ X3 ) )
= ( divide_divide_real @ ( plus_plus_real @ X3 @ ( inverse_inverse_real @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% cosh_ln_real
thf(fact_8851_sinh__ln__real,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( sinh_real @ ( ln_ln_real @ X3 ) )
= ( divide_divide_real @ ( minus_minus_real @ X3 @ ( inverse_inverse_real @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% sinh_ln_real
thf(fact_8852_log__base__10__eq1,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X3 )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X3 ) ) ) ) ).
% log_base_10_eq1
thf(fact_8853_divide__int__def,axiom,
( divide_divide_int
= ( ^ [K2: int,L2: int] :
( if_int @ ( L2 = zero_zero_int ) @ zero_zero_int
@ ( if_int
@ ( ( sgn_sgn_int @ K2 )
= ( sgn_sgn_int @ L2 ) )
@ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) )
@ ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_int @ L2 @ K2 ) ) ) ) ) ) ) ) ) ).
% divide_int_def
thf(fact_8854_arctan__def,axiom,
( arctan
= ( ^ [Y5: real] :
( the_real
@ ^ [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
& ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X2 )
= Y5 ) ) ) ) ) ).
% arctan_def
thf(fact_8855_log__base__10__eq2,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X3 )
= ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X3 ) ) ) ) ).
% log_base_10_eq2
thf(fact_8856_mask__nat__positive__iff,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% mask_nat_positive_iff
thf(fact_8857_nat__int,axiom,
! [N2: nat] :
( ( nat2 @ ( semiri1314217659103216013at_int @ N2 ) )
= N2 ) ).
% nat_int
thf(fact_8858_nat__numeral,axiom,
! [K: num] :
( ( nat2 @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% nat_numeral
thf(fact_8859_nat__of__bool,axiom,
! [P: $o] :
( ( nat2 @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2687167440665602831ol_nat @ P ) ) ).
% nat_of_bool
thf(fact_8860_nat__1,axiom,
( ( nat2 @ one_one_int )
= ( suc @ zero_zero_nat ) ) ).
% nat_1
thf(fact_8861_nat__le__0,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ Z2 @ zero_zero_int )
=> ( ( nat2 @ Z2 )
= zero_zero_nat ) ) ).
% nat_le_0
thf(fact_8862_nat__0__iff,axiom,
! [I: int] :
( ( ( nat2 @ I )
= zero_zero_nat )
= ( ord_less_eq_int @ I @ zero_zero_int ) ) ).
% nat_0_iff
thf(fact_8863_zless__nat__conj,axiom,
! [W2: int,Z2: int] :
( ( ord_less_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ( ord_less_int @ zero_zero_int @ Z2 )
& ( ord_less_int @ W2 @ Z2 ) ) ) ).
% zless_nat_conj
thf(fact_8864_nat__neg__numeral,axiom,
! [K: num] :
( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= zero_zero_nat ) ).
% nat_neg_numeral
thf(fact_8865_log__eq__one,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ A )
= one_one_real ) ) ) ).
% log_eq_one
thf(fact_8866_log__less__cancel__iff,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( log @ A @ X3 ) @ ( log @ A @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ) ) ) ).
% log_less_cancel_iff
thf(fact_8867_log__less__one__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ ( log @ A @ X3 ) @ one_one_real )
= ( ord_less_real @ X3 @ A ) ) ) ) ).
% log_less_one_cancel_iff
thf(fact_8868_one__less__log__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ one_one_real @ ( log @ A @ X3 ) )
= ( ord_less_real @ A @ X3 ) ) ) ) ).
% one_less_log_cancel_iff
thf(fact_8869_log__less__zero__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ ( log @ A @ X3 ) @ zero_zero_real )
= ( ord_less_real @ X3 @ one_one_real ) ) ) ) ).
% log_less_zero_cancel_iff
thf(fact_8870_zero__less__log__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X3 ) )
= ( ord_less_real @ one_one_real @ X3 ) ) ) ) ).
% zero_less_log_cancel_iff
thf(fact_8871_nat__zminus__int,axiom,
! [N2: nat] :
( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
= zero_zero_nat ) ).
% nat_zminus_int
thf(fact_8872_int__nat__eq,axiom,
! [Z2: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
= Z2 ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
= zero_zero_int ) ) ) ).
% int_nat_eq
thf(fact_8873_zero__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z2 ) )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% zero_less_nat_eq
thf(fact_8874_log__le__cancel__iff,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ ( log @ A @ X3 ) @ ( log @ A @ Y ) )
= ( ord_less_eq_real @ X3 @ Y ) ) ) ) ) ).
% log_le_cancel_iff
thf(fact_8875_log__le__one__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ ( log @ A @ X3 ) @ one_one_real )
= ( ord_less_eq_real @ X3 @ A ) ) ) ) ).
% log_le_one_cancel_iff
thf(fact_8876_one__le__log__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X3 ) )
= ( ord_less_eq_real @ A @ X3 ) ) ) ) ).
% one_le_log_cancel_iff
thf(fact_8877_log__le__zero__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ ( log @ A @ X3 ) @ zero_zero_real )
= ( ord_less_eq_real @ X3 @ one_one_real ) ) ) ) ).
% log_le_zero_cancel_iff
thf(fact_8878_zero__le__log__cancel__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X3 ) )
= ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ) ).
% zero_le_log_cancel_iff
thf(fact_8879_diff__nat__numeral,axiom,
! [V: num,V3: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V3 ) )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V3 ) ) ) ) ).
% diff_nat_numeral
thf(fact_8880_numeral__power__eq__nat__cancel__iff,axiom,
! [X3: num,N2: nat,Y: int] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N2 )
= ( nat2 @ Y ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 )
= Y ) ) ).
% numeral_power_eq_nat_cancel_iff
thf(fact_8881_nat__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X3: num,N2: nat] :
( ( ( nat2 @ Y )
= ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N2 ) )
= ( Y
= ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% nat_eq_numeral_power_cancel_iff
thf(fact_8882_nat__abs__dvd__iff,axiom,
! [K: int,N2: nat] :
( ( dvd_dvd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N2 )
= ( dvd_dvd_int @ K @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nat_abs_dvd_iff
thf(fact_8883_dvd__nat__abs__iff,axiom,
! [N2: nat,K: int] :
( ( dvd_dvd_nat @ N2 @ ( nat2 @ ( abs_abs_int @ K ) ) )
= ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ N2 ) @ K ) ) ).
% dvd_nat_abs_iff
thf(fact_8884_one__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z2 ) )
= ( ord_less_int @ one_one_int @ Z2 ) ) ).
% one_less_nat_eq
thf(fact_8885_log__pow__cancel,axiom,
! [A: real,B: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( power_power_real @ A @ B ) )
= ( semiri5074537144036343181t_real @ B ) ) ) ) ).
% log_pow_cancel
thf(fact_8886_nat__numeral__diff__1,axiom,
! [V: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).
% nat_numeral_diff_1
thf(fact_8887_nat__less__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N2 ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% nat_less_numeral_power_cancel_iff
thf(fact_8888_numeral__power__less__nat__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N2 ) @ ( nat2 @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_less_nat_cancel_iff
thf(fact_8889_nat__le__numeral__power__cancel__iff,axiom,
! [A: int,X3: num,N2: nat] :
( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N2 ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) ) ) ).
% nat_le_numeral_power_cancel_iff
thf(fact_8890_numeral__power__le__nat__cancel__iff,axiom,
! [X3: num,N2: nat,A: int] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N2 ) @ ( nat2 @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N2 ) @ A ) ) ).
% numeral_power_le_nat_cancel_iff
thf(fact_8891_less__eq__mask,axiom,
! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( bit_se2002935070580805687sk_nat @ N2 ) ) ).
% less_eq_mask
thf(fact_8892_nat__zero__as__int,axiom,
( zero_zero_nat
= ( nat2 @ zero_zero_int ) ) ).
% nat_zero_as_int
thf(fact_8893_nat__numeral__as__int,axiom,
( numeral_numeral_nat
= ( ^ [I5: num] : ( nat2 @ ( numeral_numeral_int @ I5 ) ) ) ) ).
% nat_numeral_as_int
thf(fact_8894_nat__mono,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ord_less_eq_nat @ ( nat2 @ X3 ) @ ( nat2 @ Y ) ) ) ).
% nat_mono
thf(fact_8895_eq__nat__nat__iff,axiom,
! [Z2: int,Z8: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z8 )
=> ( ( ( nat2 @ Z2 )
= ( nat2 @ Z8 ) )
= ( Z2 = Z8 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_8896_all__nat,axiom,
( ( ^ [P2: nat > $o] :
! [X7: nat] : ( P2 @ X7 ) )
= ( ^ [P3: nat > $o] :
! [X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).
% all_nat
thf(fact_8897_ex__nat,axiom,
( ( ^ [P2: nat > $o] :
? [X7: nat] : ( P2 @ X7 ) )
= ( ^ [P3: nat > $o] :
? [X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
& ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).
% ex_nat
thf(fact_8898_nat__one__as__int,axiom,
( one_one_nat
= ( nat2 @ one_one_int ) ) ).
% nat_one_as_int
thf(fact_8899_not__mask__negative__int,axiom,
! [N2: nat] :
~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N2 ) @ zero_zero_int ) ).
% not_mask_negative_int
thf(fact_8900_nat__mono__iff,axiom,
! [Z2: int,W2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less_int @ W2 @ Z2 ) ) ) ).
% nat_mono_iff
thf(fact_8901_zless__nat__eq__int__zless,axiom,
! [M: nat,Z2: int] :
( ( ord_less_nat @ M @ ( nat2 @ Z2 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z2 ) ) ).
% zless_nat_eq_int_zless
thf(fact_8902_nat__le__iff,axiom,
! [X3: int,N2: nat] :
( ( ord_less_eq_nat @ ( nat2 @ X3 ) @ N2 )
= ( ord_less_eq_int @ X3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nat_le_iff
thf(fact_8903_nat__0__le,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
= Z2 ) ) ).
% nat_0_le
thf(fact_8904_int__eq__iff,axiom,
! [M: nat,Z2: int] :
( ( ( semiri1314217659103216013at_int @ M )
= Z2 )
= ( ( M
= ( nat2 @ Z2 ) )
& ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ) ).
% int_eq_iff
thf(fact_8905_nat__int__add,axiom,
! [A: nat,B: nat] :
( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
= ( plus_plus_nat @ A @ B ) ) ).
% nat_int_add
thf(fact_8906_int__minus,axiom,
! [N2: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N2 @ M ) )
= ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).
% int_minus
thf(fact_8907_nat__abs__mult__distrib,axiom,
! [W2: int,Z2: int] :
( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W2 @ Z2 ) ) )
= ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W2 ) ) @ ( nat2 @ ( abs_abs_int @ Z2 ) ) ) ) ).
% nat_abs_mult_distrib
thf(fact_8908_nat__plus__as__int,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).
% nat_plus_as_int
thf(fact_8909_nat__times__as__int,axiom,
( times_times_nat
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).
% nat_times_as_int
thf(fact_8910_less__mask,axiom,
! [N2: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ord_less_nat @ N2 @ ( bit_se2002935070580805687sk_nat @ N2 ) ) ) ).
% less_mask
thf(fact_8911_nat__minus__as__int,axiom,
( minus_minus_nat
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).
% nat_minus_as_int
thf(fact_8912_nat__div__as__int,axiom,
( divide_divide_nat
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).
% nat_div_as_int
thf(fact_8913_nat__mod__as__int,axiom,
( modulo_modulo_nat
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).
% nat_mod_as_int
thf(fact_8914_log__base__change,axiom,
! [A: real,B: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ B @ X3 )
= ( divide_divide_real @ ( log @ A @ X3 ) @ ( log @ A @ B ) ) ) ) ) ).
% log_base_change
thf(fact_8915_log__of__power__eq,axiom,
! [M: nat,B: real,N2: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( power_power_real @ B @ N2 ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( semiri5074537144036343181t_real @ N2 )
= ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).
% log_of_power_eq
thf(fact_8916_less__log__of__power,axiom,
! [B: real,N2: nat,M: real] :
( ( ord_less_real @ ( power_power_real @ B @ N2 ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ M ) ) ) ) ).
% less_log_of_power
thf(fact_8917_nat__less__eq__zless,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( ( ord_less_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less_int @ W2 @ Z2 ) ) ) ).
% nat_less_eq_zless
thf(fact_8918_nat__le__eq__zle,axiom,
! [W2: int,Z2: int] :
( ( ( ord_less_int @ zero_zero_int @ W2 )
| ( ord_less_eq_int @ zero_zero_int @ Z2 ) )
=> ( ( ord_less_eq_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ) ).
% nat_le_eq_zle
thf(fact_8919_nat__eq__iff,axiom,
! [W2: int,M: nat] :
( ( ( nat2 @ W2 )
= M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( W2
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff
thf(fact_8920_nat__eq__iff2,axiom,
! [M: nat,W2: int] :
( ( M
= ( nat2 @ W2 ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( W2
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff2
thf(fact_8921_split__nat,axiom,
! [P: nat > $o,I: int] :
( ( P @ ( nat2 @ I ) )
= ( ! [N: nat] :
( ( I
= ( semiri1314217659103216013at_int @ N ) )
=> ( P @ N ) )
& ( ( ord_less_int @ I @ zero_zero_int )
=> ( P @ zero_zero_nat ) ) ) ) ).
% split_nat
thf(fact_8922_le__nat__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_nat @ N2 @ ( nat2 @ K ) )
= ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ K ) ) ) ).
% le_nat_iff
thf(fact_8923_nat__add__distrib,axiom,
! [Z2: int,Z8: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z8 )
=> ( ( nat2 @ ( plus_plus_int @ Z2 @ Z8 ) )
= ( plus_plus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z8 ) ) ) ) ) ).
% nat_add_distrib
thf(fact_8924_nat__mult__distrib,axiom,
! [Z2: int,Z8: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( nat2 @ ( times_times_int @ Z2 @ Z8 ) )
= ( times_times_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z8 ) ) ) ) ).
% nat_mult_distrib
thf(fact_8925_Suc__as__int,axiom,
( suc
= ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).
% Suc_as_int
thf(fact_8926_nat__diff__distrib_H,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( nat2 @ ( minus_minus_int @ X3 @ Y ) )
= ( minus_minus_nat @ ( nat2 @ X3 ) @ ( nat2 @ Y ) ) ) ) ) ).
% nat_diff_distrib'
thf(fact_8927_nat__diff__distrib,axiom,
! [Z8: int,Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z8 )
=> ( ( ord_less_eq_int @ Z8 @ Z2 )
=> ( ( nat2 @ ( minus_minus_int @ Z2 @ Z8 ) )
= ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z8 ) ) ) ) ) ).
% nat_diff_distrib
thf(fact_8928_nat__abs__triangle__ineq,axiom,
! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).
% nat_abs_triangle_ineq
thf(fact_8929_nat__power__eq,axiom,
! [Z2: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( nat2 @ ( power_power_int @ Z2 @ N2 ) )
= ( power_power_nat @ ( nat2 @ Z2 ) @ N2 ) ) ) ).
% nat_power_eq
thf(fact_8930_nat__2,axiom,
( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% nat_2
thf(fact_8931_log__mult,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( log @ A @ ( times_times_real @ X3 @ Y ) )
= ( plus_plus_real @ ( log @ A @ X3 ) @ ( log @ A @ Y ) ) ) ) ) ) ) ).
% log_mult
thf(fact_8932_log__divide,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( log @ A @ ( divide_divide_real @ X3 @ Y ) )
= ( minus_minus_real @ ( log @ A @ X3 ) @ ( log @ A @ Y ) ) ) ) ) ) ) ).
% log_divide
thf(fact_8933_le__log__of__power,axiom,
! [B: real,N2: nat,M: real] :
( ( ord_less_eq_real @ ( power_power_real @ B @ N2 ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ M ) ) ) ) ).
% le_log_of_power
thf(fact_8934_log__base__pow,axiom,
! [A: real,N2: nat,X3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ ( power_power_real @ A @ N2 ) @ X3 )
= ( divide_divide_real @ ( log @ A @ X3 ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).
% log_base_pow
thf(fact_8935_log__nat__power,axiom,
! [X3: real,B: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( log @ B @ ( power_power_real @ X3 @ N2 ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ X3 ) ) ) ) ).
% log_nat_power
thf(fact_8936_log__inverse,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( log @ A @ ( inverse_inverse_real @ X3 ) )
= ( uminus_uminus_real @ ( log @ A @ X3 ) ) ) ) ) ) ).
% log_inverse
thf(fact_8937_Suc__nat__eq__nat__zadd1,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( suc @ ( nat2 @ Z2 ) )
= ( nat2 @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ) ).
% Suc_nat_eq_nat_zadd1
thf(fact_8938_nat__less__iff,axiom,
! [W2: int,M: nat] :
( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( ( ord_less_nat @ ( nat2 @ W2 ) @ M )
= ( ord_less_int @ W2 @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% nat_less_iff
thf(fact_8939_nat__mult__distrib__neg,axiom,
! [Z2: int,Z8: int] :
( ( ord_less_eq_int @ Z2 @ zero_zero_int )
=> ( ( nat2 @ ( times_times_int @ Z2 @ Z8 ) )
= ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z2 ) ) @ ( nat2 @ ( uminus_uminus_int @ Z8 ) ) ) ) ) ).
% nat_mult_distrib_neg
thf(fact_8940_nat__abs__int__diff,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ B @ A ) ) )
& ( ~ ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ A @ B ) ) ) ) ).
% nat_abs_int_diff
thf(fact_8941_diff__nat__eq__if,axiom,
! [Z8: int,Z2: int] :
( ( ( ord_less_int @ Z8 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z8 ) )
= ( nat2 @ Z2 ) ) )
& ( ~ ( ord_less_int @ Z8 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z8 ) )
= ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z2 @ Z8 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z2 @ Z8 ) ) ) ) ) ) ).
% diff_nat_eq_if
thf(fact_8942_mask__nat__less__exp,axiom,
! [N2: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).
% mask_nat_less_exp
thf(fact_8943_log__of__power__less,axiom,
! [M: nat,B: real,N2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N2 ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).
% log_of_power_less
thf(fact_8944_log__eq__div__ln__mult__log,axiom,
! [A: real,B: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( log @ A @ X3 )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X3 ) ) ) ) ) ) ) ) ).
% log_eq_div_ln_mult_log
thf(fact_8945_nat__dvd__iff,axiom,
! [Z2: int,M: nat] :
( ( dvd_dvd_nat @ ( nat2 @ Z2 ) @ M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( dvd_dvd_int @ Z2 @ ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_dvd_iff
thf(fact_8946_log__of__power__le,axiom,
! [M: nat,B: real,N2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N2 ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).
% log_of_power_le
thf(fact_8947_less__log2__of__power,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% less_log2_of_power
thf(fact_8948_le__log2__of__power,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% le_log2_of_power
thf(fact_8949_log2__of__power__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).
% log2_of_power_less
thf(fact_8950_log2__of__power__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).
% log2_of_power_le
thf(fact_8951_ceiling__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) )
= ( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ) ).
% ceiling_log_nat_eq_powr_iff
thf(fact_8952_ceiling__log__nat__eq__if,axiom,
! [B: nat,N2: nat,K: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
=> ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ) ) ).
% ceiling_log_nat_eq_if
thf(fact_8953_ceiling__log2__div2,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).
% ceiling_log2_div2
thf(fact_8954_floor__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ) ).
% floor_log_nat_eq_powr_iff
thf(fact_8955_floor__log__nat__eq__if,axiom,
! [B: nat,N2: nat,K: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
=> ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% floor_log_nat_eq_if
thf(fact_8956_nat__ceiling__le__eq,axiom,
! [X3: real,A: nat] :
( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X3 ) ) @ A )
= ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ A ) ) ) ).
% nat_ceiling_le_eq
thf(fact_8957_nat__floor__neg,axiom,
! [X3: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X3 ) )
= zero_zero_nat ) ) ).
% nat_floor_neg
thf(fact_8958_floor__eq3,axiom,
! [N2: nat,X3: real] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X3 ) )
= N2 ) ) ) ).
% floor_eq3
thf(fact_8959_le__nat__floor,axiom,
! [X3: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X3 ) @ A )
=> ( ord_less_eq_nat @ X3 @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).
% le_nat_floor
thf(fact_8960_floor__eq,axiom,
! [N2: int,X3: real] :
( ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X3 )
= N2 ) ) ) ).
% floor_eq
thf(fact_8961_real__of__int__floor__add__one__gt,axiom,
! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_gt
thf(fact_8962_real__of__int__floor__gt__diff__one,axiom,
! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).
% real_of_int_floor_gt_diff_one
thf(fact_8963_floor__eq4,axiom,
! [N2: nat,X3: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X3 ) )
= N2 ) ) ) ).
% floor_eq4
thf(fact_8964_floor__eq2,axiom,
! [N2: int,X3: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ N2 ) @ X3 )
=> ( ( ord_less_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X3 )
= N2 ) ) ) ).
% floor_eq2
thf(fact_8965_floor__log2__div2,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
= ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).
% floor_log2_div2
thf(fact_8966_ceiling__log__eq__powr__iff,axiom,
! [X3: real,B: real,K: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim7802044766580827645g_real @ ( log @ B @ X3 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
= ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X3 )
& ( ord_less_eq_real @ X3 @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).
% ceiling_log_eq_powr_iff
thf(fact_8967_powr__int,axiom,
! [X3: real,I: int] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ I )
=> ( ( powr_real @ X3 @ ( ring_1_of_int_real @ I ) )
= ( power_power_real @ X3 @ ( nat2 @ I ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ I )
=> ( ( powr_real @ X3 @ ( ring_1_of_int_real @ I ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X3 @ ( nat2 @ ( uminus_uminus_int @ I ) ) ) ) ) ) ) ) ).
% powr_int
thf(fact_8968_arcsin__lt__bounded,axiom,
! [Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
=> ( ( ord_less_real @ Y @ one_one_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
& ( ord_less_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arcsin_lt_bounded
thf(fact_8969_floor__log__eq__powr__iff,axiom,
! [X3: real,B: real,K: int] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim6058952711729229775r_real @ ( log @ B @ X3 ) )
= K )
= ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X3 )
& ( ord_less_real @ X3 @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).
% floor_log_eq_powr_iff
thf(fact_8970_powr__gt__zero,axiom,
! [X3: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( powr_real @ X3 @ A ) )
= ( X3 != zero_zero_real ) ) ).
% powr_gt_zero
thf(fact_8971_powr__less__cancel__iff,axiom,
! [X3: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% powr_less_cancel_iff
thf(fact_8972_powr__eq__one__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( powr_real @ A @ X3 )
= one_one_real )
= ( X3 = zero_zero_real ) ) ) ).
% powr_eq_one_iff
thf(fact_8973_powr__le__cancel__iff,axiom,
! [X3: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( ( ord_less_eq_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% powr_le_cancel_iff
thf(fact_8974_log__powr__cancel,axiom,
! [A: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( powr_real @ A @ Y ) )
= Y ) ) ) ).
% log_powr_cancel
thf(fact_8975_powr__log__cancel,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( powr_real @ A @ ( log @ A @ X3 ) )
= X3 ) ) ) ) ).
% powr_log_cancel
thf(fact_8976_powr__less__mono2__neg,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X3 @ A ) ) ) ) ) ).
% powr_less_mono2_neg
thf(fact_8977_powr__non__neg,axiom,
! [A: real,X3: real] :
~ ( ord_less_real @ ( powr_real @ A @ X3 ) @ zero_zero_real ) ).
% powr_non_neg
thf(fact_8978_powr__less__mono,axiom,
! [A: real,B: real,X3: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ one_one_real @ X3 )
=> ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) ) ) ) ).
% powr_less_mono
thf(fact_8979_powr__less__cancel,axiom,
! [X3: real,A: real,B: real] :
( ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) )
=> ( ( ord_less_real @ one_one_real @ X3 )
=> ( ord_less_real @ A @ B ) ) ) ).
% powr_less_cancel
thf(fact_8980_powr__less__mono2,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).
% powr_less_mono2
thf(fact_8981_powr__mono2_H,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X3 @ A ) ) ) ) ) ).
% powr_mono2'
thf(fact_8982_powr__inj,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ( powr_real @ A @ X3 )
= ( powr_real @ A @ Y ) )
= ( X3 = Y ) ) ) ) ).
% powr_inj
thf(fact_8983_gr__one__powr,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ one_one_real @ ( powr_real @ X3 @ Y ) ) ) ) ).
% gr_one_powr
thf(fact_8984_powr__realpow,axiom,
! [X3: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( powr_real @ X3 @ ( semiri5074537144036343181t_real @ N2 ) )
= ( power_power_real @ X3 @ N2 ) ) ) ).
% powr_realpow
thf(fact_8985_powr__less__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ ( powr_real @ B @ Y ) @ X3 )
= ( ord_less_real @ Y @ ( log @ B @ X3 ) ) ) ) ) ).
% powr_less_iff
thf(fact_8986_less__powr__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ ( powr_real @ B @ Y ) )
= ( ord_less_real @ ( log @ B @ X3 ) @ Y ) ) ) ) ).
% less_powr_iff
thf(fact_8987_log__less__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ ( log @ B @ X3 ) @ Y )
= ( ord_less_real @ X3 @ ( powr_real @ B @ Y ) ) ) ) ) ).
% log_less_iff
thf(fact_8988_less__log__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ Y @ ( log @ B @ X3 ) )
= ( ord_less_real @ ( powr_real @ B @ Y ) @ X3 ) ) ) ) ).
% less_log_iff
thf(fact_8989_powr__neg__one,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( powr_real @ X3 @ ( uminus_uminus_real @ one_one_real ) )
= ( divide_divide_real @ one_one_real @ X3 ) ) ) ).
% powr_neg_one
thf(fact_8990_arcsin__less__arcsin,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_eq_real @ Y @ one_one_real )
=> ( ord_less_real @ ( arcsin @ X3 ) @ ( arcsin @ Y ) ) ) ) ) ).
% arcsin_less_arcsin
thf(fact_8991_arcsin__less__mono,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
=> ( ( ord_less_real @ ( arcsin @ X3 ) @ ( arcsin @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ) ) ).
% arcsin_less_mono
thf(fact_8992_powr__le__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X3 )
= ( ord_less_eq_real @ Y @ ( log @ B @ X3 ) ) ) ) ) ).
% powr_le_iff
thf(fact_8993_le__powr__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ X3 @ ( powr_real @ B @ Y ) )
= ( ord_less_eq_real @ ( log @ B @ X3 ) @ Y ) ) ) ) ).
% le_powr_iff
thf(fact_8994_log__le__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ ( log @ B @ X3 ) @ Y )
= ( ord_less_eq_real @ X3 @ ( powr_real @ B @ Y ) ) ) ) ) ).
% log_le_iff
thf(fact_8995_le__log__iff,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ Y @ ( log @ B @ X3 ) )
= ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X3 ) ) ) ) ).
% le_log_iff
thf(fact_8996_ln__powr__bound,axiom,
! [X3: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ ( divide_divide_real @ ( powr_real @ X3 @ A ) @ A ) ) ) ) ).
% ln_powr_bound
thf(fact_8997_ln__powr__bound2,axiom,
! [X3: real,A: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X3 ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X3 ) ) ) ) ).
% ln_powr_bound2
thf(fact_8998_log__add__eq__powr,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( plus_plus_real @ ( log @ B @ X3 ) @ Y )
= ( log @ B @ ( times_times_real @ X3 @ ( powr_real @ B @ Y ) ) ) ) ) ) ) ).
% log_add_eq_powr
thf(fact_8999_add__log__eq__powr,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( plus_plus_real @ Y @ ( log @ B @ X3 ) )
= ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y ) @ X3 ) ) ) ) ) ) ).
% add_log_eq_powr
thf(fact_9000_minus__log__eq__powr,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( minus_minus_real @ Y @ ( log @ B @ X3 ) )
= ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y ) @ X3 ) ) ) ) ) ) ).
% minus_log_eq_powr
thf(fact_9001_cos__arcsin__nonzero,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( ( cos_real @ ( arcsin @ X3 ) )
!= zero_zero_real ) ) ) ).
% cos_arcsin_nonzero
thf(fact_9002_log__minus__eq__powr,axiom,
! [B: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( minus_minus_real @ ( log @ B @ X3 ) @ Y )
= ( log @ B @ ( times_times_real @ X3 @ ( powr_real @ B @ ( uminus_uminus_real @ Y ) ) ) ) ) ) ) ) ).
% log_minus_eq_powr
thf(fact_9003_powr__neg__numeral,axiom,
! [X3: real,N2: num] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( powr_real @ X3 @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).
% powr_neg_numeral
thf(fact_9004_powr__real__of__int,axiom,
! [X3: real,N2: int] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ N2 )
=> ( ( powr_real @ X3 @ ( ring_1_of_int_real @ N2 ) )
= ( power_power_real @ X3 @ ( nat2 @ N2 ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ N2 )
=> ( ( powr_real @ X3 @ ( ring_1_of_int_real @ N2 ) )
= ( inverse_inverse_real @ ( power_power_real @ X3 @ ( nat2 @ ( uminus_uminus_int @ N2 ) ) ) ) ) ) ) ) ).
% powr_real_of_int
thf(fact_9005_Suc__0__xor__eq,axiom,
! [N2: nat] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( minus_minus_nat @ ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% Suc_0_xor_eq
thf(fact_9006_xor__Suc__0__eq,axiom,
! [N2: nat] :
( ( bit_se6528837805403552850or_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( minus_minus_nat @ ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% xor_Suc_0_eq
thf(fact_9007_xor__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).
% xor_nat_numerals(1)
thf(fact_9008_xor__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit0 @ Y ) ) ) ).
% xor_nat_numerals(2)
thf(fact_9009_xor__nat__numerals_I3_J,axiom,
! [X3: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).
% xor_nat_numerals(3)
thf(fact_9010_xor__nat__numerals_I4_J,axiom,
! [X3: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit0 @ X3 ) ) ) ).
% xor_nat_numerals(4)
thf(fact_9011_floor__real__def,axiom,
( archim6058952711729229775r_real
= ( ^ [X2: real] :
( the_int
@ ^ [Z6: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z6 ) @ X2 )
& ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z6 @ one_one_int ) ) ) ) ) ) ) ).
% floor_real_def
thf(fact_9012_xor__nat__unfold,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N @ ( if_nat @ ( N = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% xor_nat_unfold
thf(fact_9013_xor__nat__rec,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M3: nat,N: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% xor_nat_rec
thf(fact_9014_horner__sum__of__bool__2__less,axiom,
! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).
% horner_sum_of_bool_2_less
thf(fact_9015_floor__rat__def,axiom,
( archim3151403230148437115or_rat
= ( ^ [X2: rat] :
( the_int
@ ^ [Z6: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z6 ) @ X2 )
& ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z6 @ one_one_int ) ) ) ) ) ) ) ).
% floor_rat_def
thf(fact_9016_or__nat__unfold,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N @ ( if_nat @ ( N = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% or_nat_unfold
thf(fact_9017_xor__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
!= ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% xor_negative_int_iff
thf(fact_9018_or__nat__numerals_I4_J,axiom,
! [X3: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).
% or_nat_numerals(4)
thf(fact_9019_or__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).
% or_nat_numerals(2)
thf(fact_9020_or__nat__numerals_I3_J,axiom,
! [X3: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).
% or_nat_numerals(3)
thf(fact_9021_or__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).
% or_nat_numerals(1)
thf(fact_9022_less__eq__rat__def,axiom,
( ord_less_eq_rat
= ( ^ [X2: rat,Y5: rat] :
( ( ord_less_rat @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% less_eq_rat_def
thf(fact_9023_obtain__pos__sum,axiom,
! [R2: rat] :
( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ~ ! [S3: rat] :
( ( ord_less_rat @ zero_zero_rat @ S3 )
=> ! [T6: rat] :
( ( ord_less_rat @ zero_zero_rat @ T6 )
=> ( R2
!= ( plus_plus_rat @ S3 @ T6 ) ) ) ) ) ).
% obtain_pos_sum
thf(fact_9024_abs__rat__def,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_rat_def
thf(fact_9025_sgn__rat__def,axiom,
( sgn_sgn_rat
= ( ^ [A3: rat] : ( if_rat @ ( A3 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A3 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).
% sgn_rat_def
thf(fact_9026_XOR__upper,axiom,
! [X3: int,N2: nat,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_int @ X3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
=> ( ord_less_int @ ( bit_se6526347334894502574or_int @ X3 @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% XOR_upper
thf(fact_9027_Suc__0__or__eq,axiom,
! [N2: nat] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% Suc_0_or_eq
thf(fact_9028_or__Suc__0__eq,axiom,
! [N2: nat] :
( ( bit_se1412395901928357646or_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% or_Suc_0_eq
thf(fact_9029_or__nat__rec,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M3: nat,N: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
| ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% or_nat_rec
thf(fact_9030_normalize__negative,axiom,
! [Q2: int,P5: int] :
( ( ord_less_int @ Q2 @ zero_zero_int )
=> ( ( normalize @ ( product_Pair_int_int @ P5 @ Q2 ) )
= ( normalize @ ( product_Pair_int_int @ ( uminus_uminus_int @ P5 ) @ ( uminus_uminus_int @ Q2 ) ) ) ) ) ).
% normalize_negative
thf(fact_9031_Sum__Ico__nat,axiom,
! [M: nat,N2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or4665077453230672383an_nat @ M @ N2 ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N2 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Ico_nat
thf(fact_9032_VEBT_Osize_I3_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size(3)
thf(fact_9033_Cauchy__iff2,axiom,
( topolo4055970368930404560y_real
= ( ^ [X6: nat > real] :
! [J3: nat] :
? [M9: nat] :
! [M3: nat] :
( ( ord_less_eq_nat @ M9 @ M3 )
=> ! [N: nat] :
( ( ord_less_eq_nat @ M9 @ N )
=> ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X6 @ M3 ) @ ( X6 @ N ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).
% Cauchy_iff2
thf(fact_9034_or__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
| ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% or_negative_int_iff
thf(fact_9035_finite__atLeastLessThan,axiom,
! [L: nat,U: nat] : ( finite_finite_nat @ ( set_or4665077453230672383an_nat @ L @ U ) ) ).
% finite_atLeastLessThan
thf(fact_9036_atLeastLessThan__singleton,axiom,
! [M: nat] :
( ( set_or4665077453230672383an_nat @ M @ ( suc @ M ) )
= ( insert_nat @ M @ bot_bot_set_nat ) ) ).
% atLeastLessThan_singleton
thf(fact_9037_ex__nat__less__eq,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
& ( P @ M3 ) ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
& ( P @ X2 ) ) ) ) ).
% ex_nat_less_eq
thf(fact_9038_all__nat__less__eq,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
=> ( P @ M3 ) ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
=> ( P @ X2 ) ) ) ) ).
% all_nat_less_eq
thf(fact_9039_atLeastLessThanSuc__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or4665077453230672383an_nat @ L @ ( suc @ U ) )
= ( set_or1269000886237332187st_nat @ L @ U ) ) ).
% atLeastLessThanSuc_atLeastAtMost
thf(fact_9040_lessThan__atLeast0,axiom,
( set_ord_lessThan_nat
= ( set_or4665077453230672383an_nat @ zero_zero_nat ) ) ).
% lessThan_atLeast0
thf(fact_9041_atLeastLessThan0,axiom,
! [M: nat] :
( ( set_or4665077453230672383an_nat @ M @ zero_zero_nat )
= bot_bot_set_nat ) ).
% atLeastLessThan0
thf(fact_9042_atLeast0__lessThan__Suc,axiom,
! [N2: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N2 ) )
= ( insert_nat @ N2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ).
% atLeast0_lessThan_Suc
thf(fact_9043_subset__eq__atLeast0__lessThan__finite,axiom,
! [N5: set_nat,N2: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_lessThan_finite
thf(fact_9044_atLeastLessThanSuc,axiom,
! [M: nat,N2: nat] :
( ( ( ord_less_eq_nat @ M @ N2 )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N2 ) )
= ( insert_nat @ N2 @ ( set_or4665077453230672383an_nat @ M @ N2 ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N2 )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N2 ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThanSuc
thf(fact_9045_prod__Suc__fact,axiom,
! [N2: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
= ( semiri1408675320244567234ct_nat @ N2 ) ) ).
% prod_Suc_fact
thf(fact_9046_prod__Suc__Suc__fact,axiom,
! [N2: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
= ( semiri1408675320244567234ct_nat @ N2 ) ) ).
% prod_Suc_Suc_fact
thf(fact_9047_normalize__denom__pos,axiom,
! [R2: product_prod_int_int,P5: int,Q2: int] :
( ( ( normalize @ R2 )
= ( product_Pair_int_int @ P5 @ Q2 ) )
=> ( ord_less_int @ zero_zero_int @ Q2 ) ) ).
% normalize_denom_pos
thf(fact_9048_atLeastLessThan__nat__numeral,axiom,
! [M: nat,K: num] :
( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThan_nat_numeral
thf(fact_9049_OR__upper,axiom,
! [X3: int,N2: nat,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_int @ X3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
=> ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
=> ( ord_less_int @ ( bit_se1409905431419307370or_int @ X3 @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).
% OR_upper
thf(fact_9050_atLeast1__lessThan__eq__remove0,axiom,
! [N2: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N2 ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_lessThan_eq_remove0
thf(fact_9051_sum__power2,axiom,
! [K: nat] :
( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
= ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).
% sum_power2
thf(fact_9052_Chebyshev__sum__upper__nat,axiom,
! [N2: nat,A: nat > nat,B: nat > nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ N2 )
=> ( ord_less_eq_nat @ ( A @ I3 ) @ ( A @ J2 ) ) ) )
=> ( ! [I3: nat,J2: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ N2 )
=> ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I3 ) ) ) )
=> ( ord_less_eq_nat
@ ( times_times_nat @ N2
@ ( groups3542108847815614940at_nat
@ ^ [I5: nat] : ( times_times_nat @ ( A @ I5 ) @ ( B @ I5 ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) )
@ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ) ) ) ).
% Chebyshev_sum_upper_nat
thf(fact_9053_VEBT_Osize__gen_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size_gen(1)
thf(fact_9054_finite__atLeastLessThan__int,axiom,
! [L: int,U: int] : ( finite_finite_int @ ( set_or4662586982721622107an_int @ L @ U ) ) ).
% finite_atLeastLessThan_int
thf(fact_9055_finite__atLeastZeroLessThan__int,axiom,
! [U: int] : ( finite_finite_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) ) ).
% finite_atLeastZeroLessThan_int
thf(fact_9056_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
! [L: int,U: int] :
( ( set_or4662586982721622107an_int @ L @ ( plus_plus_int @ U @ one_one_int ) )
= ( set_or1266510415728281911st_int @ L @ U ) ) ).
% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9057_VEBT_Osize__gen_I2_J,axiom,
! [X21: $o,X222: $o] :
( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size_gen(2)
thf(fact_9058_card__lessThan,axiom,
! [U: nat] :
( ( finite_card_nat @ ( set_ord_lessThan_nat @ U ) )
= U ) ).
% card_lessThan
thf(fact_9059_card__Collect__less__nat,axiom,
! [N2: nat] :
( ( finite_card_nat
@ ( collect_nat
@ ^ [I5: nat] : ( ord_less_nat @ I5 @ N2 ) ) )
= N2 ) ).
% card_Collect_less_nat
thf(fact_9060_card__atMost,axiom,
! [U: nat] :
( ( finite_card_nat @ ( set_ord_atMost_nat @ U ) )
= ( suc @ U ) ) ).
% card_atMost
thf(fact_9061_card__atLeastLessThan,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or4665077453230672383an_nat @ L @ U ) )
= ( minus_minus_nat @ U @ L ) ) ).
% card_atLeastLessThan
thf(fact_9062_card__Collect__le__nat,axiom,
! [N2: nat] :
( ( finite_card_nat
@ ( collect_nat
@ ^ [I5: nat] : ( ord_less_eq_nat @ I5 @ N2 ) ) )
= ( suc @ N2 ) ) ).
% card_Collect_le_nat
thf(fact_9063_card__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or1269000886237332187st_nat @ L @ U ) )
= ( minus_minus_nat @ ( suc @ U ) @ L ) ) ).
% card_atLeastAtMost
thf(fact_9064_card__atLeastLessThan__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or4662586982721622107an_int @ L @ U ) )
= ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).
% card_atLeastLessThan_int
thf(fact_9065_card__atLeastAtMost__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or1266510415728281911st_int @ L @ U ) )
= ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L ) @ one_one_int ) ) ) ).
% card_atLeastAtMost_int
thf(fact_9066_card__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( finite_card_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) )
= ( nat2 @ U ) ) ).
% card_atLeastZeroLessThan_int
thf(fact_9067_card__less__Suc2,axiom,
! [M5: set_nat,I: nat] :
( ~ ( member_nat @ zero_zero_nat @ M5 )
=> ( ( finite_card_nat
@ ( collect_nat
@ ^ [K2: nat] :
( ( member_nat @ ( suc @ K2 ) @ M5 )
& ( ord_less_nat @ K2 @ I ) ) ) )
= ( finite_card_nat
@ ( collect_nat
@ ^ [K2: nat] :
( ( member_nat @ K2 @ M5 )
& ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).
% card_less_Suc2
thf(fact_9068_card__less__Suc,axiom,
! [M5: set_nat,I: nat] :
( ( member_nat @ zero_zero_nat @ M5 )
=> ( ( suc
@ ( finite_card_nat
@ ( collect_nat
@ ^ [K2: nat] :
( ( member_nat @ ( suc @ K2 ) @ M5 )
& ( ord_less_nat @ K2 @ I ) ) ) ) )
= ( finite_card_nat
@ ( collect_nat
@ ^ [K2: nat] :
( ( member_nat @ K2 @ M5 )
& ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).
% card_less_Suc
thf(fact_9069_card__less,axiom,
! [M5: set_nat,I: nat] :
( ( member_nat @ zero_zero_nat @ M5 )
=> ( ( finite_card_nat
@ ( collect_nat
@ ^ [K2: nat] :
( ( member_nat @ K2 @ M5 )
& ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) )
!= zero_zero_nat ) ) ).
% card_less
thf(fact_9070_subset__card__intvl__is__intvl,axiom,
! [A2: set_nat,K: nat] :
( ( ord_less_eq_set_nat @ A2 @ ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) )
=> ( A2
= ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) ) ) ).
% subset_card_intvl_is_intvl
thf(fact_9071_subset__eq__atLeast0__lessThan__card,axiom,
! [N5: set_nat,N2: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
=> ( ord_less_eq_nat @ ( finite_card_nat @ N5 ) @ N2 ) ) ).
% subset_eq_atLeast0_lessThan_card
thf(fact_9072_card__sum__le__nat__sum,axiom,
! [S2: set_nat] :
( ord_less_eq_nat
@ ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S2 ) ) )
@ ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ S2 ) ) ).
% card_sum_le_nat_sum
thf(fact_9073_card__nth__roots,axiom,
! [C: complex,N2: nat] :
( ( C != zero_zero_complex )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( finite_card_complex
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= C ) ) )
= N2 ) ) ) ).
% card_nth_roots
thf(fact_9074_card__roots__unity__eq,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( finite_card_complex
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= one_one_complex ) ) )
= N2 ) ) ).
% card_roots_unity_eq
thf(fact_9075_signed__take__bit__negative__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ zero_zero_int )
= ( bit_se1146084159140164899it_int @ K @ N2 ) ) ).
% signed_take_bit_negative_iff
thf(fact_9076_not__bit__Suc__0__Suc,axiom,
! [N2: nat] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N2 ) ) ).
% not_bit_Suc_0_Suc
thf(fact_9077_bit__Suc__0__iff,axiom,
! [N2: nat] :
( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( N2 = zero_zero_nat ) ) ).
% bit_Suc_0_iff
thf(fact_9078_not__bit__Suc__0__numeral,axiom,
! [N2: num] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N2 ) ) ).
% not_bit_Suc_0_numeral
thf(fact_9079_bit__imp__take__bit__positive,axiom,
! [N2: nat,M: nat,K: int] :
( ( ord_less_nat @ N2 @ M )
=> ( ( bit_se1146084159140164899it_int @ K @ N2 )
=> ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).
% bit_imp_take_bit_positive
thf(fact_9080_int__bit__bound,axiom,
! [K: int] :
~ ! [N3: nat] :
( ! [M2: nat] :
( ( ord_less_eq_nat @ N3 @ M2 )
=> ( ( bit_se1146084159140164899it_int @ K @ M2 )
= ( bit_se1146084159140164899it_int @ K @ N3 ) ) )
=> ~ ( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N3 @ one_one_nat ) )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N3 ) ) ) ) ) ).
% int_bit_bound
thf(fact_9081_nat_Odisc__eq__case_I1_J,axiom,
! [Nat: nat] :
( ( Nat = zero_zero_nat )
= ( case_nat_o @ $true
@ ^ [Uu3: nat] : $false
@ Nat ) ) ).
% nat.disc_eq_case(1)
thf(fact_9082_nat_Odisc__eq__case_I2_J,axiom,
! [Nat: nat] :
( ( Nat != zero_zero_nat )
= ( case_nat_o @ $false
@ ^ [Uu3: nat] : $true
@ Nat ) ) ).
% nat.disc_eq_case(2)
thf(fact_9083_less__eq__nat_Osimps_I2_J,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
= ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N2 ) ) ).
% less_eq_nat.simps(2)
thf(fact_9084_max__Suc1,axiom,
! [N2: nat,M: nat] :
( ( ord_max_nat @ ( suc @ N2 ) @ M )
= ( case_nat_nat @ ( suc @ N2 )
@ ^ [M6: nat] : ( suc @ ( ord_max_nat @ N2 @ M6 ) )
@ M ) ) ).
% max_Suc1
thf(fact_9085_max__Suc2,axiom,
! [M: nat,N2: nat] :
( ( ord_max_nat @ M @ ( suc @ N2 ) )
= ( case_nat_nat @ ( suc @ N2 )
@ ^ [M6: nat] : ( suc @ ( ord_max_nat @ M6 @ N2 ) )
@ M ) ) ).
% max_Suc2
thf(fact_9086_diff__Suc,axiom,
! [M: nat,N2: nat] :
( ( minus_minus_nat @ M @ ( suc @ N2 ) )
= ( case_nat_nat @ zero_zero_nat
@ ^ [K2: nat] : K2
@ ( minus_minus_nat @ M @ N2 ) ) ) ).
% diff_Suc
thf(fact_9087_binomial__def,axiom,
( binomial
= ( ^ [N: nat,K2: nat] :
( finite_card_set_nat
@ ( collect_set_nat
@ ^ [K7: set_nat] :
( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
& ( ( finite_card_nat @ K7 )
= K2 ) ) ) ) ) ) ).
% binomial_def
thf(fact_9088_push__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se545348938243370406it_int @ N2 @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% push_bit_negative_int_iff
thf(fact_9089_push__bit__of__Suc__0,axiom,
! [N2: nat] :
( ( bit_se547839408752420682it_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).
% push_bit_of_Suc_0
thf(fact_9090_bit__push__bit__iff__int,axiom,
! [M: nat,K: int,N2: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N2 )
= ( ( ord_less_eq_nat @ M @ N2 )
& ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).
% bit_push_bit_iff_int
thf(fact_9091_bit__push__bit__iff__nat,axiom,
! [M: nat,Q2: nat,N2: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q2 ) @ N2 )
= ( ( ord_less_eq_nat @ M @ N2 )
& ( bit_se1148574629649215175it_nat @ Q2 @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).
% bit_push_bit_iff_nat
thf(fact_9092_pred__def,axiom,
( pred
= ( case_nat_nat @ zero_zero_nat
@ ^ [X24: nat] : X24 ) ) ).
% pred_def
thf(fact_9093_bezw__0,axiom,
! [X3: nat] :
( ( bezw @ X3 @ zero_zero_nat )
= ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) ).
% bezw_0
thf(fact_9094_prod__decode__aux_Oelims,axiom,
! [X3: nat,Xa2: nat,Y: product_prod_nat_nat] :
( ( ( nat_prod_decode_aux @ X3 @ Xa2 )
= Y )
=> ( ( ( ord_less_eq_nat @ Xa2 @ X3 )
=> ( Y
= ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X3 @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq_nat @ Xa2 @ X3 )
=> ( Y
= ( nat_prod_decode_aux @ ( suc @ X3 ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X3 ) ) ) ) ) ) ) ).
% prod_decode_aux.elims
thf(fact_9095_prod__decode__aux_Osimps,axiom,
( nat_prod_decode_aux
= ( ^ [K2: nat,M3: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M3 @ K2 ) @ ( product_Pair_nat_nat @ M3 @ ( minus_minus_nat @ K2 @ M3 ) ) @ ( nat_prod_decode_aux @ ( suc @ K2 ) @ ( minus_minus_nat @ M3 @ ( suc @ K2 ) ) ) ) ) ) ).
% prod_decode_aux.simps
thf(fact_9096_finite__enumerate,axiom,
! [S2: set_nat] :
( ( finite_finite_nat @ S2 )
=> ? [R3: nat > nat] :
( ( strict1292158309912662752at_nat @ R3 @ ( set_ord_lessThan_nat @ ( finite_card_nat @ S2 ) ) )
& ! [N6: nat] :
( ( ord_less_nat @ N6 @ ( finite_card_nat @ S2 ) )
=> ( member_nat @ ( R3 @ N6 ) @ S2 ) ) ) ) ).
% finite_enumerate
thf(fact_9097_Sup__nat__empty,axiom,
( ( complete_Sup_Sup_nat @ bot_bot_set_nat )
= zero_zero_nat ) ).
% Sup_nat_empty
thf(fact_9098_Inf__nat__def1,axiom,
! [K5: set_nat] :
( ( K5 != bot_bot_set_nat )
=> ( member_nat @ ( complete_Inf_Inf_nat @ K5 ) @ K5 ) ) ).
% Inf_nat_def1
thf(fact_9099_root__powr__inverse,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( root @ N2 @ X3 )
= ( powr_real @ X3 @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ) ).
% root_powr_inverse
thf(fact_9100_drop__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N2 @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% drop_bit_negative_int_iff
thf(fact_9101_real__root__Suc__0,axiom,
! [X3: real] :
( ( root @ ( suc @ zero_zero_nat ) @ X3 )
= X3 ) ).
% real_root_Suc_0
thf(fact_9102_root__0,axiom,
! [X3: real] :
( ( root @ zero_zero_nat @ X3 )
= zero_zero_real ) ).
% root_0
thf(fact_9103_real__root__eq__iff,axiom,
! [N2: nat,X3: real,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( root @ N2 @ X3 )
= ( root @ N2 @ Y ) )
= ( X3 = Y ) ) ) ).
% real_root_eq_iff
thf(fact_9104_drop__bit__of__Suc__0,axiom,
! [N2: nat] :
( ( bit_se8570568707652914677it_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).
% drop_bit_of_Suc_0
thf(fact_9105_real__root__eq__0__iff,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( root @ N2 @ X3 )
= zero_zero_real )
= ( X3 = zero_zero_real ) ) ) ).
% real_root_eq_0_iff
thf(fact_9106_real__root__less__iff,axiom,
! [N2: nat,X3: real,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ ( root @ N2 @ X3 ) @ ( root @ N2 @ Y ) )
= ( ord_less_real @ X3 @ Y ) ) ) ).
% real_root_less_iff
thf(fact_9107_real__root__le__iff,axiom,
! [N2: nat,X3: real,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( root @ N2 @ X3 ) @ ( root @ N2 @ Y ) )
= ( ord_less_eq_real @ X3 @ Y ) ) ) ).
% real_root_le_iff
thf(fact_9108_real__root__eq__1__iff,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( root @ N2 @ X3 )
= one_one_real )
= ( X3 = one_one_real ) ) ) ).
% real_root_eq_1_iff
thf(fact_9109_real__root__one,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( root @ N2 @ one_one_real )
= one_one_real ) ) ).
% real_root_one
thf(fact_9110_real__root__lt__0__iff,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ ( root @ N2 @ X3 ) @ zero_zero_real )
= ( ord_less_real @ X3 @ zero_zero_real ) ) ) ).
% real_root_lt_0_iff
thf(fact_9111_real__root__gt__0__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ ( root @ N2 @ Y ) )
= ( ord_less_real @ zero_zero_real @ Y ) ) ) ).
% real_root_gt_0_iff
thf(fact_9112_real__root__le__0__iff,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( root @ N2 @ X3 ) @ zero_zero_real )
= ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ) ).
% real_root_le_0_iff
thf(fact_9113_real__root__ge__0__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ Y ) )
= ( ord_less_eq_real @ zero_zero_real @ Y ) ) ) ).
% real_root_ge_0_iff
thf(fact_9114_real__root__lt__1__iff,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ ( root @ N2 @ X3 ) @ one_one_real )
= ( ord_less_real @ X3 @ one_one_real ) ) ) ).
% real_root_lt_1_iff
thf(fact_9115_real__root__gt__1__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ one_one_real @ ( root @ N2 @ Y ) )
= ( ord_less_real @ one_one_real @ Y ) ) ) ).
% real_root_gt_1_iff
thf(fact_9116_real__root__le__1__iff,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( root @ N2 @ X3 ) @ one_one_real )
= ( ord_less_eq_real @ X3 @ one_one_real ) ) ) ).
% real_root_le_1_iff
thf(fact_9117_real__root__ge__1__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ one_one_real @ ( root @ N2 @ Y ) )
= ( ord_less_eq_real @ one_one_real @ Y ) ) ) ).
% real_root_ge_1_iff
thf(fact_9118_real__root__pow__pos2,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( power_power_real @ ( root @ N2 @ X3 ) @ N2 )
= X3 ) ) ) ).
% real_root_pow_pos2
thf(fact_9119_real__root__less__mono,axiom,
! [N2: nat,X3: real,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( root @ N2 @ X3 ) @ ( root @ N2 @ Y ) ) ) ) ).
% real_root_less_mono
thf(fact_9120_real__root__le__mono,axiom,
! [N2: nat,X3: real,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( root @ N2 @ X3 ) @ ( root @ N2 @ Y ) ) ) ) ).
% real_root_le_mono
thf(fact_9121_real__root__power,axiom,
! [N2: nat,X3: real,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( root @ N2 @ ( power_power_real @ X3 @ K ) )
= ( power_power_real @ ( root @ N2 @ X3 ) @ K ) ) ) ).
% real_root_power
thf(fact_9122_real__root__abs,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( root @ N2 @ ( abs_abs_real @ X3 ) )
= ( abs_abs_real @ ( root @ N2 @ X3 ) ) ) ) ).
% real_root_abs
thf(fact_9123_sgn__root,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( sgn_sgn_real @ ( root @ N2 @ X3 ) )
= ( sgn_sgn_real @ X3 ) ) ) ).
% sgn_root
thf(fact_9124_real__root__gt__zero,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_real @ zero_zero_real @ ( root @ N2 @ X3 ) ) ) ) ).
% real_root_gt_zero
thf(fact_9125_real__root__strict__decreasing,axiom,
! [N2: nat,N5: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_real @ one_one_real @ X3 )
=> ( ord_less_real @ ( root @ N5 @ X3 ) @ ( root @ N2 @ X3 ) ) ) ) ) ).
% real_root_strict_decreasing
thf(fact_9126_root__abs__power,axiom,
! [N2: nat,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( abs_abs_real @ ( root @ N2 @ ( power_power_real @ Y @ N2 ) ) )
= ( abs_abs_real @ Y ) ) ) ).
% root_abs_power
thf(fact_9127_real__root__pos__pos,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ X3 ) ) ) ) ).
% real_root_pos_pos
thf(fact_9128_real__root__strict__increasing,axiom,
! [N2: nat,N5: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( ord_less_real @ ( root @ N2 @ X3 ) @ ( root @ N5 @ X3 ) ) ) ) ) ) ).
% real_root_strict_increasing
thf(fact_9129_real__root__decreasing,axiom,
! [N2: nat,N5: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ X3 )
=> ( ord_less_eq_real @ ( root @ N5 @ X3 ) @ ( root @ N2 @ X3 ) ) ) ) ) ).
% real_root_decreasing
thf(fact_9130_real__root__pow__pos,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( power_power_real @ ( root @ N2 @ X3 ) @ N2 )
= X3 ) ) ) ).
% real_root_pow_pos
thf(fact_9131_real__root__power__cancel,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( root @ N2 @ ( power_power_real @ X3 @ N2 ) )
= X3 ) ) ) ).
% real_root_power_cancel
thf(fact_9132_real__root__pos__unique,axiom,
! [N2: nat,Y: real,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( power_power_real @ Y @ N2 )
= X3 )
=> ( ( root @ N2 @ X3 )
= Y ) ) ) ) ).
% real_root_pos_unique
thf(fact_9133_real__root__increasing,axiom,
! [N2: nat,N5: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ X3 @ one_one_real )
=> ( ord_less_eq_real @ ( root @ N2 @ X3 ) @ ( root @ N5 @ X3 ) ) ) ) ) ) ).
% real_root_increasing
thf(fact_9134_root__sgn__power,axiom,
! [N2: nat,Y: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( root @ N2 @ ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N2 ) ) )
= Y ) ) ).
% root_sgn_power
thf(fact_9135_sgn__power__root,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N2 @ X3 ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N2 @ X3 ) ) @ N2 ) )
= X3 ) ) ).
% sgn_power_root
thf(fact_9136_ln__root,axiom,
! [N2: nat,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ln_ln_real @ ( root @ N2 @ B ) )
= ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).
% ln_root
thf(fact_9137_log__root,axiom,
! [N2: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ B @ ( root @ N2 @ A ) )
= ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).
% log_root
thf(fact_9138_log__base__root,axiom,
! [N2: nat,B: real,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( log @ ( root @ N2 @ B ) @ X3 )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ X3 ) ) ) ) ) ).
% log_base_root
thf(fact_9139_split__root,axiom,
! [P: real > $o,N2: nat,X3: real] :
( ( P @ ( root @ N2 @ X3 ) )
= ( ( ( N2 = zero_zero_nat )
=> ( P @ zero_zero_real ) )
& ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ! [Y5: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ Y5 ) @ ( power_power_real @ ( abs_abs_real @ Y5 ) @ N2 ) )
= X3 )
=> ( P @ Y5 ) ) ) ) ) ).
% split_root
thf(fact_9140_card__greaterThanLessThan__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or5832277885323065728an_int @ L @ U ) )
= ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L @ one_one_int ) ) ) ) ).
% card_greaterThanLessThan_int
thf(fact_9141_finite__greaterThanLessThan__int,axiom,
! [L: int,U: int] : ( finite_finite_int @ ( set_or5832277885323065728an_int @ L @ U ) ) ).
% finite_greaterThanLessThan_int
thf(fact_9142_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
! [L: int,U: int] :
( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
= ( set_or5832277885323065728an_int @ L @ U ) ) ).
% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_9143_max__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
@ ^ [X2: nat,Y5: nat] : ( ord_less_eq_nat @ Y5 @ X2 )
@ ^ [X2: nat,Y5: nat] : ( ord_less_nat @ Y5 @ X2 ) ) ).
% max_nat.semilattice_neutr_order_axioms
thf(fact_9144_finite__greaterThanLessThan,axiom,
! [L: nat,U: nat] : ( finite_finite_nat @ ( set_or5834768355832116004an_nat @ L @ U ) ) ).
% finite_greaterThanLessThan
thf(fact_9145_Suc__funpow,axiom,
! [N2: nat] :
( ( compow_nat_nat @ N2 @ suc )
= ( plus_plus_nat @ N2 ) ) ).
% Suc_funpow
thf(fact_9146_card__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or5834768355832116004an_nat @ L @ U ) )
= ( minus_minus_nat @ U @ ( suc @ L ) ) ) ).
% card_greaterThanLessThan
thf(fact_9147_atLeastSucLessThan__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ L ) @ U )
= ( set_or5834768355832116004an_nat @ L @ U ) ) ).
% atLeastSucLessThan_greaterThanLessThan
thf(fact_9148_times__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X3: product_prod_nat_nat] :
( ( times_times_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X3 ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y5: nat] :
( produc2626176000494625587at_nat
@ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X2 @ U2 ) @ ( times_times_nat @ Y5 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X2 @ V4 ) @ ( times_times_nat @ Y5 @ U2 ) ) ) )
@ Xa2
@ X3 ) ) ) ).
% times_int.abs_eq
thf(fact_9149_Gcd__remove0__nat,axiom,
! [M5: set_nat] :
( ( finite_finite_nat @ M5 )
=> ( ( gcd_Gcd_nat @ M5 )
= ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M5 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).
% Gcd_remove0_nat
thf(fact_9150_eq__Abs__Integ,axiom,
! [Z2: int] :
~ ! [X4: nat,Y2: nat] :
( Z2
!= ( abs_Integ @ ( product_Pair_nat_nat @ X4 @ Y2 ) ) ) ).
% eq_Abs_Integ
thf(fact_9151_Gcd__nat__eq__one,axiom,
! [N5: set_nat] :
( ( member_nat @ one_one_nat @ N5 )
=> ( ( gcd_Gcd_nat @ N5 )
= one_one_nat ) ) ).
% Gcd_nat_eq_one
thf(fact_9152_Gcd__dvd__nat,axiom,
! [A: nat,A2: set_nat] :
( ( member_nat @ A @ A2 )
=> ( dvd_dvd_nat @ ( gcd_Gcd_nat @ A2 ) @ A ) ) ).
% Gcd_dvd_nat
thf(fact_9153_Gcd__greatest__nat,axiom,
! [A2: set_nat,A: nat] :
( ! [B4: nat] :
( ( member_nat @ B4 @ A2 )
=> ( dvd_dvd_nat @ A @ B4 ) )
=> ( dvd_dvd_nat @ A @ ( gcd_Gcd_nat @ A2 ) ) ) ).
% Gcd_greatest_nat
thf(fact_9154_int_Oabs__induct,axiom,
! [P: int > $o,X3: int] :
( ! [Y2: product_prod_nat_nat] : ( P @ ( abs_Integ @ Y2 ) )
=> ( P @ X3 ) ) ).
% int.abs_induct
thf(fact_9155_nat_Oabs__eq,axiom,
! [X3: product_prod_nat_nat] :
( ( nat2 @ ( abs_Integ @ X3 ) )
= ( produc6842872674320459806at_nat @ minus_minus_nat @ X3 ) ) ).
% nat.abs_eq
thf(fact_9156_zero__int__def,axiom,
( zero_zero_int
= ( abs_Integ @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) ) ).
% zero_int_def
thf(fact_9157_int__def,axiom,
( semiri1314217659103216013at_int
= ( ^ [N: nat] : ( abs_Integ @ ( product_Pair_nat_nat @ N @ zero_zero_nat ) ) ) ) ).
% int_def
thf(fact_9158_uminus__int_Oabs__eq,axiom,
! [X3: product_prod_nat_nat] :
( ( uminus_uminus_int @ ( abs_Integ @ X3 ) )
= ( abs_Integ
@ ( produc2626176000494625587at_nat
@ ^ [X2: nat,Y5: nat] : ( product_Pair_nat_nat @ Y5 @ X2 )
@ X3 ) ) ) ).
% uminus_int.abs_eq
thf(fact_9159_one__int__def,axiom,
( one_one_int
= ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).
% one_int_def
thf(fact_9160_less__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X3: product_prod_nat_nat] :
( ( ord_less_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X3 ) )
= ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y5: nat] :
( produc6081775807080527818_nat_o
@ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U2 @ Y5 ) ) )
@ Xa2
@ X3 ) ) ).
% less_int.abs_eq
thf(fact_9161_less__eq__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X3: product_prod_nat_nat] :
( ( ord_less_eq_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X3 ) )
= ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y5: nat] :
( produc6081775807080527818_nat_o
@ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U2 @ Y5 ) ) )
@ Xa2
@ X3 ) ) ).
% less_eq_int.abs_eq
thf(fact_9162_plus__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X3: product_prod_nat_nat] :
( ( plus_plus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X3 ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y5: nat] :
( produc2626176000494625587at_nat
@ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ U2 ) @ ( plus_plus_nat @ Y5 @ V4 ) ) )
@ Xa2
@ X3 ) ) ) ).
% plus_int.abs_eq
thf(fact_9163_minus__int_Oabs__eq,axiom,
! [Xa2: product_prod_nat_nat,X3: product_prod_nat_nat] :
( ( minus_minus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X3 ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y5: nat] :
( produc2626176000494625587at_nat
@ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ Y5 @ U2 ) ) )
@ Xa2
@ X3 ) ) ) ).
% minus_int.abs_eq
thf(fact_9164_abs__Gcd__eq,axiom,
! [K5: set_int] :
( ( abs_abs_int @ ( gcd_Gcd_int @ K5 ) )
= ( gcd_Gcd_int @ K5 ) ) ).
% abs_Gcd_eq
thf(fact_9165_pred__numeral__simps_I2_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit0 @ K ) )
= ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).
% pred_numeral_simps(2)
thf(fact_9166_Gcd__dvd__int,axiom,
! [A: int,A2: set_int] :
( ( member_int @ A @ A2 )
=> ( dvd_dvd_int @ ( gcd_Gcd_int @ A2 ) @ A ) ) ).
% Gcd_dvd_int
thf(fact_9167_Gcd__greatest__int,axiom,
! [A2: set_int,A: int] :
( ! [B4: int] :
( ( member_int @ B4 @ A2 )
=> ( dvd_dvd_int @ A @ B4 ) )
=> ( dvd_dvd_int @ A @ ( gcd_Gcd_int @ A2 ) ) ) ).
% Gcd_greatest_int
thf(fact_9168_Gcd__int__greater__eq__0,axiom,
! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Gcd_int @ K5 ) ) ).
% Gcd_int_greater_eq_0
thf(fact_9169_eval__nat__numeral_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
= ( suc @ ( numeral_numeral_nat @ ( bitM @ N2 ) ) ) ) ).
% eval_nat_numeral(2)
thf(fact_9170_one__plus__BitM,axiom,
! [N2: num] :
( ( plus_plus_num @ one @ ( bitM @ N2 ) )
= ( bit0 @ N2 ) ) ).
% one_plus_BitM
thf(fact_9171_BitM__plus__one,axiom,
! [N2: num] :
( ( plus_plus_num @ ( bitM @ N2 ) @ one )
= ( bit0 @ N2 ) ) ).
% BitM_plus_one
thf(fact_9172_sub__BitM__One__eq,axiom,
! [N2: num] :
( ( neg_numeral_sub_int @ ( bitM @ N2 ) @ one )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N2 @ one ) ) ) ).
% sub_BitM_One_eq
thf(fact_9173_less__eq__int_Orep__eq,axiom,
( ord_less_eq_int
= ( ^ [X2: int,Xa4: int] :
( produc8739625826339149834_nat_o
@ ^ [Y5: nat,Z6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y5 @ V4 ) @ ( plus_plus_nat @ U2 @ Z6 ) ) )
@ ( rep_Integ @ X2 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_eq_int.rep_eq
thf(fact_9174_less__int_Orep__eq,axiom,
( ord_less_int
= ( ^ [X2: int,Xa4: int] :
( produc8739625826339149834_nat_o
@ ^ [Y5: nat,Z6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y5 @ V4 ) @ ( plus_plus_nat @ U2 @ Z6 ) ) )
@ ( rep_Integ @ X2 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_int.rep_eq
thf(fact_9175_nat_Orep__eq,axiom,
( nat2
= ( ^ [X2: int] : ( produc6842872674320459806at_nat @ minus_minus_nat @ ( rep_Integ @ X2 ) ) ) ) ).
% nat.rep_eq
thf(fact_9176_uminus__int__def,axiom,
( uminus_uminus_int
= ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
@ ( produc2626176000494625587at_nat
@ ^ [X2: nat,Y5: nat] : ( product_Pair_nat_nat @ Y5 @ X2 ) ) ) ) ).
% uminus_int_def
thf(fact_9177_triangle__Suc,axiom,
! [N2: nat] :
( ( nat_triangle @ ( suc @ N2 ) )
= ( plus_plus_nat @ ( nat_triangle @ N2 ) @ ( suc @ N2 ) ) ) ).
% triangle_Suc
thf(fact_9178_image__minus__const__atLeastLessThan__nat,axiom,
! [C: nat,Y: nat,X3: nat] :
( ( ( ord_less_nat @ C @ Y )
=> ( ( image_nat_nat
@ ^ [I5: nat] : ( minus_minus_nat @ I5 @ C )
@ ( set_or4665077453230672383an_nat @ X3 @ Y ) )
= ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X3 @ C ) @ ( minus_minus_nat @ Y @ C ) ) ) )
& ( ~ ( ord_less_nat @ C @ Y )
=> ( ( ( ord_less_nat @ X3 @ Y )
=> ( ( image_nat_nat
@ ^ [I5: nat] : ( minus_minus_nat @ I5 @ C )
@ ( set_or4665077453230672383an_nat @ X3 @ Y ) )
= ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
& ( ~ ( ord_less_nat @ X3 @ Y )
=> ( ( image_nat_nat
@ ^ [I5: nat] : ( minus_minus_nat @ I5 @ C )
@ ( set_or4665077453230672383an_nat @ X3 @ Y ) )
= bot_bot_set_nat ) ) ) ) ) ).
% image_minus_const_atLeastLessThan_nat
thf(fact_9179_triangle__0,axiom,
( ( nat_triangle @ zero_zero_nat )
= zero_zero_nat ) ).
% triangle_0
thf(fact_9180_image__Suc__atLeastAtMost,axiom,
! [I: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ I @ J ) )
= ( set_or1269000886237332187st_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastAtMost
thf(fact_9181_image__Suc__atLeastLessThan,axiom,
! [I: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ I @ J ) )
= ( set_or4665077453230672383an_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastLessThan
thf(fact_9182_zero__notin__Suc__image,axiom,
! [A2: set_nat] :
~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).
% zero_notin_Suc_image
thf(fact_9183_image__Suc__lessThan,axiom,
! [N2: nat] :
( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N2 ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ N2 ) ) ).
% image_Suc_lessThan
thf(fact_9184_image__Suc__atMost,axiom,
! [N2: nat] :
( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N2 ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N2 ) ) ) ).
% image_Suc_atMost
thf(fact_9185_atLeast0__atMost__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ) ).
% atLeast0_atMost_Suc_eq_insert_0
thf(fact_9186_atLeast0__lessThan__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N2 ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ) ).
% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9187_lessThan__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_ord_lessThan_nat @ ( suc @ N2 ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).
% lessThan_Suc_eq_insert_0
thf(fact_9188_atMost__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_ord_atMost_nat @ ( suc @ N2 ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).
% atMost_Suc_eq_insert_0
thf(fact_9189_nth__sorted__list__of__set__greaterThanLessThan,axiom,
! [N2: nat,J: nat,I: nat] :
( ( ord_less_nat @ N2 @ ( minus_minus_nat @ J @ ( suc @ I ) ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) ) @ N2 )
= ( suc @ ( plus_plus_nat @ I @ N2 ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9190_times__int__def,axiom,
( times_times_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y5: nat] :
( produc2626176000494625587at_nat
@ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X2 @ U2 ) @ ( times_times_nat @ Y5 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X2 @ V4 ) @ ( times_times_nat @ Y5 @ U2 ) ) ) ) ) ) ) ).
% times_int_def
thf(fact_9191_minus__int__def,axiom,
( minus_minus_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y5: nat] :
( produc2626176000494625587at_nat
@ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ Y5 @ U2 ) ) ) ) ) ) ).
% minus_int_def
thf(fact_9192_plus__int__def,axiom,
( plus_plus_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X2: nat,Y5: nat] :
( produc2626176000494625587at_nat
@ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X2 @ U2 ) @ ( plus_plus_nat @ Y5 @ V4 ) ) ) ) ) ) ).
% plus_int_def
thf(fact_9193_Gcd__abs__eq,axiom,
! [K5: set_int] :
( ( gcd_Gcd_int @ ( image_int_int @ abs_abs_int @ K5 ) )
= ( gcd_Gcd_int @ K5 ) ) ).
% Gcd_abs_eq
thf(fact_9194_Gcd__int__eq,axiom,
! [N5: set_nat] :
( ( gcd_Gcd_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N5 ) )
= ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ N5 ) ) ) ).
% Gcd_int_eq
thf(fact_9195_Gcd__nat__abs__eq,axiom,
! [K5: set_int] :
( ( gcd_Gcd_nat
@ ( image_int_nat
@ ^ [K2: int] : ( nat2 @ ( abs_abs_int @ K2 ) )
@ K5 ) )
= ( nat2 @ ( gcd_Gcd_int @ K5 ) ) ) ).
% Gcd_nat_abs_eq
thf(fact_9196_finite__int__iff__bounded,axiom,
( finite_finite_int
= ( ^ [S6: set_int] :
? [K2: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S6 ) @ ( set_ord_lessThan_int @ K2 ) ) ) ) ).
% finite_int_iff_bounded
thf(fact_9197_finite__int__iff__bounded__le,axiom,
( finite_finite_int
= ( ^ [S6: set_int] :
? [K2: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S6 ) @ ( set_ord_atMost_int @ K2 ) ) ) ) ).
% finite_int_iff_bounded_le
thf(fact_9198_image__int__atLeastAtMost,axiom,
! [A: nat,B: nat] :
( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% image_int_atLeastAtMost
thf(fact_9199_image__int__atLeastLessThan,axiom,
! [A: nat,B: nat] :
( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or4665077453230672383an_nat @ A @ B ) )
= ( set_or4662586982721622107an_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% image_int_atLeastLessThan
thf(fact_9200_image__add__int__atLeastLessThan,axiom,
! [L: int,U: int] :
( ( image_int_int
@ ^ [X2: int] : ( plus_plus_int @ X2 @ L )
@ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L ) ) )
= ( set_or4662586982721622107an_int @ L @ U ) ) ).
% image_add_int_atLeastLessThan
thf(fact_9201_image__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
= ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).
% image_atLeastZeroLessThan_int
thf(fact_9202_infinite__UNIV__nat,axiom,
~ ( finite_finite_nat @ top_top_set_nat ) ).
% infinite_UNIV_nat
thf(fact_9203_nat__not__finite,axiom,
~ ( finite_finite_nat @ top_top_set_nat ) ).
% nat_not_finite
thf(fact_9204_UN__lessThan__UNIV,axiom,
( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) )
= top_top_set_nat ) ).
% UN_lessThan_UNIV
thf(fact_9205_UN__atMost__UNIV,axiom,
( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atMost_nat @ top_top_set_nat ) )
= top_top_set_nat ) ).
% UN_atMost_UNIV
thf(fact_9206_UNIV__nat__eq,axiom,
( top_top_set_nat
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).
% UNIV_nat_eq
thf(fact_9207_range__mod,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( image_nat_nat
@ ^ [M3: nat] : ( modulo_modulo_nat @ M3 @ N2 )
@ top_top_set_nat )
= ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ).
% range_mod
thf(fact_9208_card__UNIV__unit,axiom,
( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
= one_one_nat ) ).
% card_UNIV_unit
thf(fact_9209_range__mult,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
& ( ( A != zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= top_top_set_real ) ) ) ).
% range_mult
thf(fact_9210_infinite__UNIV__int,axiom,
~ ( finite_finite_int @ top_top_set_int ) ).
% infinite_UNIV_int
thf(fact_9211_int__in__range__abs,axiom,
! [N2: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( image_int_int @ abs_abs_int @ top_top_set_int ) ) ).
% int_in_range_abs
thf(fact_9212_root__def,axiom,
( root
= ( ^ [N: nat,X2: real] :
( if_real @ ( N = zero_zero_nat ) @ zero_zero_real
@ ( the_in5290026491893676941l_real @ top_top_set_real
@ ^ [Y5: real] : ( times_times_real @ ( sgn_sgn_real @ Y5 ) @ ( power_power_real @ ( abs_abs_real @ Y5 ) @ N ) )
@ X2 ) ) ) ) ).
% root_def
thf(fact_9213_DERIV__even__real__root,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ ( power_power_real @ ( root @ N2 @ X3 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ).
% DERIV_even_real_root
thf(fact_9214_has__real__derivative__pos__inc__left,axiom,
! [F: real > real,L: real,X3: real,S2: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( minus_minus_real @ X3 @ H4 ) @ S2 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_left
thf(fact_9215_has__real__derivative__neg__dec__left,axiom,
! [F: real > real,L: real,X3: real,S2: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( minus_minus_real @ X3 @ H4 ) @ S2 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_left
thf(fact_9216_has__real__derivative__neg__dec__right,axiom,
! [F: real > real,L: real,X3: real,S2: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( plus_plus_real @ X3 @ H4 ) @ S2 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_right
thf(fact_9217_has__real__derivative__pos__inc__right,axiom,
! [F: real > real,L: real,X3: real,S2: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( plus_plus_real @ X3 @ H4 ) @ S2 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_right
thf(fact_9218_DERIV__isconst3,axiom,
! [A: real,B: real,X3: real,Y: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( member_real @ Y @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ( ( F @ X3 )
= ( F @ Y ) ) ) ) ) ) ).
% DERIV_isconst3
thf(fact_9219_DERIV__neg__imp__decreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ Y3 @ zero_zero_real ) ) ) )
=> ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).
% DERIV_neg_imp_decreasing
thf(fact_9220_DERIV__pos__imp__increasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y3 ) ) ) )
=> ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing
thf(fact_9221_DERIV__pos__inc__right,axiom,
! [F: real > real,L: real,X3: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_pos_inc_right
thf(fact_9222_DERIV__neg__dec__right,axiom,
! [F: real > real,L: real,X3: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ).
% DERIV_neg_dec_right
thf(fact_9223_DERIV__pos__inc__left,axiom,
! [F: real > real,L: real,X3: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ).
% DERIV_pos_inc_left
thf(fact_9224_DERIV__neg__dec__left,axiom,
! [F: real > real,L: real,X3: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D5 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_neg_dec_left
thf(fact_9225_MVT2,axiom,
! [A: real,B: real,F: real > real,F6: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [Z3: real] :
( ( ord_less_real @ A @ Z3 )
& ( ord_less_real @ Z3 @ B )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F6 @ Z3 ) ) ) ) ) ) ).
% MVT2
thf(fact_9226_DERIV__local__const,axiom,
! [F: real > real,L: real,X3: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y2 ) ) @ D )
=> ( ( F @ X3 )
= ( F @ Y2 ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_const
thf(fact_9227_DERIV__ln,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( has_fi5821293074295781190e_real @ ln_ln_real @ ( inverse_inverse_real @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).
% DERIV_ln
thf(fact_9228_DERIV__local__max,axiom,
! [F: real > real,L: real,X3: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y2 ) ) @ D )
=> ( ord_less_eq_real @ ( F @ Y2 ) @ ( F @ X3 ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_max
thf(fact_9229_DERIV__local__min,axiom,
! [F: real > real,L: real,X3: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y2 ) ) @ D )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_min
thf(fact_9230_DERIV__ln__divide,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).
% DERIV_ln_divide
thf(fact_9231_DERIV__pow,axiom,
! [N2: nat,X3: real,S: set_real] :
( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( power_power_real @ X2 @ N2 )
@ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ X3 @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) )
@ ( topolo2177554685111907308n_real @ X3 @ S ) ) ).
% DERIV_pow
thf(fact_9232_has__real__derivative__powr,axiom,
! [Z2: real,R2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( has_fi5821293074295781190e_real
@ ^ [Z6: real] : ( powr_real @ Z6 @ R2 )
@ ( times_times_real @ R2 @ ( powr_real @ Z2 @ ( minus_minus_real @ R2 @ one_one_real ) ) )
@ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) ).
% has_real_derivative_powr
thf(fact_9233_DERIV__log,axiom,
! [X3: real,B: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X3 ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).
% DERIV_log
thf(fact_9234_DERIV__fun__powr,axiom,
! [G: real > real,M: real,X3: real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X3 ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( powr_real @ ( G @ X2 ) @ R2 )
@ ( times_times_real @ ( times_times_real @ R2 @ ( powr_real @ ( G @ X3 ) @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
@ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).
% DERIV_fun_powr
thf(fact_9235_DERIV__powr,axiom,
! [G: real > real,M: real,X3: real,F: real > real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X3 ) )
=> ( ( has_fi5821293074295781190e_real @ F @ R2 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] : ( powr_real @ ( G @ X2 ) @ ( F @ X2 ) )
@ ( times_times_real @ ( powr_real @ ( G @ X3 ) @ ( F @ X3 ) ) @ ( plus_plus_real @ ( times_times_real @ R2 @ ( ln_ln_real @ ( G @ X3 ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X3 ) ) @ ( G @ X3 ) ) ) )
@ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ).
% DERIV_powr
thf(fact_9236_arcosh__real__has__field__derivative,axiom,
! [X3: real,A2: set_real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ A2 ) ) ) ).
% arcosh_real_has_field_derivative
thf(fact_9237_DERIV__real__sqrt,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).
% DERIV_real_sqrt
thf(fact_9238_DERIV__real__sqrt__generic,axiom,
! [X3: real,D6: real] :
( ( X3 != zero_zero_real )
=> ( ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( D6
= ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ( ord_less_real @ X3 @ zero_zero_real )
=> ( D6
= ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ sqrt @ D6 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ).
% DERIV_real_sqrt_generic
thf(fact_9239_artanh__real__has__field__derivative,axiom,
! [X3: real,A2: set_real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ A2 ) ) ) ).
% artanh_real_has_field_derivative
thf(fact_9240_DERIV__power__series_H,axiom,
! [R: real,F: nat > real,X0: real] :
( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( summable_real
@ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( F @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) @ ( power_power_real @ X4 @ N ) ) ) )
=> ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( ( ord_less_real @ zero_zero_real @ R )
=> ( has_fi5821293074295781190e_real
@ ^ [X2: real] :
( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( F @ N ) @ ( power_power_real @ X2 @ ( suc @ N ) ) ) )
@ ( suminf_real
@ ^ [N: nat] : ( times_times_real @ ( times_times_real @ ( F @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) @ ( power_power_real @ X0 @ N ) ) )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).
% DERIV_power_series'
thf(fact_9241_DERIV__real__root,axiom,
! [N2: nat,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X3 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).
% DERIV_real_root
thf(fact_9242_DERIV__arcsin,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).
% DERIV_arcsin
thf(fact_9243_Maclaurin__all__le__objl,axiom,
! [Diff: nat > real > real,F: real > real,X3: real,N2: nat] :
( ( ( ( Diff @ zero_zero_nat )
= F )
& ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ? [T6: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T6 ) @ ( abs_abs_real @ X3 ) )
& ( ( F @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ).
% Maclaurin_all_le_objl
thf(fact_9244_Maclaurin__all__le,axiom,
! [Diff: nat > real > real,F: real > real,X3: real,N2: nat] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ? [T6: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T6 ) @ ( abs_abs_real @ X3 ) )
& ( ( F @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_all_le
thf(fact_9245_DERIV__odd__real__root,axiom,
! [N2: nat,X3: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( X3 != zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X3 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).
% DERIV_odd_real_root
thf(fact_9246_Maclaurin,axiom,
! [H2: real,N2: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ zero_zero_real @ T6 )
& ( ord_less_eq_real @ T6 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ? [T6: real] :
( ( ord_less_real @ zero_zero_real @ T6 )
& ( ord_less_real @ T6 @ H2 )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ) ).
% Maclaurin
thf(fact_9247_Maclaurin2,axiom,
! [H2: real,Diff: nat > real > real,F: real > real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ zero_zero_real @ T6 )
& ( ord_less_eq_real @ T6 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ? [T6: real] :
( ( ord_less_real @ zero_zero_real @ T6 )
& ( ord_less_eq_real @ T6 @ H2 )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ).
% Maclaurin2
thf(fact_9248_Maclaurin__minus,axiom,
! [H2: real,N2: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ H2 @ zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ H2 @ T6 )
& ( ord_less_eq_real @ T6 @ zero_zero_real ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ? [T6: real] :
( ( ord_less_real @ H2 @ T6 )
& ( ord_less_real @ T6 @ zero_zero_real )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ) ).
% Maclaurin_minus
thf(fact_9249_Maclaurin__all__lt,axiom,
! [Diff: nat > real > real,F: real > real,N2: nat,X3: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( X3 != zero_zero_real )
=> ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ? [T6: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T6 ) )
& ( ord_less_real @ ( abs_abs_real @ T6 ) @ ( abs_abs_real @ X3 ) )
& ( ( F @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ) ) ) ).
% Maclaurin_all_lt
thf(fact_9250_Maclaurin__bi__le,axiom,
! [Diff: nat > real > real,F: real > real,N2: nat,X3: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ ( abs_abs_real @ T6 ) @ ( abs_abs_real @ X3 ) ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ? [T6: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T6 ) @ ( abs_abs_real @ X3 ) )
& ( ( F @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X3 @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_bi_le
thf(fact_9251_Taylor__down,axiom,
! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ A @ T6 )
& ( ord_less_eq_real @ T6 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ( ( ord_less_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ? [T6: real] :
( ( ord_less_real @ A @ T6 )
& ( ord_less_real @ T6 @ C )
& ( ( F @ A )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ).
% Taylor_down
thf(fact_9252_Taylor__up,axiom,
! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ A @ T6 )
& ( ord_less_eq_real @ T6 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_real @ C @ B )
=> ? [T6: real] :
( ( ord_less_real @ C @ T6 )
& ( ord_less_real @ T6 @ B )
& ( ( F @ B )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ).
% Taylor_up
thf(fact_9253_Taylor,axiom,
! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X3: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ A @ T6 )
& ( ord_less_eq_real @ T6 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ( ( X3 != C )
=> ? [T6: real] :
( ( ( ord_less_real @ X3 @ C )
=> ( ( ord_less_real @ X3 @ T6 )
& ( ord_less_real @ T6 @ C ) ) )
& ( ~ ( ord_less_real @ X3 @ C )
=> ( ( ord_less_real @ C @ T6 )
& ( ord_less_real @ T6 @ X3 ) ) )
& ( ( F @ X3 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ X3 @ C ) @ M3 ) )
@ ( set_ord_lessThan_nat @ N2 ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T6 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ X3 @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Taylor
thf(fact_9254_Maclaurin__lemma2,axiom,
! [N2: nat,H2: real,Diff: nat > real > real,K: nat,B2: real] :
( ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N2 )
& ( ord_less_eq_real @ zero_zero_real @ T6 )
& ( ord_less_eq_real @ T6 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T6 ) @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) )
=> ( ( N2
= ( suc @ K ) )
=> ! [M2: nat,T7: real] :
( ( ( ord_less_nat @ M2 @ N2 )
& ( ord_less_eq_real @ zero_zero_real @ T7 )
& ( ord_less_eq_real @ T7 @ H2 ) )
=> ( has_fi5821293074295781190e_real
@ ^ [U2: real] :
( minus_minus_real @ ( Diff @ M2 @ U2 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M2 @ P6 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P6 ) ) @ ( power_power_real @ U2 @ P6 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ M2 ) ) )
@ ( times_times_real @ B2 @ ( divide_divide_real @ ( power_power_real @ U2 @ ( minus_minus_nat @ N2 @ M2 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ M2 ) ) ) ) ) )
@ ( minus_minus_real @ ( Diff @ ( suc @ M2 ) @ T7 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M2 ) @ P6 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P6 ) ) @ ( power_power_real @ T7 @ P6 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ M2 ) ) ) )
@ ( times_times_real @ B2 @ ( divide_divide_real @ ( power_power_real @ T7 @ ( minus_minus_nat @ N2 @ ( suc @ M2 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ ( suc @ M2 ) ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ T7 @ top_top_set_real ) ) ) ) ) ).
% Maclaurin_lemma2
thf(fact_9255_DERIV__arctan__series,axiom,
! [X3: real] :
( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( has_fi5821293074295781190e_real
@ ^ [X9: real] :
( suminf_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X9 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
@ ( suminf_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( power_power_real @ X3 @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).
% DERIV_arctan_series
thf(fact_9256_DERIV__real__root__generic,axiom,
! [N2: nat,X3: real,D6: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( X3 != zero_zero_real )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( D6
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X3 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
=> ( D6
= ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X3 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
=> ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( D6
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X3 ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ D6 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ) ) ).
% DERIV_real_root_generic
thf(fact_9257_DERIV__arccos,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).
% DERIV_arccos
thf(fact_9258_arccos__less__arccos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_eq_real @ Y @ one_one_real )
=> ( ord_less_real @ ( arccos @ Y ) @ ( arccos @ X3 ) ) ) ) ) ).
% arccos_less_arccos
thf(fact_9259_arccos__less__mono,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
=> ( ( ord_less_real @ ( arccos @ X3 ) @ ( arccos @ Y ) )
= ( ord_less_real @ Y @ X3 ) ) ) ) ).
% arccos_less_mono
thf(fact_9260_arccos__lt__bounded,axiom,
! [Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
=> ( ( ord_less_real @ Y @ one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y ) )
& ( ord_less_real @ ( arccos @ Y ) @ pi ) ) ) ) ).
% arccos_lt_bounded
thf(fact_9261_sin__arccos__nonzero,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( ( sin_real @ ( arccos @ X3 ) )
!= zero_zero_real ) ) ) ).
% sin_arccos_nonzero
thf(fact_9262_Gcd__eq__Max,axiom,
! [M5: set_nat] :
( ( finite_finite_nat @ M5 )
=> ( ( M5 != bot_bot_set_nat )
=> ( ~ ( member_nat @ zero_zero_nat @ M5 )
=> ( ( gcd_Gcd_nat @ M5 )
= ( lattic8265883725875713057ax_nat
@ ( comple7806235888213564991et_nat
@ ( image_nat_set_nat
@ ^ [M3: nat] :
( collect_nat
@ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M3 ) )
@ M5 ) ) ) ) ) ) ) ).
% Gcd_eq_Max
thf(fact_9263_Max__divisors__self__nat,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ N2 ) ) )
= N2 ) ) ).
% Max_divisors_self_nat
thf(fact_9264_LIM__fun__less__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X: real] :
( ( ( X != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X ) ) @ R3 ) )
=> ( ord_less_real @ ( F @ X ) @ zero_zero_real ) ) ) ) ) ).
% LIM_fun_less_zero
thf(fact_9265_LIM__fun__not__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( L != zero_zero_real )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X: real] :
( ( ( X != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X ) ) @ R3 ) )
=> ( ( F @ X )
!= zero_zero_real ) ) ) ) ) ).
% LIM_fun_not_zero
thf(fact_9266_LIM__fun__gt__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X: real] :
( ( ( X != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X ) ) @ R3 ) )
=> ( ord_less_real @ zero_zero_real @ ( F @ X ) ) ) ) ) ) ).
% LIM_fun_gt_zero
thf(fact_9267_isCont__inverse__function2,axiom,
! [A: real,X3: real,B: real,G: real > real,F: real > real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( ( G @ ( F @ Z3 ) )
= Z3 ) ) )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X3 ) @ top_top_set_real ) @ G ) ) ) ) ) ).
% isCont_inverse_function2
thf(fact_9268_card__le__Suc__Max,axiom,
! [S2: set_nat] :
( ( finite_finite_nat @ S2 )
=> ( ord_less_eq_nat @ ( finite_card_nat @ S2 ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S2 ) ) ) ) ).
% card_le_Suc_Max
thf(fact_9269_Sup__nat__def,axiom,
( complete_Sup_Sup_nat
= ( ^ [X6: set_nat] : ( if_nat @ ( X6 = bot_bot_set_nat ) @ zero_zero_nat @ ( lattic8265883725875713057ax_nat @ X6 ) ) ) ) ).
% Sup_nat_def
thf(fact_9270_divide__nat__def,axiom,
( divide_divide_nat
= ( ^ [M3: nat,N: nat] :
( if_nat @ ( N = zero_zero_nat ) @ zero_zero_nat
@ ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [K2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K2 @ N ) @ M3 ) ) ) ) ) ) ).
% divide_nat_def
thf(fact_9271_isCont__arcosh,axiom,
! [X3: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ arcosh_real ) ) ).
% isCont_arcosh
thf(fact_9272_DERIV__inverse__function,axiom,
! [F: real > real,D6: real,G: real > real,X3: real,A: real,B: real] :
( ( has_fi5821293074295781190e_real @ F @ D6 @ ( topolo2177554685111907308n_real @ ( G @ X3 ) @ top_top_set_real ) )
=> ( ( D6 != zero_zero_real )
=> ( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ( ! [Y2: real] :
( ( ord_less_real @ A @ Y2 )
=> ( ( ord_less_real @ Y2 @ B )
=> ( ( F @ ( G @ Y2 ) )
= Y2 ) ) )
=> ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ G )
=> ( has_fi5821293074295781190e_real @ G @ ( inverse_inverse_real @ D6 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ) ) ) ).
% DERIV_inverse_function
thf(fact_9273_isCont__arccos,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ arccos ) ) ) ).
% isCont_arccos
thf(fact_9274_isCont__arcsin,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ arcsin ) ) ) ).
% isCont_arcsin
thf(fact_9275_LIM__less__bound,axiom,
! [B: real,X3: real,F: real > real] :
( ( ord_less_real @ B @ X3 )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ B @ X3 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ F )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) ) ) ) ).
% LIM_less_bound
thf(fact_9276_isCont__artanh,axiom,
! [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ artanh_real ) ) ) ).
% isCont_artanh
thf(fact_9277_isCont__inverse__function,axiom,
! [D: real,X3: real,G: real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X3 ) ) @ D )
=> ( ( G @ ( F @ Z3 ) )
= Z3 ) )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X3 ) ) @ D )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X3 ) @ top_top_set_real ) @ G ) ) ) ) ).
% isCont_inverse_function
thf(fact_9278_GMVT_H,axiom,
! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F6: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
=> ( ! [Z3: real] :
( ( ord_less_eq_real @ A @ Z3 )
=> ( ( ord_less_eq_real @ Z3 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ G ) ) )
=> ( ! [Z3: real] :
( ( ord_less_real @ A @ Z3 )
=> ( ( ord_less_real @ Z3 @ B )
=> ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
=> ( ! [Z3: real] :
( ( ord_less_real @ A @ Z3 )
=> ( ( ord_less_real @ Z3 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F6 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
=> ? [C3: real] :
( ( ord_less_real @ A @ C3 )
& ( ord_less_real @ C3 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C3 ) )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F6 @ C3 ) ) ) ) ) ) ) ) ) ).
% GMVT'
thf(fact_9279_summable__Leibniz_I2_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
=> ! [N6: nat] :
( member_real
@ ( suminf_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) ) ) ) ) ) ) ).
% summable_Leibniz(2)
thf(fact_9280_summable__Leibniz_I3_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
=> ! [N6: nat] :
( member_real
@ ( suminf_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) ) ) ) ) ) ) ).
% summable_Leibniz(3)
thf(fact_9281_summable__Leibniz_H_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( filterlim_nat_real
@ ^ [N: nat] :
( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) ) )
@ at_top_nat ) ) ) ) ).
% summable_Leibniz'(5)
thf(fact_9282_trivial__limit__sequentially,axiom,
at_top_nat != bot_bot_filter_nat ).
% trivial_limit_sequentially
thf(fact_9283_Max__divisors__self__int,axiom,
! [N2: int] :
( ( N2 != zero_zero_int )
=> ( ( lattic8263393255366662781ax_int
@ ( collect_int
@ ^ [D4: int] : ( dvd_dvd_int @ D4 @ N2 ) ) )
= ( abs_abs_int @ N2 ) ) ) ).
% Max_divisors_self_int
thf(fact_9284_mult__nat__right__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat
@ ^ [X2: nat] : ( times_times_nat @ X2 @ C )
@ at_top_nat
@ at_top_nat ) ) ).
% mult_nat_right_at_top
thf(fact_9285_mult__nat__left__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).
% mult_nat_left_at_top
thf(fact_9286_LIMSEQ__inverse__zero,axiom,
! [X8: nat > real] :
( ! [R3: real] :
? [N8: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N8 @ N3 )
=> ( ord_less_real @ R3 @ ( X8 @ N3 ) ) )
=> ( filterlim_nat_real
@ ^ [N: nat] : ( inverse_inverse_real @ ( X8 @ N ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_zero
thf(fact_9287_LIMSEQ__root__const,axiom,
! [C: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( filterlim_nat_real
@ ^ [N: nat] : ( root @ N @ C )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ) ).
% LIMSEQ_root_const
thf(fact_9288_increasing__LIMSEQ,axiom,
! [F: nat > real,L: real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ L )
=> ( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [N6: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F @ N6 ) @ E ) ) )
=> ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).
% increasing_LIMSEQ
thf(fact_9289_LIMSEQ__realpow__zero,axiom,
! [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ X3 ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).
% LIMSEQ_realpow_zero
thf(fact_9290_LIMSEQ__divide__realpow__zero,axiom,
! [X3: real,A: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( filterlim_nat_real
@ ^ [N: nat] : ( divide_divide_real @ A @ ( power_power_real @ X3 @ N ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_divide_realpow_zero
thf(fact_9291_LIMSEQ__abs__realpow__zero,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero
thf(fact_9292_LIMSEQ__abs__realpow__zero2,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero2
thf(fact_9293_LIMSEQ__inverse__realpow__zero,axiom,
! [X3: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( filterlim_nat_real
@ ^ [N: nat] : ( inverse_inverse_real @ ( power_power_real @ X3 @ N ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_realpow_zero
thf(fact_9294_zeroseq__arctan__series,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
=> ( filterlim_nat_real
@ ^ [N: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% zeroseq_arctan_series
thf(fact_9295_sums__alternating__upper__lower,axiom,
! [A: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ? [L4: real] :
( ! [N6: nat] :
( ord_less_eq_real
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) )
@ L4 )
& ( filterlim_nat_real
@ ^ [N: nat] :
( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( topolo2815343760600316023s_real @ L4 )
@ at_top_nat )
& ! [N6: nat] :
( ord_less_eq_real @ L4
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) ) )
& ( filterlim_nat_real
@ ^ [N: nat] :
( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ L4 )
@ at_top_nat ) ) ) ) ) ).
% sums_alternating_upper_lower
thf(fact_9296_summable__Leibniz_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( filterlim_nat_real
@ ^ [N: nat] :
( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) ) )
@ at_top_nat ) ) ) ).
% summable_Leibniz(5)
thf(fact_9297_summable__Leibniz_H_I4_J,axiom,
! [A: nat > real,N2: nat] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
=> ( ord_less_eq_real
@ ( suminf_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ) ) ) ).
% summable_Leibniz'(4)
thf(fact_9298_DERIV__neg__imp__decreasing__at__top,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X4: real] :
( ( ord_less_eq_real @ B @ X4 )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ Y3 @ zero_zero_real ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_neg_imp_decreasing_at_top
thf(fact_9299_filterlim__pow__at__bot__even,axiom,
! [N2: nat,F: real > real,F3: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F3 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( filterlim_real_real
@ ^ [X2: real] : ( power_power_real @ ( F @ X2 ) @ N2 )
@ at_top_real
@ F3 ) ) ) ) ).
% filterlim_pow_at_bot_even
thf(fact_9300_filterlim__pow__at__bot__odd,axiom,
! [N2: nat,F: real > real,F3: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F3 )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( filterlim_real_real
@ ^ [X2: real] : ( power_power_real @ ( F @ X2 ) @ N2 )
@ at_bot_real
@ F3 ) ) ) ) ).
% filterlim_pow_at_bot_odd
thf(fact_9301_DERIV__pos__imp__increasing__at__bot,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X4: real] :
( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y3 ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing_at_bot
thf(fact_9302_GMVT,axiom,
! [A: real,B: real,F: real > real,G: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
=> ( ! [X4: real] :
( ( ( ord_less_real @ A @ X4 )
& ( ord_less_real @ X4 @ B ) )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ G ) )
=> ( ! [X4: real] :
( ( ( ord_less_real @ A @ X4 )
& ( ord_less_real @ X4 @ B ) )
=> ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ? [G_c: real,F_c: real,C3: real] :
( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
& ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
& ( ord_less_real @ A @ C3 )
& ( ord_less_real @ C3 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).
% GMVT
thf(fact_9303_eventually__sequentially__seg,axiom,
! [P: nat > $o,K: nat] :
( ( eventually_nat
@ ^ [N: nat] : ( P @ ( plus_plus_nat @ N @ K ) )
@ at_top_nat )
= ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentially_seg
thf(fact_9304_eventually__sequentially,axiom,
! [P: nat > $o] :
( ( eventually_nat @ P @ at_top_nat )
= ( ? [N4: nat] :
! [N: nat] :
( ( ord_less_eq_nat @ N4 @ N )
=> ( P @ N ) ) ) ) ).
% eventually_sequentially
thf(fact_9305_eventually__sequentiallyI,axiom,
! [C: nat,P: nat > $o] :
( ! [X4: nat] :
( ( ord_less_eq_nat @ C @ X4 )
=> ( P @ X4 ) )
=> ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentiallyI
thf(fact_9306_le__sequentially,axiom,
! [F3: filter_nat] :
( ( ord_le2510731241096832064er_nat @ F3 @ at_top_nat )
= ( ! [N4: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N4 ) @ F3 ) ) ) ).
% le_sequentially
thf(fact_9307_sequentially__offset,axiom,
! [P: nat > $o,K: nat] :
( ( eventually_nat @ P @ at_top_nat )
=> ( eventually_nat
@ ^ [I5: nat] : ( P @ ( plus_plus_nat @ I5 @ K ) )
@ at_top_nat ) ) ).
% sequentially_offset
thf(fact_9308_eventually__at__left__real,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( eventually_real
@ ^ [X2: real] : ( member_real @ X2 @ ( set_or1633881224788618240n_real @ B @ A ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).
% eventually_at_left_real
thf(fact_9309_MVT,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [L4: real,Z3: real] :
( ( ord_less_real @ A @ Z3 )
& ( ord_less_real @ Z3 @ B )
& ( has_fi5821293074295781190e_real @ F @ L4 @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ L4 ) ) ) ) ) ) ).
% MVT
thf(fact_9310_Rolle__deriv,axiom,
! [A: real,B: real,F: real > real,F6: real > real > real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ A )
= ( F @ B ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_de1759254742604945161l_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [Z3: real] :
( ( ord_less_real @ A @ Z3 )
& ( ord_less_real @ Z3 @ B )
& ( ( F6 @ Z3 )
= ( ^ [V4: real] : zero_zero_real ) ) ) ) ) ) ) ).
% Rolle_deriv
thf(fact_9311_mvt,axiom,
! [A: real,B: real,F: real > real,F6: real > real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_de1759254742604945161l_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ~ ! [Xi: real] :
( ( ord_less_real @ A @ Xi )
=> ( ( ord_less_real @ Xi @ B )
=> ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
!= ( F6 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).
% mvt
thf(fact_9312_DERIV__isconst__end,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ( ( F @ B )
= ( F @ A ) ) ) ) ) ).
% DERIV_isconst_end
thf(fact_9313_DERIV__neg__imp__decreasing__open,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ Y3 @ zero_zero_real ) ) ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ) ).
% DERIV_neg_imp_decreasing_open
thf(fact_9314_DERIV__pos__imp__increasing__open,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y3 ) ) ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ) ).
% DERIV_pos_imp_increasing_open
thf(fact_9315_DERIV__isconst2,axiom,
! [A: real,B: real,F: real > real,X3: real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ( ( F @ X3 )
= ( F @ A ) ) ) ) ) ) ) ).
% DERIV_isconst2
thf(fact_9316_Rolle,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ A )
= ( F @ B ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [Z3: real] :
( ( ord_less_real @ A @ Z3 )
& ( ord_less_real @ Z3 @ B )
& ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) ) ) ) ) ).
% Rolle
thf(fact_9317_finite__greaterThanAtMost,axiom,
! [L: nat,U: nat] : ( finite_finite_nat @ ( set_or6659071591806873216st_nat @ L @ U ) ) ).
% finite_greaterThanAtMost
thf(fact_9318_card__greaterThanAtMost,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or6659071591806873216st_nat @ L @ U ) )
= ( minus_minus_nat @ U @ L ) ) ).
% card_greaterThanAtMost
thf(fact_9319_atLeastSucAtMost__greaterThanAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ L ) @ U )
= ( set_or6659071591806873216st_nat @ L @ U ) ) ).
% atLeastSucAtMost_greaterThanAtMost
thf(fact_9320_GreatestI__ex__nat,axiom,
! [P: nat > $o,B: nat] :
( ? [X_12: nat] : ( P @ X_12 )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_9321_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_9322_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_9323_nth__sorted__list__of__set__greaterThanAtMost,axiom,
! [N2: nat,J: nat,I: nat] :
( ( ord_less_nat @ N2 @ ( minus_minus_nat @ J @ I ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) ) @ N2 )
= ( suc @ ( plus_plus_nat @ I @ N2 ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9324_finite__greaterThanAtMost__int,axiom,
! [L: int,U: int] : ( finite_finite_int @ ( set_or6656581121297822940st_int @ L @ U ) ) ).
% finite_greaterThanAtMost_int
thf(fact_9325_card__greaterThanAtMost__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or6656581121297822940st_int @ L @ U ) )
= ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).
% card_greaterThanAtMost_int
thf(fact_9326_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
! [L: int,U: int] :
( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
= ( set_or6656581121297822940st_int @ L @ U ) ) ).
% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_9327_greaterThan__0,axiom,
( ( set_or1210151606488870762an_nat @ zero_zero_nat )
= ( image_nat_nat @ suc @ top_top_set_nat ) ) ).
% greaterThan_0
thf(fact_9328_eventually__at__right__real,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( eventually_real
@ ^ [X2: real] : ( member_real @ X2 @ ( set_or1633881224788618240n_real @ A @ B ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).
% eventually_at_right_real
thf(fact_9329_greaterThan__Suc,axiom,
! [K: nat] :
( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).
% greaterThan_Suc
thf(fact_9330_INT__greaterThan__UNIV,axiom,
( ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) )
= bot_bot_set_nat ) ).
% INT_greaterThan_UNIV
thf(fact_9331_atLeast__0,axiom,
( ( set_ord_atLeast_nat @ zero_zero_nat )
= top_top_set_nat ) ).
% atLeast_0
thf(fact_9332_atLeast__Suc__greaterThan,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( set_or1210151606488870762an_nat @ K ) ) ).
% atLeast_Suc_greaterThan
thf(fact_9333_UN__atLeast__UNIV,axiom,
( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atLeast_nat @ top_top_set_nat ) )
= top_top_set_nat ) ).
% UN_atLeast_UNIV
thf(fact_9334_atLeast__Suc,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).
% atLeast_Suc
thf(fact_9335_bdd__above__nat,axiom,
condit2214826472909112428ve_nat = finite_finite_nat ).
% bdd_above_nat
thf(fact_9336_uniformity__real__def,axiom,
( topolo1511823702728130853y_real
= ( comple2936214249959783750l_real
@ ( image_2178119161166701260l_real
@ ^ [E3: real] :
( princi6114159922880469582l_real
@ ( collec3799799289383736868l_real
@ ( produc5414030515140494994real_o
@ ^ [X2: real,Y5: real] : ( ord_less_real @ ( real_V975177566351809787t_real @ X2 @ Y5 ) @ E3 ) ) ) )
@ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% uniformity_real_def
thf(fact_9337_uniformity__complex__def,axiom,
( topolo896644834953643431omplex
= ( comple8358262395181532106omplex
@ ( image_5971271580939081552omplex
@ ^ [E3: real] :
( princi3496590319149328850omplex
@ ( collec8663557070575231912omplex
@ ( produc6771430404735790350plex_o
@ ^ [X2: complex,Y5: complex] : ( ord_less_real @ ( real_V3694042436643373181omplex @ X2 @ Y5 ) @ E3 ) ) ) )
@ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% uniformity_complex_def
thf(fact_9338_eventually__prod__sequentially,axiom,
! [P: product_prod_nat_nat > $o] :
( ( eventu1038000079068216329at_nat @ P @ ( prod_filter_nat_nat @ at_top_nat @ at_top_nat ) )
= ( ? [N4: nat] :
! [M3: nat] :
( ( ord_less_eq_nat @ N4 @ M3 )
=> ! [N: nat] :
( ( ord_less_eq_nat @ N4 @ N )
=> ( P @ ( product_Pair_nat_nat @ N @ M3 ) ) ) ) ) ) ).
% eventually_prod_sequentially
thf(fact_9339_range__abs__Nats,axiom,
( ( image_int_int @ abs_abs_int @ top_top_set_int )
= semiring_1_Nats_int ) ).
% range_abs_Nats
thf(fact_9340_card_Ocomp__fun__commute__on,axiom,
( ( comp_nat_nat_nat @ suc @ suc )
= ( comp_nat_nat_nat @ suc @ suc ) ) ).
% card.comp_fun_commute_on
thf(fact_9341_mono__Suc,axiom,
order_mono_nat_nat @ suc ).
% mono_Suc
thf(fact_9342_mono__times__nat,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( order_mono_nat_nat @ ( times_times_nat @ N2 ) ) ) ).
% mono_times_nat
thf(fact_9343_mono__ge2__power__minus__self,axiom,
! [K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( order_mono_nat_nat
@ ^ [M3: nat] : ( minus_minus_nat @ ( power_power_nat @ K @ M3 ) @ M3 ) ) ) ).
% mono_ge2_power_minus_self
thf(fact_9344_infinite__int__iff__infinite__nat__abs,axiom,
! [S2: set_int] :
( ( ~ ( finite_finite_int @ S2 ) )
= ( ~ ( finite_finite_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ S2 ) ) ) ) ).
% infinite_int_iff_infinite_nat_abs
thf(fact_9345_Gcd__int__def,axiom,
( gcd_Gcd_int
= ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).
% Gcd_int_def
thf(fact_9346_inj__sgn__power,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( inj_on_real_real
@ ^ [Y5: real] : ( times_times_real @ ( sgn_sgn_real @ Y5 ) @ ( power_power_real @ ( abs_abs_real @ Y5 ) @ N2 ) )
@ top_top_set_real ) ) ).
% inj_sgn_power
thf(fact_9347_prod__encode__def,axiom,
( nat_prod_encode
= ( produc6842872674320459806at_nat
@ ^ [M3: nat,N: nat] : ( plus_plus_nat @ ( nat_triangle @ ( plus_plus_nat @ M3 @ N ) ) @ M3 ) ) ) ).
% prod_encode_def
thf(fact_9348_le__prod__encode__2,axiom,
! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).
% le_prod_encode_2
thf(fact_9349_le__prod__encode__1,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).
% le_prod_encode_1
thf(fact_9350_log__inj,axiom,
! [B: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( inj_on_real_real @ ( log @ B ) @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).
% log_inj
thf(fact_9351_prod__encode__prod__decode__aux,axiom,
! [K: nat,M: nat] :
( ( nat_prod_encode @ ( nat_prod_decode_aux @ K @ M ) )
= ( plus_plus_nat @ ( nat_triangle @ K ) @ M ) ) ).
% prod_encode_prod_decode_aux
thf(fact_9352_measure__function__int,axiom,
fun_is_measure_int @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) ).
% measure_function_int
thf(fact_9353_inj__Suc,axiom,
! [N5: set_nat] : ( inj_on_nat_nat @ suc @ N5 ) ).
% inj_Suc
thf(fact_9354_inj__on__diff__nat,axiom,
! [N5: set_nat,K: nat] :
( ! [N3: nat] :
( ( member_nat @ N3 @ N5 )
=> ( ord_less_eq_nat @ K @ N3 ) )
=> ( inj_on_nat_nat
@ ^ [N: nat] : ( minus_minus_nat @ N @ K )
@ N5 ) ) ).
% inj_on_diff_nat
thf(fact_9355_inj__on__set__encode,axiom,
inj_on_set_nat_nat @ nat_set_encode @ ( collect_set_nat @ finite_finite_nat ) ).
% inj_on_set_encode
thf(fact_9356_powr__real__of__int_H,axiom,
! [X3: real,N2: int] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ( X3 != zero_zero_real )
| ( ord_less_int @ zero_zero_int @ N2 ) )
=> ( ( powr_real @ X3 @ ( ring_1_of_int_real @ N2 ) )
= ( power_int_real @ X3 @ N2 ) ) ) ) ).
% powr_real_of_int'
thf(fact_9357_pow_Osimps_I1_J,axiom,
! [X3: num] :
( ( pow @ X3 @ one )
= X3 ) ).
% pow.simps(1)
thf(fact_9358_pow_Osimps_I3_J,axiom,
! [X3: num,Y: num] :
( ( pow @ X3 @ ( bit1 @ Y ) )
= ( times_times_num @ ( sqr @ ( pow @ X3 @ Y ) ) @ X3 ) ) ).
% pow.simps(3)
thf(fact_9359_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_valid @ X3 @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Y
= ( Xa2 != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( Y
= ( ~ ( ( Deg2 = Xa2 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.elims(1)
thf(fact_9360_sqr_Osimps_I2_J,axiom,
! [N2: num] :
( ( sqr @ ( bit0 @ N2 ) )
= ( bit0 @ ( bit0 @ ( sqr @ N2 ) ) ) ) ).
% sqr.simps(2)
thf(fact_9361_sqr_Osimps_I1_J,axiom,
( ( sqr @ one )
= one ) ).
% sqr.simps(1)
thf(fact_9362_sqr__conv__mult,axiom,
( sqr
= ( ^ [X2: num] : ( times_times_num @ X2 @ X2 ) ) ) ).
% sqr_conv_mult
thf(fact_9363_pow_Osimps_I2_J,axiom,
! [X3: num,Y: num] :
( ( pow @ X3 @ ( bit0 @ Y ) )
= ( sqr @ ( pow @ X3 @ Y ) ) ) ).
% pow.simps(2)
thf(fact_9364_sqr_Osimps_I3_J,axiom,
! [N2: num] :
( ( sqr @ ( bit1 @ N2 ) )
= ( bit1 @ ( bit0 @ ( plus_plus_num @ ( sqr @ N2 ) @ N2 ) ) ) ) ).
% sqr.simps(3)
thf(fact_9365_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg3: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList2 @ Summary ) @ Deg3 )
= ( ( Deg = Deg3 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima2 ) ) ) ).
% VEBT_internal.valid'.simps(2)
thf(fact_9366_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X3 @ Xa2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa2 = one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( Deg2 = Xa2 )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(3)
thf(fact_9367_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X3 @ Xa2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa2 != one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(2)
thf(fact_9368_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
=> ( Xa2 = one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa2 ) )
=> ( ( Deg2 = Xa2 )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(3)
thf(fact_9369_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X3 @ Xa2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
=> ( Xa2 != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa2 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(2)
thf(fact_9370_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
! [X3: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_valid @ X3 @ Xa2 )
= Y )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X3
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Y
= ( Xa2 = one_one_nat ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X3
= ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
=> ( ( Y
= ( ( Deg2 = Xa2 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
& ! [X2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X2 )
=> ( ( ord_less_nat @ Mi3 @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(1)
thf(fact_9371_atLeastLessThan__add__Un,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( set_or4665077453230672383an_nat @ I @ ( plus_plus_nat @ J @ K ) )
= ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).
% atLeastLessThan_add_Un
thf(fact_9372_sup__nat__def,axiom,
sup_sup_nat = ord_max_nat ).
% sup_nat_def
thf(fact_9373_sup__int__def,axiom,
sup_sup_int = ord_max_int ).
% sup_int_def
thf(fact_9374_Rats__eq__int__div__nat,axiom,
( field_5140801741446780682s_real
= ( collect_real
@ ^ [Uu3: real] :
? [I5: int,N: nat] :
( ( Uu3
= ( divide_divide_real @ ( ring_1_of_int_real @ I5 ) @ ( semiri5074537144036343181t_real @ N ) ) )
& ( N != zero_zero_nat ) ) ) ) ).
% Rats_eq_int_div_nat
thf(fact_9375_Rats__dense__in__real,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ? [X4: real] :
( ( member_real @ X4 @ field_5140801741446780682s_real )
& ( ord_less_real @ X3 @ X4 )
& ( ord_less_real @ X4 @ Y ) ) ) ).
% Rats_dense_in_real
thf(fact_9376_Rats__no__bot__less,axiom,
! [X3: real] :
? [X4: real] :
( ( member_real @ X4 @ field_5140801741446780682s_real )
& ( ord_less_real @ X4 @ X3 ) ) ).
% Rats_no_bot_less
thf(fact_9377_rat__floor__lemma,axiom,
! [A: int,B: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( divide_divide_int @ A @ B ) ) @ ( fract @ A @ B ) )
& ( ord_less_rat @ ( fract @ A @ B ) @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ) ).
% rat_floor_lemma
thf(fact_9378_less__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( ord_less_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% less_rat
thf(fact_9379_Rat__induct__pos,axiom,
! [P: rat > $o,Q2: rat] :
( ! [A4: int,B4: int] :
( ( ord_less_int @ zero_zero_int @ B4 )
=> ( P @ ( fract @ A4 @ B4 ) ) )
=> ( P @ Q2 ) ) ).
% Rat_induct_pos
thf(fact_9380_zero__less__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ ( fract @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% zero_less_Fract_iff
thf(fact_9381_Fract__less__zero__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ zero_zero_rat )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% Fract_less_zero_iff
thf(fact_9382_Fract__less__one__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ one_one_rat )
= ( ord_less_int @ A @ B ) ) ) ).
% Fract_less_one_iff
thf(fact_9383_one__less__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ one_one_rat @ ( fract @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% one_less_Fract_iff
thf(fact_9384_Fract__le__zero__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ zero_zero_rat )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% Fract_le_zero_iff
thf(fact_9385_zero__le__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( fract @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% zero_le_Fract_iff
thf(fact_9386_one__le__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( fract @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% one_le_Fract_iff
thf(fact_9387_Fract__le__one__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ one_one_rat )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% Fract_le_one_iff
thf(fact_9388_pos__deriv__imp__strict__mono,axiom,
! [F: real > real,F6: real > real] :
( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ( ! [X4: real] : ( ord_less_real @ zero_zero_real @ ( F6 @ X4 ) )
=> ( order_7092887310737990675l_real @ F ) ) ) ).
% pos_deriv_imp_strict_mono
thf(fact_9389_take__bit__num__simps_I1_J,axiom,
! [M: num] :
( ( bit_take_bit_num @ zero_zero_nat @ M )
= none_num ) ).
% take_bit_num_simps(1)
thf(fact_9390_of__nat__eq__id,axiom,
semiri1316708129612266289at_nat = id_nat ).
% of_nat_eq_id
thf(fact_9391_strict__mono__imp__increasing,axiom,
! [F: nat > nat,N2: nat] :
( ( order_5726023648592871131at_nat @ F )
=> ( ord_less_eq_nat @ N2 @ ( F @ N2 ) ) ) ).
% strict_mono_imp_increasing
thf(fact_9392_infinite__enumerate,axiom,
! [S2: set_nat] :
( ~ ( finite_finite_nat @ S2 )
=> ? [R3: nat > nat] :
( ( order_5726023648592871131at_nat @ R3 )
& ! [N6: nat] : ( member_nat @ ( R3 @ N6 ) @ S2 ) ) ) ).
% infinite_enumerate
thf(fact_9393_less__int__def,axiom,
( ord_less_int
= ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
@ ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y5: nat] :
( produc6081775807080527818_nat_o
@ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U2 @ Y5 ) ) ) ) ) ) ).
% less_int_def
thf(fact_9394_less__eq__int__def,axiom,
( ord_less_eq_int
= ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
@ ( produc8739625826339149834_nat_o
@ ^ [X2: nat,Y5: nat] :
( produc6081775807080527818_nat_o
@ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X2 @ V4 ) @ ( plus_plus_nat @ U2 @ Y5 ) ) ) ) ) ) ).
% less_eq_int_def
thf(fact_9395_nat__def,axiom,
( nat2
= ( map_fu2345160673673942751at_nat @ rep_Integ @ id_nat @ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ) ).
% nat_def
thf(fact_9396_take__bit__num__def,axiom,
( bit_take_bit_num
= ( ^ [N: nat,M3: num] :
( if_option_num
@ ( ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ M3 ) )
= zero_zero_nat )
@ none_num
@ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ M3 ) ) ) ) ) ) ) ).
% take_bit_num_def
thf(fact_9397_num__of__nat__numeral__eq,axiom,
! [Q2: num] :
( ( num_of_nat @ ( numeral_numeral_nat @ Q2 ) )
= Q2 ) ).
% num_of_nat_numeral_eq
thf(fact_9398_num__of__nat_Osimps_I1_J,axiom,
( ( num_of_nat @ zero_zero_nat )
= one ) ).
% num_of_nat.simps(1)
thf(fact_9399_numeral__num__of__nat,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( numeral_numeral_nat @ ( num_of_nat @ N2 ) )
= N2 ) ) ).
% numeral_num_of_nat
thf(fact_9400_num__of__nat__One,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ one_one_nat )
=> ( ( num_of_nat @ N2 )
= one ) ) ).
% num_of_nat_One
thf(fact_9401_num__of__nat__double,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( num_of_nat @ ( plus_plus_nat @ N2 @ N2 ) )
= ( bit0 @ ( num_of_nat @ N2 ) ) ) ) ).
% num_of_nat_double
thf(fact_9402_num__of__nat__plus__distrib,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( num_of_nat @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N2 ) ) ) ) ) ).
% num_of_nat_plus_distrib
thf(fact_9403_num__of__nat_Osimps_I2_J,axiom,
! [N2: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( num_of_nat @ ( suc @ N2 ) )
= ( inc @ ( num_of_nat @ N2 ) ) ) )
& ( ~ ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( num_of_nat @ ( suc @ N2 ) )
= one ) ) ) ).
% num_of_nat.simps(2)
thf(fact_9404_pred__numeral__inc,axiom,
! [K: num] :
( ( pred_numeral @ ( inc @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% pred_numeral_inc
thf(fact_9405_num__induct,axiom,
! [P: num > $o,X3: num] :
( ( P @ one )
=> ( ! [X4: num] :
( ( P @ X4 )
=> ( P @ ( inc @ X4 ) ) )
=> ( P @ X3 ) ) ) ).
% num_induct
thf(fact_9406_add__inc,axiom,
! [X3: num,Y: num] :
( ( plus_plus_num @ X3 @ ( inc @ Y ) )
= ( inc @ ( plus_plus_num @ X3 @ Y ) ) ) ).
% add_inc
thf(fact_9407_inc_Osimps_I1_J,axiom,
( ( inc @ one )
= ( bit0 @ one ) ) ).
% inc.simps(1)
thf(fact_9408_inc_Osimps_I2_J,axiom,
! [X3: num] :
( ( inc @ ( bit0 @ X3 ) )
= ( bit1 @ X3 ) ) ).
% inc.simps(2)
thf(fact_9409_inc_Osimps_I3_J,axiom,
! [X3: num] :
( ( inc @ ( bit1 @ X3 ) )
= ( bit0 @ ( inc @ X3 ) ) ) ).
% inc.simps(3)
thf(fact_9410_add__One,axiom,
! [X3: num] :
( ( plus_plus_num @ X3 @ one )
= ( inc @ X3 ) ) ).
% add_One
thf(fact_9411_inc__BitM__eq,axiom,
! [N2: num] :
( ( inc @ ( bitM @ N2 ) )
= ( bit0 @ N2 ) ) ).
% inc_BitM_eq
thf(fact_9412_BitM__inc__eq,axiom,
! [N2: num] :
( ( bitM @ ( inc @ N2 ) )
= ( bit1 @ N2 ) ) ).
% BitM_inc_eq
thf(fact_9413_mult__inc,axiom,
! [X3: num,Y: num] :
( ( times_times_num @ X3 @ ( inc @ Y ) )
= ( plus_plus_num @ ( times_times_num @ X3 @ Y ) @ X3 ) ) ).
% mult_inc
thf(fact_9414_positive__rat,axiom,
! [A: int,B: int] :
( ( positive @ ( fract @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% positive_rat
thf(fact_9415_less__rat__def,axiom,
( ord_less_rat
= ( ^ [X2: rat,Y5: rat] : ( positive @ ( minus_minus_rat @ Y5 @ X2 ) ) ) ) ).
% less_rat_def
thf(fact_9416_min__Suc__Suc,axiom,
! [M: nat,N2: nat] :
( ( ord_min_nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( suc @ ( ord_min_nat @ M @ N2 ) ) ) ).
% min_Suc_Suc
thf(fact_9417_min__0L,axiom,
! [N2: nat] :
( ( ord_min_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% min_0L
thf(fact_9418_min__0R,axiom,
! [N2: nat] :
( ( ord_min_nat @ N2 @ zero_zero_nat )
= zero_zero_nat ) ).
% min_0R
thf(fact_9419_min__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_min_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
= ( suc @ ( ord_min_nat @ ( pred_numeral @ K ) @ N2 ) ) ) ).
% min_numeral_Suc
thf(fact_9420_min__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_min_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
= ( suc @ ( ord_min_nat @ N2 @ ( pred_numeral @ K ) ) ) ) ).
% min_Suc_numeral
thf(fact_9421_nat__mult__min__right,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( times_times_nat @ M @ ( ord_min_nat @ N2 @ Q2 ) )
= ( ord_min_nat @ ( times_times_nat @ M @ N2 ) @ ( times_times_nat @ M @ Q2 ) ) ) ).
% nat_mult_min_right
thf(fact_9422_nat__mult__min__left,axiom,
! [M: nat,N2: nat,Q2: nat] :
( ( times_times_nat @ ( ord_min_nat @ M @ N2 ) @ Q2 )
= ( ord_min_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N2 @ Q2 ) ) ) ).
% nat_mult_min_left
thf(fact_9423_min__diff,axiom,
! [M: nat,I: nat,N2: nat] :
( ( ord_min_nat @ ( minus_minus_nat @ M @ I ) @ ( minus_minus_nat @ N2 @ I ) )
= ( minus_minus_nat @ ( ord_min_nat @ M @ N2 ) @ I ) ) ).
% min_diff
thf(fact_9424_min__Suc2,axiom,
! [M: nat,N2: nat] :
( ( ord_min_nat @ M @ ( suc @ N2 ) )
= ( case_nat_nat @ zero_zero_nat
@ ^ [M6: nat] : ( suc @ ( ord_min_nat @ M6 @ N2 ) )
@ M ) ) ).
% min_Suc2
thf(fact_9425_min__Suc1,axiom,
! [N2: nat,M: nat] :
( ( ord_min_nat @ ( suc @ N2 ) @ M )
= ( case_nat_nat @ zero_zero_nat
@ ^ [M6: nat] : ( suc @ ( ord_min_nat @ N2 @ M6 ) )
@ M ) ) ).
% min_Suc1
thf(fact_9426_inf__nat__def,axiom,
inf_inf_nat = ord_min_nat ).
% inf_nat_def
thf(fact_9427_inf__int__def,axiom,
inf_inf_int = ord_min_int ).
% inf_int_def
thf(fact_9428_Arg__bounded,axiom,
! [Z2: complex] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z2 ) )
& ( ord_less_eq_real @ ( arg @ Z2 ) @ pi ) ) ).
% Arg_bounded
thf(fact_9429_sorted__list__of__set__greaterThanAtMost,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ ( suc @ I ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) )
= ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanAtMost
thf(fact_9430_sorted__list__of__set__greaterThanLessThan,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ ( suc @ I ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) )
= ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanLessThan
thf(fact_9431_sorted__list__of__set__lessThan__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K ) ) @ ( cons_nat @ K @ nil_nat ) ) ) ).
% sorted_list_of_set_lessThan_Suc
thf(fact_9432_sorted__list__of__set__atMost__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K ) ) @ ( cons_nat @ ( suc @ K ) @ nil_nat ) ) ) ).
% sorted_list_of_set_atMost_Suc
thf(fact_9433_list__encode_Oelims,axiom,
! [X3: list_nat,Y: nat] :
( ( ( nat_list_encode @ X3 )
= Y )
=> ( ( ( X3 = nil_nat )
=> ( Y != zero_zero_nat ) )
=> ~ ! [X4: nat,Xs2: list_nat] :
( ( X3
= ( cons_nat @ X4 @ Xs2 ) )
=> ( Y
!= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs2 ) ) ) ) ) ) ) ) ).
% list_encode.elims
thf(fact_9434_list__encode_Osimps_I1_J,axiom,
( ( nat_list_encode @ nil_nat )
= zero_zero_nat ) ).
% list_encode.simps(1)
thf(fact_9435_upto__aux__rec,axiom,
( upto_aux
= ( ^ [I5: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I5 ) @ Js @ ( upto_aux @ I5 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).
% upto_aux_rec
thf(fact_9436_upto_Opelims,axiom,
! [X3: int,Xa2: int,Y: list_int] :
( ( ( upto @ X3 @ Xa2 )
= Y )
=> ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X3 @ Xa2 ) )
=> ~ ( ( ( ( ord_less_eq_int @ X3 @ Xa2 )
=> ( Y
= ( cons_int @ X3 @ ( upto @ ( plus_plus_int @ X3 @ one_one_int ) @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq_int @ X3 @ Xa2 )
=> ( Y = nil_int ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X3 @ Xa2 ) ) ) ) ) ).
% upto.pelims
thf(fact_9437_upto_Opsimps,axiom,
! [I: int,J: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I @ J ) )
=> ( ( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) )
& ( ~ ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= nil_int ) ) ) ) ).
% upto.psimps
thf(fact_9438_upto__empty,axiom,
! [J: int,I: int] :
( ( ord_less_int @ J @ I )
=> ( ( upto @ I @ J )
= nil_int ) ) ).
% upto_empty
thf(fact_9439_upto__Nil2,axiom,
! [I: int,J: int] :
( ( nil_int
= ( upto @ I @ J ) )
= ( ord_less_int @ J @ I ) ) ).
% upto_Nil2
thf(fact_9440_upto__Nil,axiom,
! [I: int,J: int] :
( ( ( upto @ I @ J )
= nil_int )
= ( ord_less_int @ J @ I ) ) ).
% upto_Nil
thf(fact_9441_upto__single,axiom,
! [I: int] :
( ( upto @ I @ I )
= ( cons_int @ I @ nil_int ) ) ).
% upto_single
thf(fact_9442_nth__upto,axiom,
! [I: int,K: nat,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) @ J )
=> ( ( nth_int @ ( upto @ I @ J ) @ K )
= ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).
% nth_upto
thf(fact_9443_length__upto,axiom,
! [I: int,J: int] :
( ( size_size_list_int @ ( upto @ I @ J ) )
= ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I ) @ one_one_int ) ) ) ).
% length_upto
thf(fact_9444_upto__rec__numeral_I1_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N2 ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= nil_int ) ) ) ).
% upto_rec_numeral(1)
thf(fact_9445_upto__rec__numeral_I2_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(2)
thf(fact_9446_upto__rec__numeral_I3_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N2 ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
= nil_int ) ) ) ).
% upto_rec_numeral(3)
thf(fact_9447_upto__rec__numeral_I4_J,axiom,
! [M: num,N2: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(4)
thf(fact_9448_upto__code,axiom,
( upto
= ( ^ [I5: int,J3: int] : ( upto_aux @ I5 @ J3 @ nil_int ) ) ) ).
% upto_code
thf(fact_9449_upto__aux__def,axiom,
( upto_aux
= ( ^ [I5: int,J3: int] : ( append_int @ ( upto @ I5 @ J3 ) ) ) ) ).
% upto_aux_def
thf(fact_9450_atLeastAtMost__upto,axiom,
( set_or1266510415728281911st_int
= ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ I5 @ J3 ) ) ) ) ).
% atLeastAtMost_upto
thf(fact_9451_distinct__upto,axiom,
! [I: int,J: int] : ( distinct_int @ ( upto @ I @ J ) ) ).
% distinct_upto
thf(fact_9452_upto__split2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).
% upto_split2
thf(fact_9453_upto__split1,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).
% upto_split1
thf(fact_9454_atLeastLessThan__upto,axiom,
( set_or4662586982721622107an_int
= ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ I5 @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% atLeastLessThan_upto
thf(fact_9455_greaterThanAtMost__upto,axiom,
( set_or6656581121297822940st_int
= ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I5 @ one_one_int ) @ J3 ) ) ) ) ).
% greaterThanAtMost_upto
thf(fact_9456_upto__rec1,axiom,
! [I: int,J: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) ) ).
% upto_rec1
thf(fact_9457_upto_Osimps,axiom,
( upto
= ( ^ [I5: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I5 @ J3 ) @ ( cons_int @ I5 @ ( upto @ ( plus_plus_int @ I5 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).
% upto.simps
thf(fact_9458_upto_Oelims,axiom,
! [X3: int,Xa2: int,Y: list_int] :
( ( ( upto @ X3 @ Xa2 )
= Y )
=> ( ( ( ord_less_eq_int @ X3 @ Xa2 )
=> ( Y
= ( cons_int @ X3 @ ( upto @ ( plus_plus_int @ X3 @ one_one_int ) @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq_int @ X3 @ Xa2 )
=> ( Y = nil_int ) ) ) ) ).
% upto.elims
thf(fact_9459_upto__rec2,axiom,
! [I: int,J: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).
% upto_rec2
thf(fact_9460_greaterThanLessThan__upto,axiom,
( set_or5832277885323065728an_int
= ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I5 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% greaterThanLessThan_upto
thf(fact_9461_upto__split3,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).
% upto_split3
thf(fact_9462_Arg__correct,axiom,
! [Z2: complex] :
( ( Z2 != zero_zero_complex )
=> ( ( ( sgn_sgn_complex @ Z2 )
= ( cis @ ( arg @ Z2 ) ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z2 ) )
& ( ord_less_eq_real @ ( arg @ Z2 ) @ pi ) ) ) ).
% Arg_correct
thf(fact_9463_cis__Arg__unique,axiom,
! [Z2: complex,X3: real] :
( ( ( sgn_sgn_complex @ Z2 )
= ( cis @ X3 ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X3 )
=> ( ( ord_less_eq_real @ X3 @ pi )
=> ( ( arg @ Z2 )
= X3 ) ) ) ) ).
% cis_Arg_unique
thf(fact_9464_bij__betw__roots__unity,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( bij_betw_nat_complex
@ ^ [K2: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
@ ( set_ord_lessThan_nat @ N2 )
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= one_one_complex ) ) ) ) ).
% bij_betw_roots_unity
thf(fact_9465_bij__betw__nth__root__unity,axiom,
! [C: complex,N2: nat] :
( ( C != zero_zero_complex )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N2 @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) )
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= one_one_complex ) )
@ ( collect_complex
@ ^ [Z6: complex] :
( ( power_power_complex @ Z6 @ N2 )
= C ) ) ) ) ) ).
% bij_betw_nth_root_unity
thf(fact_9466_Arg__def,axiom,
( arg
= ( ^ [Z6: complex] :
( if_real @ ( Z6 = zero_zero_complex ) @ zero_zero_real
@ ( fChoice_real
@ ^ [A3: real] :
( ( ( sgn_sgn_complex @ Z6 )
= ( cis @ A3 ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A3 )
& ( ord_less_eq_real @ A3 @ pi ) ) ) ) ) ) ).
% Arg_def
thf(fact_9467_bij__betw__Suc,axiom,
! [M5: set_nat,N5: set_nat] :
( ( bij_betw_nat_nat @ suc @ M5 @ N5 )
= ( ( image_nat_nat @ suc @ M5 )
= N5 ) ) ).
% bij_betw_Suc
thf(fact_9468_pairs__le__eq__Sigma,axiom,
! [M: nat] :
( ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I5: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I5 @ J3 ) @ M ) ) )
= ( produc457027306803732586at_nat @ ( set_ord_atMost_nat @ M )
@ ^ [R5: nat] : ( set_ord_atMost_nat @ ( minus_minus_nat @ M @ R5 ) ) ) ) ).
% pairs_le_eq_Sigma
thf(fact_9469_natLess__def,axiom,
( bNF_Ca8459412986667044542atLess
= ( collec3392354462482085612at_nat @ ( produc6081775807080527818_nat_o @ ord_less_nat ) ) ) ).
% natLess_def
thf(fact_9470_list__encode_Opelims,axiom,
! [X3: list_nat,Y: nat] :
( ( ( nat_list_encode @ X3 )
= Y )
=> ( ( accp_list_nat @ nat_list_encode_rel @ X3 )
=> ( ( ( X3 = nil_nat )
=> ( ( Y = zero_zero_nat )
=> ~ ( accp_list_nat @ nat_list_encode_rel @ nil_nat ) ) )
=> ~ ! [X4: nat,Xs2: list_nat] :
( ( X3
= ( cons_nat @ X4 @ Xs2 ) )
=> ( ( Y
= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs2 ) ) ) ) )
=> ~ ( accp_list_nat @ nat_list_encode_rel @ ( cons_nat @ X4 @ Xs2 ) ) ) ) ) ) ) ).
% list_encode.pelims
thf(fact_9471_Restr__natLeq,axiom,
! [N2: nat] :
( ( inf_in2572325071724192079at_nat @ bNF_Ca8665028551170535155natLeq
@ ( produc457027306803732586at_nat
@ ( collect_nat
@ ^ [X2: nat] : ( ord_less_nat @ X2 @ N2 ) )
@ ^ [Uu3: nat] :
( collect_nat
@ ^ [X2: nat] : ( ord_less_nat @ X2 @ N2 ) ) ) )
= ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [X2: nat,Y5: nat] :
( ( ord_less_nat @ X2 @ N2 )
& ( ord_less_nat @ Y5 @ N2 )
& ( ord_less_eq_nat @ X2 @ Y5 ) ) ) ) ) ).
% Restr_natLeq
thf(fact_9472_upt__rec__numeral,axiom,
! [M: num,N2: num] :
( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
=> ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) ) ) ) )
& ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
=> ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= nil_nat ) ) ) ).
% upt_rec_numeral
thf(fact_9473_remdups__upt,axiom,
! [M: nat,N2: nat] :
( ( remdups_nat @ ( upt @ M @ N2 ) )
= ( upt @ M @ N2 ) ) ).
% remdups_upt
thf(fact_9474_tl__upt,axiom,
! [M: nat,N2: nat] :
( ( tl_nat @ ( upt @ M @ N2 ) )
= ( upt @ ( suc @ M ) @ N2 ) ) ).
% tl_upt
thf(fact_9475_hd__upt,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( hd_nat @ ( upt @ I @ J ) )
= I ) ) ).
% hd_upt
thf(fact_9476_drop__upt,axiom,
! [M: nat,I: nat,J: nat] :
( ( drop_nat @ M @ ( upt @ I @ J ) )
= ( upt @ ( plus_plus_nat @ I @ M ) @ J ) ) ).
% drop_upt
thf(fact_9477_length__upt,axiom,
! [I: nat,J: nat] :
( ( size_size_list_nat @ ( upt @ I @ J ) )
= ( minus_minus_nat @ J @ I ) ) ).
% length_upt
thf(fact_9478_take__upt,axiom,
! [I: nat,M: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ M ) @ N2 )
=> ( ( take_nat @ M @ ( upt @ I @ N2 ) )
= ( upt @ I @ ( plus_plus_nat @ I @ M ) ) ) ) ).
% take_upt
thf(fact_9479_upt__conv__Nil,axiom,
! [J: nat,I: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( upt @ I @ J )
= nil_nat ) ) ).
% upt_conv_Nil
thf(fact_9480_sorted__list__of__set__range,axiom,
! [M: nat,N2: nat] :
( ( linord2614967742042102400et_nat @ ( set_or4665077453230672383an_nat @ M @ N2 ) )
= ( upt @ M @ N2 ) ) ).
% sorted_list_of_set_range
thf(fact_9481_upt__eq__Nil__conv,axiom,
! [I: nat,J: nat] :
( ( ( upt @ I @ J )
= nil_nat )
= ( ( J = zero_zero_nat )
| ( ord_less_eq_nat @ J @ I ) ) ) ).
% upt_eq_Nil_conv
thf(fact_9482_nth__upt,axiom,
! [I: nat,K: nat,J: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J )
=> ( ( nth_nat @ ( upt @ I @ J ) @ K )
= ( plus_plus_nat @ I @ K ) ) ) ).
% nth_upt
thf(fact_9483_distinct__upt,axiom,
! [I: nat,J: nat] : ( distinct_nat @ ( upt @ I @ J ) ) ).
% distinct_upt
thf(fact_9484_greaterThanLessThan__upt,axiom,
( set_or5834768355832116004an_nat
= ( ^ [N: nat,M3: nat] : ( set_nat2 @ ( upt @ ( suc @ N ) @ M3 ) ) ) ) ).
% greaterThanLessThan_upt
thf(fact_9485_atLeast__upt,axiom,
( set_ord_lessThan_nat
= ( ^ [N: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ N ) ) ) ) ).
% atLeast_upt
thf(fact_9486_atLeastLessThan__upt,axiom,
( set_or4665077453230672383an_nat
= ( ^ [I5: nat,J3: nat] : ( set_nat2 @ ( upt @ I5 @ J3 ) ) ) ) ).
% atLeastLessThan_upt
thf(fact_9487_atLeastAtMost__upt,axiom,
( set_or1269000886237332187st_nat
= ( ^ [N: nat,M3: nat] : ( set_nat2 @ ( upt @ N @ ( suc @ M3 ) ) ) ) ) ).
% atLeastAtMost_upt
thf(fact_9488_greaterThanAtMost__upt,axiom,
( set_or6659071591806873216st_nat
= ( ^ [N: nat,M3: nat] : ( set_nat2 @ ( upt @ ( suc @ N ) @ ( suc @ M3 ) ) ) ) ) ).
% greaterThanAtMost_upt
thf(fact_9489_upt__conv__Cons__Cons,axiom,
! [M: nat,N2: nat,Ns: list_nat,Q2: nat] :
( ( ( cons_nat @ M @ ( cons_nat @ N2 @ Ns ) )
= ( upt @ M @ Q2 ) )
= ( ( cons_nat @ N2 @ Ns )
= ( upt @ ( suc @ M ) @ Q2 ) ) ) ).
% upt_conv_Cons_Cons
thf(fact_9490_upt__0,axiom,
! [I: nat] :
( ( upt @ I @ zero_zero_nat )
= nil_nat ) ).
% upt_0
thf(fact_9491_atMost__upto,axiom,
( set_ord_atMost_nat
= ( ^ [N: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ ( suc @ N ) ) ) ) ) ).
% atMost_upto
thf(fact_9492_upt__conv__Cons,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( upt @ I @ J )
= ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).
% upt_conv_Cons
thf(fact_9493_natLeq__def,axiom,
( bNF_Ca8665028551170535155natLeq
= ( collec3392354462482085612at_nat @ ( produc6081775807080527818_nat_o @ ord_less_eq_nat ) ) ) ).
% natLeq_def
thf(fact_9494_upt__add__eq__append,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( plus_plus_nat @ J @ K ) )
= ( append_nat @ ( upt @ I @ J ) @ ( upt @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).
% upt_add_eq_append
thf(fact_9495_upt__eq__Cons__conv,axiom,
! [I: nat,J: nat,X3: nat,Xs: list_nat] :
( ( ( upt @ I @ J )
= ( cons_nat @ X3 @ Xs ) )
= ( ( ord_less_nat @ I @ J )
& ( I = X3 )
& ( ( upt @ ( plus_plus_nat @ I @ one_one_nat ) @ J )
= Xs ) ) ) ).
% upt_eq_Cons_conv
thf(fact_9496_upt__rec,axiom,
( upt
= ( ^ [I5: nat,J3: nat] : ( if_list_nat @ ( ord_less_nat @ I5 @ J3 ) @ ( cons_nat @ I5 @ ( upt @ ( suc @ I5 ) @ J3 ) ) @ nil_nat ) ) ) ).
% upt_rec
thf(fact_9497_upt__Suc,axiom,
! [I: nat,J: nat] :
( ( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
& ( ~ ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= nil_nat ) ) ) ).
% upt_Suc
thf(fact_9498_upt__Suc__append,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).
% upt_Suc_append
thf(fact_9499_Restr__natLeq2,axiom,
! [N2: nat] :
( ( inf_in2572325071724192079at_nat @ bNF_Ca8665028551170535155natLeq
@ ( produc457027306803732586at_nat @ ( order_underS_nat @ bNF_Ca8665028551170535155natLeq @ N2 )
@ ^ [Uu3: nat] : ( order_underS_nat @ bNF_Ca8665028551170535155natLeq @ N2 ) ) )
= ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [X2: nat,Y5: nat] :
( ( ord_less_nat @ X2 @ N2 )
& ( ord_less_nat @ Y5 @ N2 )
& ( ord_less_eq_nat @ X2 @ Y5 ) ) ) ) ) ).
% Restr_natLeq2
thf(fact_9500_natLeq__underS__less,axiom,
! [N2: nat] :
( ( order_underS_nat @ bNF_Ca8665028551170535155natLeq @ N2 )
= ( collect_nat
@ ^ [X2: nat] : ( ord_less_nat @ X2 @ N2 ) ) ) ).
% natLeq_underS_less
thf(fact_9501_not__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% not_negative_int_iff
thf(fact_9502_not__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% not_nonnegative_int_iff
thf(fact_9503_map__Suc__upt,axiom,
! [M: nat,N2: nat] :
( ( map_nat_nat @ suc @ ( upt @ M @ N2 ) )
= ( upt @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).
% map_Suc_upt
thf(fact_9504_map__add__upt,axiom,
! [N2: nat,M: nat] :
( ( map_nat_nat
@ ^ [I5: nat] : ( plus_plus_nat @ I5 @ N2 )
@ ( upt @ zero_zero_nat @ M ) )
= ( upt @ N2 @ ( plus_plus_nat @ M @ N2 ) ) ) ).
% map_add_upt
thf(fact_9505_map__decr__upt,axiom,
! [M: nat,N2: nat] :
( ( map_nat_nat
@ ^ [N: nat] : ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) )
@ ( upt @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( upt @ M @ N2 ) ) ).
% map_decr_upt
thf(fact_9506_sum__list__upt,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( groups4561878855575611511st_nat @ ( upt @ M @ N2 ) )
= ( groups3542108847815614940at_nat
@ ^ [X2: nat] : X2
@ ( set_or4665077453230672383an_nat @ M @ N2 ) ) ) ) ).
% sum_list_upt
thf(fact_9507_card__length__sum__list__rec,axiom,
! [M: nat,N5: nat] :
( ( ord_less_eq_nat @ one_one_nat @ M )
=> ( ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L2: list_nat] :
( ( ( size_size_list_nat @ L2 )
= M )
& ( ( groups4561878855575611511st_nat @ L2 )
= N5 ) ) ) )
= ( plus_plus_nat
@ ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L2: list_nat] :
( ( ( size_size_list_nat @ L2 )
= ( minus_minus_nat @ M @ one_one_nat ) )
& ( ( groups4561878855575611511st_nat @ L2 )
= N5 ) ) ) )
@ ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L2: list_nat] :
( ( ( size_size_list_nat @ L2 )
= M )
& ( ( plus_plus_nat @ ( groups4561878855575611511st_nat @ L2 ) @ one_one_nat )
= N5 ) ) ) ) ) ) ) ).
% card_length_sum_list_rec
thf(fact_9508_card__length__sum__list,axiom,
! [M: nat,N5: nat] :
( ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L2: list_nat] :
( ( ( size_size_list_nat @ L2 )
= M )
& ( ( groups4561878855575611511st_nat @ L2 )
= N5 ) ) ) )
= ( binomial @ ( minus_minus_nat @ ( plus_plus_nat @ N5 @ M ) @ one_one_nat ) @ N5 ) ) ).
% card_length_sum_list
thf(fact_9509_sorted__upt,axiom,
! [M: nat,N2: nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( upt @ M @ N2 ) ) ).
% sorted_upt
thf(fact_9510_sorted__wrt__upt,axiom,
! [M: nat,N2: nat] : ( sorted_wrt_nat @ ord_less_nat @ ( upt @ M @ N2 ) ) ).
% sorted_wrt_upt
thf(fact_9511_sorted__wrt__less__idx,axiom,
! [Ns: list_nat,I: nat] :
( ( sorted_wrt_nat @ ord_less_nat @ Ns )
=> ( ( ord_less_nat @ I @ ( size_size_list_nat @ Ns ) )
=> ( ord_less_eq_nat @ I @ ( nth_nat @ Ns @ I ) ) ) ) ).
% sorted_wrt_less_idx
thf(fact_9512_sorted__wrt__upto,axiom,
! [I: int,J: int] : ( sorted_wrt_int @ ord_less_int @ ( upto @ I @ J ) ) ).
% sorted_wrt_upto
thf(fact_9513_sorted__upto,axiom,
! [M: int,N2: int] : ( sorted_wrt_int @ ord_less_eq_int @ ( upto @ M @ N2 ) ) ).
% sorted_upto
thf(fact_9514_sort__upt,axiom,
! [M: nat,N2: nat] :
( ( linord738340561235409698at_nat
@ ^ [X2: nat] : X2
@ ( upt @ M @ N2 ) )
= ( upt @ M @ N2 ) ) ).
% sort_upt
thf(fact_9515_sort__upto,axiom,
! [I: int,J: int] :
( ( linord1735203802627413978nt_int
@ ^ [X2: int] : X2
@ ( upto @ I @ J ) )
= ( upto @ I @ J ) ) ).
% sort_upto
thf(fact_9516_Field__natLeq__on,axiom,
! [N2: nat] :
( ( field_nat
@ ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [X2: nat,Y5: nat] :
( ( ord_less_nat @ X2 @ N2 )
& ( ord_less_nat @ Y5 @ N2 )
& ( ord_less_eq_nat @ X2 @ Y5 ) ) ) ) )
= ( collect_nat
@ ^ [X2: nat] : ( ord_less_nat @ X2 @ N2 ) ) ) ).
% Field_natLeq_on
thf(fact_9517_wf__less,axiom,
wf_nat @ ( collec3392354462482085612at_nat @ ( produc6081775807080527818_nat_o @ ord_less_nat ) ) ).
% wf_less
thf(fact_9518_wf__int__ge__less__than2,axiom,
! [D: int] : ( wf_int @ ( int_ge_less_than2 @ D ) ) ).
% wf_int_ge_less_than2
thf(fact_9519_wf__int__ge__less__than,axiom,
! [D: int] : ( wf_int @ ( int_ge_less_than @ D ) ) ).
% wf_int_ge_less_than
thf(fact_9520_cauchy__def,axiom,
( cauchy
= ( ^ [X6: nat > rat] :
! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K2: nat] :
! [M3: nat] :
( ( ord_less_eq_nat @ K2 @ M3 )
=> ! [N: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X6 @ M3 ) @ ( X6 @ N ) ) ) @ R5 ) ) ) ) ) ) ).
% cauchy_def
thf(fact_9521_cauchy__imp__bounded,axiom,
! [X8: nat > rat] :
( ( cauchy @ X8 )
=> ? [B4: rat] :
( ( ord_less_rat @ zero_zero_rat @ B4 )
& ! [N6: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X8 @ N6 ) ) @ B4 ) ) ) ).
% cauchy_imp_bounded
thf(fact_9522_cauchyD,axiom,
! [X8: nat > rat,R2: rat] :
( ( cauchy @ X8 )
=> ( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ? [K3: nat] :
! [M2: nat] :
( ( ord_less_eq_nat @ K3 @ M2 )
=> ! [N6: nat] :
( ( ord_less_eq_nat @ K3 @ N6 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X8 @ M2 ) @ ( X8 @ N6 ) ) ) @ R2 ) ) ) ) ) ).
% cauchyD
thf(fact_9523_cauchyI,axiom,
! [X8: nat > rat] :
( ! [R3: rat] :
( ( ord_less_rat @ zero_zero_rat @ R3 )
=> ? [K4: nat] :
! [M4: nat] :
( ( ord_less_eq_nat @ K4 @ M4 )
=> ! [N3: nat] :
( ( ord_less_eq_nat @ K4 @ N3 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X8 @ M4 ) @ ( X8 @ N3 ) ) ) @ R3 ) ) ) )
=> ( cauchy @ X8 ) ) ).
% cauchyI
thf(fact_9524_le__Real,axiom,
! [X8: nat > rat,Y6: nat > rat] :
( ( cauchy @ X8 )
=> ( ( cauchy @ Y6 )
=> ( ( ord_less_eq_real @ ( real2 @ X8 ) @ ( real2 @ Y6 ) )
= ( ! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K2: nat] :
! [N: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ord_less_eq_rat @ ( X8 @ N ) @ ( plus_plus_rat @ ( Y6 @ N ) @ R5 ) ) ) ) ) ) ) ) ).
% le_Real
thf(fact_9525_cauchy__not__vanishes,axiom,
! [X8: nat > rat] :
( ( cauchy @ X8 )
=> ( ~ ( vanishes @ X8 )
=> ? [B4: rat] :
( ( ord_less_rat @ zero_zero_rat @ B4 )
& ? [K3: nat] :
! [N6: nat] :
( ( ord_less_eq_nat @ K3 @ N6 )
=> ( ord_less_rat @ B4 @ ( abs_abs_rat @ ( X8 @ N6 ) ) ) ) ) ) ) ).
% cauchy_not_vanishes
thf(fact_9526_vanishes__mult__bounded,axiom,
! [X8: nat > rat,Y6: nat > rat] :
( ? [A8: rat] :
( ( ord_less_rat @ zero_zero_rat @ A8 )
& ! [N3: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X8 @ N3 ) ) @ A8 ) )
=> ( ( vanishes @ Y6 )
=> ( vanishes
@ ^ [N: nat] : ( times_times_rat @ ( X8 @ N ) @ ( Y6 @ N ) ) ) ) ) ).
% vanishes_mult_bounded
thf(fact_9527_vanishes__def,axiom,
( vanishes
= ( ^ [X6: nat > rat] :
! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K2: nat] :
! [N: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ord_less_rat @ ( abs_abs_rat @ ( X6 @ N ) ) @ R5 ) ) ) ) ) ).
% vanishes_def
thf(fact_9528_vanishesI,axiom,
! [X8: nat > rat] :
( ! [R3: rat] :
( ( ord_less_rat @ zero_zero_rat @ R3 )
=> ? [K4: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ K4 @ N3 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( X8 @ N3 ) ) @ R3 ) ) )
=> ( vanishes @ X8 ) ) ).
% vanishesI
thf(fact_9529_vanishesD,axiom,
! [X8: nat > rat,R2: rat] :
( ( vanishes @ X8 )
=> ( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ? [K3: nat] :
! [N6: nat] :
( ( ord_less_eq_nat @ K3 @ N6 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( X8 @ N6 ) ) @ R2 ) ) ) ) ).
% vanishesD
thf(fact_9530_cauchy__not__vanishes__cases,axiom,
! [X8: nat > rat] :
( ( cauchy @ X8 )
=> ( ~ ( vanishes @ X8 )
=> ? [B4: rat] :
( ( ord_less_rat @ zero_zero_rat @ B4 )
& ? [K3: nat] :
( ! [N6: nat] :
( ( ord_less_eq_nat @ K3 @ N6 )
=> ( ord_less_rat @ B4 @ ( uminus_uminus_rat @ ( X8 @ N6 ) ) ) )
| ! [N6: nat] :
( ( ord_less_eq_nat @ K3 @ N6 )
=> ( ord_less_rat @ B4 @ ( X8 @ N6 ) ) ) ) ) ) ) ).
% cauchy_not_vanishes_cases
thf(fact_9531_not__positive__Real,axiom,
! [X8: nat > rat] :
( ( cauchy @ X8 )
=> ( ( ~ ( positive2 @ ( real2 @ X8 ) ) )
= ( ! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K2: nat] :
! [N: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ord_less_eq_rat @ ( X8 @ N ) @ R5 ) ) ) ) ) ) ).
% not_positive_Real
thf(fact_9532_positive__Real,axiom,
! [X8: nat > rat] :
( ( cauchy @ X8 )
=> ( ( positive2 @ ( real2 @ X8 ) )
= ( ? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K2: nat] :
! [N: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ord_less_rat @ R5 @ ( X8 @ N ) ) ) ) ) ) ) ).
% positive_Real
thf(fact_9533_less__real__def,axiom,
( ord_less_real
= ( ^ [X2: real,Y5: real] : ( positive2 @ ( minus_minus_real @ Y5 @ X2 ) ) ) ) ).
% less_real_def
thf(fact_9534_Real_Opositive_Orep__eq,axiom,
( positive2
= ( ^ [X2: real] :
? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K2: nat] :
! [N: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ord_less_rat @ R5 @ ( rep_real @ X2 @ N ) ) ) ) ) ) ).
% Real.positive.rep_eq
thf(fact_9535_Real_Opositive__def,axiom,
( positive2
= ( map_fu1856342031159181835at_o_o @ rep_real @ id_o
@ ^ [X6: nat > rat] :
? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K2: nat] :
! [N: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ord_less_rat @ R5 @ ( X6 @ N ) ) ) ) ) ) ).
% Real.positive_def
thf(fact_9536_strict__mono__enumerate,axiom,
! [S2: set_nat] :
( ~ ( finite_finite_nat @ S2 )
=> ( order_5726023648592871131at_nat @ ( infini8530281810654367211te_nat @ S2 ) ) ) ).
% strict_mono_enumerate
thf(fact_9537_le__enumerate,axiom,
! [S2: set_nat,N2: nat] :
( ~ ( finite_finite_nat @ S2 )
=> ( ord_less_eq_nat @ N2 @ ( infini8530281810654367211te_nat @ S2 @ N2 ) ) ) ).
% le_enumerate
thf(fact_9538_enumerate__Ex,axiom,
! [S2: set_nat,S: nat] :
( ~ ( finite_finite_nat @ S2 )
=> ( ( member_nat @ S @ S2 )
=> ? [N3: nat] :
( ( infini8530281810654367211te_nat @ S2 @ N3 )
= S ) ) ) ).
% enumerate_Ex
thf(fact_9539_range__enumerate,axiom,
! [S2: set_nat] :
( ~ ( finite_finite_nat @ S2 )
=> ( ( image_nat_nat @ ( infini8530281810654367211te_nat @ S2 ) @ top_top_set_nat )
= S2 ) ) ).
% range_enumerate
thf(fact_9540_finite__le__enumerate,axiom,
! [S2: set_nat,N2: nat] :
( ( finite_finite_nat @ S2 )
=> ( ( ord_less_nat @ N2 @ ( finite_card_nat @ S2 ) )
=> ( ord_less_eq_nat @ N2 @ ( infini8530281810654367211te_nat @ S2 @ N2 ) ) ) ) ).
% finite_le_enumerate
thf(fact_9541_bij__enumerate,axiom,
! [S2: set_nat] :
( ~ ( finite_finite_nat @ S2 )
=> ( bij_betw_nat_nat @ ( infini8530281810654367211te_nat @ S2 ) @ top_top_set_nat @ S2 ) ) ).
% bij_enumerate
thf(fact_9542_Least__eq__0,axiom,
! [P: nat > $o] :
( ( P @ zero_zero_nat )
=> ( ( ord_Least_nat @ P )
= zero_zero_nat ) ) ).
% Least_eq_0
thf(fact_9543_Least__Suc,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ zero_zero_nat )
=> ( ( ord_Least_nat @ P )
= ( suc
@ ( ord_Least_nat
@ ^ [M3: nat] : ( P @ ( suc @ M3 ) ) ) ) ) ) ) ).
% Least_Suc
thf(fact_9544_Least__Suc2,axiom,
! [P: nat > $o,N2: nat,Q: nat > $o,M: nat] :
( ( P @ N2 )
=> ( ( Q @ M )
=> ( ~ ( P @ zero_zero_nat )
=> ( ! [K3: nat] :
( ( P @ ( suc @ K3 ) )
= ( Q @ K3 ) )
=> ( ( ord_Least_nat @ P )
= ( suc @ ( ord_Least_nat @ Q ) ) ) ) ) ) ) ).
% Least_Suc2
thf(fact_9545_integer__of__int__code,axiom,
( code_integer_of_int
= ( ^ [K2: int] :
( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
@ ( if_Code_integer
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).
% integer_of_int_code
thf(fact_9546_less__integer__code_I1_J,axiom,
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ).
% less_integer_code(1)
thf(fact_9547_abs__integer__code,axiom,
( abs_abs_Code_integer
= ( ^ [K2: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ K2 ) @ K2 ) ) ) ).
% abs_integer_code
thf(fact_9548_less__integer_Oabs__eq,axiom,
! [Xa2: int,X3: int] :
( ( ord_le6747313008572928689nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X3 ) )
= ( ord_less_int @ Xa2 @ X3 ) ) ).
% less_integer.abs_eq
thf(fact_9549_sgn__integer__code,axiom,
( sgn_sgn_Code_integer
= ( ^ [K2: code_integer] : ( if_Code_integer @ ( K2 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).
% sgn_integer_code
thf(fact_9550_zero__natural_Orsp,axiom,
zero_zero_nat = zero_zero_nat ).
% zero_natural.rsp
thf(fact_9551_int__of__integer__code,axiom,
( code_int_of_integer
= ( ^ [K2: code_integer] :
( if_int @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K2 ) ) )
@ ( if_int @ ( K2 = zero_z3403309356797280102nteger ) @ zero_zero_int
@ ( produc1553301316500091796er_int
@ ^ [L2: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ one_one_int ) )
@ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% int_of_integer_code
thf(fact_9552_nat__of__integer__code,axiom,
( code_nat_of_integer
= ( ^ [K2: code_integer] :
( if_nat @ ( ord_le3102999989581377725nteger @ K2 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
@ ( produc1555791787009142072er_nat
@ ^ [L2: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ one_one_nat ) )
@ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% nat_of_integer_code
thf(fact_9553_nat__of__integer__non__positive,axiom,
! [K: code_integer] :
( ( ord_le3102999989581377725nteger @ K @ zero_z3403309356797280102nteger )
=> ( ( code_nat_of_integer @ K )
= zero_zero_nat ) ) ).
% nat_of_integer_non_positive
thf(fact_9554_integer__less__iff,axiom,
( ord_le6747313008572928689nteger
= ( ^ [K2: code_integer,L2: code_integer] : ( ord_less_int @ ( code_int_of_integer @ K2 ) @ ( code_int_of_integer @ L2 ) ) ) ) ).
% integer_less_iff
thf(fact_9555_less__integer_Orep__eq,axiom,
( ord_le6747313008572928689nteger
= ( ^ [X2: code_integer,Xa4: code_integer] : ( ord_less_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).
% less_integer.rep_eq
thf(fact_9556_nat__of__integer__code__post_I1_J,axiom,
( ( code_nat_of_integer @ zero_z3403309356797280102nteger )
= zero_zero_nat ) ).
% nat_of_integer_code_post(1)
thf(fact_9557_bit__cut__integer__code,axiom,
( code_bit_cut_integer
= ( ^ [K2: code_integer] :
( if_Pro5737122678794959658eger_o @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
@ ( produc9125791028180074456eger_o
@ ^ [R5: code_integer,S7: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S7 ) ) @ ( S7 = one_one_Code_integer ) )
@ ( code_divmod_abs @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_cut_integer_code
thf(fact_9558_last__upt,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( last_nat @ ( upt @ I @ J ) )
= ( minus_minus_nat @ J @ one_one_nat ) ) ) ).
% last_upt
thf(fact_9559_divmod__integer__code,axiom,
( code_divmod_integer
= ( ^ [K2: code_integer,L2: code_integer] :
( if_Pro6119634080678213985nteger @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L2 )
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ ( code_divmod_abs @ K2 @ L2 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S7: code_integer] : ( if_Pro6119634080678213985nteger @ ( S7 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L2 @ S7 ) ) )
@ ( code_divmod_abs @ K2 @ L2 ) ) )
@ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K2 )
@ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K2 @ L2 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S7: code_integer] : ( if_Pro6119634080678213985nteger @ ( S7 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L2 ) @ S7 ) ) )
@ ( code_divmod_abs @ K2 @ L2 ) ) ) ) ) ) ) ) ) ).
% divmod_integer_code
thf(fact_9560_vimage__Suc__insert__0,axiom,
! [A2: set_nat] :
( ( vimage_nat_nat @ suc @ ( insert_nat @ zero_zero_nat @ A2 ) )
= ( vimage_nat_nat @ suc @ A2 ) ) ).
% vimage_Suc_insert_0
thf(fact_9561_finite__vimage__Suc__iff,axiom,
! [F3: set_nat] :
( ( finite_finite_nat @ ( vimage_nat_nat @ suc @ F3 ) )
= ( finite_finite_nat @ F3 ) ) ).
% finite_vimage_Suc_iff
thf(fact_9562_rat__less__code,axiom,
( ord_less_rat
= ( ^ [P6: rat,Q5: rat] :
( produc4947309494688390418_int_o
@ ^ [A3: int,C2: int] :
( produc4947309494688390418_int_o
@ ^ [B3: int,D4: int] : ( ord_less_int @ ( times_times_int @ A3 @ D4 ) @ ( times_times_int @ C2 @ B3 ) )
@ ( quotient_of @ Q5 ) )
@ ( quotient_of @ P6 ) ) ) ) ).
% rat_less_code
thf(fact_9563_quotient__of__denom__pos,axiom,
! [R2: rat,P5: int,Q2: int] :
( ( ( quotient_of @ R2 )
= ( product_Pair_int_int @ P5 @ Q2 ) )
=> ( ord_less_int @ zero_zero_int @ Q2 ) ) ).
% quotient_of_denom_pos
% Helper facts (38)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X3: int,Y: int] :
( ( if_int @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X3: int,Y: int] :
( ( if_int @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X3: nat,Y: nat] :
( ( if_nat @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X3: nat,Y: nat] :
( ( if_nat @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
! [X3: num,Y: num] :
( ( if_num @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
! [X3: num,Y: num] :
( ( if_num @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
! [X3: rat,Y: rat] :
( ( if_rat @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
! [X3: rat,Y: rat] :
( ( if_rat @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X3: real,Y: real] :
( ( if_real @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X3: real,Y: real] :
( ( if_real @ $true @ X3 @ Y )
= X3 ) ).
thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
! [P: real > $o] :
( ( P @ ( fChoice_real @ P ) )
= ( ? [X6: real] : ( P @ X6 ) ) ) ).
thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
! [X3: complex,Y: complex] :
( ( if_complex @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
! [X3: complex,Y: complex] :
( ( if_complex @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X3: extended_enat,Y: extended_enat] :
( ( if_Extended_enat @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X3: extended_enat,Y: extended_enat] :
( ( if_Extended_enat @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X3: code_integer,Y: code_integer] :
( ( if_Code_integer @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X3: code_integer,Y: code_integer] :
( ( if_Code_integer @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
! [X3: set_int,Y: set_int] :
( ( if_set_int @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
! [X3: set_int,Y: set_int] :
( ( if_set_int @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
! [X3: vEBT_VEBT,Y: vEBT_VEBT] :
( ( if_VEBT_VEBT @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
! [X3: vEBT_VEBT,Y: vEBT_VEBT] :
( ( if_VEBT_VEBT @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X3: list_int,Y: list_int] :
( ( if_list_int @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X3: list_int,Y: list_int] :
( ( if_list_int @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
! [X3: list_nat,Y: list_nat] :
( ( if_list_nat @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
! [X3: list_nat,Y: list_nat] :
( ( if_list_nat @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X3: int > int,Y: int > int] :
( ( if_int_int @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X3: int > int,Y: int > int] :
( ( if_int_int @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X3: option_num,Y: option_num] :
( ( if_option_num @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X3: option_num,Y: option_num] :
( ( if_option_num @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X3: product_prod_int_int,Y: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X3: product_prod_int_int,Y: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X3: product_prod_nat_nat,Y: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X3: product_prod_nat_nat,Y: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
! [X3: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
( ( if_Pro5737122678794959658eger_o @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
! [X3: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
( ( if_Pro5737122678794959658eger_o @ $true @ X3 @ Y )
= X3 ) ).
thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X3: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X3: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $true @ X3 @ Y )
= X3 ) ).
% Conjectures (1)
thf(conj_0,conjecture,
? [Y3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ mi @ na ) ) @ Y3 ) ).
%------------------------------------------------------------------------------